
ABSTRACT

Title of Thesis: ESTIMATION AND CONTROL OF
AUTONOMOUS RACING DRONE

Swapneel Naphade
Master of Science, 2020

Thesis Directed by: Professor Huan Xu
Institute for Systems Research

Autonomous Drone Racing (ADR) is an annual competition, organized at

the International Conference on Intelligent Robots and Systems (IROS), in which

research groups all over the world participate to demonstrate the state-of-the-art

technology in the autonomous aerial robotics field. This work describes the sys-

tem development of the Autonomous Racing Drone System for the IROS ADR

competition. A gate detection based, computationally light-weight visual-inertial

localization (VIL) system is developed. We show that the proposed VIL system has

a significantly lower memory usage than the state-of-the-art Monocular VIO sys-

tems which makes it suitable to run on resource constraint hardware. A non-linear

model predictive control (NMPC) strategy is implemented for high-speed way-point

navigation of the racing drone. We show that the NMPC strategy provides better

trajectory tracking performance as compared with the traditional PD controller.

The VIL system proposed in this work was utilized in the autonomous drone racing

system which won the second-place in the IROS ADR 2019, Macau competition.

ESTIMATION AND CONTROL OF
AUTONOMOUS RACING DRONE

by

Swapneel Naphade

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2020

Advisory Committee:
Professor Huan Xu, Chair
Professor Derek Paley
Professor John Baras

c© Copyright by
Swapneel Naphade

2020

Dedication

This thesis is dedicated to my parents who have been a constant source of

inspiration and support.

ii

Acknowledgments

The success of this work is owed to the hard work and determination of many

individuals who have assisted me directly or indirectly over the period of the 2 years

of my Masters’ studies.

First of all, I would like to extend my gratitude towards my advisor, Dr. Huan

Xu, who provided me the wonderful opportunity to work on a novel project and

provided valuable guidance and assistance in successfully accomplishing the project.

I would like to thank all the University of Maryland Autonomous Drone Racing

(UMD ADR) team members: Derek Thompson, Sharon Shallom and Micah Moten,

without whom it would have been impossible to accomplish this project in the short

period. Especially Derek, who worked alongside me for extended hours to make

sure the developed system is effective and reliable. I would also like to give special

thanks to Vincenz Frenzel. His work for the IROS ADR 2018 competition laid the

foundations of this work. I also extend my gratitude towards the team members

from the Autonomous Micro Aerial Vehicle team at UMD: Ian Moss, Qingwen Wei

and Zachery Lacey, who shared their valuable experience on MAVs with me.

I express my gratitude towards the Maryland Robotics Center for financially

supporting this project. I would also like to thank the IROS ADR 2019 organizing

committee for organizing such a novel competition which brings autonomous UAV

researchers all around the world together under one roof to share their knowledge

and experiences.

I would like to thank Dr. John MacCarthy, my previous academic program

iii

advisor, and all the ISR faculty members who taught me how to become a great

Systems Engineer.

Last but not the least, I would like to thank my parents and my family mem-

bers including my brother, cousins, aunts, uncles and grandparents who have always

supported me, put faith in me and encouraged me to excel in all my endeavors.

iv

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents v

List of Tables viii

List of Figures ix

List of Abbreviations xii

List of Notations xiv

1 Introduction 1

1.1 Motivation and Objective . 2

1.2 Background on Autonomous Drone Racing 5

1.3 Contributions of the Thesis . 7

1.4 Outline of the Thesis . 8

2 Autonomous Racing Drone System Design 10

2.1 System Description . 10

v

2.2 System Development Approach . 10

2.3 Stakeholder and System Requirements 11

2.3.1 Stakeholder Requirements . 11

2.3.2 System Requirements . 12

2.4 System Measures of Effectiveness and Key Performance Parameters . 13

2.5 System Level Block Definition Diagram 13

2.5.1 Hardware . 15

2.5.2 Software . 16

2.5.3 Environment . 17

2.5.4 User . 18

2.6 System Level Interface Block Definition Diagram 19

2.7 State Machine Diagram . 21

2.8 Element Level Activity Diagrams . 22

2.8.1 Gate Estimation Activity Diagram 23

2.8.2 Localization Activity Diagram 23

2.8.3 Mission Control Activity Diagram 25

2.8.4 Control Activity Diagram . 25

3 Visual Estimation and Localization of the Autonomous Racing Drone System 29

3.1 Overview of Visual Estimation module 29

3.2 Background in Monocular Visual Inertial Odometry 30

3.3 Visual Gate Detection and Measurement 31

3.4 Gate position estimation . 35

vi

3.4.1 Gate position dynamics . 35

3.4.2 Asynchronous Linear Time-Variant Kalman Filter 37

3.5 Localization . 40

4 Control of the Autonomous Racing Drone System 42

4.1 Overview of the Control System module 42

4.2 Background in Non-Linear Model Predictive Control of Quadcopters . 43

4.3 Attitude Control . 46

4.4 Position Control . 47

4.4.1 Model Development . 49

4.4.2 Formulation of Optimal Control Problem 51

5 Simulation Results and Discussion 53

5.1 Simulation Setup . 53

5.2 Gate Position Estimation Results . 54

5.3 Localization Results . 57

5.4 Control System Trajectory Tracking Results 61

6 Conclusion and Future Work 67

Bibliography 69

vii

List of Tables

2.1 ARDS MOEs and KPPs . 15

5.1 ARDS Simulation Parameters . 53

5.2 ARDS System Parameters . 56

viii

List of Figures

1.1 IROS ADR 2019 Gate Configuration, (1) Vertically Stacked Gate, (2)

Horizontally Stacked Gate . 3

1.2 IROS ADR 2019 Top View of the Arena 3

1.3 University of Maryland’s Autonomous Racing Drone 4

2.1 V-Developement Approach for ARDS System Developement 11

2.2 ARDS Block Definition Diagram . 14

2.3 IROS ADR 2019, Macau Drone Racing Arena 17

2.4 IROS ADR 2019, Macau Drone Racing Arena Gates (a) Vertically

Stacked Gate, (b) Horizontally Stacked Gate 17

2.5 RGB Illuminated Gates for IROS ADR 2019, Macau 18

2.6 ARDS Internal Block Definition Diagram 19

2.7 ARDS Interface Block Diagram . 20

2.8 ARDS State Machine Diagram . 22

2.9 ARDS Gate Estimation Activity Diagram 24

ix

2.10 ARDS Localization Activity Diagram 26

2.11 ARDS Mission Control Activity Diagram 27

2.12 ARDS Control System Activity Diagram 28

3.1 Visual-Inertial-Localization Block Diagram 29

3.2 Visual Gate Detection of ADR Gate, (a) RGB Image Captured by

Front Camera, (b) HSV Image, (c) Binary Mask Image, (d) Blurred

Mask Image, (e) Identified Contours, (f) Detected Gate 33

3.3 Gate Image Formation with Pinhole Camera Model 34

3.4 Inertial, Drone body and Gate Coordinate Frames with Position Vectors 35

3.5 Asynchronous Linear Time-Variant Kalman Filter 38

3.6 ARDS Localization . 41

4.1 Control System Block Diagram of ARDS 42

4.2 Propeller Configuration and Dimensions of the Drone 47

4.3 Model Predictive Control [1] . 48

5.1 ARDS Simulation in Gazebo . 54

5.2 Gate Position w.r.t. Drone (m) vs time (s) [4s to 90s] 55

5.3 Gate Position w.r.t. Drone (m) vs time (s) [4s to 20s] 55

5.4 Gate Position Estimation Variance (m2) vs time (s) 58

5.5 Gate Position Measurement and Estimation Error Probability Distri-

bution . 58

5.6 Estimated and Actual Trajectory of the Drone 59

x

5.7 Drone Position (m) vs time (s) . 60

5.8 Drone Position Estimation Error Histogram 60

5.9 Monocular VIO Systems’ Memory Usage Comparison 61

5.10 Circular Trajectory Tracking Performance 63

5.11 Drone Position (m) vs Time (s) . 64

5.12 Drone Velocity (m/s) vs Time (s) . 64

5.13 NMPC Command Inputs vs Time (s) 65

5.14 Position Tracking Error Probability Distribution 66

5.15 Velocity Tracking Error Probability Distribution 66

xi

List of Abbreviations

ADR Autonomous Drone Racing
ARDS Autonomous Racing Drone System
BDD Block Definition Diagram
CNN Convolution Neural Network
EKF Extended Kalman Filter
ESC Electronic Speed Controller
FPV First Person View
GCS Ground Control System
GPS Global Positioning System
HSV Hue-Saturation-Value
IBD Inteface Block Diagram
IBDD Internal Block Defnintion Diagram
IMU Inertial Measurement Unit
IROS International Conference on Intelligent Robots and Systems
ISR Insitute for Systems Research
LCM Life Cycle Model
LED Light Emitting Diode
LMPC Linear Model Predictive Control(ler)
LOS Line of Sight
LTV Linear Time Variant
KPP Key Performance Parameter
MAV Micro Aerial Vehicle
MBSE Model Based Systems Engineering
MPC Model Predictive Control(ler)
MSCKF Multi-State Constraint Kalman Filter
MOE Measure Of Effectiveness
NLopt Non-Linear Optmization
NMPC Non-Linear Model Predictive Control(ler)
OpenCV Open Computer Vision
PD Proportional - Derivative
PnP Perspective-n-Point
RMSE Root Mean Squared Error
SLAM Simultaneuos Localization And Mapping
SQP Sequential Quadratic Programming
SSD Single Shot Detector
SVO Semi-direct Visaul Odometry
UAV Unmanned Aerial Vehicle
UBLAS u Basic Linear Algebra Subprograms
UKF Unscented Kalman Filter

xii

VIL Visual Inertial Localization
VIO Visual Inertial Odometry
YOLO You Only Look Once

xiii

List of Notations

(ui, vi) Image Coordinates in pixels
R Rotation matrix ∈ SO(3)
(Xi, Yi, Zi) Gate Corner Coordinates in Camera Frame
rP/O Position vector of P w.r.t O 1

