
ABSTRACT

Title of Dissertation: ACTING, PLANNING, AND LEARNING,
USING HIERARCHICAL
OPERATIONAL MODELS

Sunandita Patra
Doctor of Philosophy, 2020

Dissertation Directed by: Professor Dana Nau
Department of Computer Science

The most common representation formalisms for planning are descriptive mod-

els that abstractly describe what the actions do and are tailored for efficiently com-

puting the next state(s) in a state-transition system. However, real-world acting

requires operational models that describe how to do things, with rich control struc-

tures for closed-loop online decision-making in a dynamic environment. Use of a

different action model for planning than the one used for acting causes problems

with combining acting and planning, in particular for the development and consis-

tency verification of the different models.

As an alternative, this dissertation defines and implements an integrated acting-

and-planning system in which both planning and acting use the same operational

models, which are written in a general-purpose hierarchical task-oriented language

offering rich control structures. The acting component, called Reactive Acting En-

gine (RAE), is inspired by the well-known PRS system, except that instead of being

purely reactive, it can get advice from a planner. The dissertation also describes

three planning algorithms which plan by doing several Monte Carlo rollouts in the

space of operational models. The best of these three planners, Plan-with-UPOM uses

a UCT-like Monte Carlo Tree Search procedure called UPOM (UCT Procedure for

Operational Models), whose rollouts are simulated executions of the actor’s opera-

tional models. The dissertation also presents learning strategies for use with RAE

and UPOM that acquire from online acting experiences and/or simulated planning

results, a mapping from decision contexts to method instances as well as a heuristic

function to guide UPOM. The experimental results show that Plan-with-UPOM and

the learning strategies significantly improve the acting efficiency and robustness of

RAE. It can be proved that UPOM converges asymptotically by mapping its search

space to an MDP. The dissertation also describes a real-world prototype of RAE

and Plan-with-UPOM to defend software-defined networks, a relatively new network

management architecture, against incoming attacks.

Acting, Planning, and Learning
Using Hierarchical Operational Models

by

Sunandita Patra

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Professor Dana Nau, Chair/Advisor
Professor Pamela Abshire, Dean’s Representative
Professor Jordan Boyd-Graber
Professor Tom Goldstein
Dr. Malik Ghallab
Paolo Traverso

c© Copyright by
Sunandita Patra

2020

Dedication

To all the teachers who have taught me.

ii

Acknowledgments

I would like to take this opportunity to thank everyone who have made this

dissertation possible and because of whom my graduate experience has been ex-

traordinary.

First and foremost I’d like to thank my advisor, Professor Dana Nau for giving

me an invaluable opportunity to work on extremely interesting and challenging

projects over the past five years. He has always made himself available for help and

advice. It has been a pleasure to work with and learn from such an extraordinary

individual.

I would also like to thank my collaborators, Dr. Malik Ghallab, and Paolo

Traverso. Without their amazing research ideas, expertise, and guidance this dis-

sertation would have been a distant dream. Thanks are due to Professor Jordan

Boyd-Graber, Professor Tom Goldstein and Professor Pamela Abshire for agreeing

to serve on my dissertation committee and for sparing their invaluable time review-

ing the manuscript.

My collaborators at The Naval Research Labs have enriched my graduate life

in many ways and deserve a special mention. Dr. Myong Kang, Dr. Anya Kim and

Alex Velazquez have helped me develop a real-world application of the algorithms

presented in the dissertation. I would also like to acknowledge financial support

that I received from their research grant.

My interactions with other students, mainly Amit Kumar, James Mason,

Ruoxi Li, and Soham De have been very productive and encouraging.

iii

Thanks are due to the extremely friendly and efficient Staff members at the

Department of Computer Science, University of Maryland, who were always avail-

able to help me with administrative queries and procedures.

I owe my deepest thanks to my family - my mother and father who have always

stood by me and guided me through my career, and have pulled me through against

impossible odds at times. Words cannot express the gratitude I owe them.

My housemates and friends have been a crucial factor in my finishing smoothly.

I’d like to express my gratitude to all of them for their friendship and support.

iv

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents v

List of Tables viii

List of Figures ix

List of Abbreviations xii

Chapter 1: Introduction 1
1.1 Motivation . 1
1.2 Contributions of the Dissertation . 4
1.3 Thesis Organization . 6

Chapter 2: Related Work 8
2.1 Acting Systems . 8
2.2 Systems that integrate acting and planning 9
2.3 Planning Algorithms . 13
2.4 Planning and Learning . 14
2.5 Hierarchical Reinforcement Learning 14

Chapter 3: Acting and Planning Algorithms 16
3.1 Formalism: Hierarchical Operational Models 16
3.2 The actor, RAE . 30
3.3 Planner, APEplan . 35
3.4 Planner, RAEplan . 38

3.4.1 Properties of RAEplan . 42
3.5 UPOM, a UCT-like search procedure 48

3.5.1 Utility criteria and optimal approach 50
3.5.2 A planning algorithm based on UCT 54

3.6 Learning for RAE and UPOM . 62
3.6.1 Learning to choose methods (Learnπ) 63
3.6.2 Learning to choose method instances (Learnπi) 65
3.6.3 Learning a heuristic evaluation function (LearnH) 67

v

3.6.4 Incremental online learning 69
3.7 Properties of Plan-with-UPOM . 69

3.7.1 Mapping UPOM’s Search Space to an MDP 71
3.7.2 Search Space for Refinement Planning 72

3.8 Summary . 81

Chapter 4: Implementation and Experimental Evaluation 82
4.1 Evaluation of APEplan . 82

4.1.1 Domains . 82
4.1.2 Assessment of APEplan’s parameters 85

4.2 Evaluation of RAEplan . 90
4.2.1 Domains . 90
4.2.2 Assessment of RAEplan’s parameters 92

4.3 Evaluation of Plan-with-UPOM . 98
4.3.1 Domains . 98
4.3.2 Assessment of UPOM’s parameters 99
4.3.3 Comparison of the two utility functions 101
4.3.4 Retry ratio . 102
4.3.5 Efficiency across domains . 102
4.3.6 Success ratio across domains 103
4.3.7 Depth and Heuristics . 105
4.3.8 Measured vs expected efficiency 107

4.4 Comparison of RAEplan and UPOM 109
4.5 Assessment of UPOM’s learning strategies 111

4.5.1 Learning Method Instances 115
4.6 Summary . 116

Chapter 5: Real-world prototype of RAE and Plan-with-UPOM: Defense against
SDN attacks 118

5.1 Software Defined Networks (SDNs) 118
5.2 AIRMAN Architecture . 120
5.3 Attack recovery using RAE and Plan-with-UPOM 121

5.3.1 Integration of AIRMAN SecurityManager and RAE 126
5.3.2 State Definition for SDN . 126
5.3.3 Utility function optimized: CostEffectiveness 128
5.3.4 Communication between SecurityManager and RAE 130
5.3.5 Example of task invocation workflow 132
5.3.6 Domain Definition for SDN 134
5.3.7 Environment for SDN . 134
5.3.8 Action Model . 135

5.4 Experimental Evaluation . 136
5.5 Summary . 139

Chapter 6: Conclusion 140
6.1 Looking Ahead: Limitations and Future Directions 142

vi

6.1.1 Retrial in RAE . 143
6.1.2 Planning for multiple tasks at once 144
6.1.3 Concurrency . 144
6.1.4 Learning operational models 145
6.1.5 Benchmarking . 146

Appendix A:Description of APEplan 149

Appendix B: Descriptions of Experimental Domains 154
B.1 Fetch domain . 154
B.2 Explore domain . 162
B.3 Navigate domain . 177
B.4 Rescue domain . 186
B.5 Delivery domain . 197
B.6 Attack recovery in Software-defined networks (SDN) 209

Bibliography 231

vii

List of Tables

4.1 Properties of the four test domains of APEplan. 85
4.2 Features of the five test domains of RAE + UPOM 99
4.3 The size of the training set, number of input features and outputs, and

the number of training epochs for three different learning procedures:
Learnπ-1, Learnπ-2, and LearnH. We note LM-1 = Learnπ-1, LM-2 =
Learnπ-2, and LH = LearnH. 113

4.4 The size of the training set, number of input features and outputs for
learning method parameters in Learnπi. 115

A.1 The pseudocode of APEplan and APE-plan-task, a sub-routine of APE-
plan. APEplan is the planner used by RAE. 150

A.2 The pseudocode for APE-plan-method. *pt = APE-plan-task, pc = APE-

plan-command. 151
A.3 The pseudocode for NextStep and SampleCommandOutcomes. *pt =

APE-plan-task, pc = APE-plan-command. 152

viii

List of Figures

1.1 A schematic diagram showing the interaction between the actor and
planner and how they usually interact in general. 3

3.1 (a) Architecture of an actor reacting to events and tasks through
an execution platform; (b) Integration of refinement acting, planning
and learning. 17

3.2 A possible refinement tree for the task explore(r, l) corresponding to
a successfully accomplished task. 23

3.3 A refinement tree for the task explore(r, l) where r failed to reach
location l. 23

3.4 A refinement tree for the task explore(r, l) where r surveyed location
l successfully but does not need to deposit the data. 23

3.5 A refinement tree for the task explore(r, l) where m1-getTool(r) is used
to refine the task getTool(r). 25

3.6 A refinement tree for the task explore(r, l) where m2-getTool(r) is used
to refine the task getTool(r). 25

3.7 A refinement tree for the task explore(r, l) where the move subtasks
are refined. 26

3.8 A refinement tree, with three types of nodes: disjunction for a task
over possible methods, sequence for a method over all its steps, and
sampling for an action over its possible outcomes. A rollout can be,
for example, the sequence of nodes marked 1 (a sample of a1), 2 (first
step of m1), . . . , j (subsequent refinements), j + 1 (next step of m1),
. . . , n (a sample of a2), n+ 1 (first step of m2), etc. 37

3.9 The sub-task getTool(r) can be refined using two different refinement
methods leading to two possible refinement trees for the task explore(r, l). 58

3.10 A table informally showing how the Q-values and N counts are up-
dated for every task/subtask after each rollout (a call to UPOM) for
the search tree shown in Figure 3.9. 59

3.11 A schematic diagram for the Learnπ procedure. 64
3.12 A schematic diagram for the LearnH procedure. 67

ix

4.1 Success ratio (number of successful jobs/ total number of jobs) for dif-
ferent values of search breadth b of APEplan for (a) domains having
dead ends (Chargeable Robot domain and Explorable Environment
domain) and (b) domains having no dead ends (Spring Door domain
and Industrial Plant domain). CR = Chargeable Robot, EE = Ex-
plorable Environment, SD = Spring Door, IP = Industrial Plant. . . 87

4.2 Retry ratio (number of retries / total number of jobs) for different
values of search breadth b of APEplan for (a) domains having dead
ends (Chargeable Robot domain and Explorable Environment do-
main) and (b) domains having no dead ends (Spring Door domain
and Industrial Plant domain). CR = Chargeable Robot, EE = Ex-
plorable Environment, SD = Spring Door, IP = Industrial Plant. . . 88

4.3 Speed to success ν averaged over all of the jobs, for different values
of search breadth b of APEplan for (a) domains having dead ends
(Chargeable Robot domain and Explorable Environment domain)
and (b) domains having no dead ends (Spring Door domain and In-
dustrial Plant domain). CR = Chargeable Robot, EE = Explorable
Environment, SD = Spring Door, IP = Industrial Plant. 90

4.4 Efficiency E averaged over all of the jobs, for various values of b and
k of RAEplan in domains with dead ends. 94

4.5 Efficiency E averaged over all of the jobs, for various values of b and
k of RAEplan in domains without dead ends. 94

4.6 Success ratio (# of successful jobs/ total # of jobs) for various values
of b and k of RAEplan in domains with dead ends. 95

4.7 Success ratio (# of successful jobs/ total # of jobs) for various values
of b and k of RAEplan in domains without dead ends. 95

4.8 Retry ratio (# of retries / total # of jobs) for various values of b and
k of RAEplan in domains with dead ends. 97

4.9 Retry ratio (# of retries / total # of jobs) for various values of b and
k of RAEplan in domains without dead ends. 97

4.10 Efficiency and success ratio for two different utility functions of Plan-
with-UPOM (orange is expected success ratio and gray is expected
efficiency) averaged over all five domains, with dmax = ∞ (relative
values with respect to the base case of U for nro = 0). 101

4.11 Retry ratio (# of retries / total # of jobs) averaged over all five
domains, for Plan-with-UPOM with dmax =∞. 103

4.12 Measured efficiency of RAE with Plan-with-UPOM for nro ∈ [0, 250]
and dmax =∞ (relative values with respect to the base case of U for
nro = 0). 104

4.13 Measured efficiency averaged over only test cases with one root task,
in Fetch and Deliver domains with Plan-with-UPOM’s parameter, dmax =
∞ (relative values with respect to the base case of U for nro = 0). . . 105

4.14 Measured success ratio (# of successful jobs/ total # of jobs) for
nro ∈ [0, 250] and dmax =∞ (relative values with respect to the base
case of U for nro = 0). 106

x

4.15 Measured success ratio averaged over only test cases with one root
task, in Fetch and Deliver domains with dmax = ∞ (relative values
with respect to the base case of U for nro = 0). 107

4.16 Measured efficiency with limited depth and three different heuristic
functions. The utility function optimized is expected efficiency (rela-
tive values with respect to the base case of U for nro = 0). 108

4.17 Absolute difference between measured and expected efficiency, as a
function of the refinement deepness (0 is the root task), for various
number of rollouts. 109

4.18 Average computation time in seconds for a single run of a problem,
for RAE with and without the planners. 110

4.19 Measured efficiency for each domain with purely reactive RAE, RAE
with RAEplan, RAE with the policies learned by Learnπ without plan-
ning, RAE with UPOM, the heuristic learned by LearnH and dmax = 5,
and RAE with UPOM and dmax =∞ (relative values with respect to
the base case of U for nro = 0). 110

4.20 Measured success ratio for each domain with purely reactive RAE,
RAE with RAEplan, RAE with the policies learned by Learnπ with-
out planning, RAE with UPOM, the heuristic learned by LearnH and
dmax = 5, and RAE with UPOM and dmax = ∞ (relative values with
respect to the base case of U for nro = 0). 112

4.21 Training and validation results for Learnπ and LearnH, averaged over
all domains. 113

4.22 The cross hatched blue bars show the performance of RAE with
Learnπi (learning method instances) for the two domains, Nav and
Deliver, which have methods with parameters not in tasks (relative
values with respect to the base case of U for nro = 0). 116

5.1 AIRS Architecture for SDN . 119
5.2 AIRMAN architecture . 120
5.3 A refinement tree for the event packetIn-flooding(id) using the refine-

ment method m1 ctrl clearstate besteffort(id) 124
5.4 A refinement tree for the event packetIn-flooding(id) using the refine-

ment method m2 ctrl clearstate fallback(id) 125
5.5 A partial refinement tree for the event packetIn-flooding(id) using the

refinement method m3 ctrl mitigate pktinflood(id). fix-switch(s1) is a
sub-task that should further be refined. 126

5.6 Estimated time for attack recovery in AIRMAN using the Refinement
Acting Engine, RAE and refinement planner, Plan-with-UPOM. 137

5.7 Efficiency (reciprocal of estimated cost) for attack recovery in AIR-
MAN using the Refinement Acting Engine, RAE and refinement plan-
ner, Plan-with-UPOM. 138

5.8 Retry ratio for attack recovery in AIRMAN using the Refinement Act-
ing Engine, RAE and refinement planner, Plan-with-UPOM. 139

xi

List of Abbreviations

RAE Refinement Acting Engine

PRS Procedural Reasoning System

APEplan Acting-and-Planning-Engine Planner

RAEplan Refinement-Acting-Engine Planner

UCT Upper Confidence Bound on Trees

UPOM UCT Planner for Operational Models

RMPL Reactive Model Based Planner

BT Behavior Trees

HTN Hierarchical Task Network

HPN Hierarchical Planning in the Now

MDP Markov Decision Process

SeRPE Sequential Refinement Planning Engine

SDN Software-Defined Networking

AIRS Autonomous Intelligent Resilient Security

AIRMAN AIRS Management System

PDDL Planning Domain Definition Language

PPDDL Probabilistic Planning Domain Definition Language

STRIPS Standford Research Institute Problem Solver

xii

Chapter 1: Introduction

1.1 Motivation

Numerous knowledge representations have been proposed for describing and

reasoning about actions. However, for the purpose of AI planning, the dominant

representation is the one inherited from the early STRIPS system and formalized in

various versions of the PDDL description language, and representations for planning

under uncertainty, such as PPDDL. Such descriptive models of actions are tailored

to efficiently compute the next states in a state transition system. This works well

for classical planning algorithms that assume a static world and no concurrency or

uncertainty. However, for acting in the real world, the classical planning assumptions

tend to be very restrictive and are almost always violated. The planning capabilities,

that the descriptive models (which describe what the actions do) provide to a planner

in dynamic real-world scenarios, are quite limited. In particular,

• It cannot reason about ongoing activities, for e.g., an agent might want to

act differently depending on whether a particular command is currently run-

ning or not. Descriptive models generally assume that actions always happen

instantaneously.

1

• It cannot react and adapt to an unfolding context or exogenous events hap-

pening in the environment. Consider the following scenario: today is Friday

and you need to prepare for Monday’s lecture sometime in the weekend. You

decide to do it on Sunday morning. Meanwhile, on Saturday morning, your

friends called you asking you to join a game on Sunday evening. You are not

sure whether you will be done preparing for your lecture by Sunday morning,

and you also don’t want to promise your friend and then back out.

• It provides very little help for plan management and makes it complicated. For

an actor, just coming up with plans is not enough. It also needs to monitor

that the plan is being executed correctly and re-plan whenever required. If the

action models that are executed are different from the ones used for planning,

plan monitoring can also become challenging.

As argued above and by many authors, e.g., [1], plans are needed for acting

deliberately, but they are not sufficient for realistic applications. Acting requires

operational models that describe how to do things, with rich control structures for

closed-loop online decision-making. Acting also requires some mechanism for plan

management.

Most approaches for the integration of planning and acting seek to combine

descriptive representations for the planner and operational representations for the

actor [2]. A schematic diagram showing this approach is shown in Figure 1.1. How-

ever, this decomposition has several drawbacks. First, it fails to take into account

the highly interconnected reasoning that is required between planning and delibera-

2

Figure 1.1: A schematic diagram showing the interaction between the actor and
planner and how they usually interact in general.

tive acting in most practical settings. Second, in several applications, the mapping

between descriptive and operational models is complex. A guarantee of the consis-

tency of this mapping is required in safety-critical applications, such as self-driving

cars [3], collaborative robots working directly with humans [4], or virtual coaching

systems to help patients with chronic diseases [5]. However, to verify the consistency

between the two different models is usually difficult (e.g., see the work on formal

verification of operational models such as PRS-like procedures, using model check-

ing and theorem proving [6, 7]). Finally, modeling is always a costly bottleneck;

reducing the corresponding efforts is beneficial in most applications.

Therefore, it is highly desirable to have a single representation for both acting

and planning. If such a representation were solely descriptive, it wouldn’t provide

sufficient functionality. Instead, the planner needs to be able to reason directly with

the actor’s operational models.

3

1.2 Contributions of the Dissertation

The author has developed integrated planning and acting algorithms in which

both planning and acting use the actor’s operational models. To her knowledge,

no previous approach has proposed the integration of planning and acting directly

within the language of an operational model.

The acting component used in this work is RAE, taken from [8, Chapter 3],

which, in turn, is inspired by the well-known PRS system [9]. It uses a hierar-

chical task-oriented operational representation with an expressive, general-purpose

language offering rich control structures for closed-loop online decision-making. A

collection of refinement methods describes alternative ways to handle tasks and react

to events. Each method has a body that can be any complex algorithm. In addition

to the usual programming constructs, the body may contain subtasks, which need

to be refined recursively, and sensory-motor commands, which query and change

the world non-deterministically. Commands are simulated when planning and per-

formed by an execution platform in the real world when acting.

The actor, RAE can perform multiple tasks in parallel. Rather than behaving

purely reactively like PRS, RAE can interact with a planner. To decide how to re-

fine tasks or events, the author has developed three refinement planning algorithms,

APEplan, RAEplan and UPOM, which do three different kinds of Monte Carlo roll-

outs. When a refinement method contains a command, the planners take samples of

its possible outcomes, using either a domain-dependent generative simulator, when

available, or a probability distribution of its possible outcomes.

4

UPOM is the best of the three planning algorithms and can be used by RAE

as a progressive deepening, receding-horizon anytime planner. Its scalability re-

quires the use of a heuristic evaluation function at the search horizon. However,

operational models lead to quite complex search spaces not easily amenable to the

usual techniques for domain-independent heuristics. Fortunately, this issue can be

addressed with a learning approach to acquire a mapping from decision contexts

to method instances; this mapping provides the base case of the anytime strategy.

Learning can also be used to acquire a heuristic function to guide the search. We

do not claim any contribution on the learning techniques per se, but on the inte-

gration of learning, planning, and acting. We use an off-the-shelf learning library

with appropriate adaptation for our experiments. The learning algorithms do not

provide the operational models needed by the planner, but they do several other

useful things. First, they speed up the online planning search. Second, they enable

both the planner and the actor to find better solutions, thereby improving the ac-

tor’s performance. Third, they allow the human domain author to write refinement

methods without needing to specify a preference ordering in which the planner or

actor should try instances of those methods.

The author has implemented and evaluated the approach described above, and

the results show significant benefits in five simulated domains. We have developed

three new metrics to measure the performance of systems that integrate planning

and acting: efficiency, retry-ratio and success-ratio.

In addition the dissertation includes a proof of UPOM’s asymptotic conver-

gence to optimal choices.

5

In summary, the contributions of this thesis are the following:

• Acting and planning algorithms where both the actor and the planner use

operational models of actions. Our actor is called RAE and the planners are

called APEplan, RAEplan and UPOM.

• Learning strategies to integrate UPOM with learning; learn the “best” refine-

ment method instances for tasks and learn a heuristic evaluation function to

guide UPOM’s search.

• Implementation and experimental evaluation of our algorithms. We have im-

plemented and tested it on five simulated domains.

• A comprehensive way to evaluate the performance of our approach or any

other algorithm that integrates acting and planning using three performance

metrics: efficiency, retry ratio and success ratio. The algorithms performed

well in the evaluation process.

• A real-world prototype of RAE and UPOM to defend software-defined networks

against incoming attacks.

1.3 Thesis Organization

In Chapter 2, the related work is discussed mainly with respect to five ar-

eas: acting algorithms, planning algorithms, algorithms that integrate acting and

planning, systems integrating planning and learning, and hierarchical reinforcement

learning approaches. In Chapter 3, the hierarchical operational model representation

6

is described with some examples. The acting algorithm, RAE and planning algo-

rithms, APEplan, RAEplan and UPOM are also presented with the learning strategies.

The convergence of UPOM to an MDP is proved. In Chapter 4, our implemention of

the algorithms on five simulated domains is discussed and the experimental results

are presented. In Chapter 5, a real-world prototype of RAE and UPOM is described.

Chapter 6 concludes the dissertation.

7

Chapter 2: Related Work

This chapter discusses the different areas of work related to the problem of in-

tegrating acting, planning, and learning. There has been work in developing purely

reactive acting systems, without any planning capabilities. Some works integrate

acting with operational models and planning with descriptive models. Our refine-

ment planning algorithms are in some ways similar to hierarchical task network

planners and Monte Carlo Tree Search, because they take into account hierarchy

in the task network and does several Monte Carlo rollouts respectively. Finally,

since we develop learning strategies for refinement planning, this entails comparison

with approaches that integrate planning and learning, and hierarchical reinforcement

learning. In this chapter, all of the above are discussed in details.

2.1 Acting Systems

Our acting algorithm and operational models are based on the RAE algorithm

[8, Chapter 3], which in turn is based on PRS. If RAE and PRS need to choose

among several eligible refinement methods for a given task or event, they make the

choice without trying to plan ahead. This approach has been extended with some

planning capabilities in PropicePlan [10] and SeRPE [8]. Unlike our approach, those

8

systems model commands as classical planning operators; they both require the

action models and the refinement methods to satisfy classical planning assumptions

of deterministic, fully observable and static environments, which are not acceptable

assumptions for most acting systems. This makes the planning limited in many

aspects such as, handling other agents, an unfolding context or exogenous events.

Various acting approaches similar to PRS and RAE have been proposed, e.g.,

[11, 12, 13, 14, 15, 16]. Some of these have refinement capabilities and hierarchical

models, e.g., [17, 18, 19]. While such systems offer expressive acting environments,

e.g., with real time handling primitives, none of them provide the ability to plan

with the operational models used for acting, and thus cannot integrate acting and

planning as we do. Most of these systems do not reason about alternative refine-

ments.

2.2 Systems that integrate acting and planning

[20, 21, 22] propose a way to do online planning and acting, but their notion of

“online” is different from ours. In [20], the old plan is executed repeatedly in a loop

while the planner synthesizes a new plan (which the authors say can take a large

amount of time), and the new plan isn’t installed until planning has been finished.

In our planning algorithms, hierarchical task refinement is used to do the planning

quickly, and RAE waits until the planner returns.

RMPL. The Reactive Model-based Programming Language (RMPL) [23] is a com-

prehensive CSP-based approach for temporal planning and acting which combines

9

a system model with a control model. The system model specifies nominal as well

as failure state transitions with hierarchical constraints. The control model uses

standard reactive programming constructs. RMPL programs are transformed into

an extension of Simple Temporal Networks with symbolic constraints and decision

nodes [24, 25]. Planning consists in finding a path in the network that meets the

constraints. RMPL has been extended with error recovery, temporal flexibility, and

conditional execution based on the state of the world [26]. Probabilistic RMPL

are introduced in [27, 28] with the notions of weak and strong consistency, as well

as uncertainty for contingent decisions taken by the environment or another agent.

The acting system adapts the execution to observations and predictions based on

the plan. RMPL and subsequent developments have been illustrated with a ser-

vice robot which observes and assists a human. Our approach does not handle

time; it focuses instead on hierarchical decomposition with Monte Carlo rollout and

sampling.

Behavior trees. Behavior trees (BT) [29, 30] can also respond reactively to contin-

gent events that were not predicted. Planning synthesizes a BT that has a desired

behavior. Building the tree refines the acting process by mapping the descriptive

action model onto an operational model. Our approach is different since RAE pro-

vides the rich and general control constructs of a programming language and plans

directly within the operational model, not by mapping from the descriptive to an op-

erational model. Moreover, the BT approach does not allow for refinement methods,

which are a rather natural and practical way to specify different possible refinements

10

of tasks.

Robotics. There has been a lot of work in robotics to integrate planning and exe-

cution. They propose various techniques and strategies to handle the inconsistency

issues that arise when execution and planning are done with different models. [31]

shows how HTN planning can be used in robotics. [32] and [33] integrates task and

motion planning for robotics. The approach of [34] addresses a problem similar to

ours but specific to robot navigation. Several methods for performing a navigation

task and its subtasks are available, each with strong and weak points depending

on the context. The problem of choosing a best method instance for starting or

pursuing a task in a given context is stated as a receding horizon planning in an

MDP for which a model-explicit RL technique is proposed. Our approach is not

limited to navigation tasks; it allows for richer hierarchical refinement models and

is combined with a powerful Monte-Carlo tree search technique.

The Hierarchical Planning in the Now (HPN) of [35] is designed for integrating

task and motion planning and acting in robotics. Task planning in HPN relies on a

goal regression hierarchized according to the level of fluents in an operator precondi-

tions. The regression is pursued until the preconditions of the considered action (at

some hierarchical level) are met by current world state, at which point acting starts.

Geometric reasoning is performed at the planning level (i) to test ground fluents

through procedural attachement (for truth, entailment, contradiction), and (ii) to

focus the search on a few suggested branches corresponding to geometric bindings of

relevant operators using heuristics called geometric suggesters. It is also performed

11

at the acting level to plan feasible motions for the primitives to be executed. HPN

is correct but not complete; however when primitive actions are reversible, inter-

leaved planning and acting is complete. HPN has been extended in a comprehensive

system for handling geometric uncertainty [36].

The integration of task and motion planning problem is also addressed in [37],

which uses an HTN approach. Motion primitives are assessed with a specific solver

through sampling for cost and feasibility. An algorithm called SAHTN extends the

usual HTN search with a bookkeeping mechanism to cache previously computed

motions. In comparison to this work as well as to HPN, our approach does not inte-

grate specific constructs for motion planning. However, it is more generic regarding

the integration of planning and acting.

Approaches based on temporal logics and situation calculus [38, 39, 40, 41]

specify acting and planning knowledge through high-level descriptive models and not

through operational models like in RAE. Moreover, these approaches integrate acting

and planning without exploiting the hierarchical refinement approach described here.

Web services. The hierarchical representation framework of [42] includes abstract

actions to interleave acting and planning for composing web services—but it focuses

on distributed processes, which are represented as state transition systems, not

operational models. It does not allow for refinement methods.

12

2.3 Planning Algorithms

The representation of our operational models has hierarchy. Also, we sample

the outcomes of commands. So, the relevant planning approaches for our work are

hierarchical planning algorithms and planners that do Monte Carlo rollouts with

nondeterministic actions.

HTNs (Hierarchical Task Networks). Our methods are significantly different

from those used in HTNs [43]: to allow for the operational models needed for acting,

we use rich control constructs rather than simple sequences of primitives.

Planning with Monte Carlo rollouts. A wide literature on MDP-based prob-

abilistic planning and Monte Carlo tree search refers to simulated execution, e.g.,

[44, 45, 46, 47] and sampling outcomes of action models e.g., RFF [48], FF-replan

[49] and hindsight optimization [50]. The main conceptual and practical difference

with our work is that these approaches use descriptive models, i.e., abstract actions

on finite MDPs. Although most of the papers refer to doing the planning online, they

do the planning using descriptive models rather than operational models. There is

no notion of integration of acting and planning, hence no notion of how to maintain

consistency between the planner’s descriptive models and the actor’s operational

models. Moreover, they have no notion of hierarchy and refinement methods.

13

2.4 Planning and Learning

Learning HTN methods has also been investigated. HTN-MAKER [51] learns

methods given a set of actions, a set of solutions to classical planning problems,

and a collection of annotated tasks. This is extended for nondeterministic domains

in [52]. [53] integrates HTN with Reinforcement Learning (RL), and estimates the

expected values of the learned methods by performing Monte Carlo updates. At this

stage, we do not learn the methods but only how to chose the appropriate one. We

predict that learning refinement methods in an environment with nondeterminism,

partial observability, and exogenous events is likely to be much more challenging

than learning HTN methods in a classical environment.

2.5 Hierarchical Reinforcement Learning

Our approach shares some similarities with the work on planning by reinforce-

ment learning (RL) [54, 55, 56, 57, 58], since we learn by acting in a (simulated)

environment. However, most of the works on RL learn policies that map states to

actions to be executed, and learning is performed in a descriptive model. We learn

how to select refinement method instances in an operational model that allows for

programming control constructs. This main difference holds also with works on

hierarchical reinforcement learning, see, e.g., [59], [60], [61]. Works on user-guided

learning, see e.g., [62], [63], use model based RL to learn relational models, and

the learner is integrated in a robot for planning with exogenous events. Even if

14

relational models are then mapped to execution platforms, the main difference with

our work still holds: Learning is performed in a descriptive model. [64] uses RL for

user-guided learning directly in the specific case of robot motion primitives.

The UCT algorithm (Upper Confidence bound applied to Trees) [46] does

several Monte Carlo rollouts in an MDP, in order to come up with an approximately

optimal policy. Our best refinement planning algorithm relies on a procedure called

UPOM that does an UCT-style search in the space of hierarchical operational models.

Learning planning domain models has been investigated along several ap-

proaches. In probabilistic planning, for example learning approaches in [65] and

[66] learn a POMDP domain model through interactions with the environment, in

order to plan by reinforcement learning or by sampling methods. In these cases, no

integration with operational models and hierarchical refinements is provided.

15

Chapter 3: Acting and Planning Algorithms

In this chapter, we describe the hierarchical operational model formalism and

the acting engine RAE from [8, Chapter 3]. We define the components of the rep-

resentation and illustrate it with several examples. Then, we describe our three

refinement planning algorithms: APEplan, RAEplan, and Plan-with-UPOM, a plan-

ner based on a UCT-like procedure UPOM. For RAEplan, we prove its soundness,

completeness and optimality under a certain set of assumptions. For UPOM, we

map it to an MDP, to prove that it makes optimal choices.

3.1 Formalism: Hierarchical Operational Models

The usual preconditions-effects representation of actions in AI planning re-

search is tailored for the efficient exploration of a state-transition system. It does

not describe how to perform an action in a particular context, or how to react to

dynamic events. For that, we will use a representation based on the one described

in [8, Chapter 3], which has been designed for acting and reacting in a dynamic

environment. It provides a hierarchical representation of tasks through alternative

refinement methods and primitive actions. This representation is called operational

since it allows an actor to perform the tasks requested by users and to react to

16

events. The actor perceives the current state of the world and interacts with the

environment for sensing and actuation through an execution platform (see Figures

3.1(a) for the general architecture, and 3.1(b) for the integration of planning, learn-

ing and refinement acting explained in subsequent sections). Let us describe the

main ingredients.

Actor

Execution Platform

Environment

eventsactions State

actuation sensing

Operational  
models tasks

Users

(a)

Execution Platform

Environment

eventsactions State

actuation sensing

Operational  
models tasks

Users

UPOM
Context m*

Training set of  
successful runs

Supervised learning

(𝜏, s, m)

h(m, s, 𝜏)𝝅(𝜏, s)= m

RAE

(b)

Figure 3.1: (a) Architecture of an actor reacting to events and tasks through an
execution platform; (b) Integration of refinement acting, planning and learning.

States. We rely on a parameterized state variable representation, i.e., a finite

collection of mappings from typed sets of objects of the planning domain into some

range, such as door-status(d) ∈ {closed, open, cracked, unknown} which describes the

status of a door d. Let X be a finite set of state variables; variable x ∈ X takes

values from the set Range(x), assumed at this stage to be finite.

A state is a total assignment of values to state variables. The world state ξ is

updated through observation by the execution platform, reflecting the dynamics of

the external world. For the purpose of the planning lookahead, ξ may be simplified

17

into an abstract state s ∈ S that gets updated from ξ each time the actor calls the

planner. Both ξ and s are defined with the same set X of state variables. In general,

s is a domain dependent abstraction of ξ, in which some state variables are ignored

or range over sparser ranges. A given world state ξ is mapped to a single abstract

state; an abstract state s may correspond to a subset of world sates.

To provide a convenient notation for handling partial knowledge, we extend

the range of values of every state variable to include a special symbol, unknown,

which is the default value of any state variable that has not been set or updated to

another value.

It is also convenient to have a distinct set of variables that we call internal

variables. Internal variables are updated by assignment statements inside methods.

An assignment statement is of the form x ← expr, where expr may be either a

ground value in Range(x), or a computational expression that returns a ground

value in Range(x). Such an expression may include, for example, calls to specialized

software packages.

Tasks. A task is a label naming an activity to be performed. It has the form

task-name(args), where task-name designates the task considered, arguments args is

an ordered list of objects and values. Tasks specified by a user are called root tasks,

to distinguish them from the subtasks in which they are refined.

Events. An event designates an occurrence of some type detected by the execution

platform; it corresponds to an exogenous change in the environment to which the

18

actor may have to react, e.g., the activation of an emergency signal. It has the form

event-name(args).

Actions. An action is a primitive function with instantiated parameters that can

be executed by the execution platform through sensory motor commands. It has

nondeterministic effects. For the purpose of planning, we do not represent actions

with formal templates, as usually done with descriptive models. Instead, we assume

to have a generative nondeterministic sampling simulator, denoted Sample. A call to

Sample(a, s) returns a state s′ randomly drawn among the possible states resulting

from the execution of a in s. Sample can be implemented simply through a probability

distribution of the effects of a (see Section 3.5).

When the actor triggers an action a for some task or event, it waits until

a terminates or fails before pursuing that task or event. To follow its execu-

tion progress, when action a is triggered, there is an internal variable, denoted

execution-status(a) ∈ {running, done, failed}, which expresses the fact that the execu-

tion of a is going on, has terminated or failed. A terminated action returns a value

of some type, which can be used to branch over various followup of the activity.

Refinement Methods. A refinement method is a triple of the form

(role, precondition, body).

The first field, either a task or an event, is its role; it tells what the method is

about. When the precondition holds in the current state, the method is applicable

19

for addressing the task or event by running a program given in the method’s body.

This program refines the task or event into a sequence of subtasks, actions, and

assignments. It may use recursions and iteration loops.

Refinement methods are specified as parameterized templates with a name and

list of parameters method-name(param1, . . . , paramk). An instance of a method is

given by the substitution of its parameters by values that come from the arguments

of the task the method is for and other state variables.

A method instance is applicable for a task or event τ if its role matches that of

τ , and its preconditions are satisfied by the current values of the state variables. A

method may have several applicable instances for a current state, task, and event.

This will be illustrated in Example 3. An applicable instance of a method, if exe-

cuted, addresses a task or an event by refining it, in a context dependent manner,

into subtasks, actions, and possibly state updates, as specified in its body.

The body of a method is a sequence of lines with the usual programming

control structure (if-then-else, while loops, etc.), and tests on the values of state

variables. A simple test has the form (x ◦ v), where ◦ ∈ {=, 6=, <,>}. A compound

test is a negation, conjunction, or disjunction of simple or compound tests. Tests

are evaluated with respect to the current state ξ. In tests, the symbol unknown is

not treated in any special way; it is just one of the state variable’s possible values.

The following is an example of robots exploring partially known environments.

Example 1. Consider several robots (UGVs and UAVs) moving around in a par-

tially known terrain, performing operations such as data gathering, processing, screen-

20

ing and monitoring. This domain is specified with the following:

• a set of robots, R = {g1, g2, a1, a2},

• a set of locations, L = {base, z1, z2, z3, z4},

• a set of tools, TOOLS = {e1, e2, e3},

• loc(r) ∈ L and data(r) ∈ [0, 100], for r ∈ R, are observable state variables that

gives the current location and the amount of data the robot r has collected,

• status(e) ∈ {free, busy} is an observable state variable that says whether the

tool e is free or being used,

• survey(r, l) is a command performed by robot r in location l that surveys l and

collects data.

