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Now more than ever, it is important to have the ability to replicate robotic

tasks in simulation and be able to validate the simulation against stakeholder re-

quirements and verify the simulation against simulation requirements. In a previous

study, a five-fingered robotic hand, the Shadow Dexterous Hand, with haptic Bio-

Tac SP sensors attached was used to detect the moment of slip of an object from

the robotic hand while weight was continuously being added and stop the object

from falling from the grasp while not overcorrecting. This work was accomplished

by Dr. Zhenyu Lin, Dr. John S. Baras, and the author in the Autonomy Robotics

Cognition Laboratory at the University of Maryland. This thesis will present the

use of Model-Based System Engineering techniques to replicate the detection and

correction of object slippage by a five-fingered robotic hand using force feedback

control in simulation.
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Chapter 1: Overview

1.1 Introduction

Over the years, one major research interest in the field of robotics has been

the creation of anthropomorphic robots and the ability for these robots to replicate

the senses and actions of humans. With regard to robotic grasping, it is desirable to

have a robotic hand that has the same dexterity and control of a human hand. There

has been various end effectors or grippers that have been created in order to grasp

objects from hands with two to five fingers to end effectors that use suction cups.

However, the optimal design for manipulability of objects is a five fingered robotic

hand. The Shadow Dexterous Hand which is used in this thesis is an example of a

anthropomorphic design of a robotic hand. Although this robotic hand has similar

kinematics and dexterity to a human hand, it lacks the level of sensing that a human

hand has through the sense of touch. Therefore, BioTac SP sensors were added to

the Shadow Dexterous Hand so that experiments could be performed that would

mimic human capabilities.

In the Autonomy Robotics Cognition laboratory at the University of Mary-

land, the Shadow Dexterous Hand with BioTac SP sensors attached was used to

detect when an object slips from the hand based on statistical correlation of tactile
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sensor data. The Shadow Hand also corrected for that motion by increasing the

grasping force on the object but did not overcorrect and deform the held object.

The objects being grasped were a rigid plastic cup, a soft plastic cup, and a paper

cup. The weight of the cup was changed during each experiment. The goal of the

experiment was to replicate the human ability to hold a cup and be able to maintain

a proper grasp of the cup even if the weight of the cup changes over time such as

when holding a cup being filled with water.

The focus of this work is to extend the previous work using the Shadow Dex-

terous Hand and BioTac SP sensors by applying Model-Based Systems Engineering

methods to model the problem of replicating the laboratory work in simulation. In

today’s working and research environment, the need for robotic simulation of real

world tasks is necessary and will help reduce the costs of errors in real world appli-

cation. Therefore, this thesis will apply systems engineering practices in order to

build a robotic simulation that uses force feedback control in order to detect and

correct for a cup slipping in the grasp of the Shadow Dexterous Hand with BioTac

SP sensors attached.

1.2 Relevant Work

Over the years, there has been research that focused on using haptic data to

detect the moment an object starts slipping from a robotic end effector. The need of

haptic sensors that mimic the sensory capabilities of the human hand has been well

documented by N. Wettles, Jeremy A. Fishel and Gerald E. Loeb in [1] with their
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discussion of their creation of the first BioTac sensor. Since that creation, there has

been many experiments employing some version of the BioTac sensors in order to

detect and correct for object slippage.

In [2], researchers use the Pac (vibrational pressure) readings from BioTac

sensors attached to a three finger manipulator to detect micro-vibrations in order

to detect slippage. If 11 out of the 22 pressure samples in a time window were

above a certain threshold then a slippage was detected. Other papers that have

used BioTac sensors usually use a neural network to decipher the BioTac sensor

readings in order to build their detection and correction algorithms. In [3], M. Abd

et al. constructed their slippage detection algorithm using data from BioTac SP

sensors and the application of an artificial neural network classifier. However, their

approach focused more on classifying the direction of an object slipping from a grasp

than just detecting slippage by itself.

The approach of N. Wettels et al. [4] focused on using the BioTac electrode

readings to estimate the tangential and normal forces applied by the Otto Bock M2

hand to a styrofoam cup. The cup was filled with water during their grasp control

experiments in order to see if the robotic fingers could correct for slippage caused

by the continuous increased weight of the flowing water which is a similar idea to

our experiment which adds bb-pellets at a constant rate. Using their grasp control

algorithm, it was possible to correct for the slippage of the soft cup, but as noted

by the authors, their robotic hand had issues with correcting for slippage caused by

a rapid fill rate. For our laboratory experiment, our robotic hand is able to correct

for the slippage of rigid and soft cups regardless of the rate of fill.
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In [5], the authors created a fuzzy sliding mode controller to detect and stop

slippage. The robustness of this controller was evaluated in simulation and experi-

mentation. The simulation was run in the Simulink environment where their gripper

was simulated picking up an object. The Lugre friction model was used which is

a continuous friction model that is able to describe the effects of stick and slip [5].

Their control scheme was tested by simulating the gripper catching various items

with different masses, stiffness, and friction coefficients. Their fuzzy sliding mode

controller outperformed a linear feedback controller and was found to be robust in

simulation. However, their robotic gripper used for the simulation was based on two

fingers acting as pinchers and not five-fingered grasp.

The work presented here draws inspiration from previous work in robotic

grasping using haptic feedback and furthers the previous work completed in the

ARC laboratory at the University of Maryland.

1.3 Problem Statement

The main objective of this work is to create a robotic simulation of the cup

slipping experiment that was completed in the laboratory. The robotic simulation

will simulate the same robotic equipment used in the prior experiment which in-

cludes the Universal Robots UR10, the Shadow Dexterous Hand, and the BioTac

SP sensors. The simulation software will calculate the kinematics and dynamics for

the robotic equipment and objects used during the simulation. The robotic simula-

tion will connect to external software programs in order to receive external inputs
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and output data to the external software programs. The simulation will be con-

trolled by scripts internal to the simulation software and scripts written in external

programming languages.

Stakeholder requirements for this problem will be developed. Measures of

effectiveness will be derived from these requirements. Simulation requirements will

be created in order to ensure that the robotic simulation created satisfies the needs

of the stakeholder which will be demonstrated in a traceability matrix. Structural

models of the equipment will be modeled by Cameo Systems Modeler (CSM) which

is a Systems Engineering software tool. The behavior of the simulation will also be

modeled in diagrams built in Cameo Systems Modeler. Components listed in the

structural diagrams will be allocated to the simulation requirements. Instances of

the simulation system block will be used in order to send inputs to the external

robotic simulation and receive outputs from the simulation after completion.

This simulation will be initiated from Cameo Systems Modeler. The robotic

simulation will run in a well known and popular robotic simulator so that the sim-

ulation can be used by other researchers. The simulation will simulate the UR10

moving the Shadow Hand to a cup placed at a known location. The Shadow Hand

will then grasp the cup, and the UR10 will lift the cup from the table. Force will

then be added to the center of mass of that cup in the negative z direction in order

to simulate weight being added. Once the cup starts slipping from the grasp, the

hand will automatically sense the slippage and correct by closing the fingers until

the slipping stops. After these steps have completed, the simulation will output

metrics of interest to Cameo Systems Modeler. Lastly, the robotic simulation will
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be validated against the stakeholder requirements and verified against the simula-

tion requirements. The simulation will also be used to select an optimal value for

the rotational velocity parameter of the finger and thumb joints used during the

correction stage of simulation.

1.4 Contribution of Thesis

The main contribution of this thesis is the development of a robotic simulation

architecture written in SysML and displayed by a system’s engineering software

tool, Cameo Systems Modeler. The ability to connect Cameo Systems Modeler to

a robotic simulation software such as CoppeliaSim is a novel contribution. The

scripts written in Lua and Python in order to control the simulation were developed

by the author as well as the MATLAB function used in the process of the connection

between Cameo Systems Modeler and the robotic simulation software. The choice

of using a popular robotic simulator to simulate this problem allows other users

to further this simulation or use it for their own work dealing with a five-fingered

robotic hand grasping in simulation.