[IvP/O]B Velocity of point P w.r.t. O in Frame I
expressed in Frame B 1

Bd
dt

(rP/O) Time derivative of position vector in Frame B 1

IRD Orientation of Drone Body Frame w.r.t. Inertial
Frame in form of Rotation Matrix ∈ SO(3)

IωD Angular Velocity of Drone Body Frame w.r.t Inertial Frame
Ω Infinitesimal Rotation Matrix ∈ so(3)
E[•] Expected Value
φ Drone Body Roll angle (radians)
θ Drone Body Pitch angle (radians)
ψ Drone Body Yaw angle (radians)
M Moment (Nm)
T Thrust (N)
τ Specific Thrust (m/s2)
m Drone mass (kg)
r = [x y z]T Drone position
v = [vx vy vz]

T Drone velocity
Fd Induced drag force (N)
Fg Gravitational force (N)
g Gravitational acceleration (m/s2)
Qx NMPC state error penalties
Ru NMPC control action penalties
Px NMPC terminal state error penalties
Θmax Maximum allowed tilt angle (roll and pitch)
τmax Maximum allowed specific thrust

1Notation is based on book [2]

xiv

Chapter 1: Introduction

First Person View (FPV) Drone Racing has been becoming an increasingly

popular sport in recent years, worldwide. In these competitions, the racing drones

or quadcopters are equipped with a small FPV camera that relays the real-time

video feed to an FPV headset worn by the human pilot. The human pilot uses a

radio-controller to guide the drone through a racecourse, illuminated with LED light

strips and hoops. Human piloted drones in an FPV drone race can fly at speeds

up to 80 mph with an average speed of 30 mph. There has been a growing interest

in the robotics research community to develop autonomous aerial robots that are

capable of accomplishing the challenging task of drone racing.

With a vision to inspire the advancement of autonomous capabilities of ex-

isting drone technology, the Autonomous Drone Racing (ADR) competition was

first started in 2016 at the International Conference on Intelligent Robots and Sys-

tems (IROS) 2016 in Daejeon, Korea. Since then, the competition is being held

annually at every IROS conference. Subsequently, ADR competitions were held in

Vancouver, Canada in 2017; Madrid, Spain in 2018 and Macau, China in 2019. The

challenge in the competition is to develop an autonomous aerial robotic system,

capable of traversing a known drone racing course, without collisions, using only

1

onboard sensing and computing resources. The gate configurations in the compe-

tition change with time and the competing autonomous systems have to adapt to

them to successfully finish the race.

The competition rules for IROS ADR 2019 were quite simple. Each competing

team had 3 trials to go through the racecourse with 5 minutes per trial. In these

5 minutes, the racing-drone has to make as many laps as possible through the

racecourse and the team with the highest number of laps is declared the winner.

The drones were required to be fully autonomous, meaning no external piloting,

computing or sensing was allowed. The racecourse had two sets of gates; one stacked

horizontally and the other stacked vertically. These gates had LED lights attached

to them which were randomly illuminated. The autonomous system had to detect

which gate was illuminated and go through it. Figure 1.1 shows the gates and figure

1.2 shows the top view of the racing arena map. Figure 1.3 shows the autonomous

drone racing system developed by the team at the University of Maryland.

1.1 Motivation and Objective

Scientists and engineers have been trying to develop systems that exceed hu-

man cognitive capabilities to accomplish complex tasks for decades. From the Arti-

ficial Intelligence-powered Chess-playing computer, Deep Blue to the Deep Neural

Network powered AlphaGo playing the complex game of Go, these systems have

proven that they can beat humans in high cognitive tasks by a big margin. Re-

cently, there have been many developments in the autonomous vehicles field which

2

Figure 1.1: IROS ADR 2019 Gate Configuration, (1) Vertically Stacked Gate, (2)
Horizontally Stacked Gate

Figure 1.2: IROS ADR 2019 Top View of the Arena

3

Figure 1.3: University of Maryland’s Autonomous Racing Drone

are automating the highly complex task of driving for making road transport safer

and more efficient. With the autonomous drone racing challenges like IROS ADR

and AlphaPilot, there has been an emergence of a new interest group that wants to

make the difficult task of FPV drone racing, autonomous. The motivation to auto-

mate the highly involving task of FPV drone racing is not just limited to the notion

of beating a human but there is a deeper purpose of pushing the horizons of the

existing autonomous unmanned aerial vehicle (UAV) technology. Such autonomous

aerial systems can be employed in high-speed relief work during disasters or can be

employed in managing indoor warehouses with more efficiency and speed.

The objective of this thesis is to develop a fully autonomous, high speed,

aerial robotic system which can traverse through a moderately changing drone-

racing course, using only onboard sensing and computing resources. This will be

achieved by developing computationally light-weight vision, estimation and control

algorithms that can be implemented on inexpensive and light in weight computing

hardware onboard the autonomous drone.

4

1.2 Background on Autonomous Drone Racing

Since, the inception of IROS ADR competition in 2016, numerous develop-

ments have taken place in terms of vision, estimation, planning and control of au-

tonomous racing drones [3].

S. Jung et al. [4] were the first group to propose a Single Shot Detector (SSD),

which is a Convolution Neural Network (CNN), for gate detection in indoor envi-

ronments for ADR. They used an Nvidia TK1 as the computer vision hardware for

deep learning-based gate detection. The SSD is based on a neural network structure

similar to YOLO [5] algorithm and uses VGG-16 as a base network. The detection

with SSD is robust even in low lighting conditions however the detection frequency

is only 10 Hz which is very low for high-speed gate detection. S. Jung et al. also

developed a direct visual servoing method [6] for gate distance measurement and

UAV guidance. They used a Luenberger observer for acceleration estimation and a

combination of second-order filters and a complimentary filter for velocity estima-

tion. Using the integrated velocity estimates and visual servoing they were able to

get accurate position estimates of the racing drone. For gate measurement within 1

m distance of the gate they used a depth-based collision avoidance method in which

the gate distance is calculated using the heading of the drone and minimum depth

point of the gate in the image. Though this method gave accurate gate distance

measurements, it required the drone to spend more time near each gate making the

drone slower in the race. Improving upon their gate detection algorithm, S. Jung

et. al. [7] proposed ADRNet which is an AlexNet based neural network modified for

5

real-time gate detection. They were able to improve the detection rate at 30 Hz and

the detection accuracy of 85.2 %. For guidance and control of the quadrotor, they

used the Line of Sight (LOS) vector guidance method. While the LOS guidance

strategy works well even with moving gates, it requires the subsequent gates to be

always in sight for successful navigation through the racecourse.

Kaufmann et al. [8] applied a deep learning approach for combined percep-

tion and control of the racing drone. They used CNN to predict goal direction and

desired velocity from a single image from the front-facing camera. The network is

trained on a dataset [9] collected by following a minimum-snap trajectory [10] by

considering it to be the expert policy. The output of the network is normalized

desired velocity which is then scaled according to the desired aggressiveness of the

drone. The task completion performance of this system is significantly better than

the VIO baseline at lower speeds. Kaufmann et al. [11] developed a deep neural

network-based gate detection and measurement algorithm which outputs the rela-

tive distance and heading of gates in the drone body frame along with the variance

of a multivariate normal distribution of these estimates. Then an Extended Kalman

Filter was used to estimate the joint probability of the gate’s pose. D. Falanga et

al. [12] also introduced a perception aware model predictive controller which com-

putes control inputs to the drone by minimizing state, action as well as perception

objectives. The perception objective consists of a quadratic cost function containing

the distance and velocity of a projected point of interest on the image plane. This

system was the winning entry in the 2018 IROS ADR event.

S. Li et al. [13] developed a visual model predictive localization method for

6

localizing the racing drone with gate measurements on a 72 g racing drone platform.

They use a 4 degree of freedom model of drone dynamics in the XY plane to predict

the relative position of the gate in drone body frame and then localize the drone by

identifying the detected gate using a minimum distance gate-assignment method.

They showed that for low-frequency measurements (∼ 30 Hz) their RANSAC based

fitting approach outperforms the EKF based estimation as it is better at rejecting

outliers.

1.3 Contributions of the Thesis

The primary requirements of an autonomous racing drone are to have fast but

precise localization capability and low weight for achieving large acceleration with

low energy consumption. The existing Neural Networks based solutions for visual

gate detection for ADR are very robust to environmental noise but they are slow

(update frequency < 30 Hz) and require specialized GPU hardware for computation

which are expensive, heavy and have high energy usage. Also, many of them depend

on the assumption that a gate will always be visible for position estimation. Some

solutions include use of the state-of-the-art Visual-Inertial-Odometry (VIO) systems

which provide accurate pose estimation but require high processing and memory

resources which add to the overall weight and cost of the autonomous racing drone

platform. Hence, there is a need to develop a drone localization system that is faster

and lighter than the existing solutions but precise enough for successful racing drone

operations.

