
ABSTRACT

Title of dissertation: NEW APPROACHES FOR
ANALYZING SYSTEMS WITH
HISTORY-DEPENDENT EFFICIENCY

Michael Lin
Doctor of Philosophy, 2020

Dissertation directed by: Professor Nuno Martins
Professor Richard La
Department of Electrical and Computer Engineering

In my dissertational work, I propose two novel models for analyzing systems

in which the operational efficiency depends on the past history, e.g., systems with

human-in-the-loop and energy harvesting sensors.

First, I investigate a queuing system with a single server that serves multiple

queues with different types of tasks. The server has a state that is affected by the

current and past actions. The task completion probability of each kind of task is

a function of the server state. A task scheduling policy is specified by a function

that determines the probability of assigning a task to the server. The main results

with multiple types of tasks include: (i) necessary and sufficient conditions for the

existence of a randomized stationary policy that stabilizes the queues; and (ii) the

existence of threshold type policies that can stabilize any stabilizable system. For a

single type system, I also identify task scheduling policies under which the utilization

rate is arbitrarily close to that of an optimal policy that minimizes the utilization

rate. Here, the utilization rate is defined to be the long-term fraction of time the

server is required to work.

Second, I study a remote estimation problem over an activity packet drop link.

The link undergoes packet drops and has an (activity) state that is influenced by past

transmission requests. The packet-drop probability is governed by a given function

of the link’s state. A scheduler determines the probability of a transmission request

regarding the link’s state. The main results include: (i) necessary and sufficient

conditions for the existence of a randomized stationary policy that stabilizes the

estimation error in the second-moment sense; and (ii) the existence of deterministic

policies that can stabilize any stabilizable system. The second result implies that

it suffices to search for deterministic strategies for stabilizing the estimation error.

The search can be further narrowed to threshold policies when the function for the

packet-drop probability is non-decreasing.

NEW APPROACHES FOR ANALYZING SYSTEMS WITH
HISTORY-DEPENDENT PERFORMANCE

by

Michael Lin

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Professor Richard J. La, Co-Chair/Advisor
Professor Nuno C. Martins, Co-Chair/Advisor
Professor Sennur Ulukus
Professor Steven I. Marcus
Professor Nikhil Chopra

c© Copyright by
Michael Lin

2020

Acknowledgments

I owe my gratitude to all the people who made this thesis possible and for

whom my experience as a graduate was one that I will cherish forever.

First and foremost, I’d like to thank my advisors, Professor Nuno Martins and

Professor Richard La, for the continuous support of my Ph.D. study. Their guidance

helped me in all the time of research and writing of this thesis. It has been a pleasure

to work with and learn from them. I would also like to thank Professor Sennur

Ulukus for introducing the book ”Non-negative Matrices and Markov Chains” by

Dr. Eugene Seneta to Professor Nuno Martins and me, which saved a proof in my

thesis at the last minute. I would also like to thank Professors Steve Marcus and

Professor Nikhil Chopra for agreeing to serve in my advisory committee. I would

like to thank Professor Prakash Narayan for introducing estimation and detection to

me, and Professor André Tits for leading me into the optimization world. I would

like to thank Professor Behtash Babadi for giving me a solid foundation on Markov

Chain.

I would like to thank my beloved wife, Kuan-Chen, for patiently supporting

me during the difficult times. To my parents, Wheling and Yaomin, for never letting

me give up on my dreams. To the many friends I made during all these years at

Maryland: Dr. Shinkyu Park, Sheng Cheng, Joubel Boco, Charles Tadem, Basanta

Adhikari, Dr. Anuja Sonalker, Han-Chin Shing, Sharon Cheng, Wei-An Lin, Tina

Sung, Huai Jen Liang, Belle Su, Chang-Mu Han, Sirius Chen, Bohan Wang, Kang-

Hao Peng, Shu-chu Li, Chiao-Hsuan Wang, Victor Li, Charles Kuo.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Outline . 5

2 Literature review 7
2.1 Literature Review for The Queuing Model 7
2.2 Literature Review for The Remote Estimation Model 11

3 Queuing Servers Subject to Activity Server Performance 13
3.1 Introduction . 14
3.2 Main problems . 15

3.2.1 Stability . 15
3.2.2 Utilization Rate . 16

3.3 Stochastic Discrete-Time Framework 17
3.3.1 Timing and Notation . 17
3.3.2 Probabilistic Model . 22

3.3.2.1 Arrival Process . 22
3.3.2.2 Activity Server Performance 23
3.3.2.3 Dynamics of the Activity State 24
3.3.2.4 Transition probabilities for Xk 25

3.3.3 Evolution of the system state under a stationary policy 26
3.4 The Server State Process: An Auxiliary CMC Y 30

3.4.1 Stationary policies of Y . 33

3.4.2 Stationary PMFs of Y
φ

. 33
3.4.3 Policies Mapping Relation between X and Y 35

3.5 Summary . 39

iii

4 Queuing Server with One Type of Tasks 41
4.1 Stability Results . 42
4.2 Proofs of Stability Results . 45

4.2.1 Necessity . 46
4.2.2 Sufficiency . 51

4.3 Utilization Rate: Definition and Infimum 61
4.4 Service and Utilization Rate of Y . 62

4.4.1 Utilization rate of Y and computation via LP 65
4.4.2 LP-based policy sets . 68

4.5 Utilization Rate Results . 70
4.5.1 Continuity and monotonicity properties of ε-LP 74
4.5.2 Key Distributional Convergence Results 76

4.6 Simulation Result . 89
4.7 Summary . 90

5 Queuing Server with Multiple Types of Tasks 93
5.1 Stability Results for Two Types . 93
5.2 Proofs of Stability Results . 98

5.2.1 Necessity . 99
5.2.2 Sufficiency . 100

5.3 Stability Results for Multiple Types 103
5.4 Summary . 105
5.5 Proofs of Lemmas . 105

5.5.1 A Proof of Lemma 5.1 . 105
5.5.2 A Proof of Lemma 5.2 . 106
5.5.3 A Proof of Lemma 5.3 . 107
5.5.4 A Proof of Lemma 5.7 . 114
5.5.5 A Proof of Lemma 5.9 . 115
5.5.6 Derivation of Stationary PMF in (5.15) 117
5.5.7 A Proof of Lemma 5.10 . 120
5.5.8 A Proof of Lemma 5.4 . 123
5.5.9 A Proof of Lemma 5.11 . 130

6 Remote State Estimation Across An Activity Packet-Drop Link 134
6.1 Introduction . 135

6.1.1 Activity State: Discussion and Motivation 136
6.1.2 Objectives and Outline of Main Results 138

6.2 Framework and Problem Formulation 138
6.2.1 Activity packet-drop link . 139
6.2.2 Estimator, Estimation Error and System State 142
6.2.3 Overall System State and CMC Y 143
6.2.4 Transmission Policies, Stability and Problem Statement 145

6.3 Second Moment Stability Results . 147
6.4 Proofs of Main Results . 150

6.4.1 A Proof of Theorem 6.1 . 150

iv

6.4.2 A Proof of Theorem 6.2 . 155
6.4.3 A Proof of Lemma 6.1 . 158

6.5 Summary . 162

7 Conclusion and Future Directions 163

A Appendix 166
A.1 A Proof of Theorem 4.4: Structure of Optimal Utilization Rate . . . 166

A.1.1 Derivation of Stationary PMF in (A.4) 174
A.2 Lemma 5.3 for m types of tasks . 176

A.2.1 A Proof of Lemma A.10 . 184
A.2.2 A Proof of Lemma A.11 . 187
A.2.3 A Proof of Lemma A.12 . 191

A.3 Lemma 5.4 for m types of tasks . 195

Bibliography 207

v

List of Tables

3.1 A summary of notation describing CMC X. 26

6.1 A summary of notation describing CMC Y. 145

vi

List of Figures

1.1 Illustration of relationship between performance and arousal 3

3.1 Basic queuing server architecture. 16
3.2 Illustration of time uniformly divided into epochs and when updates

and actions are taken. (Assuming k ≥ 1) 18

4.1 Simulation Results . 91

5.1 Stability Region for the system with both types of tasks 94

6.1 Basic system architecture. 136

7.1 History-Dependent Estimator in A Controlled Loop 165

vii

List of Abbreviations

CMC Controlled Markov Chain
LTI Linear Time Invariant
MC Markov Chain
MDP Markov Decision Process
PMF Probability Mass Function
PRCC Positive Recurrent Communicating Class
WCDD Weakly Chained Diagonally Dominant
WDD Weakly Diagonally Dominant
SDD Strongly Diagonally Dominant

viii

Chapter 1: Introduction

Recent developments in information and communication networks and sensor

techniques have made a wide variety of new applications a reality. These include

wireless sensor networks in which devices coupled with communication modules that

are powered by renewable resources, such as solar and geothermal energy, as well

as evolving technologies, such as unmanned aerial vehicles (UAVs). In many cases,

the component system performance, as well as the overall system performance, can

be analyzed using appropriate models.

Unfortunately, most existing models are insufficient because server efficiency

(e.g., a human supervisor monitoring and controlling various UAVs) is not time-

invariant in many of these new applications and typically depends on previous

workload history or the types of services performed. As a consequence, little is

known about the efficiency and stability of such systems, and new methodologies

and theories are therefore required.

In this study, we first propose two new frameworks for studying the stability of

systems in which the efficiency of servers is time-varying and is dependent on their

past utilization. Using the proposed frameworks, we then explore the problems of

designing a task scheduling policy with a simple structure, which is optimal in that

1

it keeps the system stable whenever doing so is possible using some policies or for

minimizing the fraction of time that the server is working.

1.1 Motivation

Systems with history-dependent performance appear in a wide number of real-

world applications. A few interesting examples are provided in the following.

Human operators:

Though modern technological advances automate many tasks which were for-

merly performed by the human, human operators are still vital for some critical

missions such as military operations. With recent psychology research and develop-

ment in the biological sensing devices, it is possible to model human performance

and study task management policies to increase the productivity of overall human-

in-the-loop systems.

The notion of mental workload in human-assisted systems generally relates to

the burden placed on a human operator by the complexity and frequency of assign-

ment of duties [1]. Therefore, given that it is known to affect a human operator’s

efficiency, the effect of arousal is essential for the work assignment policy design.

Literature exists which studied the performance of human operators for services

such as classification [2], supervision [3], or assembly work within the production

system [4].

In the psychology community, the well-known Yerkes–Dodson law [5, 6] de-

scribes the relationship between the performance of human and mental arousal. The

2

Law states that the performance increases with psychological arousal to a point and

decreases after that. Moreover, recent studies [7] found that the inverted U shape

curve only applied to complex tasks such as decision-making and multitasking. High

arousal does not impair the performance of simple tasks such as tasks that only re-

quire flashbulb memory. Therefore, it is essential for task management policies for

human operators to consider these factors.

Performance

Arousal

High

High

Low

Low

Simple tasks

Difficult tasks

Figure 1.1: Illustration of relationship between performance and arousal

Energy Harvesting devices:

Energy harvesting technologies provide devices with the ability to obtain en-

ergy from the surrounding environments and the potential to operate indefinitely

without human interactions [8]. The capabilities are particularly useful for the de-

vices within the human body [9] or at remote places since the cost of replacing

batteries is significant. In the recent IoT trend of attaching smart sensors to every

household item, the self-sustain sensors are also preferable since maintaining the

massive amount of sensors might be bothersome for the customers.

There exist several techniques that acquire energy from different sources, such

3

as solar and thermal [10]. However, most of them have one universal challenge:

the randomness of available power and the limited volume of rechargeable batteries.

Besides the randomness of power, the performance of a device might be affected by

the battery state of charge [11,12], which is subject to the past working and energy

harvesting history. For example, the typical discharge curve of a battery specifies

how the power it can deliver decreases as it loses charge. Therefore, it is essential to

manage when and how the devices use the energy to achieve the desired objectives.

Other examples exist, such as systems with thermal dependent performance,

and past working history governs the temperature [13–16].

An important observation is that these applications have similar structures.

First, an activity state summarizes the historical events such as arousal, battery

level, or temperature for human operators, energy harvesting devices, or thermal de-

pendent devices, respectively. Second, the instantaneous performance of the server

is affected by the activity state. Inspired by the common structures, we propose

two novel mathematic models for analyzing systems in which the operational per-

formance depends on history. A queuing framework is proposed for the systems

where the number of completed tasks is critical, while an estimation model focus

on estimation error, and the number of transferred packets is not the main focus.

We also investigate the formats of optimal task management policies for various

objectives, such as stability and minimization of average working time.

4

1.2 Thesis Outline

In Chapter 2, we survey and present related literature for our two frameworks,

the queuing model and the remote estimation model, respectively.

In Chapter 3, we introduce the queuing server model subject to activity perfor-

mance. The model consists of three components: multiple first-in-first-out queues,

a server, and a scheduler. We model the evolution of the whole system state, server

states, and queues lengths as a Controlled Markov Chain (CMC). We also introduce

an auxiliary CMC with finite state space that describes the evolution of server states

with infinite queue lengths. The auxiliary CMC shares some stochastic properties

with the original system. These properties simplified our analysis from the complex

infinite states system CMC to the simple finite states auxiliary CMC in the following

chapters.

In Chapter 4, we present our main results when there is only one type of task

and one queue. We address two main challenges for designing policies, stability and

utilization rate. We first show that there exists an upper-bound on the arrival rate

such that the system can still be stable, and the value can be computed efficiently.

Moreover, we prove the existence of a threshold policy that keeps the queue stable

whenever doing so is possible using some scheduler. For the utilization rate mini-

mization problem, we find the minimum utilization rate given an arrival rate and

propose policies that achieve near-optimal utilization rate while keeping the queue

stable.

In Chapter 5, we relax the single type of task constraint and study the stability

5

problem for general m types of tasks. The region for stabilizable arrival rates is

identified. We proposed a policy that stabilizes the queues whenever the arrival

rates are in the interior of the stability region. Furthermore, the computation of

the policy does not rely on the knowledge of arrival rates. It only depends on m

threshold values, while each of the threshold values can be computed by considering

a single type system and applying the analysis in the previous chapter.

In Chapter 6, we model and study the usage dependent efficiency effect for re-

mote estimation. A single agent setup is presented where past transmission history

affects the link quality. Similar to the previous chapter where we study when the

server should work, the question that we ask here is, ”When should the agent trans-

mits?”. This problem leads us to some structural insights for scheduling policies

that guarantee the stability for estimation.

Chapter 7 concludes the thesis and outlines future research problems.

6

Chapter 2: Literature review

In this chapter, we survey and present the related literature for our two frame-

works, the queuing model and the remote estimation model, respectively.

2.1 Literature Review for The Queuing Model

Queuing systems with time-varying performance have been of great interest to

the decision and control community. Most of the early literature considered systems

whose parameters, such as service rates or arrival rates, are dependent on queue

lengths [17–19], where [20] is a comprehensive survey. Some of the researches were

motivated by the observation that some real-world production systems tend to raise

the service rates or slow down the new tasks injection when the number of awaiting

works increases. Recent psychological studies also suggested that the queue length

influences the performance of a human [21], [22]. If a unimodal function governs

the relation of the service rate and queue length for a single server, Bekker and

Borst [23] showed that threshold policies on the queue length are optimal in terms

of maximizing throughput.

Another line of research considered time-varying behavior as an intrinsic prop-

erty of the server. For instance, with the fast development of wireless networks,

7

there has been a great interest in understanding and developing effective scheduling

strategies with time-varying channel conditions affecting the likelihood of successful

transmissions. Various formulations were investigated for designing sound schedul-

ing polices. Some have embraced an optimization structure aimed at maximizing

the aggregate utility of flows/users (e.g., [24–28]). This strategy enables designers

to assess the trade-off between the aggregate throughput, queue length, and fairness

between flows/users. Others focused on designing optimal throughput schedulers

that can stabilize the system for any arrival rate (vector) that lies in the stabil-

ity region (e.g., [29–31]), which is more relevant to our study. However, there is a

notable distinction between these studies and our model.

In wireless networks, channel conditions and the likelihood of successful trans-

mission/decoding vary independently, regardless of the scheduling decisions chosen

by the scheduler. In other words, the scheduler (along with the physical layer sys-

tems) is trying to deal with or take advantage of time-varying channel situations that

are beyond resource managers’ control and are not influenced by policy choices. On

the other hand, in our research, the probability of finishing a job within an epoch

relies on the past history of scheduling actions. The present scheduling choice,

therefore, impacts the server’s future performance.

With the recent development of energy harvesting technologies, many articles

studied remote transmitters that are powered by renewable energy. Most of them

modeled the energy buffer as a server inner state, and the policies determine the

amount of energy to use. The number of packets sent only depended on the amount

of energy used. Algorithm are proposed to promote maximize throughput or mini-

8

mize transmission delay in an information-theoretic context, such as in [32–35]. The

continuous-time model [36] is similar to the one in [32]. However, the time of energy

and packets arrivals is assumed to be known, and the number of packets was finite.

They mainly focused on short-term behavior, such as finding the policy to send all

packets with minimal time.

In our model, the server only has the option to work or rest. The transmitter

always sends the packet successfully in their model, while our structure takes into

account the energy consumption for retransmission due to the packets lost. Our

framework might be suitable for the lower-level energy harvesting sensors in which

the battery state of charge determines the amount of used energy.

Another area that is closely related to our study is task scheduling for human

operators/servers. In the past, many studies have been conducted on the efficiency

and management of human operators and servers (e.g., bank tellers, toll collectors,

physicians, nurses, emergency dispatchers), e.g., [37–39]. Recently, with rapid ad-

vances in information and sensor technologies, human supervisory control, which

requires processing a large amount of information in a short period, potentially

causing information overload, became an active research area [3].

Various frameworks exist for analyzing human-assisted systems and design

policies that reduce error rates [40, 41] or minimize processing time [42]. In closely

related studies, Savla and Frazzoli [43, 44] investigated the problem of designing a

task release control policy. They assumed periodic task arrivals and modeled the

dynamics of server utilization, which determines the service time of the server, using

a differential equation; the server utilization increases when the server is busy and

9

decreases when it is idle. They showed that, when all tasks bring identical workload,

a policy that allows a new task to be released to the server only when its utilization

is below a suitably chosen threshold, is maximally stabilizing [44, Theorems III.1

and III.2].

Researchers who studied production systems consider similar issues, where

machines can fail with time-varying rates and (preventive) maintenance planning

is crucial. The problems of production scheduling and maintenance scheduling are

considered separately in more traditional approaches [45–48], and equipment fail-

ures are treated as random events which need to be coped with. However, when the

probability or rate of machine failure is time-varying and depends on the age since

last (preventive) maintenance, the overall efficiency of production can be enhanced

by considering both issues together [49–52]. For example, [53] formulated the prob-

lem using an MDP model with the state consisting of the age of the system (since

the last preventive maintenance) and the queue length, and examined the structural

properties of optimum policies.

While most of the previous models consider deterministic arrivals and services,

we propose a discrete-time stochastic queuing framework that couples the server

performance with the frequency and recency of the working period. This framework

allows us to analyze the structural properties of optimal policies without relying

on numerical methods and is general enough to capture the behavior of real-world

applications.

10

2.2 Literature Review for The Remote Estimation Model

Several articles have reported research on a wide range of interesting prob-

lems of remote estimation and control. The packet drop event was regarded as

multiplicative noise by early works, and the minimum packet arrival rates for stable

systems were researched [54,55]. Different formulations with packet-drop links con-

necting various components, such as from the sensor to the remote estimator [56]

or from the controller to the actuator [57], have been suggested. [58] considered the

case where both connections are packet-drop links while [59] studied a similar struc-

ture and showed that when there is no feedback from the actuator to the controller,

the separation principle does not hold. Settings for two or more links connecting

components were studied in [60–62].

The seminal work by Gupta et al. [63] studied not only stabilizability but also

encoder and controller schemes that are optimal when information on the state of

the plant is relayed over a Markovian packet-drop link. The work in [64], [65], [59]

has investigated other interesting formulations and [66] is a comprehensive survey.

Another line of research considered the case in which the estimator or some

other component of the system has the authority to decide when to request a trans-

mission [67–69] while the communication does not suffer from erasure. The design

of strategies for all the components that are jointly optimal with respect to a fig-

ure of merit that also includes communication cost was considered in [70,71]. Other

articles designed optimal policies with constraints such as a limited number of trans-

missions [72, 73].

11

The communication link considered in this thesis has an activity state that

governs the packet-drop probability. In addition, the state reacts to the history of

current and past requests according to a controlled Markov chain. Ward and Mar-

tins [74] investigated a similar framework, but focused on finite time horizon problem

in which stability was not addressed. They also considered that the activity state

was governed by a (deterministic) finite state machine.

Recent work focusing on energy harvesting [75] considered models similar to

ours. Policies that promote error stability or minimize certain estimation error met-

rics using event-triggered strategies or transmission power management are reported

in [76], [77] and [78]. Interesting formulations have been proposed, such as multiple

energy harvesting sensors measuring the same LTI plant [79] or imperfect feedback

from estimators to sensors [80,81]. Event-triggered policies to ensure mean-squared

stability were investigated in Tallapragada et al. [82].

In contrast with existing work, our framework couples transmission perfor-

mance with the frequency and recency of requests, while stability of the estimation

error is assessed in the second-moment sense, which is often relevant for real-time

decision and control problems. In addition, we provide tight necessary and suffi-

cient conditions for stabilizability that are also constructive in that they specify the

structure of a stabilizing policy when one exists.

12

Chapter 3: Queuing Servers Subject to Activity Server Performance

In this chapter, we introduce our queuing server model. The model consists

of multiple first-in-first-out queues that store incoming tasks. A non-preemptive

server with history-dependent performance processes the assigned tasks. A scheduler

assigns tasks to the server base on system states. We also design an auxiliary

process that shares some stochastic properties with the queuing server model. This

supplemental process greatly simplified our analysis from infinite state space to finite

state space and is notably helpful for proving our Theorems in the later Chapters.

The chapter is organized as follows. We begin by presenting an overview of

each component in the model. Then, we state the main challenges addressed in

this thesis. A stochastic discrete-time model is described in Section 3.3. In it,

we also introduce notation, key concepts, and propose a Controlled Markov Chain

(CMC) framework that is amenable to performance analysis and optimization. In

Section 3.4, we design an auxiliary CMC based on the original framework and prove

that they have identical marginal stationary Probability Mass Functions (PMFs)

under some conditions.

13

3.1 Introduction

We consider a queuing system comprising the following three components:

• m first-in first-out unbounded queues store m types of tasks. Queue i registers a

new type i task when it arrives and removes it as soon as work on it is completed.

Each queue has an internal state, its queue size, which indicates the number of

uncompleted tasks in the queue.

• The server performs the work required by each task assigned to it. It has an

internal state with two components. The first is the availability state, which indicates

whether the server is available to start a new task or is busy on a type of task. We

assume that the server is non-preemptive, which in our context means that the server

gets busy when it starts work on a new task, and it becomes available again only

after the task is completed. The second component of the state is termed activity and

takes values in a finite set of positive integers, which represent parameters that affect

the performance of the server. More specifically, we assume that the activity state

and the type of task determine the probability that, within a given time-period, the

server can complete a task of that type. Hence, a decrease in performance causes an

increase in the expected time needed to service a task. Such an activity state could,

for instance, represent the battery charge level of an energy harvesting module that

powers the server or the status of arousal or fatigue of a human operator that assists

the server or supervises the work.

• The scheduler has access to the queues sizes and the entire state of the server.

14

When the server is available and the queues are not empty, the scheduler decides

whether to assign a new task from a non-empty queue or to allow for a rest period.

Our formulation admits non-work-conserving policies whereby the scheduler may

choose to assign rest periods even when the queues are not empty. This allows

the server to rest as a way to steer the activity state towards a range that can

deliver better long-term performance. A controlled Markov chain, denoted as CMC

S, models how the history of actions governs the probabilistic evolution of activity

state.

We adopt a stochastic discrete-time framework in which time is uniformly

partitioned into epochs, within which new tasks arrive according to a Bernoulli

process. The probability of arrival per epoch is termed arrival rate1. We constrain

our analysis to stationary schedulers characterized by policies that are invariant

under epoch shifts. We discuss our assumptions and provide a detailed description

of our framework in Section 3.3.

3.2 Main problems

The following are the main challenges address in the queuing server model:

3.2.1 Stability

Problem 3.1. A set of arrival rates for each type of tasks is qualified as stabilizable

when there is a scheduler that stabilizes the queues. Given a server, we seek to

1Notice that, unlike the nomenclature we adopt here, arrival rate is commonly used in the
context of Poisson arrival processes. This distinction is explained in detail in Section 3.3.2.1.

15

type 1 task

Queue 1

Scheduler

type m task

Queue m

Server

CMC S

(Q1
k, . . . , Q

m
k) - queues length

Wk - availability state
Sk - activity state
Ak - action

(Q1
k, . . . , Q

m
k)

(Wk, Sk) Ak

...

Figure 3.1: Basic queuing server architecture.

identified all stabilizable sets of arrival rates.

Problem 3.2. We seek to propose schedulers that have a simple structure and are

guaranteed to stabilize the queues for any stabilizable set of arrival rates.

Notice that, as alluded to above in the scheduler description, we allow non-

work-conserving policies. This means that, in addressing Problem 3.1, we must

allow policies that are a function not only of the queue size, but also of the activity

and availability states of the server. The design process for good policies is compli-

cated by the fact that they are a function of these states with intricate dependence,

illustrating the importance of addressing Problem 3.2.

3.2.2 Utilization Rate

Problem 3.3. Given a server and a stabilizable arrival rate, determine a tractable

method to compute the infimum of all utilization rates achievable by a stabilizing

scheduling policy. Such a fundamental limit is important to determine how effective

16

any given policy is in terms of the utilization rate.

Problem 3.4. Given a server and a stabilizable arrival rate, determine a tractable

method to design policies whose utilization rate is arbitrarily close to the fundamental

limit.

3.3 Stochastic Discrete-Time Framework

In the following section, we describe a discrete-time framework that follows

from assumptions on when the states of the queue and the server are updated and

how actions are decided. In doing so, we will also introduce the notation used to

represent these discrete-time processes. A probabilistic description that leads to a

tractable CMC formulation is deferred to Section 3.3.2.

3.3.1 Timing and Notation

We consider an infinite horizon problem in which the physical (continuous)

time set is R+, which we partition uniformly into half-open intervals of positive

duration ∆ as follows:

R+ = ∪∞k=0 [k∆, (k + 1)∆)

Each interval is called an epoch, and epoch k refers to [k∆, (k+ 1)∆). Our formula-

tion and results are valid regardless of the epoch duration ∆. We reserve t to denote

continuous time, and k is the discrete-time index we use to represent epochs.

Each epoch is subdivided into three half-open subintervals denoted by stages

S1, S2 and S3 (see Fig. 3.2). As we explain below, stages S1 and S2 are allocated

17

epoch k − 1 epoch k

t = (k − 1)∆ t = k∆ time

S1S2 S3

Record Qk,Wk and Sk

Determine Ak based on Xk

New task may

be assigned here

Figure 3.2: Illustration of time uniformly divided into epochs and when updates
and actions are taken. (Assuming k ≥ 1)

for basic operations of record keeping, updates and scheduling decisions. Although,

in practice, the duration of these stages is a negligible fraction of ∆, we discuss them

here in detail to clarify the causality relationships among states and actions. We

also introduce notation used to describe certain key discrete-time processes that are

indexed with respect to epoch number.

Our model allows m different types of tasks for any positive m. In addition,

even though more general arrival processes can be handled, for simplicity of exposi-

tion, we assume that new type i task arrivals occur in accordance with a Bernoulli

process, and the all Bernoulli processes are assumed independent. Thus, at most

one new task arrives at queue i during each epoch. We denote the number of type

i tasks that arrive during epoch k by Bi
k, which takes values in {0, 1}.

Furthermore, during each epoch, the scheduler assigns at most one task to

the server, according to an employed scheduling policy and, hence, the server either

works on a single task or remains idle at any given time. We denote the number of

type i tasks that the server completes during epoch k by Di
k, which takes values in

{0, 1}.

18

Stage S1:

The following updates take place during stage S1 of epoch k + 1:

For each i ∈ T, the number of uncompleted type i tasks at time t = k∆ is

denoted by Qi
k. We refer to Qi

k as the length or size of queue i at epoch k, and it is

updated according to a Lindley’s equation [83]:

Qi
k+1 = max

{
0, Qi

k +Bi
k −Di

k

}
, k ∈ IN (3.1)

The availability state of the server at time t = k∆ is denoted by Wk and takes

values in

W def
= {A,B1, . . . ,Bm}.

We use Wk = Bi to indicate that the server is busy working on a type i task at time

t = k∆. If it is available at time t = k∆, then Wk = A. The update mechanism for

Wk is as follows:

• If Wk = A, then Wk+1 = A when either no new task was assigned during epoch

k, or a new task was assigned and completed during epoch k. If Wk = A and

a new type i task is assigned during epoch k which is not completed until

t = (k + 1)∆, then Wk+1 = Bi.

• If Wk = Bi and the server completes the task by time t = (k + 1)∆, then

Wk+1 = A. Otherwise, Wk+1 = Bi.

We use Sk to denote the activity state at time t = k∆, and we assume that it

19

takes values in

S def
= {1, . . . , ns}.

The activity state is non-decreasing while the server is working and is non-increasing

when it is idle. In Section 3.3.2, we describe an CMC that specifies probabilistically

how Sk transitions to Sk+1, conditioned on whether the server worked or rested

during epoch k.

Without loss of generality, we assume that Qi
k, Wk and Sk are initialized as

follows:

Qi
0 = 0, W0 = A, S0 = 1, ∀i ∈ T.

The overall state of the server is represented compactly by Yk, which takes values

in Y, defined as follows:

Yk
def
= (Sk,Wk), Y def

= S×W.

In a like manner, we define the overall state the overall state of the queues as follow

Qk, which takes values in Nm, defined as follows:

Qk
def
= (Q1

k, . . . , Q
m
k).

Finally, we define the overall state for the CMC taking values in X as follows:

Xk
def
= (Yk,Qk), X def

= S×
(

(W× Nm)� ∪mi=1 (Bi × N(i−1) × 0× N(m−i))
)
.

20

From the definition of X, it follows that when the queue i is empty, there is no type

i task for the server to work on and, hence, it cannot be busy on type i task.

Stage S2:

It is during stage S2 of epoch k that the scheduler issues a decision based

on Xk: let A def
= {R,W1, . . . ,Wm} represent the set of possible actions that the

scheduler can request from the server, where R and Wi represent ‘rest’ and ‘work

on a type i task’, respectively. The assumption that the server is non-preemptive

and the fact that no new tasks can be assigned when the queue is empty, lead to

the following set of available actions for each possible state x = (s, w, q1, . . . , qm) in

X:

Ax =

{R,∪i:qi 6=0Wi} if w = A, (cannot assign task from empty queues)

{Wi} if w = Bi. (non-preemptive server)

(3.2)

We denote the action chosen by the adopted policy at epoch k by Ak, which

takes values in AXk
.As we discuss in Section 3.3.3, we focus on the design of sta-

tionary policies that determine Ak as a function of Xk.

Stage S3:

A task can arrive at any time during each epoch, but we assume that work on

a new task can be assigned to the server only at the beginning of stage S3. More

specifically, the scheduler acts as follows:

21

• If Wk = A and Ak =Wi, then the server starts working on a new type i task

at the head of the queue i when stage S3 of epoch k begins.

• When Wk = A, the scheduler can also select Ak = R to signal that no work

will be performed by the server during the remainder of epoch. Once this ‘rest’

decision is made, a new task can be assigned no earlier than the beginning of

stage S3 of epoch k + 1. Since the scheduler is non-work-conserving, it may

decide to assign such ‘rest’ periods as a way to possibly reduce Sk+1 and to

improve future performance.

• If Wk = Bi, the server was still working on a task at time t = k∆. In this

case, because the server is non-preemptive, the scheduler picks Ak = Wi to

indicate that work on the current task is ongoing and must continue until it

is completed and no new task can be assigned during epoch k.

3.3.2 Probabilistic Model

Based on the formulation outlined in Section 3.3.1, we proceed to describe a

discrete-time CMC that models how the states of the server and queue evolve over

time for any given scheduling policy.

3.3.2.1 Arrival Process

We assume that tasks arrive during each epoch according to a set of i.i.d.

Bernoulli process {Bi
k; k ∈ IN i ∈ T}. The probability of a type i arrival for each

22

epoch (Pr(Bi
k = 1))2 is called the arrival rate and is denoted by λi for all i from 1

to m, which is assumed to belong to (0, 1). Although we assume Bernoulli arrivals to

simplify our analysis and discussion, more general arrival distributions (e.g., Poisson

distributions) can be handled only with minor changes as it will be clear.

Notice that, as we discuss in Remark 1 below, our nomenclature for λi should

not be confused with the standard definition of arrival rate for Poisson arrivals.

Since our results are valid irrespective of ∆, including when it is arbitrarily small,

the remark also gives a sound justification for our adoption of the Bernoulli arrival

model by viewing it as a discrete-time approximation of the widely used Poisson

arrival model.

Remark 1. It is a well-known fact that, as ∆ tends to zero, a Poisson process in

continuous time t, with arrival rate λ̃, is arbitrarily well approximated by Bbt/∆c with

λ = ∆λ̃.

3.3.2.2 Activity Server Performance

In our formulation, the efficiency or performance of the server during an epoch

is modeled with the help of a service rate function µ : S × T → (0, 1). More

specifically, if the server works on a type i task during epoch k, the probability that

it completes the task by the end of the epoch is µ(Sk, i). This holds irrespective

of whether the task is newly assigned or inherited as ongoing work from a previous

epoch.3 Thus, the service rate function µ quantifies the effect of the activity state on

2Note that we use Pr for probability and E for expected value in this thesis.
3This assumption is introduced to simplify the exposition. However, more general scenarios in

which the probability of task completion within an epoch depends on the total service received by

23

the performance of the server. The results presented throughout this section

are valid for any choice of µ with codomain (0, 1)m.

3.3.2.3 Dynamics of the Activity State

We assume that (i) Sk+1 is equal to either Sk or Sk + 1 when Ak is in

{Wi, . . . ,Wm} and (ii) Sk+1 is either Sk or Sk − 1 if Ak is R. This is modeled

by the following transition probabilities specified for every s and s′ in S.

PSk+1|Sk,Ak(s
′ | s,Wi)

=

ρis,s+1 if s < ns and s′ = s+ 1,

1− ρis,s+1 if s < ns and s′ = s,

1 if s = ns and s′ = ns,

0 otherwise,

(3.3a)

PSk+1|Sk,Ak(s
′ | s,R)

=

ρ0
s,s−1 if s > 1 and s′ = s− 1,

1− ρ0
s,s−1 if s > 1 and s′ = s,

1 if s = 1 and s′ = 1,

0 otherwise.

(3.3b)

where the parameters ρis,s′ , which take values in (0, 1), model the likelihood that the

activity state will transition to a greater or lesser value, depending on the action.

the task prior to epoch k can be handled by extending the state space and explicitly modeling the
total service received by the task in service.

24

3.3.2.4 Transition probabilities for Xk

We assume that Sk+1 is independent of (Wk+1,Qk+1) when conditioned on

(Xk, Ak). Under this assumption, the transition probabilities for Xk can be written

as follows:

PXk+1|Xk,Ak(x
′ | x, a) = PSk+1|Xk,Ak(s

′ | x, a)× PWk+1,Qk+1|Xk,Ak(w
′,q′ | x, a)

= PSk+1|Sk,Ak(s
′ | s, a)× PWk+1,Qk+1|Xk,Ak(w

′,q′ | x, a)(3.4)

for every x, x′ in X and a in Ax.

We assume that, within each epoch k, the events that (a) there is a new task

arrival during the epoch and (b) a task being serviced during the epoch is completed

by the end of the epoch are independent when conditioned on Xk and {Ak =Wi}.

Hence, the transition probability PWk+1,Qk+1|Xk,Ak in (3.4) is given by the following:

PWk+1,Qk+1|Xk,Ak(w
′,q′ | x,Wi) (3.5a)

=

µ(sk, i) Pr(Bk = q′ − q− ei) if w′ = A,(
1− µ(sk, i)

)
Pr(Bk = q′ − q) if w′ = Bi,

0 otherwise,

PWk+1,Qk+1|Xk,Ak(w
′, q′ | x,R) (3.5b)

=

Pr(Bk = q′ − q) if w′ = A,

0 otherwise,

25

where Bk
def
= (B1

k, . . . , B
m
K) is the vector of Bernoulli random variables that determine

arrival of new tasks, and ei ∈ Nm has all elements equal zero except for the ith

element which equals one.

Definition 3.1. (CMC X) The CMC with input Ak and state Xk, which at this

point is completely defined, is denoted by X.

Table 3.1 summarizes the notation for CMC X.