The robotic simulation created was validated to meet the stakeholder needs

of a robotic simulation that replicated the solution to the slippage detection and

correction problem as seen in the laboratory. Another contribution is the simulation

of stable grasping of a cup by the Shadow Dexterous Hand. This is further improved

by the use of force feedback control in order to stop the cup from slipping from the

Shadow Hand’s grasp in simulation. The ability to use the simulation to optimize
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the rotational velocity parameter of the finger and thumb joints was realized. With

the simulation, it was possible to run 180 tests in under 3 hours which would not

be capable in the lab.

This work presented the application of Model-Based Systems engineering meth-

ods to robotic simulation of the slippage detection and correction by a five-fingered

robotic hand. Overall, the problem as seen in the laboratory was replicated in simu-

lation which allows for future work and problems dealing with the use of five fingered

grasping and manipulation. This will provide the ability to test algorithms before

applying them in the real world which will prevent damage of expensive equipment.

1.5 Outline of Thesis

This section provides an outline of the thesis. Chapter 1 provides an overview

of the slippage detection and correction problem and why the simulation of this

problem was necessary. Chapter 2 reviews the previous laboratory slippage detection

and correction experiment completed by the author along with Dr. Zhenyu Lin

and Dr. John Baras. Chapter 3 explains the approach of Model-Based Systems

Engineering to the creation of a robotic simulation of the slippage detection and

correction problem. Chapter 4 details the model development in Cameo Systems

Modeler by creating structural and behavior diagrams. Chapter 5 discusses the

robotic simulation software, CoppeliaSim, and how the dynamics are calculated for

the simulation. Chapter 6 presents the simulation of the robotic task and use of

the robotic simulation software to simulate the slippage detection and correction
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problem. Chapter 7 goes through the simulation validation and verification as well

as using the simulation to optimize the rotational velocity parameter of the finger

and thumb joints used during the correction stage. Chapter 8 concludes this work

and describes future work.
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Chapter 2: Tactile Based Slippage Detection and Correction Prob-

lem

This chapter will review the laboratory work involving the Universal Robots

UR10 and the Shadow Dexterous Hand with BioTac SP sensors attached which were

used to create a statistics based slippage detection and correction algorithm based

on object classification. This work was conducted by the author, Dr. Zhenyu Lin,

and Dr. John Baras in the Autonomy Robotics Cognition (ARC) laboratory at the

University of Maryland.

2.1 Experimental Set Up and Problem Description

The problem scenario that was investigated involved the case where a human

can pick up a cup from a table and is able to keep adjusting the grasp as needed in

order to avoid dropping the cup while the weight of the cup is being changed such

as when pouring water into the cup. Our group was interested to see if we could

replicate this scenario by using the Shadow Dexterous Hand with BioTac SP sensors

attached. The Shadow Dexterous Hand is a five fingered manipulator that is the

size of an average human male’s hand and has 20 actuated degrees of freedom [6].

The dimensions of the Shadow hand are shown in Figure 2.1.
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Figure 2.1: The Dimensions of the Shadow Dexterous Hand [6].

10



The BioTac SP sensors mimic the sense of touch and compliance of a human

fingertip. The BioTac SP sensor has 24 electrodes, 2 pressure sensors (Pac and Pdc),

and 1 temperature sensor built into the rigid core which is surrounded by fluid and

wrapped in an elastic skin [7]. When these sensors come into contact with an object,

the electrode data provides the contact location through impedance sensing. The

location of the electrodes are shown in Figure 2.2. The electrodes are mounted on

a rigid core inside of the BioTac SP sensor.

Figure 2.2: Locations of the electrodes in the BioTac SP sensor.
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The Pdc sensor uses changes in the fluid pressure inside the BioTac SP sensor

to measure the overall pressure exerted by the fingertip [7]. The Pac sensor measures

microvibrations detected when the skin moves across an object, and the temperature

sensor measures the difference in temperature between the BioTac SP sensor and

the object in contact [7]. The summary of the performance of these sensors is listed

in Figure 2.3.

Figure 2.3: Summary of the Performance of the BioTac SP Sensors [7].

For each experiment, the Shadow Dexterous Hand was connected to a Univer-

sal Robots UR10 robotic arm, and the arm was moved into a designated starting

position. Once the Shadow Hand was moved into the proper pre-grasping posi-

tion, the fingers were moved to grasp the object which for all experiments was a

22 ounce plastic bottle. The movement of the Shadow Hand fingers was controlled

by ROS (Robotic Operating System) messages that were sent by a computer in

the laboratory that had the Shadow Hand software loaded into a Docker container.

The weight of the bottle was measured before the start of experiments. Prior to

lifting the bottle off the table, it was held securely by the BioTac SP sensors that

are attached to the Shadow Hand fingers. The UR10 was moved to lift the bottle

from the table, and the bottle was held at the same height at the beginning of each
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experiment. During the experiment, weight was added to the bottle at a consistent

rate by pouring bb pellets through a funnel and into the bottle. The experiment

was run until the bottle slipped completely from the hand. Sixty four experiments

were conducted with each experiment collecting raw sensor data which was synched

with visual data that was recorded by a high resolution camera. The experimental

set up is shown in the following Figure 2.4.

Figure 2.4: Experimental Set Up for Data Collection.

2.2 Statistics Based Slippage Detection

The main objective of collecting 64 sets of haptic data was to find the moment

of correlation in the electrode data which would indicate the moment the cup starting

slipping from the hand. In order to detect slippage, it is important to understand

the statistics of the sensor data before, during and after the moment of slip. Dr.

Zhenyu Lin took the sensor data from the 64 experiments in order to find the

moment of slippage. He first used a median flow tracking algorithm [8] to determine
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the time that the cup started to slip for each experiment from the visual data. The

median flow tracker tracked the cup in forward and backward directions in time

and measured the discrepancies between these two trajectories. Minimizing this

Forward-Backward error enabled the tracker to reliably track the cup. We used the

tracker to track the cup grasped in the hand and detect if slippage occurs based on

the velocity of the cup.

As shown in figure 2.5, the blue bounding box indicates that we are tracking

the bottom of the cup. The text on the top left corner indicates the status of the

experiment, whether slippage is detected or not, and the first frame that slippage is

detected.

Figure 2.5: Median Flow Tracker is used to determine t∗j . In the experiment pictured,
first slippage is detected at frame 48 and t∗j=1.6s.

Slippage occurred if the velocity of the object was greater than some small

threshold ε. t∗j denoted the first moment that slippage occurred for the jth experi-
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ment. Once slippage time t∗j was found for each experiment j ∈ {1 · · ·M}, where M

was the total number of experiments in the dataset, the data was aligned based on

t∗j since the statistics around the moment of slip was key. The electrode data was

denoted as xji,k(t), where j was the index for the experiment number, i ∈ {1 · · ·nf},

was the index of the finger , k ∈ {1 · · ·ne} was the electrode index, and t was the

time sample index. nf was the number of fingers which is equal to 5 for the Shadow

Hand, ne was the number of electrodes which is equal to 24 for the BioTac SP

sensors attached to the Shadow Hand. Finger index 1 to 5 corresponded to first fin-

ger (FF), middle finger (MF), ring finger (RF), little finger (LF) and thumb (TH),

respectively.

In order to detect the moment of slippage from the sensor data, a statistical

based method was used to find the correlation between the sensor data around the

moment of slippage. This method calculated the correlation between the realtime

haptic data sequence XR and the pre-slip haptic data sequence XH . The dimension

of XH is XH ∈ I × nf × ne, where I is the window size I = (tb + ta + 1). A single

pre-slip haptic data sequence XS for the jth experiment can be defined as follows:

XS(t, j, i, k) = xji,k(t) (2.1)

for t ∈ [t∗j − ta, t∗j + tb], i ∈ [1, nf ], k ∈ [1, ne]. Then, the average pre-slip haptic data

sequence of the dataset was calculated as follows:

XH(t, i, k) =
1

Ne

Ne∑
j=1

XS(t, j, i, k) =
1

Ne

Ne∑
j=1

xji,k(t) (2.2)
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for t ∈ [t∗j − ta, t
∗
j + tb], i ∈ [1, nf ], k ∈ [1, ne], Ne = 64 was the total number of

experiments in the dataset.