7

The main contribution of this thesis is the development of a visual gate

detection based localization system for racing drones called the Visual-Inertial-

Localization (VIL) system. The VIL system fuses information available from the

visual gate detection, optical flow sensor, IMU and known gate positions for the

localization of the racing drone. It utilizes a Linear Time-Variant Kalman Filter

which consists of asynchronously executed prediction and measurement steps. The

proposed system has significantly low memory usage than the existing localization

solutions for autonomous racing drones and has very high update frequency (up to

100 Hz).

The proposed VIL system has many applications outside autonomous drone

racing where the environment is known and fairly static. Any static indoor environ-

ment can be easily made navigable for autonomous drones by adding inexpensive

April tags in place of the racing gates. Such systems can be employed in efficient

high-speed warehouse management and material handling applications.

1.4 Outline of the Thesis

This thesis presents a Model-Based Systems Engineering (MBSE) approach

for autonomous aerial racing system design. Computationally light-weight vision,

estimation and control algorithms are developed for autonomous drone racing ap-

plications.

Chapter 1 of the thesis introduces the autonomous drone racing event and

highlights the motivation and objective of the thesis. The previous work related to

8

autonomous drone racing is also discussed in this chapter.

Chapter 2 describes the system design of the Autonomous Racing Drone Sys-

tem (ARDS). The system development approach is discussed in this chapter. The

stakeholder and system requirements are identified and the system architecture is

developed.

Chapter 3 describes the visual estimation sub-system of the ARDS. Visual

gate detection, gate position estimation and localization of the drone in the racing

arena map are discussed in this chapter.

Chapter 4 describes the control system design of the ARDS. The attitude,

position and mission control systems of the ARDS are discussed in this chapter. A

non-linear model predictive control (NMPC) strategy is presented for the position

control of the drone.

Chapter 5 presents the simulation results and discussion of the estimation and

control sub-systems of the ARDS. The gate position estimation and localization

modules are integrated and verified in a simulation environment. The NMPC strat-

egy is also compared with a PD controller for trajectory tracking performance in

simulation.

Chapter 6 concludes the thesis by summarizing the results and identifies a few

potential research opportunities for future developments.

9

Chapter 2: Autonomous Racing Drone System Design

2.1 System Description

The autonomous racing drone system (ARDS) is a quadcopter unmanned

aerial vehicle (UAV) that traverses a drone racing course autonomously; without

any operator piloting commands; at high speeds; and using only onboard sensor

systems in a GPS-denied environment. It utilizes a vision system to detect and es-

timate the relative position of the racecourse gates, localizes itself in a drone-racing

arena map and computes optimal control actions to follow a predetermined path

along the racecourse.

2.2 System Development Approach

A semi-formal, V-development Life Cycle Model (LCM) for system develop-

ment is followed for the ARDS development. Figure 2.1 describes the V-development

LCM. Model-Based System Engineering (MBSE) is used to develop the system ar-

chitecture in the preliminary design phase of the system development.

Initially, the stakeholder and system requirements are identified followed by the

preliminary design phase. In the preliminary design phase, the system architecture

10

Figure 2.1: V-Developement Approach for ARDS System Developement

is defined which includes system block definition diagram, system interface block

diagram and system state-machine diagram. These diagrams describe the system

composition, system interface data/control flow and system behavior respectively.

The subsequent chapters of this thesis present the critical design and verification

stages of the system development LCM.

2.3 Stakeholder and System Requirements

2.3.1 Stakeholder Requirements

The first phase of the system development process is identifying stakeholder

requirements. The primary stakeholders of the system are the University of Mary-

land’s Autonomous Drone Racing (ADR) team, the Maryland Robotics Center and

IROS ADR 2019 competition organizers and judges. The following stakeholder re-

11

quirements for the ARDS are directly derived from the IROS ADR 2019 competition

rules:

2.3.1.1. The system shall pass through the maximum number of gates in 5 minutes.

2.3.1.2. The system shall traverse the racecourse without collision with gates

2.3.1.3. The system shall traverse the racecourse without collision with arena nets.

2.3.1.4. The system shall use only onboard sensing devices.

2.3.1.5. The system shall use only onboard computing devices.

2.3.1.6. The system shall not receive any piloting inputs from any operators except for

the start and emergency stop commands.

2.3.1.7. The system shall pass only through illuminated gates.

2.3.2 System Requirements

The system requirements are high-level technical requirements that are derived

from the stakeholder requirements of the ARDS.

2.3.2.1. The system platform battery shall last for at least 5 minutes in one charge.

2.3.2.2. The system platform shall have a high thrust-to-weight ratio.

2.3.2.3. The system platform shall have dimensions less than the gate dimensions.

2.3.2.4. The system platform shall have sensors for orientation, position and velocity

estimation onboard.

12

2.3.2.5. The system platform shall have a computing unit onboard.

2.3.2.6. The system shall have high frames-per-second video capturing capability.

2.3.2.7. The system shall have high precision and accuracy gate position estimation.

2.3.2.8. The system shall have a high estimation update frequency.

2.3.2.9. The system shall be robust to intermittent and noisy visual measurements.

2.3.2.10. The system shall be robust in gate detection in complex background environ-

ments.

2.3.2.11. The system shall be able to perform controlled aggressive maneuvers.

2.3.2.12. The system shall have navigation capability in the absence of visual gate cues.

2.4 System Measures of Effectiveness and Key Performance Param-

eters

Based on the stakeholder and system requirements, a few Measures of Effec-

tiveness (MOE) and Key Performance Parameters (KPP) of the ARDS are identified

as shown in Table 2.1.

2.5 System Level Block Definition Diagram

Figure 2.2 shows the System Level Block Definition Diagram (BDD) of the

ARDS. The BDD describes the composition of the system and its components. The

ARDS consists of subsystems like Hardware, Software, Environment and the User.

13

Figure 2.2: ARDS Block Definition Diagram

14

MOE MOE Description Unit Expected
/KPP /KPP value

ID

KPP1 Flight time Average flight time of the min. > 7 min.
drone between battery charges.

KPP2 Drone Mass Mass of the drone. kg < 1 kg
KPP3 Dimensions Dimensions of the drone in m max(l, w, h)

terms of height, width and length. < 1.0 m
MOE1 Maximum Maximum Thrust produced N > 200 N

Thrust by the drone.
MOE2 Maximum Linear Maximum Linear Velocity m/s > 2 m/s

Velocity achieved by the drone.
MOE3 Estimation Frequency of drone position Hz > 30 Hz

rate estimation update.
MOE4 Estimation Accuracy of drone position m < 0.5 m

accuracy estimation in terms of
estimation bias.

MOE5 Estimation Precision of drone m < 0.5 m
precision position estimation in terms of

one standard deviation.
MOE6 Trajectory Accuracy of trajectory m < 0.25 m

Tracking tracking in terms of trajectory
Accuracy tracking error bias.

MOE7 Trajectory Precision of trajectory tracking m < 0.25 m
Tracking precision in terms of one standard deviation.

MOE8 Gate Detection Accuracy of Gate Detection - > 90 %
Accuracy in terms of percentage of

successful gate detections.

Table 2.1: ARDS MOEs and KPPs

2.5.1 Hardware

The hardware subsystem of the ARDS comprises the power system, sensors,

compute unit, flight controller, actuators, communication and chassis. The power

system of the ARDS consists of the battery, voltage regulation, power distribution

and electronic speed control (ESC) units. Inertial Measurement Unit, Optical Flow

15

sensor and Camera make the sensor suite of the ARDS. An onboard flight controller

is used for the low-level (rotational motion) estimation and control of the drone

while a compute unit is used for the high-level planning, estimation and control of

the drone.

2.5.2 Software

The software subsystem of the ARDS consists of software modules that per-

form visual estimation, localization, high-level mission control and position control.

The visual estimation module consists of the gate-detection algorithm, gate po-

sition measurement algorithm and gate position estimation algorithm. It consumes

the video stream data from the camera to detect and measure the relative position

of the largest visual gate in each image frame and then utilizes the drone velocity

estimates to make an optimal estimate of the relative gate position. The localiza-

tion module utilizes the estimated gate position, previous drone position estimate

and racing arena map information to localize the drone in the racing arena. The

Mission Control module manages the current reference waypoint, which is chased

by the drone. It also manages the autonomous/manual state of the system. Lastly,

the control module computes the optimal control action for the drone to reach the

reference waypoint.

16

Figure 2.3: IROS ADR 2019, Macau Drone Racing Arena

Figure 2.4: IROS ADR 2019, Macau Drone Racing Arena Gates (a) Vertically
Stacked Gate, (b) Horizontally Stacked Gate

2.5.3 Environment

The ARDS environment consists of drone racing gates, arena nets and ground

control station. The IROS ADR 2019, Macau arena is a 10m long, 3m high and

7m wide netted cage as shown in figure 2.3. There are two sets of LED illuminated

gates present in the arena as shown in figure 2.4. The gates are 1.5 m side square

gates stacked horizontally and vertically.

The gates are illuminated in random order when the drone makes a successful

17

Figure 2.5: RGB Illuminated Gates for IROS ADR 2019, Macau

pass through one gate. A gate pass is successful when the drone goes through an

illuminated gate and the entire drone body is out of the gate plane from the other

side.

The arena is inside a hall in a hotel hence there is no GPS signal available

for the drone for localization. Also, the lighting conditions are dimmed to facilitate

the detection of illuminated gates further. Figure 2.5 shows the illuminated gates

in three colors.