T set of task types {1, . . . ,m}
S set of activity states {1, . . . , ns}

W def
= {A,Bi, . . . ,Bm} server availability (A = available, Bi = busy on a type i task)

Wk server availability at epoch k (takes values in W)
Y server state components S×W

Yk
def
= (Sk,Wk) server state at epoch k (takes values in Y)
N natural number system {0, 1, 2, . . .}.

Qk
def
= (Q1

k, . . . , Q
m
k) queue sizes at epoch k (takes values in N ∗m)

X state space formed by

S×
(

(W× N)� ∪mi=1 (Bi × N(i−1) × 0× N(m−i))
)

Xk
def
= (Yk,Qk) system state at epoch k (takes values in X)

A def
= {R,W1, . . . ,Wm} possible actions (R = rest, Wi = work on a type i task)

X CMC whose state is Xk at epoch k ∈ IN
Ax set of actions available at a given state x in X
Ak action chosen at epoch k.

PMF probability mass function

Table 3.1: A summary of notation describing CMC X.

3.3.3 Evolution of the system state under a stationary policy

We start by defining the class of policies that we consider throughout the

section.

26

Definition 3.2. A stationary randomized policy is specified by a mapping θ : X →

[0, 1]m that determines the probability that the server is assigned to work on a specific

type of task or rest, as a function of the system state, according to

PAk|Xk,...,X0(Wi|xk, . . . , x0) = θ(xk)i, for all i ∈ T and,

PAk|Xk,...,X0(R|xk, . . . , x0) = 1−
∑
i∈T

θ(xk)i.

Definition 3.3. The set of admissible stationary randomized policies satisfying (3.2)

is denoted by ΘR.

Convention We adopt the convention that, unless stated otherwise, a set of positive

arrival rates λ = {λ1, . . . , λm} is pre-selected and fixed. Although the statistical

properties of X and associated quantities subject to a given policy depend on λ, we

simplify our notation by not labeling them with λ.

From (3.4) - (3.5b), we conclude that X subject to a policy θ in ΘR evolves

according to a time-homogeneous Markov chain (MC), which we denote by Xθ =

{Xθ
k; k ∈ IN}. Also, provided that it is clear from the context, we refer to Xθ as

the system.

The following is the notion of system stability we adopt in our study.

Definition 3.4 (System stability). For a given policy θ in ΘR, the system Xθ is

stable if it satisfies the following properties:

i. There exists at least one recurrent communicating class.

ii. All recurrent communicating classes are positive recurrent.

27

iii. The number of transient states is finite.

We find it convenient to define ΘS(λ) to be the set of randomized policies in

ΘR, which stabilize the system for the fixed set of arrival rates λ.

Before we proceed, let us point out a useful fact under any stabilizing policy

θ in ΘS(λ).

Lemma 3.1. A stable system Xθ has a unique positive recurrent communicat-

ing class (PRCC), which is aperiodic. Therefore, there is a unique stationary

probability mass function (PMF) for Xθ.

Proof. We will prove the claim by contradiction. The decomposition theorem of

MCs tells us that X can be partitioned into a set consisting of transient states and

a collection of irreducible, closed recurrent communicating classes {C1,C2, . . .} [84].

Since Xθ is assumed stable, all recurrent communicating classes C`, ` = 1, 2, . . ., are

positive recurrent. Suppose that the claim is false and there is more than one positive

recurrent communicating class. We demonstrate that this leads to a contradiction.

First, we show that each set C`, ` = 1, 2, . . . contains states with busy working

on type i task for i ∈ T. More specifically, (si`,Bi,qi`) ⊂ C` for i ∈ T and ` = 1, 2, . . .,

where each si` ∈ S, and qi` > (0, . . . , 0) element-wise. If this is not true, the policy θ

never choose to work on a type i′ task for every state in C` with the form (s,A,q)

for an i′ ∈ T because C` is closed [84]. But, this implies that, starting with any state

in C`, the scheduler will never assign a type i′ task to the server and, consequently,

all states in C` must be transient, which contradicts that C` is positive recurrent.

28

For the same reason, each C` must include a state x̃` = (s̃`,A, q̃`) with θ(x̃`)i > 0

for an i ∈ T, which implies that C` is aperiodic.

Second, if some state (s,Bi,q) is in C`, ` = 1, 2, . . ., then so are all the states

(s′, w,q′) for all s′ ≥ s, w in {Bi,A}, and q′ ≥ q element-wise: the fact that

(s,Bi,q) communicates with (s′, w,q), s′ ≥ s and w in {Bi,A}, which means that

these states belong to C` as well, is obvious. In addition, it is evident that (s′,Bi,q)

communicates with (s′,Bi,q′) for all q′ ≥ q. In order to see why (s′,A,q′), s′ ≥ s

and q′ ≥ q, also lie in C`, consider the following two cases: if θ(s′,A,q)i = 0 for

all i ∈ T, then clearly (s′,A,q) communicates with (s′,A,q + ei) for all iT where

ei ∈ Nm has all elements equals zero except for the ith element which equals one.

On the other hand, if θ(s′,A,q)i > 0 for an i ∈ T, (s′,A,q) communicates with

(s′,Bi,q + ei′) for all i′ ∈ T, which in turn communicates with (s′,A,q + ei′). The

claim now follows by induction.

Note that, the above two observations together imply that there exists finite

q∗
def
= max{q1,q2} (element-wise maximum) such that all states (ns, w,q), w in W

and q ≥ q∗ element-wise, belong to both C1 and C2. This, however, contradicts the

earlier assumption that C1 and C2 are disjoint recurrent communicating classes.

Definition 3.5. Given a set of arrival rates λ > 0 and a stabilizing policy θ in

ΘS(λ), we denote the unique stationary PMF and positive recurrent communicating

class of Xθ by πθ = (πθ(x); x ∈ X) and Cθ, respectively.

29

3.4 The Server State Process: An Auxiliary CMC Y

In this section, we describe an auxiliary CMC whose state takes values in Y

and is obtained from X by artificially removing the queue-length component. We

shall show that this auxiliary CMC share some statistical properties with CMC X.

Thus, we can analyze the finite state space auxiliary CMC instead of the infinite

state space CMC X. We denote this auxiliary CMC by Y and its state at epoch

k by Yk = (Sk,W k) in order to emphasize that it takes values in Y. The action

chosen at epoch k is denoted by Ak. We use the overline to denote the auxiliary

CMC and any other variables associated with it, in order to distinguish them from

those of the server state in X.

As it will be clear, we can view Y as the server state of the original CMC

X for which infinitely many tasks are waiting in the queues at the beginning, i.e.,

Qi =∞ for all i from 1 to m. As a result, there is always a task waiting for service

when the server becomes available.

The reason for introducing Y is the following: (i) Y is finite and, hence, Y

is easier to analyze than X, and (ii) we can establish a relation between X and Y,

which allows us to prove the main results in the previous section by studying Y

instead of X. This simplifies the proofs of the theorems in the previous section.

• Admissible action sets: As the queue sizes are no longer a component of

the state of Y, we eliminate the dependence of admissible action sets on q, which

was explicitly specified in (3.2) for MDP X, while still ensuring that the server is

non-preemptive. More specifically, the set of admissible actions at each element

30

y = (s, w) of Y is given by

Aw
def
=

{Wi} if w = Bi, (non-preemptive server)

A if w = A.

(3.6)

Consequently, for any given realization of the current state yk = (sk, wk), Ak is

required to take values in Awk .

• Transition probabilities: We define the transition probabilities that spec-

ify Y, as follows:

PYk+1|Yk,Ak
(y′ | y, a)

def
= PSk+1|Sk,Ak(s

′ | s, a) (3.7)

×PWk+1|Yk,Ak
(w′ | y, a),

where y and y′ are in Y, and a is in Aw. Subject to these action constraints, the

right-hand terms of (3.7) are defined, in connection with X, as follows:

PSk+1|Sk,Ak(s
′ | s, a)

def
= PSk+1|Sk,Ak(s

′ | s, a) (3.8)

31

PWk+1|Yk,Ak
(w′ | y,Wi)

def
=

µ(s, i) if w′ = A

1− µ(s, i) if w′ = Bi

(3.9a)

PWk+1|Yk,Ak
(w′ | y,R)

def
=

1 if w′ = A

0 o.w.

(3.9b)

• A relation between the transition probabilities of X and Y: From

the definition above and (3.5), we can deduce the following equality: for all qi ≥ 1

i ∈ T,

PWk+1|Yk,Ak

(
w′ | y,Wi

)
=

∞∑
q′1=0

. . .
∞∑

q′m=0

PWk+1,Qk+1|Xk,Ak

(
(w′,q′) | (y,q),Wi

)
, (3.10)

which holds for any w′ in W and y in Y. Notice that the right-hand side (RHS) of

(3.10) does not change when we vary q across the positive integers. From this, in

conjunction with (3.4), (3.7) and (3.8), we have, for all qi ≥ 1 and i ∈ T,

PYk+1|Yk,Ak

(
y′ | y,Wi)

=
∞∑
q′1=0

. . .

∞∑
q′m=0

PXk+1|Xk,Ak

(
(y′,q′) | (y,q),Wi

)
. (3.11)

The equality in (3.11) indicates that PYk+1|Yk,Ak
also characterizes the transition

probabilities of the server state Yk = (Sk,Wk) in X when the current queue sizes

32

are positive. This is consistent with our earlier viewpoint that Y can be considered

the server state in X initialized with infinite queue sizes at the beginning. We will ex-

plore this relationship in Section 4.2, where we use Y to prove Theorems 4.1 and 4.2.

3.4.1 Stationary policies of Y

Analogously to the MDP X, we only consider stationary randomized policies

for Y, which are defined below.

Definition 3.6 (Stationary randomized policies for Y). We restrict our attention

to stationary randomized policies acting on Y, which are specified by a mapping

φ : Y→ [0, 1]m, as follows:

PAk|Yk,...,Y0
(Wi|yk, . . . ,y0) = φ(yk)i

PAk|Yk,...,Y0
(R|yk, . . . ,y0) = 1−

∑
i=1,2

φ(yk)i

for every k in IN and yk, . . . ,y0 in Y. The set of all stationary randomized policies

for Y which honor (3.6) is defined to be ΦR.

3.4.2 Stationary PMFs of Y
φ

The MDP Y subject to a policy φ in ΦR is a finite-state time-homogeneous MC

and is denoted by Y
φ def

= {Yφ

k ; k ∈ IN}. Because Y is finite, for any policy φ in ΦR,

Y
φ

has a positive recurrent communicating class and a stationary distribution [84].

In fact, there are at most two positive recurrent communicating classes as explained

below.

33

Define a mapping T : ΦR → S ∪ {0}, where

T (φ)
def
= max{s ∈ S |

∑
j∈T

φ(s,A)j = 1}, φ ∈ ΦR.

We assume that T (φ) = 0 if the set on the RHS is empty.

Case 1. φ(1,A)i > 0 for an i ∈ T: First, from the definition of T (φ), clearly

all states (s, w) with s ≥ T (φ) communicate with each other, but none of these states

communicates with any other state (s′, w′) with s′ < T (φ) because
∑

j∈T φ(T (φ),A)j =

φ(T (φ),Bi)i = 1. Second, because φ(1,A)i > 0 by assumption, all states (s′, w′)

with s < T (φ) communicate with states (s, w) with s ≥ T (φ). Together with the

first observation, this implies that these states (s′, w′) with s′ < T (φ) are transient.

Therefore, there is only one positive recurrent communicating class given by

Yφ def
= {(s, w) ∈ Y | s ≥ T (φ)}. (3.12)

Case 2. φ(1,A)i = 0 for all i ∈ T: In this case, it is clear that (1,A) is an

absorbing state and forms a positive recurrent communicating class by iself. Hence,

if T (φ) = 0, as all other states communicate with (1,A), the only positive recurrent

communicating class is {(1,A)} and all other states are transient. On the other

hand, if T (φ) > 1, for the same reason explained in the first case, Yφ gives rise to

a second positive recurrent communicating class, and all other states (s′, w′) with

s′ < T (φ), except for (1,A), are transient.

In our study, we often limit our discussion to randomized policies φ in ΦR with

34

φ(1,A)i > 0 for at least an i ∈ T. For this reason, for notational convenience, we

define the set of randomized policies satisfying this condition by Φ+
R. The reason for

this will be explained in the subsequent section.

The following proposition is an immediate consequence of the above observa-

tion.

Corollary 3.1. For any policy φ in Φ+
R, Y

φ
has a unique stationary PMF,

which we denote by πφ = (πφ(y); y ∈ Y).

3.4.3 Policies Mapping Relation between X and Y

One of key facts which we will make use of in our analysis is that, for any

stabilizing policy θ in ΘS(λ), we can find a policy φ in Φ+
R which achieves the same

steady-state distribution of server state. To this end, we first define, for each y in

Y,

Qy def
= {q ∈ INm | (y,q) ∈ X}.

Definition 3.7 (Policy projection map Y). We define a mapping Y : ΘS(λ) 7→ ΦR,

where

Y (θ)
def
= φθ, θ ∈ ΘS(λ),

35

with

φθ(y)i
def
=

∑
q∈Qy θ(y,q)iπ

θ(y,q)∑
q∈Qy πθ(y,q)

, y ∈ Y, i ∈ {1, . . . ,m}. (3.13)

We first present a lemma that proves useful in our analysis.

Lemma 3.2. For every stabilizing policy θ in ΘS(λ), we have φθ(1,A)i > 0 for

an i ∈ T.

Proof. First, note that every state in Cθ communicates with some state of the form

(1,A,q), which must lie in Cθ as well; this can be seen from the fact that, after

each epoch the server works (resp. rests), the one of the queue size (resp. the

activity state) decreases by one with positive probability. As a result, Xθ, starting

at x = (s, w,q) in Cθ, can reach a state (1,A,q′) for some q′ in INm, after at most

(s− 1) +
∑

i∈T qi epochs with positive probability.

Since (1,A,q′) is in Cθ (because Cθ is closed [84]) and communicates with all

states (1,A, q̃), q̃ ≥ q′ element-wise, they also belong to Cθ. This in turn means

that there exists q? such that (a) (1,A,q?) is in Cθ, hence πθ(1,A,q?) > 0, and

(b) θ(1,A,q?)i > 0 for an i ∈ T; otherwise, the states (1,A, q̃), q̃ ≥ q′, must be

transient and cannot belong to Cθ, leading to a contradiction.

An obvious implication of the lemma is that Y (θ) belongs to Φ+
R for every θ

in ΘS(λ), and there exists a unique stationary PMF for Y
Y (θ)

, namely πY (θ).

The following lemma shows that the steady-state distribution of the server

36

state in X under policy θ in ΘS(λ) is identical to that of Y under policy Y (θ).

Lemma 3.3. Suppose that θ ∈ ΘS(λ). Then, we have

πY (θ)(y) =
∑
q∈Qy

πθ(y,q), y ∈ Y. (3.14)

Proof. For notational convenience, let φ = Y (θ). Taking advantage of the fact that

there is a unique stationary PMF of Y
φ
, it suffices to show that the distribution

given in (3.14) satisfies the definition of stationary PMF:

πφ(y) =
∑
y′∈Y

πφ(y′) P
φ

y′,y for all y ∈ Y, (3.15)

where P
φ

denotes the one-step transition matrix of Y
φ
.

• Right-hand side of (3.15): Using the policy φ in place,

∑
y′∈Y

πφ(y′) P
φ

y′,y

=
∑
y′∈Y

πφ(y′)
(m∑
i=1

φ(y′)iP
Wi

y′,y + (1−
m∑
i=1

φ(y′)i)P
R
y′,y

)
=
∑
y′∈Y

πφ(y′)
(
P
R
y′,y +

m∑
i=1

φ(y′)i(P
Wi

y′,y −P
R
y′,y

))
, (3.16)

where P
R

(resp. P
Wi

) denotes the one-step transition matrix of Y under a policy

that always rests (resp. works on a new task) when available.

Substituting (3.13) for φ(y′) in (3.16) and using the given expression πφ(y′) =

37

∑
q∈Qy′ πθ(y′, q) in (3.14), we obtain

(3.16) =
∑
y′∈Y

m∑
i=1

∑
q′∈Qy′

θ(y′,q′)iπ
θ(y′,q′)

(
P
Wi

y′,y −P
R
y′,y

)
+
∑
y′∈Y

∑
q∈Qy′

πθ(y′,q)P
R
y′,y

=
m∑
i=1

∑
x′∈X

θ(x′)iπ
θ(x′)

(
P
Wi

y′,y −P
R
y′,y

)
+
∑
x′∈X

πθ(x′)P
R
y′,y.

(3.17)

• Left-hand side of (3.15): Using (3.14), we get

πφ(y) =
∑
q∈Qy

πθ(y,q). (3.18)

For notational ease, we denote (y,q) on the RHS of (3.18) simply by x. Since πθ is

the unique stationary PMF of Xθ, we have

πθ(y,q) =
∑
x′∈X

πθ(x′)Pθ
x′,x (3.19)

=
∑
x′∈X

m∑
i=1

πθ(x′)θ(x′)i
(
PWi

x′,x −PRx′,x
)

+
∑
x′∈X

πθ(x′)PRx′,x,

where Pθ is the one-step transition matrix of Xθ, and PR (resp. PWi) is the one-step

transition matrix under a policy that always rests (resp. assigns a new task) when

the server is available and at least one task is waiting for service.

38

Substituting (3.19) in (3.18) and rearranging the summations, we obtain

πφ(y) =
m∑
i=1

∑
x′∈X

πθ(x′)θ(x′)i
∑
q∈Qy

(
PWi

x′,x −PRx′,x
)

+
∑
x′∈X

πθ(x′)
∑
q∈Qy

PRx′,x. (3.20)

By comparing (3.17) and (3.20), in order to prove (3.15), it suffices to show

P
a

y′,y =
∑
q∈Qy

Pa
(y′,q′),(y,q), a ∈ A.

Note that

∑
q∈Qy

Pa
(y′,q′),(y,q) = PYk+1|(Yk,Qk),Ak(y | (y′,q′), a). (3.21)

Clearly, conditional on {(Yk, Ak) = (y′, a)}, Yk+1 does not depend on the queue

size at epoch k. As a result, the RHS of (3.21) does not depend on q′ and is equal

to PYk+1|Yk,Ak(y | y′, a) = P
a

y′,y.

3.5 Summary

We present our queuing server framework in this section. The model is made up

of several first-in-first-out queues that store incoming tasks. The assigned tasks are

handled by a non-preemptive server with history-dependent efficiency. A scheduler

assigns tasks base on system status to the server. We also layout an auxiliary process

with the queuing server framework, which shares some stochastic properties. In

39

particular, we defined a projection mapping from a policy for the original system to

auxiliary CMC. We proved that the PMF on the server state is preserved after the

mapping. This additional process greatly simplified our analysis from infinite state

space to finite state space and is especially helpful in the later chapters to prove our

theorems.

40

Chapter 4: Queuing Server with One Type of Tasks

In this chapter, we restrict our attention to the case where only one type of

task exists (m = 1). We present our main results that address two main challenges

for designing policies, which are stability and utilization rate. We first show that

there exists an upper-bound on the arrival rate such that the system can still be

stable, and the value can be computed efficiently. Moreover, we prove the existence

of a threshold policy that keeps the queue stable whenever doing so is possible using

some scheduler. Then, we give the formal definition of utilization rate. We find

the minimum utilization rate given an arrival rate and propose policies that achieve

near-optimal utilization rate while keeping the queue stable by relating two CMCs,

X and Y.

The chapter is organized as follows. We begin by presenting the stability

results follow by the proofs of two Theorems. In Section 4.3, we give the formal

definition of utilization rate for a policy on CMC X. In Section 4.4, we introduce

the utilization rate for a policy on Y. In Section 4.5, we identified a tractable

method to compute the infimum of all utilization rates achievable by a stabilizing

scheduling policy and design policies whose utilization rate is arbitrarily close to the

fundamental limit.

41

For notational convenience, we simplify our representation by not presenting

the type of the task which we denote by i in the model definition because we focus

on single type case in this chapter.

4.1 Stability Results

Our answers for Problem 3.1 and Problem 3.2 when there is only one type

of task (m=1) are Theorems 4.1 and 4.2, where we state that a soon-to-be defined

quantity ν∗, which can be computed efficiently, is the least upper bound of all

arrival rates for which there exists a stabilizing policy in ΘR (see Definition 3.4).

The theorems also assert that, for any arrival rate λ less than ν∗, there is a stabilizing

deterministic threshold policy in ΘR with the following structure:

θτ (s, w, q)
def
=

φτ (s, w) if q > 0,

0 otherwise,

(4.1)

where τ lies in S ∪ {ns + 1}, and φτ is a threshold policy that acts as follows:

φτ (s, w)
def
=

0 if s ≥ τ and w = A,

1 otherwise.

(4.2)

Notice that, when the server is available and the queue is not empty, θτ assigns a

new task only if s is less than the threshold τ and lets the server rest otherwise.

Next, we provide the intuition behind the value ν∗. In Section 3.4, we introduce

an auxiliary CMC with finite state space Y, which can be viewed as the server state

42

in X when the queue size Qk is always positive. Using the fact that Y is finite, we

demonstrate that, for every φ ∈ Φ+
R (Φ+

R is the set of stationary randomized policies

for the auxiliary CMC), the auxiliary CMC subject to φ has a unique stationary

PMF, which we denote by πφ. Then, we show that, for any stable system Xθ under

some policy θ in ΘR, we can find a policy φ for the auxiliary CMC, which achieves

the same long-term departure rate of completed tasks as in Xθ. As a result, the

maximum long-term departure rate of completed tasks in the auxiliary CMC among

all randomized policies serves as an upper bound on the arrival rate λ for which we

can hope to find a stabilizing policy θ in ΘR. Finally, we show the maximum

departure rate among all randomized policies and the maximum departure rate

among all threshold policies φτ with τ in S ∪ {ns + 1} are identical.

Making use of this observation and denoting the unique stationary PMF of

auxiliary CMC subject to φτ by πφτ , we define the following important quantity:

ν∗
def
= max

τ∈S∪{ns+1}

 ∑
(s,w)∈Y

πφτ (s, w) φτ (s, w) µ(s)

 (4.3)

From the definition of the stationary PMF πφτ , ν∗ can be interpreted as the maxi-

mum long-term departure rate of completed tasks under any threshold policy of the

form in (4.1), assuming that the queue is always non-empty.

The following are the main results of this section.

Theorem 4.1. (Necessity) If, for a given arrival rate λ, there exists a stabilizing

policy in ΘR, then λ ≤ ν∗.

43

Theorem 4.2. (Sufficiency) Let τ ∗ be a maximizer of (4.3). If the arrival rate

λ is strictly less than ν∗, then θτ∗ stabilizes the system.

Proof. Please see Section 4.2.1 and Section 4.2.2 for the proofs.

Remark 2. The following important observations are direct consequences of (4.3)

and Theorems 4.1 and 4.2:

• The computation of ν∗ in (4.3) along with a maximizing threshold τ ∗ relies on

a finite search that can be carried out efficiently.

• The theorems are valid for any choice of service rate function µ that takes

values in (0, 1). In particular, µ could be multi-modal, increasing or decreasing

respect to activity state.

• The search that yields ν∗ and an associated τ ∗ does not require knowledge of

λ.

We point out two key differences between our study and [43, 44] . The model

employed by Savla and Frazzoli assumes that the service time function is convex,

which is analogous to our service rate function being unimodal. In addition, a

threshold policy is proved to be maximally stabilizing only for identical task work-

load. In our study, however, we do not impose any assumption on the service rate

function, and the workloads of tasks are modeled using i.i.d. random variables.1

1To be more precise, our assumptions correspond to the case with exponentially distributed
workloads. However, as mentioned earlier, this assumption can be relaxed to allow more general
workload distributions.

44

4.2 Proofs of Stability Results

In this section, we begin with a comment on the long-term average departure

rate of completed tasks when the system is stable. Then, in order to prove The-

orem 4.1, we make use of a similar notion of long-term service rates of Y
φ
, which

can be viewed in most cases as the average number of completed tasks per epoch.

We establish that, for every stabilizing policy θ, we can find a related policy φ in

ΦR whose long-term service rate equals that of θ or, equivalently, the arrival rate

λ. Finally, we provide a useful Lemma that argues that the policies should always

choose to work at s = 1 before proving Theorem 4.1.

Remark 3. Recall from our discussion in Section 3.3 that, under a stabilizing

policy θ in ΘS(λ), there exists a unique stationary PMF πθ. Consequently, the

average number of completed tasks per epoch converges almost surely as k goes to

infinity. In other words,

lim
k→∞

∑k−1
t=0 I

{
a task is completed at epoch t in Xθ

}
k

=
∑
x∈X

µ(s)πθ(x)θ(x)
def
= νθ with probability 1,

where s, w and q are the coordinates of x = (s, w, q). We call νθ the long-term

service rate of θ (for the given arrival rate λ > 0). Moreover, because θ is assumed

to be a stabilizing policy, we have νθ = λ.

45

4.2.1 Necessity

In order to prove Theorem 4.1, we make use of a similar notion of long-term

service rate of Y
φ
, which can be viewed in most cases as the average number of

completed tasks per epoch. (Step 1) We first establish that, for every stabilizing

policy θ, we can find a related policy φ in Φ+
R whose long-term service rate equals that

of θ or, equivalently, the arrival rate λ. (Step 2) We prove that ν∗ in (4.3) equals

the maximum long-term service rate achievable by any policy in ΦR. Together, they

tell us λ ≤ ν∗.

• Long-term service rates of Y
φ
: The long-term service rates associated

with Y
φ

under policy φ in ΦR is defined as follows. First, for each φ in ΦR, let

Π(φ) be the set of stationary PMFs of Y
φ
. Clearly, by Corollary 3.1, for any φ in

Φ+
R, there exists a unique stationary PMF and Π(φ) is a singleton. The long-term

service rate of φ in ΦR is defined to be

νφ
def
= sup

π∈Π(φ)

(∑
y∈Y

µ(s)πφ(y)φ(y)
)
. (4.4)

Recall that y is the pair (s, w) taking values in Y.

Step 1: The following lemma illustrates that the long-term service rates achieved

by Y (θ) in Φ+
R equals that of θ.

Lemma 4.1. Suppose that θ is a stabilizing policy in ΘS(λ). Then, νY (θ) =

νθ = λ.

46

Proof. First, note

νY (θ) (a)
=
∑
y∈Y

µ(s) πY (θ)(y) φ(y)

(b)
=
∑
y∈Y

µ(s)
(∑

q∈Qy

πθ(y,q)
)
θ(y,q)

(c)
=
∑
x∈X

µ(s)πθ(x)θ(x)
(d)
= νθ,

where (b) follows from Lemma 3.3, and (c) results from rearranging the summations

in terms of x = (y,q). Finally (a) and (d) hold by definition. The lemma follows

from Remark 3 that νθ is equal to λ.

Step 2: We shall prove that ν∗ in (4.3) equals the maximum long-term service rate

achievable by any policy in Φ+
R. Together with Lemma 4.1, they tell us λ ≤ ν∗.

Since Y (θ) belongs to Φ+
R as explained earlier, Lemma 4.1 implies

λ = νY (θ) ≤ max
φ∈Φ+

R

νφ
def
= ν∗∗. (4.5)

We shall prove that ν∗ = ν∗∗ in three steps. First, we show that we can restrict

our search from Φ+
R to Φ++

R which is a set of policies that always choose to work

when y = (1,A). Next, we establish that there is a stationary deterministic policy

in Φ++
R that achieves ν∗∗. Then, we show that, for any stationary deterministic

policy, we can find a deterministic threshold policy that achieves the same long-term

service rate, thereby completing the proof of Theorem 4.1.

47

Lemma 4.2. For a policy φ ∈ Φ+
R, there exists a policy φ′ ∈ Φ++

R

def
= {φ ∈ Φ+

R :

φ(1,A) = 1} such that,

νφ
′ ≥ νφ.

Proof. A proof for the Lemma in the context of general m types of tasks is provided

in Section 5.5.4.

By Lemma 4.2, it is clear that,

ν∗∗ = max
φ∈Φ+

R

νφ = max
φ∈Φ++

R

νφ. (4.6)

Let us define Φ+
D to be a subset of Φ++

R , which consists only of stationary

deterministic policies for Y. In other words, if φ ∈ Φ+
D, then φ(y) ∈ {0, 1} for all

y ∈ Y except (1,A) and φ(1,A) = 1. Theorem 9.1.8 in [85, p. 451] tells us that

if (i) the state space is finite and (ii) the set of available actions is finite for every

state, there exists a deterministic stationary optimal policy. Thus,

ν∗∗ = max
φ∈Φ++

R

νφ = max
φ∈Φ+

D

νφ. (4.7)

While the equality in (4.7) simplifies the computation of the maximum long-

term service rate achievable by some φ in ΦR, it requires a search over a set of

2ns deterministic policies in the worst case. Thus, when ns is large, it can be

computationally expensive. As we show shortly, it turns out that the maximum

long-term service rate on the RHS of (4.7) can always be achieved by a deterministic

48

threshold policy of the form in (4.2).

Definition 4.1. Recall from (4.2) that, for a given τ in S ∪ {ns + 1}, φτ is the

following deterministic threshold policy for Y:

φτ (y) =

0 if s ≥ τ and w = A

1 otherwise.

The following lemma shows that, for each deterministic policy φ satisfying

φ(1,A) = 1, there is a deterministic threshold policy with the same long-term service

rate. Note that we define T in Section 3.4.2.

Lemma 4.3. Suppose that φ is a policy in Φ+
D. Then, νφ = νφτ ′ , where τ ′ =

T (φ) + 1.

Proof. We begin with the following facts that will be utilized in the proof.

F1. The postulation that the server is non-preemptive, which we formally impose

in (3.6), means that after the sever initiates work on a task, it will be allowed

to rest only after the task is completed. This implies that any policy φ in ΦD

satisfies φ(s,B) = 1 for all s in S.

F2. From (3.3) and (3.8), we know that Sk+1 is never less than Sk while the server

is working.

From F1 and F2 stated above, we conclude that the following holds for any

σ in S:

φ(σ,A) = 1 =⇒ Pr(S
φ

k+1 ≥ σ | Sφk = σ) = 1 (4.8)

49

Here, we recall that Y
φ

k = (S
φ

k ,W
φ

k) represents the state of Y
φ

at epoch k.

The implication in (4.8) leads us to the following important observation: sup-

pose that a deterministic policy φ in Φ+
D satisfies φ(σ,A) = 1 for some σ greater

than 1. Then, all states (s, w) with s less than σ are transient and, therefore,

πφ(s, w) = 0 if s < σ. (4.9)

The reason for this is that (i) because φ(1,A) = 1, all states (s, w) with

s < σ communicate with every state (s′, w′) with s′ ≥ σ, and (ii) none of the

states (s′, w′) with s′ ≥ σ communicates with any state (s, w) with s < σ since

φ(σ,A) = φ(σ,B) = 1.

F3. The above observation means that, given a deterministic policy φ in ΦD, every

state (s, w) with s < T (φ) is transient and πφ(s, w) = 0.

F4. Moreover, the remaining states (s, w) in Yφ with s ≥ T (φ) communicate with

each other and their period is one (because it is possible to transition from

(T (φ),A) to itself. Since Yφ is finite, it forms an aperiodic, positive recurrent

communicating class of Y
φ
.

We will complete the proof of Lemma 4.3 with the help of following lemma.

Lemma 4.4. Suppose that φ and φ̃ are two deterministic policies in ΦD satis-

50

fying φ(1,A) = φ̃(1,A) = 1. Then,

T (φ̃) = T (φ) =⇒ πφ̃ = πφ (4.10)

Proof. If T (φ̃) = T (φ), F3 states that, for any state (s, w) with s < T (φ), we

have πφ(s, w) = πφ̃(s, w) = 0. Furthermore, F4 tells us that the positive recurrent

communicating classes are identical, i.e., Yφ = Yφ̃. From F1 and the definition of

mapping T , we conclude that, for all states (s, w) in Yφ, φ̃(s, w) = φ(s, w). This in

turn means that, for all (s, w) in Yφ, we have πφ(s, w) = πφ̃(s, w).

Let us continue with the proof of Lemma 4.3. Select φ̃ = φτ ′ with τ ′ =

T (φ) + 1. Then, Lemma 4.4 tells us that πφ = πφ̃. From the definition of νφ in

(4.4), Lemma 4.3 is now a direct consequence of this observation and F4.

Proceeding with the proof of the theorem, Lemma 4.3 tells us that,

ν∗∗ = max
φ∈Φ+

D

νφ = max
τ∈S∪{ns+1}

νφτ = ν∗. (4.11)

Together with (4.5), we have λ < ν∗.

4.2.2 Sufficiency

In this section, we shall prove our proposed policies indeed stabilize any sta-

bilizable arrival rates by utilizing Foster-Lyapunov type argument. We begin with

a Proposition which is the keystone for building the Lyapunov functions. Then, we

proceed with the proof of the Theorem.

51

Proposition 4.1. Consider the CMC Y with finite states space Y and a re-

ward function r : Y × ΦR → R that calculates a reward for each state given

a policy.a Suppose the CMC Y is equipped with a stationary randomized pol-

icy φ such that the resulting Markov Chain Y
φ

k has only one positive recurrent

communicating class and the stationary PMF πφ exists. Then, there exists a

non-negative potential-like function f : Y→ R+ such that

r(y, φ)− E
[
f(Y

φ

k+1)− f(Y
φ

k) | Yφ

k = y
]

= rφavg, (4.12)

for each states y ∈ Y where E stands for expected value and rφavg is the average

reward for Y
φ

k , i.e.,

rφavg =
∑
y∈Y

r(y, φ)πφ(y).

aThe statement in Proposition 4.1 is true for any finite states CMC. We state it using Y
to simplify our notation.

Proof. We reindex Y and assume Y = {1, . . . , n}. Let us construct a temporary f ′

function by first assigning f ′(n) = 0 (WOLG assume state n is positive recurrent).

52

Next, for each y ∈ {1, . . . , n− 1}, the Proposition statement can be rewritten as

r(y, φ)− E
[
f ′(Y

φ

k+1)− f ′(Yφ

k)|Yφ

k = y
]

= rφavg,

−E
[
f ′(Y

φ

k+1)− f ′(Yφ

k)|Yφ

k = y
]

= rφavg − r(y, φ),

−E
[
f ′(Y

φ

k+1)|Yφ

k = y
]
− f ′(y) = rφavg − r(y, φ),

−
∑
y′∈Y

f ′(y′) Pr(Y
φ

k+1 = y′ | Yφ

k = y) + f ′(y) = rφavg − r(y, φ).

Since f ′(n) = 0, the constraints can be written as,

(
1− Pr(Y

φ

k+1 = y | Yφ

k = y)
)
f ′(y)−

∑
y′∈Y\{y,n}

f ′(y′) Pr(Y
φ

k+1 = y′|Yφ

k = y)

= rφavg − r(y, φ).(4.13)

We collect all the constraints (4.13) for each y ∈ {1, . . . , n− 1} and form a system

of linear equations. The equations can be represented in matrix form as follow.

α1 β1,2 β1,3 . . . β1,n−1

β2,1 α2 β2,3 . . . β2,n−1

...
...

...
. . .

...

βn−1,1 βn−1,2 βn−1,3 . . . αn−1

f ′(1)

f ′(2)

...

f ′(n− 1)

=

rφavg − r(1, φ)

rφavg − r(2, φ)

...

rφavg − r(n− 1, φ)

where αi = 1− Pr(Y
φ

k+1 = y | Yφ

k = y) and βi,j = −Pr(Y
φ

k+1 = j|Yφ

k = i).

This matrix is a Weakly Chained Diagonally Dominant (WCDD) matrix [86]

53

by the following observation. First, the matrix is weakly diagonally dominant since

|αi| = |1− Pr(Y
φ

k+1 = i|Yφ

k = i)|

=

∣∣∣∣ ∑
j∈{1,...,n}6=i

Pr(Y
φ

k+1 = j|Yφ

k = i)

∣∣∣∣
=

∑
j∈{1,...,n}6=i

|Pr(Y
φ

k+1 = j|Yφ

k = i)|

≥
∑

j∈{1,...,n−1}6=i

| − Pr(Y
φ

k+1 = j|Yφ

k = i)|

=
∑

j∈{1,...,n−1}6=i

|βi,j|

Furthermore, for any state ` that has positive probability to transit to state

n, row ` is strong diagonally dominant(SDD)

|α`| >
∑

j∈{1,...,n−1}6=`

|β`,j|

The last step is to show that for each row i that is not SDD, there exists a

walk from state i to a state ` in the directed graph associated with the matrix such

that row ` is SDD. Since state n is in the positive recurrent communicating class,

from any state, there exists a walk to the state n. Hence, for all the states that

have zero probability to transit to state n (which are WDD), there exist a walk to

the states that have positive probability to transit to state n (which are SDD). This

satisfies the definition for weakly chained diagonally dominant matrix.

