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Many modern problems in algorithms and optimization are driven by data

which often carries with it an element of uncertainty. In this work, we conduct an

investigation into algorithmic foundations and applications across three main areas.

The first area is online matching algorithms for e-commerce applications such

as online sales and advertising. The importance of e-commerce in modern business

cannot be overstated and even minor algorithmic improvements can have huge im-

pacts. In online matching problems, we generally have a known offline set of goods

or advertisements while users arrive online and allocations must be made immedi-

ately and irrevocably when a user arrives. However, in the real world, there is also

uncertainty about a user’s true interests and this can be modeled by considering

matching problems in a graph with stochastic edges that only have a probability of

existing. These edges can represent the probability of a user purchasing a product

or clicking on an ad. Thus, we optimize over data which only provides an estimate



of what types of users will arrive and what they will prefer. We survey a broad

landscape of problems in this area, gain a deeper understanding of the algorithmic

challenges, and present algorithms with improved worst case performance

The second area is constrained clustering where we explore classical cluster-

ing problems with additional constraints on which data points should be clustered

together. Utilizing these constraints is important for many clustering problems be-

cause they can be used to ensure fairness, exploit expert advice, or capture natural

properties of the data. In simplest case, this can mean some pairs of points have

“must-link” constraints requiring that that they must be clustered together. Moving

into stochastic settings, we can describe more general pairwise constraints such as

bounding the probability that two points are separated into different clusters. This

lets us introduce a new notion of fairness for clustering and address stochastic prob-

lems such as semi-supervised learning with advice from imperfect experts. Here, we

introduce new models of constrained clustering including new notions of fairness for

clustering applications. Since these problems are NP-hard, we give approximation

algorithms and in some cases conduct experiments to explore how the algorithms

perform in practice. Finally, we look closely at the particular clustering problem

of drawing election districts and show how constraining the clusters based on past

voting data can interact with voter incentives.

The third area is string algorithms for bioinformatics and metagenomics specif-

ically where the data deluge from next generation sequencing drives the necessity

for new algorithms that are both fast and accurate. For metagenomic analysis, we

present a tool for clustering a microbial marker gene, the 16S ribosomal RNA gene.



On the more theoretical side, we present a succinct application of the Method of the

Four Russians to edit distance computation as well as new algorithms and bounds

for the maximum duo-preservation string mapping (MPSM) problem.
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Chapter 1: Introduction

This manuscript will cover a broad range of topics and techniques. To start

with, we give a summary of motivations and background for the major problems we

study.

Much of this work has already been published, sometimes twice with a highly

polished and expanded journal version appearing after the conference presentation.

At several points in later chapters, we will reference those papers rather than dupli-

cate them in their entirety, which would take over 500 pages in this double-spaced

format.

1.1 Online and Stochastic Matching

Matching problems in all of their variations capture a large number of im-

portant problems in an abstract, foundational way. The basic structure of these

problems is straightforward. We have a set and we want to make pairs of elements.

Typically, we are guided by some kind of graph with edges describing the value or

cost of matching a pair of elements. In real world applications, the elements can be

people, products, tasks, etc.

As much of our world moves to the internet, an increasing number of these
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applications occur in e-commerce and online marketplaces. Algorithms are utilized

to match users with products or advertisements, match workers to tasks in the gig

economy, or even match people to each other in the case of online dating sites. Due to

the enormous scale of these implementations, even minor algorithmic improvements

can have major effects on efficient resource allocation and revenue.

One major challenge facing all of these applications is uncertainty in the input.

What type of user will arrive at a website next? How likely are two people to form a

longterm relationship if they go on a date? Advances in machine learning and data

science can often help us predict the probabilities of these events, but how can our

algorithms leverage these forecasts?

To address this challenge, we focus on bipartite matching with two notions of

uncertainty, one concerning the vertex set and the other concerning the edge set.

In bipartite matching, the underlying graph is bipartite and we must form pairs

containing an element from each of the two partitions. Models of online bipartite

matching establish an offline partition which is known up front and an online par-

tition which arrives one-by-one. Each arriving vertex must be matched or discarded

before the next is revealed, and there are numerous models capturing what we know

about future arrivals. Similarly, the problem of stochastic matching adds uncer-

tainty to the edge set. Each edge is assigned a known, independent, and distinct

probability of existing. We must then probe an edge to find out if it exists before

adding it to the matching. This notion of stochastic edges has been used to capture

diverse applications including pay-per-click advertising, dating websites, and kidney

exchange markets.

2



Our work seeks to gain a better fundamental understanding of these complex

problems in addition to providing algorithms with improved worst case performance.

Section 2.1 summarizes our main contributions at a high level. Chapter 3 gives a

detailed description of some of these contributions along with survey of the landscape

of problems and related work.

1.2 Constrained Clustering

Clustering is a fundamental problem studied in wide array of fields including

machine learning, operations research, data science, and bioinformatics. The goal

is to partition a set in way that optimizes some objective and respects a collection

of constraints. The purpose of this is often to learn something about a data set or

make decisions about how to allocate resources.

As with the previous section, meeting the needs of real world clustering ap-

plications often necessitates incorporating some form of stochasticity. In machine

learning, we can use probabilistic constraints to model uncertain experts or leverage

the power of randomness to generate fair decisions. Likewise, facility location prob-

lems in operations research may require solutions that anticipate forecasted demand

in addition to serving current client needs. For the metagenomics applications in-

troduced in Section 1.4, we attempt to cluster noisy genomic data which has been

subjected to both biological mutations and errors in the DNA sequencing process.

In of these applications, we use data to drive our clustering decisions, but it is only

an estimate of the ground truth or future events.
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The first clustering work we present deals with adding pairwise constraints

to both old and new metric clustering problems. Most of our focus will be on

probabilistic or soft must-link constraints, pairs of points which should be placed in

the same cluster. Sometimes these must-link pairs derive from querying experts who

may have some bounded error rate and the requirement is to satisfy a given fraction

of them. Other times, these types of probabilistic constraints can arise naturally

from the data set. In the lane finding problem, two nearby GPS data points known

to come from the same car will have a high chance of being from the same lane

since cars rarely change lanes on average. We will view these fundamental NP-hard

problems from a theoretical perspective and show new approximation algorithms.

Beyond optimization and computational efficiency, another question we can

and should ask is whether our algorithms are fair. When the data points we clus-

ter correspond to real people, evidence has shown that people are not automati-

cally treated equitably. In response to this challenge, there is a growing movement

surrounding research into fairness, accountability, and transparency in automated

systems.

A major focus of research at the intersection of fairness and optimization is

demonstrating what is possible from a computational perspective and how we can

minimize the cost of fair practices. In a sense, we cannot guarantee a right for

all individuals unless we can show that guaranteeing that right is tractable and in

some cases, affordable as well. The concept of disparate impact in United States

law allows for practices that adversely affect a protected class provided the negative

impact is not intentional and the practices serve a business necessity. So achieving a
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balance between optimization and fairness can be an essential component of pushing

for more equitable practices.

Along these lines, we investigate how constrained clustering can support fair-

ness in clustering by introducing the notions of pairwise fairness and community

preservation. Pairwise fairness uppers bound the probability that any pair of nearby

points in the metric space gets separated into different clusters while community

preservation ensures that dense communities of points are not split into many clus-

ters. These fairness constraints are motivated by scenarios where data points rep-

resent people who gain some benefit from being clustered together. One example

of this, explored in detail in the next section, is drawing political districts. The

gerrymandering practice of “fracturing” involves dividing communities of voters into

different districts in order to disenfranchise them. Another example is preserving

community cohesion in public school assignment where students benefit from at-

tending the same school as their neighbors, but the neighborhood school model is

rife with inequality. In all cases, we are faced with a stochastic problem because ran-

domization is required to minimize the maximum negative impact while achieving

reasonable optimization goals.

As with the matching problems discussed, our work aims to build a fundamen-

tal understanding of these problems and introduce relevant new models in addition

to providing algorithms with improved worst case performance. Section 2.2 summa-

rizes our main contributions at a high level. Chapter 4 gives a detailed description

our contributions.
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1.3 Elections, Redistricting, and Gerrymandering

One unique clustering problem that we give special attention to is the drawing

of U.S. congressional districts. In this problem, voters within a state are partitioned

into clusters called districts that each elect a congressional representative. A major

focus of our work on fairness here is the challenge of how to combat partisan gerry-

mandering. Gerrymandering refers to drawing electoral district maps to manipulate

the outcomes of elections. Partisan gerrymandering in particular occurs when polit-

ical parties use this practice to gain an advantage over another party (e.g., winning

more seats in the US House of Representatives). One path to addressing this issue

is developing algorithmic tools for drawing fairer districts. Another is measuring

and regulating unfair practices. Thus, this problem now sits at the intersection

algorithms, fairness, law, mathematics, and machine learning.

When designing new techniques for drawing districts, there are many pit-

falls including: prioritizing fairness to political parties over citizens, incompatibility

with real world election law, inadvertent discrimination by algorithms that optimize

purely mathematical objectives, and failure to account for downstream effects. One

small step we take to avoid these pitfalls is the fair clustering work introduced in the

previous section and elaborated on in Sections 2.2 and 4.2. In that work, we develop

new notions of fairness in this context that prioritize the fair treatment individu-

als and communities of people. This is in line with how some US Supreme Court

justices have argued for the unconstitutionality of certain types of gerrymandering.

On the subject of measuring and regulating partisan gerrymandering, there
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has been of a flurry of exciting recent activity and progress. This has led to com-

puter scientists serving as experts in court cases going all the way up to the US

Supreme Court. One of the most promising metrics uses past voting data and ran-

dom sampling of hypothetical district maps to identify a gerrymandered map by

showing that it is an outlier. This argument has now been used successfully in state

court cases leading Pennsylvania and North Carolina to redraw their district maps.

Our contributions to the study of gerrymandering measurement and regulation

are summarized in Section 2.3 and detailed in Chapter 5. We look ahead at the

downstream effects of the most successful recent approaches that rely on Markov

Chain Monte Carlo sampling of the space of legal maps. We explore how methods

that rely on past voting data for districting regulation can affect voter incentives

and lead to strategic voting even in two party elections. To show this, we propose

a game theoretic model that captures the process of iteratively drawing districts

and voting while subject to anti-gerrymandering regulation. This also reveals how

strategic voting or election tampering could circumvent regulation. Finally, we use

our models to better understand issues discussed in a recent U.S. Supreme Court case

that consider whether sampling approaches are a proxy for less desirable measures

what it means for a district map to be fair to an individual.

1.4 Bioinformatic, Genomics, and Metagenomics

The deluge of genomic data drives a constant need for new bioinformatics

tools and a deeper theoretical understanding of the underlying computational prob-
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lems. Larger and larger datasets up to billions of DNA sequencing reads [1] demand

ever more efficient analytical techniques. Plus, surprising challenges arise, such as a

growing reference database of microbes (RefSeq) leading to fewer species level clas-

sifications [2]. These challenges raise new questions about what is computationally

possible and how to tailor algorithms to biological problems.

Beyond the scalability issues of growing data sets, we again face issues of

random events affecting our input data. Strings representing sequenced DNA have

been subjected to both biological mutations and errors in the sequencing process.

This motivates the study of how to measure the distance between two strings in

terms of insertions, deletions, substitutions, and even rearrangements where entire

substrings can be relocated.

On the positive side, high-throughput next generation sequencing and long-

read third generation sequencing have changed the way we study biology and the

computational problems they introduce are fascinating. One subfield which has blos-

somed on the backs of these technologies is metagenomics, analyzing environmental

samples of genetic material. Metagenomics allows us to explore the vast array of

bacteria that cannot be analyzed through traditional culturing approaches. It also

provides a glimpse at the diversity and interactions within specific environments

from the human gut to the depths of the ocean to the international space station.

Beyond exploratory research, it has promising applications in clinical diagnostics,

biodefense, and food safety [3].