The ground control system (GCS) works as an interface for the operator to

send commands to the ARDS and receive mission-critical data for analysis. The

ground control station for the ARDS 2019 was developed by Vincenz Frenzel [14].

2.5.4 User

The user of the system is the operator who sends commands to start or stop

the autonomous state of the system as well as piloting commands in the manual

state of the system. The user also provides the desired path for traversal in the

18

Figure 2.6: ARDS Internal Block Definition Diagram

form of a waypoint list to the Mission Control.

2.6 System Level Interface Block Definition Diagram

The system level Interface Block Diagram (IBD) gives a white box view of the

internal data and control flow of the system. Figure 2.7 shows the system level IBD

of the ARDS.

The system level Internal Block Definition Diagram (IBDD) describes the

interface data definition that flows through the system. Figure 2.6 shows the system

level IBDD of the ARDS.

19

F
ig

u
re

2.
7:

A
R

D
S

In
te

rf
ac

e
B

lo
ck

D
ia

gr
am

20

2.7 State Machine Diagram

The state-machine diagram depicts the behavioral states a system can exhibit

during its operation. Figure 2.8 shows the state-machine diagram of the ARDS.

The ARDS can exhibit the following states:

1. Ground: The drone is on the ground and the motors are armed (spinning) at

the idle rpm.

2. Takeoff: The drone rises from the ground to attain a pre-determined takeoff

height with a constant upward velocity.

3. Hover: The drone hovers at a constant relative altitude to the ground and

maintains zero velocity in the inertial frame. It is also known as position hold

mode within the UAV community.

4. Autonomous: The drone autonomously follows a pre-determined path, man-

aged by the mission control module. No operator piloting inputs affect the

motion of the drone in this state.

5. Manual: The drone receives non-zero manual attitude commands and attains

the commanded attitude using the onboard attitude controller. This state is

used for manual positioning of the drone in the arena or gain manual control

when the drone does not exhibit expected behavior in autonomous mode.

6. Airborne: It is a composite state comprising Takeoff, Hover, Manual and Au-

tonomous states. The drone is off the ground in this state and not descending

21

Figure 2.8: ARDS State Machine Diagram

for landing.

7. Land: The drone descends with a constant downward velocity until it reaches

the ground and lands.

The ARDS transitions from one state to another when a corresponding state-

transition command is received from the GCS.

2.8 Element Level Activity Diagrams

An activity diagram describes the dynamic behavior of the system components.

This section provides the behavioral design of some of the key software components

of the ARDS.

22

2.8.1 Gate Estimation Activity Diagram

Figure 2.9 shows the activity diagram for gate estimation subsystem. The

visual gate detection component of the gate estimation subsystem receives an RGB

image frame from the camera system for each measurement cycle. This RGB image

is converted to an HSV image. The HSV image is then converted to a binary im-

age by applying threshold operation and then blurred with gaussian blur operation.

Contours are found on this blurred image and filtered to get the largest gate by area

in the image. A perspective-n-point algorithm is used to get the relative translation

and orientation of the gate contour with respect to the camera. The relative trans-

lation and rotation of the gate contour are transformed to the drone body frame

and used as measurements by the gate position estimation module. The gate posi-

tion estimation module uses an Asynchronous Linear-Time-Variant Kalman Filter

to estimate the gate position from available information from the sensors and gate

measurement. A detailed visual gate estimation algorithm description is presented

in section 3.4 of this thesis.

2.8.2 Localization Activity Diagram

The localization subsystem activity diagram is described in figure 2.10. The

localization module receives the estimated gate position in the drone body frame

and projects it in the inertial frame using the previous drone position. The projected

gate position is then tallied with a list of pre-determined gate positions provided by

the user and the gate nearest to the projected gate position is selected as a landmark.

23

Figure 2.9: ARDS Gate Estimation Activity Diagram

24

The drone position in the inertial frame is then calculated using the landmark posi-

tion and estimated gate position in the drone body frame. The localization module

is presented in detail in section 3.5 of this thesis.

2.8.3 Mission Control Activity Diagram

Figure 2.11 describes the Mission Control Activity Diagram. The Mission

Control module is responsible for high-level mission control of the ARDS. It re-

ceives the pre-determined path in the form of a list of waypoints from the user. The

Mission Control sends the current waypoint reference to the control module so that

the control action can be computed. There are two types of waypoint change condi-

tions viz. 1) Time-based and 2) Distance-based. The Mission Control continuously

updates the time elapsed and the distance error for the current waypoint reference.

The next waypoint in the list is set to the current waypoint if the time elapsed is

more than threshold time or the distance error is within threshold distance based

on the change-type of the current waypoint.

2.8.4 Control Activity Diagram

The control subsystem activity diagram is presented in figure 2.12. The control

module receives the desired position, velocity and heading from the Mission control

module. The control module also receives the current position, velocity, and head-

ing of the drone. The control module then formulates a non-linear program with

constraints and cost function based on the received data. This non-linear program

25

Figure 2.10: ARDS Localization Activity Diagram

26

Figure 2.11: ARDS Mission Control Activity Diagram

27

Figure 2.12: ARDS Control System Activity Diagram

is solved to determine the states and control inputs which minimize the quadratic

cost function. The desired roll, pitch and thrust control inputs are then sent to the

attitude controller for low-level control. The control module is presented in detail

in Chapter 4 of the thesis.

28

Chapter 3: Visual Estimation and Localization of the Autonomous

Racing Drone System

3.1 Overview of Visual Estimation module

This work proposes a gate detection based visual-inertial localization (VIL)

system which estimates the position of a visual gate in drone body frame and local-

izes the drone with respect to the gate in the inertial frame. Figure 3.1 shows the

block diagram of the estimation subsystem.

Raw gate position measurements from the gate detection and measurement

module are filtered using a Linear Time-Variant Kalman Filter. The prediction step

in the Kalman Filter utilizes linear and angular velocity estimates and attitude esti-

Figure 3.1: Visual-Inertial-Localization Block Diagram

29

mates to predict the gate position for estimation. Then, this gate position estimate

is used to localize the drone in the arena map.

3.2 Background in Monocular Visual Inertial Odometry

The problem of vision-based position estimation for quadrotors has been stud-

ied quite extensively [15]. Due to their low weight and low power requirements,

Monocular Visual-Inertial-Odometry (VIO) systems have become a popular choice

for state estimation in GPS denied environments for autonomous aerial systems.

Mourikis, A. and Roumeliotis, S. [16] presented an Extended Kalman Filter based

visual-inertial navigation algorithm called “Multi-State Constraint Kalman Filter”

(MSCKF) VIO. They derived a measurement model to express the geometric con-

straint that arises when a static feature is observed by a moving camera with multiple

poses. This eliminates the need for maintaining the 3D position of the static feature

in the EKF state vector. Leutenegger, S. et al [17] developed “Keyframe-Based

visual-inertial SLAM” which utilizes non-linear optimization on a sliding window of

keyframe poses. The cost function for optimization is a weighted sum of reprojection

errors for visual landmarks and inertial errors. The landmarks are identified using

Harris corner detectors [18] and BRISK descriptors [19]. Forster, C. et al [20] intro-

duced a computationally light-weight visual-odometry system called “Semi-direct

Visual Odometry” (SVO). SVO utilizes tracking of FAST corner features [21] in

images and aligns them with the scene structure by minimizing the re-projection

error using a non-linear least-squares optimization method.

30

Most of the generalized VIO methods are based on feature detection and track-

ing among image frames and fusion with inertial measurements from the IMU us-

ing optimization methods. Though these approaches provide a precise and robust

estimation of the pose, they are often highly resource-intensive and unfit for appli-

cations on hardware with limited resources like the ones on Micro Aerial Vehicles

(MAV). This work proposes a light-weight visual-inertial localization (VIL) system

for autonomous racing drones which is based on drone racing gate measurements

and optical-flow velocity estimates. The proposed method exploits a priori infor-

mation available about the gate positions and efficient gate detection and measure-

ment algorithm for low resource-intensive visual-odometry. It also uses a Linear

Time-Variant Kalman Filter whose prediction and measurement steps are executed

asynchronously. This provides a better position estimate in the presence of noisy

and intermittent measurements.

3.3 Visual Gate Detection and Measurement

The vision system of the ARDS consists of two cameras: a forward-facing cam-

era mounted on top of the drone platform for visual gate detection and measure-

ment and a downward-facing camera for estimating the horizontal velocity through

optical-flow.

Figures 3.2(a) through 3.2(f) depict the steps for visual gate detection once

an image frame is received from the camera. First, the image is converted to Hue-

Saturation-Value (HSV) format as shown in Figure 3.2(b). HSV image format makes

31

it easier to detect illuminated objects like lights and LEDs in an image as the

“Value” amount is very high for illuminated objects in the image. A binary threshold

operation is applied to make only the illuminated objects in the image visible as

shown in figure 3.2(c). This binary image is then blurred to remove noise in the

image as shown in figure 3.2(d) and a find-contour operation is applied. A contour

is the locus of equal intensity gradient points. By doing so, we get the boundaries

of all illuminated objects in the image as shown in figure 3.2(e). Now, we need to

identify the most prominent gate among these contours. We first apply the iterative

end-point fit algorithm on the set of contour points to approximate regular polygons

from the irregular shaped contours. Then we filter out contours that are not 4 sided

and are smaller than a threshold contour area. We also filter out highly oblong

shapes whose aspect ratio (ratio of width to height) is greater than 1.25 and less

than 0.8. This way we get near square shaped contours which are better candidates

for the gate. Lastly, we remove contours that are bounding high-intensity regions

of the image. These, contours are more likely to represent light sources like ceiling

lights, windows or doors. Finally, if any contours remain, we sort them according

to their area and select the largest contour to be the most prominent gate as shown

in figure 3.2(f). If there are no contours left, we conclude that there is no gate in

the image and a gate detection failure message is sent by the program.