Since WCDD matrix is nonsingular [86], there exists a solution to the equation.

Now we have assign the value to the potential function f ′. The final step is to show

54

this potential function satisfied the Lemma statement at state n.

Let us consider the following value,

rφavg2
def
=
∑
y∈Y

πφ(y)
(
r(y, φ)− E

[
f ′(Y

φ

k+1)− f ′(Yφ

k)|Yφ

k = y
])
.

Suppose the process start from state n. Let Rk = r
(
Y
φ

k , φ
)
−
(
f ′(Y

φ

k)− f ′(Yφ

k−1)
)

,

R0 = 0. The weak law of large number tells us that

∑T
k=1Rk

T
→ rφavg2 with probability 1,

when T goes to infinite. However, we shall show that
∑T
k=1Rk
T

converges to rφavg as

well,

∑T
k=1Rk

T
=

∑T
k=1 r

(
Y
φ

k , φ
)
−
(
f ′(Y

φ

k)− f ′(Yφ

k−1)
)

T

=
f ′(Y

φ

T)−��
�
��*

f ′(n)=0

f ′(Y
φ

0) +
∑T

k=1 r
(
Y
φ

k , φ
)

T

=
f ′(Y

φ

T) +
∑T

k=1 r
(
Y
φ

k , φ
)

T
→ rφavg with probability one,

when T goes to infinity because f ′(Y
φ

T) is upper-bunded. Hence, we have rφavg2 =

55

rφavg, and,

rφavg = rφavg2 =
∑
y∈Y

πφ(y)
(
r(y, φ)− E

[
f ′(Y

φ

k+1)− f ′(Yφ

k)|Yφ

k = y
])

= πφ(n)
(
r(n, φ)− E

[
f ′(Y

φ

k+1)− f ′(Yφ

k)|Yφ

k = n
])

+
∑

y∈Y\n

πφ(y)
(
r(y, φ)− E

[
f ′(Y

φ

k+1)− f ′(Yφ

k)|Yφ

k = y
])

= πφ(n)
(
r(n, φ)− E

[
f ′(Y

φ

k+1)− f ′(Yφ

k)|Yφ

k = n
])

+
∑

y∈Y\n

πφ(y)rφavg,

where the last equality comes from the fact that f ′ satisfies (4.13) for every y 6= n.

Moving the second term on the RHS to the LHS, we obtain

1−
∑

y∈Y\n

πφ(y)rφavg

 rφavg = πφ(n)rφavg

= πφ(n)
(
r(n, φ)− E

[
f ′(Y

φ

k+1)− f ′(Yφ

k)|Yφ

k = n
])

Thus, we have
(
r(n, φ)− E

[
f ′(Y

φ

k+1)− f ′(Yφ

k)|Yφ

k = n
])

= rφavg because πφ(n) >

0. Finally, define the potential-like function f(y) = f ′(y) − miny′∈Y f
′(y′). Then,

this f is non-negative and satisfies all the constraints in the Proposition statement.

One can think of this f function as a potential-like function that adjusts reward

such that the expected one step reward at every state is identical.

56

We shall prove the single queue result by using Foster’s theorem [87]. (Step

1.) We argue that the Markov Chain Xθτ∗ is irreducible. (Step 2.) We construct

a Lyapunov function V by utilizing Proposition 4.1. (Step 3.) Then, we show that

our Lyapunov function V satisfies

E
[
V

(
Xθτ∗
k+1

)
| Xθτ∗

k = x

]
≤M for all {x ∈ X : q = 0}, (4.14a)

E
[
V

(
Xθτ∗
k+1

)
| Xθτ∗

k = x

]
− V (x) ≤ λ− ν∗ for all {x ∈ X : q > 0}. (4.14b)

Finally, by Foster’s theorem and λ < ν∗, we conclude that our CMC equips with

θτ∗ is stable.

Step 1. The fact that Xθτ∗ is irreducible comes from following two observations.

• If the chain starts from any state x ∈ X, there exists a path with positive

probability where the chain goes to (1,A, 0). First, we assume there is no

arrival, every service successes with only one time step and no increment of

activity state, and every rest reduces the activity state by 1. It is clear that

either activity state reduces by 1 or the queue length reduces by 1 for every

time step. Together with the fact that θτ∗(1,A, q1) = 1 for every q 6= 0, the

process will arrive (1,A, 0) after finite steps. Thus, there exists a path with

positive probability that starts from x ∈ X and goes to (1,A, 0).

• Suppose the chain start from (1,A, 0), we shall show that there exists a path

with positive probability to go to any state x′ ∈ X. Consider two cases:

– x′ = (s′,B, q′): For this case, it is clear that the following path has

57

positive probability.

(1,A, 0)→ (1,B, 1)→ . . .→ (s′,B, 1)→ . . .→ (s′,B, q′)

First, a task arrives and the server starts working on it. Then, the server

keep working on the task and the activity state increase to s′. Finally,

the server still working on the task and q′ − 1 of tasks arrive.

– x′ = (s′,A, q′): For this case, it is clear that the following path has

positive probability.

(1,A, 0)→ (1,B, 1)→ . . .→ (s′,B, 1)→ . . .→ (s′,B, q′ + 1)→ (s′,A, q′)

The first three steps are exactly the same with previous case except that

q′ of tasks arrive. The final step is that the server complete the task it is

working on and w goes to A.

Combing these two observation, it is clear that for every x,x′ ∈ X, there exist a

path with positive probability from x to x′ under policy θτ∗ which implies that MC

Xθτ∗ is irreducible.

Step 2. We proceed our proof by considering the auxiliary CMC Y and the thresh-

old policy φτ∗ . By Proposition 4.1, if our reward function r is given by

r(y, φ) = µ(s)φ(y),

58

there exist a non-negative function f such that, for every y ∈ Y,

µ(s)φτ∗(y)− E
[
f(Y

φτ∗

k+1)− f(Y
φτ∗

k)|Yφτ∗

k = y
]

= rφτ∗avg = ν∗, (4.15)

where rφτ∗avg =
∑

y∈Y µ(s)φτ∗(y)πφτ∗ (y) equals to λ∗ by definition. To this end, we

define our Lyapunov function V : X → R+ to be the sum of the queue length and

the potential function f , i.e.,

V (x)
def
= q + f(y).

Step 3. In this step, we shall work on the Markov chain Xθτ∗ (where we use X′ to

represent for reserving space) with a fixed arrival rate λ < ν∗ and prove that (4.14)

holds.

(a){x ∈ X : q = 0} We can directly prove (4.14a) by expending the expected value.

E
[
V

(
X′k+1

)
| X′k = (y, 0)

]
= E

[
Q′k+1 + f(Y′k+1) | Q′k = 0,Y′k = y

]
≤ λ+ max

y∈Y
f(y) = M.

The expected queue length upper-bounded by λ since the expected number of arrival

is λ. The maximum of f(y) exists because there are only finite many elements in

Y.

(b){x ∈ X : q > 0} The proof for (4.14b) is similar. Let us expend the expected

59

value.

E
[
V

(
X′k+1

)
| X′k = x

]
− V (x)

= E
[
Q′k+1 + f(Y′k+1) | X′k = x

]
− q − f(y)

= E
[
Q′k+1 −Q′1k | X′k = x

]
+ E

[
f(Y′k+1)− f(Y′k) | X′k = x

]
. (4.16)

The first term is the expected queue length change which can be represented by the

expected arrival minus expected service, i.e.,

E
[
Q′k+1 −Q′k | X′k = x

]
= λ− µ(s)θτ∗(x)

= λ− µ(s)φτ∗(y),

where we use an important observation that the policy θτ∗ is identical to φτ∗ when

queue length is not zero. By using the same fact, the second term can be written

as follows:

E
[
f(Y′k+1)− f(Y′k) | X′k = x

]
= E

[
f(Y

φτ∗

k+1)− f(Y
φτ∗1
k)|Yφτ∗

k = y
]

Together with (4.15) tells us that

(4.16) = λ− µ(s)φτ∗(y) + E
[
f(Y

φτ∗

k+1)− f(Y
φτ∗

k)|Yφτ∗

k = y
]

= λ− ν∗ < 0.

60

Therefore, the Markov Chain Xθτ∗ [87] is stable by Foster’s theorem and the

assumption that λ is strictly smaller than ν∗.

4.3 Utilization Rate: Definition and Infimum

To answer Problem 3.3 and Problem 3.4, we first give the formal definition of

the utilization rate.

Definition 4.2. (Utilization rate function) The function that determines the

utilization rate in terms of a given stabilizable arrival rate λ and a stabilizing policy

θ, is defined as:

U (λ, θ) :=
∑
x∈X

πθ(x)θ(x), λ ∈ (0, ν∗), θ ∈ ΘS(λ) (4.17)

The utilization rate quantifies the proportion of the time in which the server is

working. Notably, the expected utilization rate U (λ, θ), computed for X with arrival

late λ and stabilized by θ, coincides with the probability limit of the utilization rate,

as defined for instance in [88] (with U = {0, 1}), when the averaging horizon tends to

infinity. Using our notation, the aforesaid probability limit can be stated as follows:

plim
N→∞

∑N
k=0 IAk=W

N + 1
= U (λ, θ), λ ∈ (0, ν∗), θ ∈ ΘS(λ)

where IAk=W is 1 when Ak =W and 0 otherwise.

Definition 4.3. The infimum utilization rate for a given stabilizable arrival rate λ

61

is defined as:

U ∗(λ) := inf
θ∈ΘS(λ)

U (λ, θ), λ ∈ (0, ν∗) (4.18)

4.4 Service and Utilization Rate of Y

Recall that we define the service rate of Y
φ

for a given policy φ in Φ+
R:

νφ
def
=
∑
y∈Y

µ(s)φ(y)πφ(y).

The maximal service rate ν∗ for Y is defined below.

ν∗
def
= sup

φ∈Φ+
R

νφ

As stated Theorem 4.1 and Theorem 4.2, any arrival rate λ lower than ν∗ is stabi-

lizable.

Definition 4.4. We define the map X : Φ+
R → Θ+

R as follows:

X (φ)
def
= ϑφ, φ ∈ Φ+

R

where

ϑφ(x)
def
=

φ(y) if q > 0

0 otherwise

, x ∈ X (4.19)

It follows from its definition that X yields a policy for X that acts as the

62

given φ in Φ+
R when the queue is not empty and imposes rest otherwise.

Convention We reserve ν, without a superscript, to denote a design parameter.

It acts as a constraint in the definition of the following policy sets.

Definition 4.5. (Policy sets Φε
R(ν) and Φ+

R(ν)) Given ν in (0, ν∗), we define the

following policy sets:

Φ+
R(ν)

def
= {φ ∈ Φ+

R | ν
φ = ν}

Φε
R(ν)

def
= {φ ∈ Φε

R | νφ = ν}, ε ∈ [0, 1]

where Φε
R is defined as:

Φε
R := {φ ∈ ΦR | φ(1,A) ≥ ε}, ε ∈ [0, 1]

We also define the following class of policies generated from Φ+
R(ν) and Φε

R(ν)

through X :

X Φε
R(ν)

def
= {X (φ) | φ ∈ Φε

R(ν)}, ν ∈ (0, ν∗), ε ∈ (0, 1]

X Φ+
R(ν)

def
= {X (φ) | φ ∈ Φ+

R(ν)}, ν ∈ (0, ν∗)

The following proposition establishes important stabilization properties for the

policies in X Φ+
R(ν).

63

Proposition 4.2. Let the arrival rate λ in (0, ν∗) be given. If ν is in (λ, ν∗)

then Xθ is stable, irreducible and aperiodic for any θ in X Φ+
R(ν).

Proof. Stability of Xθ can be established using the same method adopted in Sec-

tion 4.2.2 to prove Theorem 4.2.

An immediate consequence of Proposition 4.2 is that {X (φ)|φ ∈ Φ+
R(ν)} is

a nonempty subset of ΘS(λ) when λ < ν ≤ ν∗. This implies that, as far a sta-

bilizability is concerned, there is no loss of generality in restricting our analysis to

policies with the structure in (4.19). More interestingly, from Theorem 4.3, which

will be stated and proved later on in Section 4.5, we can conclude that restricting

our methods for solving Problem 3.4 to policies of the form (4.19) also incurs no

loss of generality.

Recall that we define a policy projection map Y in Definition 3.7. Notice

that although the map Y depends on λ, for simplicity of notation, we chose not

to denote that explicitly. It is worthwhile to note that the map Y , for a given λ

less than ν∗, allows us to establish the following remark comparing the service rate

notions for X and Y.

Remark 4. Given λ in (0, ν∗) and ν in (λ, ν∗), the following hold:

λ
(i)
= νθ

(ii)
= νY (θ) ≤ ν∗, θ ∈ ΘS(λ) (4.20a)

λ
(iii)
= νX (φ) < ν ≤ ν∗, φ ∈ Φ+

R(ν) (4.20b)

Notably, (i) and (ii) follow from Lemma 4.1. Using a similar argument, (iii) follows

64

from the fact that X (φ) is stabilizing, as guaranteed by Proposition 4.2 when ν is

in (λ, ν∗).

4.4.1 Utilization rate of Y and computation via LP

We now proceed to defining the utilization rate of Y
φ

for a given φ in ΦR.

Subsequently, we will define and propose a linear programming approach to com-

puting the infimum of the utilization rates attainable by any policy for Y subject

to a given service rate.

Definition 4.6. Given a policy φ in Φ+
R, the following function determines the

utilization rate of Y
φ
:

Ū (φ) :=
∑
y∈Y

πφφ(y) (4.21)

Definition 4.7. (Infimum utilization rate Ū +
R and Ū ε

R) The infimum utilization

rate of Y for a given departure rate ν is defined as:

Ū +
R (ν) := inf

φ∈Φ+
R(ν)

∑
y∈Y

πφ(y)φ(y) (4.22)

We also define the following approximate infimum utilization rates:

Ū ε
R(ν) := inf

φ∈ΦεR(ν)

∑
y∈Y

πφ(y)φ(y) (4.23)

Notice that the infimum that determines Ū +
R and Ū ε

R is well-defined because

there is a unique stationary PMF πφ for each policy φ in Φ+
R.

65

Remark 5. Notice that since Φ+
R(ν) =

⋃
ε∈(0,1] Φε

R(ν), we conclude the that following

holds:

Ū +
R (ν) = lim

ε→0+
Ū ε
R(ν) (4.24)

We now proceed to outlining efficient ways to compute Ū +
R , which is relevant

because, as Corollary 4.1, we can use it to compute U ∗(λ) when λ < ν∗. Hence,

below we follow the approach in [89, Chapter 4] to construct approximate versions

of Ū ε
R that are computable using a finite-dimensional linear program (LP). Subse-

quently, we will obtain the policies in Φ+
R corresponding to solutions of the LP, as is

done in [89, Chapter 4]. The policies obtained in this way will form a set for each ε

in (0, 1) that will be useful later on.

Definition 4.8. (ε-LP utilization rate Ū ε
L (ν))

Let ε be a given constant in [0, 1] and ν be a pre-selected departure rate in (0, ν∗).

The ε-LP utilization rate Ū ε
L (ν) is defined as:

Ū ε
L (ν) := min

` ∈ L

(4.25b)-(4.25e)

∑
y∈Y

`y,W (4.25a)

where the minimization is carried out over the following set:

L := Πa∈Ay,y∈Y{`y,a ≥ 0}

Every solution is subject to the following constraints and is compactly represented

66

as ` := Πa∈Ay,y∈Y{`y,a}:

(1− ε)`(1,A),W ≥ ε`(1,A),R (4.25b)∑
{y∈Y|W∈Ay}

µ(s)`y,W = ν (4.25c)

∑
y∈Y

∑
a∈Ay

`y,a = 1 (4.25d)

and the equality below guarantees that every solution will be consistent with Y:

∑
y′∈Y

∑
a′∈Ay′

`y′,a′ Pr
(
Yt+1 = y

∣∣Yt = y′, At = a′
)

=
∑
a∈Ay

`y,a, y ∈ Y (4.25e)

Definition 4.9. (Solution set Lε(ν)) For each ε in [0, 1] and ν in (0, ν∗), we

use Lε(ν) to represent the set of solutions of the LP specified by (4.25). We adopt

the convention that Lε(ν) is empty when the LP is not feasible.

67

4.4.2 LP-based policy sets

For each solution ` in Lε(ν) we can obtain a corresponding policy ϕ` in ΦR for

Y as follows:

ϕ`(y) :=

`y,W

`y,W+`y,R
if R ∈ Ay and `y,R > 0

1 otherwise.

, y ∈ Y (4.26)

Remark 6. Subject to the definition in (4.26), the constraint (4.25b) is equivalent

to ϕ`(1,A) ≥ ε, which will, then, hold for every solution ` in Lε(ν).

Definition 4.10. (Policy set Φε
L(ν)) For each ν in (0, ν∗) and ε in [0, 1], we define

the following set of policies Φε
L(ν):

Φε
L(ν) := {ϕ` | ` ∈ Lε(ν)} (4.27)

Here, we adopt the convention that Φε
L(ν) is empty if and only if Lε(ν) is empty.

The following proposition will justify choices for ε we will make at a later stage

to guarantee that Φε
L(ν) is nonempty for ν in (λ, ν∗).

Proposition 4.3. If ε∗ in (0, 1] is such that Φε∗

L (λ) is nonempty then Φε̄
L(ν) is

nonempty for any ε̄ in (0, ε∗] and ν in [λ, ν∗].

Proof. We start by invoking Lemma 4.2 to conclude that Φ1
L(ν∗) is nonempty, and

consequently that Φε∗

L (ν∗) is also nonempty. If `λ and `ν∗ are in Lε∗(λ) and Lε∗(ν∗),

68

respectively, then from (4.25) we conclude that, for any ν in [λ, ν∗], `ν defined below

satisfies (4.25b)-(4.25e), which implies that Lε∗(ν) is nonempty:

`ν :=

(
ν − λ
ν∗ − λ

`ν∗ +
ν∗ − ν
ν∗ − λ

`λ

)
(4.28)

That Lε∗(ν) is nonempty implies that Lε̄(ν) is also nonempty for any ε̄ in (0, ε∗],

which concludes the proof.

Before we proceed with stating a proposition that has important implications

for design, we define the following notion of dominance also used in [89].

Definition 4.11. (Policy set dominance) Let ν in (0, ν∗) and any two subsets

Φ̃1 and Φ̃2 of Φ+
R(ν) be given. We say that Φ̃1 dominates Φ̃2 if for each policy φ2 in

Φ̃2 there is φ1 in Φ̃1 for which Ū (φ1) ≤ Ū (φ2).

Proposition 4.4. Given ν in (0, ν∗) and ε in (0, 1], Φε
L(ν) dominates Φε

R(ν)

and the equality below holds:

Ū ε
R(ν) = Ū ε

L (ν) (4.29a)

Ū +
R (ν) = Ū 0

L (ν) (4.29b)

Proof. It follows immediately from [89, Theorem 4.3] that (4.29a) holds and Φε
L(ν)

dominates Φε
R(ν). We proceed by noticing that for any given fixed ν in (0, ν∗),

Ū ε
L (ν) is non-decreasing with respect to ε. Hence, continuity arguments applied

69

to (4.25) lead to the following equality:

lim
ε→0+

Ū ε
L (ν) = Ū 0

L (ν) (4.30)

That (4.29b) holds is a consequence of (4.24), (4.29a) and (4.30).

4.5 Utilization Rate Results

This section starts with Theorem 4.3, which is our main result on utilization

rate. Subsequently, we state Corollaries 4.1 and 4.2 that undergird our methods to

tackle Problems 3.3 and 3.4, respectively.

Before stating the theorem, we define the following class of policies for X that

can be generated from solutions of the LP:

X Φε
L(ν)

def
= {X (φ) | φ ∈ Φε

L(ν)}, ν ∈ (0, ν∗), ε ∈ (0, 1]

Theorem 4.3. Let an arrival rate λ in (0, ν∗) be given. For each positive gap

δ there is a service rate νδ,λ in (λ, ν∗) and εδ,λ in (0, 1] for which Φεδ,λ

L (νδ,λ) is

nonempty and the following inequality holds:

U (λ, θ) ≤ Ū +
R (λ) + δ, θ ∈X Φεδ,λ

L (νδ,λ) (4.31)

Our proof of Theorem 4.3 given below relies on the continuity properties and

distributional convergence results established in Section 4.5.1 and Section 4.5.2,

70

respectively.

Proof. Since it follows Theorem 4.4 in Section 4.5.1 that Ū 0
L is continuous and non-

decreasing, we know that there is ν† in (λ, ν∗) such that the following inequality

holds:

Ū 0
L (ν†) ≤ Ū 0

L (λ) + 1
3
δ (4.32)

Let ε† be such that Φε†

L (λ) is nonempty. From Proposition 4.6 we know that

we can select ε‡ in (0, ε†] such that the following holds:

Ū ε
L (ν†) ≤ Ū 0

L (ν†) + 1
3
δ, ε ∈ (0, ε‡) (4.33)

From Proposition 4.7 in Section 4.5.1 we know that we can select εδ,λ in (0, ε‡) such

that the following holds:

Ū εδ,λ

L (ν) ≤ Ū εδ,λ

L (ν†), ν ∈ (λ, ν†) (4.34)

In Section 4.5.2 we develop in sequence several results that ultimately lead to

Theorem 4.5, which establishes an important distributional convergence result that

takes hold when ν in (λ, ν†) is selected as close as needed to λ. Using Corollary 4.3

stated also in Section 4.5.2, which follows immediately from Theorem 4.5, we con-

clude that, based on our choice of εδ,λ above, we can select νδ,λ in (λ, ν†) such that

the following inequality holds:

U
(
λ,X (φ)

)
≤ Ū (φ) + 1

3
δ, φ ∈ Φεδ,λ

L (νδ,λ) (4.35)

71

Hence, using our choices for εδ,λ and νδ,λ we infer from (4.32)-(4.35) that the

following inequality holds:

U
(
λ,X (φ)

)
≤ Ū 0

L (λ) + δ, φ ∈ Φεδ,λ

L (νδ,λ) (4.36)

which, together with (4.29b), leads to (4.31).

We proceed with stating a proposition that provides an utilization-rate coun-

terpart for (b) in (4.20a) and whose proof we omit because it follows immediately

from Lemma 3.3 and Lemma 4.1.

Proposition 4.5. Given λ in (0, ν∗), the following equality holds for any θ in

ΘS(λ):

Ū
(
Y (θ)

)
= U (λ, θ) (4.37)

Corollary 4.1. The following equality holds:

U ∗(λ) = Ū +
R (λ), λ ∈ (0, ν∗) (4.38)

Proof. It ensues from Proposition 4.5 and (i)-(ii) in (4.20a) that the following holds

for any λ in (0, ν∗):

U (λ, θ) = Ū
(
Y (θ)

)
≥ Ū +

R (λ), θ ∈ ΘS(λ) (4.39)

Since the inequality above holds for any θ in ΘS(λ) we conclude that the following

72

inequality is satisfied for any λ in (0, ν∗):

U ∗(λ) ≥ Ū +
R (λ) (4.40)

We conclude the proof by remarking that (4.40) and Theorem 4.3 imply (4.38).

Remark 7. Corollary 4.1 is significant because, in conjunction with Proposition 4.4,

it indicates that U ∗ can be determined using the finite dimensional LP (4.25) with

ε = 0.

The following corollary follows directly from Theorem 4.3 and Corollary 4.1.

Corollary 4.2. Let an arrival rate λ in (0, ν∗) be given. For each positive gap

δ there is a service rate ν in (λ, ν∗) and ε̄ in (0, 1] for which Φε̄
L(ν) is nonempty

and the following inequality holds:

U (λ, θ) ≤ U ∗(λ) + δ, θ ∈X Φε̄
L(ν) (4.41)

While, as explained in Remark 7, U ∗(λ) can be computed effectively for any

stabilizable λ, Corollary 4.2 guarantees that we can address Problem 3.4 by ap-

propriately selecting ν and ε to construct policies for X whose utilization rate is

arbitrarily close to the fundamental limit quantified by U ∗(λ). The proof of Theo-

rem 4.3 outlines a method for selecting such ν and ε.

73

4.5.1 Continuity and monotonicity properties of ε-LP

We proceed with establishing three properties of Ū ε
L that are needed in the

proof of our main results.

The following proposition establishes that when, for a given ν in (0, ν∗), Ū ε(ν)

is viewed as a function of ε it is right continuous at 0.

Proposition 4.6. Let ν in (0, ν∗) be given. For any positive δ there is ε such that

the following holds:

Ū ε
L (ν) ≤ Ū 0

L (ν) + δ (4.42)

Proof. Select ν arbitrarily in (0, ν∗). The statement of the proposition is false if and

only if the following inequality holds:

d := lim
ε→0+

Ū ε
L (ν)− Ū 0

L (ν) > 0 (4.43)

We proceed to proving the proposition by contradiction by showing that the in-

equality above does not hold. Take ε positive such that d := Ū ε
L (ν) − Ū 0

L (ν) is in

[d, 2d). Select `ε and `0 in Lε(ν) and L0(ν), respectively. Define `av := 1
3
(`ε + 2`0),

which satisfies (4.25c)-(4.25e). Given that ε is positive, `av will also satisfy (4.25b)

for some ε∗ positive, which implies that Ū ε∗

L (ν)− Ū 0
L (ν) ≤ 1

3
d ≤ 2

3
d.

The following proposition establishes a useful monotonicity property in terms

of ν.

74

Proposition 4.7. Let ν† and ν‡ in (0, ν∗) be given with ν† < ν‡. There exists a

positive ε∗ such that the following holds:

Ū ε∗

L (ν) ≤ Ū ε∗

L (ν‡), ν ∈ (ν†, ν‡) (4.44)

Proof. From (4.25a), (4.25c), and the fact that mins∈S µ(s) is positive, we get

Ū ε
L (ν) ≤ 1

mins∈S µ(s)
ν, ε ∈ [0, 1] (4.45)

We can find a ν− < ν† such that the following inequality holds:

1

mins∈S µ(s)
ν− ≤ Ū 0

L (ν‡) (4.46)

Let ε∗ be such that Lε∗(ν−) is not empty. Select `ν
−

and `ν
‡

in Lε∗(ν−) and Lε∗(ν‡),

respectively. From (4.25) we conclude that, for any ν in (ν†, ν‡), `ν defined below

satisfies (4.25b)-(4.25e) with ε∗ and ν:

`ν :=

(
ν − ν−

ν‡ − ν−
`ν
‡

+
ν‡ − ν
ν‡ − ν−

`ν
−

)
(4.47)

Furthermore, from (4.25a), (4.45), and (4.46), we obtain the following inequalities:

Ū ε∗

L (ν)≤ ν − ν−

ν‡ − ν−
Ū ε∗

L (ν‡) +
ν‡ − ν
ν‡ − ν−

Ū ε∗

L (ν−)

≤ ν − ν−

ν‡ − ν−
Ū ε∗

L (ν‡) +
ν‡ − ν
ν‡ − ν−

Ū 0
L (ν‡)

≤ Ū ε∗

L (ν‡),

75

which complete the proof.

The following theorem establishes important structural properties for Ū 0
L . We

provide a proof of the theorem in Appendix A.1.

Theorem 4.4. The 0-LP utilization rate function Ū 0
L : (0, ν∗)→ [0, 1] is non-

decreasing, piecewise affine and convex.

4.5.2 Key Distributional Convergence Results

In this section, we provide useful distributional convergence results that are

used in the proof of Theorem 4.3.

Lemma 4.5. Let λ in (0, ν∗) and ε in (0, 1) be given. If Φε
R(λ) is nonempty

then there is a positive constant βλ,ε such that the following inequality holds for

every ν ∈ (λ, ν∗):

∑
s∈S

πθλ(s,A, 0) ≤ (ν − λ)

βλ,ε
, θ ∈X Φε

R(ν) (4.48)

Before we proceed with the proof of Lemma 4.5, we note that one should expect

it be somewhat involved because it needs to ascertain that the inequality in (4.48)

holds (uniformly) for all policies in X Φε
R(ν).

Proof. Select ν in (λ, ν∗), and let φ be any policy in Φε
R(ν), which we know from

Proposition 4.3 is nonempty, and set θ = X (φ). Henceforth, Xθ
k is the state of

Xθ, which is stable (see Proposition 4.2). In our proof we will make use of Proposi-

tion 4.1 by selecting Y
φ

and r(y, φ) = µ(s)φ(y), for all y in Y, where we recall that

76

y := (s, w). We define s∗ := arg maxs∈S f(s,A), where f is the potential-like map

obtained from Proposition 4.1 for the aforementioned choices of Y
φ

and r.

The following visit time will be central in our proof:

T θx := min{k ≥ 1 | Xθ
k = (s∗,A, 0), X0 = x} (4.49)

where we adopt the convention that Tx is infinite if Xk = (s∗,A, 0) never occurs for

k ≥ 1. We also will use the following lower bound:

Tθ
x := min{k ≥ 1 | V (Xθ

k) ≤ v∗, X0 = x} (4.50)

where V (x) := q+f(y) and v∗ := f(s∗,A). Here, we also adopt the convention that

Tθ
x is infinite if V (Xθ

k) ≤ v∗ never occurs for k ≥ 1. Notice that since V (s∗A, 0) = v∗,

the following inequality holds:

Tθ
x ≤ T θx , x ∈ X (4.51)

Subsequently, we use T θx , Tθ
x and V to obtain a lower bound for E[T(s∗,A,0)] - the

recurrence time of (s∗,A, 0) - which will ultimately lead to the proof of (4.48).

As we argue subsequently, the following lower bound for E[T(s∗,A,1)], which we

will derive later in this proof, leads to (4.48) almost immediately:

E[Tθ
(s∗,A,1)] ≥

1

ν − λ
(4.52)

77

We start by using the law of total probability to conclude that the following

inequality holds:

E[T θ(s∗,A,0)] ≥ (1 + E[T θ(s∗,A,1)]) Pr(Xθ
1 = (s∗,A, 1) | X0 = (s∗,A, 0)) (4.53)

which after substituting (4.52) and using the fact that Pr(Xθ
1 = (s∗,A, 1) | X0 =

(s∗,A, 0)) = λ(1− ρs∗,s∗−1) leads to:

E[T θ(s∗,A,0)] ≥ (1− ρs∗,s∗−1)
1 + ν − λ
ν/λ− 1

(4.54)

which from [90, (3) Theorem] implies that:

πθ(s∗,A, 0) ≤ ν/λ− 1

1− ρs∗,s∗−1

(4.55)

At this point we intend to use the following inequality to relate πθλ(s
∗,A, 0) with∑

s∈S π
θ
λ(s,A, 0) :

πθ(s∗,A, 0) ≥
∑
s∈S

πθ(s,A, 0) Pr
(
Xθ
k+2ns = (s∗,A, 0)

∣∣ Xθ
k = (y, 0)

)
(4.56)

We already know from Proposition 4.2 that Xθ is irreducible, but further

analysis of the Markov chain shows that the following lower bound holds:

Pr
(
Xθ
k+2ns = (s′,A, 0)

∣∣ Xθ
k = (s,A, 0)

)
≥ β̃λ,ε (4.57)

78

with:

β̃λ,ε :=

(
(1− λ) min

s∈S

(
(1− µ(s))(1− ρs,s+1)(1− ρs,s−1)

))2ns

×

ελ(1− λ)2ns−1 min
s∈S

µ(s)×

Πns−1
s=1 (1− µ(s))ρs+1,sρs,s+1 (4.58)

We obtain β̃λ,ε by multiplying the the lower bounds of probabilities of staying

at (s′,A, 0) for 2ns step and the lower bounds to the transition probabilities across

the paths that pass through (1,A, 0) and (1,A, 1) for going from any state (s,A, 0)

to any other state (s′,A, 0) and the probability to stay at (s′,A, 0) for 2ns time

steps. The length of each path is no larger than 2ns, and the lower bound of the

transition probabilities used in (4.58) must be valid irrespective of θ, so long as

θ(1,A, 1) ≥ ε.

The proof of (4.48), then, follows from (4.55)-(4.57) after we select βλ,ε :=

λ(1− ρs∗,s∗−1)β̃λ,ε.

Proof of (4.52) We now proceed to proving that (4.52) holds. We start with the

following equalities that hold for any x satisfying V (x) > v∗:

E[Qθ
k − q|Xθ

k−1 = x] = λ− φ(s, w)µ(s) (4.59)

79

E[f(Yθ
k)− f(y)|Xθ

k−1 = x] = E[f(Y
φ

k)− f(y)|Yφ

k−1 = y] (4.60)

(i)
= φ(s, w)µ(s)− ν

In proving (4.59)-(4.60), we used the fact that if V (x) > v∗ holds then q ≥ 1,

which, since θ = X (φ), implies that the policy φ is applied. In addition, we used

Proposition 4.1 to establish (i), where we used the fact that, for our choices of Y
φ

and r, rφavg is ν. By adding the terms of (4.59) and (4.60) we can, then, arrive at:

E[V (Xθ
k)− V (x)|Xθ

k−1 = x] = λ− ν (4.61)

Given that Tθ
(s∗,A,1) ≥ k implies that V (Xθ

k−1) > v∗, we can use (4.61) to

derive the following equalities:

E[V (Xθ
k)− V (Xθ

k−1)|Tθ
(s∗,A,1) ≥ k,X0 = (s∗,A, 1)] (4.62)

=
∑

{x:V (x)>v∗}

E[V (Xθ
k)− V (x)|Xθ

k−1 = x]

× Pr(Xθ
k−1 = x|Tθ

(s∗,A,1) ≥ k,X0 = (s∗,A, 1))

= λ− ν

80

We can further use (4.62) to arrive at the following:

∞∑
k=1

Pr
(

Tθ
(s∗,A,1) ≥ k

∣∣∣X0 = (s∗,A, 1)
)

(4.63)

×E[V (Xθ
k)− V (Xθ

k−1)|Tθ
(s∗,A,1) ≥ k,X0 = (s∗,A, 1)]

= (λ− ν)E[Tθ
(s∗,A,1)]

where we also used the fact that the equality Pr
(

Tθ
(s∗,A,1) ≥ k

∣∣∣X0 = (s∗,A, 1)
)

= Pr
(

Tθ
(s∗,A,1) ≥ k

)
holds, which follows from the definition of Tθ

(s∗,A,1).

We also remark that (4.63) leads to:

∞∑
k=1

E
[(

V (Xθ
k)− V (Xθ

k−1)
)
ITθ

(s∗,A,1)≥k

∣∣∣X0 = (s∗,A, 1)
]

(4.64)

= (λ− ν)E[Tθ
(s∗,A,1)]

Since Xθ is positive recurrent, we conclude that E[Tθ
(s∗,A,1)] is bounded and

that (4.64) converges absolutely. Hence, we can exchange the summation and ex-

pectation in (4.64) to obtain:

E
[
V
(
Xθ

Tθ

(s∗,A,1)

)
− V (X0)

∣∣∣ X0 = (s∗,A, 1)
]

(4.65)

= (λ− ν)E[Tθ
(s∗,A,1)]

which leads to the desired equality in (4.52) once we realize that the following

81

inequality holds:

E
[
V
(
Xθ

Tθ

(s∗,A,1)

)
− V (X0)

∣∣∣ X0 = (s∗,A, 1)
]

(4.66)

= E
[
V
(
Xθ

Tθ

(s∗,A,1)

) ∣∣∣ X0 = (s∗,A, 1)
]
− (v∗ + 1)

≤ v∗ − (v∗ + 1) = −1

Theorem 4.5. Let λ in (0, ν∗) and ε in (0, 1) be given. If Φε
R(λ) is nonempty

then there is a positive constant ηε such that the following inequality holds for

every ν ∈ (λ, ν∗):

∑
y∈Y

∣∣∣∣∣πφ(y)−
∑
q>0

πX (φ)(y, q)

∣∣∣∣∣ ≤
βλ,ε + ηε
βλ,ε

(ν − λ)
1
2 +

3

βλ,ε
(ν − λ), φ ∈ Φε

R(ν) (4.67)

We make use of the following Lemmas to complete the proof of the Theo-

rem 4.5. We denote the one-step transition matrix of Y
φ

by P
φ
. Note that we

use π to denote the stationary distribution in a row vector form and recall that we

defined Φε
R to be the set of φ ∈ ΦR such that φ(1,A) ≥ ε.

Lemma 4.6. There exists a positive constant ηε such that, for any distribution

82

p over Y, we have

∞∑
r=1

∥∥∥p (Pφ)r − πφ∥∥∥
1
≤ ηε, φ ∈ Φε

R.