The first work presented in Chapter 6 focuses on computational solutions to

one specific application in metagenomics, the clustering of 16S rRNA genes. The
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16S rRNA gene is a highly conserved ribosomal gene present in all known bacteria.

The slow rate of evolution in this gene makes it an ideal marker gene for taxonomic

studies. Although not as accurate as recent whole genome shotgun sequencing ap-

proaches, 16S rRNA gene analysis is faster, cheaper, easier, and remains widely

used.

The remainder of Chapter 6 addresses more general string comparison prob-

lems. These problems including computing edit distance (Levenshtein distance)

and the maximum duo-preservation string mapping are relevant to genomics, but

studied from a theoretical computer science perspective with provable bounds on

performance.

Chapter 2: Summary of Contributions

In this chapter, we briefly summarize our main contributions at a high level.

Detailed descriptions of our contributions with formal statements of the problems,

algorithms, bounds, and other technical contributions are reserved for the following

chapters.

2.1 Matching under Uncertainty in Online and Stochastic Settings

Most approaches to online matching in both prior work and ours use a linear

programming relaxation to upper bound the optimal offline solution. This serves as
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a benchmark for analyzing the online algorithm and a guide for its decisions as well.

In the model of known IID arrivals, we essentially start with a known distribution

on which vertices will arrive online and we can actually solve a linear program using

this distribution as input prior to the online phase of the algorithm.

However, constructing appropriate linear programs for these stochastic prob-

lems involves two major challenges that interact with each other. The first is how

to get a tight bound on a stochastic problem when we are essentially relaxing it to a

deterministic problem (optimizing a linear system of equations). The second is how

to use a given linear program to guide our algorithm and/or analysis.

To address the first challenge, we characterize the ways in which linear pro-

grams from prior work are weak upper bounds and show how to tighten them. For

the second challenge, we show how to attenuate and round linear program solutions

to guide our algorithms to good worst case performance. We also present an ap-

proach which departs from prior work by using dynamic programming to guide the

algorithm and relying on a novel exponentially-sized linear program only for the

analysis.

We organize our summary of online matching contributions as well as the

detailed results of Chapter 3 into two broad categories: problems which only have

uncertainty in the vertex arrivals (Section 2.1.1) and problems which also have

uncertainty in the edge realizations (Section 2.1.2).
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2.1.1 Online Bipartite Matching

In online bipartite matching problems, one set of vertices is known while the

other arrives one-by-one. Each arriving vertex must be matched or discarded before

the next arrival is revealed. Our work in Section 3.3 focuses on the known IID arrival

model. In the simplest form of this model, we are given a bipartite graph with an

offline partition that is a fixed set of vertices and an online partition that represents

a distribution on vertex types. Each arrival is sampled with replacement from

the online partition according to a known, independent, and identically distributed

distribution. We give the current best theoretical bounds for several variations of

the online matching with known IID arrivals using a few key technical contributions.

Our approaches to these problems use tighter LP benchmarks than some prior

work by adding constraints that closely account for the probability that a given

vertex in the online partition may never arrive. More importantly, we show how to

leverage solutions to these LPs to guide our online algorithms. The key techniques

that achieve this are careful applications of correlated randomized rounding and

modification of the initial LP solution to balance for the worst case.

Our extension of the dependent rounding technique of [4] to suit these problems

allows us to round an arbitrary fractional LP solution into a sparse integral multi-

graph. This new graph violates the LP constraints, but satisfies several beneficial

properties and can be used to guide the online algorithm. Our rounding approach

also allows for the application of a modification procedure prior to rounding. Es-

sentially, we massage the solution a bit to improve the worst case performance by
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helping some LP variables and hurting others.

2.1.2 Stochastic Rewards and Patience

In the stochastic rewards model of online matching, the edges incident to an

arriving vertex each have known and independent probabilities of existing. When

we attempt to match an edge, we first probe it to find out if it exists. If it exists, we

add it to the matching. Otherwise, we may continue probing additional edges until

we have exhausted the patience of the online vertex. The patience of a vertex is an

upper bound on the number of incident edges we may probe. Each online vertex

may have an arbitrary known patience, but in some models, we assume all patience

values are one.

Similar to the previous section, many existing approaches upper bound the

optimal solution to these stochastic problems with a deterministic problem that

has a simple linear programming relaxation. This is sometimes called the budgeted

allocation LP. The main idea is to convert all probabilities of existence into deter-

ministic fractional sizes and think of it as a classical packing problem. So an edge

with probability 0.3 of existing is thought of as having size 0.3 and every vertex is

like a container or knapsack with a capacity of 1.

Our work in Section 3.4 seeks to understand and address the limitations of

these deterministic LP benchmarks. On the negative side, we introduce the concept

of a stochasticity gap. Analogous to an integrality gap, the stochasticity gap of

a linear program is a ratio comparing the performance of an optimal algorithm
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for a stochastic problem to the objective value of a linear program which assumes

deterministic input. We then prove stochasticity gaps showing that some online

algorithms are tight or nearly tight with respect to their specific LP benchmark.

This implies that LPs which upper bound the problem more tightly are need for

improvement.

On the positive side, we present algorithms for online stochastic matching

problems with good worst case performance. Some of these algorithms still use fairly

standard linear programs, which we have proven stochasticity gaps for. However,

we also design an algorithm which takes a wholly different approach to address the

problem where vertices from an unknown graph arrive in an adversarial order.

In that work, we make key observations about the properties of an optimal

probing algorithm. This leads to a dynamic programming algorithm which can solve

the offline stochastic matching problem optimally on star graphs, the first optimal

solution to any stochastic matching problem. Then, we can view each arriving

online vertex as the center of a stochastic star graph and use the optimal star graph

algorithm to guide our online decisions. To benchmark this approach, we devise a

new exponentially-sized LP and compare the performance of our algorithm to the LP

without actually solving it. Additionally, this approach is the first greedy algorithm

presented for the online matching variant with stochastic rewards with patience

constraints. We note this because greedy algorithms have been crucial to achieving

good results in empirical studies of non-stochastic online matching problems [5].
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2.2 Clustering Algorithms with Constraints and Fairness Guarantees

As with Chapter 4, we separate this summary of contributions into our work on

constrained clustering and our work on fairness in clustering. In both cases, our main

contributions include proposing new models and designing approximation algorithms

for NP-hard problems. We note that in classical versions of centroid-based clustering

problems such as k-center, k-median, etc., points are always assigned to the nearest

center. However, in the problems we discuss, a point may be assigned to some other

farther-away center in order to satisfying some additional constraints.

2.2.1 Constrained Clustering in Metric Spaces

One of the simplest models of pairwise constraints applied to a clustering

problem is k-center with hard must-link constraints. We are given a list of pairs of

points with each pair forming a constraint that those two points must be added to

the same cluster. Our goal is to find a set of k centers and assignments to them that

minimizes the maximum radius while ensuring that each pair of points is added to

the same cluster. The soft must-link variant allows us to violate a given fraction of

these constraints in order to further minimize the objective function.

Our work addresses hard and soft must-link constraints as well as two new

models that we introduce: bounded separation probabilities and the constrained

“no-k”-center problem. In bounded separation probabilities, pairs of points may

be given an upper bound on the probability that they are separated into different

clusters (a probability of 0 would represent a hard must-link constraint). The “no-
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k”-center problem is just like the previously described constrained k-center problems

except that we have no limit to the number of centers we can choose. Our goal is

to choose any number of centers to minimize the maximum radius while respecting

linkage constraints.

Most of these problems inherent NP-hardness from their unconstrained coun-

terparts with the exception of “no-k”-center. Note that the unconstrained version of

“no-k”-center admits a trivial solution (every point assigned to itself). Similarly, hav-

ing only only must-link constraints without the objective to minimize the maximum

radius (i.e., correlation clustering without negative edges) also has a trivial solution

(place all points in a single cluster). Nevertheless, we prove that “no-k”-center with

must-link constraints is in fact NP-hard.

Since we are dealing with intractable problems, we take an approximation

algorithms approach. We present LP rounding algorithms that achieve bicriteria

approximations with small constant approximations. The two criteria we approxi-

mate are the radius and a violation of the linkage constraints. We use a new LP

formulation combined with a correlated rounding procedure from [6]. For the “no-k”

problems, we also design a careful reassignment procedure after rounding the LP so-

lution in order to find a feasible solution to the original problem. In addition, we are

able to extend these results to related variants such as k-supplier and “no-k”-median.
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2.2.2 Pairwise Fairness and Community Preservation

Our work on fairness in clustering introduces the new concepts pairwise fairness

and community preservation. We complement this by presenting an algorithm that

achieves fairness under those definitions while bounding the loss to the objective

function. Our simple algorithm is easy to implement and can be used to augment

any existing algorithm for the classical “unfair” k-center problem. Essentially, we

take a set of clusters and grow them according to an exponential distribution, thus

bounding the probability that the edge of a cluster will separate nearby points. In

additions to theoretical results, we perform experiments on classical benchmark data

sets from the optimization literature as well as a real data set commonly used to

evaluate other work in the fairness space. These experiments illustrate how tweaking

some parameters of our algorithm can lead to good trade-offs between optimization

and fairness in practice.

2.3 Redistricting and Gerrymandering Regulation

The work presented in Chapter 5 looks closely at the practice of measuring

and regulating gerrymandering using past voter data. Specifically we focus on ap-

proaches that sample (approximately) from the space of legal district maps and

use past voting records to determine which maps are outliers in terms of estimated

election outcomes. To analyze the effects of using these measurements in regulation

from the perspective of social choice theory, we create a game to model the iterative

process of alternately redrawing districts and voting. Using our new tools, we can
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show how strategic voting can occur in a way that deviates from some common un-

derstandings such as the Gibbard-Satterthwaite theorem. We demonstrate this both

theoretically and empirically. We also extend our experiments to respond to some

questions in a recent U.S. Supreme Court cases where gerrymandering measurement

was hotly debated.

Informally, the famous Gibbard-Satterthwaite theorem states the following for

elections that choose a single winner deterministically. One of these three things

must be true: there is only one voter (dictatorship), there are only two candi-

dates/parties competing, or voters can be incentivized to vote strategically. Thus,

we often think of a two party race as being immune to strategic voting. However,

one key difference we show from the scenario addressed by Gibbard-Satterthwaite

is that the step of drawing districts in the U.S. electoral system allows each voter

to affect additional elections beyond the one they are voting in. This violates the

assumption of a single winner that Gibbard-Satterthwaite relies on.

Our first contribution is devising a simple game that captures a series of elec-

tions between two parties with redistricting occurring in between rounds of voting.

In our game, the majority party draws the districts, but is forbidden from drawing

an “outlier map”. Outlier maps are identified by looking at the space of all legal

maps and the expected election outcomes given the last voting round. If a map

produces an outcome that is rare, it is labeled an outlier. This allows us to show

theoretically how strategic voting can allow a party to draw a more favorable map

and therefore win more elections.

Using the insights from analyzing our game, we develop a heuristic for discov-
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ering strategies We apply this heuristic to a huge set of voter configurations within

a small toy problem as well as real North Carolina voting data. Our results reveal

many scenarios where a strategy can be found although our real data experiments

use a more restricted model to be able to process the large data set.

Beyond those main results, we address some questions from the oral arguments

of Rucho v. Common Cause [7]. First, several justices suggest that sampling-based

approaches to measuring gerrymandering are merely proxies for a proportionality

test. However, we show that for some arrangements of voters, the measurement tools

are the opposite of a proportionality test. Another line of questioning explored the

following definition of fairness. Suppose most district maps place a person in a

district that elects their preferred party/candidate. We show that no single map

can give such a guarantee for all voters. This motivates the study of randomized

methods that propose a fair distribution on maps as with the concepts of pairwise

fairness and community preservation explored in our clustering work.