The realtime haptic data sequence XR has the same dimension as XH , and it

was updated with every new sample. Let tnow denote the current time index, then

XR(t, i, k) = xji,k(t) (2.3)

for t ∈ [tnow − (ta + tb), tnow], i ∈ [1, nf ], k ∈ [1, ne].

The correlation between the realtime sequence XR and the pre-slip sequence

XH for electrode k on finger i at time t was calculated as follows.

ρi,k(XR, XH) =
1

N − 1

N∑
j=1

(
XRj
− µXR

σXR

)(
XHj
− µXH

σXH

) (2.4)

where µ and σ are the mean and standard deviation of the haptic data sequence for

electrode k on finger i. N = (ta+tb+1) is the window size or number of observations

in the sequence. We select ta = tb = 75 (which is equivalently 0.75 seconds) in

order to understand the statistics around the moment of slippage. (N − 1) here

is the Bessel’s correction, which uses (N − 1) instead of N in the formula for the

sample variance and sample standard deviation. This method corrects the bias in

the estimation of the population variance. The total correlation is a sum of all the

electrode correlations.

ρ(XR, XH) =
5∑

i=1

24∑
k=1

ρi,k(XR, XH) (2.5)
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During the testing phase, the cross-correlation between the real-time haptic

data and the haptic data that we collected for the interval around the moment of

slippage was calculated. From the experiments, it was noticed that at the moment

of slippage t∗, there was always a peak outlier appearing in the cross-correlation

sequence. Therefore, our slippage prediction problem was transferred into a peak

outlier detection problem. A peak in the cross-correlation suggested a possible slip,

and the forces applied on the object by the fingers should be increased to prevent

slippage.

2.3 Object Classification and Slippage Correction

After the slippage detection algorithm was working, the next piece was to

create a correction algorithm that stopped the cup from slipping from the Shadow

Hand but not deform the cup. This was a necessary piece so that the robotic hand

could apply this correction when handling soft plastics or even paper cups. In

order to know the force required to stop the cup from slipping from the hand, an

estimation of the changing weight was used. To estimate the weight of the grasped

cup, the vibration sensor data, Pac, from the BioTac SP sensors was used. The

vibration sensor readings were significant only when the bb pellets started to enter

the cup. As shown in Figure 2.4(b), the narrow funnel ensures that the pouring

speed is almost always constant. Therefore, the weight increase from time t1 to t2

could be estimated as:
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∆Wt1,t2 = IPac(t) ·
t=t2∑
t=t1

R (2.6)

where I is an indicator function and takes a value 1 when the vibration sensor has

a significant reading and 0 otherwise. R is a constant which decides the rate of the

weight increase and depends on the size of the funnel.

Additionally, the container was classified into two different classes, i.e. rigid

containers or soft containers. As mentioned previously, it is important to classify

the container so that the applied grasping force will not destroy the container if the

container is soft or fragile. As shown in Figures 2.6 and 2.7, the vibration sensor

readings behave differently for soft containers as compared to rigid containers.

Figure 2.6: Pac for a rigid container.

Once the container was detected as a soft container, a grasping force threshold
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Figure 2.7: Pac for a soft container.

was added to the correction algorithm so that the Shadow Hand can not apply more

force than the grasping force threshold during correction. There was a warning

message displayed once this threshold was met, and the correction algorithm was

stopped. This threshold can be adjusted based on user preferences such as deforming

the cup past the crushing threshold of the cup in order to stop the cup from slipping

from the hand.

2.4 Move to Simulation

A slippage detection and correction algorithm was created for the Shadow

Hand to be able to autonomously detect and stop a soft or rigid cup from slipping

from the hand while weight was being added. However, a simulation of this robotic
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task was never created. It is necessary to be able to simulate robotic tasks so that

problems can be resolved before using the robotic hardware. This will reduce the

risk of failures caused by improper use of the equipment or accidental errors during

use. Further, during times when using real hardware is difficult such as during a

pandemic, research can still continue as long as the robotic task run in simulation can

be replicated by hardware. This was the motivation behind the main contribution

of this thesis which used Model-Based Systems Engineering methods to build a

simulation that replicated the robotic task of solving the slippage detection and

correction problem as detailed in this Chapter.
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Chapter 3: Model-Based Systems Engineering Approach to Simula-

tion

This chapter reviews the reasons to use Model-Based Systems Engineering

(MBSE) and how those methods and practices are used to build a robotic simulation

that can be verified and validated.

3.1 Use of Model-Based Systems Engineering

In 2007, the INCOSE Systems Engineering Vision 2020 defined MBSE as “the

formalized application of modeling to support system requirements, design analysis,

verification, and validation activities beginning in the conceptual design phase and

continuing throughout development and later life cycle phases” [9]. MBSE promotes

the use of going from Stakeholder requirements to the verification and validation

stages by building and using system models or a set of models which are usually built

using a Systems Engineering software tool such as Cameo Systems Modeler (CSM).

Using the MBSE approach to system development can result in “significant im-

provements in systems requirements, architecture, and design quality; lower the risk

and cost of system development by surfacing issues early in the system definition;

enhance productivity through reuse of system artifacts; and improve communica-
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tions among the system development team” [9]. These possible improvements to

the system modeling process such as lowering the risk and cost of surfacing issues

aligns well with the goals of using simulation for robotic tasks.

When using Systems Engineering techniques to develop a system, these tech-

niques can be visualized by the Vee model, shown in Figure 3.1.

Figure 3.1: Vee Model Diagram as developed by Frosberg et al. (2005) [9].

The left hand side of the Vee model deals with the design and development of the

system of interest while the right hand side deals with testing and realization of

the system of interest.

For building the robotic simulation, the Vee model was followed. Therefore, the

process started with developing stakeholder requirements. The stakeholder require-

ments that were developed apply to the development and use of a robotic system

that solves the slippage detection and correction problem. Measures of Effective-
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ness (MOEs) and the simulation requirements were derived from the stakeholder

requirements. From the simulation requirements, it was possible to build the sim-

ulation architecture and the simulation design through structural and behaviorial

diagrams. These diagrams were programmed using the Systems Modeling Language

(SysML) which is a graphical modeling language used by MBSE practitioners when

developing system models [10]. These diagrams were visualized in Cameo Systems

Modeler. The robotic simulation was implemented in a robotic simulator program

and connected to CSM in order to perform verification and validation. Throughout

the process of following the Vee model, the simulation was validated against the

stakeholder requirements and verified against the simulation requirements.

3.2 Stakeholder Requirements

Following the Vee model as shown in 3.1, stakeholder needs or requirements

for the robotic system that solves the slippage detection and correction problem

were developed. As defined in the INCOSE Systems Engineering Handbook, “the

purpose of the Stakeholder Needs and Requirements Definition process is to define

the stakeholder requirements for a system that can provide the capabilities needed

by the users and other stakeholders in a defined environment” [9]. The development

of the stakeholder needs for the robotic system was driven by the following objective:

to autonomously detect and correct for object slippage within a robotic dexterous

hand while weight is being added to the object. This led to the following Table 3.1

of stakeholder requirements.
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ID Stakeholder Requirement Stakeholder Requirement
Description

SHR.1.1 Performance Requirements
and Constraints

SHR.1.1.1 Detect Object The Robotic System shall use
Slippage haptic sensors to detect

object slippage.
SHR.1.1.2 Use Anthropomorphic The Robotic System shall use a

Robotic Hand five-fingered dexterous robotic
hand.

SHR.1.1.3 Autonomous Detection The Robotic System shall detect
and Correction and correct object slippage

autonomously.
SHR.1.1.4 Stop Object From The Robotic System shall stop

Falling a grasped object from falling.
SHR.1.1.5 Accurate Slippage The Robotic System shall detect

Detection object slippage with a
probability > 0.97%.

SHR.1.1.6 Time of Slippage The Robotic System shall detect
Detection object slippage within 5 seconds.

SHR.1.1.7 Time of Slippage The Robotic System shall correct
Correction object slippage within 200 ms.