Proof. Then, for every φ′ ∈ Φε
R, the following lower bound holds:

Pr
(
Y
φ′

k+2ns = (ns,B)
∣∣ Y

φ′

k = y
)
≥ α̃ε (4.68)

with:

α̃ε := (1− µ(ns))
2ns×εΠns−1

s=1 (1− µ(s))ρs+1,sρs,s+1 (4.69)

We obtain α̃ε by multiplying lower bounds to the transition probabilities across

the paths that pass through (1,A) for going from any state y to state (ns,B) and

the probability to stay at (ns,B) for 2ns time steps. The length of each path is no

larger than 2ns, and the lower bound of the transition probabilities used in (4.69)

must be valid irrespective of φ′, so long as φ′(1,A) ≥ ε.

Next, we follow an analysis that is similar with the proof of Theorem 4.16

of [91]. We define a function τ1 : Rn×n → R+ as

τ1(P) =
1

2
max
i,j

n∑
`=1

|pi` − pj`|

where pi` is the {i, `} element of matrix P.

We observe that every element in the column of
(
P
φ)2ns

corresponding to

(ns,B) is lower-bounded by α̃ε because of (4.68) and the fact that φ ∈ Φε
R. The

83

equation (4.6) of [91] tells us that

τ1

((
P
φ
)2ns)

≤ 1− α̃ε.

Proceeding with the proof, for every r ≥ 2ns, k = br/2nsc,

τ1

((
P
φ
)r)

= τ1

((
P
φ)r−2kns

Πk
i=1

(
P
φ)2ns

)
≤ τ1

((
P
φ)r−2kns

)
Πk
i=1τ1

((
P
φ)2ns

)
≤
(

1− α̃ε
)br/2nsc

≤
(

1− α̃ε
) r

2ns
−1

= Kεσ
r
ε ,

where Kε = (1 − α̃ε)
−1 and σε = (1 − α̃ε)

1/2ns . The first inequality follows from

τ1(P1P2) ≤ τ1(P1)τ1(P2) as shown in [91, Lemma 4.3]. The second inequality

follows from τ1(P) ≤ 1 for any stochastic matrix P and
(

1 − α̃ε
)
< 1 leads to the

final inequality. Combining with Lemma 4.3 of [91] and the fact that sum of all

elements of p− πφ equals zero, we know, for every r ≥ 2ns

∥∥∥p (Pφ)r − πφ∥∥∥
1

=
∥∥∥p (Pφ)r − πφ(Pφ)r∥∥∥

1

≤ τ1

((
P
φ)r)∥∥p− πφ∥∥

1

≤ 2Kεσ
r
ε .

84

Hence,

∞∑
r=1

∥∥∥p (Pφ)r − πφ∥∥∥
1

=
2ns∑
r=1

∥∥∥p (Pφ)r − πφ∥∥∥
1

+
∞∑

r=2ns+1

∥∥∥p (Pφ)r − πφ∥∥∥
1

≤ 4ns +
∞∑

r=2ns+1

2Kεσ
r
ε = 4ns +

2Kεσ
2ns+1
ε

1− σε
=: ηε.

For notational convenience, we denote the unique stationary distribution of

XX (φ) on server state Y by %X (φ) and

%X (φ)(y) =
∑
q∈Qy

πX (φ)(y, q) ∀y ∈ Y.

Lemma 4.7. For every r ∈ IN, we have

∥∥∥%X (φ) − %X (φ)
(
P
φ)r∥∥∥

1
≤ 2r

(ν − λ)

βλ,ε
, φ ∈ Φε

R(ν).

Proof. Let P
R

be the one-step transition matrix of Y under a policy that always

chooses R when the server is available. We denote the row of P
φ

(resp. P
R

)

corresponding to the server state y = (s, w) ∈ Y by P
φ

y (resp. P
R
y).

By the fact that %X (φ) remains the same after one step transition and using

the equality %X (φ)(y) =
∑

q∈Qy πX (φ)(y, q), we can rewrite %X (φ) as

85

%X (φ) =
∑
s∈S

[
πX (φ)(s,A, 0) P

R
(s,A)

+
∑
w∈W

(∞∑
q=1

πX (φ)(s, w, q)
)
P
φ

(s,w)

]
=
∑
s∈S

[
πX (φ)(s,A, 0) P

R
(s,A) + %X (φ)(s,B) P

φ

(s,B)

+
(
%X (φ)(s,A)− πX (φ)(s,A, 0)

)
P
φ

(s,A)

]
=
∑
s∈S

[
πX (φ)(s,A, 0)

(
P
R
(s,A) −P

φ

(s,A)

)]
+ %X (φ) P

φ
. (4.70)

Define γφ
def
=
∑

s∈S
[
πX (φ)(s,A, 0)

(
P
R
(s,A) − P

φ

(s,A)

)]
. Applying (4.70) itera-

tively, we obtain

%X (φ) = %X (φ)
(
P
φ)r

+ γφ
r∑

τ=1

(
P
φ)τ−1

. (4.71)

Subtracting the first term on the RHS of (4.71) from both sides and taking the

norm,

∥∥∥%X (φ) − %X (φ)
(
P
φ)r∥∥∥

1
=

∥∥∥∥∥γφ
r∑

τ=1

(
P
φ)τ−1

∥∥∥∥∥
1

≤
∥∥γφ∥∥

1

r∑
τ=1

∥∥∥(Pφ)τ−1
∥∥∥
∞

= r
∥∥γφ∥∥

1

Substituting the expression for γφ and using the inequality
∣∣∣∣∣∣PRy −P

φ

y

∣∣∣∣∣∣
1
≤ 2 for all

86

y ∈ Y, we get

r
∥∥γφ∥∥

1
≤ 2r

(∑
s∈S

πX (φ)(s,A, 0)
)
. (4.72)

Thus, we get

∥∥∥%X (φ) − %X (φ)
(
P
φ)r∥∥∥

1
≤ 2r

(∑
s∈S

πX (φ)(s,A, 0)
)

≤ 2r
(ν − λ)

βλ,ε
.

The last inequality follows from Lemma 4.5.

Lemma 4.8. For every N ∈ IN, we have

∥∥%X (φ) − πφ
∥∥

1
≤ αε
N

+
(N + 1)(ν − λ)

βλ,ε
, φ ∈ Φε

R(ν).

Proof. We start by duplicating the difference by N times and add and subtract a

term into each difference,

∥∥%X (φ) − πφ
∥∥

1

=

∥∥∥∥∥
∑N

r=1 %
X (φ) − πφ

N

∥∥∥∥∥
1

=

∥∥∥∥∥
∑N

r=1 %
X (φ) − %X (φ)

(
P
φ)r

+ %X (φ)
(
P
φ)r − πφ

N

∥∥∥∥∥
1

.

(4.73)

87

Then, we can bound the one norm of the difference by

(4.73)≤ 1

N

N∑
r=1

∥∥∥%X (φ) − %X (φ)
(
P
φ)r∥∥∥

1

+
1

N

N∑
r=1

∥∥∥%X (φ)
(
P
φ)r − πφ∥∥∥

1

≤ (N + 1)(ν − λ)

βλ,ε
+
αε
N
, (4.74)

by Lemma 4.6 and Lemma 4.7.

Proof of Theorem 4.5: We have

∑
y∈Y

∣∣∣∣∣πφ(y)−
∑
q>0

πX (φ)(y, q)

∣∣∣∣∣
≤
∥∥πφ − %X (φ)

∥∥
1

+
∑
y∈Y

∣∣∣∣∣%X (φ)(y)−
∑
q>0

πX (φ)(y, q)

∣∣∣∣∣
=
∥∥∥πφ − %X (φ)

λ

∥∥∥
1

+
∑
s∈S

πX (φ)(s,A, 0)

≤ αε
N

+
(N + 1)(ν − λ)

βλ,ε
+
ν − λ
βλ,ε

,

where the final inequality follows from Lemma 4.8 and Lemma 4.5. Let N =⌈
ηε

(ν−λ)
1
2

⌉
and we get

∑
y∈Y

∣∣∣∣∣πφ(y)−
∑
q>0

πX (φ)(y, q)

∣∣∣∣∣
≤ (ν − λ)

1
2 +

(
ηε

(ν−λ)
1
2

+ 1 + 1
)

(ν − λ)

βλ,ε
+
ν − λ
βλ,ε

≤ βλ,ε + ηε
βλ,ε

(ν − λ)
1
2 +

3

βλ,ε
(ν − λ).

88

Corollary 4.3. Let λ in (0, ν∗) and ε in (0, 1) be given. If Φε
R(λ) is nonempty

then there is a positive constant ηε such that the following inequality holds for

every ν ∈ (λ, ν∗):

∣∣∣Ū (φ)−U (λ,X (φ))
∣∣∣ ≤ βλ,ε + ηε

βλ,ε
(ν − λ)

1
2 +

3

βλ,ε
(ν − λ), φ ∈ Φε

R(ν)

Proof. Theorem 4.5 and the fact that X (φ)(y, q) equals zero when q = 0 tell us

that

∣∣∣Ū (φ)−U (λ,X (φ))
∣∣∣ =

∣∣∣∑
y∈Y

πφφ(y)−
∑
x∈X

πX (φ)(x)X (φ)(x)
∣∣∣

=
∣∣∣∑

y∈Y

πφφ(y)−
∑
y∈Y

∑
q>0

πX (φ)(y, q)φ(y)
∣∣∣

≤
∑
y∈Y

φ(y)
∣∣∣πφ −∑

q>0

πX (φ)(y, q)
∣∣∣

≤ βλ,ε + ηε
βλ,ε

(ν − λ)
1
2 +

3

βλ,ε
(ν − λ).

4.6 Simulation Result

To evaluate the performance of our propose policies, we run the simulation for

108 time steps and record the utilization rate and the average queue length. The ρ

89

that governs the transition probabilities for action-dependent states are defined as

ρs,s+1
def
=

1

5
·
(

1− s− 1

ns − 1

)
ρs,s−1

def
=

1

5
·
(
s− 1

ns − 1

)

The motivation for this ρ is from [44] where Salva view the server state as utilization

ratio. The ρ here is a probabilistic proxy for the differential equation that describes

the server state evolution in [44]. The number of action-dependent state ns is set to

be 7. The server efficiency function µ is set to be [0.01, 0.5, 0.2, 0.2, 0.5, 0.05, 0.01].

By (4.3), the upper bound for stabilizable arrival rate ν∗ is 0.1683.

For this experiment, we fix our arrival rate λ = 0.14. At this arrival rate, the

minimum utilization rate U ∗(λ) = 0.4212. We test the policies with ε = 0.001 and

different design departure rate ν.

The result is shown in Fig 4.6. As a result of Corollary 4.2, we observe that

the utilization rate U (λ,X (φν)) drops closer to the optimal value as the design

departure rate ν approaches arrival rate λ. However, the average queue length

increase exponentially. Thus, it might not be wise to choose ν arbitrarily close to

λ for a lower utilization rate without considering average queue length or delay. It

remains an open question on how to address this trade-off.

4.7 Summary

We investigated the stability problem of designing a task scheduling policy

when the efficiency of the server is allowed to depend the past utilization, which is

90

U ∗(λ)

U (λ,X (φν))

ν

Average Queue Length of X (φν)

λ = 0.14

Figure 4.1: Simulation Results

modeled using an internal state of the server. Making use of the new framework,

we characterized the set of task arrival rates for which there exists a stabilizing

stationary scheduling policy. Moreover, finding this set can done by solving a sim-

ple optimization problem over a finite threshold value. We identified an optimal

threshold policy that stabilizes the system whenever the task arrival rate lies in the

interior of the aforementioned set for which there is a stabilizing policy.

In addition to the problem of stability, we also identified a tractable way (i.e.,

linear programming) of calculating the minimum of all utilization rates that can be

achieved through a stabilizing scheduling policy. Such a fundamental limit is vital

in determining how effective the utilization rate of any given policy is. Furthermore,

we were able to use this linear programming to design policies whose utilization rate

91

is arbitrarily close to the fundamental limit.

92

Chapter 5: Queuing Server with Multiple Types of Tasks

In this chapter, we relax the single type of task constraint and study the stabil-

ity problem for the system with multiple types of jobs. The region for stable arrival

rates is recognized. We suggest a strategy that would stabilize the queues whenever

the rate of arrival is within the stability region. Furthermore, the calculation of

the policy does not depend on the understanding of the rate of arrival. It only de-

pends on m threshold values, while each of the threshold values can be computed by

considering a single type system and applying the analysis in the previous chapter.

The chapter is organized as follows. We begin by presenting the stability

results for the system with two types of tasks (m = 2) and follow by the proofs of

the stability results. In Section 5.3, we briefly discuss how the Theorems can be

generalized to m types of tasks and provide the proofs in Appendix A.

5.1 Stability Results for Two Types

Before presenting our results for system with two types of tasks, we need

to introduce some necessary quantities for our discussion. To this end, we first

consider two related systems with a single queue, which is studied in Chapter 4: Xi,

i ∈ T = {1, 2}, is a system only with type i tasks and, hence, only a single queue is

93

needed to hold type i tasks. Define

Λi = {λi ∈ (0,∞) | there exists a stationary policy

that stabilizes the system Xi}, i ∈ T,

and let ν∗i
def
= sup Λi. In Chapter 4, we showed that, for each Xi, there exists a

threshold policy on the activity state, which can stabilize the system for all λi < ν∗i .

We denote this threshold policy for Xi by θ̃th
i , i ∈ T.

λ1

λ2

ν∗1

ν∗2

Λ

Figure 5.1: Stability Region for the system with both types of tasks

Our main results on the system with two different types of tasks consist of

two parts – necessity and sufficiency – and show that, in order for the system to be

stable, the arrival rates λ = (λ1, λ2) must lie in the shaded triangle Λ in Fig. 5.1,

where

Λ
def
=
{

(λ̃1, λ̃2) ∈ IR2
+

∣∣ λ̃1

ν∗1
+
λ̃2

ν∗2
≤ 1
}
.

We point out that, although our findings are intuitively satisfying, their proofs are

far from obvious; a straightforward time-sharing between two optimal (threshold)

94

policies for single-queue systems is not applicable. This is due to the coupling

between the two single-queue systems, which is introduced via the activity state.

This coupling renders the analysis of our system far more challenging.

The first theorem states that any arrival rates for which we can find a stabi-

lizing policy must lie in Λ.

Theorem 5.1 (Necessity). Suppose that there exists a stabilizing policy in ΘR

for arrival rates (λ1, λ2). Then, they satisfy λ1
ν∗1

+ λ2
ν∗2
≤ 1.

A natural question that arises is whether or not there exists a scheduling policy

in ΘR, which can stabilize the system for any arrival rates λ in Λ. In order to answer

this question, we now turn our attention to the problem of designing a single policy

with simple structure which can stabilize the system X for any arrival rates λ that

satisfy
∑

i∈T
λi
ν∗i
< 1, i.e., the arrival rates lie below the hypotenuse of the shaded

triangle Λ in Fig. 5.1.

Before we present our second main result, we shall digress a little, in order

to bring to light an interesting point that highlights the key difference between our

study and many existing studies on the stability of queues. Based on our earlier

study of single-queue systems, one may suspect that the well-known max-weight

policy may be able to stabilize the system for any arrival rates satisfying the strict

inequality.

Suppose that ik is the type with a larger weighted queue size at epoch k, i.e.,

ik ∈ arg maxi∈T ωiQ
i
k, where ωi > 0 is the weight for queue i size. Consider the

policy θMW that schedules a task of type ik in accordance with the policy θ̃th
ik

when

95

the server is available. It turns out that this max-weight policy is not optimal in

that, in some cases, we can find arrival rates λ for which θMW cannot stabilize the

system, even though there exists a stabilizing policy in ΘR.

The intuition behind this is as follows: suppose (i) the threshold of θ̃th
i , i ∈ T,

on the activity state is τ ∗i , and τ ∗1 and τ ∗2 are not close and (ii) the probability

that the activity state changes its value (after either resting or servicing a task) is

small so that the dynamics of the activity state is relatively slow compared to the

departures of completed tasks. In this case, when the queue sizes remain near the

decision boundary where ω1q1 ≈ ω2q2, as long as the activity state remains below

min(τ ∗1 , τ
∗
2), the policy θMW will alternate between the two types of tasks frequently.

Recall that the policies θ̃th
i , i ∈ T, are designed to maximize the throughput only

with a single type of tasks. Therefore, when the aforementioned switching between

the two types of tasks happens sufficiently often (i.e., a non-negligible fraction of

time), it causes a significant change in the stationary PMF of the activity state,

compared to those of Xi under θ̃th
i , i ∈ T. This in turn leads to inefficiency for at

least one type of tasks and a drop in achievable (maximum) long-term service rate.

We now proceed to present a policy with simple structure which can stabilize

the system for any arrival rates satisfying
∑

i∈T
λi
ν∗i
< 1. Without loss of generality,

we assume τ ∗1 ≥ τ ∗2 . Moreover, since the server is assumed non-preemptive, we only

specify the scheduling decision when the server is available, i.e., w = A.

96

Theorem 5.2 (Sufficiency). Assume (i) the arrival rates (λ1, λ2) satisfy λ1
ν∗1

+

λ2
ν∗2
< 1 and (ii) τ ∗1 ≥ τ ∗2 . Then, the following policy θopt stabilizes the system

X.

θopt(s,A,q)

=

(0, 1) if (i) q2 > 0 and s < τ ∗2 − 1,

(ii) q2 > 0, q2 ≥ q1, s = τ ∗2 − 1

and τ ∗1 = τ ∗2 , or

(iii) q2 > 0, s = τ ∗2 − 1 and τ ∗1 > τ ∗2 ,

(1, 0) if (i) q1 > 0, q2 = 0 and s < τ ∗1 − 1, or

(ii) q1 > 0, q1 > q2 and s = τ ∗1 − 1,

(0, 0) otherwise.

Note that the proposed policy θopt assigns a new type 1 task for service only if

either (i) there is no type 2 task to service and the activity state is below τ ∗1 − 1 or

(ii) the length of queue 1 is greater than or equal to that of queue 2 and the activity

state is equal to τ ∗1 −1. More notably, it gives a higher priority to type 2 tasks when

the activity state is less than τ ∗2 − 1.

97

5.2 Proofs of Stability Results

Similar to the single queue case, we begin with a comment on the long-term

average departure rate of completed tasks when the system is stable. Note that we

use θ(x)i to denote the i-th element of vector θ(x).

Remark 8. Recall from our discussion in Section 3.3 that, under a stabilizing policy

θ in ΘS(λ), there exists a unique stationary PMF πθ. Consequently, the average

number of completed type i tasks per epoch converges almost surely as k goes to

infinity. In other words,

lim
k→∞

∑k−1
τ=0 I

{
a type i task is completed at epoch τ in Xθ

}
k

=
∑
x∈X

µ(s, i)πθ(x)θ(x)i
def
= νθi with probability 1,

where s, w and q are the coordinates of x = (s, w,q). We call νθi the long-term type

i task service rate of θ (for the given arrival rate λi > 0). Moreover, because θ is

assumed to be a stabilizing policy, we have νθi = λi.

The long-term service rate of type i tasks in Y can be defined in an analogous

manner: for each φ in ΦR, let Π(φ) be the set of stationary PMFs of Y
φ
. We define

the long-term service rate of type i tasks for φ in ΦR to be

νφi
def
= sup

π∈Π(φ)

(∑
y∈Y

µ(s, i)π(y)φ(y)i

)
. (5.1)

When the policy φ belongs to Φ+
R, Corollary 3.1 tells us that there exists a unique

98

stationary PMF πφ. Hence, νφi is given by

νφi
def
=
∑
y∈Y

µ(s, i)πφ(y)φ(y)i. (5.2)

5.2.1 Necessity

We are now ready to proceed with the proof of Theorem 4.1. The theorem

will be proved with the help of the following three lemmas.

Lemma 5.1. For every stabilizing policy θ in ΘS(λ), there exists a policy φ in

Φ+
R for Y such that, for all i ∈ T,

νθi = νφi = λi.

Proof. Please see Section 5.5.1 for a proof.

Lemma 5.2. For every policy φ in Φ+
R, the throughput νφi cannot exceed ν∗i for

all i ∈ T.

Proof. A proof is provided in Section 5.5.2.

Lemmas 5.1 and 5.2 tell us that ν∗1 and ν∗2 serve as upper bounds on achiev-

able long-term service rates for type 1 tasks and type 2 tasks, respectively, by any

stabilizing policy θ in ΘS(λ). Thus, if ΘS(λ) is non-empty, then the arrival rates λ

must belong to the rectangular region [0, ν∗1]× [0, ν∗2].

99

Lemma 5.3. Suppose λ2 ≤ ν∗2. If a policy φ in ΦR achieves νφ2 equal to the

arrival rate λ2, then νφ1 is upper bounded by ν∗1
ν∗2−λ2
ν∗2
≥ 0.

Proof. Please see Section 5.5.3 for a proof.

Lemma 5.3 implies that, in order for the system to be stable, the arrival rates

λ must also satisfy

λ1

ν∗1
+
λ2

ν∗2
≤ 1.

If this inequality is violated, we have λ1 > ν∗1(ν∗2 − λ2)/ν∗2, which contradicts the

claim in Lemma 5.3. This completes the proof of the theorem.

5.2.2 Sufficiency

Without loss of generality, we assume τ ∗1 ≥ τ ∗2 . We use the Proposition 4.1 in

the previous Chapter again for building the Lyapunov function. In the remainder

of the proof, let f be a potential-like function that satisfies (4.12) in Proposition 4.1

with the policy ϕτ
∗
1 and the following reward function r : Y× ΦR → IR:

r(y, φ) =
∑
i∈T

µ(s, i)φ(y)i
ν∗i

, (y, φ) ∈ Y× ΦR (5.3)

Define a function V : X→ IR+, where

V (x) = a

(∑
i∈T

qi
ν∗i

+ f(y)

)
, (5.4)

100

where

a =
T

(1−
∑

i∈T
λi
ν∗i

)
, (5.5)

and T is some positive constant to be explained shortly (Lemma 5.4 below). Simi-

larly, let g : X→ IN with

g(x) =

T if q2 = 0 and V (x) > N,

1 otherwise,

(5.6)

where

N = 2a
T

min(ν∗1, ν
∗
2)

+ a · fmax, (5.7)

and fmax
def
= maxy∈Y f(y). Finally, define

M = 1 + a

(∑
i∈T

λi
ν∗i

+ fmax

)
. (5.8)

Lemma 5.4. Suppose X is the CMC under the policy θopt. Then, there exists

101

finite T such that the functions V and g in (5.4) and (5.6), respectively, satisfy

E[V (Xk+g(x)) | Xk = x]− V (x)

≤−g(x) +M · I(V (x) ≤ N)

=

−g(x) +M if V (x) ≤ N

−g(x) otherwise

(5.9)

for every x ∈ X.

Proof. A proof of the lemma is provided in Section 5.5.8.

We now proceed with the proof of the theorem with the help of Theorem 1

of [92]: suppose that (i) V ′ : X→ IR+, (ii) h1 : X→ IR, and (iii) h2 : X→ {1, 2, . . .}

are functions that satisfy the following.

L1. infx∈X h1(x) > −∞, i.e., h1 is bounded below.

L2. There is a compact subset X0 (X such that h1(x) > 0 for all x ∈ X \ X0.

L3. For all N ′ > 0, supx∈X:V ′(x)≤N ′ h2(x) <∞.

L4. For all sequences {x1,x2, . . .} such that V ′(xl)→∞ as l→∞, lim supl∈IN h2(xl)/h1(xl) <

∞.

Theorem 1 of [92]: Consider a function V ′ : X→ IR+, and let h1 : X→ IR and

h2 : X → IN be functions that satisfy conditions L1 through L4. Suppose that, for

all x ∈ X, the drift of V ′ in h2(x) steps satisfies

E[V ′(Xh2(x))− V ′(X0) | X0 = x] ≤ −h1(x).

102

For N ′ > 0, define

τN ′
def
= inf{k > 0 | V ′(Xk) ≤ N ′}.

Then, there exists N ′0 > 0 such that, for all N ′ ≥ N ′0 and every x ∈ X, we have

E[τN ′ | X0 = x] <∞.

First, note that, under the policy θopt, every state in X communicates with

state (1,A,0) and the state (1,A,0) communicates with every other state in X.

Thus, X is irreducible. Choose h1(x) = g(x)−M · I(V (x) ≤ N) and h2(x) = g(x).

Then, by Lemma 5.4, all the conditions in Theorem 1 of [92] are satisfied and, hence,

X is positive recurrent. This completes the proof of the theorem.

5.3 Stability Results for Multiple Types

Our results on the system with two different types of tasks can be easily

generalize to m types of tasks. Theorem 5.3 summarizes the necessity condition for

stability, which shares a very similar structure as Theorem 5.1.

Theorem 5.3 (Necessity). Suppose that there exists a stabilizing policy in ΘR

for arrival rates (λ1, . . . , λm). Then, they satisfy
∑

i∈T
λi
ν∗i
≤ 1.

The proof of the Theorem 5.3 is similar to that of the Theorem 5.1 and consists

of three Lemmas. Although we omit the proof for Lemma 5.1 and Lemma 5.2 in the

general form due to similarities, we provide the proof for Lemma 5.3 for m types

103

tasks in the Appendix A.2 for interested readers.

We now proceed to present the general version of Theorem 5.2.

Theorem 5.4 (Sufficiency). Assume (i) the arrival rates λ satisfy
∑

i∈T
λi
ν∗i
≤ 1

and (ii) τ ∗1 ≥ . . . ≥ τ ∗m. Then, the following policy θopt stabilizes the system X.

θopt(s,A,q)

=

em if (i) qm > 0 and s < τ ∗m − 1, or

(ii) qm > 0, qm = maxj:τ∗j =τ∗m qj, and s = τ ∗m − 1,

ei if (i) qi > 0,
∑m

j=i+1 qj = 0, and s < τ ∗i − 1, or

(ii) qi > 0, qi = maxj:τ∗j ≤τ∗i qj, qi > maxj:j>i qj, and s = τ ∗i − 1,

0 otherwise,

where 0 is a vector with all elements equal zero and ei is a vector with i-th

element equals one and all other elements equal zero.

Note that the proposed policy follows the same structure as result in Theorem 5.2.

The proposed policy assigns a new type i task for service only if either (i) there is

no type j task for j from i+ 1 to m to service and the activity state is below τ ∗i − 1

or (ii) the length of queue i is greater than that of queue j for all j from i+ 1 to m

and the activity state is equal to τ ∗i − 1.

The proof for Theorem 5.4 is almost identical to Theorem 5.2 with slight

changes for g(x). We provide the V , g and the proof of Lemma 5.4 in the general

case in Appendix A.3. The rest of the proof is the same as Section 5.2.2 which follow

104

directly from Theorem 1 of [92].

5.4 Summary

We relax the single type constraint in the Chapter 4 and investigate system

with two or more types of tasks. First, we identified the collection of task arrival

rates for which there is a stabilizing stationary scheduling strategy by showing the

service rate of any policy with one randomizing state is the convex combination of

service rates of two threshold policies. In addition, finding this set can be achieved by

solving the simple optimization problem for each type that we studied in Chapter 4.

By exploring a potential-like function that redistribute the reward as we did in

Chapter 4 and using a general version of Foster’s Theorem, we identified an optimal

threshold policy that stabilizes the system whenever the task arrival rate lies in the

interior of the aforementioned set for which there is a stabilizing policy.

5.5 Proofs of Lemmas

5.5.1 A Proof of Lemma 5.1

Suppose that θ is a stabilizing policy in ΘS(λ). Recall from Lemma 3.2 that

Y (θ) belongs to Φ+
R. The following lemma illustrates that the long-term service

rates achieved by Y (θ) are identical to those of θ.

Lemma 5.5. Suppose that θ is a stabilizing policy in ΘS(λ). Then, ν
Y (θ)
i =

νθi = λi for all i ∈ T.

105

Proof. Let φ = Y (θ). First, note

νφi
(a)
=
∑
y∈Y

µ(s, i) πφ(y) φ(y)i

(b)
=
∑
y∈Y

µ(s, i)
(∑

q∈Qy

πθ(y,q)θ(y,q)i

)
(c)
=
∑
x∈X

µ(s, i)πθ(x)θ(x)i
(d)
= νθi ,

where (b) follows from Lemma 3.3 and the equality in (3.13), and (c) is obtained by

rearranging the double summations in terms of x = (y,q). Finally (a) and (d) hold

from their definitions. The lemma now follows from the fact that νθi is equal to λi

for all i ∈ T when the system is stable.

5.5.2 A Proof of Lemma 5.2

First, consider the following optimization problem.

maximize
φ∈Φ+

R

νφ1 (5.10)

In order to prove that the long-term service rate of type i tasks cannot exceed ν∗i

for any policy φ in Φ+
R, we first introduce the following lemma.

Lemma 5.6. There exists an optimal policy that solves (5.10) in a closed subset

Φ++
R

def
=
{
φ ∈ Φ+

R

∣∣∣ ∑
i∈T

φ(1,A)i = 1
}
.

The proof of the lemma is similar to that of Lemma 5.8 in Section 5.5.3 below, and

106

we omit it here.

The intuition behind the lemma is that when the server state is (1,A) and the

server rests, the server’s new state is (1,A). This suggests that the server wasted an

epoch without contributing to long-term service rates. Therefore, when the server

state is (1,A), the server should be required to work on a task with probability one,

in order to increase the long-term service rates.

First, note that Y
φ

is a unichain for all φ in Φ++
R . In other words, Yφ is a

finite-state Markov chain with a single recurrent communicating class and, possibly,

transient states. Since there is no (explicit) constraint in the optimization problem

of (5.10), Theorem 4.4 of [89] tells us that there exists a deterministic optimal policy

that solves (5.10).

Second, suppose that φ1
∗ is an optimal deterministic policy in Φ++

R . Because φ1
∗

belongs to Φ++
R , T (φ1

∗) ≥ 1. In addition, we must have φ1
∗(T (φ1

∗),A) = (1, 0); oth-

erwise, ν
φ1∗
1 = 0 because the unique PRCC is given by {(s, w) ∈ Y | s ≥ T (φ1

∗), w ∈

{A,B2}}. Therefore, it is clear that the optimal value of (5.10) is equal to the max-

imum long-term service rate achieved by a threshold policy on the activity state

with only type 1 tasks, namely ν∗1. Similarly, the largest long-term service rate of

type 2 tasks which can be achieved by any policy φ in Φ+
R is equal to ν∗2.

5.5.3 A Proof of Lemma 5.3

Consider the following optimization problem, which is related to (5.10), with a

constraint on the long-term service rate of type 2 tasks. Since the case with λ2 = 0

107

reduces to a single-queue case studied in Chapter 4 (and discussed in Step 2 above),

we assume λ2 > 0.

maximize
φ∈Φ?

νφ1 (5.11)

subject to νφ2 ≥ λ2

where Φ? is some subset of Φ+
R. We denote the optimal value of (5.11) by ν∗(Φ?).

We shall prove that the optimization problem with Φ? = Φ+
R has an optimal

value ν∗1
ν∗2−λ2
ν∗2

and there exists is an optimal policy φ∗ in Φ+
R which achieves the

optimal value. To this end, we consider (5.11) with a sequence of decreasing subsets

of Φ+
R and show that the optimal value does not decrease as the subset of policies

we allow shrinks (Lemmas 5.7 through 5.9).

Since Φ++
R (Φ+

R, we have ν∗(Φ++
R) ≤ ν∗(Φ+

R). Furthermore, because Φ++
R is

closed, an optimal solution to (5.11) with Φ? = Φ++
R exists, i.e., the optimal value

ν∗(Φ++
R) is achievable.

Lemma 5.7. ν∗(Φ++
R) = ν∗(Φ+

R).

Proof. Please see Section 5.5.4 for a proof.

Define Φ† to be set of policies in Φ++
R which are deterministic except for at

most at one state where the policy randomizes between two admissible actions. In

108

other words,

Φ†
def
=
{
φ ∈ Φ++

R

∣∣∣ φ(s, w) ∈ {0, 1}2 for all s ∈ SDφ ⊆ S

such that (a) |S \ SDφ | ≤ 1 and (b) at a state in

S \ SDφ , φ randomizes between two actions
}

In general, Φ† is a strict subset of Φ++
R and ν∗(Φ†) ≤ ν∗(Φ++

R). The following

lemma, however, tells us that the equality holds.

Lemma 5.8. ν∗(Φ†) = ν∗(Φ++
R).

Proof. Recall that, for every φ in Φ++
R , the corresponding Y

φ
is a unichain. There-

fore, the optimization problem (5.11) gives rise to a unichain MDP problem. Since

there is only one constraint in (5.11), Theorem 4.4 of [89] tells us that there exists an

optimal policy with at most one randomization, i.e., it either (i) is deterministic (at

every state) or (ii) randomizes between two admissible actions at exactly one state

and is deterministic at every other state. Therefore, this optimal policy belongs to

Φ†.

We introduce two families of threshold policies on activity state – ϕτ and ψτ ,

τ ∈ S+ def
= S ∪ {smax + 1}:

ϕτ (s,A) =

(1, 0) if s < τ,

(0, 0) otherwise.

109

and

ψτ (s,A) =

(0, 1) if s < τ,

(0, 0) otherwise.

When the server is available to take on a new task, ϕτ (resp. ψτ) asks the server to

service a type 1 task (resp. type 2 task) only if the activity state is less than τ .

Finally, we define Φ‡ to be the subset of policies in Φ† of the following forms:

suppose τ
def
= (τ1, τ2) ∈ S+ × S+ and γ ∈ [0, 1].

f1. τ1 ≤ τ2

ζτ ,γ(s, w) (5.12)

=

(1− γ)ϕτ1(s, w) + (0, γ) if s = τ2 − 1, w = A

ϕτ1(s, w) otherwise

f2. τ1 > τ2

ξτ ,γ(s, w) (5.13)

=

(1− γ)ψτ2(s, w) + (γ, 0) if s = τ1 − 1, w = A

ψτ2(s, w) otherwise

Clearly, these policies randomize between two admissible actions only at a single

state and belong to Φ†.

110

Lemma 5.9. ν∗(Φ‡) = ν∗(Φ†).

Proof. Please see Section 5.5.5 for a proof.

Let us consider the policies of the form in (5.12) for some given τi ∈ S+, i ∈ T,

satisfying τ1 ≤ τ2 and γ ∈ [0, 1]. We rewrite γ in (5.12) as

γ =
α · πψτ2 (τ2 − 1,A)

α · πψτ2 (τ2 − 1,A) + (1− α)πϕ
τ1 (τ2 − 1,A)

(5.14)

for some α ∈ [0, 1]. Note that, for every γ ∈ [0, 1], we can find an appropriate

α ∈ [0, 1] that satisfies (5.14) because πϕ
τ1 (τ2 − 1,A) > 0 and πψ

τ2 (τ2 − 1,A) > 0

from the assumption τ1 ≤ τ2.

By solving the global balance equations for Y under the policy ζτ ,γ, we get

the following stationary PMF. Its derivation is provided in Section 5.5.6: for every

y in Y,

πζ
τ ,γ

(y) = (1− α)πϕ
τ1 (y) + α · πψτ2 (y) (5.15)

The long-term service rate of type 1 tasks can be obtained using the stationary

PMF.

νζ
τ ,γ

1 =
∑
y∈Y

µ(s, 1) πζ
τ ,γ

(y) ζτ ,γ(y)1

111

Substituting the RHS of (5.15) for πζ
τ ,γ

(y), we obtain

νζ
τ ,γ

1 =
∑
y∈Y

(
µ(s, 1)

(
α · πψτ2 (y) + (1− α)πϕ

τ1 (y)
)
ζτ ,γ(y)1

)
= µ(τ2 − 1, 1)

(
α · πψτ2 (τ2 − 1,A)

+(1− α)πϕ
τ1 (τ2 − 1,A)

)
ζτ ,γ(τ2 − 1,A)1

+
∑

y∈Y\{(τ2−1,A)}

(
µ(s, 1)

(
α · πψτ2 (y) + (1− α)πϕ

τ1 (y)
)
ζτ ,γ1 (y)1

)
. (5.16)

Using the definition of ζτ ,γ in (5.12),

(5.16) = µ(τ2 − 1, 1)
(
α · πψτ2 (τ2 − 1,A) + (1− α)πϕ

τ1 (τ2 − 1,A)
)

×(1− γ)ϕτ1(τ2 − 1,A)1 (5.17)

+
∑

y∈Y\{(τ2−1,A)}

(
µ(s, 1)

(
α · πψτ2 (y) + (1− α)πϕ

τ1 (y)
)
ϕτ1(y)1

)
. (5.18)

First, using the expression in (5.14) for γ in the first term, we get

(5.17) = µ(τ2 − 1, 1)(1− α)πϕ
τ1 (τ2 − 1,A)ϕτ1(τ2 − 1,A)1.

Second, we show πψ
τ2 (y)ϕτ1(y)1 = 0 for all y ∈ Y \ {(τ2− 1,A)} by considering the

following four cases.