2.4 String Algorithms for Bioinformatics

The work presented in Chapter 6 overlaps with the areas of matching and

clustering. However, it is unified by the unique properties of problems involving

strings and genomic motivations. While gene sequence clustering in our model

is a problem of constrained clustering in a metric space, our main contributions

involve efficiently computing banded alignments between large groups of relatively

short strings. Similarly, the maximum duo-preservation string mapping problem is
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closely related to bipartite 4-uniform hypergraph matching, but has a very particular

structure due to the fact that each partition is defined by a string.

2.4.1 16S rRNA Gene Clustering

The clustering of 16S ribosomal RNA genes is a useful step in understanding

metagenomic samples. Two high-level approaches to this problem are reference-based

where we utilize a database of known genomes and de novo where we cluster gene

sequences into operational taxonomic units (OTUs) without consulting a database.

We focus on de novo approaches which can better identify novel organisms and avoid

biases in reference databases. The goal of most OTU clustering tools is to group

sequences into clusters of bounded radius based on a sequence similarity function.

We have implemented a tool for clustering these genes using a similarity func-

tion based on edit distance (aka Levenshtein distance). Edit distance is a well-

studied problem that counts the minimum number of insertions, deletions, and sub-

stitutions needed to transform on string into another. The best known theoretical

algorithm for this problem uses a technique called the Method of the Four Russians,

a trick for speeding up some dynamic programming algorithms. While this approach

is not typically used to compute edit distance in practice, we borrow ideas from it

to develop a tool that scales to handle large data sets.

The main bottleneck in scaling our clustering approach is computing the edit

distance between one sequence and all other sequences individually. To alleviate

this, our new data structure minimizes the amount of duplicated work by collapsing
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similar prefixes and storing the outcomes of previous computations. Experiments

show that our tool is scalable while produces high-quality clusters.

2.4.2 More Succinct Method of the Four Russians for Edit Distance

Following the work of the previous section, we developed some theoretical

improvements to the space-efficiency. While this work is theoretical, space-efficiency

is an important challenge face when implement the Method of the Four Russians in

practice. Our work dramatically reduces the space needed at the expense of slightly

slower running time and can be combined with an existing space reduction technique

that is complementary.

2.4.3 The Maximum Duo-preservation String Mapping Problem

The maximum duo-preservation string mapping problem is an NP-hard and

APX-hard problem comparing two strings which are permutations of each other. It is

one of many ways to compute a distance between strings in terms of rearrangements

and the complement to the well-studied minimum common string partition problem.

Over the course of two publications, we introduced a new matching-based ap-

proach to attack this problem [8,9]. This yielding the first approximation algorithm

with a running time linear in the length of the strings for the unweighted variant of

the problem with constant-sized alphabets and the current best approximation for

the weighted version [8, 9].

While most prior work has leveraged local search techniques, we introduce
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a tractable intermediate problem based on matching triplets of characters. This

intermediate problem is derived from a unique approach to making the conflict

graph claw-free by both removing and adding constraints. The resulting tractable

problem yields a solution the is closer to a feasible solution to original problem than

if we had only removed constraints. Further, we can still show that the value of this

solution is close that of an optimal solution to the original problem.
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Chapter 3: Matching under Uncertainty

Following the ubiquity of the internet, e-commerce has become an enormous

part of the economy. One representative application in this area is internet ad-

vertising where companies (e.g. Google, Facebook) generate revenue by matching

advertisements to users. Another is online sales in two-sided matching markets (e.g.

E-Bay, Amazon). In most cases, companies are repeatedly trying to optimize a

large matching problem and even minor improvements can have massive effects on

user satisfaction and revenue. We now give an introduction to the online matching

abstractions of these problems and how uncertainty can be added to enhance the

models.

3.1 Introducing 3× 3× 3 = 27 Models

We discuss online matching across three arrival models, three types of objec-

tives/weighting, and three variations on matching. In the most basic outline of the

online matching setting, we have a known set of offline vertices U and a set of online

vertices V . Over a series of rounds, a single vertex online v from V arrives online in

some fashion and the edges incident on v are revealed. We must immediately and

irrevocably match v to some vertex in U or choose not to match it before the next
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online vertex arrives. For simplicity, we generally assume throughout this document

that |U | = |V | = n and the number of rounds in which an online vertex arrives is also

n. In the context of e-commerce, we can think of the offline set as advertisements

or items for sale and the online set as users arriving to a website.

The common objectives studied are unweighted, vertex-weighted, and edge-

weighted. For unweighted graphs, our goal is to maximize the size of the matching.

In the vertex-weighted case, each offline vertex u ∈ U has a nonnegative weight wu

and we wish to maximize the weight of the offline vertices matched. Note that the

online vertices typically do not have a weight associated with them in this model.

Finally, in an edge-weighted graph, each edge e = (u, v) ∈ U × V has a nonnegative

weight we and our objective is again to maximize the weight of the matching. In

a practical sense, vertex weights can represent items being sold at a fixed cost

(sometimes called posted prices) while edge weights can represent users willing to pay

different amounts for the same item. One can see that the edge-weighted objective

generalizes vertex-weighted, which in turn generalizes unweighted.

Incorporating stochasticity into online matching models allows us to capture

real world situations where outcomes are uncertain, but we have some prediction

about what will happen. There two common ways that stochasticity appears in

these models. We outline them below and note that in the literature, the term

“stochastic” is used rather loosely to describe any randomness in the models. Thus,

we’ll define specific terms for each element of randomness we consider.

The first introduction of randomness historically is in the arrival model. Online

matching problems were originally studied under an adversarial arrival model where
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the edges incident to each arriving vertex are chosen by some adversary. However,

this can be too pessimistic to represent many e-commerce applications. Thus, other

arrival models were developed. In random order arrival, an adversary can fix the

underlying bipartite graph, but the online vertices arrive in a random order. In the

known IID arrival model, the online vertices are sampled with replacement from a

known independent and identically distributed distribution on vertex “types”. The

idea of this final model is that we are given a bipartite graph upfront where U is still

the offline set, but now V represents known types of vertices that can arrive online.

Each round, the online vertex is sampled uniformly with replacement from V . Thus,

the same vertex v ∈ V may arrive multiple times, but we treat each arrival as a

separate vertex to be matched. We note that sampling uniformly from V is defined

specifically as the integral arrival rates model and for simplicity, we only discuss this

variation here. It is known that an algorithm for adversarial arrival will achieve the

same performance or better in the other two models and an algorithm for random

order will achieve the same performance or better with known IID arrivals.

The other way in which randomness appears is in the probability of edges

existing. In the offline version of this problem, referred to as stochastic matching,

each edge e has a known probability pe of existing. Instead of simply matching an

edge, we must first probe it to find out if it exists. With probability pe it exists

and is matched. Otherwise, it does not exist and we may not probe it again. In

this work, we only consider the probe-commit model where an edge found to exist

must be matched immediately and no further probes of its endpoints are allowed. In

the online setting, this problem was introduced as “online matching with stochastic
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rewards”. An online vertex arrives and the pe values of its neighborhood are revealed.

We choose at most one neighbor u to probe, and if we are successful, the edge is

matched as in classical matching. Otherwise, v is discarded and another online

vertex arrives. In the case of known IID arrivals, each copy of the same vertex

type that arrives is considered to be a distinct vertex with a distinct edge set, and

thus, the same u may be probed by multiple copies of some v until one of them is

successful. Naturally, stochastic matching generalizes the non-stochastic case since

we could have all pe ∈ {0, 1}.

An even more general version is stochastic matching with patience constraints

(sometimes called timeouts). In this case, each online vertex v ∈ V has patience tv.

This means we are allowed to probe at most tv neighbors of v (we still must stop

probing sooner if we encounter a match). This generalizes the previous model where

each online vertex can be thought of as having tv = 1. Both versions of stochastic

edges capture the idea that we do not know for sure if a match will be successful.

The probability pe can represent the estimated likelihood of a user clicking on an

ad (the pay-per-click revenue model) or purchasing a specific product. The patience

may capture the number of ad slots available or the number of items a shopper will

view before becoming bored and leaving the market. In the offline setting, stochastic

edges have been used for diverse real world problems from kidney exchange to dating

services, where patience refers to the literal amount of patience a person has to go

on different dates before abandoning the service.

In keeping with the offline definition, we will use the terms “stochastic match-

ing” and “stochastic rewards” interchangeably. We note that many works use “stochas-
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tic matching” to refer to the known IID arrival model. However, we use the term

“known IID arrival” specifically when referring to this model.

Observe that patience generalizes stochastic rewards and that both generalize

the classical non-stochastic model. Another, more general model of stochasticity is

presented in [10]. In their model, when a vertex v (viewed as a customer) arrives

online, an online algorithm chooses a set S of potential matches for v (viewed as an

offering of products to the customer). Each customer (online vertex) has a general

choice model which specifies the probability of the customer purchasing each item

when offered each possible set of product assortments S. We discuss this model

in more detail in Section 3.4.1, but note that in this setting, a set of potential

matches is chosen all at once rather than probed sequentially, with the outcome

being determined by full set S (the offered product assortment).

Competitive Ratio. For all of these models, theoretical analysis is done

using the common notion of a competive ratio for online algorithms. This is the ratio

of the expected performance of an online algorithm to the expected performance of

an optimal offline algorithm. More formally, this is defined as E[ALG]
E[OPT]

. Here, E[ALG]

is the expected performance of our online algorithm with respect to the random

online vertex arrivals and any internal randomness the algorithm may use as well as

random edge realizations for the stochastic rewards variants. Similarly, E[OPT] is

the expected performance of an optimal offline matching algorithm which knows the

random vertex arrivals in advance. In the case of stochastic rewards, we compare to

an optimal offline stochastic matching algorithm which can probe edges in any order,

but does not know the outcomes of these probes and is subject to patience constraints
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on the online set. We note that for the stochastic matching problems, we do not have

polynomial time algorithms for the offline problems. So we generally compare to an

upper bound on the offline optimal solution as in the typical approach to bounding

approximation algorithms. While it may seem pessimistic to benchmark an online

algorithm against an offline one, we note that empirical average case analysis can

yield competitive ratios over 0.9 and in some cases approaching 1 [5].

3.2 Related Work

Figure 3.1 summarizes the state-of-the-art for the 27 models defined in the

introduction along with indications of where we have provided improved bounds.

The book by Mehta [11] gives a detailed (slightly outdated) overview of an even

wider landscape of problems in this area.

Adversarial Arrival. The study of online matching began with the sem-

inal work of Karp, Vazirani, Vazirani [12]. They gave an optimal online algorithm

called Ranking that achieved a ratio of 1−1/e for unweighted online matching with

adversarial arrivals and showed that bound was tight. The vertex-weighted version

of this problem was introduced by Aggarwal, Goel, Karande, and Mehta [13] who

showed that a hybrid of Ranking and the greedy algorithm yielded a tight ratio of

1− 1/e.

The unweighted problem with stochastic rewards was introduced by Mehta

and Panigrahi [14]. They stated that the simple greedy algorithm achieves 0.5.

For the special case where all edge probabilities pe are equal and vanishingly small,
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Adversarial Unweighted Vertex-weighted Edge-weighted
Non-stochastic 0.632 [12] (tight) 0.632 [13] (tight) –
Stochastic rewards 0.5 [14] (0.62 [14] → ?) ?→ 0.5 [15] –
Patience ?→ 0.5 [15] ?→ 0.5 [15] –

Random order Unweighted Vertex-weighted Edge-weighted
Non-stochastic 0.696 [16] 0.6534 [17] 1/e [18]
Stochastic rewards 0.5 [14] ?→ 0.5 [15] ?

Patience ?→ 0.5 [15] ?→ 0.5 [15] ?