Let explore(r, l) be a task for robot r to reach location l and perform the com-

mand survey(r, l). In order to survey, the robot needs some tool that might be in use

by another robot. Robot r should collect the tool, then move to the location l and

execute the command survey(r, l). Each robot can carry only a limited amount of

data. Once its data storage is full, it can either go and deposit data to the base, or

transfer it to an UAV via the task depositData(r). Here is a refinement method to

do this.

21

m1-explore(r, l)

task: explore(r, l)

body: getTool(r)

moveTo(r, l)

if loc(r) = l then:

Execute command survey(r, l)

if data(r) = 100 then depositData(r)

else fail

A partial refinement tree for the task explore(r, l) refined using m1-explore(r, l) is

shown in Figure 3.2. This tree corresponds to the case where the subtasks getTool(r)

and moveTo(r, l) succeed and data(r) is 100. A refinement tree for the case where

the subtask moveTo(r, l) fails to change the location of r to l is shown in Figure 3.3.

Figure 3.4 shows a refinement tree for the case where r surveys location l successfully

but doesn’t need to deposit the data.

Above, getTool(r), moveTo(r, l) and depositData(r) are subtasks that need to

be further refined via suitable refinement methods. Each robot can hold a limited

amount of charge and is rechargeable. Depending on what locations it needs to

move to, r might need to recharge by going to the base where the charger is located.

Different ways of doing the task get-Tool(r) can be captured by multiple refinement

methods. Here are two of them:

22

Figure 3.2: A possible refinement tree for the task explore(r, l) corresponding to a
successfully accomplished task.

Figure 3.3: A refinement tree for the task explore(r, l) where r failed to reach location
l.

Figure 3.4: A refinement tree for the task explore(r, l) where r surveyed location l
successfully but does not need to deposit the data.

23

m1-getTool(r)

task: getTool(r)

body: for e in TOOLS do

if status(e) = free:

l← loc(e)

moveTo(r, l)

take(r, e)

return

// no tool is free

fail

m2-getTool(r)

task: getTool(r)

body: for e in TOOLS do

if status(e) = free:

recharge(r)

l← loc(e)

moveTo(r, l)

take(r, e)

return

fail

UAVs can fly and UGVs can’t, so there can be different possible refinement methods

for the task moveTo(r, l) based on whether r can fly or not.

A refinement tree for the task explore where m1-getTool(r) is used to refine

getTool(r) is shown in Figure 3.5. A refinement tree for the task explore where m2-

getTool(r) is used to refine getTool(r) is shown in Figure 3.6.

Expanding further from Figure 3.6 by refining the move sub-tasks, we get the

refinement tree shown in Figure 3.7.

A refinement method for a task t specifies how to perform t, i.e., it gives a

procedure for accomplishing t by performing subtasks, commands and state variable

assignments. The procedure may include any of the usual programming constructs:

if-then-else, loops, etc.

24

Figure 3.5: A refinement tree for the task explore(r, l) where m1-getTool(r) is used to
refine the task getTool(r).

Figure 3.6: A refinement tree for the task explore(r, l) where m2-getTool(r) is used to
refine the task getTool(r).

25

Figure 3.7: A refinement tree for the task explore(r, l) where the move subtasks are
refined.

26

Example 2. Suppose a space alien is spotted in one of the locations l ∈ L of

Example 1 and a robot has to react to it by stopping its current activity and going

to l. Let us represent this with an event alienSpotted(l). We also need an additional

state variable: alien-handling(r)∈{T, F} which indicates whether the robot r is engaged

in handling an alien. A refinement method for this event is shown below. It can

succeed if robot r is not already engaged in negotiating with another alien. After

negotiations are over, the methods changes the value of alien-handling(r) to F.

m-handleAlien(r, l)

event: alienSpotted(l)

body: if alien-handling(r) = F then:

alien-handling(r) ← T

moveTo(r, l)

Execute command negotiate(r, l)

alien-handling(r) ← F

else fail

The following is an example of a simplified search-and-rescue domain to illus-

trate the representation.

Example 3. Consider a set R of robots performing search and rescue operations in

a partially mapped area. The robots have to find people needing help in some area

and leave them a package of supplies (medication, food, water, etc.). This domain

is specified with state variables such as robotType(r) ∈ {UAV, UGV}, r ∈ R, a finite

27

set of robot names; hasSupply(r) ∈ {>,⊥}; loc(r) ∈ L, a finite set of locations. A

rigid relation adjacent ⊆ L2 gives the topology of the domain.

These robots can use actions such as Detect(r, camera, class) which

detects if an object of some class appears in images acquired by camera of

r, TriggerAlarm(r, l), DropSupply(r, l), LoadSupply(r, l), Takeoff(r, l),

Land(r, l), MoveTo(r, l), FlyTo(r, l). They can address tasks such as:

search(r,area), which makes a UAV r survey in sequence the locations in area, sur-

vey(r, l), navigate(r, l), rescue(r, l), getSupplies(r).

Here is a refinement method for the survey task:

m1-survey(l, r)

task: survey(l)

pre: robotType(r) = UAV and loc(r) = l and status(r) = free

body: for all l′ in neighbouring areas of l do:

moveTo(r, l′)

for cam in cameras(r):

if DetectPerson(r, cam) = > then:

if hasSupply(r) then rescue(r, l′)

else TriggerAlarm(r, l′)

This method specifies that in the location l the UAV r detects if a person

appears in the images from its camera. In that case, it proceeds to a rescue task if

it has supplies; if it does not it triggers an alarm event. This event is processed (by

some other methods) by finding the closest robot not involved in a current rescue

28

and assigning to it a rescue task for that location.

m1-GetSupplies(r)

task: GetSupplies(r)

pre: robotType(r) = UGV

body: moveTo(r,loc(BASE))

ReplenishSupplies(r)

m2-GetSupplies(r)

task: GetSupplies(r)

pre: robotType(r) = UGV

body: r2 = argminr′{EuclideanDistance(r, r′) | hasMedicine(r′) = True}

if r2 = None then Fail

else:

moveTo(r, loc(r2))

Transfer(r2, r)

Specification of an acting domain. We model an acting domain Σ as a tuple

Σ = (Ξ, T ,M,A), where:

• Ξ is the set of world states the actor may be in.

• T is the set of tasks and events the actor may have to deal with.

• M is the set of methods for handling tasks or events in T , Applicable(ξ, τ) is the

29

set of method instances applicable to τ in state ξ.

• A is the set of actions the actor may perform. We let γ(ξ, a) be the set of states

that may be reached after performing action a in state ξ.

We assume that Ξ, T , M, and A are finite.

The deliberative acting problem can be stated as follows: given Σ and a task

or event τ ∈ T , what is the “best” method instance m ∈ M to perform τ in a

current state ξ 1. The acting domain is Σ = (Ξ, T ,M,A). Strictly speaking, the

actor does not require a plan, i.e., an organized set of actions or a policy. It requires

a selection procedure which designates for each task or subtask at hand the “best”

method instance for pursuing the activity in the current context.

The next section describes a reactive actor which relies on a predefined pref-

erence order of methods in Applicable(ξ, τ). Such an order is often natural when

specifying the set of possible methods for a task. In subsequent sections, we detail

three more informed receding horizon look-ahead mechanism using an approximately

optimal refinement planning algorithms which provide the needed selection proce-

dure.

3.2 The actor, RAE

RAE (for Refinement Acting Engine) is adapted from [8, Chapter 3]. It main-

tains an Agenda consisting of a set of refinement stacks, one for each root task or

event that needs to be addressed. A refinement stack stack is a LIFO list of tuples of

1Please note that the best refinement method instance for a task also depends on the refinement
tree (see Figure 3.8).

30

the form (τ,m, i, tried) where τ is an identifier for the task or event; m is a method

instance to refine τ (set to nil if no method instance has been chosen yet); i is a

pointer to a line in the body of m, initialized to 1 (first line in the body); and tried

is a set of refinement method instances already tried for τ that failed to accomplish

it. A stack stack is handled with the usual push, pop and top functions.

1 RAE:
2 Agenda← empty list
3 while True do
55 for each new task or event τ to be addressed do
77 observe current state ξ
99 m← Select(ξ, τ, 〈(τ, nil, 1, ∅)〉, dmax, nro)

1111 if m = ∅ then output(τ , “failed”)
12 else Agenda← Agenda ∪ {〈(τ,m, 1, ∅)〉}
13 end
1515 for each stack ∈ Agenda do
16 observe current state ξ
17 stack← Progress(stack, ξ)
1919 if stack = ∅ then
20 Agenda← Agenda \ stack

21 output(τ , “succeeded”)

22 end
2424 else if stack =failure then
25 Agenda← Agenda \ stack

26 output(τ , “failed”)

27 end

28 end

29 end

Algorithm 1: Refinement Acting Engine RAE

When RAE addresses a task τ , it must choose a method instance m for τ . This

is performed by function Select (lines 9 of RAE, 24 of Progress, and 7 of Retry). Select

takes five arguments: the current state ξ, task τ , and stack stack, and two control

parameters dmax, nro which are needed only for planning. In purely reactive mode

(without planning), Select returns the first applicable method instance, according

31

to a pre-defined ordering, which has not already been tried (tried is given in stack).

Note that this choice is with respect to the current world state ξ. Lines 7,22,5 in

RAE, Progress and Retry respectively, specify to get an update of the world state

from the execution platform. If Applicable(ξ, τ) ⊆ tried, then Select returns ∅, i.e.,

there is no applicable method instances for τ in ξ that has not already been tried,

meaning a failure to address τ .

The first inner loop of RAE (line 5) reads each new root task or event τ to be

addressed and adds to the Agenda its refinement stack, initialized to 〈(τ,m, 1, ∅)〉,

m being the method instance returned by Select, if there is one. The root task τ for

this stack will remain at the bottom of stack until solved; the subtasks in which τ

refines will be pushed onto stack along with the refinement. The second loop of RAE

progresses by one step in the topmost method instance of each stack in the Agenda.

To progress a refinement stack stack, Progress (Algorithm 2) focuses on the

tuple (τ,m, i, tried) at the top of stack. If the current line m[i] is an action already

triggered, then the execution status of this action is checked. If the action m[i] is

still running, this stack has to wait, but RAE goes on for other pending stacks in

the Agenda. If m[i] failed, Retry examines alternative method instances. Otherwise

the action m[i] is done: RAE will proceed in the following iteration with the next

step in method instance m, as defined by the function Next (Algorithm 3).

Next(stack, ξ) advances within the body of the topmost method instance m in

stack as well as with respect to stack. If i is the last step in the body of m, the

current tuple is removed from stack: method instance m has successfully addressed

τ . If τ is a root task; Next and Progress return ∅, meaning that τ succeeded; its

32

1 Progress(stack, ξ):
2 (τ,m, i, tried)← top(stack)
44 if m[i] is an already triggered action then
5 case execution-status(m[i]):
6 running: return stack

88 failed: return Retry(stack)
9 done: return Next(stack, ξ)

10 end
1212 else if m[i] is an assignement step then
13 update ξ according to m[i]
14 return Next(stack, ξ)

15 end
16 else if m[i] is an action a then
17 trigger the execution of action a
18 return stack

19 end
20 else if m[i] is a task τ ′ then
2222 observe current state ξ
2424 m′ ← Select(ξ, τ ′, stack, dmax, nro)
25 if m′ = ∅ then return Retry(stack)
26 else return push((τ ′,m′, 1, ∅), stack)

27 end

Algorithm 2: Progress returns an updated stack taking into account
the execution status of the ongoing action, or the type of the next step in
method instance m.

1 Next (stack, ξ):
2 repeat
3 (τ,m, i, tried)← top(stack)
4 pop(stack)
5 if stack = 〈〉 then return 〈〉
6 until i is not the last step of m
7 j ← step following i in m depending on ξ
8 return push((τ,m, j, tried), stack)

Algorithm 3: Next step in a method instance m for a given stack.

stack stack is removed from the Agenda. If i is not the last step in m, RAE proceeds

to the next step in the body of m. This step j following i in m is defined with

respect to the current state ξ and the control instruction in line i of m, if any.

Starting from line 12 in Progress, i points to the next line of m to be processed.

33

If m[i] is an assignment, the corresponding update of ξ if performed; RAE proceeds

with the next step. If m[i] is an action a, its execution is triggered; RAE will wait

until a finishes to examine the Next step of m. If m[i] is a task τ ′, a refinement

with a method instance m′, returned by Select, is performed. The corresponding

tuple is pushed on top of stack. If there is no applicable method instance to τ ′, then

the current method instance m failed to accomplish τ , a Retry with other method

instances is performed.

1 Retry(stack):
2 (τ,m, step, tried)← pop(stack)
3 tried← tried ∪ {m} // m failed

55 observe current state ξ
77 m′ ← Select(ξ, τ, stack, dmax, nro)
99 if m′ 6= ∅ then return push((τ,m′, 1, tried), stack)

10 else if stack 6= ∅ then return Retry(stack)
1212 else return failure

Algorithm 4: Retry examines untried alternative method instances, if
any, and returns an updated stack.

Retry (Algorithm 4) adds the failed method instance m to the set of method

instances that have been tried for τ and failed. It removes the corresponding tuple

from stack. It retries refining τ with another method instance m′ returned by Select

which has not been already tried (line 9). If there is no such m′ and if stack is not

empty, Retry calls itself recursively on the topmost stack element, which is the one

that generated τ as a subtask: retrial is performed one level up in the refinement

tree. If stack stack is empty, then τ is the root task or event: RAE failed to accomplish

τ .

RAE fails either (i) when there is no method instance applicable to the root task

34

in the current state (line 11 of RAE), or (ii) when all applicable method instances

have been tried and failed (line 27). A method instance fails either (i) when one of

its actions fails (line 8 in Progress) or (ii) when all applicable method instances for

one of its subtasks have been tried and failed (line 12 in Retry).

Note that Retry is not a backtracking procedure: it does not go back to a

previous computational node to pick up another option among the candidates that

were applicable when that node was first reached. It finds another method instance

among those that are now applicable for the current state of the world ξ. RAE

interacts with a dynamic world: it cannot rely on the set Applicable(ξ, τ) computed

earlier, because ξ has changed, new method instances may be applicable. However,

the same method instance that failed at some point may succeed later on and may

merit retrials.

3.3 Planner, APEplan

The actor’s problem is how to “best” perform a task τ in a current state ξ.

In the purely reactive approach, RAE chooses a refinement method instance from a

predefined order of refinement methods, without comparing alternative options in

the current context. Another alternative is to call a planner everytime a task or

sub-task needs to be refined. Our first refinement planning algorithm, for planning

using hierarchical operational models, is called APEplan. APEplan optimized the

number of commands in the refinement tree for the task. It does this optimization

using a greedy approach. Since APEplan has several limitations and is not our best

35

planning algorithm, the full pseudocode of APEplan is described in Appendix A.

Here is a summary of it. APEplan is a modified version of the RAE pseudocode that

incorporates the following modifications:

1. Each call to APEplan returns a refinement tree T (see Figure 3.8) for a task

τ whose root node contains a method instance m to use for τ . The children

of this node include a refinement tree (or terminal node) for each subtask (or

command, respectively) that APEplan produced during a Monte Carlo rollout

of m.

2. In line 9 of RAE, line 24 of Progress, and line 7 of Retry, APEplan calls itself

recursively on a set M ′ ⊆ M that contains the first b members of M a list of

method instances ordered according to some domain-specific preference order

(with M ′ = M if |M | < b), where b is a parameter called the search breadth.

This produces a set of refinement trees. If the set is nonempty, then APEplan

chooses one that optimizes cost, time or any other user-specified objective

function. If the set is empty, then APEplan returns the first method instance

from M ′ if |M ′| >= 1; otherwise it returns failed.

3. Each call to Retry is replaced with an expression that just returns failed. While

RAE needs to retry in the real world with respect to the real actual state, APE-

plan considers that a failure is simply a dead end for that particular sequence

of choices.

4. In line 5 of Progress (the case where step is a command), instead of sending

step to the actor’s execution platform, APEplan invokes a predictive model of

36

what the execution platform would do. Such a predictive model may be any

piece of code capable of making such a prediction, e.g., a deterministic, non-

deterministic, or probabilistic state-transition model, or a simulator of some

kind. Different calls to the predictive model may produce different results.

However, APEplan simplifies and approximates this by calling the predictive

model only once. Our planner, called RAEplan, described in the next sec-

tion gets rids of this simplification and estimates the outcome by calling the

predictive model several times and estimating some optimization criterion.

!1

⋁
⋀
∴

disjunction node

sequence node

sampling node

⋁

⋀

∴ ∴⋁

⋀ ⋀ ⋀ ⋀

a

τ

m′
 ⋀

 ⋁

′′

m

2
1 m 2m m m

1a 2

1

. . . .

 (k samples)

1 2ττ

1

2

j

j+1

n

n+1

Figure 3.8: A refinement tree, with three types of nodes: disjunction for a task
over possible methods, sequence for a method over all its steps, and sampling for
an action over its possible outcomes. A rollout can be, for example, the sequence of
nodes marked 1 (a sample of a1), 2 (first step of m1), . . . , j (subsequent refinements),
j + 1 (next step of m1), . . . , n (a sample of a2), n+ 1 (first step of m2), etc.

37

3.4 Planner, RAEplan

RAEplan does a SLATE style [8, Chapter 6] recursive search to optimize a

criterion called efficiency that is roughly reciprocal of the cost. We first consider

the simple case where the simulated execution of method instance never fails; then

we’ll explain how to account for planning-time failures (which are distinct from

running-time failures addressed by Retry) using efficiency. The reason it is difficult

to evaluate planning time failures using cost is the following: Consider a task τ with

two applicable refinement method instances, m1 and m2. Let’s say, we simulate each

of them n times. m1 succeeds n1 times and m2 succeeds n2 times. With n1 > n2,

one would prefer to use m1 over m2. But with the expected cost of both m1 and m2

being infinite (a failed simulated execution equals infinite cost), there is no way to

distinguish between them using expected cost.

Now, let us first discuss the case where there are no planning time failures. We

choose a refinement method that has a refinement tree with a minimum expected

cost for accomplishing a task τ (along with the remaining partially accomplished

tasks in the current refinement stack).

Estimated Cost. Let C∗(s, Rp) be the optimal expected cost, i.e., the expected

cost of the optimal plan for accomplishing all the tasks in the refinement stack Rp

in state s.

If Rp is empty, then C∗(s, Rp) = 0 because there are no tasks to accomplish.

Otherwise, let (τ,m, i, tried) = top(Rp). Then C∗(s, Rp) depends on whether i is a

command, an assignment statement, or a task:

38

• If i is a command, then C∗(s, Rp) =

EVs′∈S′ [{cost(s, i, s′) + C∗(s′, next(s′, Rp))}] , (3.1)

where S ′ is the set of outcomes of command i in s and EV stands for expected

value.

• If i is an assignment statement, then C∗(s, Rp) = C∗(s′, next(s′, Rp)), where s′

is the state produced from s by performing the assignment statement.

• If i is a task, then C∗(s, Rp) recursively optimizes over the candidate method

instances for i. That is

C∗(s, Rp) = minm′∈M ′ C
∗(s, (i,m′, nil, ∅).Rp),

where M ′ = Candidates(i, s).

By computing C∗(s, Rp), we can choose what method to use for a task. The

algorithm for doing this is:

C*-Choice(s, τ, Rp)

M ← Candidates(τ, s)

return argminm∈MC
∗(s, (τ,m, 0, ∅).Rp)

Next, let us see how to account for planning failures. Note that C∗ cannot

handle failures because the cost of a failed command is ∞, resulting in an expected

39

value of∞ in equation 3.1 for all commands with at least one possibility of failure. In

order to overcome this, we introduce the efficiency criteria, ν = 1/cost, to measure

the efficiency of a plan. RAEplan maximizes efficiency instead of minimizing cost.

Efficiency. We define the efficiency of accomplishing a task to be the reciprocal

of the cost. Let a decomposition of a task τ have two subtasks, τ1 and τ2, with

cost c1 and c2 respectively. The efficiency of τ1 is e1 = 1/c1 and the efficiency of τ2

is e2 = 1/c2. The cost of accomplishing both tasks is c1 + c2, so the efficiency of

accomplishing τ is

1/(c1 + c2) = e1e2/(e1 + e2). (3.2)

If c1 = 0, the efficiency for both tasks is e2; likewise for c2 = 0. Thus, the incremental

efficiency composition is:

e1 • e2 = e2 if e1 =∞, else (3.3)

e1 if e2 =∞, else e1e2/(e1 + e2).

If τ1 (or τ2) fails, then c1 is ∞, e1 = 0. Thus e1 • e2 = 0, meaning that τ fails with

this decomposition. Note that formula 3.3 is associative.

Estimated efficiency. We now define E∗b,k(s, Rp) as an estimate of expected ef-

ficiency of the optimal plan for the tasks in stack Rp when the current state is s.

The parameters b and k denote, respectively, how many different method instances

to examine for each task, and how large a sample size to use for each command.

40

Additional details are on the next page, in the Experiments and Analysis subsection.

If Rp is empty, then E∗b,k(s, Rp) =∞ because there are no tasks to accomplish.

Otherwise, let (τ,m, i, tried) = top(Rp). Then E∗b,k(s, Rp) depends on whether i is a

command, an assignment statement, or a task:

• If i is a command, then E∗b,k(s, Rp) =

1
k

∑
s′∈S′

1
cost(s,i,s′)

• E∗b,k(s′, next(s′, Rp)), (3.4)

where S ′ is a random sample of k outcomes of command i in state s, with

duplicates allowed. Since S ′ has the probability distributions of the outcomes

of the commands, it converges asymptotically to the expected value of E∗.

• If i is an assignment statement, then E∗b,k(s, Rp) = E∗b,k(s
′, next(s′, Rp)), where

s′ is the state produced from s by performing the assignment statement.

• If i is a task, then E∗b,k(s, Rp) recursively optimizes over the candidate method

instances for i. That is:

E∗b,k(s, Rp) = maxm∈M ′ E
∗
b,k(s, (i,m, nil, ∅).Rp), (3.5)

where M ′ = Candidates(i, s) if |Candidates(i, s)| ≤ b, and otherwise M ′ is the

first b method instances in the preference ordering for Candidates(i, s).

As we did with C*-Choice, by computing E∗b,k(s, Rp) we can choose what method

to use for a task. The RAEplan algorithm is as follows, with b and k being global

41

variables:

RAEplan(s, τ, tried, Rp)

M ← Candidates(τ, s) \ tried

return argmaxm∈ME
∗
b,k(s, (τ,m, 0, tried).Rp),

where a.Rp is a refinement stack with a pushed on top(Rp). The larger the

values of b and k in E∗b,k(s, Rp), the more plans RAEplan will examine. It can

be proved that when b = maxτ,s{|Candidates(τ, s)|} (call it bmax) and k → ∞,

the method instance returned by RAEplan converges to one with the maximum

expected efficiency. We now outline the proof. It is by induction on the number

of remaining push operations in Rp. In the base case, the number of remaining

push operations in Rp is 1. This has to be a command, because if it were a task,

then it would further refine into more commands, resulting in more push operations.

The maximum expected efficiency for a command is just its expected value. The

induction hypothesis is that for any stack Rp with n remaining push operations,

E∗bmax,∞ gives the maximum expected efficiency. In the inductive step, we show that

equations 3.4 and 3.5 converge to the maximum expected efficiency for any Rp with

n+ 1 remaining push operations.

3.4.1 Properties of RAEplan

Now, we present the theoretical results related to the algorithms RAE and

RAEplan. The theorems rely on the following assumptions:

42

1. We take infinite number of samples for every command. This is important to

obtain the exact probability of each outcome

2. We look at all candidate method instances for every task

3. No dynamic events happen in the environment

4. The predictive models of actions accurately model the real world (the state

transition probabilities are correct)

Theorem 1 (Soundness/Correctness of RAEplan). The refinement method chosen

by RAEplan for refining a task τ will be successful in accomplishing τ in the real

world.

Proof. This theorem follows from the assumptions 3 and 4 above. RAEplan simu-

lates the refinement of the task τ in a simulator that accurately models the real

world. It does so by looking at all the applicable refinement methods for τ and

simulating them step by step. Each step corresponds to a push or pop operation in

the current refinement stack Rp for τ . So, if all the remaining actions (consisting

of sub-tasks and commands) in R are successfully simulated by RAEplan, and there

are no dynamic events that change the state externally (Assumption 3), the method

chosen by RAEplan will successfully accomplish τ in the real world.

Corollary 1 (Correctness of RAE). Because RAEplan returns the method with the

maximum expected efficiency every time it is called, RAE accomplishes the task with

maximum possible efficiency.

43

Theorem 2 (Completeness of RAEplan). If there exists a method for successfully

accomplishing a task τ , then RAEplan will find it.

Proof. This follows from the assumptions 1 and 2 above. Let m be the method that

will succeed in accomplishing τ . From assumption 2, RAEplan will look at m and

simulate it step by step. From assumptions 1 and 4, simulation of the commands and

sub-tasks will be accurate and they will correctly model what happens in the real

world. So, RAEplan will succeed in accomplishing τ the simulation of m, and return

it. One could argue that RAEplan may succeed in simulating some method m′ other

than m. But from Theorem 1 it follows that m′ will also succeed in accomplishing

τ in the real world.

Theorem 3 (Optimality of RAEplan). RAEplan (τ) will return a method which has

the maximum expected efficiency for accomplishing the task τ .

Proof. Let the current refinement stack for τ be Rp. This corresponds to a partially

built/executed refinement tree which has remaining sub-tasks and commands that

need to be accomplished later.

RAEplan continues to search for the solution by doing a series of push/pop

operations on the refinement stack Rp until remaining of Rp is accomplished. This

happens through simulation and not in the real world.

We prove the optimality of RAEplan by induction on the number of remaining

push operations. We can ignore the pop operations because it doesn’t change the

efficiency and they have a one-to-one correspondence with the push operations.

44

Basis. In the base case, the number of remaining push operations for the stack

is 1. This has to be a command, because if it were a task, then it would further

refine into more commands, resulting in more push operations.

For a command, the efficiency is

E∗b,k(s, Rp) = 1
k

∑
s′∈S′

1
cost(s,i,s′)

• E∗b,k(s′, next(s′, Rp)). (3.6)

Thus, in the current state s,

E(s, R) = lim
k→∞

1

k

∑
s′∈S′

1

cost(s, c, s′)
• E∗(s′, 〈〉)

= lim
k→∞

1

k

∑
s′∈S′

1

cost(s, c, s′)
•∞

= lim
k→∞

1

k

∑
s′∈S′

1

cost(s, c, s′)

= Expected efficiency of the command c

The maximum expected efficiency for a command is just its expected value.

Hence, the theorem is true in the base case.

Induction Hypothesis. Our formula for calculating the efficiency of a stack

gives the maximum expected efficiency for all refinement stacks with less than n

remaining push operations.

45

Induction. Consider the case when a refinement stack Rp has n+ 1 remaining

push operations.

Case 1: The next push operation is a task.

The efficiency is calculated using the formula:

E∗b,k(s, Rp) = maxm∈M ′ E
∗
b,k(s, (i,m, nil, ∅).Rp), (3.7)

E∗b,k(s, (i,m
′, nil, ∅).Rp) is the maximum expected efficiency from the induction hy-

pothesis because it has ≤ n remaining push operations. In the current step, we look

at all possible candidates and take the maximum which will the maximum expected

efficiency for the refinement stack Rp.

Case 2: The next push operation is a command.

The efficiency is calculated using equation 3.6 which is as follows.

E∗b,k(s, Rp) =
1

k

∑
s′∈S′

1

cost(s, i, s′)
• E∗b,k(s′, next(Rp))

E∗b,k(s
′, next(Rp)) is the maximum expected efficiency from the induction hy-

pothesis because it has ≤ n remaining push operations. In the current step, we look

at k outcomes of the command and take the average. With k → ∞, this will give

the maximum expected efficiency for the refinement stack Rp.

46

Theorem 4. Time complexity of RAEplan is

O

(
|Cand|.b

qh+1−1
q−1 .k

c(qh−1)
q−1

)

where

Cand is the set of applicable methods for τ ,

h is the maximum possible height of the refinement tree for τ ,

q is the maximum number of sub-tasks within a method,

c is the maximum number of commands within a method.

Note: This assumes that there are no cycles and assumptions (1) and (2) do

not hold.

Proof. One way of looking at what RAEplan does is that in order to choose a suitable

refinement method for a task τ , RAEplan simulates several refinement trees for it. It

looks at a particular refinement tree exactly once and goes through all its nodes one

by one. Let T be the set of all such refinement trees. Let T = {t1, t2, ..., tn} with

n = |T |. Thus, time complexity of RAEplan is O(
∑n

i=1 |ti|) where |ti| is the number

of nodes in the refinement tree ti. Looking at one node of a tree has O(1) running

time. So, if we can count all the nodes of the trees in T , we can estimate the running

time of RAEplan. Each of the task nodes at any level i can have q sub-tasks and c

commands.

Thus, the maximum number of task nodes is

1 + q + q2 + ...+ qh =
qh+1 − 1

q − 1
,

47

and the maximum number of command nodes is

c+ cq + cq2 + ...+ cqh−1 = c.
qh − 1

q − 1

In each of the task nodes, we look at b possible choices (except the root node where

we look at all applicable candidates). In each of the command nodes, we look at k

possible outcomes. So, the running time of RAEplan is

O

(
|Cand|.b

qh+1−1
q−1 .k

c(qh−1)
q−1

)
.

3.5 UPOM, a UCT-like search procedure

The actor’s problem was informally defined as how to “best” perform a task

τ in a current state ξ. In the purely reactive approach, RAE, chooses a refinement

method instance from a predefined order of refinement methods, without comparing

alternative options in the current context. RAEplan suggests a refinement method

instance by following a SLATE style sampling strategy and choosing a method

instance with the highest expected efficiency. In this section, we define a general

utility function to assess and compare methods in Applicable(ξ, τ) to select the best

one; and a planner based on a procedure that does UCT-style sampling and returns

the method instance with the highest expected utility.

The utility function might, in principle, be used by an exact optimization

48

procedure for finding the optimal method instance for a task. We propose a more

efficient Monte Carlo Tree Search approach, called Plan-with-UPOM, for finding

an approximately optimal method instance. Plan-with-UPOM relies on a function,

called UPOM, inspired from the Upper Confidence bounds search applied to Trees

(UCT) procedure. UPOM (UCT Procedure for Operational Models) has parameters

d for rollout depth and nro for number of rollouts. It relies on a heuristic function

h for estimating the criterion at the end of the rollouts when d <∞.

Plan-with-UPOM runs multiple simulations using the methods in M and a

generative sampling model of actions. This model is defined as a function Sample:

S × A → S. Sample(s, a) returns a state s′ randomly drawn from γ(s, a), with

γ : S ×A→ (2S ∪ {failed}). The transition function γ is augmented with the token

failed to account for possible failures of a. We assume, as usual, that the sampling

reflects the probability distribution of the action’s real-world outcomes.

A simulation of a method m for a task τ during planning goes successively

through the steps of m, as required by the control flow for the current context,

and generates a sequence of simulated states 〈s0, . . . , si, . . .〉, where initially s0 cor-

responds to the current real-world state ξ. The utility function is computed along

such a sequence, taking into account the deterministic refinements of methods and

the nondeterministic outcomes of actions (see Figure 3.8). In simulation during

planning, we do not Retry, as in RAE, but we take into account possible failures. We

assume the simulations to be fast enough with respect to the real-world dynamics.

Hence, we do not consider possible changes in ξ during a simulation. These changes,

if any, are dealt with at the acting level.

49

3.5.1 Utility criteria and optimal approach

The appropriate utility function can be application-dependent. One may con-

sider a function that combines rewards for desirable or undesirable states, and costs

for the time and resources of actions. To keep the formal presentation simple, we as-

sume that there are no rewards in states. We studied two utility functions measuring

respectively the actor’s efficiency and robustness. Regarding the former, instead of

minimizing costs, the efficiency utility function maximizes values to easily account

for failures. For the latter, the actor seeks a method instance that has a good chance

to succeed.

We first define two value functions for actions, ve and vs, which lead to the

two proposed utility functions for methods.

Efficiency. Let Cost : S×A× (S∪{failed})→ R+ be a cost function. Cost(s, a, s′)

is the cost of performing action a in state s when the outcome is s′. Note that the

cost of an action a is finite even when a fails. This is the case since in general an

actor is able to figure out that an attempted action failed to limit its cost. However,

a failed action a in a method m leads to the failure of m; its eficiency is simply 0.

Hence we define the efficiency value of an action as follows:

ve(s, a, s
′) =


0 if s′ = “failed”,

1/Cost(s, a, s′) otherwise.

(3.8)

50

The cumulative efficiency value of two successive actions whose values are ve1 = 1/c1

and ve2 = 1/c2 is denoted: ve1 ⊕ ve2 = 1/(c1 + c2) = ve1 × ve2/(ve1 + ve2).

Success Ratio. Here, we measure the utility of a method as its probability of

success over all possible outcomes of its actions. Hence we simply take a value 0 for

an action that fails, and 1 if the action succeeds.

vs(s, a, s
′) =


0 if s′ = “failed”,

1 otherwise.

(3.9)

The cumulative success ratio value of two successive actions in a method whose

values are ve1 and ve2 is ve1 ⊕ ve2 = ve1 × ve2.

For both value functions ve and vs, the operator ⊕ is associative, which is

needed for combining successive steps. We use I to denote the identity element for

operation ⊕, i.e., x ⊕ I = x; I is ∞ for ve and 1 for vs. Note that if either of two

actions in a method m fails, their combined value is 0, since m also fails.

Let us now define a utility function for methods using either ve or vs. In order

to compute the expected utility of a method m we need to consider possible traces

of the execution of m for a task τ . In RAE, an execution trace was conveniently

represented though the evolution of stack for the task τ . In planning, we similarly

use stack as a LIFO list of tuples (τ,m, i, tried), as defined in RAE.2 For a given

simulation of m for τ , stack is initialized as a copy of the current stack in RAE.We

2We do not need for the moment to keep track of already tried methods, but we’ll see in a
moment the usefulness of this term

51

progress in the simulation of m step by step using the function next (Algorithm 3),

pushing in stack a new tuple when a step requires a refinement into a subtask.

Let top(stack) be the stack tuple (τ,m, i, tried). The utility of a particular

simulation of ith step of m for τ is given by the following recursive equation:

U(m, s, stack) =



U(m, s′, next(stack, s)) if m[i] is an

assignment,

v(s, a, s′)⊕ U(m, s′, next(stack, s)) if m[i] is an action a,

U(m′, s, push((τ ′,m′, 1, ∅), next(stack, s)) if m[i] is a subtask τ ′,

I if stack = ∅,
(3.10)

Here, v is either ve or vs. An assignment step changes the state from s to s′ but

does not change the utility U . An action a changes the state nondeterministically

to s′; the utility is the combined value of a and the utility of the remaining step. A

refinement step does not change the state; it is addressed in this particular simulation

by refining τ into τ ′ with m′. The function next moves to the following step, and to

the empty stack at the end of every simulated execution.

From Equation 3.10 we derive the maximal expected utility of m for τ by

maximizing recursively over all possible refinements in m and averaging over all

52

possible outcomes of actions, including failures:

U∗(m, s, stack) =



U∗(m, s′, next(stack, s)) if m[i] is an assignment,∑
s′∈γ(s,a)Pr(s′|s, a)× [v(s, a, s′)⊕ U∗(m, s′, next(stack, s))]

if m[i] is an action a,

maxm′∈Applicable(s,τ ′)U
∗(m′, s, push((τ ′,m′, 1), next(stack, s))

if m[i] is a subtask τ ′,

I if stack = ∅.
(3.11)

In the above equation, γ(s, a) includes the token “failed”. We assume as usual

that if Applicable(s, τ) = ∅ then maxm∈Applicable(s,τ)U
∗(m, s, stack) = 0, meaning a

refinement failure. Instantiating v as either ve or vs gives the two utility functions,

the efficiency and the success ratio of methods, respectively.

The optimal method for a task τ in a state s for the utility U∗ is:

m∗τ,s = argmaxm∈Applicable(s,τ)U
∗(m, s, 〈(τ,m, 1, ∅)〉) (3.12)

It is possible to implement Equation 3.11 directly as a recursive backtracking

optimization algorithm and to make the planning algorithm return m∗τ,s, as defined

above. However, this would be too computationally demanding and not practical

for an online planner. We propose instead to seek an approximately optimal method

with an anytime controllable procedure using a Monte Carlo Tree Search algorithm

in the space of operational models.

53

3.5.2 A planning algorithm based on UCT

To find an approximation m̃ of m∗, we propose a progressive deepening Monte

Carlo Tree Search procedure with nro rollouts, down to a depth dmax in the refine-

ment tree of a task τ (see Figure 3.8). The basic ideas are the following:

• at an action node of the search tree, we average over the value of the correspond-

ing nro rollouts;

• at a task node, we choose the refinement method instance with the highest

expected utility;

• starting from d = dmax,we decrease d for a refinement step and an action step,

but not in an assignment step;

• we take a heuristic estimate of the utility of the remaining refinements at the tip

of a rollout, i.e., at d = 0;

• we stop a rollout at a failure of an action or a refinement, and return a value

UFailure = 0; we also stop when the stack is empty and return USuccess = I.