• If (i) s ≥ τ2 and w = A or (ii) w = B2, we have ϕτ1(s, w)1 = 0 from the

definition of ϕτ1 .

• If (iii) s < τ2 − 1 or (iv) w = B1, then πψ
τ2 (s, w) = 0.

112

As a result,

(5.18) =
∑

y∈Y\{(τ2−1,A)}

(
µ(s, 1)(1− α)πϕ

τ1 (y)ϕτ1(y)1

)
.

Summing (5.17) and (5.18), we get

νζ
τ ,γ

1 =
∑
y∈Y

(
µ(s, 1)(1− α)πϕ

τ1 (y)ϕτ1(y)1

)
= (1− α)νϕ

τ1

1 ≤ (1− α)ν∗1. (5.19)

Following similar steps, we can show

νζ
τ ,γ

2 = α νψ
τ2

2 ≤ α ν∗2. (5.20)

Together with the constraint νζ
τ ,γ

2 ≥ λ2, (5.20) yields α ≥ λ2/ν
∗
2. Using this in-

equality in (5.19) gives us

νζ
τ ,γ

1 ≤ (1− α)ν∗1 ≤
(

1− λ2

ν∗2

)
ν∗1.

The same inequality can be proved in a similar fashion, starting with a policy

of the form in (5.13).

113

5.5.4 A Proof of Lemma 5.7

Given some φ ∈ Φ+
R, consider the following policy φ∗ ∈ Φ++

R .

φ∗(y) =

φ(y)∑
i∈T φ(y)i

if y = (1,A)

φ(y) otherwise

(5.21)

Lemma 5.10. The stationary PMF πφ
∗

is related to the stationary PMF πφ as

follows:

πφ
∗
(y) =

πφ(y)

∑
i∈T φ(y)i
α

if y = (1,A),

πφ(y)
α

otherwise,

(5.22)

where α = 1− πφ(1,A)(1−
∑

i∈T φ(1,A)i) ≤ 1.

Proof. A proof is provided in Section 5.5.7.

114

Using the stationary PMF πφ
∗

in Lemma 5.10, we get

νφ
∗

i =
∑
y∈Y

µ(s, i)πφ
∗
(y)φ∗(y)i

= µ(1, i)πφ
∗
(1,A)φ∗(1,A)i

+
∑

y∈Y\(1,A)

µ(s, i)πφ
∗
(y)φ∗(y)i

= µ(1, i)
πφ(1,A)

∑
i∈T φ(1,A)i

α

φ(1,A)i∑
i∈T φ(1,A)i

+
∑

y∈Y\(1,A)

µ(s, i)
πφ(y)

α
φ(y)i

=
1

α

∑
y∈Y

µ(s, i)πφ(y)φ(y)i

=
νφi
α
≥ νφi ≥ λi.

Hence, νφ
∗

2 ≥ λ2 and φ∗ is a feasible solution.

We also know that νφ
∗

1 =
νφ1
α

. This proves that, for every policy φ in Φ+
R which

satisfies the constraint on the long-term service rate of type 2 tasks, we can find

a policy φ∗ in Φ++
R that satisfies the same constraint and achieves the long-term

service rate of type 1 tasks which is greater than or equal to that of φ.

5.5.5 A Proof of Lemma 5.9

In order to prove the lemma, we show that, for every feasible policy φ in Φ†

which (a) satisfies the constraint νφ2 ≥ λ2 and (b) achieves positive νφ1 , we can find a

feasible policy φ′ in Φ‡ with (i) the identical stationary PMF as φ and (ii) the same

scheduling decision at all states in the unique PRCC of Y
φ
.

115

Choose a feasible policy φ in Φ†. Note that T (φ) ≥ 1 because φ belongs to

Φ++
R . Let

Tφ def
= {i ∈ T | φ(T (φ),A)i > 0}

be the set of types of tasks the policy φ schedules for service with positive probabil-

ity at state (T (φ),A). Recall that the unique PRCC is a subset of Yφ as explained

in Section 3.4.1. Moreover, it is clear that a feasible policy φ cannot be determin-

istic with Tφ = {1}; the long-term service rate νφ2 of the policy would be zero,

contradicting the assumption that it is a feasible policy with νφ2 ≥ λ2 > 0.

We consider two possible cases.

C1. φ is a deterministic policy with Tφ = {2} – In this case, φ(s,A) = (0, 0)

for all s > T (φ) and the threshold policy ψT (φ)+1 has the same unique PRCC with

the identical stationary PMF πφ. Since φ(y) = ψT (φ)+1(y) for all y ∈ Yφ, it is clear

that they yield the same long-term service rates for both types.

C2. φ randomizes at one state y? = (s?,A) – There are three possibilities.

First, assume s? < T (φ). This is similar to case C1, and the threshold policy ψT (φ)+1

achieves the same long-term service rates as φ.

Second, suppose s? = T (φ). This implies that Tφ = T and φ(y?) = (p1, p2) >

(0, 0) with p1 + p2 = 1. Then, as mentioned in Section 3.4.1, the unique PRCC is

Yφ. In this case, one can verify that the policy ζ(s?+1,s?+1),p2 has the same stationary

116

PMF and long-term service rates.

Third, suppose s? > T (φ) and φ(y?) = (p1, p2). Note that only one of p1

and p2 can be positive and they satisfy 0 < p1 + p2 < 1. Let t† be the type

selected for service with positive probability, i.e., pt† > 0. Then, in order to satisfy

the constraints νφi > 0 for all i ∈ T, t† cannot be in Tφ; otherwise, since Tφ is a

singleton and φ(s,A) = (0, 0) for all s ∈ {T (φ) + 1, . . . , s? − 1}, only the long-term

service rate of type t† tasks can be positive and that of the other type must be zero.

Here, we assume Tφ = {1} and t† = 2 with φ(y?) = (0, p2). The other case can be

handled similarly. Then, the policy ζ(T (φ)+1,s?+1),p2 yields the same stationary PMF

and long-term service rates.

5.5.6 Derivation of Stationary PMF in (5.15)

In order to prove (5.15) is the correct stationary PMF, it suffices to show that

the given PMF satisfies the following global balance equations:

πζ
τ ,γ

(y) =
∑
y′∈Y

πζ
τ ,γ

(y′) P
τ ,γ

y′,y for all y ∈ Y, (5.23)

where P
τ ,γ

is the one-step transition matrix of Y
ζτ ,γ

. To this end, we shall demon-

strate that the RHS of (5.15) is equal to the RHS of (5.23).

117

First, we break the RHS of (5.23) into two terms.

∑
y′∈Y

πζ
τ ,γ

(y′) P
τ ,γ

y′,y

= πζ
τ ,γ

(τ2 − 1,A)P
τ ,γ

(τ2−1,A),y (5.24)

+
∑

y′∈Y\{(τ2−1,A)}

πζ
τ ,γ

(y′) P
τ ,γ

y′,y (5.25)

We then rewrite each term on the RHS: from (5.15) and (5.12), we have

(5.24) =
(
α · πψτ2 (τ2 − 1,A) + (1− α)πϕ

τ1 (τ2 − 1,A)
)

×
(
(1− γ)P

ϕτ1

(τ2−1,A),y + γP
ψτ2

(τ2−1,A),y

)

Substituting the expression for γ in (5.14),

(5.24) = (1− α)πϕ
τ1 (τ2 − 1,A)P

ϕτ1

(τ2−1,A),y

+α · πψτ2 (τ2 − 1,A)P
ψτ2

(τ2−1,A),y

Second, from (5.15)

(5.25) =
∑

y′∈Y\{(τ2−1,A)}

(
α · πψτ2 (y′) + (1− α)πϕ

τ1 (y′)
)

×P
τ ,γ

y′,y.

From (5.12), for all y′ = (s′, w′) ∈ Y \ {(τ2 − 1,A)}, we have ζτ ,γ(y′) = ϕτ1(y′) and

P
τ ,γ

y′,y = P
ϕτ1

y′,y. Moreover, because ψτ2 is a deterministic policy with a threshold on

118

the activity state of the server, πψ
τ2 (y′) = 0 for all y′ = (s′, w′) with s′ < τ2 − 1 or

w′ = B1. Hence, for all y′ ∈ Y \ {(τ2 − 1),A)} with πψ
τ2 (y′) > 0, together with the

assumption τ1 ≤ τ2, we have

ϕτ1(y′) = ψτ2(y′) =

(0, 0) if s′ ≥ τ2 and w′ = A

(1, 0) if w′ = B1

(0, 1) if w′ = B2

and, consequently, P
ϕτ1

y′,y = P
ψτ2

y′,y. Therefore,

(5.25) =
∑

y′∈Y\{(τ2−1,A)}

(
α · πψτ2 (y′)P

ψτ2

y′,y

+(1− α)πϕ
τ1 (y′)P

ϕτ1

y′,y

)

Substituting the new expressions for (5.24) and (5.25), we obtain

∑
y′∈Y

πζ
τ ,γ

(y′) P
τ ,γ

y′,y

= (1− α)πϕ
τ1 (τ2 − 1,A)P

ϕτ1

(τ2−1,A),y

+α · πψτ2 (τ2 − 1,A)P
ψτ2

(τ2−1,A),y

+
∑

y′∈Y\{(τ2−1,A)}

(
α · πψτ2 (y′)P

ψτ2

y′,y

+(1− α)πϕ
τ1 (y′)P

ϕτ1

y′,y

)
= α · πψτ2 (y) + (1− α)πϕ

τ1 (y),

119

where the last equality follows from the fact that πϕ
τ1 and πψ

τ2 are the stationary

PMFs of Y
ϕτ1

and Y
ψτ2

, respectively.

5.5.7 A Proof of Lemma 5.10

From the definition of a stationary PMF, we know

πφ(y) =
∑
y′∈Y

πφ(y′) P
φ

y′,y for all y ∈ Y, (5.26)

where P
φ

denotes the one-step transition matrix of Y
φ
. Starting with this equality,

we shall show that the distribution in (5.22) satisfies

πφ
∗
(y) =

∑
y′∈Y

πφ
∗
(y′) P

φ∗

y′,y for all y ∈ Y, (5.27)

where P
φ∗

denotes the one-step transition matrix of Y
φ∗

. To this end, we consider

the two cases in (5.22).

• Case 1: y = (1,A) – First, we can write the given expression for πφ
∗
(y) in

a more convenient form, using the assumed value of α.

πφ
∗
(y) =

πφ(y)− (1− α)

α

=
πφ(y)

∑
i∈T φ(y)i

α
. (5.28)

Second, the RHS of (5.27) can be shown to be equal to the above expression

120

as follows.

∑
y′∈Y

πφ
∗
(y′) P

φ∗

y′,y (5.29)

= πφ
∗
(y)P

φ∗

y,y +
∑

y′∈Y\{y}

πφ
∗
(y′) P

φ∗

y′,y

Using the provided expression from (5.22) for πφ
∗
(y′) in the second term, we get

(5.29) = πφ
∗
(y)P

φ∗

y,y +
1

α

∑
y′∈Y\{y}

πφ(y′) P
φ

y′,y

Note from (5.26) that the summation in the second term is equal to πφ(y)
(
1−P

φ

y,y

)
.

Together with (5.28), this gives us

(5.29) = πφ
∗
(y)P

φ∗

y,y +
πφ(y)(1−P

φ

y,y)

α

=
πφ(y)

∑
i∈T φ(y)i

α
P
φ∗

y,y +
πφ(y)(1−P

φ

y,y)

α
(5.30)

The transition probability P
φ∗

y,y is equal to the probability that Yφ would

transition from y back to itself conditional on that the action chosen by the scheduler

is not R, i.e., it assigns either a type 1 task or a type 2 task to the server. Thus,

the transition probability is equal to

P
φ∗

y,y =
P
φ

y,y −
(
1−

∑
i∈T φ(y)i

)∑
i∈T φ(y)i

. (5.31)

121

Note that the numerator is equal to the probability that the server is asked to work

on a task and then the server state returns to the same state y.

Substituting (5.31) in (5.30), we obtain

(5.29) =
πφ(y)(

∑
i∈T φ(y)i)

α

(
P
φ

y,y −
(
1−

∑
i∈T φ(y)i

)∑
i∈T φ(y)i

)

+
πφ(y)(1−P

φ

y,y)

α

=
πφ(y)

∑
i∈T φi(y)

α
.

It is clear that this is equal to the LHS of (5.27) as shown in (5.28).

• Case 2: y 6= (1,A) – Following similar steps used in the first case, we first

rewrite the RHS of (5.27).

∑
y′∈Y

πφ
∗
(y′) P

φ∗

y′,y (5.32)

= πφ
∗
(1,A)P

φ∗

(1,A),y +
∑

y′∈Y\{(1,A)}

πφ
∗
(y′) P

φ∗

y′,y

Substuting (5.28) and (5.22) for πφ
∗
(1,A) and πφ

∗
(y′), respectively, we get

(5.32) =
πφ(1,A)

∑
i∈T φ(1,A)i

α

(
P
φ

(1,A),y∑
i∈T φ(1,A)i

)

+
∑

y′∈Y\(1,A)

πφ(y′)

α
P
φ

y′,y

=
∑
y′∈Y

πφ(y′)

α
P
φ

y′,y

=
πφ(y)

α
.

122

5.5.8 A Proof of Lemma 5.4

For notational simplicity, we omit the dependence on the policy θopt and denote

the conditional expected value of the difference in potential function, E
[
f(Y

φ

k+1)−

f(Y
φ

k) | Y
φ

k = y
]
, by ∆f(Y

φ
; y). In addition, rφavg denotes the average reward in

Y
φ

when there is a unique PRCC under a policy φ in ΦR.

Consider the CMC Y
ψτ
∗
2

equipped with the policy ψτ
∗
2 . Assume that f is a

potential function that satisfies the equality in (4.12) of Proposition 4.1 for Y
ψτ
∗
2

,

with the reward function in (5.3). Define Yτ∗1
def
= {y ∈ Y | s ≥ τ ∗1 − 1}.

Lemma 5.11. For every y ∈ Yτ∗1 , we have

r(y, ϕτ
∗
1)−∆f(Y

ϕτ
∗
1

; y) = 1. (5.33)

Proof. Please see Section 5.5.9 for a proof.

Consider CMC Xθopt that starts at some state x0 with q2 = 0 and q1 ≥ 2T ′,

where T ′ is some positive integer. Then, for all k ∈ {0, 1, . . . , T ′−1}, (i)Q1
k ≥ Q2

k and

(ii) Q1
k > 0. These imply that, when Yk = (τ ∗1−1,A) for some k ∈ {0, 1, . . . , T ′−1},

θopt(Yk,Qk) = (1, 0) and a new type 1 task is scheduled for service.

Let us take a look at the server state Yk for k ∈ {0, 1, . . . , T ′ − 1}. First, if

Yk† ∈ Yτ∗1 for some k† ∈ {0, 1, . . . , T ′−2}, then Yk ∈ Yτ∗1 for all k ∈ {k†, . . . , T ′−1}

under θopt. Second, if q1 ≥ ns, starting with {Y0 = y} for some y ∈ YCτ∗1
def
=

Y \ Yτ∗1 = {(s, w) ∈ Y | s < τ ∗1 − 1}, the server state Yk will reach a state in

Yτ∗1 with positive probability after at most τ ∗1 − 2 epochs: for each i ∈ T, de-

123

fine αimin
def
= min{ρis,s+1; s ∈ S \ {ns}} and βimin

def
= min{ρis+1,s; s ∈ S \ {ns}}.

Then, because θopt(s,A,q) ∈ {(1, 0), (0, 1)} when s < τ ∗2 − 1 and q 6= (0, 0),

the probability of reaching a state in Yτ∗1 after at most 2ns is lower bounded by

δ
def
= min(α1

min, α
2
min

)ns
min(β1

min, β
2
min

)ns
(1 − mins µ(s))ns . Consequently, for all

y ∈ YCτ∗1 and q1 ≥ 2ns,

Pr
(
Yk′ ∈ Yτ∗1 for some k′ = k + 1, . . . , k + 2ns

| Yk = y,Qk = (q1, 0)
)
≥ δ.

Using this bound, we can upper bound the probability that the server state

does not belong to Yτ∗1 at epoch 2jns for all j ≥ 1 (for q1 ≥ 2jns) as follows.

Pr
(
Y2jns ∈ YCτ∗1 | X0 = (y, q1, 0)

)
≤ (1− δ) Pr

(
Y2(j−1)ns ∈ YCτ∗1 | X0 = (y, q1, 0)

)

Thus, the probability Pr(Y2jns ∈ YCτ∗1 | Y0 ∈ YCτ∗1 ,Q0 = (q1, 0)) can be made ar-

bitrarily small by choosing sufficiently large q1. In addition, it is clear Pr(Yk ∈

YCτ∗1 | Y0 ∈ YCτ∗1 ,Q0 = (q1, 0)) is non-increasing in k, assuming that queue 1 remains

non-empty.

124

Next, we study the following T ′-step drift with q1 ≥ T ′.

E

[∑
i∈T

Qi
T ′ −Qi

0

ν∗i
+ f(YT ′)− f(Y0)

∣∣∣ X0 = x0

]

=
T ′−1∑
k=0

E

[∑
i∈T

Qi
k+1 −Qi

k

ν∗i
+ f(Yk+1)− f(Yk)

∣∣∣ X0 = x0

]
(5.34)

From the Lindley’s equation in (3.1),

E
[
Qi
k+1 −Qi

k | X0 = x0

]
= E

[
Bi
k +Di

k | X0 = x0

]
= λi + E

[
µ(Sk, i)I(Ak =Wi) | X0 = x0

]
= λi + E

[
µ(Sk, i)θ

opt
i (Xk) | X0 = x0

]
. (5.35)

Substituting (5.35) in (5.34), we obtain

(5.34) =
T ′−1∑
k=0

(∑
i∈T

λi
ν∗i

+ E

[
−
∑
i∈T

µ(Sk, i)θ
opt(Xk)i
ν∗i

+f(Yk+1)− f(Yk)
∣∣∣ X0 = x0

])
. (5.36)

We upper bound the conditional expected value using the sum two terms by condi-

125

tioning on whether or not Yk belongs to Yτ∗1 .

E

[
−
∑
i∈T

µ(Sk, i)θ
opt(Xk)i
ν∗i

+ f(Yk+1)− f(Yk)
∣∣∣ X0 = x0

]

≤ Pr(Yk ∈ Yτ∗1 | X0 = x0) E

[
−
∑
i∈T

µ(Sk, i)θ
opt(Xk)i
ν∗i

(5.37)

+f(Yk+1)− f(Yk)
∣∣∣ Yk ∈ Yτ∗1 ,X0 = x0

]
+ Pr(Yk ∈ YCτ∗1

∣∣ X0 = x0)fmax.

By further conditioning on the server state at epoch k,

(5.37) = Pr(Yk ∈ Yτ∗1 | X0 = x0)

×
∑

y∈Yτ∗1

Pr(Yk = y | Yk ∈ Yτ∗1 ,X0 = x0)

×E
[
−
∑
i∈T

µ(Sk, i)θ
opt(Xk)i
ν∗i

+ f(Yk+1)− f(Yk)∣∣∣ Yk = y,X0 = x0

]
(5.38)

+ Pr(Yk ∈ YCτ∗1 | X0 = x0)fmax.

When Yk = y for some y ∈ Yτ∗1 and k < T ′, θopt(y,q) = ϕτ
∗
1 (y) and

E[f(Yk+1) − f(Yk) | Yk = y,X0 = x0] = E[f(Y
ϕτ
∗
1

k+1) − f(Y
ϕτ
∗
1

k) | Y
ϕτ
∗
1

k = y]

because Q1
k > 0 from the assumption q1 ≥ T ′. Thus, using the reward function in

(5.3), the conditional expected value in (5.38) is equal to −r(y, ϕτ∗1) + ∆f(Y
ϕτ
∗
1

; y),

126

which is equal to -1 by Lemma 5.11. This gives us

(5.38) =−Pr(Yk ∈ Yτ∗1 | X0 = x0)

+P (Yk ∈ YCτ∗1 | X0 = x0)fmax. (5.39)

From (5.34) - (5.39), we have

E

[∑
i∈T

Qi
T ′ −Qi

0

ν∗i
+ f(YT ′)− f(Y0)

∣∣∣ X0 = x0

]

≤
T ′−1∑
k=0

(∑
i∈T

λi
ν∗i
− Pr(Yk ∈ Yτ∗1 | X0 = x0)

+ Pr(Yk ∈ YCτ∗1 | X0 = x0)fmax

)
. (5.40)

Recall
∑

i∈T(λi/ν
∗
i) < 1. In addition, Pr(Yk ∈ Yτ∗1 | X0 = x0) converges to

1 (and, hence, Pr(Yk ∈ YCτ∗1 | X0 = x0) goes to 0) as k → ∞ (as long as T ′ grows

accordingly) from our earlier discussion. Thus, for all sufficiently large T ′, the sum

of the terms inside the parentheses is negative. This implies that, as T ′ →∞, (5.40)

goes to −∞. As a result, we can find finite T such that, for every state x0 with

q2 = 0 and q1 ≥ T ,

E

[∑
i∈T

Qi
T −Qi

0

ν∗i
+ f(YT)− f(Y0) | X0 = x0

]

≤
∑
i∈T

λi
ν∗i
− 1. (5.41)

We are ready to prove that the functions V and g satisfy (5.9) when the

127

parameter T is chosen to honor (5.41). To this end, we consider following five cases

separately.

Case 1: V (x) ≤ N – From the given function g in (5.6), when V (x) ≤ N , g(x) = 1.

Thus, from the assumed Lyapunov function in (5.4),

E[V (Xk+g(x)) | Xk = x]− V (x)

= E[V (Xk+1) | Xk = x]− V (x)

≤ a

(∑
i∈T

λi
ν∗i

+ fmax

)

= −1 +

[
1 + a

(∑
i∈T

λi
ν∗i

+ fmax

)]
= −g(X) +M.

Case 2: V (x) > N , q2 > 0 and q2 ≥ q1 – In this case, θopt(x) = ψτ
∗
2 (y).

Furthermore, g(x) = 1 because q2 > 0.

E[V (Xk+g(x)) | Xk = x]− V (x)

= E[V (Xk+1) | Xk = x]− V (x)

= a

(∑
i∈T

λi
ν∗i
−
∑
i∈T

µ(s, i)ψ
τ∗2
i (y)

ν∗i
+ ∆f(Y; y)

)
= a

(∑
i∈T

λi
ν∗i
− r(y, ψτ∗2) + ∆f(Y; y)

)
(5.42)

where the last equality follows directly from the assumed reward function in (5.3).

Note that the sum of the last two terms inside the parentheses is equal to -1 from

128

(5.44). Using (5.5), we obtain

(5.42) = a

(∑
i∈T

λi
ν∗i
− 1

)
= −T ≤ −1 = −g(x).

Case 3: V (x) > N , q2 > 0, q2 < q1, and y 6= (τ ∗1 − 1,A) – In this case,

θopt(x) = ψτ
∗
2 (y) again. The proof is similar to that of the previous case, and we

omit it here.

Case 4: V (x) > N , q2 > 0, q2 < q1, and y = (τ ∗1 − 1,A) – Under the given

condition, we have θopt(x) = ϕτ
∗
1 (y) and g(x) = 1.

E[V (Xk+g(x)) | Xk = x]− V (x)

= E[V (Xk+1) | Xk = x]− V (x)

= a

(∑
i∈T

λi
ν∗i
−
∑
i∈T

µ(s, i)ϕ
τ∗1
i (y)

ν∗i
+ ∆f(Y; y)

)
= a

(∑
i∈T

λi
ν∗i
− r(y, ϕτ∗1) + ∆f(Y; y)

)
(5.43)

From (5.45) and (5.33), the sum of the last two terms inside the parentheses is equal

to -1. Therefore,

(5.43) = a

(∑
i∈T

λi
ν∗i
− 1

)
= −T ≤ −1 = −g(x).

Case 5: V (x) > N and q2 = 0 – Because V (x) > N , from the assumed Lyapunov

129

function in (5.4) and value of N in (5.7), we have

∑
i∈T

qi
ν∗i
≥ 2

T

mini ν
∗
i

,

which implies q1 ≥ 2T since q2 = 0. Also, from the assumed function g, we have

g(x) = T .

From the inequality in (5.41),

E[V (Xk+g(x)) | Xk = x]− V (x)

= E[V (Xk+T) | Xk = x]− V (x)

= aE

[∑
i∈T

Qi
T+k −Qi

k

ν∗i
+ f(YT+k)− f(y) | Xk = x

]

≤ a
(∑

i∈T

λi
ν∗i
− 1

)
= −T ≤ −g(x).

5.5.9 A Proof of Lemma 5.11

From the choice of the potential function, we know that, for all y in Y,

r(y, ψτ
∗
2)−∆f(Y

ψτ
∗
2

; y) = rψ
τ∗2

avg = 1. (5.44)

The second equality follows from the observation that the long-term service rate of

type 2 tasks under ψτ
∗
2 equals ν∗2 and the average reward is equal to the long-term

service rate of type 2 tasks normalized by ν∗2.

130

Our proof relies on the following set of observations. First, compare CMC

Y
ψτ
∗
2

to CMC Y
ϕτ
∗
1

. An important observation is that, for all y = (s,A) with

s ≥ τ ∗1 , we have ϕτ
∗
1 (y) = ψτ

∗
2 (y) = (0, 0) as both policies choose to rest the server.

At the state (τ ∗1 − 1,A), however, ϕτ
∗
1 and ψτ

∗
2 select different actions; the former

chooses a type 1 task, whereas the latter either rests if τ ∗1 > τ ∗2 or selects a type 2

task when τ ∗1 = τ ∗2 . This observation tells us that, for all y = (s, w) with s ≥ τ ∗1 −1,

except for the state (τ ∗1 − 1,A), because both policies choose the same action, from

(5.44), the following holds.

r(y, ϕτ
∗
1)−∆f(Y

ϕτ
∗
1

; y) = 1 (5.45)

Second, define

rϕ
τ∗1 def

=
∑

y∈Yτ∗1

πϕ
τ∗1 (y)

(
r(y, ϕτ

∗
1)−∆f(Y

ϕτ
∗
1

; y)
)
,

where πϕ
τ∗1 denotes the unique stationary PMF of Y

ϕτ
∗
1

, and Yτ∗1
def
= {y ∈ Y | s ≥

τ ∗1 − 1}. Consider the CMC Y
ϕτ
∗
1

starting at state (τ ∗1 − 1,A) at epoch k = 0. For

notational simplicity, we shall denote (τ ∗1 − 1,A) by y0. Define

Rk
def
= r
(
Y
ϕτ
∗
1

k , ϕτ
∗
1
)
−
(
f(Y

ϕτ
∗
1

k+1)− f(Y
ϕτ
∗
1

k)

)
. (5.46)

131

From the Weak Law of Large Number,

lim
N→∞

∑N
k=1Rk

N
= rϕ

τ∗1 with probability 1. (5.47)

Third, from (5.46),

N∑
k=1

Rk =
N∑
k=1

r
(
Y
ϕτ
∗
1

k , ϕτ
∗
1
)
−

N∑
k=1

(
f(Y

ϕτ
∗
1

k+1)− f(Y
ϕτ
∗
1

k)

)
.

We can simplify the telescoping sum in the second term.

N∑
k=1

Rk =
N∑
k=1

r
(
Y
ϕτ
∗
1

k , ϕτ
∗
1
)
−
(
f(Y

ϕτ
∗
1

N+1)− f(Y
ϕτ
∗
1

1)

)
. (5.48)

Using (5.48) and the fact that f(Y
ϕτ
∗
1

N+1)− f(Y
ϕτ
∗
1

1) is bounded, the Weak Law

of Large Number tells us

lim
N→∞

∑N
k=1Rk

N
= rϕ

τ∗1
avg with probability 1. (5.49)

However, the average reward rϕ
τ∗1

avg is equal to one from the employed reward function

and the definition of the policy ϕτ
∗
1 ; the long-term service rate of type 1 tasks under

ϕτ
∗
1 is equal to ν∗1.

From (5.47) and (5.49), we have rϕ
τ∗1

avg = rϕ
τ∗1 = 1 with probability 1 under ϕτ

∗
1 .

132

Thus, from the definition of rϕ
τ∗1 , we have

1 =
∑

y∈Yτ∗1

πϕ
τ∗1 (y)

(
r(y, ϕτ

∗
1)−∆f(Y

ϕτ
∗
1

; y)
)

= πϕ
τ∗1 (y0)

(
r(y0, ϕ

τ∗1)−∆f(Y
ϕτ
∗
1

; y0)
)

+
∑

y∈Yτ∗1 \{y0}

πϕ
τ∗1 (y)

(
r(y, ϕτ

∗
1)−∆f(Y

ϕτ
∗
1

; y)
)
.

Recall from (5.45) that, for all y in Yτ∗1 \{y0}, we have r(y, ϕτ
∗
1) −∆f(Y

ϕτ
∗
1

; y) = 1.

Thus,

1 = πϕ
τ∗1 (y0)

(
r(y0, ϕ

τ∗1)−∆f(Y
ϕτ
∗
1

; y0)
)

+
∑

y∈Yτ∗1 \{y0}

πϕ
τ∗1 (y). (5.50)

Moving the second term on the RHS of (5.50) to the other side, we get

1−
∑

y∈Yτ∗1 \{y0}

πϕ
τ∗1 (y)

= πϕ
τ∗1 (y0)

(
r(y0, ϕ

τ∗1)−∆f(Y
ϕτ
∗
1

; y0)
)

or, equivalently, 1 = r(y0, ϕ
τ∗1) − ∆f(Y

ϕτ
∗
1

; y0). As a result, together with (5.44)

and (5.45), we have, for all y ∈ Yτ∗1 ,

1 = r(y, ϕτ
∗
1)−∆f(Y

ϕτ
∗
1

; y). (5.51)

133

Chapter 6: Remote State Estimation Across An Activity Packet-

Drop Link

In this chapter, we model and study the usage dependent efficiency effect for

remote estimation. We focus on a single agent setup where the link quality is affected

by past transmission history. Similar to the previous chapter where we study when

the server should work, the question that we ask here is, ”When should the agent

transmit?”. This problem leads us to some structural insights for scheduling policies

that guarantee the stability for estimation. The work presented in this chapter has

partly appeared in [93].

The chapter is organized as follows. We begin by presenting an overview of

our setting. In Section 6.2, we introduce the notations and the statistical properties

for the so-call activity packet-drop link. Notice that we define a new set of notations

which is uncorrelated with the previous chapter. We then provide a way to determine

whether a scheduling policy exists for stabilizing the estimation and the structural

features of maximal stabilizing strategies in Section 6.3. Finally, we give the proofs

for our result with a highlight on finding an intriguing property of the spectral radius

of matrices with a unique structure in Section 6.4.

134

6.1 Introduction

Remote wireless sensing has gained increasing interest in recent years in the

infrastructure, environment, and human-body monitoring. Wireless technologies

bring some clear benefits, such as reducing wiring material and installation costs.

For instance, embedded sensors inside the human body allow continuous monitoring

without exposing wire to the patients. Remote bridges vibration sensors provide

advantages like no requirement for a nearby power source. It is readily apparent

that such sensors are preferable in the hard-to-reach locations or on moving objects.

However, wireless sensing presents some unique challenges. Comparing to their

wired counterparts, which have stable power sources, they need to rely on energy

harvesting technologies that obtain electricity from the surrounding environments in

the form of thermal, solar, or mechanical. Furthermore, the batteries’ capacities on

these sensors are likely to have strict limits due to weight, size, and cost constraints.

The trade-off between using the energy to transmit or store it for later use emerges.

Moreover, in the context of the embedded sensor inside the human body, we observe

similar trade-off not only on the power usage but also on the temperature fluctuation

of the surrounding area due to transmission. The scheduler chooses between to

transmit but with the risk that the rising temperature will deteriorate the channel

quality or wait for the neighboring area to cool down.

We consider the discrete-time remote estimation system portrayed in Fig. 6.1

that tries to capture this trade-off, wherein an estimator seeks to estimate the state

of a non-collocated plant that is persistently exited by process noise. Upon requests

135

LTI plant Transmission
policy

Xk Uk Sk

CMC S
Sk

packet-drop link

estimator

Pk

X̂k

action-dependent packet-drop link

Sk - activity state

Uk - transmission request

Figure 6.1: Basic system architecture.

issued by a transmission policy, a packet-drop link attempts to relay the state of the

plant to the estimator. When a transmission request is made, the state of the plant1

is either unerringly transmitted to the estimator or a packet-drop event occurs. The

estimator receives a ”no-transmission” symbol when either there is no request or

the transmission fails due to a packet-drop.

6.1.1 Activity State: Discussion and Motivation

The probability of a packet-drop event, given a transmission request, is gov-

erned by the so-called activity state Sk, which takes values in a finite interval of

integers S. A controlled Markov chain, denoted as CMC S in Fig. 6.1, models how

the history of requests governs the probabilistic evolution of Sk. The packet-drop

link and the CMC S form what we call the activity packet-drop link.

When the communication is wireless, packet-drops typically occur if the trans-

mission power does not suffice to overcome interference. In the context of wireless

1See Remark 9 for the case in which the plant’s state is not available at the transmitter.

136

communication powered by a battery that is recharged via energy harvesting, we

can use the activity state to model the following cases:

• Case I: Each value in S could represent the highest power level2 that the bat-

tery could provide for transmission. In this case, Sk would determine the power

available for transmission at time k, and the probability of packet-drop would

decrease when Sk increases. The CMC S could model the charge dynamics

of the battery, which would be continually recharged by an energy harvesting

module. The model should account for the fact that frequent transmission re-

quests tend to deplete the battery, which would be gradually recharged during

periods of inactivity.

• Case II: In addition, we may also consider the so-called capture effect, in

which somewhat frequent transmissions may temporarily silence the inter-

ference sources and consequently contribute to reducing the probability of

packet-drops. In the context of the activity state of Case I, we can regard the

available power as a proxy for the frequency of recent transmission requests.

According to this, in the presence of the capture effect, the probability of drop

may no longer be decreasing on the available power. There may be a sweet-

spot in which transmissions are frequent enough to guarantee capture but not

too frequent that the battery would be depleted.

2The typical discharge curve of a battery specifies how the power it can deliver decreases as it
loses charge.

137

6.1.2 Objectives and Outline of Main Results

We seek to design stationary randomized policies that use the activity state

to decide when to request a transmission. More specifically, we wish to propose

necessary and sufficient conditions in terms of the plant and the CMC S for the

existence of a stationary randomized policy that stabilizes the estimation error. In

addition, we seek to obtain one such policy when it exists. The following results

address these challenges:

• In Theorem 6.1, we show that it suffices to search the finite set of determin-

istic policies for a stabilizing solution. The theorem also gives necessary and

sufficient conditions for the existence of a stabilizing solution in terms of an

inequality that extends previous results.

• When the probability of drop is a non-decreasing function of the activity state,

Theorem 6.2 states that we can further narrow the search to the set of thresh-

old policies. As we argue in Remark 13, this incurs a significant complexity

reduction when testing the necessary and sufficient condition of Theorem 6.1,

and subsequently determining a stabilizing solution.

6.2 Framework and Problem Formulation

We proceed with defining the main components of our framework, and in

Section 6.2.4 we discuss our problem statement.

138

Definition 6.1. (Plant) The plant is an n-dimensional discrete-time linear time-

invariant system. We assume it is excited by white process noise, which leads to the

following recursion for the state:

Xk+1 = AXk + Vk, k ≥ 0, (6.1)

where Xk is the state of the plant, the entries of X0 are zero and A is a matrix

in Rn×n. Here, V is a zero-mean independent, identically distributed process with

finite second-moment.

6.2.1 Activity packet-drop link

We consider that information is transmitted to the estimator across a link

whose internal state is represented by Sk and takes values in S def
= {1, . . . , ns}. We

also refer to Sk as activity state to emphasize its dependence on current and past

transmission requests. The following describes the dynamics of S as a CMC.

Definition 6.2 (CMC S). Let Uk represent a channel input at time k, which is 1

when there is a request for transmission, and is 0 otherwise. The evolution of Sk is

139

modeled by the following transition probabilities for all s and s′ in S.

PSk+1|Sk,Uk
(s′ | s, 1)

=

αs,s+1 if s < ns and s′ = s+ 1,

1− αs,s+1 if s < ns and s′ = s,

1 if s = ns and s′ = ns,

0 otherwise,

(6.2a)

PSk+1|Sk,Uk
(s′ | s, 0)

=

αs,s−1 if s > 1 and s′ = s− 1,

1− αs,s−1 if s > 1 and s′ = s,

1 if s = 1 and s′ = 1,

0 otherwise,

(6.2b)

where the parameters αs,s′, which take values in (0, 1), model the likelihood that the

activity state will transition to a greater or lesser value, depending on whether there

is a transmission request or not. Transmission requests have a ”tendency” to cause

an increment of Sk, while no requests have the opposite effect.