Once the gate contour is detected, the image coordinates of the 4 corners the

contour are used to determine the relative rotation and translation of the gate with

respect to the camera in the camera coordinate system using Perspective-n-Point

(PnP) algorithm. The camera coordinate system (C), image coordinate system and

32

Figure 3.2: Visual Gate Detection of ADR Gate, (a) RGB Image Captured by
Front Camera, (b) HSV Image, (c) Binary Mask Image, (d) Blurred Mask Image,
(e) Identified Contours, (f) Detected Gate

33

Figure 3.3: Gate Image Formation with Pinhole Camera Model

the drone coordinate system (D) are described in figure 3.3. Image coordinates

(ui, vi) of object points (Xi, Yi, Zi) have the following relationship:

uivi
1

 = M
[
R3×3 T3×1

] 
Xi

Yi
Zi
1

 (3.1)

where, M ∈ R3×3 is the camera matrix, R3×3 ∈ SO(3) is the relative orientation and

T3×1 ∈ R3 is the relative translation of the camera with respect to object coordinate

system. The PnP algorithm solves equation (3.1) simultaneously for the 4 gate

points to get the relative orientation and translation of the gate with respect to the

camera.

The relative orientation and translation of the gate in the camera frame are

then transformed to get the orientation and translation of the gate in the drone

body frame.

34

Figure 3.4: Inertial, Drone body and Gate Coordinate Frames with Position Vectors

3.4 Gate position estimation

3.4.1 Gate position dynamics

To estimate the gate position w.r.t. the drone body frame, there is a need to

derive the gate position dynamics in the drone body frame. Figure 3.4 describes

different coordinate frames and position vectors of the drone and the gate.

The relationship between the gate position vector w.r.t. drone (rG/D), gate

position vector w.r.t. ground (rG/O) and drone position vector w.r.t. ground (rD/O)

is given by equation (3.2).

rG/O = rG/D + rD/O (3.2)

35

Differentiating equation (3.2) in the inertial frame w.r.t. time, we get the following

relationship between the velocities (all expressed in the inertial frame):

[IvG/O]I = [IvG/D]I + [IvD/O]I (3.3)

Now, let the orientation of the drone frame w.r.t. the inertial frame be IRD ∈ SO(3)

and the angular velocity be IωD = [ω1 ω2 ω3]
T . Then, equation (3.3) can be written

as:

[IvG/O]I = IRD [IvG/D + IvD/O]D (3.4)

Now using the transport equation, IvG/D can expressed as:

IvG/D =
Id

dt
(rG/D) =

Dd

dt
(rG/D) + Ω rG/D (3.5)

where,

Ω = [IωD×] =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3) (3.6)

We also know that the gates are stationary w.r.t. the inertial frame:

IvGO = 0 (3.7)

36

Substituting equation (3.5) and equation (3.7) in equation (3.4), we get:

0 = IRD

[Dd
dt

(rG/D) + Ω rG/D + IvD/O

]
D

(3.8)

Rearranging the terms in equation (3.8):

Dd

dt
(rG/D) = − Ω rG/D − [IvD/O]D (3.9)

Equation (3.9) describes how the gate position evolves w.r.t. time in the drone body

frame.

3.4.2 Asynchronous Linear Time-Variant Kalman Filter

A Linear Time-Variant Kalman Filter is utilized for the estimation of gate

position with respect to the drone expressed in the drone body frame. The estimated

state vector xk ∈ R3 is the gate position (rG/D) and the forcing vector uk ∈ R3 is

the velocity of the drone provided by the optical flow sensor ([IvD/O]D) . The

prediction step is based on the integration of gate position dynamics expressed by

equation (3.9). Since, the nature of vision-based gate measurement is intermittent,

the prediction and measurement steps are separated and executed asynchronously.

This way, the estimation is not blocked when a measurement is not received in a

time step. Figure 3.5 shows how the Kalman Filter steps are run asynchronously.

During the prediction process, it is assumed that the gate position and drone

velocity vectors are random vector sequences. It is also assumed that the angular

37

Figure 3.5: Asynchronous Linear Time-Variant Kalman Filter

velocity (IωD) and orientation (IRD) of the drone are deterministic. Thus, the state

and control action can be modeled as the sum of expected value and white noise

sequences:

xk = x̂k + pk (3.10)

uk = ûk + qk (3.11)

where, pk and qk are white noise sequences with known covariance matrices Pk and

Qk respectively. And, x̂k = E[xk] and ûk = E[uk] are the expected values of the state

and control actions respectively. The discrete form of the dynamic equation (3.9)

for a time step of ∆t can be obtained by doing 1st order integration as following:

xk+1 = xk + (−Ωxk − uk)∆t (3.12)

∴ xk+1 = (I − Ω∆t)xk + (− I∆t)uk (3.13)

38

∴ xk+1 = Fkxk + Bkuk (3.14)

where, I ∈ R3×3 is the identity matrix, Fk = (I − Ω∆t) and Bk = (− I∆t) The

covariance of the estimated state error after the prediction step is updated as:

Pk+1 = FkPkF
T
k +BkQkB

T
k (3.15)

The measured state from visual detection can be modeled as the measurement added

with a white noise sequence:

zk = Hkxk + vk (3.16)

where, vk is the white noise sequence with constant known covariance R and Hk = I

which implies full state measurement.

Now, the updated state estimate can be calculated as a linear combination of

previous state and measurement error:

x̂k+1|k = x̂k +Kk(zk −Hkx̂k) (3.17)

where, Kk is the Kalman Gain matrix. For optimal estimation [22], the Kalman

Gain matrix is obtained from the following expression:

Kk = PkH
T
k (HkPkH

T
k +R)−1 (3.18)

39

And the estimation covariance is updated as:

Pk+1 = (I−KkHk) Pk (3.19)

3.5 Localization

The localization of the drone is based on the reprojection of the measured

gate position in the inertial frame and searching for the actual gate position on

the arena map. The arena map is a list of gate positions and headings in series

([r0G/O, r
1
G/O, ..., r

n
G/O]). Figure 3.6 shows how the gate position is projected into the

inertial frame for localization.

Initially, the estimated gate position with respect to drone ([r̂G/D]D) is used

to calculate the expected gate position in the inertial frame ([r̂G/O]I).

[r̂G/O]I = IRD [r̂G/D]D + [rD/O]I (3.20)

Then, the gate which is closest to the projected gate position is chosen to be the

landmark gate. This can be expressed as the following search problem:

minimize
n

‖[r̂G/O]I − [rnG/O]I‖ (3.21)

where, n is the index of a gate in the map and ([rnG/O]I) is the nth gate position in the

map. Then, the estimated position of the drone in the inertial frame is calculated

using the actual gate position.

40

Figure 3.6: ARDS Localization

[r̂D/O]I = [rnG/O]I − IRD [r̂G/D]D (3.22)

Since, [rnG/O]I is deterministic, the covariance matrix for drone position estimation

error becomes:

P ′k = IRD Pk
IRT
D (3.23)

where, Pk is the covariance matrix of gate position estimation error.

41

Chapter 4: Control of the Autonomous Racing Drone System

4.1 Overview of the Control System module

The ARDS Control System consists of three levels of control loops. The first

level is the inner loop control or attitude control system which controls the attitude

of the drone and the second level is the outer loop control or position control system

which controls the position of the drone in the inertial frame. Finally, the third level

of the control loop is the mission control which manages the navigation of the drone

through the racing arena. A Non-Linear Model Predictive Controller (NMPC) is

employed for the position control and PD controller for the attitude control of the

drone. Figure 4.1 shows the control system of the ARDS.

Figure 4.1: Control System Block Diagram of ARDS

42

4.2 Background in Non-Linear Model Predictive Control of Quad-

copters

The early control algorithms for quadcopter control were based on the lin-

earization of the quadcopter system model in the hover state by making small angle

assumptions. But for exhibiting aggressive maneuvers a quadcopter is required to

attain large roll and pitch angles which are well outside the linearization envelope

of the linear models. For solving this problem, many research groups have proposed

non-linear control strategies to enable control of quadcopter maneuvers in aggres-

sive flight. Among these control strategies, Model Predictive Control (MPC) for

unmanned aerial vehicles (UAV) has attracted a lot of attention in recent years.

These strategies provide the major advantages over the other existing non-linear

control strategies such as the ability to consider future states; flexibility in cost

function selection for optimization; and facility to provide hard constraints on the

state and control inputs of the system.

Tenny, Mathew and Wright [23] first described a trust-region feasibility-perturbed

sequential quadratic programming (SQP) algorithm for non-linear model predictive

control (NMPC). Slegers, Kyle and Costello [24] developed a NMPC strategy for

autonomous aircraft with 6 degree-of-freedom (DOF) representations. They applied

NMPC in the position control of simulated parafoil glider and fixed-wing aircraft.