Known IID Unweighted Vertex-weighted Edge-weighted
Non-stochastic → 0.7299 [19] → 0.7299 [19] → 0.705 [20]
Stochastic rewards 0.5 [14] → 0.623 [19] ?→ 0.623 [19] ?→ 0.623 [19]
Patience 0.46 [21] → 0.5 [15] 0.46 [21] → 0.5 [15] ?→ 0.46 [21]

Figure 3.1: Landscape of online matching results with upper bounds for some prob-
lems in parenthesis. The bolded results with arrows show contributions of our work.
Question marks denote problems where no prior bound was known. In the case of
the hardness result for unweighted matching with stochastic rewards and adversar-
ial arrivals, we argue in Section 3.4.4 that the definition of competitive ratio under
which that hardness result was proven is too pessimistic. If a result follows imme-
diately from the work of a paper, we cite that paper even if the specific result was
not mentioned.
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they showed that the Balance algorithm achieves 0.567. They further show that

using their definition of optimal, no algorithm can achieve a ratio better than 0.621

(strictly less than 1−1/e) for this problem. However, we argue that this result arises

from a different definition of competitive ratio which is too pessimistic. Therefore, we

claim this hardness result does not hold under the common definition of competitive

ratio for this problem. Later, Mehta, Waggoner, and Zadimoghaddam [22] studied

the problem where pe can be unequal, but are still vanishingly small and showed

a 0.534 ratio. However, 0.5 remains best known for the case of arbitrary, unequal

probabilities.

Random Order Arrival. For unweighted random order arrival, Mahdian

and Yan [16] showed that Ranking achieves 0.696. Just recently, Huang et al [17]

showed the first algorithm to beat 1 − 1/e for the vertex-weighted problem with

random arrivals, achieving 0.6534. Other work addressing random order arrival

includes [18, 23,24]. There is also a hardness of 5/6 due to Goel and Mehta [25].

Known IID Arrival. The vertex-weighted and unweighted settings have

many results starting with Feldman, Mehta, Mirrokni and Muthukrishnan [26] who

first beat 1− 1/e with a competitive ratio of 0.67 for the unweighted problem. This

was improved by Manshadi, Gharan, and Saberi [27] to 0.705 with an adaptive

algorithm. They also showed that even in the unweighted variant with integral

arrival rates, no algorithm can achieve a ratio better than 1 − e−2 ≈ 0.86. Finally,

Jaillet and Lu [28] presented an adaptive algorithm which used a clever LP to

achieve 0.725 and 1−2e−2 ≈ 0.729 for the vertex-weighted and unweighted problems,

respectively. This was improved to 0.7299 for both problems in our work [20].

29



For edge weights, Haeupler, Mirrokni, Zadimoghaddam [29] were the first to

beat 1 − 1/e by achieving a competitive ratio of 0.667. They use a discounted LP

with tighter constraints than the basic matching LP and they employ the power of

two choices by constructing two matchings offline to guide their online algorithm.

This was improved to 0.705 in our prior work [20].

For edge weights and stochastic rewards, we presented an algorithm achieving

1 − 1/e which is tight for any algorithm based on the natural LP used on this

problem [20]. Bansal et al. [30] introduced the problem of online stochastic matching

with timeouts (patience) and gave the first constant factor competitive ratio of

0.12. This was later improved to 0.24 by Adamczyk et al. [31]. Most recently, we

showed 0.46 [21]. As stated above, the original motivation for patience came from

the patience constraints in the offline stochastic matching problem. This offline

problem was first introduced by Chen et al. [32] and later studied by Bansal et

al. [30], Adamczyk et al. [31], and Baveja et al. [33]. A generalization to packing

problems was studied by Gupta and Nagarajan [34].

Other Related Work. Beyond the arrival models described above, online

matching is studied under other variants such as unknown distributions and known

adversarial distributions. With unknown distributions, an item is sampled in each

round from a fixed, but unknown distribution. If the sampling distributions are

required to be the same during each round, it is called unknown I.I.D. [35, 36];

otherwise, it is called adversarial stochastic input [35]. As for known adversarial

distributions, in each round an item is sampled from a known distribution, which is

allowed to change over time [37,38]. The edge-weighted setting has been studied in
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the adversarial model by Feldman, Korula, Mirrokni and Muthukrishnan [39], where

they consider an additional relaxation of “free-disposal".

Devanur et al [36] gave an algorithm which achieves a ratio of 1 − k!/(kkek)

for the Adwords problem in the Unknown I.I.D. arrival model with knowledge of

the optimal budget utilization and when the bid-to-budget ratios are at most 1/k,

where k is some positive integer. Alaei et al. [37] considered the Prophet-Inequality

Matching problem, in which v arrives from a distinct (known) distribution Dt, in

each round t. They gave a 1 − 1/
√
k + 3 competitive algorithm, where k is the

minimum capacity of u. In [21] we introduced the online stochastic matching with

two-sided timeouts problem where the offline vertices have patience constraints as

well and showed a ratio of 0.3.

The b-matching Variant. One may further consider the case where we may

allow offline vertices to be matched multiple times. This captures the notion that

we allow ads to be presented to multiple users (in the non-stochastic case) or clicked

by multiple users (in the stochastic case). Similarly, in e-commerce applications,

this corresponds to having multiple items of the same type which can be sold to

multiple users. This is captured by the notion of b-matching, as studied in [40]. In

this generalization, each offline vertex u ∈ U has a capacity, bu, and we allow u to

be matched up to bu times. Standard online matching can be seen as a special case

of this problem where bu = 1 for all u ∈ U . Note that we can extend results for the

classical matching problem to that of b-matching by making bu copies of each offline

vertex u. Note that the capacities, which restrict the number of times a vertex

may be successfully matched, are different from patience constraints, which restrict
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the number of attempts each vertex has to be matched (that is, patience constraints

count the number of failed attempts at a match, while capacities only care about the

number of successful matches). The online b-matching problem was first introduced

in [40], which considered the unweighted, non-stochastic setting in the adversarial

model, and presented an optimal 1− 1
(1+1/b)b

-competitive algorithm for the case where

all offline vertices have capacity at least b (note that for large b, this approaches

1−1/e). For the Known IID arrival model with stochastic rewards and edge weights,

Brubach et al. [20] showed that the competitive ratio is at least 1−b−1/2+ε−O(e−b
2ε/3)

for any ε > 0 (note that, contrary to the adversarial model, this ratio approaches

1 for large b). While our 0.5-competitive algorithm (Theorem 7) extends to the

b-matching case (by duplicating vertices as described above), we leave as an open

problem whether this can be improved; we note however that the result of [40]

provides an upper bound of 1− 1/e for large b.

Further Generalizations. In [41], Meir et al. consider a deterministic model

in which the online vertices are rational agents who make matching choices: They

will choose the offline vertex which maximizes their utility (defined as the difference

between their preference valuation of the choice and the posted price of the choice).

The problem is then to design a mechanism for setting the posted prices of each

alternative so as to maximize the social welfare (the sum of the valuations of all the

agents final choices). Our model differs significantly in that matching decisions are

made by the algorithm rather than by agents, edge rewards are stochastic, and the

goal is to maximize the expected total weight (profit) of the matching rather than

the expected welfare. While [41] models problems such as a parking mechanism with
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the goal of maximizing the benefit of all agents, our setting models problems such as

e-commerce and online advertising. The Prophet Inequality Matching problem [37]

may be viewed as a variant of edge-weighted b-matching with an arrival model similar

to Known IID, but in which each stage of the online arrivals may have a different

(though still independent) known distribution. Alaei et al. [37] also considered the

Budgeted Prophet Inequality Matching problem, where offline vertices instead have

budgets limiting the total amount of weight that may be allocated to them, rather

than the number of vertices (note that in the special case of vertex weights, the

budgeted version is equivalent to the version with capacities). We note that this

variant does not consider stochastic rewards or patience constraints.

3.3 Online Matching with Known I.I.D Arrivals

We devote this section to the non-stochastic online matching problem with

known I.I.D. arrivals. The focus will be on the main technical contributions and

our algorithm for the edge-weighted problem. The full details of this work including

algorithms for the vertex-weighted, unweighted, and stochastic rewards problems

are presented in [19].

3.3.1 Preliminaries and Notation

In edge-weighted online matching with known I.I.D. arrivals, we are given a

bipartite graph G = (U, V,E). The offline set U is fixed from the start while the

online set V represents the online vertex types we sample I.I.D. from. Each edge
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e ∈ E is associated with a weight we. This represents the input graph. The vertices

v arrive online and are drawn with replacement from an I.I.D. distribution on V .

Each arriving vertex must be matched or discard before the next arrives, and our

goal is to construct a maximum weight matching. For each v ∈ V , we are given

an arrival rate rv, which is the expected number of times v will arrive. The results

presented in this section focus on the integral arrival rates setting where all rv ∈ Z+.

For reasons described in [29], we can further assume without loss of generality that

each v has rv = 1 under the assumption of integral arrival rates. In particular, a

vertex type v with an integral arrival rate k > 1, can be split into k different vertex

types each with an arrival rate of 1. In this case, we have that |V | = n where n is

the total number of online rounds.

Asymptotic assumption and notation. We assume n is large and analyze

algorithms as n goes to infinity: e.g., if x ≤ 1 − (1 − 2/n)n, we write this as

“x ≤ 1−1/e2” instead of the more-accurate “x ≤ 1−1/e2 +o(1)”. These suppressed

o(1) terms will subtract at most o(1) from our competitive ratios. We use e for

Euler’s constant in contrast with e which denotes an edge and WS to refer to the

worst case instance for an algorithm.

3.3.2 LP Benchmark

As in prior work (e.g., [11]), we use the following LP to upper bound the

optimal offline expected performance and also use it to guide our algorithm. There

is a variable fe for each edge. Let ∂(u) be the set of edges adjacent to a vertex
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u ∈ U and fu =
∑

e∈∂(u) fe. Define ∂(v) and fv similarly for v ∈ V . Recall that

we is the weight of an edge e. Constraint (3.4) is used in [27] and [29]. We add

Constraint (3.5) to further tighten the LP upper bound on the optimal solution and

avoid certain bad cases that arise in the unweighted and vertex-weighted problems,

but this constraint is not needed for our edge-weighted algorithm.

maximize
∑
e∈E

fewe (3.1)

subject to
∑
e∈∂(u)

fe ≤ 1 ∀u ∈ U (3.2)

∑
e∈∂(v)

fe ≤ 1 ∀v ∈ V (3.3)

0 ≤ fe ≤ 1− 1/e ∀e ∈ E (3.4)

fe + fe′ ≤ 1− 1/e2 ∀e, e′ ∈ ∂(u), ∀u ∈ U (3.5)

Lemma 1. Let OPT denote the total weight obtained by the best offline algorithm.

Let f∗ denote the optimal solution to the above LP. Then
∑

e∈E f
∗
ewe ≥ E[OPT].

Proof. Let Ye denote the indicator random variable for the event that edge e ∈ E

is matched in the optimal solution for a given arrival sequence A. Let ye := EA[Ye]

for every edge e ∈ E. We will now argue that the vector ~y := (ye)e∈E is a feasible

solution to the LP.

Consider a vertex u ∈ U . We have that
∑

e∈∂(u) Ye ≤ 1. Taking expectations

on both sides and using the linearity of expectation we have
∑

e∈∂(u) ye ≤ 1. This

shows that ~y is feasible for constraint (3.2). Let Rv denote the random variable
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for the number of times a vertex v ∈ V arrived in a given arrival sequence A.

Then we have, for every v ∈ V ,
∑

e∈∂(v) Ye ≤ Rv. From the integral arrival rates

assumption, EA[Rv] = 1 for every v ∈ V . Thus, from linearity of expectation we

obtain
∑

e∈∂(v) ye ≤ 1. This shows that ~y is feasible for constraint (3.3).

For any edge e = (u, v), let I[Rv > 0] be an indicator for the event that a vertex

v ∈ V arrives at least once in the T rounds. Thus, for any arrival sequence A, we

have Ye ≤ I[Rv > 0]. Taking expectations on both sides we get ye ≤ EA[I[Rv > 0].

The probability that a vertex v never arrives in T rounds is
(
1− 1

T

)T ≤ 1/e. Thus,

EA[I[Rv > 0] ≤ 1− 1/e. This shows that ~y is feasible for constraint (3.4).