Definition 6.3 (Link Status). The link has two possible statuses termed ”effec-

tive” and ”ineffective”. The process L indicates whether the status is ”effective” or

”ineffective” depending on whether Lk is 1 or 0, respectively. It is modeled proba-

140

bilistically as follows:

PLk|Sk(l|s)
def
=

d(s) if l = 0,

1− d(s) if l = 1.

, s ∈ S, k ≥ 1 (6.3)

where d : S→ [0, 1] indicates how the state influences the status of the link.

Assumption 6.1. We assume that V is independent of the pair of processes (S,L).

Although we have not yet described how U is generated, the following as-

sumption imposes that, conditioned on Sk, the three randomizations that generate

Lk, Uk and Sk+1 are independent among themselves and across time. The class of

transmission policies defined in Section 6.2.4 will be consistent with this.

Assumption 6.2. For every k ≥ 0, we assume that the following holds:

• Lk is independent of
(
{Lj}k−1

j=1 , {Uj}kj=1

)
when conditioned on Sk.

• Uk is independent of
(
{Lj}kj=1, {Uj}k−1

j=1

)
when conditioned on Sk.

• Sk+1 is independent of
(
{Lj}kj=1, {Uj}k−1

j=1

)
when conditioned on Sk and Uk.

As we clarify in the following definition, given that a transmission has been

requested, d determines the probability of packet-drop in terms of Sk.

Definition 6.4 (Packet-drop Event). We say that a packet-drop event occurs

when Uk = 1 and Lk = 0. That is to say that a packet-drop occurs when the link is

ineffective at the same time that a transmission request is received by the link. More

specifically Pr(packet− drop|Sk = s,Uk = 1) = d(s).

141

Definition 6.5 (Activity packet-drop link). A given CMC S and a map d :

S → [0, 1] define, what we call, an activity packet-drop link. The inputs to the link

are Xk and Uk, which represent the state of the plant and indicate if there is a

transmission request, respectively. The output is denoted with Pk and takes values

in P def
= Rn∪{E}, where E indicates that no transmission has occurred. We consider

that Sk, governed by the CMC S, is the internal state of the link, Lk is its status

and, together with the input, they determine the output as follows:

Pk
def
=

Xk if LkUk = 1

E otherwise

(6.4)

This indicates that a successful transmission occurs only when it is requested and

the link is effective.

Remark 9. (When Xk is not available for transmission) To simplify our

notation throughout the article, we assume that Xk is available for transmission.

However, we would like to stress that our results may remain valid even when the

transmitter can only access noisy measurements of the plant’s output, as in [94],

provided that it can construct a state estimate XE
k. More specifically, if XE

k −Xk is

second-moment stable then Theorems 6.1 and 6.2 remain valid when Xk is replaced

with XE
k in (6.4).

6.2.2 Estimator, Estimation Error and System State

We proceed to defining the estimator and the estimation error.

142

Definition 6.6. (Estimator) The estimator has the following structure:

X̂k
def
=

AX̂k−1 if Pk = E

Pk otherwise

, k ≥ 1 (6.5)

where the entries of X̂0 are zero. Notice that, according to our assumptions so

far, (6.5) is the recursive implementation of the following minimum expected mean-

squared error estimator:

X̂k = E[Xk | P1, . . . ,Pk], k ≥ 1

It follows that the estimation error can be represented as:

Ek+1
def
= Xk+1 − X̂k+1 = (1−Uk+1Lk+1)(AEk + Vk), k ≥ 0 (6.6)

6.2.3 Overall System State and CMC Y

We use Yk
def
= (Sk,Ek−1) to denote the overall state of the estimation system

and Y def
= S×Rn represents the associated set of possible values. The following is an

outline for how the transition probability kernel for Y can be obtained from what

we introduced so far.

We start by noticing that it is a consequence of Assumption 6.1 that the

143

transition kernel of Y can be decomposed as follows:

Pr (Yk+1 ∈ {s} ×H | Yk = y′,Uk = u)

= Pr (Ek ∈ H | Yk = y′,Uk = u) Pr (Sk+1 = s | Sk = s′,Uk = u) . (6.7)

for every Lebesgue measurable subset H of Rn, y′ in Y and u in U. Notice that we

use an abuse of notation according to which y′ represents the pair (s′, e′).

The first term on the RHS of (6.7) can be expressed as:

Pr (Ek ∈ H | Yk = y′,Uk = u)

= Pr ((1− uLk)(Ae
′ + Vk−1) ∈ H | Yk = y′,Uk = u)

Finally, Assumption 6.2 can be used to establish that:

Pr (Ek ∈ H | Yk = y′,Uk = u)

= Pr ((1− uLk)(Ae
′ + Vk−1) ∈ H | Sk = s′)

which can be computed using (6.3) and the probabilistic description of V.

At this point, we have introduced all the necessary concepts needed to char-

acterize the overall system as follows.

Definition 6.7. (CMC Y) The CMC with input U and state Y, whose probabilistic

model is now completely defined, is denoted with CMC Y. (See Table 6.1 for a

summary of the notation for CMC Y.)

144

S set of activity states {1, . . . , ns}
Sk activity state at time k

(takes values in S)
Rn n dimensional real vector
Xk LTI plant state at time k (takes values in Rn)
Uk action chosen at time k (takes value 0 or 1).
Lk link status at time k (takes value 0 or 1)

P def
= Rn ∪ {E} possible output from link

Pk link output at time k (takes value in P)

X̂k estimation of plant state at time k
(takes values in Rn)

Y state space formed by S× Rn

Yk
def
= (Sk,Ek−1) system state at time k (takes values in Y)

Table 6.1: A summary of notation describing CMC Y.

Remark 10. It follows from the discussion that specifying the CMC Y requires a

description of: i) the plant, which is determined by the matrix A and the probabilistic

description of V; and ii) the activity packed drop link, which is determined by the

CMC S and the map d.

6.2.4 Transmission Policies, Stability and Problem Statement

Henceforth, we describe the class of stationary randomized transmission poli-

cies adopted here and how they generate the request process U. We then proceed

with specifying the notion of stability we use to qualify the effect that a transmission

policy has on the CMC Y.

Definition 6.8. A stationary randomized policy is specified by a mapping θ : S →

[0, 1]. It determines the probability that a transmission is attempted based only on

145

the activity state, as follows:

PUk|Yk,...,Y0(1|yk, . . . , y0) = θ(sk) and

PUk|Yk,...,Y0(0|yk, . . . , y0) = 1− θ(sk),

where the randomization of Uk is such that Assumption 6.2 holds.

Definition 6.9 (Stationary Randomized Policies). The set of stationary ran-

domized policies is denoted by ΘR.

Definition 6.10 (Mean-square stabilization). For a given CMC Y, a policy θ

in ΘR is said to be mean-square stabilizing if the following holds:

lim sup
k→∞

E
[
ET
kEk] <∞ (6.8)

We can now state the main problem addressed in this article.

Problem 6.1. We seek to obtain a method that ascertains, for any given CMC Y,

whether ΘR contains a stabilizing policy. We also intend to characterize structural

properties of such stabilizing policies in terms of the parameters defining the CMC Y.

Whenever possible, we would like to use these properties to streamline the search for

a stabilizing policy in ΘR.

146

6.3 Second Moment Stability Results

Our preliminary results are Theorem 6.1 and Theorem 6.2, which characterize

the existence and structure of stabilizing policies under varying assumptions on d.

Before we state the theorems, we proceed with defining key preliminary con-

cepts.

Definition 6.11 (Deterministic Policies). The set of deterministic policies ΘD

is defined as follows:

ΘD
def
= {θ ∈ ΘR | θ(s) ∈ {0, 1}, s ∈ S} (6.9)

Definition 6.12 (Threshold Policy). A member of ΘD is said to be a threshold

policy if it can be expressed as:

θτ (s)
def
=

0 if s ≥ τ ,

1 otherwise.

, s ∈ S (6.10)

where τ is a threshold taking values in {1, . . . , ns + 1}.

Definition 6.13 (HS(θ)). Given a CMC S, the map HS : ΘR → Rns×ns is defined

as:

HS
ij(θ)

def
= d(i)θ(i)PSk+1|Sk,Uk

(j | i, 1) + (1− θ(i))PSk+1|Sk,Uk
(j | i, 0),

for θ ∈ ΘR, i, j ∈ S.

147

In addition, we define the following quantities:

Definition 6.14 (λS, λS
D and λS

T). Given a CMC S, we define the following con-

traction rates:

λS def
= min

θ∈ΘR
ρ
(
HS(θ)

)
(6.11a)

λS
D

def
= min

θD∈ΘD
ρ
(
HS(θD)

)
(6.11b)

λS
T

def
= min

1≤τ≤ns+1
ρ
(
HS(θτ)

)
(6.11c)

Now, we are ready to state our main results.

Theorem 6.1. Given a CMC Y, it holds that λS = λS
D. In addition, the

following holds:

• There is a stabilizing policy in ΘR only if ρ(A)2λS < 1.

• If ρ(A)2λS < 1 then any policy θ∗D in ΘD for which ρ
(
HS(θ∗D)

)
= λS holds

is stabilizing.

Proof. A proof of Theorem 6.1 is provided in Section 6.4.1.

Remark 11. Notice that Theorem 6.1 not only gives a necessary and sufficient

condition for stabilizability, but it also implies that we only need to consider deter-

ministic policies.

Remark 12. Consider the uncontrolled case in which ns = 2 and the CMS S is

148

modeled as follows:

PSk+1|Sk,Uk
(s′ | s, u) = Qs′s, u ∈ {0, 1}, s, s′ ∈ S (6.12)

where Q is a 2-dimensional stochastic matrix. Furthermore, we assume that d(2) = 1

and d(1) = 0 to indicate that the link is always effective when Sk = 2 and ineffective

otherwise. In this case λS = Q22 and the necessary and sufficient condition for

stabilizability of Theorem 6.1 becomes ρ(A)2Q22 < 1, which recovers a well-known

result from [63] when applied to our context.

Unfortunately, Theorem 6.1 does not solve the problem that, when ns is large,

the cardinality of ΘD may render the computation of λS
D intractable. However, as

we state in the following theorem, this issue disappears when d is non-decreasing.

Theorem 6.2. Consider that a CMC Y for which d is non-decreasing is given.

It holds that λS = λS
D = λS

T . In addition, if τ ∗ in {1, . . . , ns + 1} is such that

ρ
(
HS(θτ∗)

)
= λS then θτ∗ is stabilizing.

Section 6.4.2 gives a proof sketch of Theorem 6.2.

Remark 13. It follows from Theorem 6.2 that it suffices to consider threshold poli-

cies when d is non-decreasing. For this case, the theorem also states that λS is

equal to λS
T , which can be efficiently computed by minimizing a function over a set

of thresholds that has ns + 1 elements. It also states that any minimizing threshold

yields a stabilizing threshold policy.

149

6.4 Proofs of Main Results

We start our proof with a lemma that relates the spectral radius of HS(θ) and

stability.

Lemma 6.1. Given a CMC Y, the following holds:

• There is a stabilizing policy in ΘR only if ρ(A)2λS < 1.

• If ρ(A)2λS < 1 then any policy θ∗ in ΘR for which ρ
(
HS(θ∗)

)
= λS holds

is stabilizing.

Proof. A proof is provided in Section 6.4.3

By Lemma 6.1, the remaining proof for Theorem 6.1 is to establish that λS = λS
D.

6.4.1 A Proof of Theorem 6.1

First, we introduce another Lemma, which offers an insight into the spectral

radius of matrices with a unique structure and is essential for the proof of the

Theorem. Let F(t) be an ns-by-ns matrix with constant non-negative elements

except for the kth row. The kth row of F(t) is a convex combination of two non-

negative row vectors. More specifically, the kth row is equal to (1 − t)aT + tbT ,

where a and b are non-negative ns-by-1 real vectors.

Lemma 6.2. The minimum of the spectral radius of F(t) for t ∈ [0, 1] is at one

150

of the endpoints, i.e.,

min
t∈[0,1]

ρ
(
F(t)

)
= min{ρ

(
F(0)

)
, ρ
(
F(1)

)
}.

Proof. We first define Fε(t),

Fε(t)
def
= F(t) + εO,

where ε is a positive real number and O is an ns-by-ns matrix with all entries equal

to one. The purpose of introducing this matrix is to ensure that we can work on a

matrix with only positive elements.

Proceeding with the proof of the Lemma, we will show that the spectral radius

of Fε(t) is greater than or equal to the minimum of the spectral radius of Fε(0) and

Fε(1) for all t ∈ [0, 1] by contradiction.

Suppose there exist a t∗ such that ρ
(
Fε(t∗)

)
is less than ρ

(
Fε(0)

)
and ρ

(
Fε(1)

)
.

We use v to denote one of the eigenvectors of Fε(t∗) corresponding to eigenvalue

ρ
(
Fε(t∗)

)
. Since Fε(t∗) has only positive elements, all elements of v are also positive.

From Theorem 8.1.26 in [95], we have, for any t in the closed interval of zero and

one,

ρ
(
Fε(t)

)
≤ max

i∈S

∑ns
j=1Fε(t)ijvj

vi
, (6.13)

where vi is the ith element of v, and the equality holds when t is equal to t∗. For

151

notational convenience, we use βi(t) to denote 1
vi

∑ns
j=1Fε(t)ijvj for the rest of the

proof.

Notice that only row k of the matrix Fε(t) is affected by parameter t. Thus, for

any i 6= k and any t ∈ [0, 1], row i of Fε(t) is the same as row i of Fε(t∗). Therefore,

βi(t) =

∑ns
j=1Fε(t)ijvj

vi
=

∑ns
j=1Fε(t∗)ijvj

vi
= ρ
(
Fε(t∗)

)
,

for all i 6= k and t ∈ [0, 1]. For i equal to k,

βk(t) =

∑ns
j=1Fε(t)kjvj

vk
=

(
(1− t)aT + tbT + ε1T

)
v

vk
,

Notice that βk(t) is a linear function of t. Thus, for any t in [0, 1],

βk(t)≥min{βk(0), βk(1)}.

With these observations, let us examine (6.13) for t = 0 and t = 1 to lower bound

βk(0) and βk(1).

Case 1. t = 0: From (6.13), we know that the maximum of βi(0) over i is greater

than or equal to ρ
(
Fε(0)

)
. However, for all i 6= k, βi(0) is equal to ρ

(
Fε(t∗)

)
which

is strictly less than ρ
(
Fε(0)

)
by our assumption. The maximum must be achieved

152

by k and we have

βk(0) ≥ ρ
(
Fε(0)

)
.

Case 2. t = 1: By a similar argument, we have

βk(1) ≥ ρ(Fε(1)).

Thus, βk(t) is greater than or equal to the minimum of ρ
(
Fε(0)

)
and ρ

(
Fε(1)

)
for all t ∈ [0, 1]. However, this contradicts the fact that βk(t

∗) equals ρ
(
Fε(t∗)

)
which is less than ρ

(
Fε(0)

)
and ρ

(
Fε(1)

)
by our assumption. Therefore,

ρ
(
Fε(t)

)
≥ min{ρ

(
Fε(0)

)
, ρ
(
Fε(1)

)
} (6.14)

for any t ∈ [0, 1] and ε > 0.

Next, we will show that the inequality holds even with ε equal to zero by

contradiction.

Suppose that there exists a t′ such that ρ
(
F(t′)

)
< min{ρ

(
F(0)

)
, ρ
(
F(1)

)
}.

Define δ to be the difference between min{ρ
(
F(0)

)
, ρ
(
F(1)

)
} and ρ

(
F(t′)

)
. Since

the spectral radius is a continuous function of each element of the matrix, there exists

an ε′ > 0 such that ρ
(
Fε′(t′)

)
− ρ
(
F(t′)

)
< δ. (Note that ρ

(
Fε′(t′)

)
≥ ρ

(
F(t′)

)
by

153

Theorem 8.1.18 in [95]). Hence,

ρ
(
Fε′(t′)

)
< ρ
(
F(t′)

)
+ δ

= ρ
(
F(t′)

)
+ min{ρ

(
F(0)

)
, ρ
(
F(1)

)
} − ρ

(
F(t′)

)
= min{ρ

(
F(0)

)
, ρ
(
F(1)

)
}

≤min{ρ
(
Fε′(0)

)
, ρ
(
Fε′(1)

)
},

where we use Theorem 8.1.18 in [95] again in the last inequality. This contradicts

(6.14). Thus, ρ
(
F(t∗)

)
≥ min{ρ

(
F(0)

)
, ρ
(
F(1)

)
} for all t ∈ [0, 1].

With this lemma, we can now prove that λS = λS
D. Let θ ∈ ΘR be a stationary

randomized policy. Define a set Sθ
def
= {s ∈ S : θ(s) /∈ {0, 1}} to be the set of the

activity states where the policy chooses randomly. We denote all states in Sθ by

{s1, s2, . . . , sm}. Then, we investigate a set of policies that are parameterized by

t ∈ [0, 1]:

θt(s) =

θ(s) if s 6= s1,

t if s = s1.

An important observation is that the matrix HS(θt) satisfies the matrix format in

Lemma 6.2. Hence, either ρ
(
HS(θ0)

)
or ρ

(
HS(θ1)

)
is less than or equal to ρ

(
HS(θ)

)
.

We find a policy θnew (θ0 or θ1) such that it chooses the action deterministically

154

at the state s1 and results in a lower or identical spectral radius. We take θnew

as θ and apply this procedure with {s2, . . . , sm}. Notice that the number of the

activity states at which the policy chooses randomly decreases by one after each

usage of Lemma 6.2. Since the set of the activity states S is finite, the procedure

will eventually terminate, and we have a deterministic policy θD with ρ
(
HS(θD)

)
≤

ρ
(
HS(θ)

)
.

We have now shown that, for any randomized policy, we can find a determin-

istic policy which results in a lower or identical spectral radius. Thus,

min
θ∈ΘR

ρ
(
HS(θ)

)
= min

θD∈ΘD
ρ
(
HS(θD)

)
.

Combining with Lemma 6.1, the proof of Theorem 6.1 is complete.

6.4.2 A Proof of Theorem 6.2

In this subsection, we will show that, if d is non-increasing, λS
D is equal to λS

T ,

which is sufficient for proving Theorem 6.2.

Proof. Suppose that θD ∈ ΘD is a deterministic policy. We define a mapping T :

ΘD → S ∪ {ns + 1}, where

T (θ)
def
= min{s ∈ S | θ(s) = 1}, θ ∈ ΘD.

We assume that T (θ) = ns+1 if the set on the RHS is empty. First, the definition of

155

the mapping T tells us that θD is a threshold policy if T (θD) = ns+1 or T (θD) = ns.

Thus, without loss of generality, we assume that T (θD) does not equal to ns + 1 or

ns. We use s∗ to denote T (θD) in the rest of the proof for notational convenience.

Next, we will show that ρ
(
HS(θD)

)
≥ ρ

(
HS(θs∗)

)
where θs∗ is a threshold

policy with the threshold value s∗.

The matrix HS(θD) has following structure,

HS(θD) =

J 0

L M

 ,

where M is an (ns− s∗)-by-(ns− s∗) square matrix, J is an s∗-by-s∗ square matrix,

L is an (ns − s∗)-by-s∗ matrix, and 0 is an s∗-by-(ns − s∗) matrix with all elements

equal to zero. From the lower triangular like structure, we know that the spectral

radius of HS(θD) is lower bounded by the spectral radius of the top left matrices.

Therefore,

ρ
(
HS(θD)

)
≥ ρ(J). (6.15)

Proceeding with the proof of the Theorem, we consider the matrix HS(θs∗) with the

threshold policy θs∗ ,

HS(θs∗) =

J 0

L′ M ′

 ,

where M ′ is an (ns − s∗)-by-(ns − s∗) diagonal matrix with the diagonal elements

156

d(i)(1− αi,i−1) for i from (s∗ + 1) to ns, L
′ is an (ns − s∗)-by-s∗ matrix, and other

parts of matrix identical to HS(θD). Next, We take a deeper look at matrix J ,

J =

p q 0

K
...

x y αs∗−1,s∗

0 . . . d(s∗)αs∗,s∗−1 d(s∗)(1− αs∗,s∗−1)

.

Theorem 8.1.22 in [95] tells us that the spectral radius of a matrix is lower bounded

by the smallest row sum. The row sum of each row in J is equal to one except for

the s∗th row, and the row sum of the s∗th row is equal to d(s∗) which is less than

or equal to 1. Thus,

ρ (J)≥ d(s∗).

The spectral radius of the matrix HS(θs∗) equals the maximum of the diagonal

elements of M ′ and ρ(J). Since ρ(J) is greater than or equal to d(s∗) which is greater

than or equal to each of the diagonal elements of M ′ by the assumption that d is

non-increasing, the spectral radius of the matrix HS(θs∗) is equal to ρ(J). Finally,

by (6.15), we have

ρ
(
HS(θD)

)
≥ ρ (J) = ρ

(
HS(θs∗)

)
,

157

which completes the proof, since, for any deterministic policy, we can find a threshold

policy that results in a spectral radius which does not exceed the original one. Thus,

min
θD∈ΘD

ρ
(
HS(θD)

)
= min

1≤τ≤ns+1
ρ
(
HS(θτ)

)
.

6.4.3 A Proof of Lemma 6.1

Under a fixed policy θ, we will prove the Lemma by showing that evolution of

the second moment of the estimation error follow a Markov Jump Linear System [96].

This system is stable if and only if ρ
(
HS(θ)

)
ρ(A)2 < 1.

Proof. We start our proof by defining Di
k which is a decomposition of the second

moment of estimation error at time k condition on the activity state at time k + 1.

Di
k

def
= E[EkE

T
k |Sk+1 = i] Pr(Sk+1 = i).

Notice that the error can be represented by sum of Di
k now.

E[EkE
T
k] =

ns∑
i=1

Di
k.

Next, we try to figure out the evolution equation for Di
k. We decompose Di

k+1 by

158

conditioning on Sk+1,

Di
k+1 =

ns∑
j=1

E[Ek+1E
T
k+1|Sk+2 = i,Sk+1 = j]PSk+1|Sk+2

(j|i)PSk+2
(i)

=
ns∑
j=1

E[Ek+1E
T
k+1|Sk+2 = i,Sk+1 = j]PSk+2|Sk+1

(i|j)PSk+1
(j), (6.16)

where we use the Bayes Rule in the second equality. The expected value term can

be rewritten as,

E[Ek+1E
T
k+1|Sk+2 = i,Sk+1 = j]

= E[Ek+1E
T
k+1|Sk+2 = i,Sk+1 = j,Uk+1 = 0]PUk+1|Sk+2,Sk+1

(0|i, j)

+E[Ek+1E
T
k+1|Sk+2 = i,Sk+1 = j,Uk+1 = 1]PUk+1|Sk+2,Sk+1

(1|i, j)

= E[Ek+1E
T
k+1|Sk+1 = j,Uk+1 = 0]PUk+1|Sk+2,Sk+1

(0|i, j)

+E[Ek+1E
T
k+1|Sk+1 = j,Uk+1 = 1]PUk+1|Sk+2,Sk+1

(1|i, j), (6.17)

where we condition on Uk+1 in the first equality, and use the fact that Sk+2 is

independent of Ek+1 given Sk+1 and Uk+1 in the second equality (Assumption 6.2).

Then, we use the fact that Ek+1 = (1 − Uk+1Lk+1)(AEk + Wk) from (6.6). The

expected value term in (6.17) can be written as,

E[Ek+1E
T
k+1|Sk+1 = j,Uk+1]

= E[(1−Uk+1Lk+1)2(AEk + Wk)(AEk + Wk)
T | Sk+1 = j,Uk+1]

= E[(1−Uk+1Lk+1)2|Sk+1 = j](AE[EkE
T
k |Sk+1 = j]AT +Rw),

159

where Rw
def
= E[WkW

T
k]. We use E[EkW

T
k] = E[Ek]E[WT

k] = 0, our assumption

that the link status Lk+1 is independent of (Uk+1,Ek,Wk) given Sk+1, and Uk+1 is

independent of (Ek,Wk) given Sk+1 (Assumption 6.2) in the second equality. We

apply this to (6.17) and recognize that E[(1− Lk+1)2|Sk+1 = j] = d(j) to get,

E[Ek+1E
T
k+1|Sk+2 = i,Sk+1 = j]

=
(
PUk+1|Sk+2,Sk+1

(0|i, j) + d(j)PUk+1|Sk+2,Sk+1
(1|i, j)

)
(AE[EkE

T
k |Sk+1 = j]AT +Rw).

Combining this with (6.16) tells us that,

Di
k+1 =

ns∑
j=1

PSk+2|Sk+1
(i|j)PSk+1

(j)
(
PUk+1|Sk+2,Sk+1

(0|i, j) + d(j)PUk+1|Sk+2,Sk+1
(1|i, j)

)
×(AE[EkE

T
k |Sk+1 = j]AT +Rw)

=
ns∑
j=1

(
PUk+1|Sk+2,Sk+1

(0|i, j)PSk+2|Sk+1
(i|j) + d(j)PUk+1|Sk+2,Sk+1

(1|i, j)PSk+2|Sk+1
(i|j)

)
×(AE[EkE

T
k |Sk+1 = j]PSk+1

(j)AT + PSk+1
(j)Rw)

=
ns∑
j=1

(
PUk+1|Sk+1

(0|j)PSk+2|Sk+1,Uk+1
(i|j, 0) + d(j)PUk+1|Sk+1

(1|j)PSk+2|Sk+1,Uk+1
(i|j, 1)

)
×(AE[EkE

T
k |Sk+1 = j]PSk+1

(j)AT + PSk+1
(j)Rw)

=
ns∑
j=1

(
HS(θ)

)
j,i

(ADj
kA

T + PSk+1
(j)Rw),

where we use Bayes rule in the third equality and the definition of matrix HS(θ) and

160

D in the last equality. At this point, we successfully acquire the evolution equation

for D. However, it is unclear how to directly analyze the stability for D because

it is a matrix. Fortunately, the matrix can be vectorized and [97, Theorem 13.26]

vec(ABC) = (CT ⊗ A)vec(B) tells us that,

vec(Di
k+1) =

ns∑
j=1

(
HS(θ)

)
j,i

(A ⊗ A)vec(Dj
k) +

ns∑
j=1

(
HS(θ)

)
j,i
PSk+1

(j)vec(Rw).

(6.18)

Stack the vector vec(Di
k+1) from i = 1 to ns, and we obtain that the dynamic

system recursion is governed by the matrix (HS(θ)T ⊗ In)(Ins ⊗ (A⊗ A)). Thus, if

the spectral radius of this matrix is less than one, lim supk→∞ E
[
ET
kEk] is bounded.

Utilizing the mixed-product property of the Kronecker product, (A⊗B)(C ⊗

D) = (AC)⊗ (BD) and the fact that ρ(A⊗B) = ρ(A)ρ(B), we conclude that,

ρ
(
(HS(θ)T ⊗ In)(Ins ⊗ (A⊗ A))

)
= ρ

(
(HS(θ)T Ins)⊗ (In(A⊗ A))

)
= ρ

(
HS(θ)T ⊗ (A⊗ A)

)
= ρ

(
HS(θ)T

)
ρ (A⊗ A)

= ρ
(
HS(θ)

)
ρ (A)2 .

Hence, θ is a stabilizing policy if and only if ρ
(
HS(θ)

)
ρ (A)2 < 1. By the

fact that we can find a θ∗ such that ρ
(
HS(θ∗)

)
= λS, the proof of Lemma 6.1 is

161

complete.

6.5 Summary

We proposed a formulation comprising an LTI plant persistently excited by

white process noise, a remote estimator and a packet-drop link that attempts to

relay the state of the plant to the estimator only when it receives a request. Unlike

most existing work, the link has an (activity) state that is influenced by the history

of current and past requests. A controlled Markov chain models this dependence,

and a given function determines the packet-drop probability in terms of the state

of the link. We allow for randomized stationary transmission policies that use the

state of the link to determine when to issue a request. Our goal is to determine

the existence of a policy that stabilizes the estimation error in the second-moment

sense. By exploring quasi-concavity properties of the spectral radius, with respect to

a certain parametrized family of matrices, we show in Theorem 6.1 that it suffices to

search for a deterministic stabilizing policy. The theorem also introduces a necessary

and sufficient condition for the existence of a stabilizing policy. As we indicate in

Remark 12, if the link is uncontrolled then the aforementioned condition recovers

well-known existing results. When the packet-drop probability is non-increasing

on the link’s state, Theorem 6.2 states that the search can be further reduced to

threshold policies. We also describe how these results impact the complexity of

evaluating the proposed necessary and sufficient condition for stability.

162

Chapter 7: Conclusion and Future Directions

We explored the issue of developing a task scheduling policy when a queuing

server’s efficiency can be dependent on the previous usage, which is modeled using

the server’s internal state. A new controlled Markov chain framework was proposed

to study the system’s queue length stability.

We used the new framework to define the collection of task arrival rates for

which a stabilizing stationary scheduling strategy exists. For a single type server,

we established that there exists an upper-bound for the stabilizable arrival rate.

This upper-bound can be computed efficiently by searching through finite threshold

values. Moreover, we defined an optimal threshold policy that stabilizes the process

whenever the arrival frequency of the task is within the specified range for which a

stabilizing policy exists. The computation of the optimal policy does not depend on

the information of the arrival rate. For a multiple type server, we also identified the

set of all stabilizable arrival rates. While the coupling between activity state and

queue length prevents the well-known max-weight policy to stabilize the system,

we proposed a policy with a simple structure that keeps the process stable. The

parameters of the policy can be found by searching the optimal threshold values for

each type.

163

Besides the problem of stability, for the single type case, we have found a

tractable way (i.e., linear programming) to determine the minimum of all utiliza-

tion rates that can be reached through a stabilizing scheduling strategy. Such a

fundamental limit is vital in determining the effectiveness of any policy’s utilization

rate. In addition, we could use this linear programming to build policies with arbi-

trarily close utilization rates to the fundamental limit. While the proof of the single

type infimum utilization rate problem established a reduction from optimization

on infinite state space CMC X to finite state space CMC Y, it remains an open

question whether such reduction exists for the multiple types or not.

In addition to stability and utilization rate problem, the expected queue length

and delay are often considered for researchers. Some empirical results on such

properties were obtained by numerical simulation. For example, the expected queue

length and delay grow when we designed a policy with a lower utilization rate by

the method in Chapter 4. Future directions for this queuing system models include

studying theoretical structure or bounds on the queue behavior of policies.

We have also proposed a remote estimation framework consisting of an LTI

plant, a remote estimator, and packet drop-link that attempts, when a request is re-

ceived, to relay the state of the plant to the estimator. By exploring quasi-concavity

properties of the spectral radius, with respect to a certain parametrized family of

matrices, we showed that it suffices to search for a deterministic stabilizing policy,

and the search can be further reduced to threshold policies under non-decreasing

drop-rate condition. Future directions include investigating the strategies that mini-

mize the variance of the LTI plant state of the remote control system with an activity

164

encoder

LTI plant

controller

sensor Transmmision
policy

Uk Sk

CMC S
Sk

packet-drop link

decoder

action-dependent packet-drop link

Sk - activity state

Uk - transmission request

Figure 7.1: History-Dependent Estimator in A Controlled Loop

packet drop link in Fig. 7.1. Gupta et al. [63] established that, if the server state

evolved according to a Markov chain and the transmitter always request to transmit,

the optimal control policies and encoding scheme could be designed separately. For

our model, where the server sate evolved according to a controlled Markov chain,

it remains an open problem to identify the transmission policies, control policies,

and encoding scheme combinations such that the variance of the LTI plant state is

minimized.

165

Appendix A: Appendix

A.1 A Proof of Theorem 4.4: Structure of Optimal Utilization Rate

Define Φ† to be set of policies in ΦR which are deterministic except for at most

at one state where the policy randomizes between two admissible actions. In other

words,

Φ†
def
=
{
φ ∈ ΦR

∣∣∣ φ(s, w) ∈ {0, 1} for all s ∈ SDφ ⊆ S

such that (a) |S \ SDφ | ≤ 1 and (b) at a state in

S \ SDφ , φ randomizes between two actions
}

Lemma A.1. Given Φ0
L(ν) with ν ∈ (0, ν∗], there exists a φ ∈ Φ0

L(ν) such that

φ is also an element in Φ†.

Proof. With ε = 0, we can drop the inequality constraint (4.25b) in LP (4.25a).

It is sufficient to consider the optimization problem over the occupation measure

` ∈ L that are generated by the policies with at most one randomization as shown

in [89, Theorem 4].

For each φ in ΦR, let Π(φ) be the set of stationary PMFs of Y
φ
. With

166

Lemma A.1, we can rewrite Ū 0
L as

Ū 0
L (ν) = min

π ∈ Π(φ), φ ∈ Φ†

(A.1b)

∑
y∈Y

π(y)φ(y) (A.1a)

∑
y∈Y

µ(s)π(y)φ(y) = ν (A.1b)

We shall further divide Φ† into three subset and consider the linear program-

ming problem (A.1a) on each of the subset. Before we proceed with the proof, we

restate definition of threshold policies.

We define a threshold policy φτ as

φτ (s, w)
def
=

0 if s ≥ τ and w = A,

1 otherwise.

Lemma A.2. For every φ ∈ Φ† with φ(1,A) = 1, there exists τ1, τ2 ∈ S∪{ns+1}

and α ∈ [0, 1] such that

νφ = (1− α)νφτ1 + ανφτ2 ,

Ū (φ) = (1− α)Ū (φτ1) + αŪ (φτ2).

Proof. We define the mapping T : ΦR → S ∪ {0}, where

T (φ)
def
= max{s ∈ S | φ(s,A) = 1}, φ ∈ ΦR.

167

We assume that T (φ) = 0 if the set on the RHS is empty. We first observe that

T (φ) ≥ 1 in this case since φ(1,A) = 1 and the only positive recurrent communicat-

ing class is {y ∈ Y : s ≥ T (φ)}. It is clear the following φ′ has the same long-term

service rate and utilization rate with φ,

φ′(y) =

φ(y) if s ≥ T (φ)

1 otherwise,

because both policies have the same positive recurrent communicating class and the

policies inside the class are identical. Furthermore, since there exists only one state

s′ where φ choose randomly between two actions, φ′ can be express in the following

form,

φ′(y) =

γ if w = A and s = s′

φT (φ)+1(y) otherwise,

(A.2)

where φT (φ)+1 is the threshold policy with threshold T (φ) + 1 and we assume s′ >

T (φ). If s′ < T (φ), φ′ is just a threshold policy. Suppose that τ1 = T (φ) + 1 and

τ2 = s′ + 1.

We rewrite γ in (A.2) as

γ =
α · πφτ2 (τ2 − 1,A)

α · πφτ2 (τ2 − 1,A) + (1− α)πφτ1 (τ2 − 1,A)
(A.3)

for some α ∈ [0, 1]. Note that, for every γ ∈ [0, 1], we can find an appropriate

α ∈ [0, 1] that satisfies (A.3) because πφτ1 (τ2 − 1,A) > 0 and πφτ2 (τ2 − 1,A) > 0

168

from the assumption τ1 ≤ τ2.

By solving the global balance equations for Y under the policy φ′, we get the

following stationary PMF. Its derivation is provided in Appendix A.1.1: for every

y in Y,

πφ
′
(y) = (1− α)πφτ1 (y) + α · πφτ2 (y) (A.4)

The long-term service rate can be obtained using the stationary PMF.

νφ
′
=
∑
y∈Y

µ(s) πφ
′
(y) φ′(y)

Substituting the RHS of (A.4) for πφ
′
(y), we obtain

νφ
′
=
∑
y∈Y

(
µ(s)

(
α · πφτ2 (y)

+(1− α)πφτ1 (y)
)
φ′(y)

)
= µ(τ2 − 1)

(
α · πφτ2 (τ2 − 1,A)

+(1− α)πφτ1 (τ1 − 1,A)
)
φ′(τ2 − 1,A)

+
∑

y∈Y\{(τ2−1,A)}

(
µ(s)

(
α · πφτ2 (y) (A.5)

+(1− α)πφτ1 (y)
)
φ′
)
.

169

Using the definition of φ′,

(A.5) = µ(τ2 − 1)
(
α · πφτ2 (τ2 − 1,A)

+(1− α)πφτ1 (τ2 − 1,A)
)

×
(
(1− γ)φτ1(τ2 − 1,A)

+γφτ2(τ2 − 1,A)
)

(A.6)

+
∑

y∈Y\{(τ2−1,A)}

(
µ(s)

(
α · πφτ2 (y)

+(1− α)πφτ1 (y)
)
φτ1(y)

)
. (A.7)

First, using the expression in (A.3) for γ in the first term, we get

(A.6) = µ(τ2 − 1)
(

(1− α)πφτ1 (τ2 − 1,A)φτ1(τ2 − 1,A)

+απφτ2 (τ2 − 1,A)φτ2(τ2 − 1,A)
)
.