Though these ideas were known early on, practical implementations of NMPC in

quadcopters were not yet carried out due to a limited amount of computational ca-

43

pabilities of the hardware. With the recent advancements of embedded computing

hardware, it is possible to execute the lengthy online optimization computations

onboard the quadcopter. Bangura and Mahony [25] presented a real-time MPC

strategy for quadcopter control on resource constraint hardware. They linearized

the non-linear model of a quadcopter and applied an unconstraint Linear MPC

strategy to calculate the desired attitude of the quadcopter and then applied a Lya-

punov based attitude control strategy. Neunert et al. [26] proposed an iterative

optimal control algorithm (SQP) in a MPC setting to solve the underlying nonlin-

ear control problem. Their method performs simultaneous trajectory planning and

control for optimal trajectory tracking. They demonstrated this control method

on a ball-balancing robot and a hexacopter UAV. Recently, Ru and Subbarao [27]

used the idea of state-dependent coefficient factorization of nonlinear dynamics of a

quadcopter to develop a pseudo-linear state-space model of the quadcopter. They

proposed a NMPC method to solve for the optimal control problem of the derived

pseudo-linear model and showed that it guarantees bounded errors and internal sta-

bility. Kamel, Burry and Siegwart [28] presented a full system model based NMPC

for Micro Aerial Vehicle (MAV) trajectory tracking. They showed that their im-

plementation of NMPC strategy was better in terms of hover performance, step

response and aggressive trajectory tracking when compared with a classical Linear

Model Predictive Controller (LMPC). They used an order 4 Runge-Kutta integra-

tion method to propagate the state and solved the discrete optimal control problem

using SQP. Lunni et al. [29] developed a NMPC for 3D trajectory tracking of a quad-

copter with a serial link manipulator. They showed that several aerial manipulation

44

tasks can be achieved by either applying weighting strategies in the main optimiza-

tion algorithm or using a hierarchical approach of nested optimization algorithms.

Greeff and Schoellig [30] proposed a Flatness-Based NMPC for quadcopter trajec-

tory tracking. Their approach can be applied to differentially flat nonlinear systems

such as a quadcopter. The approach consists of a combination of feedback MPC and

feedforward linearization. This makes the optimal control problem similar to solving

a convex non-linear program. Falanga, D., et al. [12] proposed a “Perception Aware

Model Predictive Control” for quadcopters with vision-based estimation. This ap-

proach optimizes state, control and perception objectives to execute point-to-point

navigation. They utilized the pinhole camera model to formulate the perception ob-

jective function which is a weighted sum of squared position and velocity of image

points of a visual feature. Their approach uses multiple shooting as transcription

and a Runge-Kutta integration scheme for model propagation.

Though the existing NMPC formulations show promising quadcopter con-

troller performance, they consider the entire state space of the quadcopter which

is often unnecessary given the fact that a quadcopter is a differentially flat system.

Also, most of the methods use 4th order Runge-Kutta integration method which

provides very accurate prediction of the dynamics but requires more intermediate

variables for the optimal control problem formulation. Since, the solution of a non-

linear program with SQP using n variables has a time complexity of O(n3) and

space complexity of O(n2) [31], it is necessary to reduce the number of optimization

variables as much as possible.

This work implements a NMPC method which exploits the differential flatness

45

property of the quadcopter system by completely focusing on the position control

of the quadcopter. It also uses a 1st order integration approach for model propa-

gation. By doing so, the number of variables to optimize for the optimal control

problem is significantly reduced which makes the control algorithm more efficient

to run in terms of speed and memory usage, without affecting the overall controller

performance.

4.3 Attitude Control

The attitude control of the quadcopter utilizes a Proportional-Derivative (PD)

controller. The orientation of the quadcopter is expressed using Euler angles viz.

roll (φ), pitch (θ) and yaw (θ) about the X, Y and Z axis respectively. The desired

moments are calculated using PD control law as following:

Mx = Kpφ(φdes − φ)−Kdφωx

My = Kpθ(θdes − θ)−Kdθωy

Mz = Kpψ(ψdes − ψ)−Kdψωz

(4.1)

where, Mi = required moments, Kpi= Proportional gains, Kdi = Derivative gains

and ωi = angular velocities. Figure 4.2 shows the drone body frame, thrust vectors

and direction of rotation of the propellers of the quadcopter.

Let the total thrust required be T , individual desired thrust be Ti and the arm

length of the thrust vector from the origin be l. Then, the individual thrusts can

46

Figure 4.2: Propeller Configuration and Dimensions of the Drone

be calculated by solving the following system of equations:


1 1 1 1
l −l −l l
l l −l −l
km −km −km km



T1
T2
T3
T4

 =


T
Mx

My

Mz

 (4.2)

where, km = Mp

Tp
, which is the ratio of propeller drag moment to propeller thrust.

4.4 Position Control

An online, finite horizon, Non-Linear Model Predictive Control strategy is

utilized for the outer loop or position control of the quadcopter. In the online Non-

Linear Model Predictive Control, a cost function of state trajectory and control

actions is optimized given the non-linear system model constraints and state as

47

Figure 4.3: Model Predictive Control [1]

well as control action bounds, over a fixed period in the future. This period is

referred to as the prediction horizon for the NMPC as shown in figure 4.3. The

NMPC optimization problem is formulated at each time step and the optimization is

carried out iteratively using Sequential Quadratic Programming (SQP) [32] method

for the fixed prediction horizon in future from the current time step. Hence it is

also called receding horizon control strategy. NMPC provides many advantages

over other control strategies. NMPC considers the future states of the system to

make optimal control decisions which the other non-linear control strategies don’t.

Another advantage of NMPC is that hard constraints on the control action can be

applied to change the aggressiveness of the quadcopter position tracking. This helps

in adapting to different drone racing conditions quickly.

48

4.4.1 Model Development

Let us consider the position and velocity vectors associated with the quad-

copter motion in the inertial frame to be r = [x y z]T and v = [vx vy vz]
T re-

spectively. The orientation of the quadcopter is described by the rotation matrix

R ∈ SO(3) which is a function of Euler angles viz. φ, θ and ψ about the X, Y and

Z axis respectively. The forces acting on the quadcopter include the thrust force by

the propellers (T), gravitational force (Fg) and induced drag force (Fd) on the body

due to motion. Thus, the equations of translational motion of the quadcopter in the

inertial frame can be written as:

ṙ = v (4.3)

mv̇ = R(φ, θ, ψ) T + Fg + Fd (4.4)

∴ v̇ = R(φ, θ, ψ)

0
0
τ

+

 0
0
−g

− cd ∗ v (4.5)

where, τ = T
m

is the specific thrust, cd is the drag factors vector and g = 9.8m/s2. In

the above equation, the “ * ” operator signifies elementwise multiplication. Thus, the

discrete dynamic equations of the quadcopter translation dynamics with sampling

time ∆t can be written as follows:

xi+1 = xi + vxi∆t (4.6)

yi+1 = yi + vyi∆t (4.7)

49

zi+1 = zi + vzi∆t (4.8)

vxi+1
= vxi + (τi (sφi sψi + cφi sθi cψi)− cdxvxi)∆t (4.9)

vyi+1
= vyi + (τi (−sφi cψi + cφi sθi sψi)− cdyvyi)∆t (4.10)

vzi+1
= vzi + (τi cφi cθi − g − cdzvzi)∆t (4.11)

Now, because of the differential flatness property of the quadcopter the complete

quadcopter state can be represented as:

ζ = [x y z ψ]T (4.12)

So, the reference trajectory will be specified in terms of desired position, velocity

and yaw of the quadcopter. Hence, the states and control inputs of the system for

the optimal control problem formulation can be defined as:

X = [x y z vx vy vz]
T (4.13)

U = [φ θ τ]T (4.14)

Thus, the non-linear model constraint equations from (4.6) to (4.11) can be

expressed in a compact form as:

Xi+1 = g(Xi, Ui, ψ) (4.15)

50

4.4.2 Formulation of Optimal Control Problem

Let the prediction horizon in terms of number of future states be N. Then the

NMPC problem can be expressed as the following non-linear program:

minimize
Xi, Ui

N−1∑
i=1

(‖Xi −Xref‖2Qx
+ ‖Ui − U∗‖2Ru

) + ‖XN −Xref‖2Px

subject to : Xi+1 = g(Xi, Ui, ψ), i = 0, 1, 2, ..., N − 1

X0 = X(0)

|Xi| ≤ Xmax, i = 0, 1, 2, ..., N

|θi, φi| ≤ Θmax, i = 0, 1, 2, ..., N

0 ≤ τi ≤ τmax, i = 0, 1, 2, ..., N

(4.16)

Here, Qx , Ru and Px are state error penalties, control action penalties and ter-

minal state error penalties respectively. The penalties must be positive for the cost

function to be convex. Xref is the reference state of the quadcopter and U∗ is the

control action for hover condition which implies, θ∗ = 0, φ∗ = 0 and τ ∗ = 9.8. Θmax

is the maximum tilt angle (roll and pitch) and τmax is the maximum specific thrust

of the quadcopter allowed during trajectory tracking. This gives a facility to the op-

erator of the racing drone to directly change the aggressiveness of the motion of the

quadcopter by changing a few parameters. The aforementioned optimization prob-

lem is solved for every time step and the first set of control actions in the optimized

set of variables is applied to the system. The optimization problem is solved using a

gradient-based iterative method called Sequential Quadratic Programming [32] [33].

51

The optimizer in the NMPC is implemented using an open-source non-linear opti-

mization package called NLopt [31] in C++. The required condition for the SQP

algorithm to converge is that the cost function and constraints should be continu-

ously differentiable [32]. The optimal control problem presented above satisfies these

conditions and hence the iterative algorithm will converge to a local minimum.