SHR.1.1.8 Object Correction The Robotic System shall maintain
Displacement an object displacement < 0.05m

during correction stage.
SHR.1.1.9 Maintain Object The Robotic System shall not

Orientation rotate more than 45 degrees about
its center of mass during correction.

SHR.1.1.10 Max Force Applied The Robotic System shall apply
a correction force less than the

safety margin of the object.
SHR.1.1.11 Replicate Laboratory The Robotic System shall be

Experiment in able to replicate the slippage
Simulation detection and correction problem

in simulation.

Table 3.1: Stakeholder Requirements Table.
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3.3 Measures of Effectiveness

The measures of effectiveness for the robotic system that will solve the slippage

detection and correction problem were derived from the stakeholder requirements.

MOEs are important metrics that can be used to validate the system. They are

“operational measures of success that are closely related to the achievement of the

mission or operational objective being evaluated, in the intended operational en-

vironment under a specified set of conditions” [9]. The MOEs are listed in Table

3.2.

3.4 Simulation Requirements

The main focus of this work is to create a robotic simulation of the slippage

correction and detection problem that was worked on in the lab. Therefore, there

is a need for simulation requirements so that the elements built for the simulation

can be verified. This way items that needs to be included in the simulation are

included and elements are not built that are not needed. These requirements are

derived from the stakeholder needs and requirements. The simulation requirements

are listed in Tables 3.3, 3.4, and 3.5.

25



Metric Definition Threshold Objective
Value Value

Probability of The probability of detecting > 97% > 99%
Detection of object slippage from the robotic

Object Slip (PDS) the robotic hand given the
object does slip.

Probability of The probability of detecting < 3% < 1%
False Detection of object slippage from the robotic
Object Slip (PFS) robotic hand given the object

does not slip.
Time of Object Slip The time is takes to detect < 5secs < 2secs

Detection (TOS) object slippage from the
robotic hand.

Time of Object Slip The time is takes to < 200ms < 100ms
Correction (TOC) correct for object slippage

from the robotic hand.
Object The total displacement of < 0.1m < 0.05m

Displacement (OD) the object during correction.
Object The rotation of the object < 45degs < 20degs

Rotation (OR) about its center of mass
relative to the world frame

during correction.
Max Force Applied The maximum force applied < Safety < Crushing
To Grasped Object by the robotic hand to the Margin Threshold

(MGF) the grasped object during
correction.

Object Held (OH) Boolean response which equals 1 1
1 if the object did not fall
from the grasp during the

experiment or 0 if not.

Table 3.2: Measures of Effectiveness Table.
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ID Simulation Requirement Simulation Requirement
Description

S.1.1 System Capability
Requirements

S.1.1.1 System Functional
Requirements

S.1.1.1.1 Simulate Robotic The Robotic System Simulation (Sim)
Equipment shall simulate the Universal Robots

UR10, the Shadow Dexterous Hand, and
the BioTac SP sensors.

S.1.1.1.2 Simulate Grasp The Robotic System Sim shall
Objects simulate a cup as the object

to grasp.
S.1.1.1.3 Simulate The Robotic System Sim shall

Laboratory simulate an environment similar
Environment to the ARC laboratory.

S.1.1.1.4 Import Unified The Robotic System Sim shall
Robot Description be able to import robotic URDFs.

Format Files
S.1.1.1.5 Calculate Robot The Robotic System Sim shall

Kinematics calculate the kinematics for
the UR10 and Shadow Hand Robot.

S.1.1.1.6 Calculate The Robotic System Sim shall
Dynamics be able to calculate the

dynamics for all the objects
in the simulation.

S.1.1.1.7 Use Physical Engines The Robotic System Sim shall
use physical engines to
calculate dynamics in

the simulation.
S.1.1.1.8 Robotic Arm The Robotic System Sim shall

Movement control the movement of the
UR10.

S.1.1.1.9 Robotic Hand The Robotic System Sim shall
Movement control the movement of the

Shadow Hand Robot.
S.1.1.1.10 Add Weight The Robotic System Sim shall

Force add force to the center of
mass of the object in the

negative Z direction.

Table 3.3: Simulation Requirements Table.
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ID Simulation Requirement Simulation Requirement
Description

S.1.1.1.11 Use Friction The Robotic System Sim shall
use friction between the grasp
object and robotic fingertips

to hold the object.
S.1.1.1.12 Calculate Friction The Robotic System Sim shall

Force be able to calculate the
force of friction.

S.1.1.2 System Performance
Requirements

S.1.1.2.1 Slippage Detection The Robotic System Sim shall
detect object slippage within

2 secs.
S.1.1.2.2 Slippage Correction The Robotic System Sim shall

stop object slippage within
100ms.

S.1.1.2.3 Displacement of The Robotic System Sim shall
Grasp Object ensure total object displacement

is < 0.05m.
S.1.1.2.4 Rotation of The Robotic System Sim shall

Grasp Object maintain grasp object rotation
about its center of mass

relative to the world frame
to be < 20 degrees.

S.1.1.2.5 Max Grasp The Robotic System Sim shall
Force apply less force than the

crushing threshold of the
grasped object.

S.1.2 System External
Interface Requirements

S.1.2.1 Start From CSM The Robotic System Sim
shall start from an instance

in CSM.
S.1.2.2 Connect to Robotic The Robotic System Sim shall

Simulation Software connect CSM to a robotic simulator.
S.1.2.3 External Control The Robotic System Sim shall

be externally controlled by
an external application.

Table 3.4: Simulation Requirements Table Continued.
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ID Simulation Requirement Simulation Requirement
Description

S.1.2.4 Output Grasp The Robotic System Sim shall
Object Position output the grasp object position

to external applications.
S.1.2.5 Output Grasp The Robotic System Sim shall

Object Orientation output the grasp object orientation
to external applications.

S.1.2.6 Output Grasp The Robotic System Sim shall
Force output the grasp force to

external applications.
S.1.2.7 Output Grasp The Robotic System Sim shall

Hold Performance output a 1 if the grasped object
Metric was held during the correction

stage of the simulation.
S.1.2.8 Output to CSM The Robotic System Sim shall

output metrics to CSM.

Table 3.5: Simulation Requirements Table Continued.
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Chapter 4: System Description

The focus of this chapter is on the creation of the system architecture which

was modeled by structural and behavioral diagrams. While the system structural

diagrams model the robotic system that is used for the slippage detection and cor-

rection problem, the behavior diagrams modeled the behavior of the laboratory

experiments and simulation.

4.1 Slippage Detection and Correction Use Cases

A use case diagram was created in order to present the list of use cases that

were needed in order to model the behavior of the robotic system in solving the

slippage detection and correction problem. In general, the purpose of a use case

diagram is to convey externally visible services that a system provides and the

actors plus environment that are involved with those use cases [10]. The use case

diagram built for this problem is presented in Figure 4.1.

The first and second use cases deal with the set up and actions of the robotic

system to solve the slippage detection and correction problem in the laboratory.

The third use case which is the focus of this work deals with the robotic simulation

built to replicate the slippage and correction problem. The only actor involved in
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Figure 4.1: Use Case Diagram developed for the slippage detection and correction
problem.

these three use cases was the robotic engineer who is responsible for running the

experiment and simulations. The environment on the right side of the diagram is

composed of equipment that was involved with the system of interest but not a part

of the system of interest such as the bb pellets or the simulated weight force.

4.2 The Robotic System Context and System Level Block Definition

Diagrams

Structural diagrams were created to model the robotic system context-level

and system-level architecture. These diagrams show the structure decomposition of

the robotic system and include the components used in the lab and in simulation.

Block definition diagrams (BDDs) are used by systems engineers to show structural

components and how they are connected. The purpose of BDDs is to convey system
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decomposition and the structural relationships between the elements of definition

which are model elements displayed on BDDs such as blocks, actors, value types,

constraint blocks, flow specification, and interfaces [10]. The context-level BDD for

the robotic system used in the slippage detection and correction problem is shown

in Figure 4.2.
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Figure 4.3: Left side view of the context-level BDD.

Figure 4.4: Right side view of the context-level BDD.