This is detailed in algorithms 5 and 6. Select is called by RAE with five param-

eters: ξ, τ , and stack, and the control parameters, dmax the maximum rollout depth,

and nro the number of UCT rollouts. Recall that on a new root task τ , RAE calls

Select with σ = 〈(τ, nil, 1, ∅)〉. Select returns m̃, an approximately optimal method

for τ , or ∅ if no method is found, i.e., if there is no applicable method for τ in ξ,

but of those already tried by RAE for this task. Select uses a copy of RAE’s current

stack stack, and a simulation state s, which is an abstraction of the current execu-

54

1 Plan-with-UPOM(ξ, τ, stack, dmax, nro):
2 (τ,m, i, tried)← top(stack)
3 M ← Applicable(ξ, τ) \ tried
4 if M = ∅ then return ∅
5 if |M = {m}| = 1 then return m
6 s← Abstract(ξ) ; σ ← copy of stack; d← 0
88 m̃← argmaxm∈Mh(τ,m, s)

1010 repeat
11 d← d+ 1
1313 for nro times do
14 UPOM (s, push((τ, nil, 1, ∅), stack), d)
15 end
16 m̃← argmaxm∈MQstack,s(m)

17 until d = dmax or search time is over

18 return m̃

Algorithm 5: Plan-with-UPOM is a progressive deepening procedure using
UPOM for finding an approximately optimal method instance.

tion state ξ (e.g., in Example 1, l can be a precise metric location for acting and

topological reference for planning). It initializes m̃ with a heuristic estimates (line

8). It performs a succession of simulations at progressively deeper refinement levels

using the function UPOM to evaluate the utility of a candidate method instance.

The progressive deepening loop (line 10) is pursued until reaching the maximum

rollout depth, or until the actor interrupts the search because of time limit or any

other reason, at which point the current m̃ is returned and will be tried by RAE.

Select is an anytime procedure: it returns a solution whenever interrupted.

UPOM (Algorithm 6) takes as arguments a simulation state s, a stack stack,

and the rollout depth d. It performs one rollout over recursive calls for a method

m and its refinements. On the first call of a rollout, m = nil, meaning that no

method has yet been chosen. A method mc is chosen among untried methods (line

20). If all methods have been tried, mc is chosen (line 23) according to a tradeoff

55

1 UPOM(s, stack, d):
2 if stack = 〈〉 then return USuccess
3 (τ,m, i, tried)← top(stack)
55 if d = 0 then return h(τ,m, s)
6 if m = nil or m[i] is a task τ ′ then
7 if m = nil then τ ′ ← τ
8 if Nstack,s(τ

′) is not initialized yet then

1010 M ′ ← Applicable(s, τ ′) \ tried
11 if M ′ = 0 then return UFailure
12 Nstack,s(τ

′)← 0

13 for m′ ∈M ′ do
14 Nstack,s(m

′)← 0 ; Qstack,s(m
′)← 0

15 end

16 end
17 Untried ← {m′ ∈M ′|Nstack,s(m

′) = 0}
18 if Untried 6= ∅ then
2020 mc ← random selection from Untried

21 end
2323 else

mc ← argmaxm∈M ′{Qstack,s(m)+C×[logNstack,s(τ)/Nstack,s(m)]1/2}

2525 λ← UPOM(s, push((τ ′,mc, 1, ∅), next(stack, s)), d− 1)
2727 Qstack,s(mc)← [Nstack,s(mc)×Qstack,s(mc) + λ]/[1 +Nstack,s(mc)]

28 Nstack,s(mc)← Nstack,s(mc) + 1

29 return λ

30 end
31 if m[i] is an assignment then
32 s′ ← state s updated according to m[i]
33 return UPOM(s′, next(stack, s′), d)

34 end
35 if m[i] is an action a then
3737 s′ ← Sample(s, a)
38 if s′ = failed then return UFailure
4040 else return v(s, a, s′)⊕ UPOM(s′, next(stack, s′), d− 1)

41 end

Algorithm 6: Monte Carlo tree search procedure UPOM; performs one
rollout recursively down the refinement tree of a method to compute an
estimate of its optimal utility.

56

between exploration and exploitation. The constant C > 0 fixes this tradeoff for the

exploration less sampled methods (high C) versus the exploitation or more promising

ones (low C).

Qσ,s(m), a global data structure, approximates U∗(m, s, σ): it combines the

value of a sampled action with the utility of the remaining part of a rollout (line 40),

and it updates Q by averaging over previous rollouts (line 27). The value function

v (line 40) is either ve or vs depending on the chosen utility function, efficiency or

success ratio. For both function, USuccess = I and UFailure = 0.

Now, let us see how Plan-with-UPOM can be used to refine the task explore(r, l)

in Example 1. Since the task explore(r, l) has only one applicable refinement method,

RAE will choose m1-explore(r, l) to refine explore(r, l). Once RAE encounters the sub-

task getTool(r), it is faced with two choices, either m1-getTool(r) or m2-getTool(r)

to refine getTool(r). The search tree for this is shown in Figure 3.9. RAE calls

Plan-with-UPOM online to refine getTool(r).

Figure 3.10 informally shows how the Q-values and the N counts are updated

at each task node of the search tree, one rollout at a time, for the first three rollouts.

For simplicity, assume that Plan-with-UPOM is minimizing cost. Say, in the first

rollout (first call to UPOM), m1-getTool(r) is chosen to refine getTool(r) and the cost

of the rollout is found to be 10. The Q-values of the corresponding visited nodes are

updated to be 10. In the second rollout, since m2-getTool(r) hasn’t been explored

yet, UPOM will choose m2-getTool(r) to refine getTool(r). The cost of the rollout

is computed to be 5, and the Q and N values are updated accordingly after the

rollout is done. For the third rollout, UPOM chooses m2-getTool(r) using the UCB1

57

formula and computes the cost to be 6. After three rollouts, the Q-values vector for

getTool(r) is [10, 5.5] suggesting that the expected cost for m1-getTool(r) is 10 and

for m2-getTool(r) is 5.5. So, Plan-with-UPOM will suggest m1-getTool(r) since the

objective is to minimize cost.

Figure 3.9: The sub-task getTool(r) can be refined using two different refinement
methods leading to two possible refinement trees for the task explore(r, l).

A significant difference between the pseudocode in Algorithm 6 and Equa-

tion 3.11 is the restriction of Applicable to methods that have not been tried before

by RAE for the same task. This is a conservative strategy, because at this point the

actor has no means for distinguishing failures of tried methods that require retrials

from those that don’t. We’ll come back to a retrial strategy in Chapter 6.

Another difference shows up in the initialization of stack in Select. This is

58

Figure 3.10: A table informally showing how the Q-values and N counts are updated
for every task/subtask after each rollout (a call to UPOM) for the search tree shown
in Figure 3.9.

explained by going back to how Select is used by RAE. At a root task τ , when Select

is called the first time (line 9 of RAE), stack = 〈(τ, nil, 1, ∅)〉. If RAE proceeds for

τ with a method m returned by Select, at the next refinement call of RAE, e.g., for

τ1 (see Figure 3.8) Select needs to consider the utility of the methods for τ1, but

also their impact on the remaining steps in m, here on a2 and τ2. In other words,

the actor requires the best method for τ1 in the context of its current execution

state, taking into account the remaining steps of the method m it is executing. This

best method for τ1 may be different from that given by Equation 3.12. The need

to keep track of previously tried methods and pending tasks explains why stack is

taken as a copy of the current stack in RAE for the root task at hand. However,

this does not lead to reconsider previously made choices of methods the actor is

currently executing, e.g., in Figure 3.8 m′ is not reassessed. Note that UPOM does

not pursue a rollout at an internal refinement node with the method maximizing

the current utility evaluation Q, but with the best method according to the UCT

59

exploration/exploitation tradeoff (line 23).

The two control parameters dmax and nro are dependent because of the follow-

ing reason. The rational of UCT is that exploration should leave no untried alter-

natives down to the depth searched. For that, we should make sure that nro > µ,

where µ =
∑

τi
maxs|Applicable(s, τi)| over all subtasks τi, down to a refinement

depth of the root task. But µ increases with dmax. In our experiments we keep a

large constant nro and increase d in the progressive deepening loop until the max

depth dmax. An alternative control of Select can be the following:

• for a given d, pursue the rollouts (line 13) until there are K successive exploita-

tion rollouts, i.e., for which Untried = ∅, for some constant K;3

• pursue the progressive deepening loop (line 10) until no subtask is left unrefined

for the K exploitation rollouts or until the search time is over.

This is an adaptive control strategy that requires only two constants C and K.

Finally, let us discuss the important issue of the depth cutoff strategy. Two

options may be considered: (i) d is the number of steps of a rollout (as in MDP

algorithms), or (ii) d is the refinement depth of a rollout. The pseudocode in

Algorithm 6 takes the former option: d decreases at every recursive call, for an

action step as well as for a task refinement step. The advantage is that the cutoff at

d = 0 stops the current evaluation. The disadvantage is that the root method, and

possibly its refinements, are only partially evaluated. For example in Figure 3.8, if

j > dmax, steps a2 and τ2 of m will never be considered; similarly for the remaining

3The probabilistic roadmap motion planning algorithm uses a similar idea to stop after K
configuration samples unsuccessful for augmenting the roadmap.

60

steps in m1: rollouts will go in deep refinements and never assess all the steps of

evaluated methods. The value returned by UPOM can be arbitrarily far from U∗.

The other issue of this strategy is that the heuristic estimate has to take into account

remaining refinements lower down the cutoff point as well as remaining steps higher

up in the refinement tree, i.e., what remains to be evaluated in stack.

In Option (ii), where d is the refinement depth of a rollout, d decreases at a task

refinement step only, not at an action step. The advantage is to allow each rollout

to go through all the steps of every developed method. Furthermore, the heuristic

estimate at a cutoff is focused in this case on a subtask and its applicable methods,

whose simulation will not be started (nondeveloped methods). The disadvantage is

that one needs an estimate of the state following the achievement of a task with a

nondeveloped method in order to pursue the sibling steps. In Figure 3.8 with d = 1

for example, τ1 will not be refined; a2 and remaining steps of m will be based on

an estimated state following the achievement of τ1. The definition of a default state

change following a task is domain dependent and might not be easily specified in

general.

The modifications needed in UPOM to implement this option (ii) are the

following:

• In order to be able to go back to higher levels of d when the simulation is pursued

in parent methods after a cutoff, it is convenient to maintain d as part of the

simulation stack: a fifth term d is added in every tuple of stack.

• The arguments of UPOM are modified according to the previous point.

61

• Line 5 in UPOM has to pursue the evaluation higher up in stack:

if d = 0 then return h(τ,m, s)⊕ UPOM(g(s, τ,m), pop(stack), b, k), where

g(s, τ,m) is a default state after the achievement of τ with m in s.

For our experimental results (see Chapter 4), we have implemented a mixture

of the two options: we take d as the refinement depth of a rollout (decreasing d

at a task refinement step only), but we stop the evaluation when reaching d = 0,

taking heuristic estimates for the remaining steps of pending methods. This has the

disadvantage of a partial evaluation, but its advantages are to allow easily defined

heuristic and not require a following state estimate.

3.6 Learning for RAE and UPOM

Purely reactive RAE chooses a method instance for a task using an a priori

ordering or a heuristic. RAE with anytime receding horizon planning uses UPOM to

find an approximately optimal method to refine a task or a subtask. At maximum

rollout depth, UPOM needs also heuristic estimates

The classical techniques for domain independent heuristics in planning do

not work for operational refinement models. Specifying by hand efficient domain-

specific heuristics is not an acceptable solution. However, it is possible to learn

such heuristics automatically by running UPOM offline in simulation over numerous

cases. For this work we relied on a neural network approach, using both linear

and rectified linear unit (ReLU) layers. However, we suspect that other learning

approaches, e.g., SVMs, might have provided comparable results.

62

We developed two learning procedures to guide RAE and UPOM (Figure 3.1(b))

• Learnπ, learns a policy which maps a context defined by a task τ , a state s, and

a stack σ, to a refinement method m in this context, to be chosen by RAE when

no planning can be performed.

• LearnH, learns a heuristic evaluation function to be used by UPOM.

3.6.1 Learning to choose methods (Learnπ)

In a first approach, Learnπ learns a mapping from contexts to partially instanti-

ated methods. A parameter of a method instance can inherit its value from the task

at hand. However, different instances of a method may be applicable in a given state

to the same task. This is illustrated in Example 1 by method m1-survey(l, r) where l

is inherited from the task, but r can be instantiated as any robot such that status(r)

= free. Learnπ simplifies the learning by abstracting all these applicable method

instances to a single class. To use the learn policy, RAE chooses randomly among all

applicable instances of the learned method for the context at hand. Learnπ learning

procedure consists of the following four steps, which are schematically depicted in

Figure 3.11.

Step 1: Data generation. Training is performed on a set of data records of

the form r = ((s, τ),m), where s is a state, τ is a task to be refined and m is a

method for τ . Data records are obtained by making RAE call the planner offline

with randomly generated tasks. Each call returns a method instance m. We tested

two approaches (the results of the tests are in Section 4.5):

63

Figure 3.11: A schematic diagram for the Learnπ procedure.

• Learnπ-1 adds r = ((s, τ),m) to the training set if RAE succeeds with m in

accomplishing τ while acting in a dynamic environment.

• Learnπ-2 adds r to the training set irrespective of whether m succeeded during

acting.

Step 2: Encoding. The data records are encoded according to the usual require-

ments of neural net approaches. Given a record r = ((s, τ),m), we encode (s, τ)

into an input-feature vector and encode m into an output label, with the refinement

stack σ omitted from the encoding for the sake of simplicity.4 Thus the encoding is

((s, τ),m)
Encoding7−→ ([ws, wτ], wm), (3.13)

with ws, wτ and wm being One-Hot representations of s, τ , and m. The encoding

uses an N -dimensional One-Hot vector representation of each state variable, with

N being the maximum range of any state variable. Thus if every s ∈ S has V

state-variables, then s’s representation ws is V × N dimensional. Note that some

4Technically, the choice of m depends partly on σ. However, since σ is a program execution
stack, including it would greatly increase the input feature vector’s complexity, and the neural
network’s size and complexity.

64

information may be lost in this step due to discretization.

Step 3: Training. Our multi-layer perceptron (MLP) nnπ consists of two linear

layers separated by a ReLU layer to account for non-linearity in our training data.

To learn and classify [ws, wτ] by refinement methods, we used a SGD (Stochastic

Gradient Descent) optimizer and the Cross Entropy loss function. The output of

nnπ is a vector of size |M| whereM is the set of all refinement methods in a domain.

Each dimension in the output represents the degree to which a specific method is

optimal in accomplishing τ .

Step 4: Integration in RAE. RAE uses the trained network nnπ to choose a

refinement method whenever a task or sub-task needs to be refined. Instead of

calling the planner, RAE encodes (s, τ) into [ws, wτ] using Equation 3.13. Then, m

is chosen as

m← Decode(argmaxi(nnπ([ws, wτ])[i])),

where Decode is a one-one mapping from an integer index to a refinement method.

3.6.2 Learning to choose method instances (Learnπi)

Here, we extend the previous approach to learn a mapping from context to

fully instantiated methods. The Learnπi procedure learns over all the values of

uninstantiated parameters using a multi-layered perceptron (MLP).

Step 1: Data generation. For each uninstantiated method parameter vui, training

is performed on a set of data records of the form r = ((s, vτ), b), where s is the

current state, vτ is a list of values of the task parameters, and b is the value of the

65

parameter vui. Data records are obtained by making RAE call UPOM offline with

randomly generated tasks. Each call returns a method instance m and the value of

its parameters.

Step 2: Encoding. Given a record r = ((s, vτ), b), we encode (s, vτ) into an

input-feature vector and encode b into an output label. Thus the encoding is

((s, vτ), b)
Encoding7−→ ([ws, wvτ], wb), (3.14)

with ws, wvτ and wb being One-Hot representations of s, vτ , and b.

Step 3: Training. We train a multi-layered perceptron (MLP) for each unin-

stantiated task parameter vui. Each such MLP nnvui consists of two linear layers

separated by a ReLU layer to account for non-linearity in our training data. To

learn and classify [ws, wvτ] by the values of vui, we used a SGD (Stochastic Gradient

Descent) optimizer and the Cross Entropy loss function. The output of nnvui is a

vector of size |Range(vui)|. Each dimension in the output represents the degree to

which vui takes a specific value.

Step 4: Integration in RAE. After RAE has chosen a refinement method m

for task τ , we have RAE use the trained network nnvui to choose a value for each

uninstantiated parameter vui. RAE encodes (s, vτ) into [ws, wvτ] using Equation 3.14.

Then, the value for vui, b is chosen as

b← Decode(argmaxj(nnvui([ws, wvui])[j])),

66

where Decode is a one-one mapping from integer indices to Range(vui).

3.6.3 Learning a heuristic evaluation function (LearnH)

The LearnH procedure tries to learn an estimate of the utility u of accomplishing

a task τ with a method m in state s. One difficulty with this is that u is a real

number. In principle, an MLP could learn the u values using either regression or

classification. To our knowledge, there is no rule to choose between the two; the best

approach depends on the data distribution. Further, regression can be converted

into classification when the range of the target values is finite. In our case, we don’t

need an exact utility value. We only need to compare candidate method instances.

Experimentally, we observed that classification performed better than regression.

We divided the range of utility values into K intervals. By studying the range and

distribution of utility values, we chose K and the range of each interval such that

the intervals contained approximately equal numbers of data records. LearnH learns

to predict interval(u), i.e., the interval in which u lies. The steps of LearnH are as

follows (see Figure 3.12):

Figure 3.12: A schematic diagram for the LearnH procedure.

67

Step 1: Data generation. We generate data records in a similar way as in the

Learnπ procedure, with the difference that each record r is of the form ((s, τ,m), u)

where u is the estimated utility value calculated by UPOM.

Step 2: Encoding. In a record r = ((s, τ,m), u), we encode (s, τ,m) into an

input-feature vector using N -dimensional One-Hot vector representation, omitting

σ for the same reasons as before. If interval(u) is as described above, then the

encoding is

((s, τ,m), interval(u))
Encoding7−→ ([ws, wτ , wm], wu) (3.15)

with ws, wτ , wm and wu being One-Hot representations of s, τ , m and interval(u).

Step 3: Training. LearnH’s MLP nnH is the same as Learnπ’s, except for the output

layer. nnH has a vector of size K as output where K is the number of intervals into

which the utility values are split. Each dimension in the output of nnH represents

the degree to which the estimated utility lies in that interval.

Step 4: Integration in RAE. RAE calls the planner with a limited rollout length

d, giving UPOM the following heuristic function to estimate a rollout’s remaining

utility:

h(τ,m, s)← Decode(argmaxi(nnH([ws, wτ , wm])[i])),

where [ws, wτ , wm] is the encoding of (τ,m, s) using Equation 3.15, and Decode is

a one-one mapping from a utility interval to its mid-point. Before the progressive

deepening loop over calls to UPOM, Select initializes m̃ in line 8 according to this

68

heuristic h.

3.6.4 Incremental online learning

RAE, in combination with UPOM, supports incremental online learning (al-

though online learning has not been experimented with). The initialization can

be performed either (i) without a heuristic by running RAE+UPOM online with

dmax = ∞ , or (ii) with an initial heuristic obtained from offline learning on sim-

ulated data. The online acting, planning and incremental learning is performed as

follows:

• Augment the training set by recording successful methods and U values; train

the models using Learnπ and LearnH with Z records, and then switch RAE to

use either Learnπ alone when no search time is available, or UPOM with current

heuristic h and finite dmax when planning time available.

• Repeat the above steps every X runs (or on idle periods) using the most recent

Z training records (for Z about a few thousands) to improve the learning on

both LearnH and Learnπ.

3.7 Properties of Plan-with-UPOM

In this section, we derive the time and space complexities of Plan-with-UPOM

and show how UPOM can be mapped to an MDP. The proof of mapping UPOM to

an MDP was done in collaboration with Dana Nau, Malib Ghallab, Paolo Traverso

and James Mason. The credit for the details of the mapping proof goes to the

69

dissertation advisor, Dana Nau.

Theorem 5. Assuming that commands can be simulated in O(1) time, the time com-

plexity of Plan-with-UPOM (s, σ, d) is O(nrod×maxτ,s′ |Applicable(τ, s′)|+ f(σ, s)),

where f(σ, s) is the time complexity of calculating next steps in the current refine-

ment stack σ in state s.

Proof. Plan-with-UPOM does nro rollouts. Each rollout has length d and looks at d

steps in the current refinement stack σ. Let us first calculate the time complexity

of a single step of a rollout. A step of a rollout takes a different amount of time

depending on whether it is a task, an assignment or a command. We assume that

a command can be simulated in O(1) time. Same is true for an assignment step.

For a task τ , Plan-with-UPOM looks at the set of applicable refinment methods

for τ in current state s, Applicable(τ, s). So, the time complexity of a step is

maxτ,s′ |Applicable(τ, s′)| in the worst case. The only thing remaining in this analysis

is the time required to calculate the next step which depends on the refinment stack

and the procedural code present inside the refinement methods. We name this

function as f(σ, s). f(σ, s) is the total time required for calculating next steps

Next(σ, s) in nro rollouts. Therefore, the time complexity of Plan-with-UPOM is

O(nrod×max
τ,s′
|Applicable(τ, s′)|+ f(σ, s)).

Remark 1. The time complexity of Plan-with-UPOM is linear wrt the number of

70

rollouts, nro and the rollout length, d.

Corollary 2. The space complexity of Plan-with-UPOM (s, σ, d) is

O(nrod×maxτ,s′ |Applicable(τ, s′)|).

Proof. Plan-with-UPOM saves some metadata in every node it expands. Based on

this meta-data, it chooses the refinement method instance with the highest expected

utility (highest Q-value). With nro rollouts each of length d, the maximum number

of unique nodes created is O(nrod). Each node stores Q-values for the applicable

method instances for the current task to be refined. The maximum number of

applicable method instances is maxτ,s′ |Applicable(τ, s′)|. So, the space complexity

of Plan-with-UPOM is O(nrod×maxτ,s′ |Applicable(τ, s′)|).

3.7.1 Mapping UPOM’s Search Space to an MDP

We demonstrate the asymptotic convergence of UPOM towards an optimal

method on static domains, i.e., domains without exogenous events. UPOM is based

on UCT, which is demonstrated to converge on a finite horizon MDP with a prob-

ability of not finding the optimal action at the root node that goes to zero at a

polynomial rate as the number of rollouts grows to infinity (Theorem 6 of [46]).

To simplify the mapping, we first consider UPOM with an additive utility

function, and show how to map the search space of UPOM into an MDP. We then

discuss how this can be extended to the efficiency and success ratio utility functions

defined in 3.5, since the UCT algorithm is not restricted to the additive case; it still

converges as long as the utility function is monotonic.

71

3.7.2 Search Space for Refinement Planning

Let Σ = (Ξ, T ,M,A) be an acting domain, as specified at the end of Sec-

tion 3.1. Throughout this proof, we will assume that Σ is static.

Recall from 3.5 that the space searched by UPOM is a simulated version of Σ.

To talk about this formally, let’s say that a refinement planning domain is a tuple

Φ = (S, T ,M,A), where S is the set of states (recall that these are abstractions of

states in Ξ), and T , M, and A are the same as in Σ. Recall from Section 3.1

that Ξ (and thus S), T , M, and A are all finite, and that every sequence of steps

generated by the methods in M is finite. 5

For s ∈ S and a ∈ A, we let γ(s, a) ⊆ S be the set of all states that may be

produced by simulating a’s execution in s. For each s′ ∈ γ(s, a), we let T (s, a, s′) be

the probability that state s′ will be produced if we simulate a’s execution in state

s.

Recall from Section 3.2 that a refinement stack is a LIFO stack in which each

element is a tuple (τ,m, i, tried), where τ is a task, m is a method, i is an instruction

pointer that points to the i’th line of m’s body (which is a computer program), and

tried is the set of methods previously tried for τ . We will call the tuple (τ,m, i, tried)

a stack frame, and we will let m[i] denote the i’th line of the body of m.

We now can define a refinement planning problem to be a tuple Π =

5One way to enforce such a restriction would be as follows. For each iteration loop, one could
require it to have a loop counter that will terminate it after a finite number of iterations. For
recursions, one could use a level mapping (e.g., see [67, 68]) that assigns to each task t a positive
integer `(t), and require that for every method m whose task is t and every task t′ that appears in
the body of m, `(t′) < `(t). However, in most problem domains it is straightforward to write a set
of methods that don’t necessarily satisfy this property but still don’t produce infinite recursion.

72

(Φ, s0, σ0, U), where s0 is the initial state, σ0 is the initial refinement stack, and

U is a utility function.

Rollouts A rollout in Φ is a sequence of pairs

ρ = 〈(σ0, s0), (σ1, s1), . . . , (σn, sn)〉 (3.16)

satisfying the following properties:

• each si is a state, and each σi is a refinement stack;

• for each i > 0 there is a nonzero probability that sj and σj are the next state

and refinement stack after si−1 and σi−1;

• (σn, sn) is a termination point for UPOM.

If the final refinement stack is σn = 〈〉, i.e., the empty stack, then the rollout ρ is

successful. Otherwise ρ fails.

In a top-level call to UPOM, the initial refinement stack σ0 would normally be

σ0 = 〈(τ0,m0, 1,∅)〉, (3.17)

where τ0 is a task, and m0 is a method that is relevant for τ0 and applicable in s0.

In all subsequent refinement stacks produced by UPOM.

We will say that a refinement stack σ is reachable in Φ (i.e., reachable from a

73

top-level call to UPOM) if there exists a rollout

ρ = 〈(σ0, s0), (σ1, s1), . . . , (σn, sn)〉

such that σ0 satisfies Equation 3.17 and σ ∈ {σ0, . . . , σn}. We let R(Φ) be the

set of all refinement stacks that are reachable in Φ. Since every sequence of steps

generated by the methods in M is finite, it follows that R(Φ) is also finite.

Additive utility functions. The utility function U is additive if there is either

a reward function R(s) or a cost function C(s, a, s′) (where (s, a, s′) is a transition

from s to s′ caused by action a) such that U is the sum of the rewards or costs

associated with the state transitions in ρ. These state transitions are the points in

ρ where UPOM simulates the execution of an action.

For each pair (σj, sj) in ρ, let (τj,mj, ij, triedj) be the top element of σj. If

mj[ij] is an action, then the next element of ρ is a pair (σj+1, sj+1) in which sj+1

is the state produced by executing the action mj[ij]. In Φ this corresponds to the

state transition (sj,mj[ij], sj+1). Thus the set of state transitions in ρ is

tρ = {(sj,mj[ij], sj+1) | (σj, sj) and (σj+1, sj+1) are members of ρ,

(τj,mj, ij, triedj) = top(σj), and mj[ij] is an action}.

(3.18)

74

Thus if U is additive, then

U(ρ) =


∑

(s,a,s′)∈tρ R(s′), if U is the sum of rewards,

∑
(s,a,s′)∈tρ C(s, a, s′), if U is the sum of costs.

(3.19)

Defining the MDP

We want to define an MDP Ψ such that choosing among methods in Φ corre-

sponds to choosing among actions in Ψ. The easiest way to do this is to let all of

Φ’s actions and methods be actions in Ψ. Based loosely on the notation in [69], we

will write Ψ as

Ψ = (SΨ,AΨ, sΨ
0 , S

Ψ
g , γ

Ψ, TΨ, UΨ) (3.20)

where

SΨ = stacks(Φ)× S is the set of states,

AΨ =M∪A is the set of actions,

sΨ
0 = (σ0, s0) is the initial state,

SΨ
g = {(〈〉, s) | s ∈ S} is the set of goal states,

and the state-transition function γΨ, state-transition probability function TΨ, and

utility function UΨ are defined as follows.

75

State Transitions. To define γΨ and TΨ, we must first define which actions are

applicable in each state. Let (σ, s) ∈ SΨ, and (τ,m, i, t) = top(σ). Then the set of

actions that are applicable to (σ, s) in Ψ is

ApplicableΨ((σ, s)) =


Instances(M,m[i], s), if m[i] is a task,

{m[i]}, if m[i] is an action.

(3.21)

Thus if a ∈ ApplicableΨ((σ, s)), then there are two cases for what γΨ(s, a) and

TΨ(s, a, s′) might be:

• Case 1: m[i] is a task in M, and a ∈ Instances(M,m[i], s). In this case,

the next refinement stack will be produced by pushing a new stack frame

φ = (m[i], a, 1,∅) onto σ. The state s will remain unchanged. Thus the next

state in Ψ will be (φ+ σ, s), where ‘+’ denotes concatenation. Thus

γ((σ, s), a) = {(φ+ σ, s)};

TΨ[(σ, s), a, (φ+ σ, s)] = 1;

TΨ[(σ, s), a, (σ′, s′)] = 0, if (σ′, s′) 6= (φ+ σ, s).

• Case 2: m[i] is an action in A, and a = m[i]. Then a’s possible outcomes in Ψ

correspond one-to-one to its possible outcomes in Φ. More specifically, if γ is the

state-transition function for Φ (see Section 3.1), then

γΨ((σ, s), a) = {(Next(σ, s′), s′) | s′ ∈ γ(s, a)}

76

and

TΨ((σ, s), a, (σ′, s′))) =


T (s, a, s′), if (σ′, s′) ∈ γΨ((σ, s), a),

0, otherwise.

Rollouts and Utility. A rollout of ΠΨ is any sequence of states and actions of Ψ,

ρΨ = 〈(σ0, s0), a1, (σ1, s1), a2, . . . , (σn−1, sn−1), an, (σn, sn)〉,

such that for i = 1, . . . , n, ai ∈ Applicable(σi−1, si−1) and

TΨ((σi−1, si−1, (σi, si)), ai) > 0.

The rollout is successful if (σn, sn) ∈ SΦ
g , and unsuccessful otherwise.

We can define UΨ directly from U . If ρΨ is the rollout given above, then the

corresponding rollout in Φ is ρ = 〈(σ0, s0), (σ1, s1), . . . , (σn−1, sn−1), (σn, sn)〉, and

UΨ(ρΨ) = U(ρ).

If U is additive, then so is UΨ. In this case, Ψ satisfies the definition of an MDP

with initial state (see [69]).

Mapping UPOM’s Search to an Equivalent UCT Search

Let

Π = (Φ, s0, σ0, U) (3.22)

77

be a refinement planning problem, where

Φ = (S, T ,M,A). (3.23)

Suppose UPOM(s0, σ0,∞) generates the rollout

ρ = 〈(σ0, s0), (σ1, s1), . . . , (σn, sn)〉, (3.24)

where σj = (τj,mj, ij, triedj), for j = 1, . . . , n. UPOM generates ρ by choosing m1

and then recursively calling UPOM(sj, σj,∞). Consequently, UPOM’s probability

of generating ρ is

p = p1 × . . .× pn, (3.25)

where each pj is the probability that UPOM(sj, σj,∞) will choose mj before making

its recursive call. The value of pj will depend on UPOM’s metadata for Π, e.g., the

number of times each method for a task τ has been tried in each state s, and the

average utility obtained over those tries.

We want to show that UPOM’s search of Π corresponds to an equivalent UCT

search of Ψ. Theorem 6 accomplishes this in the case where the utility function U

is additive. After the theorem, we discuss the case where U is not additive.

Theorem 6. Let Π, Φ, ρ and p be as in Equations 3.22–3.25, and let U be additive.

Let UPOM’s metadata for Π be as described above. Let Ψ = (SΨ,AΨ, γΨ, TΨ, UΨ)

be the MDP corresponding to Π. If UCT searches Ψ using the same metadata that

78

UPOM used, then the probability that UCT generates the rollout

ρΨ = 〈(σ0, s0),m1, (σ1, s1),m2, . . . , (σn−1, sn−1),mn, (σn, sn)〉

is the same probability p = p1 × . . .× pn as in Equation 3.25.

Sketch of proof. The proof is by induction. The base case is when n = 0,

i.e., ρ = 〈(σ0, s0)〉. If n = 0 then it must be that Applicable(s0) = ∅. Thus

ApplicableΨ((σ0, s0)) = ∅, so in this case the theorem is vacuously true.

For the induction step, suppose n > 0, and consider UPOM’s recursive

call to UPOM(s1, σ1,∞). In this case, the refinement planning problem is Π′ =

(Φ, s1, σ1, U), and we let Ψ′ be the corresponding MDP.

Given the same metadata as above, UPOM will generate the rollout ρ1 =

〈(σ1, s1), . . . , (σn, sn)〉 with probability p2 × . . . × pn. The induction assumption is

that with that same probability, a UCT search of Ψ1 will generate the rollout

ρΨ
1 = 〈(σ1, s1),m2, . . . , (σn−1, sn−1),mn, (σn, sn)〉.

Before we can apply the induction assumption, we first need to show that if p1

is the probability that UPOM(Φ, s0, σ0, U) chooses m1 before making its recursive

call, then a UCT search of Ψ1 will choose m1 with the same probability p1. There

are two cases:

• Case 1: m1 is a method in Φ. As shown in Algorithm 6, UPOM(Φ, s0, σ0, U)

79

chooses m1 using the same UCB-style computation that a UCT search in Ψ

would use at (σ0, s0). Thus, omitting the details about how to compute p1 from

the metadata, it follows that if UPOM(Φ, s0, σ0, U) chooses m1 with probability

p1, then so does the UCT search.

• Case 2: m1 is an action in Φ. Then UPOM’s computation (in line 40 through the

end of Algorithm 6) is not a UCT-style computation, but this does not matter,

because there is only one possible choice, namely m1. In this case, UPOM’s

probability of choosing m1 is p1 = 1, and the same is true for the UCT search.

In both cases, it follows from the induction assumption that in Π, UPOM’s probabil-

ity of generating ρ is p1× p2× . . .× pn, and in ΠΨ, UCT’s probability of generating

ρΨ is also p1 × p2 × . . .× pn.

This concludes the sketch of the proof.

Generalizing beyond MDPs If the utility function U is not additive, Equation 3.20

produces a probabilistic planning problem that looks similar to an MDP, the only

difference being that the utility function UΨ is not additive. Furthermore, Theorem 6

still holds even when U is not additive, if we modify the proof to remove the claim

that Ψ is an MDP.

We note that the UCT algorithm [46] is not restricted to the case where UΨ is

additive; it will still converge as long as UΨ is monotonic. If U is monotonic, then

so is UΨ. In this case it follows that UCT—and thus UPOM—will converge to an

optimal solution. In particular, UPOM will converge to an optimal solution when

using the efficiency and success ratio utility functions in Section 3.5.1.

80

3.8 Summary

In this chapter, we described our hierarchical operational model formalism, the

acting algorithm RAE, and three refinement planning algorithms: APEplan; RAEplan,

a SLATE-like planner; and Plan-with-UPOM, a planner based on a UCT-like proce-

dure UPOM. We proved theoretical properties of RAEplan and UPOM under certain

sets of assumptions. We also showed how RAE and UPOM can be integrated with

learning via three different learning strategies, Learnπ, LearnH and Learnπi. Learnπ

helps to choose the best refinement method, LearnH learns to estimate a heuristic

evaluation function, and Learnπi learns refinement method instances. Recall that a

refinement method instance is a method with values assigned to all uninstantiated

parameters.

81

Chapter 4: Implementation and Experimental Evaluation

In this chapter, we describe the experimental setup and evaluation of our three

refinement planning algorithms: APEplan, RAEplan, and UPOM when run in com-

bination with RAE. For each of them, we first describe the simulated test domains.

The domains have various properties which include sensing, agent collaboration,

dead ends, dynamic events and concurrent tasks. The performance is evaluated by

varying the parameters of the planning algorithms and measuring three performance

metrics, called efficiency, success-ratio and retry ratio. For UPOM, the performance

is also evaluated for the integration of three learning strategies: Learnπ, LearnH and

Learnπi.

4.1 Evaluation of APEplan

4.1.1 Domains

We have implemented and tested APEplan on four simulated domains. We

designed them in such a way that they model the common issues that are encoun-

tered while integrating acting and planning. Broadly, there are two groups, domains

with dead ends and ones without them. A domain with dead ends means that it is

82

possible for the agent to reach a state from which it cannot recover. Without dead

ends, a purely reactive system like RAE is sufficient for achieving the tasks, but not

efficiently. One of our domains illustrates sensing (or information gathering) actions,

three involve (centrally controlled) collaboration between actors. All domains have

dynamic events and concurrent tasks (see Table 4.1).

The Explorable Environment domain extends the UAVs and UGVs setting of

Example 1 with some additional tasks and refinement methods. The agents explore

a partially known terrain and perform different operations, such as, survey, monitor,

gather data or soil samples, etc. In order to perform a particular operation, it may

need some special equipment. Robots can carry a limited amount of charge and

data. This domain has dead ends because a robot may run out of charge in an

isolated location.

The Chargeable Robot Domain consists of several robots. They moving around

to collect objects of interest. The robots can hold a limited amount of charge and

are rechargeable. To move from one location to another, they use Dijkstra’s shortest

path algorithm. The robots do not know where objects are unless a sensing action

is performed in the object’s location and they must search for an object before

collecting it. The robot may or may not carry the charger with it. The environment

is dynamic due to emergency events. A task reaches a dead end when a robot has

run out of charge when it is far away from the charger.

The Spring Door domain has several robots trying to move objects from one

room to another in an environment with both spring doors and ordinary doors.

Spring doors close themselves unless they are held. A robot cannot carry an object

83

and hold a door simultaneously. Thus, whenever it wants to move through a spring

door, it must ask for help from another robot. Any robot that is free can act as the

helper. The environment is dynamic because the the type of door is unknown to

the robot, but there are no dead ends.

The Industrial Plant domain consists of an industrial workshop environment,

as in the RoboCup Logistics League competition. There are several fixed machines

for painting, assembly, wrapping, and packing. As new orders for assembly, paint,

and the like, arrive, carrier robots transport the necessary objects to the required

machine’s location. An order can be complex, such as, painting two objects, assem-

bling them together, and packing the resulting object. Once the order is done, the

final product is delivered to the output buffer. The environment is dynamic because

the machines may get damaged and need repair before being used again. But there

are no dead ends.

These four domains have different properties, as summarized in Table 4.1. The

Chargeable Robot domain includes a model for the sensing action where the robot

can sense a location and identify objects in that location. Spring Door domain mod-

els a situation where robots need to collaborate with each other. They can ask for

help from each other. The Explorable Environment models a combination of robots

with different capabilities (UGVs and UAVs) whereas in the other three domains

all robots have same capabilities. It also models collaboration like the Spring Door

domain. In the Industrial Plant domain, the allocation of tasks among the robots

is hidden from the user. The user just specifies their orders; the delegation of the

sub tasks (movement of objects to the required locations) is handled inside the re-

84

Table 4.1: Properties of the four test domains of APEplan.