Now, consider two edges e, e′ ∈ ∂(u) for some u ∈ U . Let e = (u, v) and

e′ = (u, v′) and as before let I[Rv > 0] and I[Rv′ > 0] denote the indicators for the

events that v, v′ arrive at least once in the T rounds, respectively. For any arrival

sequence A, we have that Ye + Ye′ ≤ I[Rv > 0]∧ I[Rv′ > 0]. Taking expectations on

both sides, we get ye + ye′ ≤ EA[I[Rv > 0] ∧ I[Rv′ > 0]]. The probability that both

v and v′ never arrive in the T rounds is then given by
(
1− 2

T

)T ≤ 1
e2
. Thus, we get

ye + ye′ ≤ 1− 1
e2
, which shows that ~y is feasible for constraint 3.5.

The expected weight of the optimal solution is EA[
∑

e∈E weYe] which from

linearity of expectation gives
∑

e∈E weye. Since ~y is a feasible solution we have

that the optimal value to LP is at least as large as the expected offline optimal

solution.

Given Lemma 1, we can compare the performance of our algorithm to this LP.

Suppose that ~f ∗ is the optimal solution to the above LP. We prove the following
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lemma which shows that it suffices to analyze the competitive ratio edge-wise.

Lemma 2. If mine∈E,f∗e>0
Pr[e is included in the matching]

f∗e
≥ α, then this implies that the

competitive ratio is at least α.

Proof. From linearity of expectation we have that

E[ALG] =
∑
e∈E

Pr[e is included in the matching]

≥ α
∑
e∈E

f ∗e

≥ αE[OPT].

In what follows, we only compute a lower-bound on the probability that any

edge e ∈ E is included in the final matching (we call this quantity the competitive

ratio of edge e) which implies a lower-bound on the overall competitive ratio.

We note that the work of [27] does not use an LP to upper-bound the optimal

value of the offline instance. Instead, they use Monte-Carlo simulations wherein

they simulate the arrival sequence and compute the vector ~f by approximating

(via Monte-Carlo simulation) the probability of matching an edge e in the offline

optimal solution. We do not use a similar approach for our problems for three

important reasons. (1) For the weighted variants, namely the edge and vertex-

weighted versions, the number of samples depends on the maximum value of the

weight, making it expensive. (2) In the unweighted version, the running time of the

sampling based algorithm is O(|E|2n4); on the other hand, we show in Section 3.3.5
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that the LP based algorithm can be solved much faster, Õ(|E|2) time in the worst

case and even faster than that in practice. (3) For the stochastic rewards setting,

the offline problem is not known to be polynomial-time solvable, which is required

for [27] since they rely on solving instances of the offline problem on simulated

graphs. [42] show that under the assumption of constant p and OPT = ω(1/p),

we can obtain a (1 − ε)-approximation to the optimal solution. However, these

assumptions are too strong to be used in our setting.

3.3.3 Overview of Edge-weighted Algorithm and Contributions

The previous best result due to [29] for the edge-weighted problem was 0.667.

They used two matchings, M1 and M2, from the offline graph to guide the online

algorithm and leverage the power of two choices. When a vertex v arrives for the

first time, it can be matched to its neighbor in M1 and on its second arrival it

can be matched to its neighbor in M2. However, these two matchings may not be

edge disjoint, leaving some arriving vertices with only one choice (meaning a second

arrival of the same vertex type is guaranteed to go unmatched). In fact, choosing

two guiding matchings that maximize both the edge weights and the number of

disjoint edges is a major challenge that arises in applying the power of two choices

to this setting.

When the same edge (u, v) is included in both matchings M1 and M2, the

copy of (u, v) in M2 can offer no benefit and a second arrival of v is wasted. To

use an example from related work, Haeupler et al. [29] choose two matchings in
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the following way. M1 is attained by solving an LP with constraints (3.2), (3.3),

and (3.4) and randomly rounding to an integral solution. M2 is constructed by

finding a maximum-weight matching and removing any edges which have already

been included in M1. A key element of their proof is showing that the probability

of an edge being removed from M2 is at most 1− 1/e ≈ 0.63.

Our approach is to construct two or three matchings together in a correlated

manner to reduce the probability that some edge is included in multiple matchings.

We show a general technique to construct an ordered set of k matchings where k is

an easily adjustable parameter. For k = 2, we show that the probability of an edge

appearing in both M1 and M2 is at most 1− 2/e ≈ 0.26.

For the algorithms presented, we first solve an LP on the input graph. We

then round the LP solution vector to a sparse integral vector and use this vector

to construct a randomly ordered set of matchings which will guide our algorithm

during the online phase. We start in Section 3.3.7 with a simple warm-up algorithm

which uses a set of two matchings as a guide to achieve a 0.688 competitive ratio,

improving the best known result for this problem. We follow it up in Section 3.3.9

with a slight variation that improves the ratio to 0.7. We refer the reader to our

paper [19] for a more complex 0.705-competitive algorithm which relies on a convex

combination of a 3-matching algorithm and a separate pseudo-matching algorithm.
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3.3.4 Overview of Vertex-weighted Algorithm and Contributions

Here, we briefly summarize our work on the vertex-weighted problem, but refer

to our paper [19] for the full algorithm and analysis which involves extensive cases.

The previous best results for this problem due to [28] for the vertex-weighted and

unweighted problems were 0.725 and 1 − 2e−2 ≈ 0.729, respectively. They used a

clever LP which guaranteed they could find a solution wherein each edge variable

was assigned a value in {0, 1/3, 2/3} as opposed to an arbitrary fractional value.

This property, which we call a {0, 1/3, 2/3} solution, was required by their adaptive

online algorithm. However, their special LP was a slightly weaker upper bound on

the optimal solution than the LP we describe in Section 3.3.2.

Another key challenge encountered by [28] was that solutions to their special

LP could lead to length-four cycles of type C1 shown in Figure 3.2. In fact, they used

this case to show that no algorithm could perform better than 1 − 2e−2 ≈ 0.7293

using their LP as an upper bound. They mentioned that tighter LP constraints such

as (3.4) and (3.5) in the LP from Section 3.3.2 could avoid this bottleneck, but did

not propose a technique to use them. Note that the {0, 1/3, 2/3} solution produced

by their specific LP was an essential component of their Random List algorithm.

To address this challenge, we show a randomized rounding algorithm to con-

struct a similar, simplified {0, 1/3, 2/3} vector from the solution to a stronger bench-

mark LP. This allows for the inclusion of additional constraints, most importantly

constraint (3.5). Using our rounding algorithm combined with tighter constraints,

we can upper-bound the probability of a vertex appearing in the cycle type C1 from
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Figure 3.2 at 2− 3/e ≈ 0.89. By constant, cycles of type C1 occur deterministically

in [28].

Additionally, we note briefly that there are other length four cycles with dif-

ferent variable weights, defined as types C2 and C3 (See Figure 3.2). These cycles

are also problematic, but we show how to deterministically break them without

creating any new cycles of type C1 (This can happen if the cycle breaking is not

done carefully). Finally, we describe an algorithm which utilizes these techniques to

improve previous results in both the vertex-weighted and unweighted settings.

For this problem, we first solve the LP in Section 3.3.2 on the input graph

and use the technique in Section 3.3.6 to obtain a sparse fractional vector. We then

utilize a randomized online algorithm (similar to the one in [28]), which uses the

sparse fractional vector as a guide, to achieve a competitive ratio of 0.7299.

Previously, there was a gap between the best unweighted algorithm with a ratio

of 1− 2e−2 due to [28] and the negative result of 1− e−2 due to [27]. We take a step

toward closing this gap by showing that an algorithm can achieve 0.7299 > 1− 2e−2

for both the unweighted and vertex-weighted variants with integral arrival rates. In

doing so, we make progess on Open Questions 3 and 4 from the book [11]. 1

3.3.5 Running Time of the Algorithms

In this section, we discuss the implementation details of our algorithms. All

of our algorithms solve an LP in the pre-processing step. The dimension of the LP

1Open Questions 3 and 4 state the following: “In general, close the gap between the upper and
lower bounds. In some sense, the ratio of 1− 2e−2 achieved in [28] for the integral case, is a nice
‘round’ number, and one may suspect that it is the correct answer.”
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Figure 3.2: Challenge for the vertex-weighted problem. These are the three possible
types of cycles of length 4 after applying our rounding approach DR[f, 3] to the LP
solution for the vertex-weighted problem. Thin edges have fe = 1/3 and thick edges
have fe = 2/3. Cycle type C1 is the source of the negative result described by Jaillet
and Lu [28]. It results from the edge variable assignments in their special LP. This
structure and variable assignment leads to a gap of 1−2e−2 between the LP solution
and the best possible solution of any online algorithm. The arrows show how cycle
types C2 and C3 are broken by our algorithm while type C1 is just avoided with
bounded probability.

is determined by the constraint matrix which consists of O(|E|2 + |U | + |V |) rows

and O(|E|) columns. However, note that the number of non-zero entries in this

matrix is of the order O(|E|2) because each edge is subject to O(|E|) constraints

primarily due to LP constraint 3.5. Some recent work (e.g., [43]) shows that such

sparse programs can be solved in time Õ(|E|2) using interior point methods (which

are known to perform well in practice). This sparsity in the LP is the reason we

can solve large instances of the problem. The second critical step in pre-processing

is to perform randomized rounding. Note that we have O(|E|) variables and that

in each step of the randomized rounding due to [4], they incur a running time of

O(|E|). Hence the total running time to obtain a rounded solution is of the order

O(|E|2). Additionally, both of these operations are part of the pre-processing step.

In the online phase, the edge-weighted algorithm presented here incurs a per-time-

step running time of O(1). Other algorithms from [19] have online steps that require

42



at most O(|U |) for the stochastic rewards case (in fact, a smarter implementation

using binary search runs as fast as O(log |U |) time) and O(1) for the vertex-weighted

algorithm.

3.3.6 LP Rounding Technique DR[f, k]

For the algorithms in this section, we first solve the benchmark LP in Section

3.3.2 for the input instance to get a fractional solution vector f . We then round f

to an integral solution F using a two step process we call DR[f, k]. The first step is

to multiply f by k. The second step is to apply the dependent rounding techniques

of Gandhi, Khuller, Parthasarathy, and Srinivasan [4] to this new vector. For this

manuscript, we focus on k = 2.

While dependent rounding is typically applied to values between 0 and 1, the

useful properties extend naturally to our case in which kfe may be greater than

1 for some edge e. To understand this process, it is easiest to imagine splitting

each kfe into two edges with the integer value f ′e = bkfec and fractional value

f ′′e = kfe − bkfec. The former will remain unchanged by the dependent rounding

since it is already an integer while the latter will be rounded to 1 with probability f ′′e

and 0 otherwise. Our final value Fe would be the sum of those two rounded values.

The two properties of dependent rounding we use are:

1. Marginal distribution: For every edge e, let pe = kfe − bkfec. Then,

Pr[Fe = dkfee] = pe and Pr[Fe = bkfec] = 1− pe.

2. Degree-preservation: For any vertex w ∈ U ∪ V , let its fractional de-
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gree kfw be
∑

e∈∂(w) kfe and integral degree be the random variable Fw =∑
e∈∂(w) Fe. Then Fw ∈ {bkfwc , dkfwe}.

These properties are guaranteed by directly applying the analysis of [4] to the

decomposed solution vector as described above.

3.3.7 Warm-up: 0.688-competitive Algorithm

As a warm-up, we describe a simple algorithm which achieves a competitive

ratio of 0.688 and introduces the key ideas in our approach. We begin by solving

the LP in Section 3.3.2 to get a fractional solution vector f and applying DR[f, 2]

as described in Section 3.3.6 to get an integral vector F. We construct a bipartite

graph GF with Fe copies of each edge e. Note that GF will be a multigraph with

max degree 2 since for all w ∈ U ∪ V , Fw ≤ d2fwe ≤ 2. Thus, we can decompose it

into two matchings using a greedy algorithm and Hall’s Theorem. The exact choice

of the two matchings is not critical to the algorithm as long as the union contains all

edges in GF. Finally, we randomly permute the two matchings into an ordered pair

of matchings, [M1,M2]. These matchings serve as a guide for the online phase of

the algorithm, similar to [29]. The entire warm-up algorithm for the edge-weighted

model, denoted by EW0, is summarized in Algorithm 1.