Second, we show πφτ2 (y)φτ1(y) = πφτ2 (y)φτ2(y) for all y ∈ Y \ {(τ2 − 1,A)} by

considering the following three cases.

• If s ≥ τ2 and w = A, we have φτ1(s, w) = φτ2(s, w) = 0 from the definition of

φτ1 and φτ2 .

• If s < τ2 − 1, then πφτ2 (s, w) = 0.

• If w = B, then φτ1(s, w) = φτ2(s, w) = 1.

170

As a result,

(A.7) =
∑

y∈Y\{(τ2−1,A)}

µ(s)
(

(1− α)πφτ1 (y)φτ1(y)

+απφτ2 (y)φτ2(y)
)
.

Summing (A.6) and (A.7), we get

νφ
′
=
∑
y∈Y

µ(s)
(

(1− α)πφτ1 (y)φτ1(y)

+απφτ2 (y)φτ2(y)
)

= (1− α)νφτ1 + ανφτ2 . (A.8)

Following similar steps, we can show

Ū (φ) = (1− α)Ū (φτ1) + αŪ (φτ2). (A.9)

Lemma A.3. For every φ ∈ Φ† with φ(1,A) ∈ (0, 1), there exists τ2 ∈ S∪{ns+

1} and β ∈ [0, 1] such that

νφ = βνφτ2 ,

Ū (φ) = βŪ (φτ2).

Proof. Since there can be only one state that choose randomly which is (1,A) in

this case, φ is deterministic on all other states. Without loss of generality we assume

171

T (φ) = 0. If not, the φ would have same long-term service rate and utilization rate

as threshold policy φT (φ)+1.

φ(y) =

γ if y = (1,A)

1 if w = B

0 otherwise,

The rest of the proof is identical to Lemma A.2 by replacing φτ2 with φ2, and φτ1

with φ1 which is a policy that always rest and νφτ1 = Ū (φτ1) = 0.

Before we state the final Lemma, note that, when φ(1,A) = 0, the process Y
φ

could have two positive recurrent communicating classes. The Ū is not well defined

on such φ. Thus, we define a set of service rate and utilization rate pair for φ that

choose to rest at state (1,A).

S̄U(φ)

def
=

{(∑
y∈Y

µ(s)π(y)φ(y),
∑
y∈Y

π(y)φ(y)
)

: π ∈ Π(φ)

}

Lemma A.4. For every φ ∈ Φ† with φ(1,A) = 0, there exists τ1, τ2 ∈ S∪{ns+1}

172

and α ∈ [0, 1] such that

S̄U(φ) =

{
β
(

(1− α)νφτ1 + ανφτ2 ,

(1− α)Ū (φτ1) + αŪ (φτ2)
)

: β ∈ [0, 1]

}

Proof. If T (φ) = 0 which implies that the policy always rest, it is clear that (1,A)

is an absorbing state and the service rate and the utilization ratio are both zero. If

T (φ) > 0, we can represent φ as

φ(y) =

0 if y = (1,A)

φ′(y) otherwise,

where φ′ has the same form as (A.2). The MC now have two positive recurrent

communicating classes and the stationary PMF can be any convex combination of

stationary PMF of φ′ and φ1 (always rest policy). This is also true for utilization

rate and service rate.

Proof of Theorem 1: By Lemmas A.2-A.4, the optimization problem (A.1a) can

be transform into an optimization problem over α, β ∈ [0, 1] and τ1, τ2 ∈ S∪{ns+1}.

Ū 0
L (ν) = min

α, β, τ1, τ2

(A.10a)

β
(

(1− α)Ū (φτ1) + αŪ (φτ2)
)

β
(

(1− α)νφτ1 + ανφτ2
)

= ν (A.10a)

173

If we plot (0, 0) and
(
νφτ , Ū (φτ)

)
on the x-y plane for all τ ∈ S ∪ {ns + 1}, the

Ū 0
L (ν) is the lower bound of the convex hull of all the points which is non-decreasing,

piece-wise affine and convex for ν ∈ [0, ν∗].

A.1.1 Derivation of Stationary PMF in (A.4)

In order to prove (A.4) is the correct stationary PMF, it suffices to show that

the given PMF satisfies the following global balance equations:

πφ
′
(y) =

∑
y′∈Y

πφ
′
(y′) P

φ′

y′,y for all y ∈ Y, (A.11)

where P
φ′

is the one-step transition matrix of Y
φ′

. To this end, we shall demonstrate

that the RHS of (A.4) is equal to the RHS of (A.11).

First, we break the RHS of (A.11) into two terms.

∑
y′∈Y

πφ
′
(y′) P

φ′

y′,y

= πφ
′
(τ2 − 1,A)P

φ′

(τ2−1,A),y (A.12)

+
∑

y′∈Y\{(τ2−1,A)}

πφ
′
(y′) P

φ′

y′,y (A.13)

We then rewrite each term on the RHS: from (A.4) and (A.2), we have

(A.12) =
(
α · πφτ1 (τ2 − 1,A) + (1− α)πφτ1 (τ2 − 1,A)

)
×
(
(1− γ)P

φτ2
(τ2−1,A),y + γP

φτ2
(τ2−1,A),y

)

174

Substituting the expression for γ in (A.3),

(A.12) = (1− α)πφτ1 (τ2 − 1,A)P
φτ1
(τ2−1,A),y

+α · πφτ2 (τ2 − 1,A)P
φτ2
(τ2−1,A),y

Second, from (A.4)

(A.13) =
∑

y′∈Y\{(τ2−1,A)}

(
α · πφτ2 (y′) + (1− α)πφτ1 (y′)

)
×P

φ′

y′,y.

From (A.2), for all y′ = (s′, w′) ∈ Y \ {(τ2 − 1,A)}, we have φ′(y′) = φτ1(y
′) and

P
φ′

y′,y = P
φτ1
y′,y. Moreover, because φτ2 is a deterministic policy with a threshold on

the activity state of the server, πφτ2 (y′) = 0 for all y′ = (s′, w′) with s′ < τ2 − 1.

Hence, for all y′ ∈ Y\{(τ2−1),A)} with πφτ2 (y′) > 0, together with the assumption

τ1 ≤ τ2, we have

φτ1(y
′) = φτ2(y

′) =

0 if s′ ≥ τ2 and w′ = A

1 if w′ = B

and, consequently, P
φτ1
y′,y = P

φτ2
y′,y. Therefore,

(A.13) =
∑

y′∈Y\{(τ2−1,A)}

(
α · πφτ2 (y′)P

φτ2
y′,y

+(1− α)πφτ1 (y′)P
φτ1
y′,y

)

175

Substituting the new expressions for (A.12) and (A.13), we obtain

∑
y′∈Y

πφ
′
(y′) P

φ′

y′,y

= (1− α)πφτ1 (τ2 − 1,A)P
φτ1
(τ2−1,A),y

+α · πφτ2 (τ2 − 1,A)P
φτ2
(τ2−1,A),y

+
∑

y′∈Y\{(τ2−1,A)}

(
α · πφτ2 (y′)P

φτ2
y′,y

+(1− α)πφτ1 (y′)P
φτ1
y′,y

)
= α · πφτ2 (y) + (1− α)πφτ1 (y),

where the last equality follows from the fact that πφτ1 and πφτ2 are the stationary

PMFs of Y
φτ1 and Y

φτ2 , respectively.

A.2 Lemma 5.3 for m types of tasks

Lemma A.5. Suppose λi ≤ ν∗i for all i ∈ {2 . . . ,m}. If a policy φ in ΦR

achieves νφi equal to the arrival rate λi for all i ∈ {2 . . . ,m}, then νφ1 is upper

bounded by ν∗1

(∑m
i=2

ν∗i−λi
ν∗i

)
≥ 0.

Consider the following optimization problem with a constraint on the long-

term service rate of type i tasks for i = 2, . . . ,m. Since the case with one of the

λi = 0 reduces to a multiple-queues case with m− 1 queues and the case where all

λi = 0 for i = 2, . . . ,m reduces to a single-queue case, here we assume λi > 0 for all

176

i = 2, . . . ,m.

maximum
φ∈Φ∗

νφ1

subject to νφi ≥ λi ∀i ∈ {2, . . . ,m}. (A.14)

where Φ∗ is some subset of Φ+
R. We denote the optimal value of (A.14) by ν∗(Φ∗).

We shall prove that the optimization problem with Φ∗ = Φ+
R has an optimal

value ν∗1

(∑m
i=2

ν∗i−λi
ν∗i

)
and there exists an optimal policy φ∗ in Φ+

R which achieves

the optimal value. To this end, we consider (A.14) with a sequence of decreasing

subsets of Φ+
R and show that the optimal value does not decrease as we reduce the

set of policies we allow.

Lemma A.6. For a policy φ ∈ Φ+
R, there exists a policy φ′ ∈ Φ++

R

def
= {φ ∈ Φ+

R :∑
i∈T φ(1,A)i = 1} such that,

νφ
′

i ≥ νφi ,

for all i from 1 to m.

Proof. The proof is omited due to the similarity with the proof of Lemma 5.7 in

Section 5.5.4.

Lemma A.7. The optimal value of (A.14) remains the same when we allow

only the policies in Φ++
R , i.e., ν∗(Φ++

R) = ν∗(Φ+
R).

Proof. This follow directly from Lemma A.6.

177

The intuition behind Lemma A.7 is that when the server state is (1,A) and the

server rests, the server’s new state is (1,A). This suggests that the server wasted an

epoch without contributing to long-term service rates. Therefore, when the server

state is (1,A), the server should be required to work on a task with probability one,

in order to increase the long- term service rates.

Define Φ† to be set of policies that have at most m− 1 randomizations. To be

more specifically,

Φ†
def
=

{
φ ∈ Φ++

R |
∑
s∈S

(
I

{
m∑
i=1

φ(s,A)i < 1

}
+

m∑
i=1

I {φ(s,A)i > 0} − 1

)
≤ m− 1

}
,

where we call the number of randomizations at each state y to be the number of

possible actions chosen by φ minus one and the number of randomization for the

policy is the sum of the number at each state.

Lemma A.8. We have ν∗(Φ++
R) = ν∗(Φ†).

Proof. Recall that, for every φ in Φ++
R , the corresponding Y is a unichain, i.e., a

finite-state Markov chain with a single recurrent communication class and, possibly,

transient states. Therefore, the optimization problem (A.14) gives rise to a unichain

MDP problem. Since there is only m− 1 constraints in (A.14), Theorem 4.4 of [89]

tells us that there exists an optimal policy with at most m− 1 randomization.

Denote by ψi,τ , i ∈ {1, . . . ,m} and τ ∈ S+ def
= S ∪ ns + 1, a threshold policy on

activity state with threshold τ which only chooses type i tasks when available. In

other words,

178

ψi,τ (s,A) =

ei if s < τ,

0 otherwise.

Hence, when the server is available to take on a new task, ψi,τ asks the server to

service a type i task only if the action- dependent state is less than τ .

Finally, we define Φ‡ to be the subset of policies in Φ† of the following forms:

suppose τ
def
= (τ1, . . . , τm) ∈ (S+)m, γ = (γ1, . . . , γm−1) ∈ [0, 1]m−1, and ξ : T → T

is a one-to-one function such that τξ(1) ≥ . . . ≥ τξ(m), we shall define a sequence of

policies ζ
(τ ,γ,ξ)
` from ` = m to ` = 1.

ζ(τ ,γ,ξ)
m (s, w) = ψξ(m),τξ(m)(s, w)

ζ
(τ ,γ,ξ)
` (s, w)

=

(1− γ`)ζ(τ ,γ,ξ)

`+1 (s, w) + γ`eξ(`) if s = τξ(`) − 1, w = A

ζ
(τ ,γ,ξ)
`+1 (s, w) otherwise.

ζ
(τ ,γ,ξ)
1 (s, w)

=

(1− γ1)ζ

(τ ,γ,ξ)
2 (s, w) + γ1eξ(1) if s = τξ(1) − 1, w = A

ζ
(τ ,γ,ξ)
2 (s, w) otherwise.

179

Notice that all ζ are in Φ† and the set of ζ
(τ ,γ,ξ)
1 is what we call Φ‡. The intuition

behind this build process is to first have a threshold policy on type ξ(m) (the type

with lowest τ) tasks. Then, choose the state with s = τξ(m−1) and w = A to

randomize between working on type ξ(m − 1) tasks or adopted the original policy.

Keep doing this m−1 times and we have a policy in Φ‡. Clearly, these policies have

at most m− 1 randomization and belong to Φ†.

Lemma A.9. ν∗(Φ‡) = ν∗(Φ†)

Proof. In order to prove the lemma, we show that, for a feasible policy φ in Φ† which

(a) satisfies the constraint νφi ≥ λi for i from 2 to m and (b) achieves positive νφ1 ,

we can find a policy φ′ in Φ‡ with (i) the identical stationary PMF as φ and (ii) the

same scheduling decision at all states in the unique positive recurrent communicating

class.

Choose a feasible policy φ in Φ†. Note that T (φ) ≥ 1 because φ ∈ Φ++
R . We

denote the unique positive recurrent communicating class is Yφ ∈ Y where s ≥ T (φ).

Since φ in Φ†, we have,

∑
s≥T (φ)

(
I

{∑
i∈T

φ(s,A)i < 1

}
+
∑
i∈T

I {φ(s,A)i > 0} − 1

)
≤ m− 1. (A.15)

From the definition of T ,
∑

i∈T φ(s,A)i < 1 for all s > T (φ). Thus, we rewrite

(A.15) into,

∑
s≥T (φ)

(∑
i∈T

I {φ(s,A)i > 0}
)
≤ m. (A.16)

180

Moreover, for every i ∈ T, it is clear that there must exist a state in Yφ with

the form (s,A) such that φ(s,A)i > 0. Otherwise, νφi = 0. Together with (A.16)

tells us that, for every i ∈ T, there is exactly one state with s ≥ T (φ) such that

φ(s,A)i > 0.

With the observations, we let our τi to be the state s where φ(s,A)i > 0 plus

1,

τi = {s ∈ S | s ≥ T (φ), φ(s,A)i > 0}+ 1.

We find one ξ function such that τξ(1) ≥ . . . ≥ τξ(m), and define γ,

γm−1 =
φ(τξ(m−1) − 1,A)ξ(m−1)

1−
∑m−2

j=1 φ(τξ(m−1) − 1,A)ξ(j)

γ` =
φ(τξ(`) − 1,A)ξ(`)

1−
∑`−1

j=1 φ(τξ(`) − 1,A)ξ(j)

γ1 = φ(τξ(1) − 1,A)ξ(1)

We plug the (τ ,γ, ξ) back to our iterative definition for ζ
(τ ,γ,ξ)
1 and finish the

proof with following Lemma.

Lemma A.10. ζ
(τ ,γ,ξ)
1 and φ are identical for every state with s ≥ T (φ). There-

fore, both policies have exactly the same stationary PMF and the same scheduling

decision at all states in the unique positive recurrent communicating class.

Proof. Please see Section A.2.1 for a proof.

181

Let us consider the policies in ζ for some given (τ ,γ, ξ). We rewrite each γ`

as

γ` =
α` · πψ

ξ(`),τξ(`)
(τξ(`) − 1,A)

α` · πψ
ξ(`),τξ(`)

(τξ(`) − 1,A) + (1− α`) · πζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)

(A.17)

for some α` ∈ [0, 1] and ` ∈ {1, . . . ,m− 1}. Note that, for every γ` ∈ [0, 1], we can

find an appropriate α` that satisfies (A.17) because πψ
ξ(`),τξ(`)

(τξ(`)−1,A) > 0 for all

`. By solving the balance equations, we get the following stationary PMF:

Lemma A.11. (Distribution Split)

πζ
(τ ,γ,ξ)
1 (y)

= α1π
ψ
ξ(1),τξ(1)

(y) +
m−1∑
`=2

α`

`−1∏
j=1

(1− αj)πψ
ξ(`),τξ(`)

(y) +
m−1∏
j=1

(1− αj)πψ
ξ(m),τξ(m)

(y).

Proof. A proof is provided in Section A.2.2

For notational convenience, we define

β1
def
= α1, β`

def
= α`

`−1∏
j=1

(1− αj), βm
def
=

m−1∏
j=1

(1− αj).

Clearly, the sum of all β equals to one by an simple observation that
∑m

j=` βj =∏`−1
j=1(1− αj). By the similar approach, we have the following Lemma.

182

Lemma A.12.

ν
ζ
(τ ,γ,ξ)
1

ξ(`) = β`ν
ψ
ξ(`),τξ(`)

ξ(`) ,

for all ` from 1 to m.

Proof. A proof is provided in Section A.2.3.

Before we proof our final result, we re-index β into β′ such that β′i = βξ−1(i).

Notice that ξ is an one-to-one function and is invertible. The Lemma A.12 can be

rewritten into

ν
ζ
(τ ,γ,ξ)
1
i = β′iν

ψi,τi
i ,

for all i from 1 to m. Considering our objective which is the long-term service rate

of type 1 task, by the fact that sum of all β equals one,

ν
ζ
(τ ,γ,ξ)
1

1 = β′1ν
ψ1,τ1

1 =

(
1−

m∑
i=2

β′
)
νψ

1,τ1

1 .

In order to upper bound ν
ζ
(τ ,γ,ξ)
1

1 , we shall upper bound νψ
1,τ1

1 and lower bound

each β′. The previous step tells us that νψ
1,τ1

1 ≤ ν∗1 since ν∗1 is the maximum long-

term departure rate for single type of queue. Moreover, with the constraints in the

optimization problem that ν
ζ
(τ ,γ,ξ)
1
i ≥ λi for all i ∈ {2, . . . ,m}, Lemma A.12 tells us

183

that,

λi ≤ ν
ζ
(τ ,γ,ξ)
1
i = β′iν

ψi,τi
i ≤ β′iν

∗
i , β′i ≥

λi
ν∗i
,

Combining all the observations, we have,

ν
ζ
(τ ,γ,ξ)
1

1 =

(
1−

m∑
i=2

β′
)
νψ

1,τ1

1 ≤
(

1−
m∑
i=2

λi
ν∗i

)
ν∗1.

A.2.1 A Proof of Lemma A.10

We shall show that ζ
(τ ,γ,ξ)
1 (s,A) =

∑
j:τj=s

φ(s,A)jej for every s ≥ T (φ). It is

clear from the definition that ζ
(τ ,γ,ξ)
1 (s,A) is non-zero if and only if s equals to some

τi− 1. Thus, it is sufficient to show that ζ
(τ ,γ,ξ)
1 (τi− 1,A) =

∑
j:τj=τi

φ(τi− 1,A)jej

for all i.

Case 1: Suppose τi is distinct such that there is no other τj that has the same value

as τi and ξ(m) = i, we know from the constraint of ξ that τξ(m−1) > τξ(m) and

ζ
(τ ,γ,ξ)
1 (τi − 1,A) = ζ

(τ ,γ,ξ)
1 (τξ(m) − 1,A)

= ψξ(m),τξ(m)(τξ(m) − 1,A)

= φ(τξ(m)− 1,A)ξ(m)eξ(m) = φ(τi − 1,A)iei,

Suppose ξ(`) = i, we know from the constraint of ξ that τξ(`−1) > τξ(`) > τξ(`+1)

184

and

ζ
(τ ,γ,ξ)
1 (τi − 1,A) = ζ

(τ ,γ,ξ)
1 (τξ(`) − 1,A)

= ζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)

= (1− γ`)(((((
((((

(
ζ

(τ ,γ,ξ)
`+1 (τξ(`) − 1,A) + γ`eξ(`)

=
φ(τξ(`) − 1,A)ξ(`)

1−
((((

(((
((((

(∑`−1
j=1 φ(τξ(`) − 1,A)ξ(j)

eξ(`) = φ(τi − 1,A)iei,

where ζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A) equals to zeros since all (τξ(`+1), . . . , τξ(m)) is less than

τξ(`). φ(τξ(`) − 1,A)ξ(j) equals to zero for all j from 1 to `− 1 since τξ(j) > τξ(`).

Case 2: Suppose there exist n duplication of τi, without loss of generality, we can

assume ξ(`) = i and τξ(`−1) > τξ(`) = τξ(`+1) = . . . = τξ(`+n) > τξ(`+n+1).

185

ζ
(τ ,γ,ξ)
1 (τi − 1,A)

= ζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)

= γ`eξ(`) + (1− γ`)ζ(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)

= φ(τξ(`) − 1,A)ξ(`)eξ(`)

+

(
1− φ(τξ(`) − 1,A)ξ(`)

)(
γ`+1eξ(`+1) + (1− γ`+1)ζ

(τ ,γ,ξ)
`+2 (τξ(`) − 1,A)

)
= φ(τξ(`) − 1,A)ξ(`)eξ(`)

+
���

���
���

���
�(

1− φ(τξ(`) − 1,A)ξ(`)

)
φ(τξ(`) − 1,A)ξ(`+1)

((((
(((

((((
(((

1−
∑`

j=1 φ(τξ(`) − 1,A)ξ(j)

eξ(`+1)

+

(
1−

`+1∑
j=`

φ(τξ(`) − 1,A)ξ(j)

)
ζ

(τ ,γ,ξ)
`+2 (τξ(`) − 1,A)

=
`+n−1∑
j=`

φ(τξ(`) − 1,A)ξ(j)eξ(j)

+

(
1−

`+n−1∑
j=`

φ(τξ(`) − 1,A)ξ(j)

)
ζ

(τ ,γ,ξ)
`+n (τξ(`) − 1,A),

(A.18)

where the cancel out is because φ(τξ(`) − 1,A)ξ(j) = 0 for j from 1 to ` − 1. Now,

consider two cases where `+ n = m and `+ n < m. If `+ n = m,

186

(A.18) =
m−1∑
j=`

φ(τξ(`) − 1,A)ξ(j)eξ(j)

+

(
1−

m−1∑
j=`

φ(τξ(`) − 1,A)ξ(j)

)(
ψξ(m),τξ(m)(τξ(`) − 1,A)

)

=
m∑
j=`

φ(τξ(`) − 1,A)ξ(j)eξ(j),

where the last equality is from the facts that T (φ) = τξ(m) − 1 = τξ(`) − 1 and∑m
j=` φ(T (φ),A)ξ(j) = 1. If `+ n < m,

(A.18) =
`+n−1∑
j=`

φ(τξ(`) − 1,A)ξ(j)eξ(j)

+

(
1−

`+n−1∑
j=`

φ(τξ(`) − 1,A)ξ(j)

)(
γ`+neξ(`+n) + (1− γ`+n)((((

((((
((

ζ
(τ ,γ,ξ)
`+n+1 (τξ(`) − 1,A)

)

=
`+n∑
j=`

φ(τξ(`) − 1,A)ξ(j)eξ(j),

where ζ
(τ ,γ,ξ)
`+n+1 (τξ(`) − 1,A) equals to zeros since all (τξ(`+n+1), . . . , τξ(m)) is less than

τξ(`).

A.2.2 A Proof of Lemma A.11

Notice that it is sufficient to show that

πζ
(τ ,γ,ξ)
` (y) = α`π

ψ
ξ(`),τξ(`)

(y) + (1− α`)πζ
(τ ,γ,ξ)
`+1 (y)

187

and the rest follow from the induction from ` equals m− 1 to 1.

Recap

ζ
(τ ,γ,ξ)
` (s, w)

=

(1− γ`)ζ(τ ,γ,ξ)

`+1 (s, w) + γ`eξ(`) if s = τξ(`) − 1, w = A

ζ
(τ ,γ,ξ)
`+1 (s, w) otherwise.

γ` =
α` · πψ

ξ(`),τξ(`)
(τξ(`) − 1,A)

α` · πψ
ξ(`),τξ(`)

(τξ(`) − 1,A) + (1− α`) · πζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)

•We shall show that

πζ
(τ ,γ,ξ)
` (y) = α`π

ψ
ξ(`),τξ(`)

(y) + (1− α`)πζ
(τ ,γ,ξ)
`+1 (y)

satisfies the balance equation of ζ
(τ ,γ,ξ)
` ,

πζ
(τ ,γ,ξ)
` (y) =

∑
y′∈Y

πζ
(τ ,γ,ξ)
` (y′) P

ζ
(τ ,γ,ξ)
`

y′,y for all y ∈ Y. (A.19)

Utilize the balance equations of ζ
(τ ,γ,ξ)
`+1 and ψξ(`),τξ(`) ,

πζ
(τ ,γ,ξ)
`+1 (y) =

∑
y′∈Y

πζ
(τ ,γ,ξ)
`+1 (y′) P

ζ
(τ ,γ,ξ)
`+1

y′,y for all y ∈ Y, (A.20)

188

πψ
ξ(`),τξ(`)

(y) =
∑
y′∈Y

πψ
ξ(`),τξ(`)

(y′) P
ψ
ξ(`),τξ(`)

y′,y for all y ∈ Y. (A.21)

Proof. • Left-hand side of (A.19):

πζ
(τ ,γ,ξ)
` (y) = α`π

ψ
ξ(`),τξ(`)

(y) + (1− α`)πζ
(τ ,γ,ξ)
`+1 (y)

• Right-hand side of (A.19):

∑
y′∈Y

πζ
(τ ,γ,ξ)
` (y′) P

ζ
(τ ,γ,ξ)
`

y′,y

= πζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)P

ζ
(τ ,γ,ξ)
`

(τξ(`)−1,A),(y) +
∑

y′∈Y\(τξ(`)−1,A)

πζ
(τ ,γ,ξ)
` (y′) P

ζ
(τ ,γ,ξ)
`

y′,y

= (1− α`)πζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)P

ζ
(τ ,γ,ξ)
`+1

(τξ(`)−1,A),(y) + α`π
ψ
ξ(`),τξ(`)

(τξ(`) − 1,A)P
ψ
ξ(`),τξ(`)

(τξ(`)−1,A),(y)

+
∑

y′∈Y\(τξ(`)−1,A)

(
α`π

ψ
ξ(`),τξ(`)

(y′)P
ψ
ξ(`),τξ(`)

y′,y + (1− α`)πζ
(τ ,γ,ξ)
`+1 (y′)P

ζ
(τ ,γ,ξ)
`+1

y′,y

)
by (A.22) and (A.23)

= α`π
ψ
ξ(`),τξ(`)

(y) + (1− α`)πζ
(τ ,γ,ξ)
`+1 (y) by (A.20) and (A.21).

189

πζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)P

ζ
(τ ,γ,ξ)
`

(τξ(`)−1,A),(y)

=

(
α`π

ψ
ξ(`),τξ(`)

(τξ(`) − 1,A) + (1− α`)πζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)

)
×
(

(1− γ`)P
ζ
(τ ,γ,ξ)
`+1

(τξ(`)−1,A),(y) + γ`P
ψ
ξ(`),τξ(`)

(τξ(`)−1,A),(y)

)
= (1− α`)πζ

(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)P

ζ
(τ ,γ,ξ)
`+1

(τξ(`)−1,A),(y) + α`π
ψ
ξ(`),τξ(`)

(τξ(`) − 1,A)P
ψ
ξ(`),τξ(`)

(τξ(`)−1,A),(y)

(A.22)

∑
y′∈Y\(τξ(`)−1,A)

πζ
(τ ,γ,ξ)
` (y′) P

ζ
(τ ,γ,ξ)
`

y′,y

=
∑

y′∈Y\(τξ(`)−1,A)

(
α`π

ψ
ξ(`),τξ(`)

(y′) + (1− α`)πζ
(τ ,γ,ξ)
`+1 (y′)

)
P
ζ
(τ ,γ,ξ)
`

y′,y

=
∑

y′∈Y\(τξ(`)−1,A)

(
α`π

ψ
ξ(`),τξ(`)

(y′)P
ψ
ξ(`),τξ(`)

y′,y + (1− α`)πζ
(τ ,γ,ξ)
`+1 (y′)P

ζ
(τ ,γ,ξ)
`+1

y′,y

)
(A.23)

The last equality is from the fact that P
ζ
(τ ,γ,ξ)
`

y′,y = P
ψ
ξ(`),τξ(`)

y′,y for all y′ ∈ Y : s′ ≥ τξ(`)

such that πψ
ξ(`),τξ(`)

(y′) > 0, and P
ζ
(τ ,γ,ξ)
`

y′,y = P
ζ
(τ ,γ,ξ)
`+1

y′,y for all y′ ∈ Y \ (τξ(`)− 1,A).

190

A.2.3 A Proof of Lemma A.12

Notice that it is sufficient to show that, for all `, `+ > `, and `− < `,

ν
ζ
(τ ,γ,ξ)
`

ξ(`−) = 0, (A.24a)

ν
ζ
(τ ,γ,ξ)
`

ξ(`) = α`ν
ψ
ξ(`),τξ(`)

ξ(`) , (A.24b)

ν
ζ
(τ ,γ,ξ)
`

ξ(`+) = (1− α`)ν
ζ
(τ ,γ,ξ)
`+1

ξ(`+) , (A.24c)

and the rest follow from the induction from ` equals m− 1 to 1.

Case (A.24a):

This is obvious because ζ
(τ ,γ,ξ)
` does not choose to work on any type ξ(`−)

tasks when the server is available (w = A). The long-term service rate of type ξ(`−)

tasks equals zero.

Case (A.24b):

First, we identified that ζ
(τ ,γ,ξ)
` choose to work on type ξ(`) task with positive

probability if and only if y = (τξ(`) − 1,A) or y ∈ Y : w = Bξ(`)

ν
ζ
(τ ,γ,ξ)
`

ξ(`) =
∑
y∈Y

µ(s, ξ(`))ζ
(τ ,γ,ξ)
` (y)ξ(`)π

ζ
(τ ,γ,ξ)
` (y)

= µ(τξ(`) − 1, ξ(`))ζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)ξ(`)π

ζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)

+
∑

y∈Y:w=Bξ(`)

µ(s, ξ(`))ζ
(τ ,γ,ξ)
` (y)ξ(`)π

ζ
(τ ,γ,ξ)
` (y) (A.25)

We apply the definition of ζ
(τ ,γ,ξ)
` and the distribution split in the previous

191

section to the first-term on the RHS of (A.25),

µ(τξ(`) − 1, ξ(`))ζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)ξ(`)π

ζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)

= µ(τξ(`) − 1, ξ(`))

·
(
(1− γ`)(((((

((((
(((

ζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)ξ(`) + γ`

)
·
(
α`π

ψ
ξ(`),τξ(`)

(τξ(`) − 1, ξ(`)) + (1− α`)πζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1, ξ(`))

)
= µ(τξ(`) − 1, ξ(`))

·
(

α` · πψ
ξ(`),τξ(`)

(τξ(`) − 1,A)

α` · πψ
ξ(`),τξ(`)

(τξ(`) − 1,A) + (1− α`) · πζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)

)
·
(
α`π

ψ
ξ(`),τξ(`)

(τξ(`) − 1, ξ(`)) + (1− α`)πζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1, ξ(`))

)
= α` · µ(τξ(`) − 1, ξ(`))πψ

ξ(`),τξ(`)
(τξ(`) − 1,A).

We proceed with the second-term on the RHS of (A.25) and use the distribu-

tion split.

∑
y∈Y:w=Bξ(`)

µ(s, ξ(`))ζ
(τ ,γ,ξ)
` (y)ξ(`)π

ζ
(τ ,γ,ξ)
` (y)

=
∑

y∈Y:w=Bξ(`)

µ(s, ξ(`)) · 1 ·
(
α`π

ψ
ξ(`),τξ(`)

(y) + (1− α`)����
��

πζ
(τ ,γ,ξ)
`+1 (y)

)
= α` ·

∑
y∈Y:w=Bξ(`)

µ(s, ξ(`))πψ
ξ(`),τξ(`)

(y),

where πζ
(τ ,γ,ξ)
`+1 (y) = 0 for all y ∈ Y : w = Bξ(`) because the policy ζ

(τ ,γ,ξ)
`+1 never

choose to work on type ξ(`) tasks when server is available. Together with (A.25),

192

we have

ν
ζ
(τ ,γ,ξ)
`

ξ(`) = α` · µ(τξ(`) − 1, ξ(`))πψ
ξ(`),τξ(`)

(τξ(`) − 1,A)

+α` ·
∑

y∈Y:w=Bξ(`)

µ(s, ξ(`))πψ
ξ(`),τξ(`)

(y)

= α` ·
∑
y∈Y

µ(s, ξ(`))ψξ(`),τξ(`)(y)ξ(`)π
ψ
ξ(`),τξ(`)

(y)

= α`ν
ψ
ξ(`),τξ(`)

ξ(`) .

Case (A.24c): First, we use the definition of the long-term service rate.

ν
ζ
(τ ,γ,ξ)
`

ξ(`+) =
∑
y∈Y

µ(s, ξ(`+))ζ
(τ ,γ,ξ)
` (y)ξ(`+)π

ζ
(τ ,γ,ξ)
` (y)

= µ(τξ(`) − 1, ξ(`+))ζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)ξ(`+)π

ζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)

+
∑

y∈Y:y 6=(τξ(`)−1,A)

µ(s, ξ(`+))ζ
(τ ,γ,ξ)
` (y)ξ(`+)π

ζ
(τ ,γ,ξ)
` (y). (A.26)

We apply the definition of ζ
(τ ,γ,ξ)
` and the distribution split in the previous section

193

to the first-term on the RHS of (A.26),

µ(τξ(`) − 1, ξ(`+))ζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)ξ(`+)π

ζ
(τ ,γ,ξ)
` (τξ(`) − 1,A)

= µ(τξ(`) − 1, ξ(`+))

·
(
(1− γ`)ζ(τ ,γ,ξ)

`+1 (τξ(`) − 1,A)ξ(`+)

)
·
(
α`π

ψ
ξ(`),τξ(`)

(τξ(`) − 1, ξ(`)) + (1− α`)πζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1, ξ(`))

)
= µ(τξ(`) − 1, ξ(`+))

·ζ(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)ξ(`+)

·
(

(1− α`) · πζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)

α` · πψ
ξ(`),τξ(`)

(τξ(`) − 1,A) + (1− α`) · πζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)

)
·
(
α`π

ψ
ξ(`),τξ(`)

(τξ(`) − 1, ξ(`)) + (1− α`)πζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1, ξ(`))

)
= (1− α`)µ(τξ(`) − 1, ξ(`+))ζ

(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)ξ(`+)π

ζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A).

We proceed with the second-term on the RHS of (A.26) and use the distribu-

tion split and the definition of ζ.

∑
y∈Y:y 6=(τξ(`)−1,A)

µ(s, ξ(`+))ζ
(τ ,γ,ξ)
` (y)ξ(`+)π

ζ
(τ ,γ,ξ)
` (y)

=
∑

y∈Y:y 6=(τξ(`)−1,A)

µ(s, ξ(`+))ζ
(τ ,γ,ξ)
`+1 (y)ξ(`+)

(
α`π

ψ
ξ(`),τξ(`)

(y) + (1− α`)πζ
(τ ,γ,ξ)
`+1 (y)

)
= (1− α`)

∑
y∈Y:y 6=(τξ(`)−1,A)

µ(s, ξ(`+))ζ
(τ ,γ,ξ)
`+1 (y)ξ(`+)π

ζ
(τ ,γ,ξ)
`+1 (y),

where the last equality comes from the fact that ζ
(τ ,γ,ξ)
`+1 (y)ξ(`+) · πψ

ξ(`),τξ(`)
(y) equals

to zero for all y ∈ Y : y 6= (τξ(`) − 1,A). This is because ζ
(τ ,γ,ξ)
`+1 (y)ξ(`+) is non-

194

zero only when w = Bξ(`+) or y = (τξ(`+) − 1,A). Without loss of generality, we

can assume τξ(`+) < τξ(`) since y = (τξ(`) − 1,A) is excluded from the set. Then,

it is clear that πψ
ξ(`),τξ(`)

(y) equals zero for all these y such that ζ
(τ ,γ,ξ)
`+1 (y)ξ(`+) is

non-zero. Together with (A.26), we have,

ν
ζ
(τ ,γ,ξ)
`

ξ(`+) = (1− α`)µ(τξ(`) − 1, ξ(`+))ζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)ξ(`+)π

ζ
(τ ,γ,ξ)
`+1 (τξ(`) − 1,A)

+(1− α`)
∑

y∈Y:y 6=(τξ(`)−1,A)

µ(s, ξ(`+))ζ
(τ ,γ,ξ)
`+1 (y)ξ(`+)π

ζ
(τ ,γ,ξ)
`+1 (y)

= (1− α`)ν
ζ
(τ ,γ,ξ)
`+1

ξ(`+) .