52

Chapter 5: Simulation Results and Discussion

5.1 Simulation Setup

The simulation environment for the verification and validation of ARDS is

based on open source Gazebo 7 physics simulation engine. The quadrotor dynam-

ics simulation is developed by TU Munich [34]. This work uses a slightly modified

version of the TUM simulator which implements the presented attitude PD con-

troller. The ARDS system software is developed using the ROS C++ framework

and open-source C++ libraries including OpenCV, BOOST UBLAS and NLopt.

The open-source Kinect OpenNI gazebo plugin is used to simulate the onboard

camera system on the quadrotor. The simulated drone racing arena consists of two

orange gates separated by a distance of 8 m as shown in figure 5.1.

Table 5.1 lists the simulation parameters for ARDS evaluation and table 5.2

lists the system parameters for ARDS simulation.

Simulation parameter Value Unit

Quadrotor mass 800 g
Velocity Measurement Noise Variance [0.01 0.01 0.01] (m/s)2

Gate Position Measurement Noise Variance [0.1 0.1 0.1] (m)2

External Disturbance (Fx, Fy, Fz) N (0, 1) N

Table 5.1: ARDS Simulation Parameters

53

Figure 5.1: ARDS Simulation in Gazebo

5.2 Gate Position Estimation Results

The gate position estimation results for the simulation time from 4 s to 90 s

are presented in figure 5.2. A magnified view of the results is also presented for the

time from 4 s to 20 s in the figure 5.3. The actual gate position with respect to

the drone is drawn with a dashed blue line, the estimated position is drawn with

a green line and the measured gate position is drawn with ‘x’ markers. Gaussian

noise of 0.1 m standard deviation is added to the visual gate measurement from

the simulation to consider for the background noise in the image data. The regular

sudden jumps seen in the estimated position are due to the change in the visual

gate while traversing the racing arena.

Figure 5.5 shows the probability distribution of measurement error and esti-

54

Figure 5.2: Gate Position w.r.t. Drone (m) vs time (s) [4s to 90s]

Figure 5.3: Gate Position w.r.t. Drone (m) vs time (s) [4s to 20s]

55

System parameter Value Unit

Gate Detection Parameters
Gate side 1.5 m

High HSV Threshold [40 255 255] -
Low HSV Threshold [0 100 100] -

Contour Area Threshold 3000 px2

Contour Aspect Ratio High Threshold 1.25 -
Contour Aspect Ratio Low Threshold 0.80 -

Contour Region Mean Intensity Threshold 100 -

Gate Position Estimation Parameters
Measurement Noise Variance [0.2 0.2 0.2] (m)2

Process Noise Variance [0.5 0.5 0.5] (m)2

Measurement Frequency (fm) 30 Hz
Prediction Frequency (fp) 30 Hz

NMPC Parameters
State Error Penalties [1.0 1.0 1.0 0.5 0.5 0.5] -

(Qx = [x, y, z, vx, vy, vz])
Control Action Penalties [0.5 0.5 0.01] -

(Ru = [φ, θ, τ])
Prediction Horizon 10 -

Time step 0.1 s
Controller Frequency 50 Hz
Max tilt angle (Θmax) 20 degree

Max specific thrust (τmax) 15 m/s2

Table 5.2: ARDS System Parameters

mation error of the gate position with respect to the drone. It is apparent from the

estimation error distribution results that the estimated position closely follows the

ground truth even in the presence of measurement noise and intermittent measure-

ments due to gate changes. The Root Mean Squared Error(RMSE) in estimation is

0.32 m and the estimation bias in X, Y and Z position is 0.14 m, 0.04 m and 0.09

m respectively. The standard deviation of the errors is 0.38 m, 0.14 m and 0.098

m respectively. The bias and standard deviation are significant in the X direction

56

because the visual gate measurement is inaccurate for larger distances from the gate.

This is because for larger distances the thickness of the gate boundaries in the cam-

era image is less and the blurring operation for noise removal increases this thickness

which leads to a slightly inaccurate measurement. But the measurement accuracy

increases as the drone comes closer to a gate. Figure 5.4 shows the variance of the

estimation error of the gate position with time. It can be observed that when the

gate measurements are available the estimation error variance converges to a min-

imum and is bounded but when the measurements are unavailable the estimation

variance increases linearly due to the reliance on prediction. If the arena gates are

arranged in such a way that a gate is always in sight, then the estimation variance is

guaranteed to be bounded. But when the gates are not arranged in a continuously

visible manner, the boundedness of the variance is subject to how long it takes for

the drone to have a gate in sight.

5.3 Localization Results

Figure 5.6 presents the localization results for localizing the drone in the in-

ertial frame. In the figure the dashed blue line depicts the actual trajectory of the

drone while the red line depicts the estimated trajectory of the drone by the pro-

posed localization method. The localization is very accurate when the drone is near

a gate, which is the direct implication of the results of the gate position estimation

presented in the previous section.

Figure 5.7 shows the position vs time graph of the drone localization. Small

57

Figure 5.4: Gate Position Estimation Variance (m2) vs time (s)

Figure 5.5: Gate Position Measurement and Estimation Error Probability Distribu-
tion

58

Figure 5.6: Estimated and Actual Trajectory of the Drone

jumps in the estimated trajectory can be observed in the figure when a gate is

first visible. However, these jumps are present for a very short period of time and

thus they do not affect the trajectory tracking performance and stability of the

drone. Figure 5.8 shows the localization error histogram. The statistical measures

for localization are similar to those of the gate position estimation statistics as they

are linearly related to each other.

Figure 5.9 shows the comparison between different state-of-the-art monocular

visual-inertial-odometry (VIO) systems [15] with the proposed VIL system. The

average memory usage of the proposed VIL system is 60.55 MiB which is a very

small fraction of what the state-of-the-art VIO systems utilize. This is because VIO

systems use image feature detection, feature tracking and mapping along with non-

linear optimization algorithms to get the camera pose while the VIL system exploits

the information available regarding the gate positions and uses a linear time-variant

59

Figure 5.7: Drone Position (m) vs time (s)

Figure 5.8: Drone Position Estimation Error Histogram

60

Figure 5.9: Monocular VIO Systems’ Memory Usage Comparison

Kalman filter which requires a very small memory footprint. This makes VIL the

best fit for use on resource constraint computing hardware present onboard a MAV

for drone racing.

5.4 Control System Trajectory Tracking Results

The NMPC strategy presented in this work is compared with a PD controller

for position and velocity trajectory tracking performance. The reference trajectory

for the performance evaluation is a 5 m radius circular trajectory. The reference

61

trajectory as a function time is given by:

x(t) = Asin(2πft)

y(t) = Acos(2πft)

z(t) = 1.0

vx(t) = 2πfAcos(2πft)

vy(t) = −2πfAsin(2πft)

vz(t) = 0.0

ψ(t) = 0.0

A = 5 m, f = 0.1 Hz

(5.1)

Figure 5.10 shows the trajectory tracking performance of both NMPC and PD con-

troller.

Figure 5.11 shows the position vs time plot and 5.12 shows the velocity vs

time plot of the reference, NMPC and PD controller trajectories. Figure 5.13 shows

the NMPC commands with time. It is important to notice the saturation of applied

commands in φdes and θdes at 0.34 radians or 20 degrees. This is because the Θmax

parameter for the tilt angle bound is set to 0.34 radians.

Figures 5.14 and 5.15 show the position tracking error distribution and velocity

tracking error distribution for the experiment. It can be observed that NMPC

provides more precise trajectory tracking than a PD controller in terms of both

position and velocity. This is due to the fact that NMPC controller takes into

account the non-linear effects like a simplified induced drag model which a PD

62

Figure 5.10: Circular Trajectory Tracking Performance

63

Figure 5.11: Drone Position (m) vs Time (s)

Figure 5.12: Drone Velocity (m/s) vs Time (s)

64

Figure 5.13: NMPC Command Inputs vs Time (s)

controller does not. Also, the X/Y and Z dynamics of the quadcopter are tightly

coupled at higher tilt angles. This coupling is addressed by NMPC hence it provides

a better tracking performance than a PD controller.

65

Figure 5.14: Position Tracking Error Probability Distribution

Figure 5.15: Velocity Tracking Error Probability Distribution

66

Chapter 6: Conclusion and Future Work

The system development of the Autonomous Drone Racing System (ARDS)

was presented in this thesis. A semi-formal V-development Life Cycle Model for

system development was employed to develop the system. Stakeholder and Sys-

tem Requirements were identified during the Requirements Definition phase. The

structural and behavioral models of the system were developed during the Pre-

liminary Design phase. Visual Gate Position Estimation, Localization and Con-

trol modules of the ARDS were implemented and verified in simulation using ROS

Gazebo simulation. The visual estimation module of the ARDS, called Visual-

Inertial-Localization(VIL) System, was validated in the IROS ADR 2019, Macau

competition along with a backstepping PD controller. This iteration of the ARDS

implementation won the second place in the IROS ADR 2019 competition. The

VIL system of the ARDS utilizes an Asynchronous Linear Time Variant Kalman

Filter, in which the prediction and measurement steps are executed asynchronously

and independently. A Non-Linear Model Predicitve Control (NMPC) strategy was

implemented for the Control module to improve the trajectory tracking performance

of the ARDS as compared to the PD controller performance. The results of the VIL

system performance evaluation showed that the system has promising position es-

67

timation capabilities even with noisy and intermittent visual measurements. It was

also shown that the VIL system utilizes significantly less memory and computing

resources than the state-of-the-art generalized Monocular Visual Inertial Odometry

systems. The results of the Control module performance evaluation showed that the

NMPC strategy has superior trajectory tracking performance as compared to a PD

control strategy.