3.3.8 Analysis of Warm Up Algorithm EW0

We show that EW0 (Algorithm 1) achieves a competitive ratio of 0.688. Let

[M1,M2] be our randomly ordered pair of matchings. Note that there might exist
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Algorithm 1: [EW0]
1 Construct and solve the benchmark LP in Section 3.3.2 for the input

instance.
2 Let f be an optimal fractional solution vector. Call DR[f, 2] to get a

random integral vector F.
3 Create the graph GF with Fe copies of each edge e ∈ E and decompose

it into two matchings as described in text.
4 Randomly permute the matchings to get a random ordered pair of

matchings, say [M1,M2].
5 When a vertex v arrives for the first time, attempt to match v to u1 if

(u1, v) ∈M1; when v arrives for the second time, attempt to match v
to u2 if (u2, v) ∈M2.

6 When a vertex v arrives for the third time or more, do nothing in that
step.

some edge e which appears in both matchings due to having fe > 1/2, which could

be rounded up to Fe = 1 in the rounding step. Therefore, we consider three types

of edges. We say an edge e is of type ψ1, denoted by e ∈ ψ1, if and only if e appears

only in M1. Similarly e ∈ ψ2, if and only if e appears only in M2. Finally, e ∈ ψb,

if and only if e appears in both M1 and M2. Let P1, P2, and Pb be the probabilities

of getting matched for e ∈ ψ1, e ∈ ψ2, and e ∈ ψb, respectively. According to the

result in Haeupler et al. [29], Lemma 3 bounds these probabilities.

Lemma 3 (Proof details in section 3 of [29]). For any two matchings, M1 and

M2, steps (5) and (6) in Algorithm 1 imply that we have (1) P1 > 0.5808; (2)

P2 > 0.14849; and (3) Pb > 0.6321.

We can use Lemma 3 to prove that the warm-up algorithm EW0 achieves a

ratio of 0.688 by examining the probability that a given edge becomes type ψ1, ψ2,

or ψb after rounding the LP solution to two matchings and randomly ordering the

matchings.
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Analysis of EW0. Consider the following two cases.

• Case 1: 0 ≤ fe ≤ 1/2: By the marginal distribution property of dependent

rounding, there can be at most one copy of e in GF and the probability of

including e in GF is 2fe. Since an edge in GF can appear in either M1 or M2

with equal probability 1/2, we have Pr[e ∈ ψ1] = Pr[e ∈ ψ2] = fe. Thus, the

ratio is (feP1 + feP2)/fe = P1 + P2 = 0.729.

• Case 2: 1/2 < fe ≤ 1− 1
e
: Similarly, by marginal distribution, Pr[e ∈ ψb] =

Pr[Fe = d2fee] = 2fe − b2fec = 2fe − 1. It follows that Pr[e ∈ ψ1] = Pr[e ∈

ψ2] = (1/2)(1−(2fe−1)) = 1−fe. Thus, the ratio is (noting that the first term

is from case 1 while the second term is from case 2) ((1−fe)(P1 +P2) + (2fe−

1)Pb)/fe ≥ 0.688, where the worst case is for an edge e with fe = 1− 1
e
.

3.3.9 Improved Algorithm: 0.7-competitive Algorithm

In this section, we describe an improvement upon the previous warm-up algo-

rithm to get a competitive ratio of 0.7. We start by making an observation about

the performance of the warm-up algorithm. After solving the LP, let edges with

fe > 1/2 be called large and edges with fe ≤ 1/2 be called small. Let L and S, be

the sets of large and small edges, respectively. Notice that in the previous analysis,

small edges achieved a much higher competitive ratio of 0.729 versus 0.688 for large

edges. This is primarily due to the fact that we may get two copies of a large edge

in GF. In this case, the copy in M1 has a better chance of being matched, since
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there is no edge which can “block” it (i.e. an edge with the same offline neighbor

that gets matched first), but the copy that is inM2 has no chance of being matched.

To correct this imbalance, we make an additional modification to the fe values

before applying DR[f, k]. The rest of the algorithm is exactly the same. Let η be

a parameter to be optimized in the analysis. For all large edges ` ∈ L such that

f ∗` > 1/2, we set f̃ ∗` (`) = f ∗` + η. For all small edges s ∈ S which are adjacent to

some large edge, let ` ∈ L be the largest edge adjacent to s such that f ∗` > 1/2.

Note that it is possible for s to have two large neighbors, one at each endpoint, but

we only care about the larger of the two. We set f̃ ∗s = f ∗s

(
1−f̃∗`
1−f∗`

)
.

In other words, we increase the values of large edges while ensuring that for

all vertices w ∈ U ∪ V , fw ≤ 1 by reducing the values of neighboring small edges

proportional to their original values. Note that it is not possible for two large edges

to be adjacent since they must both have fe > 1/2, but the sum of two adjacent

edges can be at most 1. For all other small edges which are not adjacent to any

large edges, we leave their values unchanged. We then apply DR[f, 2] to this new

vector, multiplying by 2 and applying dependent rounding as before.

Analysis

Let η = 0.0142 be our optimized parameter for the new algorithm.

Theorem 1. For edge-weighted online stochastic matching with integral arrival

rates, EW(0.0142) achieves a competitive ratio of at least 0.7.

Proof. As in the warm-up analysis, we’ll consider large and small edges separately
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• Scenario 1: 0 ≤ f ∗s ≤ 1
2
:

Here we have two cases

– Case 1: s is not adjacent to any large edges.

In this case, the analysis is the same as Case 1 in the warm-up analysis.

Thus, the probability that edge s is added to the matching is 0.729f ∗e .

– Case 2: s is adjacent to some large edge `.

For this case, let f ∗` be the value of the largest neighboring edge in the

original LP solution. Then the probability that edge s is added to the

matching is

f ∗s

(
1− (f ∗` + η)

1− f ∗`

)
(0.1484 + 0.5803).

This follows from Lemma 3; in particular, the first two terms are the

result of how we set f̃s in the algorithm, while the two numbers, 0.1484

and 0.5803, are the probabilities that s is matched when it is in M2 and

M1, respectively. Note that for f ∗` ∈ [0, 1) this is a decreasing function in

f ∗` . So the worst case is when f ∗` = 1− 1
e
(due to third constraint in the

LP (3.4)) Thus, the probability that edge s is added to the matching is

f ∗s

(
1− (1− 1

e
+ η)

1− (1− 1
e
)

)
(0.1484 + 0.5803).

Since η = 0.0142, this evaluates to,

0.701f ∗s . (3.6)
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• 1
2
< f ∗` ≤ 1 − 1

e
: Here, the probability that ` is added to the matching is,

[1− (f ∗` (`) + η)][P1 + P2] + [2(f ∗` + η)− 1]Pb. This can re-arranged to obtain

(P1 + P2)(1− η) + (2η − 1)Pb + f ∗` [2Pb − P1 − P2]. (3.7)

Since η = 0.0142 using Lemma 3 we have (P1+P2)(1−η)+(2η−1)Pb = 0.1048.

Similarly, using Lemma 3 we have 2Pb − P1 − P2 = 0.535. Thus, Eq. (3.7)

simplifies to,

0.1048 + f ∗` 0.535 (3.8)

We can write Eq. (3.8) as f ∗` [0.1048/f ∗` + 0.535]. Note that 1
2
< f ∗` ≤ 1 − 1

e
.

Thus, Eq. (3.8) can be lower-bounded by

0.701f ∗` . (3.9)

Thus combining Eq. (3.6) and (3.9) with Lemma 2 we get a competitive ratio

of 0.7.

We now show that the chosen value of η = 0.0142 ensures that both f̃ ∗` and

f̃ ∗s are less than 1 after modification. Since f ∗` ≤ 1 − 1
e
we have that f ∗` + η ≤

1 − 1
e

+ 0.0142 ≤ 1. Note that f ∗` ≥ 1/2. Hence, the modified value f̃ ∗s is always

less than or equal to the original value, since
(

1−(f∗` +η)

1−f∗`

)
is decreasing in the range

f ∗` ∈ [1/2, 1− 1
e
] and has a value less than 0.98 at f ∗` = 1/2.
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3.3.10 The Integral Arrival Rates Assumption

As mentioned in the preliminaries, we make the simplifying assumption that

the arrival rates rv = 1 for every online vertex v ∈ V . Our algorithms and analysis

crucially rely on this assumption. Specifically, our algorithm finds two matchings

in the offline graph and uses them to guide the online matching process. In doing

so, it assumes that each edge in those matchings is incident to an online vertex

with an arrival rate of 1. Without this assumption, two key problems arise. First,

Lemma 3, which bounds the probability that each edge gets matched, is no longer

true as all of the analysis in the proof relies critically on the integral arrival rates

assumption. When arrival rates are arbitrary, Lemma 3 does not hold. Consider an

edge e = (u, v) either in M1 or M2 with rv = 1/n for example, where n is the total

number of online rounds. We observe that e will be matched with a probability no

larger than the probability that v arrives at least once, which is 1−(1−1/n2)n ∼ 1/n.

Second, the algorithm described above can have arbitrarily bad performance

when the arrival rates are less than 1. This algorithm will find two matchings in

the offline graph and only attempt to match edges in those matchings. However,

note that when a vertex has a small arrival rate (e.g. 1
n
), it is unlikely to arrive at

all during the online process. It is possible to construct examples where the edges

added to our two matchings after our rounding procedure will be incident on online

vertices that are unlikely to arrive. Thus, our online algorithm would match almost

no edges while the optimal offline algorithm could find a large value matching among

the vertices that actually arrived.
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3.4 Stochastic Rewards and Stochastic Matching with Patience

A common scenario in e-commerce is the online sale of unique goods due to the

ability to reach niche markets via the internet (e.g., eBay, etc.). Typical products

include rare books, trading cards, art, crafts, and memorabilia. We will use this

as a motivating example in describing our setting. However, our problem can also

model job search/hiring, assigning workers to tasks, online advertising, and other

online matching problems.

In e-commerce, this may model the probability that a customer will purchase

a given item. In online advertising, this corresponds to the pay-per-click model, in

which ad revenue is only earned when a user clicks on an ad (the probabilities may

be inferred or estimated based on historical data of the user). See [11] for further

discussion and models.

In both the e-commerce and advertising settings, we only discover if a customer

or user would purchase an item or click an ad after it has been presented to them

and they have done so (or not): that is, we cannot later choose to “revoke” the

item offer or ad placement. This situation exemplifies the probe-commit model: if

a stochastic edge is probed and found to exist, it must be matched irrevocably. In

the most basic stochastic rewards setting, we are allowed to probe at most one edge

adjacent to each arriving vertex while offline vertices may have many edges probed

until they are matched and become unavailable [14,20]. Think of a single banner ad

on a website for example. However, in this work we consider a further generalization

called patience constraints (also known as timeouts in the literature) where an online
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vertex v has a known patience tv and we may probe up to tv neighbors (stopping

early if it is successfully matched) [30, 31, 44]. This corresponds to a user browsing

multiple items until they either find something to buy or lose patience and exit the

marketplace. Alternatively, this may correspond to the number of ad impressions a

user may be shown while browsing a website or mobile app, and thus, the number

of opportunities to show an ad that the user ultimately clicks. In our model, we

make the standard assumption that offline vertices have unlimited patience.

Note that although this problem is “patience-constrained”, it is actually more

general than the classical online matching problem or the stochastic rewards vari-

ant [14], since the latter two essentially have patience values of 1 for online vertices,

while patience can be arbitrary in the “patience-constrained” problem.