In Figure 4.3, the left side of the context-level diagram is the structural de-

composition of the robotic system which includes blocks for the Shadow Hand and

UR10 as well as blocks that represent the simulation software under the computer
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block. The user is listed under the center of the diagram. In Figure 4.4, the right

side of the context-level diagram is the structural decomposition of the environment

which includes blocks for the grasp objects and other items that interact with the

system of interest. Also, this includes items that are different for the simulation

versus in the real lab.

The system-level BDDs go further into the decomposition of the system of

interest by showing the structural decomposition of the Shadow Hand Robot and

UR10 robot. The BDD for the Shadow Hand is shown in Figure 4.5, and the BDD

for the UR10 is shown in Figure 4.6. The BDD for the Shadow Hand Robot displays

the joints and links of the robot as well as a block for the BioTac SP sensors which

are attached to the Shadow Hand fingertips. This structural decomposition came

from the URDF provided by the Shadow Hand Robot Company.

The BDD for the UR10 displays the joints and links of the robot and this

structural decomposition came from a URDF provided by the Universal Robots

Company. These structural BDDs provide the user or stakeholder with a way to

understand and visualize the components involved in the system of interest. Ele-

ments from these BDDs will be used in the behavioral diagrams that describe the

behavior of this robotic system.
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Figure 4.6: System-Level BDD of the UR10 robot.

4.3 Simulation Activity and Sequence Diagrams

Behavior diagrams were built for the laboratory work as described in Chapter

2, but the focus of this section will be on the behavior diagrams created for the
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robotic simulation which was use case 3. First, a activity diagram was created to

model the actions taken in order to accomplish the robotic simulation. The purpose

of an activity diagram is to provide a dynamic view of the system through the use

of a sequence of event occurrences or sequence of behaviors over time [10]. The

activity diagram for the robotic simulation is shown in Figure 4.7. The activity

diagram further shows what systems and users are involved with the actions of the

activity of use case 3.

The steps as shown in the activity diagram start with the robotic engineer ini-

tiating the robotic simulation from CSM. The engineer starts the simulation from

an instance in CSM which triggers a MATLAB script. This script triggers a python

script which starts the robotic simulation in CoppeliaSim, a robotic simulation soft-

ware. The robotic simulation starts with moving the UR10 to a specified position

where the Shadow Hand can grasp a cup. Once at the pre-grasp location, the

Shadow Hand grasps the cup, and the UR10 lifts the Shadow Hand and cup. A

force is added to the center of mass of the grasped cup in order to simulate weight

being added similar to when bb pellets were added in the lab. Force sensors on the

fingertips are used to sense slippage of the cup, and the second joint of the fingers

and thumb is rotated to correct for that slippage. Once these tasks are completed,

the simulation is shut down and returns output metrics to CSM.

The other behavior diagram created to model the behavior of the robotic simu-

lation at a lower level where messages are being sent between elements of the system

is a sequence diagram. The purpose of sequence diagrams like activity diagrams ex-

press the sequence of behaviors of a system, but a sequence diagram can be used
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to focus on how elements of blocks interact with other elements via operation calls

and asynchronous signals [10]. The messages displayed in the sequence diagram for

the robotic simulation are the messages that were used in the scripts that control

the robotic simulation. This diagram; which is split up into Figures 4.8, 4.9, 4.10,

4.11, 4.12, 4.13, and 4.14; provides a deeper view of how the robotic simulation is

able to replicate the slippage detection and correction problem. Further, one major

advantage of the sequence diagram is the ability to be able to write software based

on this diagram that will provide the steps and control messages necessary to con-

trol a robotic simulation to use the UR10 and Shadow Hand robot in simulation to

detect and correct for object slippage.
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Figure 4.7: Activity Diagram for the robotic simulation.
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Figure 4.8: Section 1 of sequence diagram for the robotic simulation.

Figure 4.9: Section 2 of sequence diagram for the robotic simulation.

Figure 4.10: Section 3 of sequence diagram for the robotic simulation.
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Figure 4.11: Section 4 of sequence diagram for the robotic simulation.

Figure 4.12: Section 5 of sequence diagram for the robotic simulation.

Figure 4.13: Section 6 of sequence diagram for the robotic simulation.
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Figure 4.14: Section 7 of sequence diagram for the robotic simulation.
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Chapter 5: Robotic Simulation in CoppeliaSim

There are a variety of choices of software that can simulate robotic tasks from

custom software created by companies for their own use to open source software that

anyone can use. Two of the most popular choices for robotic simulation software

are Gazebo and CoppeliaSim (formerly V-REP). Both of these simulators work

well with the ROS (Robotic Operating System) which has also become a popular

robotic platform for academia and industry. While Gazebo is more closely integrated

with ROS, CoppeliaSim has provided a more stable simulation of the Shadow Hand

grasping a cup for the slippage detection and correction problem.

Therefore, this chapter will review CoppeliaSim which was chosen to simu-

late the slippage detection and correction problem. An overview of the features

and capabilities of CoppeliaSim will be presented as well as how the CoppeliaSim

simulation is externally controlled. Further, the chapter will conclude with how

multibody dynamics is calculated in CoppeliaSim, and the physics engine chosen

for this simulation.
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5.1 Overview of CoppeliaSim

CoppeliaSim is a robotic simulation software that provides distributed control

of models and elements of the simulation to the user. CoppeliaSim evolved from

V-REP which both were created by Coppelia Robotics. The simulation can be con-

trolled through ROS nodes, BlueZero nodes, embedded scripts, plugins, remote API

clients or custom solutions [11]. The user also has the choice to program controllers

in multiple languages such as Octave, Lua, Python, C/C++, Java, MATLAB, or

Urbi which makes CoppeliaSim very open and user friendly [11]. Further, the same

code that is written to control the simulation can be used to control hardware. The

many features and capabilities of CoppeliaSim are summarized in the next section.

5.1.1 Features and Capabilities

The main features of CoppeliaSim include six programming approaches, ability

to program in six languages, remote Application Programming Interface (API),

access to four physics engines, collision detection, inverse and forward kinematic

calculations, path and motion planning, vision and force sensors, convenient model

browser, and many other features are available [11]. These features allow the user to

create complex and powerful robotic simulations. The user interface for CoppeliaSim

EDU which is the free educational licensed version of CoppeliaSim is shown in Figure

5.1.

The model browser as shown on the left in Figure 5.1 allows the user to se-

lect models of components and drag them into the main simulation area in the
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Figure 5.1: CoppeliaSim user interface.

center. This includes robot models that are pre-installed with the simulation soft-

ware and ones that are saved by the user. The user can build robot models within

CoppeliaSim or import robot models from their URDF provided by other robotic

companies or researchers. Users can also save their own specific layout of their mod-

els for their simulation, embedded customized scripts, and other customizations as

a CoppeliaSim scene. This allows the user to create specific scenes with various

different versions of one simulation for instance. As well as, this scene can be sent

to other users of CoppeliaSim without those users needing to download separate

custom files to run or change the simulation.

The ability to write a simulation in multiple languages allows the user more

flexibility and does not force the user to learn a tailored language that only works

for this simulator. Further, there are over 100 CoppeliaSim functions that allow

the user to control a simulation, the simulator, or a robot remotely as part of the
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remote API feature [11]. The remote API feature is shown by the graphic in Figure

5.2 and discussed further in Chapter 5.2.

Figure 5.2: Remote API connections from CoppeliaSim [11].

Other powerful features include access to four physics engines; Bullet Physics,

Open Dynamics Engine (ODE), Vortex Studio and Newton Dynamics; which pro-

vides the ability to select which physics engine will calculate the dynamics during

the simulation [11]. This is necessary since some physics engines provide more sta-

bility in simulation which is needed for grasping simulations. In order to go from

one physics engine to using another is made simple by selecting the physics engine

from a drop down bar as shown in Figure 5.3.

Overall, CoppeliaSim provides many capabilities and features that can support
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Figure 5.3: Picture of physics engines toolbar drop down list.

the creation of powerful robotic simulations which is why CoppeliaSim was selected

as the robotic simulation software for this work.