The ARDS software design was covered in this work. Though there is still

more work needed to be done in the hardware design of the ARDS. The presented

software sub-system was implemented on an existing commercially available drone

platform. To improve the system performance further, a custom Micro Aerial Vehicle

(MAV) platform is needed to be developed that is lighter in weight and has more

powerful propulsion system. For the estimation of the visual gate position, it was

assumed that the angular velocity and orientation of the drone are deterministic

to make the prediction step linear time variant. The assumption that the angular

velocity and orientation of the drone are stochastic will make the prediction step

non-linear which will require non-linear estimation methods like Extended Kalman

Filter, Unscented Kalman Filter or Particle Filter. The estimation results of the gate

position estimation indicate that there is a small bias for larger distances from the

gate. This bias can be estimated by including a bias term in the estimation model.

Also, the intermittent nature of visual gate detection can be studied further and

a probabilistic model of the gate detection can be created. A trajectory time cost

can be added to the cost function in the NMPC’s Non-Linear program formulation.

This will generate time-optimal control actions for trajectory tracking.

68

Bibliography

[1] L. Grüne and J. Pannek, “Nonlinear model predictive control,” in Nonlinear

Model Predictive Control, pp. 45–69, Springer, 2017.

[2] N. J. Kasdin and D. A. Paley, Engineering dynamics: a comprehensive intro-

duction. Princeton University Press, 2011.

[3] H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga,

A. Simovic, D. Scaramuzza, S. Li, M. Ozo, C. De Wagter, G. de Croon,

S. Hwang, S. Jung, H. Shim, H. Kim, M. Park, T. C. Au, and S. J. Kim,

“Challenges and implemented technologies used in autonomous drone racing,”

Intelligent Service Robotics, vol. 12, no. 2, pp. 137–148, 2019.

[4] S. Jung, H. Lee, and D. H. Shim, “Real time embedded system framework for

autonomous drone racing using deep learning techniques,” AIAA Information

Systems-AIAA Infotech at Aerospace, 2018, no. 209989, 2018.

69

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem,

pp. 779–788, 2016.

[6] S. Jung, S. Cho, D. Lee, H. Lee, and D. H. Shim, “A direct visual servoing-

based framework for the 2016 IROS Autonomous Drone Racing Challenge,”

Journal of Field Robotics, vol. 35, no. 1, pp. 146–166, 2018.

[7] S. Jung, S. Hwang, H. Shin, and D. H. Shim, “Perception, Guidance, and

Navigation for Indoor Autonomous Drone Racing Using Deep Learning,” IEEE

Robotics and Automation Letters, vol. 3, no. 3, pp. 2539–2544, 2018.

[8] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and

D. Scaramuzza, “Deep Drone Racing: Learning Agile Flight in Dynamic Envi-

ronments,” no. CoRL, pp. 1–13, 2018.

[9] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scaramuzza, “Are

we ready for autonomous drone racing? the UZH-FPV drone racing dataset,”

Proceedings - IEEE International Conference on Robotics and Automation,

vol. 2019-May, pp. 6713–6719, 2019.

[10] D. Mellinger and V. Kumar, “Minimum Snap Trajectory Generation and Con-

trol for Quadrotors-2011 mellingerICRA11.pdf,” pp. 2520–2525, 2011.

[11] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V. Koltun, and

D. Scaramuzza, “Beauty and the beast: Optimal methods meet learning for

70

drone racing,” Proceedings - IEEE International Conference on Robotics and

Automation, vol. 2019-May, pp. 690–696, 2019.

[12] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-Aware

Model Predictive Control for Quadrotors,” IEEE International Conference on

Intelligent Robots and Systems, pp. 5200–5207, 2018.

[13] S. Li, E. van der Horst, P. Duernay, C. De Wagter, and G. C. H. E.

de Croon, “Visual Model-predictive Localization for Computationally Efficient

Autonomous Racing of a 72-gram Drone,” 2019.

[14] V. Frenzel, “Development of a highly reliable and efficient autonomous guidance

system for unmanned aerial vehicles,” Master’s thesis, University of Stuttgart,

2019.

[15] J. Delmerico and D. Scaramuzza, “A Benchmark Comparison of Monocular

Visual-Inertial Odometry Algorithms for Flying Robots,” Proceedings - IEEE

International Conference on Robotics and Automation, pp. 2502–2509, 2018.

[16] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman filter for

vision-aided inertial navigation,” Proceedings - IEEE International Conference

on Robotics and Automation, pp. 3565–3572, 2007.

[17] S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige, and R. Siegwart,

“Keyframe-Based Visual-Inertial SLAM using Nonlinear Optimization,” 2016.

[18] C. G. Harris, M. Stephens, et al., “A combined corner and edge detector.,” in

Alvey vision conference, vol. 15, pp. 10–5244, Citeseer, 1988.

71

[19] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust invari-

ant scalable keypoints,” in 2011 International conference on computer vision,

pp. 2548–2555, Ieee, 2011.

[20] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct monocu-

lar visual odometry,” in 2014 IEEE international conference on robotics and

automation (ICRA), pp. 15–22, IEEE, 2014.

[21] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine learn-

ing approach to corner detection,” IEEE transactions on pattern analysis and

machine intelligence, vol. 32, no. 1, pp. 105–119, 2008.

[22] R. E. Kalman, “A new approach to linear filtering and prediction problems,”

1960.

[23] M. J. Tenny, S. J. Wright, and J. B. Rawlings, “Nonlinear model predictive

control via feasibility-perturbed sequential quadratic programming,” Compu-

tational Optimization and Applications, vol. 28, no. 1, pp. 87–121, 2004.

[24] N. Slegers, J. Kyle, and M. Costello, “Nonlinear model predictive control tech-

nique for unmanned air vehicles,” Journal of Guidance, Control, and Dynamics,

vol. 29, no. 5, pp. 1179–1188, 2006.

[25] M. Bangura and R. Mahony, Real-time model predictive control for quadrotors,

vol. 19. IFAC, 2014.

[26] M. Neunert, C. De Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Siegwart,

and J. Buchli, “Fast nonlinear Model Predictive Control for unified trajectory

72

optimization and tracking,” Proceedings - IEEE International Conference on

Robotics and Automation, vol. 2016-June, pp. 1398–1404, 2016.

[27] P. Ru and K. Subbarao, “Nonlinear model predictive control for unmanned

aerial vehicles,” Aerospace, vol. 4, no. 2, pp. 1–26, 2017.

[28] M. Kamel, M. Burri, and R. Siegwart, “Linear vs Nonlinear MPC for Trajectory

Tracking Applied to Rotary Wing Micro Aerial Vehicles,” IFAC-PapersOnLine,

vol. 50, no. 1, pp. 3463–3469, 2017.

[29] D. Lunni, A. Santamaria-Navarro, R. Rossi, P. Rocco, L. Bascetta, and

J. Andrade-Cetto, “Nonlinear model predictive control for aerial manipula-

tion,” 2017 International Conference on Unmanned Aircraft Systems, ICUAS

2017, pp. 87–93, 2017.

[30] M. Greeff and A. P. Schoellig, “Flatness-Based Model Predictive Control for

Quadrotor Trajectory Tracking,” IEEE International Conference on Intelligent

Robots and Systems, pp. 6740–6745, 2018.

[31] S. G. Johnson, “The nlopt nonlinear-optimization package.” http://github.

com/stevengj/nlopt, 2014.

[32] D. Kraft, “A software package for sequential quadratic programming,”

Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und

Raumfahrt, 1988.

73

http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt

[33] D. Kraft, “Algorithm 733: Tomp–fortran modules for optimal control calcula-

tions,” ACM Transactions on Mathematical Software (TOMS), vol. 20, no. 3,

pp. 262–281, 1994.

[34] H. Huang and J. Sturm, “Tum simulator ros package.” https://wiki.ros.

org/tum_simulator, 2018.

74

https://wiki.ros.org/tum_simulator
https://wiki.ros.org/tum_simulator

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Notations
	Introduction
	Motivation and Objective
	Background on Autonomous Drone Racing
	Contributions of the Thesis
	Outline of the Thesis

	Autonomous Racing Drone System Design
	System Description
	System Development Approach
	Stakeholder and System Requirements
	Stakeholder Requirements
	System Requirements

	System Measures of Effectiveness and Key Performance Parameters
	System Level Block Definition Diagram
	Hardware
	Software
	Environment
	User

	System Level Interface Block Definition Diagram
	State Machine Diagram
	Element Level Activity Diagrams
	Gate Estimation Activity Diagram
	Localization Activity Diagram
	Mission Control Activity Diagram
	Control Activity Diagram

	Visual Estimation and Localization of the Autonomous Racing Drone System
	Overview of Visual Estimation module
	Background in Monocular Visual Inertial Odometry
	Visual Gate Detection and Measurement
	Gate position estimation
	Gate position dynamics
	Asynchronous Linear Time-Variant Kalman Filter

	Localization

	Control of the Autonomous Racing Drone System
	Overview of the Control System module
	Background in Non-Linear Model Predictive Control of Quadcopters
	Attitude Control
	Position Control
	Model Development
	Formulation of Optimal Control Problem

	Simulation Results and Discussion
	Simulation Setup
	Gate Position Estimation Results
	Localization Results
	Control System Trajectory Tracking Results

	Conclusion and Future Work
	Bibliography