3.4.1 Additional Detail on Related Work in this Setting

In this work, we consider the setting with vertex weights, stochastic edges in

the probe-commit model, and patience constraints. In what follows we review some

related works which are more closely tied to this setting.

The work of [10] considers a model in which online vertices represent customers

and offline vertices represent products, and a merchant wishes to offer products to

consumers so as to maximize profit. This setting differs from our own in that the

merchant offers a collection of several products all at once. The customer then either

chooses to purchase some product (and in fact, may purchase multiple products at

once), based on products offered to her, or chooses to purchase nothing. By contrast,
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in our model the algorithm (the “merchant” in our setting) attempts one match at

a time, stopping when a successful match occurs or the number of unsuccessful

attempts equals the patience constraint.

In the setting of [10], each customer v has a “general choice model” φv(S, u)

that specifies the probability that customer v purchases item u when offered the set

S of items. More generally, since the model considers that v may purchase more that

one item, φv(S, S ′) is used to denote the probability that v will purchase exactly the

items S ′ when offered S (and then φv(S, u) is defined to be
∑

S′:u∈S′ φv(S, S
′)). It is

assumed that the customer will only purchase products that were offered to her as

part of the assortment S (that is, φv(S, S ′) = 0 if S ′ 6⊆ S).

The algorithm they propose for their model can be viewed as a greedy algo-

rithm which presents an online-arriving customer v with the set S that maximizes

the expected profit of the items v purchases. Doing so would guarantee a compet-

itive ratio of at least 0.5, though this maximization step is not necessarily solvable

in polynomial time for arbitrary choice models (they present only a specific family

of choice models for which this step can be solved in polynomial time).

Their results do not immediately extend to our setting, as their stochastic

model is somewhat different. Extending their results to our setting requires a re-

duction from our sequential probing with the probe-commit model to this all-at-once

model by construction of appropriate choice models φ. Further, such a reduction

would not necessarily yield a polynomial-time result without also designing an al-

gorithm for solving the aforementioned maximization in polynomial time.

One contribution of the present work is Algorithm 2, which indeed can be
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viewed as greedily maximizing the expected weight (or profit) of v’s match (or pur-

chase). However, without also constructing a reduction from our sequential probing

model to this all-at-once model, the result of [10] does not extend to give a com-

petitive ratio of 0.5 for our problem. Rather, in the present work, we present clean,

self-contained analyses of Algorithm 2 and Algorithm 3 to achieve a competitive

ratio of 0.5 for our problem without relying on the results of [10] and without the

need for a messy or complicated reduction.

Another work closely related to our model is that of [45], which considers a

model very similar to ours, with stochastic rewards and vertex weights. They do not

consider arbitrary patience constraints (i.e, they consider only the special case where

tv = 1 for every online vertex v). They present a (1 − 1/e)-competitive algorithm

for the special case of decomposable probabilities : that is, the case where pu,v = pupv

for every edge u, v. They further show their algorithm is (1 − 1/e)-competitive for

the case of vanishing probabilities, where pu,v → 0 for all u, v. They do not consider

the more general setting of patience constraints.

The recent work of [46] studies an offline version of the problem, wherein

all of the vertices are offline, but the edges are stochastic. For the probe-commit

model, they achieve a competitive ratio of 1 − 1/e. They also consider a variant

called the price of information model (as opposed to probe-commit), in which each

edge e has a price πe and the goal is to output a matching M which maximizes∑
e∈M we −

∑
e∈Q πe, where Q is the set of all probed edges and W (M) is the

total /weight of the matching produced. Their techniques, like ours, utilize a non-

standard LP to upper bound the weight of an optimal matching.
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3.4.2 Our Contributions

Here, we give a rough outline of this section and our contributions to online

matching problems with stochastic edges. Most of the work in this section focuses

on a deeper understanding of the stochastic matching problem and presents an

algorithm for adversarial arrivals, all of which appears in [15]. However, we also

briefly mention some results for online matching with stochastic rewards [19] and

online stochastic matching with patience [21], both in the known I.I.D arrival model.

Clarified and Unified Competitive Ratio Definition

Our first contribution in Section 3.4.4 is to argue for a unified definition of

competitive ratio for online matching problems with stochastic rewards. We give

the following definition which aligns with the prior work of [20,30,31,44], but differs

crucially from [14].

Definition 2 (Competitive Ratio for Online Matching with Stochastic Rewards).

This competitive ratio is defined as the ratio of an online algorithm’s solution to the

solution of an optimal algorithm for the corresponding offline stochastic matching

problem.

An important consequence of this definition, stated in Observation 3, is that

the hardness result shown in [14] does not apply under Definition 2. The definition

of competitive ratio in [14] compares the online algorithm to the solution of the

Budgeted Allocation LP (equivalent to the LP in Section 3.4.5 with all tv = 1) rather
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than to the offline stochastic matching problem. It is known that the Budgeted

Allocation LP upper bounds the offline stochastic matching problem. Thus, the

positive results of [14] are unaffected by Definition 2 since their LP formulation

still serves to upper bound the optimal offline stochastic matching solution under

Definition 2.

Observation 3. The hardness result of [14], upper bounding the competitive ratio of

online matching with stochastic rewards under adversarial arrivals at 0.621 < 1−1/e,

does not apply under Definition 2 of the competitive ratio for this problem.

We further show in Section 3.4.4 that definition 2 allows for a more granular

comparison between online algorithms. The significance of Observation 3 is that it

reopens the question of whether a tight 1− 1/e bound on the competitive ratio can

be achieved in the stochastic rewards with adversarial arrivals setting.

LP Stochasticity Gap

In the process of discussing the competitive ratio, we show that the standard

LP formulation for the stochastic matching problem with patience (timeout) con-

straints [30,31,44] is a fairly weak upper bound on the optimal solution. We call this

a stochasticity gap (defined formally in Section 3.4.6) of the LP relaxation, analogous

to the familiar concept of an integrality gap. Theorem 4 states that the natural LP

(LP 3.10 in Section 3.4.5) for the offline stochastic matching problem with patience

(timeout) constraints has a stochasticity gap of at most 0.544. Similarly, we have

shown in [44] that the standard LP for the more specific problem of online matching
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with stochastic rewards (equivalent to the Budgeted Allocation LP) has a 1 − 1/e

stochasticity gap.

Theorem 4. There exists an instance of the offline bipartite stochastic matching

with patience problem where LP 3.10 (Section 3.4.5) has a stochasticity gap of at

most 0.544.

This implies that the 0.46 competitive ratio we achieved in [44] for the online

stochastic matching problem with patience (timeout) constraints and known IID

arrivals is somewhat tight with respect to the LP used in that paper to upper bound

the optimal solution and guide the online algorithm. In other words, that online

algorithm achieves 0.46 compared to the LP solution while no offline algorithm can

perform better than 0.544 with respect to same the LP solution. Thus, serious

improvements to that problem will only be possible with a tighter upper bound and

only measurable under Definition 2 as we will see in Section 3.4.4.

Optimal Offline Stochastic Matching on Star Graphs

In Section 3.4.8, we introduce a dynamic programming algorithm that solves

offline stochastic matching on star graphs optimally (the best-known approximations

for offline stochastic matching with patience constraints in bipartite graphs and

general graphs are 0.35 [31] and 0.31 [33], respectively). This algorithm will be used

as a subroutine in our online algorithm, where we will view an arriving online vertex

as the center of a star graph, and its optimality — stated as Theorem 5 — is used

in our analysis.
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Theorem 5. There exists an algorithm for the offline stochastic matching with pa-

tience problem on vertex-weighted star graphs that finds the optimal probing strategy

in O(n2tv) time where n is the number of vertices and tv is the patience of the center

vertex.

Note that O(n2tv) is at most O(n3) since the patience of a vertex tv is at most

n, the number of vertices in the entire graph.

Greedy Algorithms for Vertex-weighted Online Matching with Stochas-

tic Rewards and Patience Constraints

In Section 3.4.9, we start by showing that an obvious, naive greedy algorithm

for this problem can be arbitrarily bad as stated in Theorem 6.

Theorem 6. Probing neighbors u ∈ U of an arriving vertex v in non-ascending

order of expected weight (wupu,v) leads to a worst case competitive ratio of O(1/n)

where n is the number of offline vertices in the underlying graph.

We then demonstrate how to achieve a 0.5 competitive ratio (best possible for

a deterministic algorithm under adversarial arrivals) by locally optimizing for each

arriving vertex and its neighborhood using the dynamic programing algorithm for

star graphs from Section 3.4.8. We formalize this in Theorem 7.

Theorem 7. There exists an algorithm which achieves a 0.5 competitive ratio for

the vertex-weighted online matching problem with stochastic rewards and patience in

the adversarial arrival model.
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Since the model in Theorem 7 is quite general and adversarial, the result

extends to the unweighted problem as well as random order and known IID arrival

models as stated in Corollary 1.

Corollary 1. There exists an algorithm which achieves a 0.5 competitive ratio for

the vertex-weighted and unweighted online stochastic matching with patience prob-

lems in the adversarial, random order, and known IID arrival models.

We note further that the performance of our algorithm is tight with respect

to greedy algorithms which optimize the performance of each arriving vertex locally

instead of attempting to make globally optimal decisions across all arrivals.

While greedy matching algorithms generally have poorer worst case perfor-

mance theoretically, Figure 4.1 illustrates that our result is currently the best known

for a number of natural online matching problems. We also stress that greedy al-

gorithms can be useful in practice and it is important to establish the difference

between our greedy algorithm and the naive greedy approach, which one might be

tempted to implement. The recent empirical work of [5] for non-stochastic online

matching under known IID arrival gives evidence that simple greedy algorithms

perform well on this problem in practice. They further observe that the theoret-

ically superior algorithms of [20, 26–28, 47] can be augmented with greedy choices

to add additional adaptivity which improves empirical performance. Indeed, many

of their best results come from these greedy-augmented algorithms. Thus, greedy

algorithms can play an important role in practical solutions to this problem and it

is useful to understand their behavior.
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Finally, since we are not subject to the hardness result of [14] under Defini-

tion 2, one might ask if the problem actually gets easier when restricted to vanish-

ingly small edge probabilities (or even just probabilities strictly less than 1). For

example, the algorithms proposed for the stochastic rewards problem with adver-

sarial arrivals in [14] and [22] achieve their best results for vanishing probabilities.

Further, standard adversarial inputs where a matched edge “blocks” a future po-

tential match do not present the same bounds when the “blocking” edge has a low

expected value before being realized. In one step toward addressing this question,

we show in Theorem 8 that the hardness result of 1/2 for greedy algorithms ex-

tends to the special case of stochastic rewards with small edge probabilities. We use

“SimpleGreedy” to refer to the algorithm which always probes an arbitrary available

neighbor if one exists. We note that [14] showed that “SimpleGreedy” achieves a

ratio of at least 1/2 in the stochastic rewards with adversarial arrivals setting.

Theorem 8. There exists a family of unweighted graphs under stochastic rewards

(online vertices with patience of 1) and adversarial arrivals for which SimpleGreedy

achieves a competitive ratio of at most 1/2 even when all edges have uniform prob-

ability p = O(1/n).

3.4.3 Preliminaries and Notation

We use G = (U, V,E) to denote the bipartite graph with vertex set U ∪V and

edge set E ⊆ U×V . For a given bipartite graph G = (U, V,E), let U = {u1, . . . , um}

represent offline vertices and V = {v1, . . . , vn} represent online vertices. Let wi
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denote the weight of offline vertex ui ∈ U . We assume, wlog, that w1 ≥ w2 ≥ . . . wm.