5.2 External Control of CoppeliaSim Simulations

There are multiple ways to control CoppeliaSim simulations. For the slip-

page detection and correction problem, it is important to be able to control the

robotic simulation externally. This was accomplished through the use of the remote

API feature which allows communication between CoppeliaSim and external appli-

cations. The remote API feature used is based on the BlueZero (BO) middleware

and its interface plugin to CoppeliaSim. The BO-based remote API allows the user

to control CoppeliaSim simulations from an external application such as a script

written in Python, C/C++, or a program written in MATLAB [11]. The user can

run multiple external applications to control the same simulation at the same time,

and these calls are hidden from the user during the simulation.

The messages sent from the external applications to control or interact with

the CoppeliaSim simulation can be synchronous or asynchronous. Synchronous mes-
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sages are used when the external application is running in sync with each pass of

the simulation where asynchronous is used when they are not in sync [11]. These

messages are sent between the client and server sides of the BO-based remote API.

The client side is the external application, and the server side is implemented via a

CoppeliaSim plugin and a embedded Lua script in CoppeliaSim [11]. This BO-base

remote API feature was used for this work in order to run the robotic simulation

externally which was listed as a simulation requirement.

5.3 Simulated Dynamics in CoppeliaSim

It is important to use a simulation software that calculates the dynamics of

the models or elements used within the simulation especially if the purpose of the

simulation is to mirror a robotic task completed with real hardware. As stated

previously, CoppeliaSim allows the user to choose between four different physics

engines in order to calculate the dynamics of the multibodies in the simulation.

The four options are Bullet physics, ODE, the Vortex Studio, and the Newton

Dynamics Engine. The reason for providing different options is due to the fact that

physics simulation is a complex task and each engine offers different performance

measures such as precision or speed of simulation, and each engine might have

different features to choose from depending on the task being simulated such as how

friction is calculated [11]. The physics engine selected for the robotic simulation

of the slippage detection and correction problem was the Vortex Studio since it

provided a very stable grasping simulation.
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5.3.1 Vortex Studio Software’s Multibody Dynamics Engine

Vortex Studio’s physics engine has a unique blend of speed, accuracy, and

stability that is used to provide high-fidelity and interactive simulations [12]. Vortex

Studio’s simulations involve rigid body calculations with constraints. The rigid

bodies represent moving components of a mechanism such as robotic links and joints,

and the constraints create restrictions on the movement of the rigid bodies such as

a robotic joint between two robotic links [12]. Vortex’s simulation is advanced in

discrete time steps where the workflow followed during a single time step is shown

in Figure 5.4.

Figure 5.4: Vortex Engine’s Simulation Loop [12].
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During the collision detection stage, contact constraints are generated and

added to the simulation in order to model the physical interactions between the

collision of rigid bodies [12]. In order to detect collisions between simulated bodies,

each model has certain attached collision geometries which are used to define the

bodies shape. This software then uses a collision detection algorithm that performs

fast and efficient overlap tests on bounding volumes of the collision geometries and

then progressively more accurate and less conservative but slower tests [12]. This

results in a small set of pairs of overlapping geometries. Intersection tests are then

performed to find a final set of overlapping collision geometries. This process is

more computationally efficient than a following a brute force method to figure out

the collision points between colliding bodies [12].

During the partitioner stage, the partitioner organizes rigid bodies into parti-

tions where every partition has a subset of rigid bodies with their related joints [12].

These partitions contain rigid bodies that only affect each other through constraints

and are automatically computed. Partitions can be coupled or not coupled where

partitions are coupled if there is a single constraint between any rigid bodies in a

single partition or across partitions [12]. Coupled partitions will affect each other

in simulation, and not coupled partitions are solved in parallel and independently

during simulation.

During the constraint solver stage, partitions are received and processed to

compute the forces applied by the constraints [12]. Partitions that are not coupled

are processed in parallel which saves time during computation. The coupled par-

titions are initially solved isolated and in parallel with interaction forces that are
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applied to the rigid bodies at interaction boundaries computed as well [12]. This is

repeated iteratively, and once the constraint forces are calculated, the rigid bodies

can be moved to their new location at the end of the simulation step which is done

in the integrate stage for each partition in parallel [12]. Lastly, these simulations

are highly customizable and can be tailored to the users needs.
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Chapter 6: Simulation of the Slippage Detection and Correction Prob-

lem

In Chapter 5, the simulation software, CoppeliaSim, was reviewed along with

the choice of Vortex Studio as the physics engine used during simulation and reasons

why this software and physics engine were chosen to simulate the slippage detection

and correction problem. This chapter goes in to the details of the simulation set up

and how the slippage detection and correction problem was replicated in simulation.

6.1 Simulation Set up and Overview

One of the first simulation requirements, S.1.1.1.1, was to simulate the robotic

equipment that was used in the experiments in the laboratory. This required finding

models to use for the Universal Robots UR10, the Shadow Hand Robot, and the

BioTac SP sensors. Computer models for these robots were already created by the

companies that produce these robots. These models are represented by URDF files

which contain kinematic and dynamic data for the robots. The model for the UR10

comes preloaded into CoppeliaSim and can be found in the model browser. The

model for Shadow Hand Robot was not included in the model browser. Therefore,

it was necessary that CoppeliaSim had the ability to import the URDF file for
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the Shadow Hand Robot so that creating the robot model from scratch could be

avoided. This was completed through a URDF plugin that comes preloaded with

the CoppeliaSim software. The URDF file was downloaded as part of a software

package provided by the Shadow Robot Company.

Figure 6.1: Robotic Model of the UR10 in CoppeliaSim.

The robot model for the UR10 in CoppeliaSim is shown Figure 6.1,and the

robot model for the Shadow Hand Robot in CoppeliSim is shown in Figure 6.2. The

BioTac SP sensors were also included in the Shadow Hand Robot model which is
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Figure 6.2: Robotic Model of the Shadow Hand Robot in CoppeliaSim.

seen as the green fingertips in Figure 6.2.

It was necessary to attach the Shadow Hand Robot model to the UR10 model

through a force sensor which is the red circle in Figure 6.1 so that both models

become one robot model for the UR10 with the Shadow Hand Robot attached as

the end-effector as shown in Figure 6.3. In order to replicate the lab environment of

the slippage detection and correction problem, the UR10 was lifted and attached to

a table. Across from the UR10 and Shadow Hand robot, a model of a cup was placed
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on a table and within the reach of the UR10 and Shadow Hand. Two simulated

cameras were also added to the environment in order to provide different views of

the simulation. This final environment, shown in Figure 6.4, remained constant

throughout every simulation run.

Figure 6.3: Robotic Model of the Shadow Hand Robot model attached to the UR10
robot model in CoppeliaSim.
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Figure 6.4: Simulation environment set-up used for every simulation run.

6.2 Slippage Detection and Correction in Simulation

The slippage detection problem as discussed in Chapter 2 requires the robotic

hand to detect the moment a cup slips from the grasp as weight is being added.

In the lab, this was accomplished by using a statistics-based detection algorithm

that used tactile data from the BioTac SP sensors attached to the Shadow Hand

Robot. While simulating the full set of raw data that comes from the BioTac SP

sensors was not possible, a CAD (Computer-aided Design) model of the BioTac SP

sensor was used as the fingertips for the Shadow Hand Robot. In order to detect

the moment of slippage in simulation, force sensors were attached to the BioTac SP

fingertips. CoppeliaSim force sensors are able to detect forces in three dimensions

as well as torques in three dimensions between two rigid objects [11]. The forces

and torques measured by the force sensor are shown on the left in Figure 6.5, and

the force sensor inside of the BioTac SP fingertip is shown on the right in Figure
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6.5.

Figure 6.5: The forces and torques measured by the force sensor [11] on the left and
force sensor within BioTac SP fingertip on the right. The blue axis is the z-axis, the
red axis is the x-axis, and the green axis is the y-axis.

The force sensors are within all five BioTac SP fingertips. When the BioTac

SP fingertips make contact with the cup in simulation, the force sensors will measure

the amount of force that is applied by the fingertips to the grasped cup similar to

the pressure sensor in the real BioTac SP sensors. The method chosen to detect the

moment of slip and correct for slippage is based on work by Nicholas Wettels et al.

where they used a BioTac prototype sensor to measure shear and normal forces at

the fingertips and used this measurement to maintain perturbed objects within the

force cone to prevent slip [4].