Domain Dynamic Dead Sensing Robot Concurrent
events ends collaboration tasks

Chargeable Robot X X X – X
Explorable Environment X X – X X

Spring Door X – – X X
Industrial Plant X – – X X

finement methods. The Chargeable Robot domain and the Explorable Environment

domain are domains that have dead ends, whereas the Spring Door domain and the

Industrial Plant do not have them.

4.1.2 Assessment of APEplan’s parameters

The objective of our experiments was to examine how RAE’s performance de-

pends on the amount of planning that we told it to do. For this purpose, we created

a suite of test problems, each of which included one to four jobs to accomplish, with

each job inserted into RAE’s input stream at a randomly chosen time point. In the

Chargeable Robot domain, Explorable Environment domain, Spring Door domain

and Industrial Plant domain, our test suites consisted of 60, 54, 60, and 84 problems,

with the numbers of jobs to accomplish being 114, 126, 84 and 276, respectively.

The experiments we used simulated versions of the four environments, that ran on

a 2.6 GHz Intel Core i5 processor.

The amount of planning done by APEplan depends on its search breadth b,

sample breadth b′, and search depth d. We used b′ = 1 (one outcome for each

command), and d =∞ (planning always proceeded to completion), and five different

search breadths, b = 0, 1, 2, 3, 4. Since RAE tries b alternative refinement methods

85

for each task or subtask, the number of alternative plans examined is exponential

in b. As a special case, b = 0 means running RAE in a purely reactive way with

no planning at all. Our objective function for the experiments is the number of

commands in the plan.

Hypothesis 1. Increasing the value of RAE’s search breadth will improve its per-

formance on three different metrics: success ratio, retry ratio and speed to success,

with greater improvement in domains with dead ends.

Success ratio. Figure 4.1 plots success ratio, the proportion of jobs that RAE

successfully accomplished in each domain. For the two domains with dead ends

(Chargeable Robot domain and Explorable Environment domain), the ratio gener-

ally increases as the search breadth b increases. In the Chargeable Robot domain

domain, the success ratio makes a big jump from b = 1 to b = 2 and then remains

nearly the same for b = 2, 3, 4. This is because for most of the tasks, the second

method in the preference ordering (decided by the domains’ author) turned out to be

the best one, so higher value of b did not help much. In contrast, in the Explorable

Environment domain domain, the success ratio continued to improve substantially

for b = 3 and b = 4.

In the domains with no dead ends, the search breadth did not make much

difference in the success ratio. In the Industrial Plant domain domain, it made

almost no difference at all. In the Spring Door domain domain, the success ratio

even decreased slightly from b = 1 to b = 4 because methods appearing earlier (in

the preference ordering) are better suited to handle the events whereas methods

86

(a) (b)

Figure 4.1: Success ratio (number of successful jobs/ total number of jobs) for
different values of search breadth b of APEplan for (a) domains having dead ends
(Chargeable Robot domain and Explorable Environment domain) and (b) domains
having no dead ends (Spring Door domain and Industrial Plant domain). CR =
Chargeable Robot, EE = Explorable Environment, SD = Spring Door, IP = Indus-
trial Plant.

appearing later produce plans that are shorter but less robust to unexpected events.

These experiments support the hypothesis that planning is beneficial in domains

where the actor may get stuck in dead ends.

Retry ratio. Figure 4.2 plots results for a second measure retry ratio, or the number

of times that RAE had to call the Retry procedure divided by the total number of

jobs to accomplish. Recall that the Retry procedure is called when there is a failure

in the method instance m that RAE chose for some task τ (see Algorithm 1). Retry

works by trying to use another applicable method instance for τ that it has not tried

already. Although thisis similar backtracking, a critical difference is that, since the

method m has already been partially executed, it has changed the current state, and

in real-world execution (unlike planning) there is no way to backtrack to a previous

state. In many application domains it is important to minimize the total number

of retries, since recovery from failure may incur unbudgeted amounts of time and

87

(a) (b)

Figure 4.2: Retry ratio (number of retries / total number of jobs) for different values
of search breadth b of APEplan for (a) domains having dead ends (Chargeable Robot
domain and Explorable Environment domain) and (b) domains having no dead ends
(Spring Door domain and Industrial Plant domain). CR = Chargeable Robot, EE
= Explorable Environment, SD = Spring Door, IP = Industrial Plant.

expense.

In all four domains, the retry ratio decreased slightly from b = 0 (purely

reactive RAE) to b = 1, and it generally decreased more as b increased. This is

because higher values of b made APEplan examine a larger number of alternative

plans before choosing one, thus increasing the chance that it finds a better method

for each task. In the Chargeable Robot domain domain, the large decrease in retry

ratio from b = 1 to b = 2 corresponds to the increase in success ratio observed

in Figure 4.1. The same is true for the Explorable Environment domain domain at

b = 2 and b = 4. Since the retry ratio decreases with increasing b in all four domains,

this means that the integration of acting and planning in RAE is important in order

to reduce the number of retries.

Speed to success. An acting-and-planning system’s performance cannot be mea-

sured only with respect to the time to plan; it must also include the total amount

of time required for both planning and acting, which we refer to as time to success.

88

Acting is in general much more expensive, resource demanding, and time consum-

ing than planning and unexpected outcomes and events may necessitate additional

acting and planning. For a successful job, the time to success is finite, but for a

failed job it is infinite. To average the outcomes, we use the reciprocal amount, the

speed to success, which we define as:

ν =


0 if the job is not successful,

α/(tp + ta + nctc) if the job is successful,

where α is a scaling factor, tp and ta are APEplan’s and RAE’s total computation

time, nc is the number of commands sent to the execution platform, and tc the

average amount of time needed to perform a command. In our experiments we used

tc = 250 seconds and we used α = 10, 000 to avoid very small numbers.

The higher the average value of ν, the better the performance. Figure 4.3

shows how the average value of ν depends on b. In the domains with dead ends

(Chargeable Robot domain and Explorable Environment domain), there is a huge

improvement in ν from b = 1 (where ν is nearly 0) to b = 2. This corresponds to

more successful jobs in less time. As we increase b further, we only see slight change

in ν for all the domains, even though the success ratio and retry ratio improve

(Figures 4.1 and 4.2). This is because of the extra time overhead of running APEplan

with higher search breadth.

In summary, for domains with dead ends, planning with APEplan outperforms

the purely reactive version of RAE. The same results occur in the domains without

89

(a) (b)

Figure 4.3: Speed to success ν averaged over all of the jobs, for different values of
search breadth b of APEplan for (a) domains having dead ends (Chargeable Robot
domain and Explorable Environment domain) and (b) domains having no dead ends
(Spring Door domain and Industrial Plant domain). CR = Chargeable Robot, EE
= Explorable Environment, SD = Spring Door, IP = Industrial Plant.

dead ends, but there the effect is less pronounced thanks to the domain specific

heuristics in our experiments, which chooses good refinement methods early on.

4.2 Evaluation of RAEplan

4.2.1 Domains

Our test domains for evaluating RAEplan are similar to the ones used for

evaluating APEplan with some feature enhancements.

The Explorable Environment domain (EE) extends the UAVs and UGVs set-

ting of Example 1 with a total of 8 tasks, 17 refinement methods and 14 commands.

It has dead ends because robots may run of charge in isolated locations.

The Chargeable Robot Domain (CR) consists of several robots moving around

to collect objects of interest. Each robot can hold a limited amount of charge and

is rechargeable. It may or may not carry the charger. They use Dijkstra’s shortest

90

path algorithm to move between locations. They don’t know where objects are

unless they do a sensing action at the object’s location. They must search for an

object before collecting it. The environment is dynamic due to emergency events

as in Example 2. A task reaches a dead end if a robot is far away from the charger

and runs out of charge. CR has 6 tasks, 10 methods and 9 commands.

The Spring Door domain (SD) has several robots trying to move objects from

one room to another in an environment with a mixture of spring doors and ordinary

doors. Spring doors close themselves unless they are held. A robot cannot simu-

lataneously carry an object and hold a spring door open, so it must ask for help

from another robot. Any robot that’s free can be the helper. The environment is

dynamic because the type of door is unknown to the robot. There are no dead ends.

SD has 5 tasks, 9 methods and 9 commands.

The Industrial Plant domain (IP) consists of an industrial workshop environ-

ment, as in the RoboCup Logistics League competition. There are several fixed

machines for painting, assembly, wrapping and packing. As new orders for assem-

bly, paint, etc., arrive, carrier robots transport the necessary objects to the required

machine’s location. An order can be compound, e.g., paint two objects, assemble

them together, and pack the resulting object. Once the order is done, the product is

delivered to the output buffer. The environment is dynamic because the machines

may get damaged and need repair before being used again; but there are no dead

ends. IP has 9 tasks, 16 methods and 9 commands.

Table 4.1 summarizes the different properties of these domains. CR includes

a model of a sensing action that a robot can use to identify what objects are at a

91

given location. SD models a situation where robots need to collaborate, and can

ask for help from each other. EE models a combination of robots with different

capabilities (UGVs and UAVs) whereas in the other three domains all robots have

same capabilities. It also models collaboration. In the IP domain, the allocation of

tasks among the robots is hidden from the user. The user just specifies their orders;

the delegation of the sub-tasks (movement of objects to the required locations) is

handled inside the refinement methods. CR and EE can have dead-ends, whereas

SD and IP do not have dead-ends.

4.2.2 Assessment of RAEplan’s parameters

To examine how RAE’s performance might depend on the amount of planning

with RAEplan, we created a suite of test problems for the four domains described in

Section 4.1.1. Each test problem consists of a job to accomplish, that arrives at a

randomly chosen time point in RAE’s input stream. For each such time point, we

chose a random value and held it fixed throughout the experiments.

Recall that RAE’s objective is to maximize the expected efficiency of a job’s

refinement tree, and the number of plans generated by RAEplan depends on b (how

many different methods to try for a task) and k (how many times to simulate a

command). The number of plans examined by RAEplan is exponential in b and k.

As a special case, k = 0 runs RAEplan purely reactively, with no planning at all.

We ran experiments with k = 0, 3, 5, 7, 10. In the CR, EE and IP domains we

used b = 1, 2, 3 because each task are at most three method instances. In the SD

92

domain, we used b = 1, 2, 3, 4 because it has four methods for opening a door.

In the CR, EE, SD and IP domains, our test suites consisted of 15, 12, 12, and

14 problems respectively. We ran each problem 20 times to account for the effect of

probabilistic non-deterministic commands. In our experiments, we used simulated

versions of the four environments, running on a 2.6 GHz Intel Core i5 processor. The

average (over 20 runs) running time for our experiments ranged from one minute to

6-7 minutes per test suite.

Efficiency. Figures 4.4 and 4.5 show how the average efficiency E depends on b

and k. We see that efficiency increases with increase in b and k as expected. This is

true for all four domains. In the CR domain, efficiency increases considerably as we

move from b = 1 to b = 2, then (specifically when k = 3 and 5) decreases slightly

as we move to b = 3. This is possibly because the commands present in the third

method require more sampling to make accurate predictions. Indeed, with more

samples, k = 7 and 10, b = 3 has better efficiency than b = 2. In the EE domain, we

see that the efficiency improves up to k = 5 and then remains stable, indicating that

5 samples are enough for this domain. In the domains without dead ends (SD and

IP), we see a gradual increase in efficiency with k. In Figure 2, the large increase

in efficiency between b = 1 and b = 2 (as opposed to a more uniform increase) is

because RAEplan explores methods according to a preference ordering specified by

the domain’s author. For many of the problems in our test suite, the 2nd method in

the preference ordering turned out to be the one with the largest expected efficiency.

These experiments confirm our expectation that efficiency improves with b and k.

93

Figure 4.4: Efficiency E averaged over all of the jobs, for various values of b and k
of RAEplan in domains with dead ends.

Figure 4.5: Efficiency E averaged over all of the jobs, for various values of b and k
of RAEplan in domains without dead ends.

Success ratio. We wanted to assess how robust RAE was with and without plan-

ning. Figures 4.6 and 4.7 show RAE’s success ratio, i.e., the proportion of jobs

successfully accomplished in each domain. For the domains with dead ends (CR

and EE), the success ratio increases as b increases. However, in the CR domain,

there is some decrease after k = 3 because we are optimizing efficiency, not ro-

bustness. Formulating an explicit robustness criterion is non-trivial and will require

further work. For the success ratio experiments, when we say we’re not optimizing

94

Figure 4.6: Success ratio (# of successful jobs/ total # of jobs) for various values
of b and k of RAEplan in domains with dead ends.

Figure 4.7: Success ratio (# of successful jobs/ total # of jobs) for various values
of b and k of RAEplan in domains without dead ends.

robustness, we mean we’re not optimizing a specific criterion that leads to better

recovery if an unexpected event causes failure. RAEplan looks for the most efficient

plan. In our efficiency formula in Eqs. (2,3), a plan with a high risk of failure will

have low efficiency, but so will a high-cost plan that always succeeds.

In the SD domain, b or k didn’t make very much difference in the success ratio.

In fact, for some values of b and k, the success ratio decreases. This is because in

our preference ordering for the methods of the SD domain, the methods appearing

95

earlier are better suited to handle the events in our problems whereas the methods

appearing later produce plans that have lower cost but less robust to unexpected

events. In the IP domain, we observe that success ratio increases with increase in b

and k.

Retry ratio. Figures 4.8 and 4.9 shows the retry ratio, i.e., the number of times

that RAE had to call the Retry procedure, divided by the total number of jobs to

accomplish.

The Retry procedure is called when there is an execution failure in the method

instance m that RAE choses for a task τ . Retry tries another applicable method in-

stance for τ that it hasn’t tried already. This is significantly different from backtrack-

ing since the failed method m has already been partially executed; it has changed

the current state. In real-world execution there is no way to backtrack to a previous

state. In many application domains it is important to minimize the total number

of retries, since recovery from failure may incur significant, unbudgeted amounts of

time and expense.

The retry ratio generally decreases from b = 1 to b = 2 and 3. This is because

higher values of b and k make RAEplan examine a larger number of alternative plans

before choosing one, thus increasing the chance that it finds a better method for

each task. Hence, planning is important in order to reduce the number of retries.

The reason the retry ratio increases from b = 2 to 3 for some points in IP and EE

is that for a reasonable number of test cases, the third method in the preference

ordering for the tasks appears to be more efficient but when executed, it is leading

96

to a large number of retries, increasing the retry ratio.

In summary, for all the domains, planning with RAEplan clearly outperforms

purely reactive RAE.

Figure 4.8: Retry ratio (# of retries / total # of jobs) for various values of b and k
of RAEplan in domains with dead ends.

Figure 4.9: Retry ratio (# of retries / total # of jobs) for various values of b and k
of RAEplan in domains without dead ends.

97

4.3 Evaluation of Plan-with-UPOM

4.3.1 Domains

We have implemented and tested our framework on five domains which illus-

trate service and exploration robotics scenarios with aerial and ground robots.

The S&R domain extends the search and rescue setting of Example 3 with

several UAVs surveying a partially mapped area and finding injured people in need

of help. UGVs gather supplies, such as medicines, and go to rescue the localized

persons. Exogenous events are weather conditions and debris in paths.

In Explore, several chargeable UGVs and UAVs explore a partially known ter-

rain and gather information by surveying, screening, monitoring, e.g., for ecological

studies. They need to go back to the base regularly to deposit data or to collect a

specific equipment. Appearance of animals simulate exogenous events.

In the Fetch domain, several robots are collecting objects of interest. The

robots are rechargeable and may carry the charger with them. They can’t know

where objects are, unless they do a sensing action at the object’s location. They

must search for an object before collecting it. A task reaches a dead end if a robot is

far away from the charger and runs out of charge. While collecting objects, robots

may have to attend to some emergency events happening in certain locations.

The Nav domain has several robots trying to move objects from one room to

another in an environment with a mixture of spring doors (which close unless they’re

held open) and ordinary doors. A robot can’t simultaneously carry an object and

98

hold a spring door open, so it must ask for help from another robot. A free robot

can be the helper. The type of each door isn’t known to the robots in advance.

The Deliver domain was developed by James Mason as a part of his Undergrad-

uate Honors project at University of Maryland. It has several robots in a shipping

warehouse that must co-operatively package incoming orders, i.e., lists of items of

different types and weights to deliver to customers. Items for a single order have

be placed in a machine, which packs them together; packages have to be placed in

the shipping doc. To process multiple orders concurrently, items can be moved to a

pallet before transfer to a machine. Robots have limited capacities.

S&R, Explore, Nav and Fetch have sensing actions. S&R, Explore, Fetch and Deliver

can have dead-ends. The features of these domains are in Table 4.2. Please recall

from Section 3.1 that M is the set of refinement methods, and Mi is the set of

refinement method instances. The full descriptions of the operational models are in

Appendix B.

Domain |T | |M| |Mi| |A| Dynamic Dead Sensing Robot Concurrent
events ends collaboration tasks

S&R 8 16 16 14 X X X X X
Explore 9 17 17 14 X X X X X
Fetch 7 10 10 9 X X X – X
Nav 6 9 15 10 X – X X X

Deliver 6 6 50 9 X X – X X

Table 4.2: Features of the five test domains of RAE + UPOM

4.3.2 Assessment of UPOM’s parameters

Here we analyze the effect of the two planning parameters, nro and dmax, on

the two utility functions we considered, the efficiency, and the success ratio, as well

99

as on the retry ratio of RAE. We tested nro ∈ [0, 1000] and dmax ∈ [0, 30]. The

case nro = 0 rollout corresponds to purely reactive RAE, without planning. We only

report for nro ∈ [0, 250] since no significant additional effect was observed beyond

nro > 250. We tested each domain on 50 randomly generated problems. A problem

consists of one or two root tasks that arrives at a random time points in RAE’s

input stream, together with other randomly generated exogenous events. For each

problem we recorded 50 runs to account for the nondeterministic effects of actions.

We measured

• the efficiency of RAE for a task, i.e., the reciprocal of the sum of the costs of the

actions executed by RAE for accomplishing that task;

• the success ratio of RAE for a run, i.e., the number of successful task over the

total of tasks for that run; and

• the retry ratio of RAE for a run, i.e., the number of call to Retry over the total

of tasks for that run.

Note that the measured efficiency takes into account the execution context with

concurrent tasks and exogenous events; hence it is different for the corresponding

utility function optimized in UPOM (i.e., the expected efficiency of Equation 3.11);

similarly for the success ratio. We used a 2.8 GHz Intel Ivy Bridge processor. The

cut-off time for a run was set to 30 minutes.

100

Figure 4.10: Efficiency and success ratio for two different utility functions of Plan-
with-UPOM (orange is expected success ratio and gray is expected efficiency) aver-
aged over all five domains, with dmax =∞ (relative values with respect to the base
case of U for nro = 0).

4.3.3 Comparison of the two utility functions

We studied two utility functions that are not totally independent but assess

different criteria. The success ratio is useful as a measure of robustness. Suppose

method m1 is always successful but has a large cost, whereas m2 sometimes fails

but costs very little when it works: m1 has a higher success ratio, but m2 has higher

expected efficiency.

Figure 4.10 shows the measured efficiency and success ratio of RAE for the two

utility functions, averaged over all domains. Each data point is the average of 104

runs, with the error bars showing 95% confidence interval; we plot relative values

with respect the base case of U for nro = 0. As expected, the measured efficiency

is higher when the optimized utility function of UPOM is the expected efficiency.

Similarly for the success ratio. However, optimizing one criteria has also a good

effect on the other one, since the two are not independent. We also observe that 5

101

rollouts have already a significant effect on the efficiency, with slight improvements

as UPOM does more rollouts. In contrast, the success-ratio increases smoothly from

no planning to planning with 250 rollouts. This can be due to the difference between

the two criteria: a task that succeeds in its first attempt and a task that succeeds

after several retries of RAE have both a success-ratio of 1, but the efficiency in the

latter case is lower. This point is analyzed next.

4.3.4 Retry ratio

Figure 4.11 shows the retry ratio, i.e., the number of calls to Retry, divided

by the total number of tasks. Recall that when a chosen method fails, Retry tries

another applicable method instance that hasn’t been tried already. The retry ratio

measures the execution effectiveness. Performing many retries is not desirable, since

this has a high cost and faces the uncertainty of execution. We observe that the retry

ratio drops sharply from purely reactive RAE to calling UPOM with 5 rollouts. From

then onwards, until 250 rollouts, the retry ratio continues to decrease gradually. The

behavior is similar in all domains, so we have combined the results together to show

the average values in a single plot.

4.3.5 Efficiency across domains

In Figure 4.12 we detail for each domain the measured efficiency of RAE when

the utility of UPOM was set to expected efficiency, for varying nro and dmax = ∞.

Each data point is the average of 2500 runs. We observe that the efficiency generally

102

Figure 4.11: Retry ratio (# of retries / total # of jobs) averaged over all five
domains, for Plan-with-UPOM with dmax =∞.

improves with the number of rollouts. However, there is not much improvement

with increase in nro in the Fetch domain, and in the Deliver domain, the efficiency

drops slightly when nro = 250. We conjectured that this can be due to concurrent

interfering tasks. Hence, we measured for Fetch and Deliver domains the efficiency

for test cases with only one root task; the results in Figure 4.13 confirmed this

conjecture.

4.3.6 Success ratio across domains

Figure 4.14 shows for each domain the measured success ratio of RAE when the

utility of UPOM was set to expected success ratio, for varying nro and dmax = ∞.

The success-ratio generally increases with increase in the number of rollouts. Again,

a slight drop is observed in the Deliver domain. Figure 4.15 shows that for test cases

with only one root task the success-ratio improves in the Fetch domain, and remains

constant in the Deliver domain. The success ratio remains 1 in the Deliver domain

103

Figure 4.12: Measured efficiency of RAE with Plan-with-UPOM for nro ∈ [0, 250] and
dmax =∞ (relative values with respect to the base case of U for nro = 0).

104

Figure 4.13: Measured efficiency averaged over only test cases with one root task,
in Fetch and Deliver domains with Plan-with-UPOM’s parameter, dmax =∞ (relative
values with respect to the base case of U for nro = 0).

because all test cases with one root task succeed eventually, with or without retries.

In the domains with dead ends, the improvement in success ratio is more substantial

than domains without dead ends because planning is more critical for cases where

one bad choice of refinement method can lead to permanent failure.

4.3.7 Depth and Heuristics

We ran UPOM at different values of dmax ∈ [0, 30], without progressive deep-

ening in Select. At the depth limit, UPOM estimates the remaining efficiency by one

of the following heuristic functions:

• h0 always returns ∞,

• hD a hand written domain specific heuristic; and

• hLearnH the heuristic function learned by the LearnH procedure (Section 3.6.3).

The results, in Figure 4.16, show that the efficiency generally increases with

105

Figure 4.14: Measured success ratio (# of successful jobs/ total # of jobs) for
nro ∈ [0, 250] and dmax = ∞ (relative values with respect to the base case of U for
nro = 0).

106

Figure 4.15: Measured success ratio averaged over only test cases with one root
task, in Fetch and Deliver domains with dmax = ∞ (relative values with respect to
the base case of U for nro = 0).

depth across all domains. In the Nav domain, the hLearnH performs better than h0

and hD with 95% confidence at depths 2 and 3. In the Explore domain, hLearnH

performs better than h0 and hD at depth 1 with 95% confidence. The same is true

for Fetch at depth 2. In the Deliver domain, the learned heuristic performs better than

the others with 95% confidence for all depths >= 1. The performance difference

between the three different heuristics are due to the properties of the domain, how

the refinement methods are designed and how much of it is learnable by the LearnH

procedure.

4.3.8 Measured vs expected efficiency

We already discussed how the measured efficiency of RAE is different from

the expected one computed in UPOM. The difference between the two is given in

Figure 4.17 with respect to the refinement deepness. A root task is refined recur-

sively into sub-tasks. For each sub-task, RAE calls UPOM to choose a method. We

107

Figure 4.16: Measured efficiency with limited depth and three different heuristic
functions. The utility function optimized is expected efficiency (relative values with
respect to the base case of U for nro = 0).

108

note that the difference between the measured efficiency and the expected efficiency

decreases as RAE makes progress towards accomplishing the root task.

Figure 4.17: Absolute difference between measured and expected efficiency, as a
function of the refinement deepness (0 is the root task), for various number of
rollouts.

4.4 Comparison of RAEplan and UPOM

We discuss here RAE with UPOM vs RAEplan. We didn’t compare UPOM

with any non-hierarchical planning algorithms because it would be very difficult to

perform a fair comparison, as discussed in [70].

We configured UPOM to optimize the expected efficiency as its utility function,

the same as RAEplan. In order not to favor the UCT strategy of UPOM with respect

to the tree branching strategy of RAEplan, we set nro = 1000, with dmax = ∞ in

each rollout.

Figure 4.18 shows the computation time for a single run of a problem (one

or two root tasks), averaged across all domains and problems, i.e., over 104 runs.

RAE with UPOM runs more than twice as fast as RAE with RAEplan. Note that

the computation time of RAE alone is negligible, since it is designed to be a fast

reactive system, without search. However, in physical experiments, the total time

109

includes sensing and actuation time, hence the planning overhead would not appear

as significant as it is here.

Figure 4.18: Average computation time in seconds for a single run of a problem, for
RAE with and without the planners.

Efficiency. Figure 4.19 gives the measured efficiency for the five domains, with the

95% confidence intervals. It shows in all domains that RAE with UPOM is more

efficient than purely reactive RAE and RAE with RAEplan.

Figure 4.19: Measured efficiency for each domain with purely reactive RAE, RAE
with RAEplan, RAE with the policies learned by Learnπ without planning, RAE with
UPOM, the heuristic learned by LearnH and dmax = 5, and RAE with UPOM and
dmax =∞ (relative values with respect to the base case of U for nro = 0).

110

Success ratio. Figure 4.20 shows RAE’s success ratio both with and without the

planners. We observe that planning with UPOM outperforms purely reactive RAE

in S&R and Fetch with 95% confidence, and Explore and Nav with 85% confidence.

Also, UPOM outperforms RAEplan in Fetch and Nav domains with a 95% confidence,

and Explore domain with 85% confidence. In the S&R domain, the success ratio is

similar for RAEplan and UPOM.

Asymptotically, UPOM and RAEplan should have near-equivalent efficiency

and success ratio metrics. They differ because neither are able to traverse the

entire search space due to computational constraints. Our experiments on simulated

environments suggest that UPOM is more effective than RAEplan when called online

with real-time constraints.

4.5 Assessment of UPOM’s learning strategies

For training purposes, we synthesized data records for each domain by ran-

domly generating root tasks and then running RAE with UPOM. The number of

randomly generated tasks in S&R, Nav, Explore, Fetch, and Deliver domains are 96,

132, 189, 123, and 100 respectively. We save the data records according to the

Learnπ-1, Learnπ-2, Learnπi and LearnH procedures, and encode them using the One-

Hot schema. We divide the training set randomly into two parts: 80% for training

and 20% for validation to avoid overfitting on the training data.

The training and validation losses decrease and the accuracy increases with

increase in the number of training epochs (see Figure 4.21).

111

Figure 4.20: Measured success ratio for each domain with purely reactive RAE, RAE
with RAEplan, RAE with the policies learned by Learnπ without planning, RAE with
UPOM, the heuristic learned by LearnH and dmax = 5, and RAE with UPOM and
dmax =∞ (relative values with respect to the base case of U for nro = 0).

The accuracy of Learnπ is measured by checking whether the refinement

method instance returned by UPOM matches the template predicted by the MLP

nnπ, whereas the accuracy of LearnH is measured by checking whether the efficiency

estimated by UPOM lies in the interval predicted by nnH . We chose the learning

rate to be in the range [10−3, 10−1]. Learning rate is a scaling factor that controls

how weights are updated in each training epoch via backpropagation.

Table 4.3 summarizes the training set size, the number of input features and

outputs after data records are encoded using the One-Hot schema, number of train-

ing epochs for the three different learning procedures. In the LearnH learning proce-

dure, we define the number of output intervals K from the training data such that

112

Figure 4.21: Training and validation results for Learnπ and LearnH, averaged over all
domains.

Domain Training Set Size #(input features) Training epochs #(outputs)
LM-1 LM-2 LH LM-1 and -2 LH LM-1 and -2 LH LM-1 and -2 LH

S&R 250 634 3542 330 401 225 250 16 10
Nav 1686 5331 16251 126 144 750 150 9 75

Explore 2391 6883 10503 182 204 1000 250 17 200
Fetch 262 508 1084 97 104 430 250 10 100

Deliver - - 2001 - 627 - 250 - 10

Table 4.3: The size of the training set, number of input features and outputs, and the
number of training epochs for three different learning procedures: Learnπ-1, Learnπ-2,
and LearnH. We note LM-1 = Learnπ-1, LM-2 = Learnπ-2, and LH = LearnH.

each interval has an approximately equal number of data records. The final valida-

tion accuracies for Learnπ are 65%, 91%, 66% and 78% in the domains Fetch, Explore,

S&R and Nav respectively. The final validation accuracies for LearnH are similar but

slightly lower. The accuracy values may possibly improve with more training data

and encoding the refinement stacks as part of the input feature vectors.

To test the learning procedures we measured the efficiency and success ratio of

RAE with the policies learned by Learnπ-1 and Learnπ-2 without planning, and RAE

with UPOM and the heuristic learned by LearnH. We use the same test suite as in

our experiments with RAE using RAEplan and UPOM, and do 20 runs for each test

problem. When using UPOM with LearnH, we set dmax to 5 and nro to 50, which has

113

about 88% less computation time compared to using UPOM with infinite dmax and

nro = 1000. Since the learning happens offline, there is almost no computational

overhead when RAE uses the learned models for online acting.

Efficiency. Figure 4.19 shows that RAE with UPOM + LearnH is more efficient

than both purely reactive RAE and RAE with RAEplan in three domains (Explore,

S&R and Nav) with 95% confidence, and in the Fetch domain with 90% confidence.

The efficiency of RAE with Learnπ-1 and Learnπ-2 lies in between RAE with RAEplan

and RAE with UPOM + LearnH, except in the S&R domain, where they perform

worse than RAE with RAEplan but better than purely reactive RAE. This is possibly

because the refinement stack plays a major role in the resulting efficiency in the S&R

domain.

Success ratio. In these last experiments, UPOM optimizes for the efficiency, not

the success ratio. It is however interesting to see how we perform for this criteria

even when it is not the chosen utility function. In Figure 4.20, we observe that RAE

with UPOM + LearnH outperforms purely reactive RAE and RAE with RAEplan in

three domains (Fetch, Nav and S&R) with 95% confidence in terms of success ratio.

In Explore, there is only slight improvement in success-ratio possibly because of high

level of non-determinism in the domain’s design.

In most cases, we observe that RAE does better with Learnπ-2 than with Learnπ-

1. Recall that the training set for Learnπ-2 is created with all method instances

returned by UPOM regardless of whether they succeed while acting or not, whereas

Learnπ-1 leaves out the methods that don’t. This makes Learnπ-1’s training set much

114

smaller. In our simulated environments, the acting failures due to random exogenous

events don’t have a learnable pattern, and a smaller training set makes Learnπ-1’s

performance worse.

4.5.1 Learning Method Instances

Two of our simulated domains, Nav and Deliver, have refinement methods with

parameters that are not inherited from the task at hand. For these domains, Learnπ-1

and Learnπ-2 give only partially instantiated methods, while Learnπi is more discrim-

inate. To test its benefit, we trained a MLP for each parameter not specified in the

task. The size of the training set, number of input features and number of outputs

are summarized in Table 4.4.

Domain Method Parameter Training Set Size #(input features) #(outputs)
Nav MoveThroughDoorway M2 robot 404 150 4

Recover M1 robot 337 128 4
Deliver Order M1 machine 296 613 5

objList 297 613 2
Order M2 machine 95 613 5

objList 95 613 2
pallet 95 613 4

PickupAndLoad M1 robot 244 637 7
UnloadAndDeliver M1 robot 219 625 7

MoveToPallet M1 robot 7 633 7

Table 4.4: The size of the training set, number of input features and outputs for
learning method parameters in Learnπi.

Figure 4.22 compares the efficiency of RAE with Learnπi vs purely reactive

RAE and RAE with RAEplan, Learnπ-1, Learnπ-2, LearnH, and UPOM. In the Deliver

domain, RAE with Learnπi is better than purely reactive RAE as well as RAE with

Learnπ-1 or Learnπ-2 with 95% confidence. In the Nav domain, RAE with Learnπi also

outperforms Learnπ-1 and purely reactive RAE with 95% confidence, but not Learnπ-

115

Figure 4.22: The cross hatched blue bars show the performance of RAE with Learnπi
(learning method instances) for the two domains, Nav and Deliver, which have meth-
ods with parameters not in tasks (relative values with respect to the base case of U
for nro = 0).

2. The performance benefit is significant in the Deliver domain because refinement

methods have several uninstantiated parameters.

In summary, for all the domains, planning with UPOM and learning clearly

outperforms purely reactive RAE.

4.6 Summary

In this chapter, we described the experimental setup and evaluation of our

three refinement planning algorithms, APEplan, RAEplan, and UPOM, each inte-

grated with RAE. Using RAE with refinement planners always proved to be more

beneficial than purely reacting acting in terms of efficiency, retry ratio and success-

ratio. We measured RAE’s efficiency, success ratio and retry ratio, and discussed

their relationships with respect to the planner’s utility function, maximizing either

the expected efficiency or the expected success ratio. For UPOM, integration with

learning strategies performed better than purely reactive RAE with 95% confidence

116

across all five test domains.

117

Chapter 5: Real-world prototype of RAE and Plan-with-UPOM: De-

fense against SDN attacks

In this chapter, we describe a real-world prototype of RAE and Plan-with-

UPOM to defend software-defined networks against incoming attacks. First, we give

a brief overview of Software defined networks (SDNs). We describe the AIRMAN

system developed by our collaborators at NRL to monitor, manage and detect at-

tacks happening to an SDN. Then, we describe how RAE and Plan-with-UPOM are

integrated with AIRMAN to defend against attacks by planning. Finally, we present

some experimental results.

5.1 Software Defined Networks (SDNs)

Software-defined networking is a relatively new network management approach

that enables dynamic, modular, programmatically efficient network configuration

in order to improve network performance and to simplify monitoring. In general,

network management architectures have two layers:

1. the data layer, where the traffic flows, and network packets are forwarded;

2. the control layer, which manages the packet routing process.

118

In traditional network architectures, these two layers are highly coupled and

the control is decentralized, which leads to several complexities. SDN architectures

addresses these issues by decoupling the two layers and having a centralized control

layer with a set of controllers. However, this change in design comes with its own

drawbacks when it comes to security. To address the security challenges, our col-

laborators at NRL have developed a system called Autonomous Intelligent Resilient

Security (AIRS) shown in Figure 5.1. RAE and Plan-with-UPOM are adapted to

communicate with AIRMAN in order to defend the SDNs against incoming attacks.

Figure 5.1: AIRS Architecture for SDN

119

Figure 5.2: AIRMAN architecture

5.2 AIRMAN Architecture

Figure 5.2 shows the architecture of the AIRS Management Plane (AIRMAN).

The central WAMP router enables communication between the SecurityManager and

other AIRMAN components via a mixture of publish-subscribe messaging (Pub-Sub)

and remote procedure calls (RPC).

RAE, the actor, is integrated directly with the SecurityManager as a Python

module, and they communicate with each other asynchronously using a set of shared

queues between the processes AIRMAN and RAE. RAE gets all of its information

120

about the system’s state directly from the SecurityManager and relies on the Secu-

rityManager to carry out the planned actions on the system and provide feedback.

The Security Manager is a part of the larger AIRMAN system (AIRMAN monitors

the whole Software-defined network) that interacts with RAE. It handles the details

related to the Software-defined network which, if included in RAE, might make RAE

too complex for general purposes. Its job is mainly to push tasks into RAE’s task

queue with the right parameters and state, and review the commands that RAE

suggests. It has an interface for a human expert to review what RAE is suggesting

for safety purposes.

Whenever RAE has planned a command for the SecurityManager to execute,

it puts the command in a command execution queue. The SecurityManager contin-

uously monitors the command execution queue for incoming commands. Once it

receives a command, it executes it, and sends back to RAE the information about

whether the command succeeded or failed and the next state. We describe the

communication in more detail in Section 5.3.4.

5.3 Attack recovery using RAE and Plan-with-UPOM

Software-defined networks (SDN) is prone to several different kinds of known

and unknown attacks. We develop a method of automatically defending against,

and, recovering from, attacks on SDNs using RAE and Plan-with-UPOM. The AIRS

management plane (AIRMAN) has a security layer and an intelligent planning layer

(Figure 5.1). We describe how the AIRMAN SecurityManager, Refinement Acting

121

Engine (RAE), and planner (Plan-with-UPOM), interact with each other and work

together to defend against, and, recover from, attacks to an SDN.

SDNs are vulnerable to various different kinds of attacks and failures, such as:

1. packet overflow: too many packets arrive at the host;

2. packet underflow: expected packets don’t arrive;

3. switch malfunction: swich starts showing unexpected behavior due to an in-

ternal error or some attack from outside;

4. controller malfunction: the health and trust values of the controller go down.

A defense system for SDNs continuously monitors the SDN and ensures that

it is behaving as expected. To accomplish this, the defense system must:

1. detect than an attack has occured on the SDN.

2. diagnose what kind of attack has occured. An attack may be detected when

the network reaches some inconsistent state, or shows irregular behavior.

3. come up with an online plan to recover from the damage this attack has caused.

The recovery process may be different depending on current state of the system

and the nature of the attack. The planner may replan when necessary.