A.3 Lemma 5.4 for m types of tasks

Without loss of generality, we assume τ ∗1 ≥ . . . ≥ τ ∗m. We use the Proposi-

tion 4.1 in the previous Chapter again for building the Lyapunov function. In the re-

mainder of the proof, let f be a potential-like function that satisfies (4.12) in Propo-

sition 4.1 with the policy ϕτ
∗
m and the following reward function r : Y× ΦR → IR:

r(y, φ) =
∑
i∈T

µ(s, i)φ(y)i
ν∗i

, (y, φ) ∈ Y× ΦR (A.27)

Define a function V : X→ IR+, where

V (x) = a

(∑
i∈T

qi
ν∗i

+ f(y)

)
, (A.28)

195

where

a =
T

(1−
∑

i∈T
λi
ν∗i

)
, (A.29)

and T is some positive constant to be explained shortly (Lemma A.13 below). Sim-

ilarly, let g : X→ IN with

g(x) =

T if qm = 0 and V (x) > N,

1 otherwise,

(A.30)

where

N = 2a
m(m+ 1)T

mini∈T(ν∗i)
+ a · fmax, (A.31)

and fmax
def
= maxy∈Y f(y). Finally, define

M = 1 + a

(∑
i∈T

λi
ν∗i

+ fmax

)
. (A.32)

Lemma A.13. Suppose X is the CMC under the policy θopt. Then, there exists

finite T such that the functions V and g in (A.28) and (A.30), respectively,

196

satisfy

E[V (Xk+g(x)) | Xk = x]− V (x)

≤−g(x) +M · I(V (x) ≤ N)

=

−g(x) +M if V (x) ≤ N

−g(x) otherwise

(A.33)

for every x ∈ X.

Proof. For notational simplicity, we omit the dependence on the policy θopt and de-

note the conditional expected value of the difference in potential function, E
[
f(Y

φ

k+1)−

f(Y
φ

k) | Y
φ

k = y
]
, by ∆f(Y

φ
; y). In addition, rφavg denotes the average reward in

Y
φ

when there is a unique PRCC under a policy φ in ΦR.

Consider the CMC Y
m,ψτ

∗
m

equipped with the policy ψm,τ
∗
m . Assume that f

is a potential function that satisfies the equality in (4.12) of Proposition 4.1 for

Y
ψm,τ

∗
m

, with the reward function in (A.27). Define Yτ∗i
def
= {y ∈ Y | s ≥ τ ∗i − 1}.

Lemma A.14. For every y ∈ Yτ∗i and i ∈ {2, . . . ,m}, we have

r(y, ψi,τ
∗
i)−∆f(Y

ψi,τ
∗
i

; y) = 1. (A.34)

Proof. We omit the proof because it is identical with the proof of Lemma 5.11 in

Section 5.5.9 for a proof.

First, we define σ` for ` = 1, . . . , L to be all distinct optimal threshold values τ ∗i

for queues (WLOG assume σ` is an increasing sequence). Consider CMC Xθopt

197

that starts at some state x0 with qm = 0, all the type i queues with τ ∗i < σ`

for a ` = {1, . . . , L} satisfy maxi:τ∗i =σ`′
qi ≤ 2`′T ′ for all 1 ≤ `′ < ` and , and

all queues with τ ∗j equals σ` satisfy maxj:τ∗j =σ` qj > 2`T ′ where T ′ is a positive

integer. Then, for all k ∈ {0, 1, . . . , T ′ − 1}, (i) maxj:τ∗j =σ` Q
j
k ≥ maxi:τ∗i <σ` Q

i
k

and (ii) maxj:τ∗j =σ` Q
j
k > 0. These imply that, when Yk = (σ` − 1,A) for some

k ∈ {0, 1, . . . , T ′ − 1}, θopt(Yk,Qk) ∈ {ej : τj = σ`} and a new type j task is

scheduled for service.

Let us take a look at the server state Yk for k ∈ {0, 1, . . . , T ′ − 1}. First, if

Yk† ∈ Yσ` for some k† ∈ {0, 1, . . . , T ′−2}, then Yk ∈ Yσ` for all k ∈ {k†, . . . , T ′−1}

under θopt. Second, if qi ≥ 2ns for a i such that τ ∗i = σ`, starting with {Y0 = y} for

some y ∈ YCσ`
def
= Y \ Yσ` = {(s, w) ∈ Y | s < σ` − 1}, the server state Yk will reach

a state in Yσ` with positive probability after at most 2ns epochs. The probability of

reaching a state in Yσ` after at most 2ns is lower bounded by a δ > 0. Consequently,

for all y ∈ YCσ` and qi ≥ 2ns,

Pr
(
Yk′ ∈ Yσ` for some k′ = k + 1, . . . , k + 2ns

| Yk = y,Qk = q
)
≥ δ.

Using this bound, we can upper bound the probability that the server state

does not belong to Yσ` at epoch 2jns for all j ≥ 1 (for qi ≥ 2jns) as follows.

Pr
(
Y2jns ∈ YCσ` | X0 = (y,q)

)
≤ (1− δ) Pr

(
Y2(j−1)ns ∈ YCσ` | X0 = (y,q)

)
198

Thus, the probability Pr(Y2jns ∈ YCσ` | Y0 ∈ YCσ` ,Q0 = q) can be made arbitrarily

small by choosing sufficiently large j. In addition, it is clear Pr(Yk ∈ YCσ` | Y0 ∈

YCσ` ,Q0 = q) is non-increasing in k, assuming that queue 1 remains non-empty.

Next, we study the following T ′-step drift.

E

[∑
i∈T

Qi
T ′ −Qi

0

ν∗i
+ f(YT ′)− f(Y0)

∣∣∣ X0 = x0

]

=
T ′−1∑
k=0

E

[∑
i∈T

Qi
k+1 −Qi

k

ν∗i
+ f(Yk+1)− f(Yk)

∣∣∣ X0 = x0

]
(A.35)

From the Lindley’s equation in (3.1),

E
[
Qi
k+1 −Qi

k | X0 = x0

]
= E

[
Bi
k +Di

k | X0 = x0

]
= λi + E

[
µ(Sk, i)I(Ak =Wi) | X0 = x0

]
= λi + E

[
µ(Sk, i)θ

opt
i (Xk) | X0 = x0

]
. (A.36)

Substituting (A.36) in (A.35), we obtain

(A.35) =
T ′−1∑
k=0

(∑
i∈T

λi
ν∗i

+ E

[
−
∑
i∈T

µ(Sk, i)θ
opt(Xk)i
ν∗i

+f(Yk+1)− f(Yk)
∣∣∣ X0 = x0

])
. (A.37)

We upper bound the conditional expected value using the sum two terms by condi-

199

tioning on whether or not Yk belongs to Yσ` .

E

[
−
∑
i∈T

µ(Sk, i)θ
opt(Xk)i
ν∗i

+ f(Yk+1)− f(Yk)
∣∣∣ X0 = x0

]

≤ Pr(Yk ∈ Yσ` | X0 = x0) E

[
−
∑
i∈T

µ(Sk, i)θ
opt(Xk)i
ν∗i

(A.38)

+f(Yk+1)− f(Yk)
∣∣∣ Yk ∈ Yσ` ,X0 = x0

]
+ Pr(Yk ∈ YCσ`

∣∣ X0 = x0)fmax.

By further conditioning on the server state at epoch k,

(A.38) = Pr(Yk ∈ Yσ` | X0 = x0)

×
∑

y∈Yσ`

Pr(Yk = y | Yk ∈ Yσ` ,X0 = x0)

×E
[
−
∑
i∈T

µ(Sk, i)θ
opt(Xk)i
ν∗i

+ f(Yk+1)− f(Yk)∣∣∣ Yk = y,X0 = x0

]
(A.39)

+ Pr(Yk ∈ YCσ` | X0 = x0)fmax.

We shall prove that the expected value term for all y ∈ Yσ` equals −1. Recall

that we use ψi,τ to represent the threshold policy on type i task with threshold value

τ as defined in (A.15).

Case 1: y : w 6= A

In this case, θopt(Xk) = ψm,τ
∗
m(y). Therefore, the evolution of server state is

200

exactly the same as Y
ψm,τ

∗
m

, and

E
[
−
∑
j∈T

µ(Sk, j)θ
opt(Xk)j
ν∗j

+ f(Yk+1)− f(Yk) | X0 = x0,Yk = y

]
= E

[
−
∑
j∈T

µ(s, j)ψm,τ
∗
m(y)j

ν∗j
+ f(Y

ψm,τ
∗
m

k+1)− f(Y
ψm,τ

∗
m

k) | Yψm,τ
∗
m

k = y

]
=−r(y, ψm,τ∗m) + ∆f(Y

ψm,τ
∗
m

; y)

=−1, by definition of f and Proposition 4.1.

Case 2: y : w = A, s 6= σ`′ − 1 ∀`′ ≥ `

In this case, the policy choose to rest and θopt(Xk) = ψm,τ
∗
m(y). The proof is

exactly the same as previous step.

Case 3: y : w = A, s = σ`′ − 1 `′ ≥ `

In this case, θopt can either choose to rest (same as Case 2) or work on queue

with threshold value σ`′ . For the later case, (WLOG assume work on a type i task

with τ ∗i = σ`′), the evolution of server state is exactly the same as Y
ψi,τ

∗
i

Then, from

Lemma A.14,

E
[
−
∑
j∈T

µ(Sk, j)θ
opt(Xk)j
ν∗j

+ f(Yk+1)− f(Yk) | X0 = x0,Yk = y

]
= E

[
−
∑
j∈T

µ(τ ∗i − 1, j)ψi,τ
∗
i (y)j

ν∗j
+ f(Y

ψi,τ
∗
i

k+1)− f(Y
ψi,τ

∗
i

k) | Yψi,τ
∗
i

k = y

]
=−r(y, ψi,τ∗i) + ∆f(Y

ψi,τ
∗
i

; y)

=−1.

201

We plug the result back in (A.39) to get

(A.39) =−Pr(Yk ∈ Yσ` | X0 = x0)

+P (Yk ∈ YCσ` | X0 = x0)fmax. (A.40)

From (A.35) - (A.40), we have

E

[∑
i∈T

Qi
T ′ −Qi

0

ν∗i
+ f(YT ′)− f(Y0)

∣∣∣ X0 = x0

]

≤
T ′−1∑
k=0

(∑
i∈T

λi
ν∗i
− Pr(Yk ∈ Yσ` | X0 = x0)

+ Pr(Yk ∈ YCσ` | X0 = x0)fmax

)
. (A.41)

Recall
∑

i∈T(λi/ν
∗
i) < 1. In addition, Pr(Yk ∈ Yσ` | X0 = x0) converges to

1 (and, hence, Pr(Yk ∈ YCσ` | X0 = x0) goes to 0) as k → ∞ (as long as T ′ grows

accordingly) from our earlier discussion. Thus, for all sufficiently large T ′, the sum

of the terms inside the parentheses is negative. This implies that, as T ′ → ∞,

(5.40) goes to −∞. As a result, for every ` ∈ {1, . . . , L}, we can find a finite T`

such that, for every state x`0 with qm = 0, all the type i queues with τ ∗i < σ` satisfy

maxi:τ∗i =σ`′
qi ≤ 2`′T` for all 1 ≤ `′ < ` and , and all queues with τ ∗j equals σ` satisfy

maxj:τ∗j =σ` qj > 2`T` such that

E

[∑
i∈T

Qi
K −Qi

0

ν∗i
+ f(YK)− f(Y0) | X0 = x`0

]

≤
∑
i∈T

λi
ν∗i
− 1 for all K ≥ T`. (A.42)

202

We are ready to prove that the functions V and g satisfy (A.33) when the

parameter T is chosen to be max` T`. To this end, we consider following cases

separately.

• For x : V (x) ≤ N : From the given function g in (A.30), when V (x) ≤ N ,

g(x) = 1. Thus, from the assumed Lyapunov function in (A.28),

E[V (Xk+g(x)) | Xk = x]− V (x)

= E[V (Xk+1) | Xk = x]− V (x)

≤ a

(∑
i∈T

λi
ν∗i

+ fmax

)

= −1 +

[
1 + a

(∑
i∈T

λi
ν∗i

+ fmax

)]
= −g(X) +M.

• For x : V (x) > N, qm > 0

In this set of states, θopt(x) either follows ψm,τ
∗
m(y) or it can also work on a

type i (i 6= m) task if s = τ ∗i − 1. Furthermore, g(x) = 1 because qm > 0.

Case θopt(x) = ψm,τ
∗
m(y)

E[V (Xk+g(x)) | Xk = x]− V (x)

= E[V (Xk+1) | Xk = x]− V (x)

= a

(∑
j∈T

λj
ν∗j
−
∑
j∈T

µ(s, j)ψ
m,τ∗m
j (y)

ν∗j
+ ∆f(Y; y)

)
= a

(∑
j∈T

λj
ν∗j
− r(y, ψm,τ∗m) + ∆f(Y; y)

)
(A.43)

203

where the last equality follows directly from the assumed reward function in (A.27).

Note that the sum of the last two terms inside the parentheses is equal to −1 from

definition of f and Proposition 4.1. Using (A.29), we obtain

(A.43) = a

(∑
i∈T

λi
ν∗i
− 1

)
= −T ≤ −1 = −g(x).

Case θ∗(x) = ψi,τ
∗
i (y) and s = τ ∗i − 1

E[V (Xk+g(x)) | Xk = x]− V (x)

= E[V (Xk+1) | Xk = x]− V (x)

= a

(∑
j∈T

λj
ν∗j
−
∑
j∈T

µ(s, j)ψ
i,τ∗i
j (y)

ν∗j
+ ∆f(Y; y)

)
= a

(∑
j∈T

λj
ν∗j
− r(y, ψi,τ∗i) + ∆f(Y; y)

)
(A.44)

From Lemma A.14, the sum of the last two terms inside the parentheses is equal to

−1. Therefore,

(A.44) = a

(∑
i∈T

λi
ν∗i
− 1

)
= −T ≤ −1 = −g(x).

• For x : V (x) > N , qm = 0 Recall that we assume we have L distinct τ ∗i . Also,

σ` for ` = 1, . . . , L denote all distinct τ ∗i for queues (WLOG assume σ` is increasing

sequence). We partition the case where x : V (x) > N , qm = 0 into L cases. First,

for ` ∈ {1, . . . , L− 1},

204

Case `: For x : V (x) > N , qm = 0, maxj:τ∗j =σ`′
qj ≤ 2`′T for all 1 ≤ `′ < `, and

maxj:τ∗j =σ` qj > 2`T : From the given function g in (A.30), g(x) = T . From the

inequality in (A.42),

E[V (Xk+g(x)) | Xk = x]− V (x)

= E[V (Xk+T) | Xk = x]− V (x)

= aE

[∑
i∈T

Qi
T+k −Qi

k

ν∗i
+ f(YT+k)− f(y) | Xk = x

]

≤ a
(∑

i∈T

λi
ν∗i
− 1

)
= −T ≤ −g(x).

Case L: For x : V (x) > N , qm = 0, maxj:τ∗j =σ`′
qj ≤ 2`′T for all `′ < L

First, from the fact that V (x) > N , we know

a

(∑
j∈T

qj
ν∗j

+ f(y)

)
> 2a

m(m+ 1)T

mini ν
∗
i

+ amax
y∈Y

f(y),

∑
j∈T

qj
ν∗j

> 2
m(m+ 1)T

mini ν
∗
i

,∑
j∈T

qj > 2m(m+ 1)T,

205

We expand the summation by considering their τ ∗j ,

∑
j:τ∗j <σL

qj +
∑

j:τ∗j =σL

qj > 2m(m+ 1)T,

∑
j:τ∗j =σL

qj > 2m(m+ 1)T −
∑

j:τ∗j <σL

qj,

∑
j:τ∗j =σL

qj > 2m2T,

because maximum of qj with τ ∗j < σL is less than 2LT ≤ 2mT by the assumption

of this case. Therefore,

max
j:τ∗j =σL

qj > 2mT ≥ 2LT

Finally, From the given function g in (A.30), g(x) = T . From the inequality in

(A.42),

E[V (Xk+g(x)) | Xk = x]− V (x)

= E[V (Xk+T) | Xk = x]− V (x)

= aE

[∑
i∈T

Qi
T+k −Qi

k

ν∗i
+ f(YT+k)− f(y) | Xk = x

]

≤ a
(∑

i∈T

λi
ν∗i
− 1

)
= −T ≤ −g(x).

206

Bibliography

[1] Mark A. Staal. Stress, cognition and human performance: A literature review
and conceptual framework. Technical Report NASA/TM-2004-212824, NASA,
August 2004.

[2] Mary L Cummings and Carl E Nehme. Modeling the impact of workload in
network centric supervisory control settings. In 2nd Annual Sustaining Perfor-
mance Under Stress Symposium, 2009.

[3] Jeffrey R Peters, Vaibhav Srivastava, Grant S Taylor, Amit Surana, Miguel P
Eckstein, and Francesco Bullo. Human supervisory control of robotic teams:
integrating cognitive modeling with engineering design. IEEE Control Systems
Magazine, 35(6):57–80, 2015.

[4] HPGa Van Ooijen and JWM Bertrand. The effects of a simple arrival rate
control policy on throughput and work-in-process in production systems with
workload dependent processing rates. International Journal of Production Eco-
nomics, 85(1):61–68, 2003.

[5] Karl Halvor Teigen. Yerkes-dodson: A law for all seasons. Theory & Psychology,
4(4):525–547, 1994.

[6] Robert M Yerkes and John D Dodson. The relation of strength of stimulus to
rapidity of habit-formation. Journal of comparative neurology, 18(5):459–482,
1908.

[7] David M Diamond, Adam M Campbell, Collin R Park, Joshua Halonen, and
Phillip R Zoladz. The temporal dynamics model of emotional memory process-
ing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb
and traumatic memories, and the yerkes-dodson law. Neural plasticity, 2007,
2007.

[8] Sujesha Sudevalayam and Purushottam Kulkarni. Energy harvesting sensor
nodes: Survey and implications. IEEE Communications Surveys & Tutorials,
13(3):443–461, 2010.

207

[9] BE Lewandowski, KL Kilgore, and KJ Gustafson. Feasibility of an implantable,
stimulated muscle-powered piezoelectric generator as a power source for im-
planted medical devices. In Energy harvesting technologies, pages 389–404.
Springer, 2009.

[10] Shashank Priya and Daniel J Inman. Energy harvesting technologies, volume 21.
Springer, 2009.

[11] Clarence M Shepherd. Design of primary and secondary cells ii. an equation de-
scribing battery discharge. Journal of the Electrochemical Society, 112(7):657–
664, 1965.

[12] Min Chen and Gabriel A Rincon-Mora. Accurate electrical battery model ca-
pable of predicting runtime and iv performance. IEEE transactions on energy
conversion, 21(2):504–511, 2006.

[13] Abdulrahman Baknina, Omur Ozel, and Sennur Ulukus. Explicit and implicit
temperature constraints in energy harvesting communications. IEEE Global
Communications Conference, 2017.

[14] Tobias Koch, Amos Lapidoth, and Paul P Sotiriadis. Channels that heat up.
arXiv preprint arXiv:0805.4583, 2008.

[15] Domenic Forte and Ankur Srivastava. Thermal-aware sensor scheduling for dis-
tributed estimation. ACM Transactions on Sensor Networks (TOSN), 9(4):53,
2013.

[16] Ravishankar Rao and Sarma Vrudhula. Efficient online computation of core
speeds to maximize the throughput of thermally constrained multi-core pro-
cessors. In Proceedings of the 2008 IEEE/ACM International Conference on
Computer-Aided Design, pages 537–542. IEEE Press, 2008.

[17] James R Jackson. Jobshop-like queueing systems. Management science,
10(1):131–142, 1963.

[18] Micha Yadin and Pinhas Naor. Queueing systems with a removable service
station. Journal of the Operational Research Society, 14(4):393–405, 1963.

[19] Carl M Harris. Queues with state-dependent stochastic service rates. Operations
Research, 15(1):117–130, 1967.

[20] Jewgeni H Dshalalow. Queueing systems with state dependent parameters.
Frontiers in queueing: models and applications in science and engineering,
pages 61–116, 1997.

[21] Phillip V Asaro, Lawrence M Lewis, and Stuart B Boxerman. The impact
of input and output factors on emergency department throughput. Academic
Emergency Medicine, 14(3):235–242, 2007.

208

[22] Mohammad Delasay, Armann Ingolfsson, Bora Kolfal, and Kenneth Schultz.
Load effect on service times. European Journal of Operational Research, 2018.

[23] René Bekker and Sem C Borst. Optimal admission control in queues with
workload-dependent service rates. Probability in the Engineering and Informa-
tional Sciences, 20(4):543–570, 2006.

[24] Rajeev Agrawal, Anand Bedekar, Richard J La, and Vijay Subramanian. Class
and channel condition based weighted proportional fair scheduler. In Teletraffic
Science and Engineering, volume 4, pages 553–567. Elsevier, 2001.

[25] Rajeev Agrawal and Vijay Subramanian. Optimality of certain channel aware
scheduling policies. In Proceedings of the Annual Allerton Conference on Com-
munication Control and Computing, volume 40, pages 1533–1542. The Univer-
sity; 1998, 2002.

[26] I-Hong Hou, PR Kumar, et al. Utility-optimal scheduling in time-varying wire-
less networks with delay constraints. In Proceedings of the eleventh ACM inter-
national symposium on Mobile ad hoc networking and computing, pages 31–40.
ACM, 2010.

[27] Peijuan Liu, Randall A Berry, and Michael L Honig. A fluid analysis of a utility-
based wireless scheduling policy. IEEE Transactions on Information Theory,
52(7):2872–2889, 2006.

[28] Alexander L Stolyar et al. Maxweight scheduling in a generalized switch: State
space collapse and workload minimization in heavy traffic. The Annals of Ap-
plied Probability, 14(1):1–53, 2004.

[29] Leandros Tassiulas and Anthony Ephremides. Stability properties of con-
strained queueing systems and scheduling policies for maximum throughput in
multihop radio networks. In 29th IEEE Conference on Decision and Control,
pages 2130–2132. IEEE, 1990.

[30] Matthew Andrews, Krishnan Kumaran, Kavita Ramanan, Alexander Stolyar,
Rajiv Vijayakumar, and Phil Whiting. Scheduling in a queuing system with
asynchronously varying service rates. Probability in the Engineering and Infor-
mational Sciences, 18(02):191–217, 2004.

[31] Sanjay Shakkottai and Alexander L Stolyar. Scheduling for multiple flows shar-
ing a time-varying channel: The exponential rule. Translations of the American
Mathematical Society-Series 2, 207:185–202, 2002.

[32] Vinod Sharma, Utpal Mukherji, Vinay Joseph, and Shrey Gupta. Optimal
energy management policies for energy harvesting sensor nodes. IEEE Trans-
actions on Wireless Communications, 9(4), 2010.

209

[33] Omur Ozel, Kaya Tutuncuoglu, Jing Yang, Sennur Ulukus, and Aylin Yener.
Transmission with energy harvesting nodes in fading wireless channels: Optimal
policies. IEEE Journal on Selected Areas in Communications, 29(8):1732–1743,
2011.

[34] Chin Keong Ho and Rui Zhang. Optimal energy allocation for wireless com-
munications with energy harvesting constraints. IEEE Transactions on Signal
Processing, 60(9):4808–4818, 2012.

[35] Sennur Ulukus, Aylin Yener, Elza Erkip, Osvaldo Simeone, Michele Zorzi,
Pulkit Grover, and Kaibin Huang. Energy harvesting wireless communications:
A review of recent advances. IEEE Journal on Selected Areas in Communica-
tions, 33(3):360–381, 2015.

[36] Jing Yang and Sennur Ulukus. Optimal packet scheduling in an energy harvest-
ing communication system. IEEE Transactions on Communications, 60(1):220–
230, 2012.

[37] Gianluca Borghini, Laura Astolfi, Giovanni Vecchiato, Donatella Mattia, and
Fabio Babiloni. Measuring neurophysiological signals in aircraft pilots and car
drivers for the assessment of mental workload, fatigue and drowsiness. Neuro-
science & Biobehavioral Reviews, 44:58–75, 2014.

[38] Leslie C Edie. Traffic delays at toll booths. Journal of the operations research
society of America, 2(2):107–138, 1954.

[39] Masha Shunko, Julie Niederhoff, and Yaroslav Rosokha. Humans are not ma-
chines: The behavioral impact of queueing design on service time. Management
Science, 64(1):453–473, 2017.

[40] Vaibhav Srivastava, Amit Surana, and Francesco Bullo. Adaptive attention
allocation in human-robot systems. In American Control Conference (ACC),
2012, pages 2767–2774. IEEE, 2012.

[41] Vaibhav Srivastava, Ruggero Carli, Cédric Langbort, and Francesco Bullo. Task
release control for decision making queues. In American Control Conference
(ACC), 2011, pages 1855–1860. IEEE, 2011.

[42] Jeffrey R Peters and Luca F Bertuccelli. Robust scheduling strategies for col-
laborative human-uav missions. In American Control Conference (ACC), 2016,
pages 5255–5262. IEEE, 2016.

[43] Ketan Savla and Emilio Frazzoli. Maximally stabilizing task release control
policy for a dynamical queue. IEEE Transactions on Automatic Control,
55(11):2655–2660, 2010.

[44] Ketan Savla and Emilio Frazzoli. A dynamical queue approach to intelligent
task management for human operators. Proceedings of the IEEE, 100(3):672–
686, 2012.

210

[45] Ramakrishna Akella and P Kumar. Optimal control of production rate in a
failure prone manufacturing system. IEEE Transactions on Automatic control,
31(2):116–126, 1986.

[46] Stanley B Gershwin and SB Gershwin. Manufacturing systems engineering.
1994.

[47] Jian-Qiang Hu and Dong Xiang. Structural properties of optimal production
controllers in failure-prone manufacturing systems. IEEE Transactions on Au-
tomatic Control, 39(3):640–643, 1994.

[48] George Liberopoulos and Michael Caramanis. Production control of manufac-
turing systems with production rate-dependent failure rates. IEEE transactions
on automatic control, 39(4):889–895, 1994.

[49] EK Boukas and ZK Liu. Production and maintenance control for manufacturing
systems. IEEE Transactions on Automatic Control, 46(9):1455–1460, 2001.

[50] Seyed MR Iravani and Izak Duenyas. Integrated maintenance and production
control of a deteriorating production system. Iie Transactions, 34(5):423–435,
2002.

[51] Thomas W Sloan and J George Shanthikumar. Combined production and main-
tenance scheduling for a multiple-product, single-machine production system.
Production and Operations Management, 9(4):379–399, 2000.

[52] Thomas W Sloan and J George Shanthikumar. Using in-line equipment con-
dition and yield information for maintenance scheduling and dispatching in
semiconductor wafer fabs. IIE transactions, 34(2):191–209, 2002.

[53] Xiaodong Yao, Xiaolan Xie, Michael C Fu, and Steven I Marcus. Optimal
joint preventive maintenance and production policies. Naval Research Logistics
(NRL), 52(7):668–681, 2005.

[54] Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla,
Michael I Jordan, and Shankar S Sastry. Kalman filtering with intermittent
observations. IEEE transactions on Automatic Control, 49(9):1453–1464, 2004.

[55] Christoforos N Hadjicostis and Rouzbeh Touri. Feedback control utilizing
packet dropping network links. In Proceedings of the 41st IEEE Conference
on Decision and Control, 2002., volume 2, pages 1205–1210. IEEE, 2002.

[56] Yonggang Xu and Joao P Hespanha. Estimation under uncontrolled and con-
trolled communications in networked control systems. In Proceedings of the
44th IEEE Conference on Decision and Control, pages 842–847. IEEE, 2005.

[57] Vijay Gupta and Nuno C Martins. On stability in the presence of analog
erasure channel between the controller and the actuator. IEEE Transactions
on Automatic Control, 55(1):175–179, 2009.

211

[58] Orhan C Imer, Serdar Yüksel, and Tamer Başar. Optimal control of lti systems
over unreliable communication links. Automatica, 42(9):1429–1439, 2006.

[59] Luca Schenato, Bruno Sinopoli, Massimo Franceschetti, Kameshwar Poolla,
and S Shankar Sastry. Foundations of control and estimation over lossy net-
works. Proceedings of the IEEE, 95(1):163–187, 2007.

[60] Vijay Gupta, Nuno C Martins, and John S Baras. Optimal output feedback
control using two remote sensors over erasure channels. IEEE Transactions on
Automatic Control, 54(7):1463–1476, 2009.

[61] Nicola Elia. Remote stabilization over fading channels. Systems & Control
Letters, 54(3):237–249, 2005.

[62] Xiaofeng Wang and Michael D Lemmon. Event-triggering in distributed net-
worked control systems. IEEE Transactions on Automatic Control, 56(3):586–
601, 2010.

[63] Vijay Gupta, Babak Hassibi, and Richard M Murray. Optimal lqg control
across packet-dropping links. Systems & Control Letters, 56(6):439–446, 2007.

[64] S Craig Smith and Peter Seiler. Estimation with lossy measurements: jump
estimators for jump systems. IEEE Transactions on Automatic Control,
48(12):2163–2171, 2003.

[65] Pete Seiler and Raja Sengupta. An h/sub/spl infin//approach to networked
control. IEEE Transactions on Automatic Control, 50(3):356–364, 2005.

[66] Joo P Hespanha, Payam Naghshtabrizi, and Yonggang Xu. A survey of recent
results in networked control systems. Proceedings of the IEEE, 95(1):138–162,
2007.

[67] Michael Athans. On the determination of optimal costly measurement strategies
for linear stochastic systems. Automatica, 8(4):397–412, 1972.

[68] Manohar Shamaiah, Siddhartha Banerjee, and Haris Vikalo. Greedy sensor
selection: Leveraging submodularity. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 2572–2577. IEEE, 2010.

[69] Wei Wu and Ari Arapostathis. Optimal sensor querying: General markovian
and lqg models with controlled observations. IEEE Transactions on Automatic
Control, 53(6):1392–1405, 2008.

[70] Gabriel M Lipsa and Nuno C Martins. Optimal state estimation in the presence
of communication costs and packet drops. In Communication, Control, and
Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pages
160–169. IEEE, 2009.

212

[71] Shinkyu Park and Nuno C Martins. Individually optimal solutions to a remote
state estimation problem with communication costs. In 53rd IEEE Conference
on Decision and Control, pages 4014–4019. IEEE, 2014.

[72] Orhan C Imer and Tamer Basar. Optimal estimation with limited measure-
ments. In Proceedings of the 44th IEEE Conference on Decision and Control,
pages 1029–1034. IEEE, 2005.

[73] Adam Molin and Sandra Hirche. On the optimality of certainty equivalence
for event-triggered control systems. IEEE Transactions on Automatic Control,
58(2):470–474, 2012.

[74] David Ward and Nuno C Martins. Optimal remote estimation over use-
dependent packet-drop channels. IFAC-PapersOnLine, 49(22):127–132, 2016.

[75] Alex S Leong, Daniel E Quevedo, and Subhrakanti Dey. Optimal Control of
Energy Resources for State Estimation Over Wireless Channels. Springer, 2018.

[76] Ashutosh Nayyar, Tamer Başar, Demosthenis Teneketzis, and Venugopal V
Veeravalli. Optimal strategies for communication and remote estimation
with an energy harvesting sensor. IEEE Transactions on Automatic Control,
58(9):2246–2260, 2013.

[77] Yuzhe Li, Fan Zhang, Daniel E Quevedo, Vincent Lau, Subhrakanti Dey, and
Ling Shi. Power control of an energy harvesting sensor for remote state esti-
mation. IEEE Transactions on Automatic Control, 62(1):277–290, 2017.

[78] Jiarao Huang, Dawei Shi, and Tongwen Chen. Event-triggered state estimation
with an energy harvesting sensor. IEEE Transactions on Automatic Control,
2017.

[79] Sebastian Trimpe and Raffaello D’Andrea. Event-based state estimation
with variance-based triggering. IEEE Transactions on Automatic Control,
59(12):3266–3281, 2014.

[80] Mojtaba Nourian, Alex S Leong, and Subhrakanti Dey. Optimal energy allo-
cation for kalman filtering over packet dropping links with imperfect acknowl-
edgments and energy harvesting constraints. IEEE Transactions on Automatic
Control, 59(8):2128–2143, 2014.

[81] Steffi Knorn and Subhrakanti Dey. Optimal energy allocation for linear control
with packet loss under energy harvesting constraints. Automatica, 77:259–267,
2017.

[82] Pavankumar Tallapragada, Massimo Franceschetti, and Jorge Cortés. Event-
triggered second-moment stabilization of linear systems under packet drops.
IEEE Transactions on Automatic Control, 2017.

213

[83] David V Lindley. The theory of queues with a single server. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 48, pages 277–289.
Cambridge University Press, 1952.

[84] Geoffrey Grimmett and David Stirzaker. Probability and Random Processes,
third ed. Oxford, 2001.

[85] Martin L Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[86] Parsiad Azimzadeh and Peter A Forsyth. Weakly chained matrices, policy iter-
ation, and impulse control. SIAM Journal on Numerical Analysis, 54(3):1341–
1364, 2016.

[87] Frederic G Foster et al. On the stochastic matrices associated with certain
queuing processes. The Annals of Mathematical Statistics, 24(3):355–360, 1953.

[88] Varun Jog, Richard J. La, and Nuno C. Martins. Channels, learning, queueing
and remote estimation systems with a utilization-dependent component. ArXiv,
2019.

[89] Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press,
1999.

[90] Geoffrey Grimmett and David Stirzaker. Probability and Random Processes,
third ed. Oxford, 2001.

[91] Eugene Seneta. Non-negative matrices and Markov chains. Springer Science &
Business Media, 2006.

[92] Serguei Foss and Takis Konstantopoulos. An overview of some stochastic stabil-
ity methods (¡ special issue¿ network design, control and optimization). Journal
of the Operations Research Society of Japan, 47(4):275–303, 2004.

[93] Michael Lin, Richard J La, and Nuno C Martins. Remote state estimation
across an action-dependent packet-drop link. In 2018 IEEE Conference on
Decision and Control (CDC), pages 2828–2835. IEEE, 2018.

[94] Yonggang Xu and Joao P. Hespanha. Estimation under uncontrolled and con-
trolled communications in networked control systems. In Proceedings of the
IEEE Conference on Decision and Control, pages 842–847, December 2005.

[95] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university
press, 1990.

[96] Oswaldo LV Costa and Marcelo D Fragoso. Stability results for discrete-time
linear systems with markovian jumping parameters. Journal of mathematical
analysis and applications, 179(1):154–178, 1993.

214

[97] Alan J Laub. Matrix analysis for scientists and engineers, volume 91. Siam,
2005.

215

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Thesis Outline

	Literature review
	Literature Review for The Queuing Model
	Literature Review for The Remote Estimation Model

	Queuing Servers Subject to Activity Server Performance
	Introduction
	Main problems
	Stability
	Utilization Rate

	Stochastic Discrete-Time Framework
	Timing and Notation
	Probabilistic Model
	Evolution of the system state under a stationary policy

	The Server State Process: An Auxiliary CMC over-line Y
	Stationary policies of over-line Y
	Stationary PMFs of overline Y sub phi
	Policies Mapping Relation between X and Y

	Summary

	Queuing Server with One Type of Tasks
	Stability Results
	Proofs of Stability Results
	Necessity
	Sufficiency

	Utilization Rate: Definition and Infimum
	Service and Utilization Rate of oveline Y
	Utilization rate of overline Y and computation via LP
	LP-based policy sets

	Utilization Rate Results
	Continuity and monotonicity properties of -LP
	Key Distributional Convergence Results

	Simulation Result
	Summary

	Queuing Server with Multiple Types of Tasks
	Stability Results for Two Types
	Proofs of Stability Results
	Necessity
	Sufficiency

	Stability Results for Multiple Types
	Summary
	Proofs of Lemmas
	A Proof of Lemma 5.1
	A Proof of Lemma 5.2
	A Proof of Lemma 5.3
	A Proof of Lemma 5.7
	A Proof of Lemma 5.9
	Derivation of Stationary PMF in
	A Proof of Lemma 5.10
	A Proof of Lemma 5.4
	A Proof of Lemma 5.11

	Remote State Estimation Across An Activity Packet-Drop Link
	Introduction
	Activity State: Discussion and Motivation
	Objectives and Outline of Main Results

	Framework and Problem Formulation
	Activity packet-drop link
	Estimator, Estimation Error and System State
	Overall System State and CMC Y
	Transmission Policies, Stability and Problem Statement

	Second Moment Stability Results
	Proofs of Main Results
	A Proof of Theorem 6.1
	A Proof of Theorem 6.2
	A Proof of Lemma 6.1

	Summary

	Conclusion and Future Directions
	Appendix
	A Proof of Theorem 4.4: Structure of Optimal Utilization Rate
	Derivation of Stationary PMF in

	Lemma 5.3 for m types of tasks
	A Proof of Lemma A.10
	A Proof of Lemma A.11
	A Proof of Lemma A.12

	Lemma 5.4 for m types of tasks

	Bibliography