The Coulomb model of friction relates the tangential friction force magnitude

to the normal force magnitude by

ft ≤ µ× fn (6.1)

where the normal force magnitude (fn) is measured as the force in the y-axis, the
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tangential friction force magnitude (ft) is measured as the force in the z-axis by

the force sensors in the BioTac SP sensors in simulation. µ is the coefficient of

friction between the simulated cup and fingertips. This coefficient can be modified

for each object in the simulation environment within the Vortex Studio physics

engine settings as shown in Figure 6.6.

Figure 6.6: The Vortex Studio physics engine settings that can be modified for each
model in the simulation environment which includes friction.
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For the simulation to maintain a stable initial grasp, the friction coefficient for

the materials were chosen such that the robotic fingertips were able to maintain a

stable grasp of the cup while lifting the cup as shown in Figure 6.7.

Figure 6.7: Friction coefficients for the materials were chosen to sustain a stable
grasp of the cup while the cup was lifted.

Force was added to the center of mass of the grasped cup in the negative

z-direction through the use of the sim.addForceAndTorque function which is an

embedded function in CoppeliaSim. This force was added once the cup was held in

the air as shown in Figure 6.7. The purpose of the slippage detection and correction

algorithm created for this simulation was to detect when the cup starts to slip from

the grasp after force was added to the cup such as weight force from adding bb pellets

to the cup in the lab or the simulated force during simulation and stop that cup

from falling from the grasp. In order to detect the moment of slippage in simulation,

trials were run where force was added to the cup and data was collected from the

fingertip force sensors to see what they measured when the cup slipped from the

grasp. Figure 6.8 shows the total normal force and total tangential force measured
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by the fingertips sensors during one of the slip simulation trials. The max force

is the maximum applied force to the cup during the trial. The friction coefficients

and maximum applied force remained the same for each trial. The results were the

same for each trial, and the ratio of total normal force to total tangential force was

calculated to find the moment when the cup slipped from the grasp. This moment

is shown highlighted in yellow in Figure 6.8.

Figure 6.8: Example of trial data used to find the moment of slip during simulation.

From the simulation trials, the moment the cup was slipping from Shadow

Hand’s grasp was found to be when the ratio of the total normal force to total

tangential force was less than 0.18 as shown in Equation 6.2 .

fn
ft
< 0.18 (6.2)

where fn is the total normal force measured in the y-axis from the force sensors and

ft is the total tangential force measured in the z-axis from the force sensors. In order

to stop the cup from slipping from the grasp, a command was sent to the Shadow

Hand finger and thumb joints to rotate towards the cup to apply more pressure on

the cup. A workflow was created to show the steps for the slippage detection and

61



correction algorithm for the simulation which was a part of the activity diagram

developed in CSM. This section of the activity diagram is shown in Figure 6.9.

Figure 6.9: This is part of the activity diagram created for the slippage detection
and correction use case which shows the slippage detection and correction algorithm
workflow used for simulation.
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As shown in the diagram, the detection and correction algorithm calculates

the ratio of the total normal force to the total tangential force and compares this

to the threshold ratio found earlier of 0.18. If the ratio is less than 0.18, the cup is

slipping from the grasp and commands are sent to the finger and thumb joints (J2)

to rotate in order to apply more pressure to the cup. This correction will stop once

the ratio equals or passes 0.18. The rotational velocities for the finger and thumb

joints are chosen so that the robotic hand stops the cup’s motion before it falls from

the grasp.

6.3 Robotic Simulation Connection to Cameo Systems Modeler

As listed under the S.1.2: System External Interface Requirements, it was nec-

essary to connect Cameo Systems Modeler to a robotic simulation software so that

the models built in CSM that represent the structure and behavior of the system of

interest can connect to simulation. This will provide the system engineer with the

ability to test parameters or conduct trade off studies by running simulations from

CSM with different inputs and recording the metrics of interest as the output. In

order to connect CSM to CoppeliaSim, the R©ParaMagic plugin was used in Cameo

Systems Modeler. R©ParaMagic is a third-party plugin application that can con-

nect the simulation engine from CSM to run models or functions in programs such

as MATLAB, Modelica, or Mathematica [13]. A MATLAB function was created

that would receive inputs from CSM and would then connect to a Python script

which would externally control the robotic simulation in CoppeliaSim. These steps
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were modeled by the activity diagram for the slippage correction and detection al-

gorithm use case. The portion of the activity diagram that deals with these software

connections is shown in Figure 6.10.

Figure 6.10: This is part of the activity diagram created for the slippage detection
and correction use case which shows the connection from CSM to CoppeliaSim.

As shown in the first step of the workflow in Figure 6.10, the simulation process

starts with running an instance BDD which was created in CSM. The instance BDD

allows the systems engineer to choose the parameters that will be input into the

simulation. An example of an instance used for this work is shown in Figure 6.11.
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Figure 6.11: Example of an instance diagram built in CSM.

This is a simple instance created to input a parameter named start known as

variable s to the connected MATLAB function. The connection to the MATLAB

function was modeled by a parametric diagram. The MATLAB function was input

into a constraint block. The input to the constraint block is the s parameter, and

the output is the output of the MATLAB function. This output is then fed back

into the graspComplete variable in the instance block. The parametric diagram is

shown in Figure 6.12.
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Figure 6.12: This parametric diagram shows the input, constraint block, and output
used during the connection of CSM to MATLAB.

In order to start the simulation of the slippage detection and correction prob-

lem from CSM, an instance as shown in Figure 6.11 and a parametric diagram as

shown in Figure 6.12 are created, and the following R©ParaMagic application window

shown in Figure 6.13 is used to start the simulation.
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Figure 6.13: The R©ParaMagic application window used to initiate the robotic sim-
ulation from CSM.

The process is started by clicking the solve button. This will initiate the

R©ParaMagic plugin which connects CSM and MATLAB. A MATLAB function was

written by the author to accept the input of the variable s from CSM and trigger

a Python script which starts the robotic simulation in CoppeliaSim. The functions

used during this process were shown in the sequence diagram created in CSM and

described in Chapter 4. Once the robotic simulation has terminated, the output

from this simulation is sent in the reverse direction back to CSM. This is what fills

in the question marks shown next to graspComplete variable as seen in Figure 6.13.
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This allows the system engineer to test different inputs by using various instances

and record outputs of interest that are fed back to CSM at the end of the simulation.
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Chapter 7: Simulation Analysis and Results

This chapter will verify the slippage detection and correction simulation against

the simulation requirements and validate the simulation against the stakeholder

requirements. Further, the use of the simulation to select an optimal rotational

velocity for the finger and thumbs joints used during correction will be presented.

7.1 Verification and Validation of the Simulation

In order to satisfy the stakeholder requirements, it is necessary to build a sys-

tem that meets all of the stakeholder requirements. This is why it is important that

the system or simulation requirements can trace back to stakeholder requirements.

If every system requirement can trace back to a stakeholder requirement then the

system should satisfy the stakeholder needs. One way to view this relationship is by

creating a requirements trace matrix (RTM). A RTM provides the ability to trace

down from the stakeholder requirements to see if at least one system requirement

satisfies a stakeholder requirement. This ensures that all the stakeholder require-

ments are met. Further, a RTM provides the ability to trace upward to see if all

system requirements can be traced back to at least one stakeholder requirement.

This ensures there are no additional system requirements created that are not nec-
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essary which would indicate additional system elements built that are not needed.

The RTM created for the slippage detection and correction problem is shown in

Figure 7.1. As seen in the RTM, the sum check column is used to check the upward

trace from the system requirements to the stakeholder requirements. The sum check

row is used to check the downward trace from the stakeholder requirements to the

system requirements. A zero in the sum check row or column indicates an error that

needs to be addressed.

Figure 7.1: Requirements trace matrix for the slippage detection and correction
problem.