Let us now look at an example of an attack and refinement methods to recover

from it. In a PACKET IN flooding attack, one or more malicious hosts continuously

send traffic to an unknown (and possibly randomized) destination address. Every

122

time a switch receives a packet that it does not know what to do with, it sends

an OpenFlow PACKET IN request to the controller. Since the controller does not

know the location of the destination address, it instructs the switch to flood the

packet to all output ports. Over time, if the volume of packets is large enough,

the flood of PACKET IN requests eats up control plane bandwidth and can cause

denial of service of the controller. It can also consume resources on the switch that

an offending host is connected to, and side-effects can be felt network-wide as long as

the controller remains unresponsive. Here are three refinement methods to recover

from PACKET IN flooding.

The first method, m1 ctrl clearstate besteffort(id), simply clears the host ta-

ble in the controller, which may be enough if the attacker has stopped send-

ing new packets and the only lingering cause of resource exhaustion is an in-

flated host table in the controller. A refinement tree for packetIn-flooding(id) using

m1 ctrl clearstate besteffort(id) is shown in Figure 5.3.

m1 ctrl clearstate besteffort(id)

event: packetIn-flooding(id)

pre: None

body:

if not is component type(id, ‘CTRL’): fail

else: clear ctrl state besteffort(id)

The second method, m2 ctrl clearstate fallback(id), also clears the host table in

the controller, but does so in a higher assurance way, which may take longer but is

123

Figure 5.3: A refinement tree for the event packetIn-flooding(id) using the refinement
method m1 ctrl clearstate besteffort(id)

less likely to fail. A refinement tree using m2 ctrl clearstate fallback(id) is shown in

Figure 5.4.

m2 ctrl clearstate fallback(id)

event: packetIn-flooding(id)

if not is component type(id, ‘CTRL’):

fail

else:

clear ctrl state fallback(id)

The third method, m3 ctrl mitigate pktinflood(id), searches for switches which

have been marked as unhealthy by the SecurityManager of AIRMAN, moves all critical

hosts away from each such switch to a newly added switch before attempting to fix

the old switch, and finally clears the host table in the controller. A refinement tree

using m3 ctrl mitigate pktinflood(id) and with one unhealthy switch s1 is shown in

Figure 5.5.

124

Figure 5.4: A refinement tree for the event packetIn-flooding(id) using the refinement
method m2 ctrl clearstate fallback(id)

m3 ctrl mitigate pktinflood(id)

event: packetIn-flooding(id)

body:

if is component type(id) 6= ‘CTRL’: fail

for s id in state.components: # Detect the attack’s source

if is component type(s id, ‘SWITCH’) and !is component healthy(s id):

if is component critical(s id): # Move critical hosts away

add switch (s id) # Add new switch

move critical hosts(s id, s id + ‘-new’)

fix switch(s id) # Fix unhealthy switch

clear ctrl state besteffort(id) # Clear controller state

if not is component healthy(id): fail

125

Figure 5.5: A partial refinement tree for the event packetIn-flooding(id) using the
refinement method m3 ctrl mitigate pktinflood(id). fix-switch(s1) is a sub-task that
should further be refined.

5.3.1 Integration of AIRMAN SecurityManager and RAE

The SecurityManager has options in its configuration file that control whether

the planner will be used and how verbose its log messages should be. If the planner is

enabled, the SecurityManager initializes RAE with its state and planning parameters

and receives references to the shared queues that will be used for communication.

5.3.2 State Definition for SDN

The state consists of two top-level Python dictionaries: components and

stats.

We mainly deal with two types of components: controllers and switches. The

components dictionary maps from component IDs to a nested dictionary containing

keys that map to properties of the component (id, type, critical, etc.):

126

The stats dictionary maps from component IDs to a nested dictionary con-

taining the keys health, cpu_perc_ewma, and potentially a number of other keys

for statistics that may depend on the component’s type (e.g., a switch will have

flow_table_size). Each of these maps to another dictionary containing the key’s

value, the current value of this statistic, and thresh_exceeded_fn, a function that

evaluates to true if the value exceeds the configured threshold (a numeric value in

valid range of the state variable chosen by a human expert) for that statistic.

A variety of scenarios could require planning, such as:

• a specific malicious event is detected (e.g., an intrusion detection system on

a controller or switch generates an alert and that is reported to the Security-

Manager);

• some kind of manual or automated diagnosis leads to suspicion of a specific

attack;

• the system exhibits symptoms that are outside of the normal healthy bounds.

In the latter case (such as, an abnormal symptom in a component leads to

degraded “health” metric), typically, the following sequence of events cause the

SecurityManager to submit an “attack” event to RAE or an “attack recovery” task

to RAE:

1. A component sends a sys_stats message with a particular attribute (e.g.,

CPU utilization percentage) that has exceeded its configured threshold.

127

2. SecurityManager has been tracking statistics for that component’s attribute

(e.g., the exponential weighted moving average (EWMA) of the CPU utiliza-

tion percentage) and observes that the attribute has exceeded a configured

threshold.

3. The component’s health is reduced and falls below the configured action

threshold.

4. SecurityManager updates the shared state and submits a task to RAE to fix

this component’s symptoms.

We have modeled the Security domain such that every incoming attack to

the Software-defined network corresponds to a recovery task. For example, if the

Security Manager detects an attack to a controller, it will put the task fix controller

in RAE’s task queue. In the language of events, it can also put the event, con-

troller attacked in the RAE’s task queue. It will be handled in the same way.

5.3.3 Utility function optimized: CostEffectiveness

Plan-with-UPOM can optimize different utility functions, such as the acting

efficiency (reciprocal of the cost) or the probability of success. For this domain, we

focus on optimizing the cost-effectiveness of methods, which is a linear combination

of efficiency and probability of success. For the Software-defined network domain,

we define cost-effectiveness to be a utility function with the following properties:

1. The value is 0 if the action ultimately leads to failure.

128

2. The value is inversely proportional to the cost; that is, a more expensive action

corresponds to a lower value.

If we are interested in defending and recovering an IT system from cyberat-

tacks, we need to select actions that maintain or return the system to a healthy

state, and do so with minimal resources spent.

If the task at hand is to repair a given component (switch or controller), we

are not interested in actions that get us close but ultimately fail at completing the

task, no matter how much cheaper those actions are compared to the alternatives.

We would rather select a more expensive course of actions that succeeds at the

recovery task. Having said that, we do want to minimize cost. For example, if

a switch’s flow table is corrupted, rebooting the switch can be effective but would

cause considerable downtime, whereas flushing and repopulating the flow table could

be a cheaper (faster) way to achieve the result.

Our motivation for defining our utility function, cost-effectiveness, in this way

is to guide Plan-with-UPOM in its Monte Carlo tree search towards effective-but-

cheap solutions, while ignoring ineffective solutions and de-prioritizing expensive

ones.

CostEffectiveness. Let a method m for a task τ have two sub-tasks, τ1 and τ2,

with cost c1 and c2, and probability of success, p1 and p2 respectively. The cost-

effectiveness of τ1 is u1 = 1/c1 + p1 and the cost-effectiveness of τ2 is u2 = 1/c2 + p2.

129

The cost-effectiveness of accomplishing both tasks is

1/(c1 + c2) + p1p2 (5.1)

If c1 = 0 and p1 = 1, the cost-effectiveness for both tasks is u2; likewise for c2 = 0

and p2 = 1. Thus, the incremental cost-effectiveness composition is:

u1 ⊕ u2 = u2 if u1 =∞, else (5.2)

u1 if u2 =∞, else

0 if u1 = 0 or u2 = 0, else (5.3)

(u1 − 1)(u2 − 1)

u1 + u2 − 2
+ 1. (5.4)

If τ1 (or τ2) fails, then c1 is ∞, u1 = 0. Thus u1⊕ u2 = 0, meaning that τ fails with

method m. Note that formula 5.2 is associative. When using cost-effectiveness as a

utility function, we denote U(Success) = ∞ and U(Failure) = 0.

5.3.4 Communication between SecurityManager and RAE

Communication between the SecurityManager and RAE occurs using three

shared queues:

• Task queue: After the SecurityManager detects an attack, it puts an “attack

recovery” task on the task queue. The task stays in the queue until RAE reads

from it.

130

• Command execution queue: After planning using Plan-with-UPOM, RAE

sends commands (atomic actions to be executed) to the SecurityManager by

putting them in the command execution queue one by one. The SecurityMan-

ager reads the command from the queue.

• Command status queue: After executing a command, SecurityManager puts

the information about whether a command succeeded or failed and next state

of the SDN in the command status queue. RAE reads this information and

updates the state accordingly.

The command execution queue and the command status queue work together

in a back-and-forth manner. RAE plans for an attack recovery task using Plan-

with-UPOM. Plan-with-UPOM returns the first command in the plan. RAE puts

this command in the command execution queue. The SecurityManager continuously

monitors the command execution queue for incoming commands. Once it sees a

command, it pops the command from the queue, and executes the command on the

target system, the SDN. Once the command is done executing, the SecurityManager

puts the next status, and the information about whether the command has succeeded

or failed, on the command status queue. RAE receives this information and again

replans (calls Plan-with-UPOM with the updated state) or calls Retry depending on

whether the command has succeeded or failed respectively. It then sends the next

command to execute, to the SecurityManager.

131

5.3.5 Example of task invocation workflow

For example, suppose the SecurityManager sends a task

fix_component(switch1) to RAE by putting it on the task queue.

RAE removes this task from the task queue and chooses an applicable refine-

ment method instance for the task. A task can have several refinement methods,

each of which accomplishes the task in a different way. For the given component ID

(switch1) and the component’s type (which can be looked up by ID in the state,

see Section 5.3.2), the only refinement method that can be applied is fix_switch.

Each method has its own arguments. The arguments can come from the task or be

assigned via planning. fix_component has two refinement methods: fix_ctrl and

fix_switch. The first thing that the fix_ctrl refinement method does is to check

the component’s type and fail since it is not a controller.

The fix_switch refinement method does a similar check and sees that the

referenced component’s type is “SWITCH”. Therefore, it refines into further tasks

and actions that apply to a switch. Which tasks/actions apply depends on the

current state of the component and the system as a whole.

Within a refinement method, if more information is needed than is available

in the state, then a probing action is used to request this information from the

SecurityManager. For example, if a switch component is misbehaving and the course

of action depends on whether its flow table is over-filled, but the size of its flow

table was not included in the state, then the get_switch_flowtable_size action

can be requested. When this command returns successfully, then flow of control can

132

continue and the missing value will be included in the updated state.

When a refinement method needs to call a probing action for more informa-

tion, it calls rae.do_command(commandName, commandParameters). RAE puts the

command on the execution queue, from where the SecurityManager will read it. Af-

ter the command is executed, the SecurityManager puts the result and the next state

information in the command status queue. RAE then calls Plan-with-UPOM or Retry

depending on whether the command has succeeded or failed respectively.

Ultimately, a task gets refined into one or more atomic actions (commands).

However, RAE does not pass all of them to the SecurityManager at once. Rather, it

requests them one at a time, considers the success/failure of each, and calls Plan-

with-UPOM or Retry after each (taking into account the updated state it receives

from the SecurityManager after each command) in case a better result is possible.

For each command that RAE wants to be executed on the SDN, RAE puts the name

of the command, as well as any parameters, on the execution queue:

The SecurityManager has an ongoing process that continually checks the exe-

cution queue. When a command is available, it reads the command name and any

parameters from the queue.

It then looks up the command by name and dispatches it as appropriate.

Some commands need to run on the component itself, while others need to run

on the underlying platform (e.g., the virtual machine monitor (VMM)) that the

component is running on. In either case, the SecurityManager notifies RAE of success

or failure (along with a copy of the updated state) via the status queue.

.

133

5.3.6 Domain Definition for SDN

The AIRS SDN domain is defined in terms of tasks, refinement methods,

mappings from task to refinement method(s), atomic actions (commands), and costs

of actions. All of these constituents are defined in a domain file and encoded by

domain experts in the language of operational models using the framework and

constructs that RAE provides. This includes the tasks, events, refinement methods

and actions described in Section 3.1. Each predictive model of an action has a

counterpart on the execution platform of the SecurityManager, so that when an

action is passed by RAE to the SecurityManager, it can actually be carried out on

the software-defined network.

RAE provides the ability to define a cost for a method directly. In case a

method has a non zero cost assigned to it, this cost is used in addition to the sum

of the individual command costs.

5.3.7 Environment for SDN

The actions are nondeterministic and the predictive models used by Plan-with-

UPOM sample their outcome from a probability distribution. During runtime, these

actions may be called with various different parameters and the empirical success

rate may deviate from these expected probabilities. The probability values are

assigned by the human expert. They may also be adjusted using empirical data by

doing something as follows. For example, suppose while recovering from attacks, we

execute the command restart_vm, inside a refinement method instance, a number

134

of times for two different components, ctrl1 and switch1. For ctrl1, it works 10

out of 10 times, but for switch1 it only works 2 out of 5 times. Over time, one

can learn that the probability of success for restart_vm with param ctrl1 may be

higher than 95%, closer to 100%, while the probability of success for restart_vm

with param switch1 is likely lower than 95%, closer to 40%.

5.3.8 Action Model

In the SecurityManager, there is a mapping from command names to Python

functions that carry out the action on the execution platform.

In the domain definition, we declare the command in the operational model.

This assigns the name, any parameters (e.g., component ID), and code that modifies

the state and return success or failure, to model the effect that the command is

expected to have on the system. Pre conditions are encoded in the operation

model (either in a command function or refinement method) by checking the state

and returning failure if the command does not apply to the current state.

In the environment definition, the domain expert assigns an estimated proba-

bility to each command. Other strategies, such as, learning from history, or using a

simulator, may also be used to guess how likely a command (potentially with specific

parameters) is to succeed.

135

5.4 Experimental Evaluation

In order to test the our SDN attack recovery system (AIRMAN with RAE

and Plan-with-UPOM), we modelled attacks to the SDN as events and recovery

procedures as refinement methods to recover from the attacks. We have 11 tasks, 28

refinement methods and 13 commands. Full descriptions of the operational models

are in Section B.6. We randomly generated a test suite of 50 problems. Each

problem has a initial state that is decided by randomly assigning values to the state

variables, ensuring that they correspond to a valid state. The number of controllers

in a problem ranged from one to four and the number of switches ranged from 16

to 64. One to three switches or controllers were randomly chosen to be attacked.

We configured Plan-with-UPOM to optimize cost-effectiveness. Each test problem

was run 50 times to account for nondeterministic outcomes of commands. In our

experiments, the probability distribution of the commands’ outcomes are chosen by

a human expert. We ran the tests on a simulated Software-Defined network running

on a 2.8 GHz Intel Ivy Bridge processor.

In order to measure the performance of AIRMAN, we measure four different

metrics: the estimated time for attack recovery, the efficiency and retry-ratio, and

the cost-effectiveness. We discuss each of them as follow.

Estimated time for attack recovery. Figure 5.6 shows how the estimated time

for attack recovery changes as we give more time to the refinement planner, Plan-

with-UPOM. We observe that purely reactive RAE (with no planning, i.e., 0 time

given to Plan-with-UPOM) is able to help the SDN recover from attacks in ∼11

136

seconds. Further, when doing refinement planning with Plan-with-UPOM, we observe

∼32% decrease in the estimated time for recovery. The error bars in the plot show

95% confidence intervals.

Figure 5.6: Estimated time for attack recovery in AIRMAN using the Refinement
Acting Engine, RAE and refinement planner, Plan-with-UPOM.

Efficiency. Figure 5.7 shows how the efficiency improves as Plan-with-UPOM is

given more time to do more rollouts. Efficiency is the reciprocal of the estimated

cost for attack recovery. In our experiments, the cost of the commands are chosen

by human experts and they roughly correspond to the duration of the commands.

The efficiency measures the reciprocal of the cost instead of measuring the cost value

directly to account for failed commands which have infinite cost.

Retry ratio. If a method for a task τ fails during execution, RAE looks at the list

of untried methods for τ and chooses one among them. Each such choice is called

a Retry. The higher the number of retries, the higher is the execution time. Retry

ratio measures the number of retries including all sub-tasks divided the total number

137

Figure 5.7: Efficiency (reciprocal of estimated cost) for attack recovery in AIRMAN
using the Refinement Acting Engine, RAE and refinement planner, Plan-with-UPOM.

of incoming tasks in RAE. Figures 5.8 shows the retry ratio for the experiments with

the randomly generated test suite. From the plot, we can conclude that planning

with a time limit of 200 msecs for Plan-with-UPOM outperforms purely reactive RAE

with 95% confidence. Planning with a time limit of 2 seconds for Plan-with-UPOM

outperforms planning with a time limit of 200 msecs with 95% confidence.

CostEffectiveness. The cost-effectiveness (Equation 3.3) is a linear combination of

the efficiency and the probability of success. The cost-effectiveness remains the same

with and without using Plan-with-UPOM because the domain has no dead-ends. A

dead-end is a situation/state from which the actor cannot recover from. In SDNs,

one can always restart the network if nothing works making dead ends impossible.

A reboot can recover from any state that the network can possibly reach.

In summary, we are able to automate attack recovery in SDNs using AIRMAN

and the refinement acting engine, RAE. Planning with Plan-with-UPOM further im-

138

Figure 5.8: Retry ratio for attack recovery in AIRMAN using the Refinement Acting
Engine, RAE and refinement planner, Plan-with-UPOM.

proves the performance in terms of estimated recovery time, efficiency and retry-ratio

with 95% confidence.

5.5 Summary

In this chapter, we saw how RAE, Plan-with-UPOM and the language of hierar-

chical operational models can be used to defend software-defined networks against

incoming attacks. An attack to the SDN corresponds to a recovery task, and there

may be multiple applicable refinement methods to recover from it. RAE and Plan-

with-UPOM suggests to the SecurityManager of AIRMAN the best way to proceed.

Our experiments show that integrating AIRMAN, RAE and Plan-with-UPOM im-

proves the estimate time, efficiency, and retry-ratio of attack recovery.

139

Chapter 6: Conclusion

In this dissertation, the author has presented a novel set of algorithms for inte-

grating acting and planning using hierarchical operational models. The APEplan and

RAEplan algorithms use a SLATE-style sampling strategy. The algorithm Plan-with-

UPOM, a planning algorithm that outperforms both APEplan and RAEplan, uses a

search strategy inspired by UCT, but is adapted to operate in a more complicated

search space. Plan-with-UPOM provides near-optimal choices with respect to an

arbitrary utility function and converges asymptotically. Plan-with-UPOM has been

used successfully with two distinct utility functions, favoring respectively efficiency

and robustness. Plan-with-UPOM outperforms APEplan and RAEplan because UCT

search explores more promising refinement methods with the help of Upper Con-

fidence Bound (UCB) formula and estimated utility values. In contrast, SLATE

strategy explores all refinement methods uniformly. Further, Plan-with-UPOM is

more flexible because its time complexity is linear with respect to its parameters,

nro and d, whereas, RAEplan’s time complexity is exponential with respect to its pa-

rameters, b and k. Plan-with-UPOM integrates RAE with UPOM by doing a receding

horizon, anytime progressive deepening.

Finally, Learnπ, Learnπi, and LearnH are learning strategies that can be used to

140

improve RAE’s performance. Learnπ learns a mapping from a task in a given context

to a good method, Learnπi learns values of uninstantiated method parameters, and

LearnH learns domain-specific heuristic function.

The author has implemented these algorithms and has test tested them on five

simulated domains. We have devised a novel, and we believe realistic and practical

way, to measure the performance of RAE and similar systems. The domains were

designed to reflect interesting aspects of real-world domains, e.g., dynamicity, the

need for run-time sensing, information gathering, collaborative and concurrent tasks.

The results show how performance is affected by the existence or non-existence of

dead-ends using three different performance metrics: efficiency (reciprocal of the

cost), which is the optimization criteria of RAEplan and Plan-with-UPOM, success

ratio and retry ratio. Acting purely reactively in the domains with dead ends can

be costly and risky. The integration of acting and planning provided by RAE and

a planning algorithm is of great benefit for all the domains, which is illustrated by

a higher efficiency. In all of the domains, the efficiency generally increases with

increase in the parameters, b and k of RAEplan, and nro and d of Plan-with-UPOM.

The retry ratio measures the number of times Retry is called per incoming

task. Performing many retries is not desirable, since this has a high cost and faces

the uncertainty of execution. We have shown that both in domains with dead

ends and without, the retry ratio significantly diminishes when RAE uses one of the

planners. While most often the experimental evaluation of systems addressing acting

and planning is simply performed on the sole planning functionality, we devised an

efficiency measure to assess the overall performance to plan and act, including failure

141

cases. This measure takes into account the cost to execute commands in the real

world, which is usually much larger than the computation cost.

We have shown that the integration of acting and planning reduces the cost

significantly and improves success ratio and retry ratio.

Our results show that Learnπ improves the performance of reactive RAE with

respect to the three measures; RAE with UPOM and LearnH or with UPOM at un-

bounded depth improve significantly all the performance measures. Thanks to learn-

ing, the computational overhead remains acceptable for online procedure, since in

this case a small number of rollouts bring already a good benefit.

An open-source code for the implementation of RAE, APEplan, RAEplan and

Plan-with-UPOM and the test domains are available online.1

We developed a real-world prototype of RAE and Plan-with-UPOM by integrat-

ing it with a software-defined networking architecture, called AIRMAN, to defend

against incoming attacks. Our prototype of RAE and UPOM communicates with

AIRMAN via shared queues between Python processes. Our experimental results

show that integrating AIRMAN, RAE and Plan-with-UPOM improves the estimated

time, efficiency and retry-ratio of attack recovery with 95% confidence.

6.1 Looking Ahead: Limitations and Future Directions

While covering a range of refinement acting, planning and learning algorithms,

we left a few pending issues and assumptions, whose discussion can be of help to

the reader for using and deploying this material in a practical application.

1https://bitbucket.org/sunandita/rae/

142

https://bitbucket.org/sunandita/rae/

6.1.1 Retrial in RAE

As mentioned earlier, Retry is not a backtracking procedure. Since RAE in-

teracts with a dynamic world, Retry cannot go back to a previous state. It selects

a method instance among those applicable in the current world state, except for

those that have been tried before and failed. This restriction, of never repeating

a previously tried method instance, may not always be necessary, since the same

method instance that failed at some point may succeed later on. A full analysis of

the conditions responsible for failures to make sure that they no longer hold can be

complicated. One way to accomplish this is as follows. For example, consider the

case for methods that are vulnerable to noisy sensing and execution contexts, and

merit to be retried. This can be done by extending their parameters with arguments

not needed for the logic of the method but that characterize the context (e.g., the

pose of a sensor that may have changed between trials), while bounding the number

of retrials.

Another future direction is allowing Retrial of actions. In RAE a method

fails when one of its actions fails. But actions being non deterministic, it can be

worthwhile retrying an action as assessed by its expected utility. Retrial of actions

may be implemented after a full analysis and the computation of an optimal MDP

policy2, or simply with an ad-hoc loop on the execution-status of the actions that

merit retrials. Furthermore, the body of a method being any procedure, complex

2This can be done with a sequence of dummy states sfaili such that the effects of action a in s
include s′fail1 ∈ γ(s, a), . . ., s′faili+1

∈ γ(s′faili , a); two actions are applicable to each s′faili : a and

stop-with-failure.

143

retrial loop can be specified. For example, a difficult grasp action in robotics may

need several sequences of 〈move, sense, grasp〉 before succeeding or renouncing to the

corresponding method.

6.1.2 Planning for multiple tasks at once

RAE supports multiple tasks running in parallel. Each task has its own re-

finement stack, and RAE calls a planner separately for each stack. However, all the

stacks share a common state and indirectly affect each other. If we can take other

active tasks into consideration while planning for a specific task, we may come up

with more efficient plans. There are several ways to include the effect of tasks in

other stacks, e.g.,

1. we come with ways to simulate the other tasks in the environment that the

planners use. The simulation of tasks may follow the refinement tree that RAE

would create;

2. we plan for all the current tasks together, i.e., instead of simulating only one

stack, the planner may simulate the steps of all the tasks in RAE’s Agenda

and come up with a centralized plan.

6.1.3 Concurrency

The main loop of RAE progresses concurrently over several stacks in the

Agenda, one for each top level task. All the domains we experimented with have

several active stacks at once and involve concurrent tasks. However, in our cur-

144

rent implementation possible conflicts and needed synchronizations are managed

through the control statements and constraint checks inside the body of the re-

finement methods. To ease this process, it may be possible to enrich the body of

methods with temporal and synchronization constructs, such as those used in TCA

and TDL [13, 71], and rely on the execution-status of actions to handle waits. Since

both UPOM and learning rely on simulated execution of the methods, they can sup-

port such extensions as long as Sample is able to simulate the duration of actions.

More research would be needed to integrate to RAE and Plan-with-UPOM, extensions

permitting the formal verification of concurrency property (liveness, deadlocks), e.g.,

as in the Petri-net based reactive system ASPiC [72].

Note that it is possible to extend RAE with refinement into concurrent subtasks

(see [8, Sect. 3.2.4]).

6.1.4 Learning operational models

The Learnπ and LearnH procedures improve the decision making of RAE, with

or without planning. But they don’t learn how to construct refinement methods.

They are also of help to a domain author, who does not need to design a minimal set

of methods associated with a preference ordering. However, assistance in acquiring

operational models, which are more detailed than the abstract descriptive models of

planning (and which are always needed for acting), would be highly desirable. Let

us discuss a few points about this important issue of future work.

Actions and methods, the two main components of operational models, would

145

probably demand different learning techniques. Execution models of actions are

domain dependent. For example, in robotics several approaches have been studied,

e.g., [73, 74, 75, 76]. They usually rely on Reinforcement Learning(RL), possibly

supervised and/or with inverse RL (see survey [77]). Other techniques for learning

actions as low level skills can also be relevant, e.g., [78, 79]. These techniques would

provide the procedure Sample, a corner stone in our approach: Sample(s, a) returns a

state s′ randomly drawn from γ(s, a) according to the distribution of the outcomes

of a in s. UPOM needs Sample (line 37 in Algorithm 6) to simulate the execution

of methods in a rollout. Note that many application areas benefit from a domain

simulator which can be very useful for learning action models and synthesizing the

command’s outcome sampling function, Sample.

Learning refinement methods have been addressed for HTN descriptive models,

e.g., [51, 52, 53, 79, 80]. Our refinement methods for operational models can be

significantly more complex. Possible investigation avenues for synthesizing these

methods are: program synthesis techniques [81, 82], partial programming and RL

[83, 84, 85], learning from the demonstrations of a tutor [86].

6.1.5 Benchmarking

The algorithms, RAE, APEplan, RAEplan and Plan-with-UPOM, were evaluated

on five simulated domains having various different properties, including, concurrent

tasks, dead ends, sensory actions and exogenous events. They performed well with

respect to three different metrics: efficiency, retry ratio and success ratio. However,

146

we don’t have any emperical comparison of our refinement planning algorithms

with the approaches we discuss in related work (Chapter 2) that integrated acting

and planning (Section 2.2), or do hierarchical reinforcement learning (Section 2.5).

Doing such a comparison is non-trivial and requires significant work because of the

following challenges:

• Different approaches use different formalisms and languages to represent the

test experimental domains. In order to do a comparison with some algorithm,

our domains would need to be rewritten in the language that the algorithm

supports. For example, to compare Plan-with-UPOM with planning for behav-

ior trees [29], we would need to rewrite our refinement methods as behavior

trees.

• In order to experiment with RAE and our refinement planners on other test

domains, an expert would need to define tasks, commands and refinement

methods. The performance of RAE and Plan-with-UPOM would depend heavily

on how good these refinement methods are. If the refinement methods are too

good, one might need very little planning and RAE will be successful really

fast. On the other hand, if the refinement methods are bad without any control

contructs, then reduces Plan-with-UPOM to the standard UCT search.

• Every approach to integrate planning and acting comes with its own set of

assumptions, biases and scenarios it is meant for. If one or more test domains

is written by the writer of one of the algorithms in the mix, it gives an unfair

advantage to their algorithm. This is argued in [70] and the article suggests

147

having the test domains designed by an independent third party.

• For hierarchical acting and planning, there are mainly two ways to represent

the objective: tasks and goals. Task is an activity to be accomplished by the

actor, and a goal is a final state that should be reached. Depending on a

domain’s properties and requirements, users can choose between task-based

and goal-based approaches. Our hierarchical operational models are task-

based. So, in order to compare with goal-based approaches, each task would

need a corresponding goal and vice-versa. This mapping may be difficult in

dynamic scenarios that involve closed-loop online decision making, because a

task may correspond to an infinite number of possible goal states.

The International planning competition (IPC) for HTN planning tries to ad-

dress some of the above challenges by enforcing some restrictions on the domain

properties and the hierarchical task networks, e.g., all preconditions and effects can

only contain literals, negated literals, conjunctions, and universal quantifiers, all

actions have unit-cost, and methods may not contain any state constraits except in

the preconditions. Domains may be either totally ordered, partially ordered or non-

recursive, each enforcing a certain set of restrictions on the resulting task network.

Similar constrains could be imposed on the hierarchical operational models to do a

comparison with other approaches.

148

Appendix A: Description of APEplan

The main procedure of APEplan is shown in Table A.1. The parameters b, b′ and

d are global variables and denote the search breadth, sample breadth, and search

depth, respectively. The system receives as input a task τ to be addressed, a set of

methods M , and a current state s, for which it returns a refinement tree T for τ . It

starts by creating a refinement tree with a single node n labeled τ and calls a sub

routine APE-plan-task, which builds a complete refinement tree for n.

APEplan has three main sub procedures: APE-plan-task, APE-plan-method, and

APE-plan-command. The first looks at b method instances for refining a task τ , calling

APE-plan-method for each of the b method instances and returning the tree with the

best value. Every refinement tree has a value based on probability and cost. Once

APE-plan-task has chosen a method instance m for τ , it re labels the node n from τ

to m in the current refinement tree T , then simulates the steps in m one by one by

calling APE-plan-method.

This subroutine first checks whether the search has reached the maximum

depth. If so, then it makes heuristic estimate of the cost and predicts the next state

after going through the steps of the method. Otherwise, it creates a new node in

the current refinement tree T labeled with the first step in the method. If the step

149

Table A.1: The pseudocode of APEplan and APE-plan-task, a sub-routine of APEplan.
APEplan is the planner used by RAE.

1 APEplan (M, s, τ):
2 n← new tree node
3 label(n)← τ
4 T0 ← tree with only one node n
5 (T, v)← APE-plan-task(s, T0, n,M, 0)
6 if v 6= failure then
7 return (T, v)
8 else
9 B ← { Applicable method instances for τ in M ordered according to a

preference ordering }
10 if B 6= ∅ then
11 n← Create new node
12 label(n)← B[1]
13 T ← tree with only one node n as the root
14 return (T, 0)

15 else
16 return null, failure

1 APE-plan-task (s, T, n,M, dcurr):
2 τ ← label(n)
3 B ← { Applicable method instances for τ in M ordered according to a

preference ordering }
4 if |B| < b then
5 B′ ← B
6 else
7 B′ ← B[1...b]
8 U, V ← empty dictionaries

9 for each m ∈ B′ do
10 label(n)← m
11 U [m], V [m]← APE-plan-method(s, T, n,M, dcurr + 1)
12 mopt ← arg-optimalm{V [m]}
13 return (U [mopt], V [mopt])

is a task, then APE-plan-task is called for the task. If the step is a command, then it

instead calls on APE-plan-command.

The APE-plan-command subroutine first calls SampleCommandOutcomes, which

samples b′ outcomes of the command com in the current state s. Samples are taken

150

Table A.2: The pseudocode for APE-plan-method. *pt = APE-plan-task, pc = APE-

plan-command.

1 APE-plan-method (s, T, n,M, dcurr):
2 m← label(n)
3 if dcurr = d then
4 s′, cost′ ← HeuristicEstimate(s,m)
5 n′, d′ ← NextStep (s′, T, n, dcurr)

6 else
7 step← first step in m
8 n′ ← new tree node; label(n′)← step
9 Add n′ as a child of n

10 d′ ← dcurr; cost
′ ← 0; s′ ← s

11 case type(label(n′)):
12 task: T ′, v′ ← pt*(s′, T, n′,M, d′)
13 command: T ′, v′ ← pc*(s′, T, n′,M, d′)
14 end: T ′ ← T ; v′ ← 0
15 return (T ′, v′ + cost′)

1 APE-plan-command (s, T, n,M, dcurr):
2 c← label(n)
3 res← SampleCommandOutcomes (s, c)
4 value← 0
5 for (s′, v, p) in res do
6 n′, d′ ← NextStep (s′, T, n, dcurr)
7 case type(label(n′)):
8 task: Ts′ , vs′ ← pt*(s′, T, n′,M, dcurr)
9 command: Ts′ , vs′ ← pc*(s′, T, n′,M, dcurr)

10 end: Ts′ ← T ; vs′ ← 0 value← value+ (p ∗ (v + vs′))

11 return T, value

151

Table A.3: The pseudocode for NextStep and SampleCommandOutcomes. *pt = APE-

plan-task, pc = APE-plan-command.

1 NextStep (s, T, n, dcurr):
2 dnext ← dcurr
3 while True do
4 nold ← n
5 n← parent(nold) in T
6 m← label(n)
7 step← next step in m after label(nold) depending on s
8 if step is not the last step of m then
9 nnext ← new tree node

10 label(nnext)← step; break

11 else
12 dnext ← dnext − 1
13 if dnext = 0 then
14 nnext ← new tree node
15 label(nnext)← end; break

16 else
17 continue

18 return nnext, dnext

1 SampleCommandOutcomes (s, com):
2 S ← φ
3 Cost,Count← empty dictionaries
4 repeat
5 s′ ← Sample(s, com)
6 S ← S ∪ {s′}
7 if s′ in Count then
8 Count[s′]← 1
9 Cost[s′]← costs,m[i](s

′)

10 else
11 Count[s′]← Count[s′] + 1

12 until b′ samples are taken
13 normalize(Count)
14 res← φ
15 for s′ ∈ S do
16 res← res ∪ {(s′,Cost[s′],Count[s′])}
17 return res
18

152

from a probability distribution specified by the domain’s designer.The module re-

turns a set consisting of three tuples of the form (s′, v, p), where s′ is a predicted

state after performing command com, and where v and p are the cost and proba-

bilities of reaching that state estimated from sampling. We need the next state s′

to build the remaining portion of the refinement tree T starting from the state s′.

The cost v contributes to the expected value of T with probability p. After getting

this list of three tuples from SampleCommandOutcomes, APE-plan-command calls on

NextStep.

The NextStep subroutine shown in Figure A.2 takes as input the current re-

finement tree T and node n being explored. If n refers to some task or command

in the middle of a refinement method m, then NextStep creates a new node labeled

with the next step inside of m, the depth of nnext being the same as n. Otherwise,

if n is the last step of m, it continues to loop and travel towards the root of the

refinement tree until it finds the root or a method that has not been fully simulated.

The function returns end when T is completely refined or a node labeled with the

next step in T . The label depends on the current state s and the depth of T . After

APE-plan-command gets a new node n′ and its depth from NextStep, it calls either

APE-plan-command or APE-plan-task, depending on the label of n′. The routine does

this for every s′ in res and estimates a value for T from these runs.