One way to verify that the system of interest meets the system or simulation

requirements is done by creating a requirements verification matrix (RVM). This is

a matrix of data that identifies and records the verification methods used to verify

each simulation requirement and the verification results [9]. The RVM created for

the slippage detection and correction problem is shown in Figures 7.2, 7.3, and 7.4.
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Figure 7.2: First section of the requirements verification matrix for the slippage
detection and correction problem.

Figure 7.3: Second section of the requirements verification matrix for the slippage
detection and correction problem.
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Figure 7.4: Third section of the requirements verification matrix for the slippage
detection and correction problem.

As shown in the RVM, the method for verifying each simulation requirement

is detailed under the verification method column. The demonstration method is

usually done by simulating the system and is used to show that the process works

as intended [9]. The inspection method is a technique that is based on verification

through the use of human senses or uses simple methods of measurement and han-

dling [9]. The verification method description column describes the processes used

to verify the simulation requirement in that row. If the verification method required

a metric to be recorded or calculated, this metric is shown under the metric result

column. A y in the verified column indicates that the simulation requirement was

verified. All simulation requirements were verified.

Validation of the system or simulation involves providing objective evidence

that the system or simulation when in use fulfills the stakeholder requirements [9].

The table in Figure 7.5 lists the stakeholder requirements that were created for

the slippage detection and correction problem. These requirements apply to the

experiment conducted in the lab and the replication of that experiment through

simulation. As shown, all stakeholder requirements have been validated expect
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for the accurate slip detection requirement. The reason for this is explained in

the comments column. Overall, a slippage detection and correction algorithm was

created for both the laboratory experiments and simulation experiments to solve

the slippage detection and correction problem.

Figure 7.5: This table lists the stakeholder requirements for the slippage detection
and correction problem and the validation of these requirements.

7.2 Model-Based Parameter Optimization

One advantage of building the simulation of the slippage detection and correc-

tion problem is having the ability to test parameters and ask questions that can be

answered through the use of the simulation. This will save time and reduce the risk

of experimentation if the tests are conducted in simulation before they are tested

on real hardware. Also, it allows the user to run multiple tests faster than if done

with the robotic equipment. As an example, a question that came up while solving
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the slippage detection and correction problem was what the rotational velocity of

the finger and thumb joints should be in order to stop the cup from slipping from

the grasp of the Shadow Hand. The range of the choices for the velocities was from

0.1 radians per second to 0.95 radians per second with a step size of 0.5 radians per

second.

The set up for the experiment to find an optimal velocity was to run the

slippage detection and correction problem multiple times for each velocity and de-

termine for which velocity the robotic hand successfully grasped the cup and main-

tained that grasp during the experiment. Even with using a small set of tests (10)

per rotational velocity would require a total of 180 experiments. This would last

days of continuous use of the robotic equipment if this was conducted in the lab.

Instead with the use of the simulation built to replicate the slippage detection and

correction problem, it took under three hours to complete all 180 tests with each

simulation run lasting 55 seconds.

For each simulation, the position of the cup was tracked and if at the end of

the simulation the cup was above or equal to a certain height than the cup was

successfully held, and a 1 was recorded. If the cup was below that height, a 0 was

recorded. After 10 simulations at the same rotational velocity, the percentage of

times the cup was held was calculated. The raw data from the 180 experiments

is shown in Figure 7.6. All simulation parameters were kept constant during each

simulation. The only parameter changed between the sets of ten simulations was

the rotational velocity of the finger and thumb joints involved in stopping the cup

from slipping.
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Correction Speed 1 2 3 4 5 6 7 8 9 10 Number of Successful Holds Number of Failed Holds Percentage of Success
0.1 0 0 0 1 1 0 0 0 0 0 2 8 20%
0.15 0 0 1 0 1 0 0 0 0 1 3 7 30%
0.2 0 0 1 1 0 0 0 1 0 1 4 6 40%
0.25 1 0 0 1 0 0 0 0 0 1 3 7 30%
0.3 1 0 0 0 1 0 0 0 1 1 4 6 40%
0.35 1 1 0 1 1 0 1 1 1 0 7 3 70%
0.4 0 1 0 0 1 1 1 0 1 0 5 5 50%
0.45 1 1 1 1 0 0 0 0 0 1 5 5 50%
0.5 0 1 1 0 1 0 0 0 1 1 5 5 50%
0.55 1 1 1 1 0 1 0 0 0 1 6 4 60%
0.6 1 1 0 1 1 1 1 1 1 1 9 1 90%
0.65 1 0 1 1 0 0 0 1 0 0 4 6 40%
0.7 0 0 0 1 0 0 1 0 1 1 4 6 40%
0.75 1 0 1 1 1 0 1 1 1 0 7 3 70%
0.8 0 1 1 0 1 1 1 0 1 1 7 3 70%
0.85 0 0 0 0 0 0 1 1 1 1 4 6 40%
0.9 1 0 1 0 1 0 0 1 1 1 6 4 60%
0.95 1 1 0 1 0 1 1 0 1 0 6 4 60%

Figure 7.6: Table of the simulation data from testing the range of rotational veloc-
ities to find the optimal rotational velocity.

As seen in Figure 7.7, the rotational velocity of 0.6 radians per second had

the highest number of successful holds by scoring a 9 out of 10 or 90 percent. The

flexibility of simulation allows the user to decide which parameters to change in

order to tune the simulation to be similar to their problem. This solution can be

transferred to the real equipment when setting the rotational velocity of the finger

and thumb joints during correction.
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Figure 7.7: Chart of the percentage of successful holds versus the finger and thumb
joint rotational velocity. The optimal velocity is highlighted in green.
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Chapter 8: Conclusions and Future Work

In order for service robots or robotic hands to have the same level of dexterity

and response as human hands, it is necessary to conduct research focused on increas-

ing the haptic and dexterous ability of robotic hands. This interest led this group

of researchers at the University of Maryland to use the five-fingered Shadow Robot

Hand with BioTac SP sensors attached to investigate how to detect and correct

for object slippage while weight or force is being added to the grasped object. Ex-

periments were conducted in the ARC laboratory, and a statistics-based algorithm

for slippage detection was created. This algorithm provided the Shadow Hand the

ability to autonomously detect and correct for object slippage. Further, the haptic

sensors were also used to classify the object held in the hand so that the crushing

threshold of the object was not passed.

A simulation was never created for this experiment, and it is necessary to create

a simulation that would replicate the slippage detection and correction problem. A

simulation of the problem would allow for more tests to be conducted without the

risk of equipment failure. However, the simulation would have to be a replication

of the equipment used in the lab so that research conducted in simulation could be

migrated to the real hardware. This led to using model-based systems engineering
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techniques in order to build a replication of the slippage detection and correction

problem in simulation.

Stakeholder requirements were created and at the end validated. System

or simulation requirements were created and verified. Structural diagrams of the

robotic equipment and laboratory environment were created. Behavior diagrams

were created that were used in building the slippage detection and correction algo-

rithm for the simulation. The measures of effectiveness were input into CSM, and

these metrics were tracked from CSM to the robotic simulation software. The con-

nection from the systems engineering tool, CSM, to the robotic simulator provided

the ability to conduct more powerful robotic simulations and still use the systems

engineering resources of CSM.

CoppeliaSim was used as the main robotic simulation software and provided

a stable environment to conduct the slippage detection and correction simulations.

Scripts were written in Lua, Python, and MATLAB in order to externally and inter-

nally control the robotic simulation. Lastly, the simulation was used to optimize the

rotational velocity parameter for the finger and thumb joints used during the cor-

rection stage of the simulation. The robotic simulation created met the stakeholder

needs and simulation requirements. Overall, it successfully replicated the slippage

detection and correction problem conducted in the lab.

In the future, the group is looking to integrate simulation into the process

when conducting experiments in the laboratory. The robotic simulation created

for this work would need to be augmented to be more similar to the laboratory

environment. This way it would be possible to transfer the algorithms created for
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and run during simulation to the computer that controls the real hardware. This

would include creating a better model of the BioTac SP sensors for the simulation

so that the raw data collected from the sensors during the simulation matches the

raw data collected during an experiment in the lab.
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