153

Appendix B: Descriptions of Experimental Domains

B.1 Fetch domain

the commands in the Fetch domain

declare_commands([put, take, perceive, charge, move, moveToEmergency,

addressEmergency, wait, fail])↪→

declare_task('search', 'r', 'o') # task and its parameters

declare_task('fetch', 'r', 'o')

declare_task('recharge', 'r', 'c')

declare_task('moveTo', 'r', 'l')

declare_task('emergency', 'r', 'l', 'i')

declare_task('nonEmergencyMove', 'r', 'l1', 'l2', 'dist')

the refinement methods for the tasks

declare_methods('search', Search_Method1, Search_Method2)

declare_methods('fetch', Fetch_Method1, Fetch_Method2)

declare_methods('recharge', Recharge_Method1, Recharge_Method2,

Recharge_Method3)↪→

declare_methods('moveTo', MoveTo_Method1)

declare_methods('emergency', Emergency_Method1)

declare_methods('nonEmergencyMove', NonEmergencyMove_Method1)

the commands

def take(r, o):

state.load.AcquireLock(r)

if state.load[r] == NIL:

state.pos.AcquireLock(o)

if state.loc[r] == state.pos[o]:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('take', start)

== False):↪→

pass

res = Sense('take')

if res == SUCCESS:

Simulate("Robot %s has picked up object %s\n" %(r,

o))↪→

154

state.pos[o] = r

state.load[r] = o

else:

Simulate("Non-deterministic event has made the take

command fail\n")↪→

else:

Simulate("Robot %s is not at object %s's location\n" %(r,

o))↪→

res = FAILURE

state.pos.ReleaseLock(o)

else:

Simulate("Robot %s is not free to take anything\n" %r)

res = FAILURE

state.load.ReleaseLock(r)

return res

def put(r, o):

state.pos.AcquireLock(o)

if state.pos[o] == r:

start = globalTimer.GetTime()

state.loc.AcquireLock(r)

state.load.AcquireLock(r)

while(globalTimer.IsCommandExecutionOver('put', start) ==

False):↪→

pass

res = Sense('put')

if res == SUCCESS:

Simulate("Robot %s has put object %s at location %d\n"

%(r,o,state.loc[r]))↪→

state.pos[o] = state.loc[r]

state.load[r] = NIL

else:

Simulate("Robot %s has failed to put %s because of some

internal error")↪→

state.loc.ReleaseLock(r)

state.load.ReleaseLock(r)

else:

Simulate("Object %s is not with robot %s\n" %(o,r))

res = FAILURE

state.pos.ReleaseLock(o)

return res

def charge(r, c):

state.loc.AcquireLock(r)

state.pos.AcquireLock(c)

155

if state.loc[r] == state.pos[c] or state.pos[c] == r:

state.charge.AcquireLock(r)

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('charge', start) ==

False):↪→

pass

res = Sense('charge')

if res == SUCCESS:

state.charge[r] = 4

Simulate("Robot %s is fully charged\n" %r)

else:

Simulate("Charging of robot %s failed due to some

internal error.\n" %r)↪→

state.charge.ReleaseLock(r)

else:

Simulate("Robot %s is not in the charger's location or it

doesn't have the charger with it\n" %r)↪→

res = FAILURE

state.loc.ReleaseLock(r)

state.pos.ReleaseLock(c)

return res

def moveToEmergency(r, l1, l2, dist):

state.loc.AcquireLock(r)

state.charge.AcquireLock(r)

if l1 == l2:

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1 and state.charge[r] >= dist:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('move', start) ==

False):↪→

pass

res = Sense('moveToEmergency')

if res == SUCCESS:

Simulate("Robot %s has moved from %d to %d\n" %(r, l1,

l2))↪→

state.loc[r] = l2

state.charge[r] = state.charge[r] - dist

else:

Simulate("Moving failed due to some internal error\n")

elif state.loc[r] != l1 and state.charge[r] >= dist:

Simulate("Robot %s is not in location %d\n" %(r, l1))

res = FAILURE

elif state.loc[r] == l1 and state.charge[r] < dist:

156

Simulate("Robot %s does not have enough charge to move :(\n"

%r)↪→

state.charge[r] = 0 # should we do this?

res = FAILURE

else:

Simulate("Robot %s is not at location %s and it doesn't have

enough charge!\n" %(r, l1))↪→

res = FAILURE

state.loc.ReleaseLock(r)

state.charge.ReleaseLock(r)

if res == FAILURE:

state.emergencyHandling.AcquireLock(r)

state.emergencyHandling[r] = False

state.emergencyHandling.ReleaseLock(r)

return res

def perceive(l):

state.view.AcquireLock(l)

if state.view[l] == False:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('perceive', start)

== False):↪→

pass

Sense('perceive')

for c in state.containers[l]:

state.pos.AcquireLock(c)

state.pos[c] = l

state.pos.ReleaseLock(c)

state.view[l] = True

Simulate("Perceived location %d\n" %l)

else:

Simulate("Already perceived\n")

state.view.ReleaseLock(l)

return SUCCESS

def move(r, l1, l2, dist):

state.emergencyHandling.AcquireLock(r)

if state.emergencyHandling[r] == False:

state.loc.AcquireLock(r)

state.charge.AcquireLock(r)

if l1 == l2:

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1 and (state.charge[r] >= dist or

state.load[r] == 'c1'):↪→

157

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('move', start)

== False):↪→

pass

res = Sense('move')

if res == SUCCESS:

Simulate("Robot %s has moved from %d to %d\n" %(r,

l1, l2))↪→

state.loc[r] = l2

if state.load[r] != 'c1':

state.charge[r] = state.charge[r] - dist

else:

Simulate("Robot %s failed to move due to some

internal failure\n" %r)↪→

elif state.loc[r] != l1 and state.charge[r] >= dist:

Simulate("Robot %s is not in location %d\n" %(r, l1))

res = FAILURE

elif state.loc[r] == l1 and state.charge[r] < dist:

Simulate("Robot %s does not have enough charge to move

:(\n" %r)↪→

state.charge[r] = 0 # should we do this?

res = FAILURE

else:

Simulate("Robot %s is not at location %s and it doesn't

have enough charge!\n" %(r, l1))↪→

res = FAILURE

state.loc.ReleaseLock(r)

state.charge.ReleaseLock(r)

else:

Simulate("Robot is addressing emergency so it cannot

move.\n")↪→

res = FAILURE

state.emergencyHandling.ReleaseLock(r)

return res

def addressEmergency(r, l, i):

state.loc.AcquireLock(r)

state.emergencyHandling.AcquireLock(r)

if state.loc[r] == l:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('addressEmergency',

start) == False):↪→

pass

res = Sense('addressEmergency')

if res == SUCCESS:

158

Simulate("Robot %s has addressed emergency %d\n" %(r, i))

else:

Simulate("Robot %s has failed to address emergency due to

some internal error \n" %r)↪→

else:

Simulate("Robot %s has failed to address emergency %d\n" %(r,

i))↪→

res = FAILURE

state.emergencyHandling[r] = False

state.loc.ReleaseLock(r)

state.emergencyHandling.ReleaseLock(r)

return res

def wait(r):

while(state.emergencyHandling[r] == True):

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('wait', start) ==

False):↪→

pass

Simulate("Robot %s is waiting for emergency to be over\n" %r)

Sense('wait')

return SUCCESS

the refinement methods

def Recharge_Method3(r, c):

""" Robot r charges and carries the charger with it """

if state.loc[r] != state.pos[c] and state.pos[c] != r:

if state.pos[c] in rv.LOCATIONS:

do_task('moveTo', r, state.pos[c])

else:

robot = state.pos[c]

do_command(put, robot, c)

do_task('moveTo', r, state.pos[c])

do_command(charge, r, c)

do_command(take, r, c)

def Recharge_Method2(r, c):

""" Robot r charges and does not carry the charger with it """

if state.loc[r] != state.pos[c] and state.pos[c] != r:

if state.pos[c] in rv.LOCATIONS:

do_task('moveTo', r, state.pos[c])

else:

robot = state.pos[c]

do_command(put, robot, c)

do_task('moveTo', r, state.pos[c])

159

do_command(charge, r, c)

def Recharge_Method1(r, c):

""" When the charger is with another robot and that robot takes

the charger back """↪→

robot = NIL

if state.loc[r] != state.pos[c] and state.pos[c] != r:

if state.pos[c] in rv.LOCATIONS:

do_task('moveTo', r, state.pos[c])

else:

robot = state.pos[c]

do_command(put, robot, c)

do_task('moveTo', r, state.pos[c])

do_command(charge, r, c)

if robot != NIL:

do_command(take, robot, c)

def Search_Method1(r, o):

if state.pos[o] == UNK:

toBePerceived = NIL

for l in rv.LOCATIONS:

if state.view[l] == False:

toBePerceived = l

break

if toBePerceived != NIL:

do_task('moveTo', r, toBePerceived)

do_command(perceive, toBePerceived)

if state.pos[o] == toBePerceived:

if state.load[r] != NIL:

do_command(put, r, state.load[r])

do_command(take, r, o)

else:

do_task('search', r, o)

else:

Simulate("Failed to search %s" %o)

do_command(fail)

else:

Simulate("Position of %s is already known\n" %o)

def Search_Method2(r, o):

if state.pos[o] == UNK:

toBePerceived = NIL

for l in rv.LOCATIONS:

if state.view[l] == False:

160

toBePerceived = l

break

if toBePerceived != NIL:

do_task('recharge', r, 'c1') # is this allowed?

do_task('moveTo', r, toBePerceived)

do_command(perceive, toBePerceived)

if state.pos[o] == toBePerceived:

if state.load[r] != NIL:

do_command(put, r, state.load[r])

do_command(take, r, o)

else:

do_task('search', r, o)

else:

Simulate("Failed to search %s" %o)

do_command(fail)

else:

Simulate("Position of %s is already known\n" %o)

def Fetch_Method1(r, o):

pos_o = state.pos[o]

if pos_o == UNK:

do_task('search', r, o)

else:

if state.loc[r] != pos_o:

do_task('moveTo', r, pos_o)

if state.load[r] != NIL:

do_command(put, r, state.load[r])

do_command(take, r, o)

def Fetch_Method2(r, o):

pos_o = state.pos[o]

if pos_o == UNK:

do_task('search', r, o)

else:

if state.loc[r] != pos_o:

do_task('recharge', r, 'c1')

do_task('moveTo', r, pos_o)

if state.load[r] != NIL:

do_command(put, r, state.load[r])

do_command(take, r, o)

def Emergency_Method1(r, l, i):

if state.emergencyHandling[r] == False:

state.emergencyHandling[r] = True

161

load_r = state.load[r]

if load_r != NIL:

do_command(put, r, load_r)

l1 = state.loc[r]

dist = CR_GETDISTANCE(l1, l)

do_command(moveToEmergency, r, l1, l, dist)

do_command(addressEmergency, r, l, i)

else:

Simulate("%r is already busy handling another emergency\n"

%r)↪→

do_command(fail)

def NonEmergencyMove_Method1(r, l1, l2, dist):

if state.emergencyHandling[r] == False:

do_command(move, r, l1, l2, dist)

else:

do_command(wait, r)

do_command(move, r, l1, l2, dist)

def MoveTo_Method1(r, l):

x = state.loc[r]

dist = CR_GETDISTANCE(x, l)

if state.charge[r] >= dist or state.load[r] == 'c1':

do_task('nonEmergencyMove', r, x, l, dist)

else:

state.charge[r] = 0

Simulate("Robot %s does not have enough charge to move from

%d to %d\n" %(r, x, l))↪→

do_command(fail)

B.2 Explore domain

declare_commands([

survey,

monitor,

screen,

sample,

process,

charge,

move,

put,

take,

fly,

deposit,

162

transferData,

handleAlien,

fail])

declare_task('explore', 'r', 'activity', 'l')

declare_task('getEquipment', 'r', 'activity')

declare_task('flyTo', 'r', 'l')

declare_task('moveTo', 'r', 'l')

declare_task('recharge', 'r')

declare_task('depositData', 'r')

declare_task('doActivities', 'r', 'actList')

declare_task('handleEmergency', 'r', 'l')

declare_methods('explore',

Explore_Method1)

declare_methods('getEquipment',

GetEquipment_Method1,

GetEquipment_Method2,

GetEquipment_Method3)

declare_methods('moveTo',

MoveTo_Method1)

declare_methods('flyTo',

FlyTo_Method1,

FlyTo_Method2)

declare_methods('recharge',

Recharge_Method1,

Recharge_Method2)

declare_methods('depositData',

DepositData_Method1,

DepositData_Method2)

declare_methods('doActivities',

DoActivities_Method1,

DoActivities_Method2,

DoActivities_Method3)

declare_methods('handleEmergency',

HandleEmergency_Method2,

HandleEmergency_Method1,

HandleEmergency_Method3)

163

commands

def survey(r, l):

state.load.AcquireLock(r)

state.loc.AcquireLock(r)

state.data.AcquireLock(r)

e = state.load[r]

if e not in rv.EQUIPMENTTYPE:

Simulate("%s does not have any equipment\n" %r)

res = FAILURE

elif state.loc[r] == l and rv.EQUIPMENTTYPE[e] == 'survey' and

state.data[r] < 4:↪→

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('survey', start) ==

False):↪→

pass

res = Sense('survey')

if res == SUCCESS:

state.data[r] += 1

Simulate("%s has surveyed the location %s\n" %(r, l))

else:

Simulate("%s has failed to do survey %s due to an

internal error.\n" %(r,l))↪→

elif state.loc[r] != l:

Simulate("%s is not in location %s\n" %(r, l))

res = FAILURE

elif rv.EQUIPMENTTYPE[e] != 'survey':

Simulate("%s is not the right equipment for survey\n" %e)

res = FAILURE

elif state.data[r] == 4:

Simulate("%s cannot store any more data\n" %r)

res = FAILURE

state.load.ReleaseLock(r)

state.loc.ReleaseLock(r)

state.data.ReleaseLock(r)

return res

def monitor(r, l):

state.load.AcquireLock(r)

state.loc.AcquireLock(r)

state.data.AcquireLock(r)

e = state.load[r]

if e not in rv.EQUIPMENTTYPE:

Simulate("%s does not have any equipment\n" %r)

res = FAILURE

164

elif state.loc[r] == l and rv.EQUIPMENTTYPE[e] == 'monitor' and r

!= 'UAV' and state.data[r] < 4:↪→

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('monitor', start) ==

False):↪→

pass

res = Sense('monitor')

if res == SUCCESS:

Simulate("%s has monitored the location\n" %r)

state.data[r] += 1

else:

Simulate("Monitoring has failed due to some internal

error\n")↪→

elif state.loc[r] != l:

Simulate("%s is not in location %s\n" %(r, l))

res = FAILURE

elif rv.EQUIPMENTTYPE[e] != 'monitor':

Simulate("%s is not the right equipment for monitor\n" %e)

res = FAILURE

elif r == 'UAV':

Simulate("UAV cannot monitor\n")

res = FAILURE

elif state.data[r] == 4:

Simulate("%s cannot store any more data\n" %r)

res = FAILURE

state.load.ReleaseLock(r)

state.loc.ReleaseLock(r)

state.data.ReleaseLock(r)

return res

def screen(r, l):

state.load.AcquireLock(r)

state.loc.AcquireLock(r)

state.data.AcquireLock(r)

e = state.load[r]

if e not in rv.EQUIPMENTTYPE:

Simulate("%s does not have any equipment\n" %r)

res = FAILURE

elif state.loc[r] == l and rv.EQUIPMENTTYPE[e] == 'screen' and r

!= 'UAV' and state.data[r] < 4:↪→

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('screen', start) ==

False):↪→

pass

res = Sense('screen')

165

if res == SUCCESS:

Simulate("%s has screened the location\n" %r)

state.data[r] += 1

else:

Simulate("Screening failed due to some internal error\n")

elif state.loc[r] != l:

Simulate("%s is not in location %s\n" %(r, l))

res = FAILURE

elif rv.EQUIPMENTTYPE[e] != 'screen':

Simulate("%s is not the right equipment for screening\n" %e)

res = FAILURE

elif r == 'UAV':

Simulate("UAV cannot do screening\n")

res = FAILURE

elif state.data[r] == 4:

Simulate("%s cannot store any more data\n" %r)

res = FAILURE

state.load.ReleaseLock(r)

state.loc.ReleaseLock(r)

state.data.ReleaseLock(r)

return res

def sample(r, l):

state.load.AcquireLock(r)

state.loc.AcquireLock(r)

state.data.AcquireLock(r)

e = state.load[r]

if e not in rv.EQUIPMENTTYPE:

Simulate("%s does not have any equipment\n" %r)

res = FAILURE

elif state.loc[r] == l and rv.EQUIPMENTTYPE[e] == 'sample' and r

!= 'UAV' and state.data[r] < 4:↪→

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('sample', start) ==

False):↪→

pass

res = Sense('sample')

if res == SUCCESS:

Simulate("%s has sampled the location\n" %r)

state.data[r] += 1

else:

Simulate("Sampling failed due to internal error\n")

elif state.loc[r] != l:

Simulate("%s is not in location %s\n" %(r, l))

res = FAILURE

166

elif rv.EQUIPMENTTYPE[e] != 'sample':

Simulate("%s is not the right equipment for sampling\n" %e)

res = FAILURE

elif r == 'UAV':

Simulate("UAV cannot do sampling\n")

res = FAILURE

elif state.data[r] == 4:

Simulate("%s cannot store any more data\n" %r)

res = FAILURE

state.load.ReleaseLock(r)

state.loc.ReleaseLock(r)

state.data.ReleaseLock(r)

return res

def process(r, l):

state.load.AcquireLock(r)

state.loc.AcquireLock(r)

state.data.AcquireLock(r)

e = state.load[r]

if e not in rv.EQUIPMENTTYPE:

Simulate("%s does not have any equipment\n" %r)

res = FAILURE

elif state.loc[r] == l and rv.EQUIPMENTTYPE[e] == 'process' and r

!= 'UAV' and state.data[r] < 4:↪→

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('process', start) ==

False):↪→

pass

res = Sense('process')

if res == SUCCESS:

Simulate("%s has processed the location\n" %r)

state.data[r] += 1

else:

Simulate("Processing failed due to an internal error\n")

elif state.loc[r] != l:

Simulate("%s is not in location %s\n" %(r, l))

res = FAILURE

elif rv.EQUIPMENTTYPE[e] != 'process':

Simulate("%s is not the right equipment for process\n" %e)

res = FAILURE

elif r == 'UAV':

Simulate("UAV cannot do processing\n")

res = FAILURE

elif state.data[r] == 4:

Simulate("%s cannot store any more data\n" %r)

167

res = FAILURE

state.load.ReleaseLock(r)

state.loc.ReleaseLock(r)

state.data.ReleaseLock(r)

return res

def alienSpotted(l):

Simulate("An alien is spotted in location %s \n" %l)

return SUCCESS

def handleAlien(r, l):

if state.loc[r] == l:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('handleAlien',

start) == False):↪→

pass

Simulate("Robot %s is negotiating with alien.\n" %r)

res = SUCCESS

else:

Simulate("Robot %s is not in alien's location\n" %r)

res = FAILURE

return res

def charge(r, c):

state.loc.AcquireLock(r)

state.pos.AcquireLock(c)

if state.loc[r] == state.pos[c] or state.pos[c] == r:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('charge', start) ==

False):↪→

pass

res = Sense('charge')

if res == SUCCESS:

state.charge.AcquireLock(r)

state.charge[r] = 100

Simulate("%s is fully charged\n" %r)

state.charge.ReleaseLock(r)

else:

Simulate("Charging failed due to some internal error.\n")

else:

Simulate("%s is not in the charger's location or it doesn't

have the charger with it\n" %r)↪→

res = FAILURE

state.loc.ReleaseLock(r)

state.pos.ReleaseLock(c)

168

return res

def move(r, l1, l2):

state.loc.AcquireLock(r)

state.charge.AcquireLock(r)

dist = EE_GETDISTANCE(l1, l2)

if l1 == l2:

Simulate("%s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1 and state.charge[r] >= dist:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('move', start) ==

False):↪→

pass

res = Sense('move')

if res == SUCCESS:

Simulate("%s has moved from %s to %s\n" %(r, l1, l2))

state.loc[r] = l2

state.charge[r] = state.charge[r] - dist

else:

Simulate("Move failed due to an internal error.\n")

elif state.loc[r] != l1 and state.charge[r] >= dist:

Simulate("%s is not in location %s\n" %(r, l1))

res = FAILURE

elif state.loc[r] == l1 and state.charge[r] < dist:

Simulate("%s does not have any charge to move :(\n" %r)

res = FAILURE

else:

Simulate("%s is not at location %s and it doesn't have enough

charge!\n" %(r, l1))↪→

res = FAILURE

state.loc.ReleaseLock(r)

state.charge.ReleaseLock(r)

return res

def fly(r, l1, l2):

state.loc.AcquireLock(r)

state.charge.AcquireLock(r)

dist = EE_GETDISTANCE(l1, l2)/2

if r != 'UAV':

Simulate("%s cannot fly\n" %r)

res = FAILURE

elif l1 == l2:

Simulate("%s is already at location %s\n" %(r, l2))

169

res = SUCCESS

elif state.loc[r] == l1 and state.charge[r] >= dist:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('fly', start) ==

False):↪→

pass

res = SenseFly()

if res == SUCCESS:

Simulate("%s has flied from %s to %s\n" %(r, l1, l2))

state.loc[r] = l2

state.charge[r] = state.charge[r] - dist

else:

Simulate("Flying failed due to an internal error.\n")

elif state.loc[r] != l1 and state.charge[r] >= dist:

Simulate("%s is not in location %s\n" %(r, l1))

res = FAILURE

elif state.loc[r] == l1 and state.charge[r] < dist:

Simulate("%s does not have any charge to fly :(charge = %d

but distance = %d \n" %(r,state.charge[r], dist))↪→

state.charge[r] = 0

res = FAILURE

else:

Simulate("%s is not at location %s and it doesn't have enough

charge!\n" %(r, l1))↪→

res = FAILURE

state.loc.ReleaseLock(r)

state.charge.ReleaseLock(r)

return res

def take(r, o):

state.load.AcquireLock(r)

if state.load[r] == NIL:

state.loc.AcquireLock(r)

state.pos.AcquireLock(o)

if state.loc[r] == state.pos[o]:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('take', start)

== False):↪→

pass

res = Sense('take')

if res == SUCCESS:

Simulate("%s has picked up %s\n" %(r, o))

state.pos[o] = r

state.load[r] = o

else:

170

Simulate("Take failed due to an internal failure.\n")

else:

Simulate("%s is not at %s's location\n" %(r, o))

res = FAILURE

state.loc.ReleaseLock(r)

state.pos.ReleaseLock(o)

else:

Simulate("%s is not free to take anything\n" %r)

res = FAILURE

state.load.ReleaseLock(r)

return res

def put(r, o):

state.loc.AcquireLock(r)

state.pos.AcquireLock(o)

if state.pos[o] == r:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('put', start) ==

False):↪→

pass

res = Sense('put')

if res == SUCCESS:

state.pos[o] = state.loc[r]

state.load[r] = NIL

Simulate("%s has put %s at location %s\n"

%(r,o,state.loc[r]))↪→

else:

Simulate("put failed due to an internal error.\n")

else:

Simulate("%s is not with %s\n" %(o,r))

res = FAILURE

state.loc.ReleaseLock(r)

state.pos.ReleaseLock(o)

return res

def deposit(r):

state.loc.AcquireLock(r)

state.data.AcquireLock(r)

if state.loc[r] == 'base':

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('deposit', start) ==

False):↪→

pass

res = Sense('deposit')

if res == SUCCESS:

171

Simulate("%s has deposited data in the base\n" %r)

state.data[r] = 0

else:

Simulate("Deposit failed due to an internal error.\n")

else:

Simulate("%s is not in base, so it cannot deposit data.\n"

%r)↪→

res = FAILURE

state.loc.ReleaseLock(r)

state.data.ReleaseLock(r)

return res

def transferData(r1, r2):

state.loc.AcquireLock(r1)

state.loc.AcquireLock(r2)

state.data.AcquireLock(r1)

state.data.AcquireLock(r2)

if state.loc[r1] != state.loc[r2]:

Simulate("%s and %s are not in same location.\n" %(r1, r2))

res = FAILURE

elif state.data[r2] + state.data[r1] <= 4:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('transferData',

start) == False):↪→

pass

res = Sense('transferData')

if res == SUCCESS:

Simulate("%s transfered data to %s\n" %(r1, r2))

state.data[r2] += state.data[r1]

state.data[r1] = 0

else:

Simulate("Transfer data failed due to an internal

error.\n")↪→

elif state.data[r2] < 4:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('transferData',

start) == False):↪→

pass

res = Sense('transferData')

if res == SUCCESS:

t = 4 - state.data[r2]

state.data[r2] = 4

state.data[r1] -= t

172

Simulate("%s transfered data to %s\n" %(r1, r2))

else:

Simulate("Transfer data failed due to an internal

error.\n")↪→

else:

Simulate("There is no space in %s to get data\n" %r2)

res = FAILURE

state.loc.ReleaseLock(r1)

state.loc.ReleaseLock(r2)

state.data.ReleaseLock(r1)

state.data.ReleaseLock(r2)

return res

refinement methods

def Explore_Method1(r, activity, l):

do_task('getEquipment', r, activity)

do_task('moveTo', r, l)

if activity == 'survey':

do_command(survey, r, l)

elif activity == 'monitor':

do_command(monitor, r, l)

elif activity == 'screen':

do_command(screen, r, l)

elif activity == 'sample':

do_command(sample, r, l)

elif activity == 'process':

do_command(process, r, l)

def GetEquipment_Method1(r, activity):

""" When the equipment is at a particular location and r does

not carry any load"""↪→

e = rv.EQUIPMENT[activity]

if state.load[r] != e and state.pos[e] in rv.LOCATIONS:

do_task('moveTo', r, state.pos[e])

do_command(take, r, e)

else:

do_command(fail)

def GetEquipment_Method2(r, activity):

""" When r is already carrying some load and equipment is at a

particular location"""↪→

e = rv.EQUIPMENT[activity]

if state.load[r] != e and state.pos[e] in rv.LOCATIONS:

do_task('moveTo', r, state.pos[e])

173

state.load.AcquireLock(r)

if state.load[r] != NIL:

o = state.load[r]

state.load.ReleaseLock(r)

do_command(put, r, o)

else:

state.load.ReleaseLock(r)

do_command(fail)

do_command(take, r, e)

else:

do_command(fail)

def GetEquipment_Method3(r, activity):

""" When the equipment is with another robot """

r1 = r

e = rv.EQUIPMENT[activity]

if state.load[r1] != e:

loc = state.pos[e]

if loc not in rv.LOCATIONS:

r2 = loc

do_task('moveTo', r, state.loc[r2])

state.load.AcquireLock(r1)

if state.load[r1] != NIL:

x = state.load[r1]

state.load.ReleaseLock(r1)

do_command(put, r1, x)

else:

state.load.ReleaseLock(r1)

do_command(put, r2, e)

do_command(take, r1, e)

else:

do_command(fail)

else:

do_command(fail)

def MoveTo_MethodHelper(r, l):

path = EE_GETPATH(state.loc[r], l)

if path == {}:

Simulate("%s is already at location %s \n" %(r, l))

else:

lTemp = state.loc[r]

if lTemp not in path:

Simulate("%s is out of its path to %s\n" %(r, l))

do_command(fail)

else:

174

while(lTemp != l):

lNext = path[lTemp]

do_command(move, r, lTemp, lNext)

if lNext != state.loc[r]:

Simulate("%s is out of its path to %s\n" %(r, l))

do_command(fail)

else:

lTemp = lNext

def MoveTo_Method1(r, l):

if l not in rv.LOCATIONS:

Simulate("%s is trying to go to an invalid location\n" %r)

do_command(fail)

else:

MoveTo_MethodHelper(r, l)

def FlyTo_Method1(r, l):

if r == 'UAV':

do_command(fly, r, state.loc[r], l)

else:

Simulate("%s is not a UAV. So, it cannot fly\n" %r)

do_command(fail)

def FlyTo_Method2(r, l):

dist = EE_GETDISTANCE(state.loc[r], l)

if r == 'UAV':

do_task('recharge', r)

do_command(fly, r, state.loc[r], l)

else:

Simulate("%s is not a UAV. So, it cannot fly\n" %r)

do_command(fail)

def DepositData_Method1(r):

if state.data[r] > 0:

do_task('moveTo', r, 'base')

do_command(deposit, r)

else:

Simulate("%s has no data to deposit.\n" %r)

do_command(fail)

def DepositData_Method2(r):

if state.data[r] > 0:

if r != 'UAV':

do_task('flyTo', 'UAV', state.loc[r])

do_command(transferData, r, 'UAV')

175

do_task('flyTo', 'UAV', 'base')

do_command(deposit, 'UAV')

else:

Simulate("%s has no data to deposit.\n" %r)

do_command(fail)

def Recharge_Method1(r):

c = 'c1'

l1 = state.loc[r]

if state.pos[c] != l1 and state.pos[c] != r:

if state.pos[c] in rv.LOCATIONS:

l2 = state.pos[c]

else:

r2 = state.pos[c]

l2 = state.loc[r2]

dist = EE_GETDISTANCE(l1, l2)

if state.charge[r] >= dist:

do_task('moveTo', r, l2)

do_command(charge, r, c)

else:

Simulate("%s is stranded without any possibility of

charging\n" %r)↪→

do_command(fail)

else:

do_command(charge, r, c)

def Recharge_Method2(r):

c = 'c1'

l1 = state.loc[r]

if state.pos[c] != l1 and state.pos[c] != r:

if state.pos[c] in rv.LOCATIONS:

l2 = state.pos[c]

else:

r2 = state.pos[c]

l2 = state.loc[r2]

dist = EE_GETDISTANCE(l1, l2)

if state.charge[r] >= dist:

do_task('moveTo', r, l2)

do_command(charge, r, c)

do_command(take, r, c)

else:

Simulate("%s is stranded without any possibility of

charging\n" %r)↪→

do_command(fail)

else:

176

do_command(charge, r, c)

do_command(take, r, c)

def DoActivities_Method1(r, actList):

for act in actList:

do_task('explore', r, act[0], act[1])

do_task('depositData', r)

def DoActivities_Method3(r, actList):

for act in actList:

do_task('explore', r, act[0], act[1])

do_task('depositData', r)

do_task('recharge', r)

def DoActivities_Method2(r, actList):

for act in actList:

do_task('explore', r, act[0], act[1])

do_task('recharge', r)

do_task('depositData', r)

def HandleEmergency_Method1(r, l):

do_task('recharge', r)

do_task('moveTo', r, l)

do_command(handleAlien, r, l)

def HandleEmergency_Method2(r, l):

do_task('moveTo', r, l)

do_command(handleAlien, r, l)

def HandleEmergency_Method3(r, l):

do_task('flyTo', r, l)

do_command(handleAlien, r, l)

B.3 Navigate domain

declare_commands([

holdDoor,

passDoor,

releaseDoor,

move,

put,

take,

unlatch1,

unlatch2,

177

helpRobot,

fail],)

declare_task('fetch', 'r', 'o', 'l')

declare_task('moveTo', 'r', 'l')

declare_task('moveThroughDoorway', 'r', 'd', 'l')

declare_task('unlatch', 'r', 'd')

declare_task('collision', 'r')

declare_methods('fetch', Fetch_Method1)

declare_methods('moveTo', MoveTo_Method1)

declare_methods('moveThroughDoorway',

MoveThroughDoorway_Method1,

MoveThroughDoorway_Method3,

MoveThroughDoorway_Method4,

MoveThroughDoorway_Method2) # has multiple method instances

declare_methods('unlatch', Unlatch_Method1, Unlatch_Method2)

declare_methods('collision', Recover_Method1) # has multiple

instances↪→

commands

def helpRobot(r1, r2):

if state.loc[r1] == state.loc[r2]:

Simulate("%s is helping %s \n" %(r1, r2))

return SUCCESS

else:

return FAILURE

def unlatch1(r, d):

state.load.AcquireLock(r)

state.doorStatus.AcquireLock(d)

if state.doorStatus[d] != 'closed':

Simulate("Door %s is already open\n" %d)

res = SUCCESS

elif state.load[r] == NIL:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('unlatch1', start)

== False):↪→

pass

res = Sense('unlatch1')

if res == SUCCESS:

Simulate("Robot %s has opened door %s\n" %(r, d))

state.doorStatus[d] = 'opened'

else:

178

Simulate("Unlatching has failed due to an internal

error\n")↪→

else:

Simulate("Robot %s is not free to open door %s\n" %(r, d))

res = FAILURE

state.load.ReleaseLock(r)

state.doorStatus.ReleaseLock(d)

return res

def unlatch2(r, d):

state.load.AcquireLock(r)

state.doorStatus.AcquireLock(d)

if state.doorStatus[d] != 'closed': # status can be closed,

opened or held↪→

Simulate("Door %s is already open\n" %d)

res = SUCCESS

elif state.load[r] == NIL:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('unlatch2', start)

== False):↪→

pass

res = Sense('unlatch2')

if res == SUCCESS:

Simulate("Robot %s has opened door %s\n" %(r, d))

state.doorStatus[d] = 'opened'

else:

Simulate("Unlatching has failed due to an internal

error\n")↪→

else:

Simulate("Robot %s is not free to open door %s\n" %(r, d))

res = FAILURE

state.load.ReleaseLock(r)

state.doorStatus.ReleaseLock(d)

return res

def passDoor(r, d, l):

state.doorStatus.AcquireLock(d)

state.loc.AcquireLock(r)

if state.doorStatus[d] == 'opened' or state.doorStatus[d] ==

'held':↪→

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('passDoor', start)

== False):↪→

pass

res = Sense('passDoor', d)

179

if res == SUCCESS:

state.loc[r] = l

Simulate("Robot %s has passed the door %s\n" %(r, d))

else:

Simulate("Robot %s is not able to pass door %s\n" %(r,

d))↪→

state.doorType[d] = rv.DOORTYPES[d]

else:

Simulate("Robot %s is not able to pass door %s\n" %(r, d))

res = FAILURE

state.loc.ReleaseLock(r)

state.doorStatus.ReleaseLock(d)

return res

should always be followed by releaseDoor

def holdDoor(r, d):

state.doorStatus.AcquireLock(d)

state.load.AcquireLock(r)

if state.doorStatus[d] != 'closed' and state.load[r] == NIL:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('holdDoor', start)

== False):↪→

pass

Simulate("Robot %s is holding the door %s\n" %(r, d))

state.load[r] = 'H'

state.doorStatus[d] = 'held'

res = SUCCESS

elif state.doorStatus[d] == 'closed':

Simulate("Door %s is closed and cannot be held by %s\n" %(d,

r))↪→

res = FAILURE

elif state.load[r] != NIL:

Simulate("Robot %s is not free to hold the door %s\n" %(r,

d))↪→

res = FAILURE

state.doorStatus.ReleaseLock(d)

state.load.ReleaseLock(r)

return res

def releaseDoor(r, d):

if state.doorStatus[d] != 'held':

return SUCCESS

elif state.doorStatus[d] == 'held' and state.load[r] == 'H':

start = globalTimer.GetTime()

180

while(globalTimer.IsCommandExecutionOver('releaseDoor',

start) == False):↪→

pass

Simulate("Robot %s has released the the door %s\n" %(r, d))

state.doorStatus[d] = 'closed'

state.load[r] = NIL

else:

Simulate("Robot %s is not holding door %s\n" %(r, d))

return SUCCESS

def move(r, l1, l2):

state.loc.AcquireLock(r)

if l1 == l2:

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1:

if (l1, l2) in rv.DOORLOCATIONS or (l2, l1) in

rv.DOORLOCATIONS:↪→

Simulate("Robot %s cannot move. There is a door between

%s and %s \n" %(r, l1, l2))↪→

res = FAILURE

else:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('move', start)

== False):↪→

pass

res = Sense('move')

if res == SUCCESS:

Simulate("Robot %s has moved from %d to %d\n" %(r,

l1, l2))↪→

state.loc[r] = l2

else:

Simulate("Move has failed due to some internal

failure.\n")↪→

else:

Simulate("Invalid move by robot %s\n" %r)

res = FAILURE

state.loc.ReleaseLock(r)

return res

def put(r, o):

state.pos.AcquireLock(o)

state.load.AcquireLock(r)

state.loc.AcquireLock(r)

if state.pos[o] == r:

181

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('put', start) ==

False):↪→

pass

res = Sense('put')

if res == SUCCESS:

state.pos[o] = state.loc[r]

state.load[r] = NIL

Simulate("Robot %s has put object %s at location %d\n"

%(r,o,state.loc[r]))↪→

else:

Simulate("put has failed due to some internal

failure.\n")↪→

else:

Simulate("Object %s is not with robot %s\n" %(o,r))

res = FAILURE

state.pos.ReleaseLock(o)

state.load.ReleaseLock(r)

state.loc.ReleaseLock(r)

return res

def take(r, o):

state.pos.AcquireLock(o)

state.load.AcquireLock(r)

state.loc.AcquireLock(r)

if state.load[r] == NIL:

if state.loc[r] == state.pos[o]:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('take', start)

== False):↪→

pass

res = Sense('take')

if res == SUCCESS:

Simulate("Robot %s has picked up object %s\n" %(r,

o))↪→

state.pos[o] = r

state.load[r] = o

else:

Simulate("take failed due to some internal error.\n")

elif state.loc[r] != state.pos[o]:

Simulate("Robot %s is not at object %s's location\n" %(r,

o))↪→

res = FAILURE

else:

Simulate("Robot %s is not free to take anything\n" %r)

182

res = FAILURE

state.pos.ReleaseLock(o)

state.load.ReleaseLock(r)

state.loc.ReleaseLock(r)

return res

refinement methods

def MoveThroughDoorway_Method3(r, d, l):

""" For a robot passing a spring door without any load """

if state.load[r] == NIL and (state.doorType[d] == 'spring' or

state.doorType[d] == UNK):↪→

do_task('unlatch', r, d)

do_command(holdDoor, r, d)

do_command(passDoor, r, d, l)

do_command(releaseDoor, r, d)

else:

do_command(fail)

def MoveThroughDoorway_Method2(r, d, l, r2):

""" For a robot passing a spring door with a load """

if state.load[r] != NIL and (state.doorType[d] == 'spring' or

state.doorType[d] == UNK):↪→

state.status.AcquireLock(r2)

if state.status[r2] == 'free':

state.status[r2] = 'busy'

state.status.ReleaseLock(r2)

else:

state.status.ReleaseLock(r2)

do_command(fail)

obj = state.load[r2]

if obj != NIL:

if obj != 'H':

do_command(put, r2, state.load[r2])

else:

do_command(fail)

do_task('moveTo', r2, state.loc[r])

do_task('unlatch', r2, d)

do_command(holdDoor, r2, d)

do_command(passDoor, r, d, l)

do_command(releaseDoor, r2, d)

state.status[r2] = 'free'

else:

do_command(fail)

183

MoveThroughDoorway_Method2.parameters = "[(r2,) for r2 in rv.ROBOTS

if r2 != r and state.status[r2] == 'free']"↪→

def MoveThroughDoorway_Method4(r, d, l):

""" For a robot passing a normal door with a load """

if state.load[r] != NIL and (state.doorType[d] == 'ordinary' or

state.doorType[d] == UNK):↪→

obj = state.load[r]

if obj != 'H':

do_command(put, r, obj)

else:

Simulate("%r is holding another door\n" %r)

do_command(fail)

do_task('unlatch', r, d)

do_command(take, r, obj)

do_command(passDoor, r, d, l)

else:

do_command(fail)

def MoveThroughDoorway_Method1(r, d, l):

""" For a robot passing a normal door without a load """

if state.load[r] == NIL and (state.doorType[d] == 'ordinary' or

state.doorType[d] == UNK):↪→

do_task('unlatch', r, d)

do_command(passDoor, r, d, l)

else:

do_command(fail)

def MoveTo_Method1(r, l):

x = state.loc[r]

if l in rv.LOCATIONS:

path = SD_GETPATH(x, l)

if path == None:

Simulate("Unsolvable problem. No path exists.\n")

do_command(fail)

if path == {}:

Simulate("Robot %s is already at location %s \n" %(r, l))

else:

lTemp = x

lNext = path[lTemp]

while(lTemp != l):

lNext = path[lTemp]

if (lTemp, lNext) in rv.DOORLOCATIONS or (lNext,

lTemp) in rv.DOORLOCATIONS:↪→

d = SD_GETDOOR(lTemp, lNext)

184

do_task('moveThroughDoorway', r, d, lNext)

else:

do_command(move, r, lTemp, lNext)

if lNext != state.loc[r]:

do_command(fail)

else:

lTemp = lNext

elif l in rv.ROBOTS: # maybe not used?

loc = state.loc[l]

do_task('moveTo', r, loc)

else:

Simulate("Robot %s going to invalid location.\n" %(r))

do_command(fail)

def Fetch_Method1(r, o, l):

state.status.AcquireLock(r)

if state.status[r] == 'free':

state.status[r] = 'busy'

state.status.ReleaseLock(r)

else:

state.status.ReleaseLock(r)

do_command(fail)

do_task('moveTo', r, state.pos[o])

do_command(take, r, o)

do_task('moveTo', r, l)

state.status[r] = 'free'

def Recover_Method1(r, r2): # multiple instances

state.status.AcquireLock(r2)

if state.status[r2] == 'busy':

state.status.ReleaseLock(r2)

do_command(fail)

else:

state.status[r2] = 'busy'

state.status.ReleaseLock(r2)

do_task('moveTo', r2, state.loc[r])

do_command(helpRobot, r2, r)

state.status[r2] = 'free'

Simulate("Robot %s is helping %s to recover from collision\n"

%(r2, r))↪→

Recover_Method1.parameters = "[(r2,) for r2 in rv.ROBOTS if r2 != r

and state.status[r2] == 'free']"↪→

185

def Unlatch_Method1(r, d):

do_command(unlatch1, r, d)

def Unlatch_Method2(r, d):

do_command(unlatch2, r, d)

B.4 Rescue domain

declare_commands([

moveEuclidean,

moveCurved,

moveManhattan,

fly,

giveSupportToPerson,

clearLocation,

inspectLocation,

inspectPerson,

transfer,

replenishSupplies,

captureImage,

changeAltitude,

deadEnd,

fail

])

declare_task('moveTo', 'r', 'l')

declare_task('rescue', 'r', 'p')

declare_task('helpPerson', 'r', 'p')

declare_task('getSupplies', 'r')

declare_task('survey', 'r', 'l')

declare_task('getRobot')

declare_task('adjustAltitude', 'r')

declare_methods('moveTo',

MoveTo_Method4,

MoveTo_Method3,

MoveTo_Method2,

MoveTo_Method1,

)

declare_methods('rescue',

Rescue_Method1,

Rescue_Method2,

)

186

declare_methods('helpPerson',

HelpPerson_Method2,

HelpPerson_Method1,

)

declare_methods('getSupplies',

GetSupplies_Method2,

GetSupplies_Method1,

)

declare_methods('survey',

Survey_Method1,

Survey_Method2

)

declare_methods('getRobot',

GetRobot_Method1,

GetRobot_Method2,

)

declare_methods('adjustAltitude',

AdjustAltitude_Method1,

AdjustAltitude_Method2,

)

commands

def moveEuclidean(r, l1, l2, dist):

(x1, y1) = l1

(x2, y2) = l2

xlow = min(x1, x2)

xhigh = max(x1, x2)

ylow = min(y1, y2)

yhigh = max(y1, y2)

for o in rv.OBSTACLES:

(ox, oy) = o

if ox >= xlow and ox <= xhigh and oy >= ylow and oy <= yhigh:

if ox == x1 or x2 == x1:

Simulate("%s cannot move in Euclidean path because of

obstacle\n" %r)↪→

return FAILURE

elif abs((oy - y1)/(ox - x1) - (y2 - y1)/(x2 - x1)) <=

0.0001:↪→

187

Simulate("%s cannot move in Euclidean path because of

obstacle\n" %r)↪→

return FAILURE

state.loc.AcquireLock(r)

if l1 == l2:

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('moveEuclidean',

start, r, l1, l2, dist) == False):↪→

pass

res = Sense('moveEuclidean')

if res == SUCCESS:

Simulate("Robot %s has moved from %s to %s\n" %(r,

str(l1), str(l2)))↪→

state.loc[r] = l2

else:

Simulate("Robot %s failed to move due to some internal

failure.\n" %r)↪→

else:

Simulate("Robot %s is not in location %d.\n" %(r, l1))

res = FAILURE

state.loc.ReleaseLock(r)

return res

def moveCurved(r, l1, l2, dist):

(x1, y1) = l1

(x2, y2) = l2

centrex = (x1 + x2)/2

centrey = (y1 + y2)/2

for o in rv.OBSTACLES:

(ox, oy) = o

r2 = (x2 - centrex)*(x2 - centrex) + (y2 - centrey)*(y2 -

centrey)↪→

ro = (ox - centrex)*(ox - centrex) + (oy - centrey)*(oy -

centrey)↪→

if abs(r2 - ro) <= 0.0001:

Simulate("%s cannot move in curved path because of

obstacle\n" %r)↪→

return FAILURE

state.loc.AcquireLock(r)

if l1 == l2:

188

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('moveCurved', start,

r, l1, l2, dist) == False):↪→

pass

res = Sense('moveCurved')

if res == SUCCESS:

Simulate("Robot %s has moved from %s to %s\n" %(r,

str(l1), str(l2)))↪→

state.loc[r] = l2

else:

Simulate("Robot %s failed to move due to some internal

failure.\n" %r)↪→

else:

Simulate("Robot %s is not in location %d.\n" %(r, l1))

res = FAILURE

state.loc.ReleaseLock(r)

return res

def moveManhattan(r, l1, l2, dist):

(x1, y1) = l1

(x2, y2) = l2

xlow = min(x1, x2)

xhigh = max(x1, x2)

ylow = min(y1, y2)

yhigh = max(y1, y2)

for o in rv.OBSTACLES:

(ox, oy) = o

if abs(oy - y1) <= 0.0001 and ox >= xlow and ox <= xhigh:

Simulate("%s cannot move in Manhattan path because of

obstacle\n" %r)↪→

return FAILURE

if abs(ox - x2) <= 0.0001 and oy >= ylow and oy <= yhigh:

Simulate("%s cannot move in Manhattan path because of

obstacle\n" %r)↪→

return FAILURE

state.loc.AcquireLock(r)

if l1 == l2:

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1:

189

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('moveManhattan',

start, r, l1, l2, dist) == False):↪→

pass

res = Sense('moveManhattan')

if res == SUCCESS:

Simulate("Robot %s has moved from %s to %s\n" %(r,

str(l1), str(l2)))↪→

state.loc[r] = l2

else:

Simulate("Robot %s failed to move due to some internal

failure.\n" %r)↪→

else:

Simulate("Robot %s is not in location %d.\n" %(r, l1))

res = FAILURE

state.loc.ReleaseLock(r)

return res

def fly(r, l1, l2):

state.loc.AcquireLock(r)

if l1 == l2:

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1:

start = globalTimer.GetTime()

while(globalTimer.IsCommandExecutionOver('fly', start) ==

False):↪→

pass

res = Sense('fly')

if res == SUCCESS:

Simulate("Robot %s has flied from %s to %s\n" %(r,

str(l1), str(l2)))↪→

state.loc[r] = l2

else:

Simulate("Robot %s failed to fly due to some internal

failure.\n" %r)↪→

else:

Simulate("Robot %s is not in location %d.\n" %(r, l1))

res = FAILURE

state.loc.ReleaseLock(r)

return res

def inspectPerson(r, p):

Simulate("Robot %s is inspecting person %s \n" %(r, p))

state.status[p] = state.realStatus[p]

190

return SUCCESS

def giveSupportToPerson(r, p):

if state.status[p] != 'dead':

Simulate("Robot %s has saved person %s \n" %(r, p))

state.status[p] = 'OK'

state.realStatus[p] = 'OK'

res = SUCCESS

else:

Simulate("Person %s is already dead \n" %(p))

res = FAILURE

return res

def inspectLocation(r, l):

Simulate("Robot %s is inspecting location %s \n" %(r, str(l)))

state.status[l] = state.realStatus[l]

return SUCCESS

def clearLocation(r, l):

Simulate("Robot %s has cleared location %s \n" %(r, str(l)))

state.status[l] = 'clear'

state.realStatus[l] = 'clear'

return SUCCESS

def replenishSupplies(r):

state.hasMedicine.AcquireLock(r)

if state.loc[r] == (1,1):

state.hasMedicine[r] = 5

Simulate("Robot %s has replenished supplies at the base.\n"

%r)↪→

res = SUCCESS

else:

Simulate("Robot %s is not at the base.\n" %r)

res = FAILURE

state.hasMedicine.ReleaseLock(r)

return res

def transfer(r1, r2):

state.hasMedicine.AcquireLock(r1)

state.hasMedicine.AcquireLock(r2)

if state.loc[r1] == state.loc[r2]:

if state.hasMedicine[r1] > 0:

state.hasMedicine[r2] += 1

state.hasMedicine[r1] -= 1

191

Simulate("Robot %s has transferred medicine to %s.\n"

%(r1, r2))↪→

res = SUCCESS

else:

Simulate("Robot %s does not have medicines.\n" %r1)

res = FAILURE

else:

Simulate("Robots %s and %s are in different locations.\n"

%(r1, r2))↪→

res = FAILURE

state.hasMedicine.ReleaseLock(r2)

state.hasMedicine.ReleaseLock(r1)

return res

def captureImage(r, camera, l):

img = Sense('captureImage', r, camera, l)

state.currentImage.AcquireLock(r)

state.currentImage[r] = img

Simulate("UAV %s has captured image in location %s using %s\n"

%(r, l, camera))↪→

state.currentImage.ReleaseLock(r)

return SUCCESS

def changeAltitude(r, newAltitude):

state.altitude.AcquireLock(r)

if state.altitude[r] != newAltitude:

res = Sense('changeAltitude')

if res == SUCCESS:

state.altitude[r] = newAltitude

Simulate("UAV %s has changed altitude to %s\n" %(r,

newAltitude))↪→

else:

Simulate("UAV %s was not able to change altitude to %s\n"

%(r, newAltitude))↪→

else:

res = SUCCESS

Simulate("UAV %s is already in %s altitude.\n" %(r,

newAltitude))↪→

state.altitude.ReleaseLock(r)

return res

def SR_GETDISTANCE_Euclidean(l0, l1):

(x0, y0) = l0

(x1, y1) = l1

192

return math.sqrt((x1 - x0)*(x1 - x0) + (y1 - y0)*(y1-y0))

def MoveTo_Method1(r, l): # takes the straight path

x = state.loc[r]

if x == l:

Simulate("Robot %s is already in location %s\n." %(r, l))

elif state.robotType[r] == 'wheeled':

dist = SR_GETDISTANCE_Euclidean(x, l)

Simulate("Euclidean distance = %d " %dist)

do_command(moveEuclidean, r, x, l, dist)

else:

do_command(fail)

def SR_GETDISTANCE_Manhattan(l0, l1):

(x1, y1) = l0

(x2, y2) = l1

return abs(x2 - x1) + abs(y2 - y1)

def MoveTo_Method2(r, l): # takes a Manhattan path

x = state.loc[r]

if x == l:

Simulate("Robot %s is already in location %s\n." %(r, l))

elif state.robotType[r] == 'wheeled':

dist = SR_GETDISTANCE_Manhattan(x, l)

Simulate("Manhattan distance = %d " %dist)

do_command(moveManhattan, r, x, l, dist)

else:

do_command(fail)

def SR_GETDISTANCE_Curved(l0, l1):

diameter = SR_GETDISTANCE_Euclidean(l0, l1)

return math.pi * diameter / 2

def MoveTo_Method3(r, l): # takes a curved path

x = state.loc[r]

if x == l:

Simulate("Robot %s is already in location %s\n." %(r, l))

elif state.robotType[r] == 'wheeled':

dist = SR_GETDISTANCE_Curved(x, l)

Simulate("Curved distance = %d " %dist)

do_command(moveCurved, r, x, l, dist)

else:

do_command(fail)

def MoveTo_Method4(r, l):

193

x = state.loc[r]

if x == l:

Simulate("Robot %s is already in location %s\n." %(r, l))

elif state.robotType[r] == 'uav':

do_command(fly, r, x, l)

else:

do_command(fail)

def Rescue_Method1(r, p):

if state.robotType[r] != 'uav':

if state.hasMedicine[r] == 0:

do_task('getSupplies', r)

do_task('helpPerson', r, p)

else:

do_command(fail)

def Rescue_Method2(r, p):

if state.robotType[r] == 'uav':

do_task('getRobot')

r2 = state.newRobot[1]

if r2 != None:

if state.hasMedicine[r2] == 0:

do_task('getSupplies', r2)

do_task('helpPerson', r2, p)

state.status[r2] = 'free'

else:

Simulate("No robot is free to help person %s\n" %p)

do_command(fail)

def HelpPerson_Method1(r, p):

help an injured person

do_task('moveTo', r, state.loc[p])

do_command(inspectPerson, r, p)

if state.status[p] == 'injured':

do_command(giveSupportToPerson, r, p)

else:

do_command(fail)

def HelpPerson_Method2(r, p):

help a person trapped inside some debri but not injured

do_task('moveTo', r, state.loc[p])

do_command(inspectLocation, r, state.loc[r])

if state.status[state.loc[r]] == 'hasDebri':

do_command(clearLocation, r, state.loc[r])

else:

194

CheckReal(state.loc[p])

do_command(fail)

def GetSupplies_Method1(r):

get supplies from nearby robots

r2 = None

nearestDist = float("inf")

for r1 in rv.WHEELEDROBOTS:

if state.hasMedicine[r1] > 0:

dist = SR_GETDISTANCE_Euclidean(state.loc[r],

state.loc[r1])↪→

if dist < nearestDist:

nearestDist = dist

r2 = r1

if r2 != None:

do_task('moveTo', r, state.loc[r2])

do_command(transfer, r2, r)

else:

do_command(fail)

def GetSupplies_Method2(r):

get supplies from the base

do_task('moveTo', r, (1,1))

do_command(replenishSupplies, r)

def CheckReal(l):

p = state.realPerson[l]

if p != None:

if state.realStatus[p] == 'injured' or state.realStatus[p] ==

'dead' or state.realStatus[l] == 'hasDebri':↪→

Simulate("Person in location %s failed to be saved.\n"

%str(l))↪→

do_command(deadEnd, p)

do_command(fail)

def Survey_Method1(r, l):

if state.robotType[r] != 'uav':

do_command(fail)

do_task('adjustAltitude', r)

do_command(captureImage, r, 'frontCamera', l)

img = state.currentImage[r]

195

position = img['loc']

person = img['person']

if person != None:

do_task('rescue', r, person)

CheckReal(l)

def Survey_Method2(r, l):

if state.robotType[r] != 'uav':

do_command(fail)

do_task('adjustAltitude', r)

do_command(captureImage, r, 'bottomCamera', l)

img = state.currentImage[r]

position = img['loc']

person = img['person']

if person != None:

do_task('rescue', r, person)

CheckReal(l)

def GetRobot_Method1():

dist = float("inf")

robot = None

for r in rv.WHEELEDROBOTS:

if state.status[r] == 'free':

if SR_GETDISTANCE_Euclidean(state.loc[r], (1,1)) < dist:

robot = r

dist = SR_GETDISTANCE_Euclidean(state.loc[r], (1,1))

if robot == None:

do_command(fail)

else:

state.status[robot] = 'busy'

state.newRobot[1] = robot # Check if this can cause any

regression with assignment statements↪→

def GetRobot_Method2():

state.newRobot[1] = rv.WHEELEDROBOTS[0]

state.status[rv.WHEELEDROBOTS[0]] = 'busy'

def AdjustAltitude_Method1(r):

196

if state.altitude[r] == 'high':

do_command(changeAltitude, r, 'low')

def AdjustAltitude_Method2(r):

if state.altitude[r] == 'low':

do_command(changeAltitude, r, 'high')

B.5 Delivery domain

declare_commands([fail, wrap, pickup, acquireRobot, loadMachine,

moveRobot, freeRobot, putdown, wait])↪→

Declare tasks

declare_task('orderStart', 'orderList')

declare_task('order', 'orderList')

declare_task('pickupAndLoad', 'orderName', 'o', 'm')

declare_task('unloadAndDeliver', 'm', 'package')

declare_task('moveToPallet', 'o', 'p')

declare_task('redoer', 'command')

declare_methods('orderStart', OrderStart_Method1)

declare_methods('order', Order_Method1, Order_Method2)

declare_methods('pickupAndLoad', PickupAndLoad_Method1)

declare_methods('unloadAndDeliver', UnloadAndDeliver_Method1)

declare_methods('moveToPallet', MoveToPallet_Method1)

declare_methods('redoer', Redoer)

def wait():

if GLOBALS.GetPlanningMode() == True:

return SUCCESS

else:

t1 = time()

while(time() - t1 < 3):

pass

return SUCCESS

def Redoer(command, *args):

i = 0

while i < 3:

if i > 0:

Simulate("--Redoing command-- %s\n" % command)

state.var1.AcquireLock('redoId')

localRedoId = state.var1['redoId']

197

state.var1['redoId'] += 1

state.var1.ReleaseLock('redoId')

state.shouldRedo[localRedoId] = False

do_command(command, localRedoId, *args)

if i > 0:

Simulate("--Finished redo-- %s\n" % command)

if not state.shouldRedo.pop(localRedoId):

break

i += 1

if i >= 3:

do_command(fail)

this is a function for narrowing down possibilities for obj lists

e.g. reduces combos for problem 4 task 1 from 10 to 4

def MakeFocusedObjList():

combos = (itertools.combinations([k for (k,v) in

state.OBJECTS.items() if v == True],

state.var1['inputLength']))

↪→

↪→

focus = []

orderList = state.var1['input']

for objList in combos:

works = True

for i,objType in enumerate(orderList):

verify correct type

if objList[i] not in state.OBJ_CLASS[objType]:

works = False

if works:

focus.append(objList)

random.shuffle(focus)

return focus

this is a dummy task so we can set the length

of the order

def OrderStart_Method1(orderList):

state.var1['inputLength'] = len(orderList)

state.var1['input'] = orderList

state.var1['focusObjList'] = MakeFocusedObjList

198

do_task('order', orderList)

def Order_Method1(orderList, m, objList):

if len(orderList) != len(objList):

Simulate("wrong length objList %s\n" % str(objList))

do_command(fail)

make sure order is of correct type, reserve objects

for i,objType in enumerate(orderList):

verify correct type

if objList[i] not in state.OBJ_CLASS[objType]:

Simulate("wrong type %s\n" % str(objList))

do_command(fail)

if state.OBJECTS[objList[i]] == False:

Simulate("obj already used %s\n" % str(objList[i]))

do_command(fail)

Simulate("Reserving obj %s\n" % str(objList[i]))

state.OBJECTS[objList[i]] = False

get unique ID for order name

state.var1.AcquireLock('redoId')

id = state.var1['redoId']

state.var1['redoId'] += 1

state.var1.ReleaseLock('redoId')

Simulate("This is order ID: " + str(id) + "\n")

for i, objType in enumerate(orderList):

move to object, pick it up, load in machine

do_task('pickupAndLoad', frozenset([id] + [objList]),

objList[i], m)↪→

do_task('redoer', wrap, frozenset([id] + [objList]), m, objList)

package = state.var1['temp1']

do_task('unloadAndDeliver', m, package)

Order_Method1.parameters = "[(m, objList,) for m in rv.MACHINES for

objList in state.var1['focusObjList']()]"↪→

def Order_Method2(orderList, m, objList, p):

wait if needed

if len(orderList) != len(objList):

199

Simulate("wrong length %s\n" % str(objList))

do_command(fail)

make sure order is of correct type, reserve objects

for i,objType in enumerate(orderList):

verify correct type

if objList[i] not in state.OBJ_CLASS[objType]:

Simulate("wrong type %s\n" % str(objList))

do_command(fail)

if state.OBJECTS[objList[i]] == False:

Simulate("obj already used %s\n" % str(objList))

do_command(fail)

state.OBJECTS[objList[i]] = False

move objects to the pallet

for i, objType in enumerate(orderList):

move to object, pick it up, place on pallet

do_task('moveToPallet', objList[i], p)

get unique ID for order name

state.var1.AcquireLock('redoId')

id = state.var1['redoId']

state.var1['redoId'] += 1

state.var1.ReleaseLock('redoId')

move objects to machine

for i,objType in enumerate(orderList):

move to object, pick it up, load in machine

do_task('pickupAndLoad', frozenset([id] + [objList]),

objList[i], m)↪→

do_task('redoer', wrap, frozenset([id] + [objList]), m, objList)

package = state.var1['temp1']

do_task('unloadAndDeliver', m, package)

Order_Method2.parameters = "[(m, objList, p) for m in rv.MACHINES for

objList in state.var1['focusObjList']()" \↪→

"for p in rv.PALLETS]"

for free r

def PickupAndLoad_Method1(orderName, o, m, r):

wait for robot if needed

200

i = 0

while state.busy[r] == True and i < 5:

do_command(wait)

i += 1

if state.busy[r] == True:

do_command(fail)

acquire robot

do_task('redoer', acquireRobot, r)

move to object

if state.loc[o] in rv.ROBOTS:

do_task('redoer', putdown, state.loc[o], o)

dist = OF_GETDISTANCE_GROUND(state.loc[r], state.loc[o])

do_task('redoer', moveRobot, r, state.loc[r], state.loc[o], dist)

pick up object

do_task('redoer', pickup, r, o)

move to machine

dist = OF_GETDISTANCE_GROUND(state.loc[r], state.loc[m])

do_task('redoer', moveRobot, r, state.loc[r], state.loc[m], dist)

wait if needed

i = 0

while state.busy[m] != False and state.busy[m] != orderName and i

< 5:↪→

do_command(wait)

i += 1

if state.busy[m] != False and state.busy[m] != orderName:

do_command(fail)

load machine

do_task('redoer', loadMachine, orderName, r, m, o)

do_task('redoer', freeRobot, r)

PickupAndLoad_Method1.parameters = "[(r,) for r in rv.ROBOTS]"

unload a package from the machine, move package to shipping doc

for free r

def UnloadAndDeliver_Method1(m, package, r):

wait for robot if needed

i = 0

201

while state.busy[r] == True and i < 5:

do_command(wait)

i += 1

if state.busy[r] == True:

do_command(fail)

do_task('redoer', acquireRobot, r)

dist = OF_GETDISTANCE_GROUND(state.loc[r], state.loc[m])

do_task('redoer', moveRobot, r, state.loc[r], state.loc[m], dist)

do_task('redoer', pickup, r, package)

doc = rv.SHIPPING_DOC[rv.ROBOTS[r]]

dist = OF_GETDISTANCE_GROUND(state.loc[r], doc)

do_task('redoer', moveRobot, r, state.loc[r], doc, dist)

do_task('redoer', putdown, r, package)

do_task('redoer', freeRobot, r)

Simulate("Package %s has been delivered\n" % package)

UnloadAndDeliver_Method1.parameters = "[(r,) for r in rv.ROBOTS]"

for free r

def MoveToPallet_Method1(o, p, r):

wait for robot if needed

i = 0

while state.busy[r] == True and i < 5:

do_command(wait)

i += 1

if state.busy[r] == True:

do_command(fail)

do_task('redoer', acquireRobot, r)

dist = OF_GETDISTANCE_GROUND(state.loc[r], state.loc[o])

do_task('redoer', moveRobot, r, state.loc[r], state.loc[o], dist)

do_task('redoer', pickup, r, o)

dist = OF_GETDISTANCE_GROUND(state.loc[r], state.loc[p])

202

do_task('redoer', moveRobot, r, state.loc[r], state.loc[p], dist)

do_task('redoer', putdown, r, o)

Simulate("Object %s was placed on pallet %s (goes with earlier

msg)\n" % (o, p))↪→

do_task('redoer', freeRobot, r)

MoveToPallet_Method1.parameters = "[(r,) for r in rv.ROBOTS]"

def moveRobot(redoId, r, l1, l2, dist):

state.loc.AcquireLock(r)

state.shouldRedo.AcquireLock(redoId)

if l1 == l2:

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

state.shouldRedo[redoId] = False

elif state.loc[r] == l1:

start = globalTimer.GetTime()

while (globalTimer.IsCommandExecutionOver('moveRobot', start,

redoId, r, l1, l2, dist) == False):↪→

pass

res = Sense('moveRobot')

if res == SUCCESS:

Simulate("Robot %s has moved from %s to %s\n" %(r, l1,

l2))↪→

state.loc[r] = l2

state.shouldRedo[redoId] = False

else:

Simulate("Robot %s failed to move due to some internal

failure\n" %r)↪→

state.shouldRedo[redoId] = True

res = SUCCESS

else:

Simulate("Robot %s is not in location %d\n" %(r, l1))

res = FAILURE

state.shouldRedo[redoId] = False

state.shouldRedo.ReleaseLock(redoId)

state.loc.ReleaseLock(r)

return res

203

def pickup(redoId, r, item):

state.load.AcquireLock(r)

state.loc.AcquireLock(r)

state.loc.AcquireLock(item)

state.shouldRedo.AcquireLock(redoId)

if r not in rv.ROBOTS or item not in state.OBJECTS:

Simulate("Passed argument %s or %s isn't a robot or object\n"

% (r, item))↪→

res = FAILURE

state.shouldRedo[redoId] = False

elif state.load[r] != NIL:

Simulate("Robot %s is already carrying an object\n" % r)

res = FAILURE

state.shouldRedo[redoId] = False

elif state.loc[r] != state.loc[item]:

Simulate("Robot %s and item %s are in different locations\n"

% (r, item))↪→

res = FAILURE

state.shouldRedo[redoId] = False

elif state.OBJ_WEIGHT[item] > rv.ROBOT_CAPACITY[r]:

start = globalTimer.GetTime()

while (globalTimer.IsCommandExecutionOver('pickup', start,

redoId, r, item) == False):↪→

pass

Simulate("Item %s is too heavy for robot %s to pick up\n" %

(item, r))↪→

res = FAILURE

state.shouldRedo[redoId] = False

else:

start = globalTimer.GetTime()

while (globalTimer.IsCommandExecutionOver('pickup', start,

redoId, r, item) == False):↪→

pass

res = Sense('pickup')

if res == SUCCESS:

Simulate("Robot %s picked up %s\n" % (r, item))

state.loc[item] = r

state.load[r] = item

state.shouldRedo[redoId] = False

else:

Simulate("Robot %s dropped item %s\n" % (r, item))

res = SUCCESS

204

state.shouldRedo[redoId] = True

state.shouldRedo.ReleaseLock(redoId)

state.loc.ReleaseLock(item)

state.loc.ReleaseLock(r)

state.load.ReleaseLock(r)

return res

def putdown(redoId, r, item):

state.load.AcquireLock(r)

state.loc.AcquireLock(r)

state.loc.AcquireLock(item)

state.shouldRedo.AcquireLock(redoId)

if state.load[r] != item:

Simulate("Robot %s is not carrying the object %s\n" % (r,

item))↪→

res = FAILURE

state.shouldRedo[redoId] = False

else:

start = globalTimer.GetTime()

while (globalTimer.IsCommandExecutionOver('putdown', start,

redoId, r, item) == False):↪→

pass

res = Sense('putdown')

if res == SUCCESS:

Simulate("Robot %s put down %s at loc %s\n" % (r, item,

state.loc[r]))↪→

state.loc[item] = state.loc[r]

state.load[r] = NIL

state.shouldRedo[redoId] = False

else:

Simulate("Robot %s failed to put down %s\n" % (r, item))

res = SUCCESS

state.shouldRedo[redoId] = True

state.shouldRedo.ReleaseLock(redoId)

state.loc.ReleaseLock(item)

state.loc.ReleaseLock(r)

state.load.ReleaseLock(r)

return res

205

def loadMachine(redoId, orderName, r, m, item):

state.load.AcquireLock(r)

state.loc.AcquireLock(r)

state.loc.AcquireLock(m)

state.loc.AcquireLock(item)

state.busy.AcquireLock(m)

state.shouldRedo.AcquireLock(redoId)

if state.loc[r] != state.loc[m]:

Simulate("Robot %s isn't at machine %s" % (r, m))

res = FAILURE

state.shouldRedo[redoId] = False

elif state.busy[m] != orderName and state.busy[m] != False:

Simulate("Robot %s can't load machine %s, it is working on a

different order\n" %(r, m,))↪→

res = FAILURE

state.shouldRedo[redoId] = False

else:

start = globalTimer.GetTime()

while (globalTimer.IsCommandExecutionOver('loadMachine',

start, redoId, orderName, r, m, item) == False):↪→

pass

res = Sense('loadMachine')

if res == SUCCESS:

Simulate("Robot %s loaded machine %s with item %s\n" %

(r, m, item))↪→

state.load[r] = NIL

state.loc[item] = m

state.busy[m] = orderName

state.shouldRedo[redoId] = False

else:

Simulate("Robot %s failed to load machine %s\n" % (r, m))

res = SUCCESS

state.shouldRedo[redoId] = True

state.shouldRedo.ReleaseLock(redoId)

state.busy.ReleaseLock(m)

state.loc.ReleaseLock(item)

state.loc.ReleaseLock(m)

state.loc.ReleaseLock(r)

state.load.ReleaseLock(r)

206

return res

to be not busy anymore, or drop object

def acquireRobot(redoId, r):

state.busy.AcquireLock(r)

state.load.AcquireLock(r)

state.shouldRedo.AcquireLock(redoId)

state.shouldRedo[redoId] = False

if state.busy[r] == True:

Simulate("Robot %s is busy\n" % r)

res = FAILURE

elif state.load[r] != NIL:

Simulate("Robot %s is carrying an object\n" % r)

res = FAILURE

else:

Simulate("Robot %s is acquired for a new task\n" % r)

state.busy[r] = True

res = SUCCESS

state.shouldRedo.ReleaseLock(redoId)

state.load.ReleaseLock(r)

state.busy.ReleaseLock(r)

return res

def freeRobot(redoId, r):

state.busy.AcquireLock(r)

state.load.AcquireLock(r)

state.shouldRedo.AcquireLock(redoId)

state.shouldRedo[redoId] = False

if state.load[r] != NIL:

Simulate("Robot %s is carrying an object\n" % r)

res = FAILURE

else:

Simulate("Robot %s is now free\n" % r)

state.busy[r] = False

res = SUCCESS

state.shouldRedo.ReleaseLock(redoId)

state.load.ReleaseLock(r)

state.busy.ReleaseLock(r)

207

return res

def wrap(redoId, orderName, m, objList):

state.loc.AcquireLock(m)

state.busy.AcquireLock(m)

state.numUses.AcquireLock(m)

state.shouldRedo.AcquireLock(redoId)

weight = 0

for obj in objList:

weight += state.OBJ_WEIGHT[obj]

if state.loc[obj] != m:

Simulate("Machine %s not loaded with item %s\n" % (m,

obj))↪→

res = FAILURE

state.shouldRedo[redoId] = False

state.shouldRedo.ReleaseLock(redoId)

state.numUses.ReleaseLock(m)

state.busy.ReleaseLock(m)

state.loc.ReleaseLock(m)

return res

if state.busy[m] != orderName:

Simulate("Machine %s is busy with a differnt order\n" % m)

res = FAILURE

state.shouldRedo[redoId] = False

else:

start = globalTimer.GetTime()

while globalTimer.IsCommandExecutionOver('wrap', start,

redoId, orderName, m, objList) == False:↪→

pass

state.numUses[m] += 1

res = SenseWrap(state.numUses[m])

if res == SUCCESS:

packageName = "Pack#" + str(orderName)

state.OBJECTS[packageName] = True

state.loc[packageName] = state.loc[m]

state.OBJ_WEIGHT[packageName] = weight

208

state.var1.AcquireLock('temp1')

state.var1['temp1'] = packageName

state.var1.ReleaseLock('temp1')

Simulate("Machine %s wrapped package %s\n" % (m,

packageName))↪→

state.busy[m] = False

state.shouldRedo[redoId] = False

else:

Simulate("Machine %s jammed. Failed to wrap\n" % m)

state.shouldRedo[redoId] = True

set res to success for return

res = SUCCESS

state.shouldRedo.ReleaseLock(redoId)

state.numUses.ReleaseLock(m)

state.busy.ReleaseLock(m)

state.loc.ReleaseLock(m)

return res

B.6 Attack recovery in Software-defined networks (SDN)

declare_commands([

restart_vm,

add_vcpu,

increase_mem,

kill_top_proc,

apply_update,

add_switch,

move_critical_hosts,

clear_ctrl_state_besteffort,

clear_ctrl_state_fallback,

reinstall_ctrl_besteffort,

reinstall_ctrl_fallback,

clear_switch_state_besteffort,

clear_switch_state_fallback,

disconnect_reconnect_switch_port,

disconnect_switch_port,

succeed,

unsure,

fail

209

])

declare_task('fix_sdn', 'config')

declare_task('handle_event', 'event', 'config')

declare_task('fix_component', 'component_id', 'config')

declare_task('fix_low_resources', 'component_id', 'config')

declare_task('try_generic_fix', 'component_id', 'config')

declare_task('fix_sdn_controller', 'component_id', 'config')

declare_task('fix_switch', 'component_id', 'config')

declare_task('shrink_ctrl_hosttable', 'component_id')

declare_task('alleviate_ctrl_cpu', 'component_id')

declare_task('restore_ctrl_health', 'component_id')

declare_task('shrink_switch_flowtable', 'component_id')

declare_task('alleviate_switch_cpu', 'component_id')

declare_task('restore_switch_health', 'component_id')

declare_methods(

'fix_sdn',

m_fix_sdn

)

declare_methods(

'handle_event',

m_handle_event

)

declare_methods(

'fix_component',

m_fix_vm,

m_fix_software

)

declare_methods(

'fix_low_resources',

m_add_vcpu,

m_increase_mem

)

declare_methods(

'try_generic_fix',

m_software_update,

m_software_reinstall

)

declare_methods(

'fix_sdn_controller',

m_ctrl_clearstate_besteffort,

m_ctrl_mitigate_pktinflood,

210

m_fix_sdn_controller_fallback

)

declare_methods(

'fix_switch',

m_fix_switch

)

declare_methods(

'shrink_ctrl_hosttable',

m_ctrl_clearstate_besteffort,

m_ctrl_clearstate_fallback,

m_ctrl_reinstall_besteffort,

m_ctrl_reinstall_fallback

)

declare_methods(

'alleviate_ctrl_cpu',

m_component_kill_top_proc,

m_ctrl_reinstall_besteffort,

m_ctrl_reinstall_fallback,

m_component_restartvm

)

declare_methods(

'restore_ctrl_health',

m_ctrl_reinstall_besteffort,

m_ctrl_reinstall_fallback,

m_component_restartvm

)

declare_methods(

'shrink_switch_flowtable',

m_switch_clearstate_besteffort,

m_switch_clearstate_fallback

)

declare_methods(

'alleviate_switch_cpu',

m_switch_discon_recon_txport,

m_component_kill_top_proc,

m_switch_clearstate_besteffort,

m_switch_clearstate_fallback,

m_switch_disconnect_txport

)

declare_methods(

'restore_switch_health',

m_switch_discon_recon_txport,

m_switch_clearstate_besteffort,

211

m_switch_clearstate_fallback,

m_switch_disconnect_txport

)

def is_component_type(component_id, comp_type):

"""Check whether given component is of the given type (e.g.,

``CTRL`` or ``SWITCH``)."""↪→

Component types should be defined in state

if not hasattr(state, 'components'):

return False

if component_id not in state.components:

return False

if 'type' not in state.components[component_id]:

return False

Check whether component type matches

if state.components[component_id]['type'] == comp_type:

return True

else:

return False

def is_component_critical(component_id):

"""Check whether given component is critical."""

Component types should be defined in state

if not hasattr(state, 'components'):

return False

if component_id not in state.components:

return False

if 'critical' not in state.components[component_id]:

return False

Check whether component type matches

return (state.components[component_id]['critical'] is True)

def get_component_stat(component_id, stat_key):

"""Returns the :class:`dict` for the given statistic, or

``None`` if it doesn't exist."""↪→

if hasattr(state, 'stats') and component_id in state.stats:

if stat_key in state.stats[component_id]:

return state.stats[component_id][stat_key]

return None

212

def is_component_healthy(component_id):

"""Check whether the given component's health value is above

the healthy threshold."""↪→

health_stat = get_component_stat(component_id, 'health')

if health_stat is not None:

health_val = health_stat['value']

health_thresh_fn = health_stat['thresh_exceeded_fn']

if not health_thresh_fn(health_val):

return True

return False

Commands

def restart_vm(component_id):

"""Restart a component virtual machine."""

Sense success vs. failure

res = Sense('restart_vm')

if res == FAILURE:

log_err('Sense() returned FAILURE for "restart_vm"')

return FAILURE

Restarting takes some time, but can fix some problems, so

increase health↪→

health_stat = get_component_stat(component_id, 'health')

if health_stat is not None:

cur_health = health_stat['value']

new_health = min(1.0, (cur_health + 0.1) * 2)

health_stat['value'] = new_health

CPU utilization should reset after restarting

cpu_stat = get_component_stat(component_id, 'cpu_perc_ewma')

if cpu_stat is not None:

cpu_stat['value'] = 0.0

Memory utilization should reset after restarting

mem_stat = get_component_stat(component_id, 'mem_perc_ewma')

if mem_stat is not None:

mem_stat['value'] = 0.0

Host table size should reset after restarting

hosttable_stat = get_component_stat(component_id,

'host_table_size')↪→

if hosttable_stat is not None:

213

hosttable_stat['value'] = 0

Flow table size should reset after restarting

flowtable_stat = get_component_stat(component_id,

'flow_table_size')↪→

if flowtable_stat is not None:

flowtable_stat['value'] = 0

Done

return SUCCESS

def add_vcpu(component_id):

"""Add VCPU to component virtual machine, thus increasing

component's VCPU count by one."""↪→

Sense success vs. failure

res = Sense('add_vcpu')

if res == FAILURE:

log_err('Sense() returned FAILURE for "add_vcpu"')

return FAILURE

CPU utilization should decrease

cpu_stat = get_component_stat(component_id, 'cpu_perc_ewma')

if cpu_stat is not None:

cpu_val = cpu_stat['value']

cpu_stat['value'] = cpu_val / 2.0

Health should increase after increasing CPU

health_stat = get_component_stat(component_id, 'health')

if health_stat is not None:

cur_health = health_stat['value']

new_health = min(1.0, cur_health + 0.1)

health_stat['value'] = new_health

return SUCCESS

def increase_mem(component_id):

"""Increase memory of component virtual machine."""

Sense success vs. failure

res = Sense('increase_mem')

if res == FAILURE:

log_err('Sense() returned FAILURE for "increase_mem"')

return FAILURE

Memory utilization should decrease

214

mem_stat = get_component_stat(component_id, 'mem_perc_ewma')

if mem_stat is not None:

mem_val = mem_stat['value']

mem_stat['value'] = mem_val / 2.0

Health should increase after increasing memory

health_stat = get_component_stat(component_id, 'health')

if health_stat is not None:

cur_health = health_stat['value']

new_health = min(1.0, cur_health + 0.1)

health_stat['value'] = new_health

return SUCCESS

def kill_top_proc(component_id):

"""Kill top CPU-consuming process in a component virtual

machine."""↪→

Sense success vs. failure

res = Sense('kill_top_proc')

if res == FAILURE:

log_err('Sense() returned FAILURE for "kill_top_proc"')

return FAILURE

CPU utilization should decrease if CPU-hungry process is

stopped↪→

cpu_stat = get_component_stat(component_id, 'cpu_perc_ewma')

if cpu_stat is not None:

cur_cpu = cpu_stat['value']

new_cpu = max(0.0, (cur_cpu - 50.0) / 2)

cpu_stat['value'] = new_cpu

Health should increase after CPU-hungry process is stopped

health_stat = get_component_stat(component_id, 'health')

if health_stat is not None:

cur_health = health_stat['value']

new_health = min(1.0, (cur_health + 0.1) * 2)

health_stat['value'] = new_health

return SUCCESS

def apply_update(component_id, software):

"""Apply updates to the given software package in the component

virtual machine."""↪→

Sense success vs. failure

res = Sense('apply_update')

215

if res == FAILURE:

log_err('Sense() returned FAILURE for "apply_update"')

return FAILURE

return SUCCESS

def add_switch(component_id):

"""Add a new switch to the SDN, copying connectivity/links of

the given switch."""↪→

Sense success vs. failure

res = Sense('add_switch')

if res == FAILURE:

log_err('Sense() returned FAILURE for "add_switch"')

return FAILURE

new_id = component_id + '-new'

state.components[new_id] = state.components[component_id]

state.components[new_id]['id'] = new_id

state.stats[new_id] = state.stats[component_id]

Reset health

health_stat = get_component_stat(new_id, 'health')

if health_stat is not None:

health_stat['value'] = 1.0

Reset CPU utilization

cpu_stat = get_component_stat(new_id, 'cpu_perc_ewma')

if cpu_stat is not None:

cpu_stat['value'] = 0.0

Reset memory utilization

mem_stat = get_component_stat(new_id, 'mem_perc_ewma')

if mem_stat is not None:

mem_stat['value'] = 0.0

Reset flow table size

flowtable_stat = get_component_stat(new_id, 'flow_table_size')

if flowtable_stat is not None:

flowtable_stat['value'] = 0

return SUCCESS

def move_critical_hosts(old_switch_id, new_switch_id):

"""Move critical hosts from one switch to another."""

216

Sense success vs. failure

res = Sense('move_critical_hosts')

if res == FAILURE:

log_err('Sense() returned FAILURE for "move_critical_hosts"')

return FAILURE

return SUCCESS

def clear_ctrl_state_besteffort(component_id):

"""Clear the SDN controller state (including host table), if

possible."""↪→

Sense success vs. failure

res = Sense('clear_ctrl_state_besteffort')

if res == FAILURE:

log_err('Sense() returned FAILURE for

"clear_ctrl_state_besteffort"')↪→

return FAILURE

stat = get_component_stat(component_id, 'host_table_size')

if stat is not None:

stat['value'] = 0

return SUCCESS

def clear_ctrl_state_fallback(component_id):

"""Clear the SDN controller state (including host table) in a

more robust way."""↪→

Sense success vs. failure

res = Sense('clear_ctrl_state_fallback')

if res == FAILURE:

log_err('Sense() returned FAILURE for

"clear_ctrl_state_fallback"')↪→

return FAILURE

stat = get_component_stat(component_id, 'host_table_size')

if stat is not None:

stat['value'] = 0

return SUCCESS

def reinstall_ctrl_besteffort(component_id):

"""Reinstall the SDN controller software, if possible."""

Sense success vs. failure

res = Sense('reinstall_ctrl_besteffort')

217

if res == FAILURE:

log_err('Sense() returned FAILURE for

"reinstall_ctrl_besteffort"')↪→

return FAILURE

stat = get_component_stat(component_id, 'host_table_size')

if stat is not None:

stat['value'] = 0

return SUCCESS

def reinstall_ctrl_fallback(component_id):

"""Reinstall the SDN controller software in a more robust

way."""↪→

Sense success vs. failure

res = Sense('reinstall_ctrl_fallback')

if res == FAILURE:

log_err('Sense() returned FAILURE for

"reinstall_ctrl_fallback"')↪→

return FAILURE

stat = get_component_stat(component_id, 'host_table_size')

if stat is not None:

stat['value'] = 0

return SUCCESS

def clear_switch_state_besteffort(component_id):

"""Clear the switch state (including flow table), if

possible."""↪→

Sense success vs. failure

res = Sense('clear_switch_state_besteffort')

if res == FAILURE:

log_err('Sense() returned FAILURE for

"clear_switch_state_besteffort"')↪→

return FAILURE

stat = get_component_stat(component_id, 'flow_table_size')

if stat is not None:

stat['value'] = 0

return SUCCESS

def clear_switch_state_fallback(component_id):

"""Clear the switch state (including flow table) in a more

robust way."""↪→

218

Sense success vs. failure

res = Sense('clear_switch_state_fallback')

if res == FAILURE:

log_err('Sense() returned FAILURE for

"clear_switch_state_fallback"')↪→

return FAILURE

stat = get_component_stat(component_id, 'flow_table_size')

if stat is not None:

stat['value'] = 0

return SUCCESS

def disconnect_reconnect_switch_port(component_id):

"""Disconnect and then reconnect switch port with most

transmitted traffic."""↪→

Sense success vs. failure

res = Sense('disconnect_reconnect_switch_port')

if res == FAILURE:

log_err('Sense() returned FAILURE for

"disconnect_reconnect_switch_port"')↪→

return FAILURE

cpu_stat = get_component_stat(component_id, 'cpu_perc_ewma')

if cpu_stat is not None:

cur_cpu = cpu_stat['value']

new_cpu = max(0.0, (cur_cpu - 50.0) / 2)

cpu_stat['value'] = new_cpu

return SUCCESS

def disconnect_switch_port(component_id):

"""Disconnect switch port with most transmitted traffic."""

Sense success vs. failure

res = Sense('disconnect_switch_port')

if res == FAILURE:

log_err('Sense() returned FAILURE for

"disconnect_switch_port"')↪→

return FAILURE

cpu_stat = get_component_stat(component_id, 'cpu_perc_ewma')

if cpu_stat is not None:

cur_cpu = cpu_stat['value']

new_cpu = max(0.0, (cur_cpu - 50.0) / 2)

219

cpu_stat['value'] = new_cpu

return SUCCESS

def unsure():

"""Add some cost within refinement method."""

Sense success vs. failure

res = Sense('unsure')

if res == FAILURE:

log_err('Sense() returned FAILURE for "unsure"')

return FAILURE

return SUCCESS

Methods

def m_fix_sdn(config):

"""Method to fix all symptoms in the SDN by checking each

component.↪→

Checks the health of each component. For any component with

health below the critical threshold,↪→

delegates to ``fix_component``.

"""

if not isinstance(config, dict) or 'health_critical_thresh' not

in config:↪→

log_err('could not find "health_critical_thresh" in config')

do_command(fail)

else:

log_info('will check health for ' +

str(len(state.components.keys())) + ' components')↪→

for component_id in state.components:

if component_id not in state.stats or 'health' not in

state.stats[component_id]:↪→

log_err('could not find "health" in state.stats["' +

component_id + '"]')↪→

do_command(fail)

else:

health_obj = state.stats[component_id]['health']

if 'value' not in health_obj or 'thresh_exceeded_fn'

not in health_obj:↪→

log_err('could not find "value" or

"thresh_exceeded_fn" in state.stats["'↪→

+ component_id + '"]["health"]')

do_command(fail)

else:

220

Check for low health

value = health_obj['value']

thresh_exceeded_fn =

health_obj['thresh_exceeded_fn']↪→

if thresh_exceeded_fn(value):

log_info('threshold exceeded for stat

"health": ' + component_id)↪→

log_info('adding new task "fix_component" for

"' + component_id + '"')↪→

do_task('fix_component', component_id,

config)↪→

Check new health

if not is_component_healthy(component_id):

log_err('failed to restore component

health: ' + component_id)↪→

do_task(fail)

def m_handle_event(event, config):

"""Method to handle a specific anomaly/event."""

Handle event types based on their source

if 'source' not in event:

log_err('could not find "source" in event')

do_command(fail)

else:

if event['source'] == 'sysmon':

SysMon detects events related to high resource

consumption↪→

low_resource_components = []

Add component that triggered this event

component_id = event['component_id']

low_resource_components.append(component_id)

Address symptoms of each affected component

for component in low_resource_components:

log_info('adding new task "fix_component" for "' +

component + '"')↪→

do_task('fix_component', component, config)

Check whether affected component is now healthy

if not is_component_healthy(component_id):

221

log_err('failed to restore component health: ' +

component_id)↪→

do_task(fail)

Unhandled event source

else:

log_err('unhandled event source "' + event['source'] +

'"')↪→

do_command(fail)

def m_fix_vm(component_id, config):

"""Method to fix symptoms at the virtual machine level."""

do_fix_low_resources = False

for stat_key in ['cpu_perc_ewma', 'mem_perc_ewma']:

stat_obj = get_component_stat(component_id, stat_key)

if stat_obj is not None:

cur_val = stat_obj['value']

thresh_exceeded_fn = stat_obj['thresh_exceeded_fn']

if thresh_exceeded_fn(cur_val):

do_fix_low_resources = True

break

if do_fix_low_resources is True:

do_task('fix_low_resources', component_id, config)

else:

do_command(restart_vm, component_id)

def m_fix_software(component_id, config):

"""Method to fix symptoms at the software/process level."""

do_fix_generic = False

do_fix_sdnctrl = False

do_fix_switch = False

if is_component_type(component_id, 'CTRL'):

do_fix_sdnctrl = True

elif is_component_type(component_id, 'SWITCH'):

do_fix_switch = True

else:

do_fix_generic = True

if do_fix_generic is True:

do_task('try_generic_fix', component_id, config)

elif do_fix_sdnctrl is True:

do_task('fix_sdn_controller', component_id, config)

elif do_fix_switch is True:

222

do_task('fix_switch', component_id, config)

else:

do_command(fail)

def m_software_update(component_id, config):

"""Method to apply updates to a software package."""

do_command(apply_update, component_id)

def m_software_reinstall(component_id, config):

"""Method to reinstall a software package."""

if is_component_type(component_id, 'CTRL'):

do_command(reinstall_ctrl_besteffort, component_id)

else:

do_command(fail)

def m_ctrl_mitigate_pktinflood(component_id, config):

"""Method to mitigate an SDN PACKET_IN flooding attack on a

controller."""↪→

if not is_component_type(component_id, 'CTRL'):

log_err('component "' + component_id + '" is not a

controller')↪→

do_command(fail)

Detect which switches are the source of attack

for switch_id in state.components:

if is_component_type(switch_id, 'SWITCH') and not

is_component_healthy(switch_id):↪→

Move critical hosts away from unhealthy switch

if is_component_critical(switch_id):

Add new switch

do_command(add_switch, switch_id)

Move critical hosts from unhealthy switches

do_command(move_critical_hosts, switch_id, switch_id

+ '-new')↪→

Fix unhealthy switch

do_task('fix_switch', switch_id)

Clear controller state

223

do_command(clear_ctrl_state_besteffort, component_id)

Check whether controller is now healthy

if not is_component_healthy(component_id):

log_err('failed to restore component health: ' +

component_id)↪→

do_task(fail)

def m_fix_sdn_controller_fallback(component_id, config):

"""Method to fix symptoms for a controller."""

if not is_component_type(component_id, 'CTRL'):

log_err('component "' + component_id + '" is not a

controller')↪→

do_command(fail)

elif component_id not in state.stats:

log_err('could not find "' + component_id + '" in

state.stats')↪→

do_command(fail)

else:

Check stats and determine what needs to be fixed

stat_obj = state.stats[component_id]

do_shrink_hosttable = False

do_alleviate_cpu = False

do_restore_health = False

if 'host_table_size' in stat_obj:

if ('value' not in stat_obj['host_table_size']

or 'thresh_exceeded_fn' not in

stat_obj['host_table_size']):↪→

log_err('could not find "value" or

"thresh_exceeded_fn" in state.stats["'↪→

+ component_id + '"]["host_table_size"]')

do_command(fail)

else:

Check for inflated host table

value = stat_obj['host_table_size']['value']

thresh_exceeded_fn =

stat_obj['host_table_size']['thresh_exceeded_fn']↪→

if thresh_exceeded_fn(value):

log_info('threshold exceeded for stat

"host_table_size"')↪→

do_shrink_hosttable = True

if 'cpu_perc_ewma' in stat_obj:

if ('value' not in stat_obj['cpu_perc_ewma']

224

or 'thresh_exceeded_fn' not in

stat_obj['cpu_perc_ewma']):↪→

log_err('could not find "value" or

"thresh_exceeded_fn" in state.stats["'↪→

+ component_id + '"]["cpu_perc_ewma"]')

do_command(fail)

else:

Check for elevated CPU stat

value = stat_obj['cpu_perc_ewma']['value']

thresh_exceeded_fn =

stat_obj['cpu_perc_ewma']['thresh_exceeded_fn']↪→

if thresh_exceeded_fn(value):

log_info('threshold exceeded for stat

"cpu_perc_ewma": ' + component_id)↪→

do_alleviate_cpu = True

if 'health' in stat_obj:

if ('value' not in stat_obj['health']

or 'thresh_exceeded_fn' not in

stat_obj['health']):↪→

log_err('could not find "value" or

"thresh_exceeded_fn" in state.stats["'↪→

+ component_id + '"]["health"]')

do_command(fail)

else:

Check for low health

value = stat_obj['health']['value']

thresh_exceeded_fn =

stat_obj['health']['thresh_exceeded_fn']↪→

if thresh_exceeded_fn(value):

log_info('threshold exceeded for stat "health": '

+ component_id)↪→

do_restore_health = True

if do_shrink_hosttable:

Fix problem with inflated host table

log_info('adding new task "shrink_ctrl_hosttable" for "'

+ component_id + '"')↪→

do_task('shrink_ctrl_hosttable', component_id)

elif do_alleviate_cpu:

Alleviate elevated CPU stat

log_info('adding new task "alleviate_ctrl_cpu" for "' +

component_id + '"')↪→

do_task('alleviate_ctrl_cpu', component_id)

elif do_restore_health:

225

Restore low health (often also fixes CPU

over-utilization)↪→

log_info('adding new task "restore_ctrl_health" for "' +

component_id + '"')↪→

do_task('restore_ctrl_health', component_id)

else:

No problem could be identified from stats

log_info('no task to add for "' + component_id + '"')

For now, fail

log_err('could not figure out how to fix controller

"' + component_id + '"')↪→

do_command(fail)

def m_fix_switch(component_id, config):

"""Method to fix symptoms for a switch."""

if not is_component_type(component_id, 'SWITCH'):

log_err('component "' + component_id + '" is not a switch')

do_command(fail)

elif component_id not in state.stats:

log_err('could not find "' + component_id + '" in

state.stats')↪→

do_command(fail)

else:

Check stats and determine what needs to be fixed

stat_obj = state.stats[component_id]

do_shrink_flowtable = False

do_alleviate_cpu = False

do_restore_health = False

if 'flow_table_size' in stat_obj:

if ('value' not in stat_obj['flow_table_size']

or 'thresh_exceeded_fn' not in

stat_obj['flow_table_size']):↪→

log_err('could not find "value" or

"thresh_exceeded_fn" in state.stats["'↪→

+ component_id + '"]["flow_table_size"]')

do_command(fail)

else:

Check for inflated flow table

value = stat_obj['flow_table_size']['value']

thresh_exceeded_fn =

stat_obj['flow_table_size']['thresh_exceeded_fn']↪→

if thresh_exceeded_fn(value):

log_info('threshold exceeded for stat

"flow_table_size"')↪→

226

do_shrink_flowtable = True

if 'cpu_perc_ewma' in stat_obj:

if ('value' not in stat_obj['cpu_perc_ewma']

or 'thresh_exceeded_fn' not in

stat_obj['cpu_perc_ewma']):↪→

log_err('could not find "value" or

"thresh_exceeded_fn" in state.stats["'↪→

+ component_id + '"]["cpu_perc_ewma"]')

do_command(fail)

else:

Check for elevated CPU stat

value = stat_obj['cpu_perc_ewma']['value']

thresh_exceeded_fn =

stat_obj['cpu_perc_ewma']['thresh_exceeded_fn']↪→

if thresh_exceeded_fn(value):

log_info('threshold exceeded for stat

"cpu_perc_ewma": ' + component_id)↪→

do_alleviate_cpu = True

if 'health' in stat_obj:

if ('value' not in stat_obj['health']

or 'thresh_exceeded_fn' not in

stat_obj['health']):↪→

log_err('could not find "value" or

"thresh_exceeded_fn" in state.stats["'↪→

+ component_id + '"]["health"]')

do_command(fail)

else:

Check for low health

value = stat_obj['health']['value']

thresh_exceeded_fn =

stat_obj['health']['thresh_exceeded_fn']↪→

if thresh_exceeded_fn(value):

log_info('threshold exceeded for stat "health"')

do_restore_health = True

if do_shrink_flowtable:

Fix problem with inflated flow table

log_info('adding new task "shrink_switch_flowtable" for

"' + component_id + '"')↪→

do_task('shrink_switch_flowtable', component_id)

elif do_alleviate_cpu:

Alleviate elevated CPU stat

log_info('adding new task "alleviate_switch_cpu" for "' +

component_id + '"')↪→

do_task('alleviate_switch_cpu', component_id)

elif do_restore_health:

227

Restore low health (often also fixes CPU

over-utilization)↪→

log_info('adding new task "restore_switch_health" for "'

+ component_id + '"')↪→

do_task('restore_switch_health', component_id)

else:

No problem could be identified from stats

log_err('could not figure out how to fix switch "' +

component_id + '"')↪→

do_command(fail)

def m_add_vcpu(component_id):

"""Method to add a VCPU to a component virtual machine."""

do_command(add_vcpu, component_id)

def m_increase_mem(component_id):

"""Method to increase memory in a component virtual machine."""

do_command(increase_mem, component_id)

def m_ctrl_clearstate_besteffort(component_id):

"""Method to clear controller state (best effort)."""

if not is_component_type(component_id, 'CTRL'):

log_err('component "' + component_id + '" is not a

controller')↪→

do_command(fail)

else:

do_command(clear_ctrl_state_besteffort, component_id)

def m_ctrl_clearstate_fallback(component_id):

"""Method to clear controller state (fallback)."""

if not is_component_type(component_id, 'CTRL'):

log_err('component "' + component_id + '" is not a

controller')↪→

do_command(fail)

else:

do_command(clear_ctrl_state_fallback, component_id)

def m_ctrl_reinstall_besteffort(component_id):

"""Method to reinstall controller software (best effort)."""

if not is_component_type(component_id, 'CTRL'):

228

log_err('component "' + component_id + '" is not a

controller')↪→

do_command(fail)

else:

do_command(reinstall_ctrl_besteffort, component_id)

def m_ctrl_reinstall_fallback(component_id):

"""Method to reinstall controller software (fallback)."""

if not is_component_type(component_id, 'CTRL'):

log_err('component "' + component_id + '" is not a

controller')↪→

do_command(fail)

else:

do_command(reinstall_ctrl_fallback, component_id)

def m_component_restartvm(component_id):

"""Method to restart the virtual machine of a component."""

do_command(restart_vm, component_id)

def m_component_kill_top_proc(component_id):

"""Method to kill the top CPU-consuming process in a component

virtual machine."""↪→

do_command(kill_top_proc, component_id)

def m_switch_clearstate_besteffort(component_id):

"""Method to clear switch state (best effort)."""

if not is_component_type(component_id, 'SWITCH'):

log_err('component "' + component_id + '" is not a switch')

do_command(fail)

else:

do_command(clear_switch_state_besteffort, component_id)

def m_switch_clearstate_fallback(component_id):

"""Method to clear switch state (fallback)."""

if not is_component_type(component_id, 'SWITCH'):

log_err('component "' + component_id + '" is not a switch')

do_command(fail)

else:

do_command(clear_switch_state_fallback, component_id)

229

def m_switch_discon_recon_txport(component_id):

"""Method to disconnect and then reconnect switch port with

most transmitted traffic."""↪→

if not is_component_type(component_id, 'SWITCH'):

log_err('component "' + component_id + '" is not a switch')

do_command(fail)

else:

do_command(disconnect_reconnect_switch_port, component_id)

def m_switch_disconnect_txport(component_id):

"""Method to disconnect switch port with most transmitted

traffic."""↪→

if not is_component_type(component_id, 'SWITCH'):

log_err('component "' + component_id + '" is not a switch')

do_command(fail)

else:

do_command(disconnect_switch_port, component_id)

230

Bibliography

[1] Martha E Pollack and John F Horty. There’s more to life than making plans:
Plan management in dynamic, multiagent environments. AI Mag., 20(4):1–14,
1999.

[2] Félix Ingrand and Malik Ghallab. Deliberation for Autonomous Robots: A
Survey. Artificial Intelligence, 247:10–44, 2017.

[3] Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-predictive policy
learning with uncertainty regularization for driving in dense traffic. arXiv
preprint arXiv:1901.02705, 2019.

[4] Manuela M Veloso, Joydeep Biswas, Brian Coltin, and Stephanie Rosenthal.
Cobots: Robust symbiotic autonomous mobile service robots. In IJCAI, page
4423, 2015.

[5] Neesha Ramchandani. Virtual coaching to enhace diabetes care. Diabetes
Technology and Therapeutics, 21(2):S2–48–S2–51, 2019.

[6] Lavindra de Silva, Felipe Meneguzzi, and Brian Logan. An Operational Seman-
tics for a Fragment of PRS. In IJCAI, 2018.

[7] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong
cyclic planning via symbolic model checking. Artificial Intelligence, 147(1-
2):35–84, 2003.

[8] Malik Ghallab, Dana S Nau, and Paolo Traverso. Automated Planning and
Acting. Cambridge University Press, 2016.

[9] Félix Ingrand, Raja Chatilla, Rachid Alami, and Frederic Robert. PRS: A high
level supervision and control language for autonomous mobile robots. In ICRA,
pages 43–49, 1996.

[10] Olivier Despouys and Félix Ingrand. Propice-Plan: Toward a unified framework
for planning and execution. In ECP, 1999.

231

[11] R. James Firby. An investigation into reactive planning in complex domains.
In AAAI, pages 202–206. AAAI Press, 1987.

[12] Reid Simmons. Concurrent planning and execution for autonomous robots.
IEEE Control Systems, 12(1):46–50, 1992.

[13] Reid Simmons and David Apfelbaum. A task description language for robot
control. In IROS, pages 1931–1937, 1998.

[14] Michael Beetz and Drew McDermott. Improving robot plans during their exe-
cution. In AIPS, 1994.

[15] Nicola Muscettola, P P Nayak, B Pell, and Brian C Williams. Remote Agent:
To boldly go where no AI system has gone before. Artificial Intelligence, 103:5–
47, 1998.

[16] Karen L Myers. CPEF: A continuous planning and execution framework. AI
Mag., 20(4):63–69, 1999.

[17] Vandi Verma, Tara Estlin, Ari K Jónsson, Corina Pasareanu, Reid Simmons,
and Kam Tso. Plan execution interchange language (PLEXIL) for executable
plans and command sequences. In i-SAIRAS, 2005.

[18] F Y Wang, K J Kyriakopoulos, A Tsolkas, and G N Saridis. A Petri-net
coordination model for an intelligent mobile robot. IEEE Trans. Syst., Man,
and Cybernetics, 21(4):777–789, 1991.

[19] J Bohren, R B Rusu, E G Jones, Eitan Marder-Eppstein, C Pantofaru, M Wise,
Lorenz Mösenlechner, W Meeussen, and S Holzer. Towards autonomous robotic
butlers: Lessons learned with the PR2. In ICRA, pages 5568–5575, 2011.

[20] David J Musliner, Michael JS Pelican, Robert P Goldman, Kurt D Krebsbach,
and Edmund H Durfee. The evolution of circa, a theory-based ai architecture
with real-time performance guarantees. In AAAI Spring Symposium: Emotion,
Personality, and Social Behavior, volume 1205, 2008.

[21] Robert P Goldman, Daniel Bryce, Michael JS Pelican, David J Musliner,
and Kyungmin Bae. A hybrid architecture for correct-by-construction hybrid
planning and control. In NASA Formal Methods Symposium, pages 388–394.
Springer, 2016.

[22] Robert P Goldman. A semantics for htn methods. In ICAPS, 2009.

[23] Michel D Ingham, Robert J Ragno, and Brian C Williams. A reactive model-
based programming language for robotic space explorers. In i-SAIRAS, 2001.

[24] Brian C Williams and Mark Abramson. Executing reactive, model-based pro-
grams through graph-based temporal planning. In IJCAI, 2001.

232

[25] P.R. Conrad, J.A. Shah, and Brian C Williams. Flexible execution of plans
with choice. In ICAPS, 2009.

[26] Robert Effinger, Brian Williams, and Andreas Hofmann. Dynamic execution
of temporally and spatially flexible reactive programs. In AAAI Wksp. on
Bridging the Gap between Task and Motion Planning, pages 1–8, 2010.

[27] Pedro Henrique Rodrigues Quemel Assis Santana and Brian Charles Williams.
Chance-constrained consistency for probabilistic temporal plan networks. In
ICAPS, November 2014.

[28] Steven James Levine and Brian Charles Williams. Concurrent plan recognition
and execution for human-robot teams. In ICAPS, November 2014.

[29] Michele Colledanchise. Behavior Trees in Robotics. PhD thesis, KTH, Stock-
holm, Sweden, 2017.

[30] Michele Colledanchise and Petter Ögren. How behavior trees modularize hybrid
control systems and generalize sequential behavior compositions, the subsump-
tion architecture, and decision trees. IEEE Trans. Robotics, 33(2):372–389,
2017.

[31] Raphaël Lallement, Lavindra De Silva, and Rachid Alami. Hatp: An htn
planner for robotics. arXiv preprint arXiv:1405.5345, 2014.

[32] Caelan Reed Garrett, Tomas Lozano-Perez, and Leslie Pack Kaelbling. Ffrob:
Leveraging symbolic planning for efficient task and motion planning. The In-
ternational Journal of Robotics Research, 37(1):104–136, 2018.

[33] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Strip-
stream: Integrating symbolic planners and blackbox samplers. arXiv preprint
arXiv:1802.08705, 2018.

[34] Benoit Morisset and Malik Ghallab. Learning how to combine sensory-motor
functions into a robust behavior. Artificial Intelligence, 172(4-5):392–412,
March 2008.

[35] Leslie Pack Kaelbling and T. Lozano-Perez. Hierarchical task and motion plan-
ning in the now. In ICRA, pages 1470–1477, 2011.

[36] Leslie Pack Kaelbling and Tomas Lozano-Perez. Integrated task and motion
planning in belief space. Intl. J. Robotics Research, 32:1194–1227, 2013.

[37] Jason Wolfe and B Marthi. Combined task and motion planning for mobile ma-
nipulation. In International Conference on Automated Planning and Schedul-
ing, pages 254–257, 2010.

[38] Patrick Doherty, Jonas Kvarnström, and F Heintz. A temporal logic-based
planning and execution monitoring framework for unmanned aircraft systems.
J. Autonomous Agents and Multi-Agent Syst., 19(3):332–377, February 2009.

233

[39] D Hähnel, Wolfram Burgard, and Gerhard Lakemeyer. GOLEX – bridging the
gap between logic (GOLOG) and a real robot. In KI, pages 165–176. Springer,
1998.

[40] Jens Claßen, Gabriele Röger, Gerhard Lakemeyer, and Bernhard Nebel.
Platas—integrating planning and the action language Golog. KI-Künstliche
Intelligenz, 26(1):61–67, 2012.

[41] A Ferrein and Gerhard Lakemeyer. Logic-based robot control in highly dynamic
domains. Robotics and Autonomous Systems, 56(11):980–991, 2008.

[42] Antonio Bucchiarone, Annapaola Marconi, Marco Pistore, Paolo Traverso, Pier-
giorgio Bertoli, and Raman Kazhamiakin. Domain objects for continuous
context-aware adaptation of service-based systems. In ICWS, pages 571–578,
2013.

[43] Dana S. Nau, Yue Cao, Amnon Lotem, and Héctor Muñoz-Avila. SHOP: Simple
hierarchical ordered planner. In IJCAI, pages 968–973, 1999.

[44] Zohar Feldman and Carmel Domshlak. Monte-carlo planning: Theoretically
fast convergence meets practical efficiency. In UAI, 2013.

[45] Zohar Feldman and Carmel Domshlak. Monte-carlo tree search: To MC or to
DP? In ECAI, pages 321–326, 2014.

[46] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In
ECML, volume 6, pages 282–293, 2006.

[47] Steven James, George Konidaris, and Benjamin Rosman. An analysis of monte
carlo tree search. In AAAI, pages 3576–3582, 2017.

[48] F. Teichteil-Königsbuch, Guillaume Infantes, and Ugur Kuter. RFF: A robust,
FF-based MDP planning algorithm for generating policies with low probability
of failure. In ICAPS, 2008.

[49] Sung Wook Yoon, Alan Fern, and Robert Givan. Ff-replan: A baseline for
probabilistic planning. In ICAPS, volume 7, pages 352–359, 2007.

[50] Sung Wook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati.
Probabilistic planning via determinization in hindsight. In AAAI, pages 1010–
1016, 2008.

[51] Chad Hogg, Héctor Muñoz-Avila, and Ugur Kuter. HTN-MAKER: learning
htns with minimal additional knowledge engineering required. In AAAI, pages
950–956, 2008.

[52] Chad Hogg, Ugur Kuter, and Héctor Muñoz-Avila. Learning hierarchical task
networks for nondeterministic planning domains. In IJCAI, pages 1708–1714,
2009.

234

[53] Chad Hogg, Ugur Kuter, and Héctor Muñoz-Avila. Learning methods to gen-
erate good plans: Integrating HTN learning and reinforcement learning. In
AAAI, 2010.

[54] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforce-
ment learning: A survey. JAIR, 4:237–285, 1996.

[55] R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction. Adap-
tive computation and machine learning. MIT Press, 1998.

[56] Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods
for Automated Planning. Morgan & Claypool, 2013.

[57] M. Leonetti, L. Iocchi, and P. Stone. A synthesis of automated planning and
reinforcement learning for efficient, robust decision-making. Artificial Intelli-
gence, 241:103–130, 2016.

[58] Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. Towards deep sym-
bolic reinforcement learning. CoRR, abs/1609.05518, 2016.

[59] F. Yang, D. Lyu, B. Liu, and S. Gustafson. PEORL: integrating symbolic
planning and hierarchical reinforcement learning for robust decision-making.
In IJCAI, 2018.

[60] R. Parr and S. J. Russell. Reinforcement learning with hierarchies of machines.
In NIPS, 1997.

[61] M. R. K. Ryan. Using abstract models of behaviours to automatically generate
reinforcement learning hierarchies. In ICML, 2002.

[62] David Mart́ınez Mart́ınez, Guillem Alenyà, and Carme Torras. Relational rein-
forcement learning with guided demonstrations. Artificial Intelligence, 247:295–
312, 2017.

[63] David Mart́ınez Mart́ınez, Guillem Alenyà, Tony Ribeiro, Katsumi Inoue, and
Carme Torras. Relational reinforcement learning for planning with exogenous
effects. J. Mach. Learn. Res., 18:78:1–78:44, 2017.

[64] Aleksandar Jevtic, Adrià Colomé, Guillem Alenyà, and Carme Torras. Robot
motion adaptation through user intervention and reinforcement learning. Pat-
tern Recognition Letters, 105:67–75, 2018.

[65] Stéphane Ross, Joelle Pineau, Brahim Chaib-draa, and Pierre Kreitmann. A
bayesian approach for learning and planning in partially observable Markov
decision processes. J. Machine Learning Research, 12:1729–1770, 2011.

[66] Sammie Katt, Frans A. Oliehoek, and Christopher Amato. Learning in pomdps
with Monte Carlo tree search. In ICML, 2017.

235

[67] Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian. Complexity, decid-
ability and undecidability results for domain-independent planning. Artificial
Intelligence, 76(1–2):75–88, 1995.

[68] Pascal Hitzler and Matthias Wendt. A uniform approach to logic programming
semantics. Theory and Practice of Logic Programming, 5(1-2):93–121, 2005.

[69] Andrey Kolobov Mausam. Planning with markov decision processes: an ai
perspective. Morgan & Claypool Publishers, 2012.

[70] Subbarao Kambhampati. Are we comparing Dana and Fahiem or SHOP
and TLPlan? A critique of the knowledge-based planning track at ICP.
http://rakaposhi.eas.asu.edu/kbplan.pdf, 2003.

[71] Reid Simmons. Structured control for autonomous robots. IEEE Trans.
Robotics and Automation, 10(1):34–43, 1994.

[72] Charles Lesire and Franck Pommereau. Aspic: an acting system based on
skill petri net composition. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 6952–6958. IEEE, 2018.

[73] Jan Peters, Jens Kober, and Duy Nguyen-Tuong. Policy Learning–a unified
perspective with applications in robotics. Recent Advances in Reinforcement
Learning, pages 220–228, 2008.

[74] Jens Kober. Learning Motor Skills: From Algorithms to Robot Experiments.
PhD thesis, Darmstadt University, April 2012.

[75] Todd Hester and Peter Stone. TEXPLORE: Real-Time Sample-Efficient Re-
inforcement Learning for Robots. In AAAI Spring Symposium, pages 1–6,
February 2012.

[76] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy
search for robotics. Foundations and Trends in Robotics, 2(1-2):1–142, 2013.

[77] Jens Kober, J. A. Bagnell, and Jan Peters. Reinforcement Learning in Robotics:
A Survey. International Journal of Robotics Research, August 2013.

[78] Michele Colledanchise, Ramviyas Parasuraman, and Petter Ogren. Learning of
Behavior Trees for Autonomous Agents. arXiv.org, pages 1–8, April 2015.

[79] Qi Zhang, Jian Yao, Quanjun Yin, and Yabing Zha. Learning Behavior Trees
for Autonomous Agents with Hybrid Constraints Evolution. Applied Sciences,
8(7):1077, July 2018.

[80] Hankz Hankui Zhuo, Derek Hao Hu, Chad Hogg, Qiang Yang, and Héctor
Muñoz-Avila. Learning HTN method preconditions and action models from
partial observations. In IJCAI, pages 1804–1810, 2009.

236

[81] Neil Walkinshaw, Ramsay Taylor, and John Derrick. Inferring extended finite
state machine models from software executions. Empirical Software Engineer-
ing, 21(3):811–853, 2016.

[82] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis.
Foundations and Trends R© in Programming Languages, 4(1-2):1–119, 2017.

[83] David Andre and Stuart J Russell. State abstraction for programmable rein-
forcement learning agents. In AAAI, 2002.

[84] Bhaskara Mannar Marthi, Stuart J Russell, David Latham, and C. Guestrin.
Concurrent hierarchical reinforcement learning. In AAAI, page 1652, 2005.

[85] Christopher Simpkins, Sooraj Bhat, Charles Isbell, Jr., and Michael Mateas.
Towards adaptive programming: integrating reinforcement learning into a pro-
gramming language. In ACM SIGPLAN Conf. on Object-Oriented Progr. Syst.,
Lang., and Applications (OOPSLA), pages 603–614. ACM, 2008.

[86] B D Argall, S Chernova, Manuela M veloso, and B Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):469–
483, 2009.

237

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Contributions of the Dissertation
	Thesis Organization

	Related Work
	Acting Systems
	Systems that integrate acting and planning
	Planning Algorithms
	Planning and Learning
	Hierarchical Reinforcement Learning

	Acting and Planning Algorithms
	Formalism: Hierarchical Operational Models
	The actor, RAE
	Planner, APEplan
	Planner, RAEplan
	Properties of RAEplan

	UPOM, a UCT-like search procedure
	Utility criteria and optimal approach
	A planning algorithm based on UCT

	Learning for RAE and UPOM
	Learning to choose methods (Learn)
	Learning to choose method instances (Learni)
	Learning a heuristic evaluation function (LearnH)
	Incremental online learning

	Properties of Plan-with-UPOM
	Mapping UPOM's Search Space to an MDP
	Search Space for Refinement Planning

	Summary

	Implementation and Experimental Evaluation
	Evaluation of APEplan
	Domains
	Assessment of APEplan's parameters

	Evaluation of RAEplan
	Domains
	Assessment of RAEplan's parameters

	Evaluation of Plan-with-UPOM
	Domains
	Assessment of UPOM's parameters
	Comparison of the two utility functions
	Retry ratio
	Efficiency across domains
	Success ratio across domains
	Depth and Heuristics
	Measured vs expected efficiency

	Comparison of RAEplan and UPOM
	Assessment of UPOM's learning strategies
	Learning Method Instances

	Summary

	Real-world prototype of RAE and Plan-with-UPOM: Defense against SDN attacks
	Software Defined Networks (SDNs)
	AIRMAN Architecture
	Attack recovery using RAE and Plan-with-UPOM
	Integration of AIRMAN SecurityManager and RAE
	State Definition for SDN
	Utility function optimized: CostEffectiveness
	Communication between SecurityManager and RAE
	Example of task invocation workflow
	Domain Definition for SDN
	Environment for SDN
	Action Model

	Experimental Evaluation
	Summary

	Conclusion
	Looking Ahead: Limitations and Future Directions
	Retrial in RAE
	Planning for multiple tasks at once
	Concurrency
	Learning operational models
	Benchmarking

	 Description of APEplan
	 Descriptions of Experimental Domains
	Fetch domain
	Explore domain
	Navigate domain
	Rescue domain
	Delivery domain
	Attack recovery in Software-defined networks (SDN)

	Bibliography