For each edge (ui, vj) ∈ U×V , let pi,j denote the given probability that edge (ui, vj)

exists when probed. We also use pu,v for the given probability of edge (u, v) when

indices i and j are not required. For simplicity, we may assume G is the complete

bipartite graph with E = U × V by allowing pu,v = 0 for nonexistent edges. Thus

from here on, when we refer to an edge (u, v) as incident to a vertex v, or to u

being adjacent to or a neighbor of v, we mean that pu,v > 0 (i.e., that edge (u, v)

has a positive probability of existence). We are further given a patience value tj for

each online vertex vj ∈ V that signifies the number of times we are allowed to probe

different edges incident on vj when it arrives. Note that each edge may be probed

at most once and if it exists, we must match it and stop probing (probe-commit

model).

Strictly speaking, G specifies a probability distribution on input graphs, the

true realization of which is initially unknown. We denote this realization graph by

G̃ = (U, V, Ẽ), where Ẽ consists only of edges which exist when probed.

We consider the online vertices arriving in stages. Specifically, we may assume

(without loss of generality) that the online vertices arrive in the order v1, v2, . . . , vn

and number the stages 1 through n correspondingly. When the online vertex vk ∈ V

arrives at stage k, we attempt to match it to an available offline vertex. We are

allowed to probe edges incident to vk one-by-one, stopping as soon as an edge (ui, vk)

is found to exist, at which point the edge is included in the matching and we receive a

reward of wi. We are allowed to probe a maximum of tk edges; if tk edges are probed

and none of the edges exist, then vertex vk remains unmatched and we receive no

61



reward. If we successfully match vk to ui, we say that wi is the value or reward of

vk’s match; if vk remains unmatched, we say it has a value or reward of 0.

3.4.4 Unifying and Clarifying the Competitive Ratio

A key argument in this section is that we should unify and clarify the defini-

tion of competitive ratio for the problem of online matching with stochastic rewards.

Currently, the most common definition [20,30,31,44] compares an online algorithm

to the offline optimal for the corresponding offline stochastic matching problem in-

troduced in [30]. However, in [14], they compare an online algorithm to a specific

non-stochastic offline packing problem called Budgeted Allocation. Budgeted Allo-

cation is equivalent to LP 3.10 in Section 3.4.5, but with all tv = 1 since it addresses

the stochastic rewards problem without patience. We note that the Budgeted Al-

location LP and its natural extension to patience constraints (LP 3.10) both upper

bound the corresponding offline stochastic matching problems. However, we argue

that these LPs should not be used as tight bounds to prove hardness results as with

Budgeted Allocation in [14].

We use CRstoch to refer to the first definition (Definition 2) since it compares

to a stochastic offline problem (offline stochastic matching) and CRnon to refer to the

definition from [14], which compares to a non-stochastic offline problem (Budgeted

Allocation). In this section, we advocate for CRstoch as the canonical definition of

competitive ratio for online matching problems with stochastic rewards. Use of the

term “competitive ratio” in the analysis of future sections refers to CRstoch.
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We give the following reasons for choosing CRstoch:

1. CRstoch is more in line with the standard concept of competitive ratio. We

compare an online algorithm for a problem to the offline optimal for that

same problem.

2. It enables finer grained comparison between algorithms. We will describe an

example below where an online algorithm which is optimal under the CRnon

definition can be improved upon under CRstoch.

3. In Section 3.4.6, we define the concept of a stochasticity gap to capture the gap

between the offline stochastic matching problem and LPs such as Budgeted

Allocation. For the problem with patience constraints, we show in Section 3.4.7

that this gap is quite large.

In [14], they argue against three specific potential definitions of competitive ratio.

We agree with those arguments. However, we further argue that their definition,

CRnon, is too pessimistic. To support point (2) above, we note that in [19], they show

an algorithm for online matching with stochastic rewards and known IID arrivals

that achieves a competitive ratio of 1− 1/e (under both CRstoch and CRnon). Under

CRnon, this result would be tight with no further improvement possible. However,

under CRstoch (the definition used in [19]), they also show that for the case of

uniform constant edge probabilities, a competitive ratio of 0.702 is possible using

a more constrained LP to guide the algorithm. This finer granularity of analysis

supports the develop of improved algorithms that would be impossible to see under

CRnon.
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In Section 3.4.5, we describe the natural LP which is often used as an upper

bound on the offline optimal under CRstoch and as the definition of offline optimal

under CRnon (called Budgeted Allocation in [14]). Then, in Sections 3.4.6 and 3.4.7,

we show how there is a large gap between the solution to this LP and the optimal

offline stochastic matching solution. This implies that under CRnon, no online algo-

rithm for stochastic matching with patience could achieve a competitive ratio better

than 0.544 even under the more tractable known IID arrival model. We believe this

is far too pessimistic and conjecture that algorithms which exceed that ratio under

CRstoch will be found in the future.

3.4.5 Standard Linear Programing Relaxation

Below is a natural extention of the “standard” LP formulation (e.g. as in

both [20,30,31,44] and [14]) to vertex weights and non-unit patience values.

maximize
∑
u∈U

∑
v∈V

xu,vpu,vwu (3.10)

subject to
∑
v∈V

xu,vpu,v ≤ 1, ∀u ∈ U (3.10a)

∑
u∈U

xu,vpu,v ≤ 1, ∀v ∈ V (3.10b)

∑
u∈U

xu,v ≤ tv, ∀v ∈ V (3.10c)

0 ≤ xu,v ≤ 1, ∀u ∈ U, v ∈ V (3.10d)

We note that the Budgeted Allocation problem LP of Mehta and Panigrahi [14]
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uses different notation, but is equivalent if all tv are set to 1. The notation we use

here is in keeping with [20, 30, 31, 44]. Some formulations such as [20, 44] use edge

weights instead of vertex weights in the objective or consider additional patience

constraints on the offline vertices (two-sided timeouts in [44]).

In most cases, such an LP is used to upper bound the optimal solution. The

first two constraints are non-stochastic relaxations of the matching constraint. The

third constraint enforces the patience constraint that a vertex v can be probed at

most tv times. However, this is not a tight bound on the optimal solution as we

will see in Section 3.4.6 which defines the concept of a stochasticity gap between an

optimal stochastic matching algorithm and the optimal solution to LP 3.10. Later, in

Section 3.4.12, we present a new LP formulation (LP 3.12) that introduces additional

new constraints. Being more constrained, this new LP provides a tighter bound on

OPT, although it is open whether it achieves a provably better stochasticity gap

than LP 3.10.

3.4.6 Stochasticity Gap

In keeping with our mission, we now formalize the definition of a stochasticity

gap for matching problems. The term was first used casually in this context in [44]

without a rigorous definition. They showed that there is a gap of at least 1 − 1/e

between the LP solution and an optimal algorithm’s solution. In other words,

E[OPT]

LPOPT
≤ 1− 1/e
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For the offline problem, this gap arises with a star graph on n vertices with each edge

e having pe = 1/n and the center vertex having unlimited patience (or equivalently

tv = n). To create a similar problem instance for online matching with stochastic

rewards, let the center of the star be the offline set (with unlimited patience) and

the remaining vertices be the online set. In both cases, the LP can assign 1 to all

variables to get LPOPT = 1 while E[OPT] = 1 − 1/e for large n since there is a

(1− 1/n)n = 1/e probability of no edge existing. We give a more general definition

below which captures this concept.

Definition 9 (Stochasticity Gap). The ratio of the optimal algorithmic solution

for a stochastic packing problem to the optimal solution of a linear programming

relaxation which treats probabilities as deterministic fractional size coefficients.

3.4.7 A Larger Stochasticity Gap

As stated in our problem definitions, online matching with stochastic rewards

and patience constraints (aka online matching with timeouts) generalizes the online

matching with stochastic rewards problem. It allows each online vertex v to probe

up to tv neighbors when it arrives instead of just one.

To see a larger gap for this problem, consider the unweighted, complete bi-

partite graph Kn,n (n vertices in each partition) with pe = 1/n for all edges e and

unlimited patience (or equivalently tv = n) on all vertices. In this case, LP 3.10

has value of n, achieved by assigning a value of 1 to each variable. However, we

can upper bound E[OPT] with the expected size of the maximum matching in the
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realization graph G of all edges that actually exist. In other words, imagine we

probed every edge and sought a maximum matching in the graph of edges that were

found to exist.

To do this, we first mention the following result due to [48] for random graphs.

Note, however, that Theorem 14 of [48] is slightly more general, providing a bound

on the size of the independent set for p = c/n. Lemma 4 states the special case for

c = 1.

Lemma 4 ( [48]). Let G be a random bipartite graph with both partitions of size

n and where each edge exists independently with probability p = 1/n. Let γ be the

solution to the equation γ = e−γ. Then, the largest independent set of G has size

n(2γ + γ2))[1 + o(1)] with probability 1− o(1).

The proof of Theorem 4 can be derived from Lemma 4 as follows. Lemma 4

implies that, almost surely, a minimum vertex cover for G has size (asymptotically,

as n → ∞) 2n − n(2γ + γ2) ≈ 0.544n, and by Kőnig’s Theorem this is equivalent

to the size of the maximum matching in G (see also [49, 50]). It follows, then, that

no online or offline algorithm can achieve an expected matching size greater than

≈ 0.544n on this graph. This shows a stochasticity gap of at least 0.544n/n = 0.544.

Thus, Linear Program 3.10 can overestimate the true optimal value quite dras-

tically considering that the stochasticity gap of LP 3.10 is an upper bound on the

competitive ratio for any algorithm using that LP to upper bound OPT and we

hope for a competitive ratio higher than 0.544 for many online matching problems.

In particular, the algorithm in [44] achieved a 0.46 competitive ratio for the edge-
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weighted, known IID arrivals variant using LP 3.10 as an upper bound (as well as

to guide the algorithm). We can see here that this ratio cannot be improved beyond

0.544 even in unweighted graphs without using a tighter upper bound.

Another problem with defining the competitive ratio as CRnon is that it would

imply that no online algorithm can achieve a ratio better than 0.544. However,

using the definition CRstoch opens up the possibility of using a tighter bound on the

offline optimal solution than LP 3.10.

3.4.8 Optimal Offline Stochastic Matching Strategy for Star Graphs

Here, we prove Theorem 5 by describing a dynamic programming algorithm

for solving edge-weighted offline stochastic matching with patience on star graphs—

that is, bipartite graphs G = (U, V,E) in which V consists of a single vertex. Note

that in this case, the edge-weighted and vertex-weighted problems are equivalent

and the only patience constraint we need to consider is on the center vertex.

To see the relationship between this problem and online matching, observe

that when an online vertex v arrives, we are given the star graph of v and its offline

neighbors in G. A greedy algorithm seeks a probing strategy which maximizes the

expected weight of a matching in that star graph. Consequently, observe that offline

matching on a star graph is equivalent to online matching with a single online vertex

and a single online stage.

Let S be a star graph with center vertex v, and let U = S \ v denote the set of

v’s neighbors in S. Suppose U = {u1, . . . , um} and V = {v}. The optimal strategy
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for matching v is the one which maximizes the expected value of v’s match. We

show a dynamic programming approach which finds this optimal solution. Let pi

denote the probability that edge (ui, v) exists when probed.

A crucial observation is that any optimal probing strategy will probe in non-

increasing order of edge/vertex weight, regardless of the edge probabilities. Intu-

itively, this results in matching v to its highest weight neighbor with an edge that

actually exists among the subset of U that is being probed. Claim 10 states this

more formally.

Claim 10. Let U ′ ⊆ U be a subset of the offline vertices. Consider querying all

edges in the set {(u, v) | u ∈ U ′} according to some ordering. Ordering the edges

by decreasing weight maximizes the expected weight of v’s match (with respect to all

other orderings of U ′).

Given Claim 10, we may restrict our probing strategies to those which probe

edges in non-increasing order of weight. For ease of exposition, let U be sorted

in non-increasing order of weight such that wu1 ≥ wu2 ≥ . . . ≥ wum . For our

dynamic program, we define f(i, t) to be the maximum possible expected value of

any decreasing-weight probing strategy that is allowed t probes and probes edge

(ui, v) first. The full definition of f is given in (3.11).

f(i, t) =


pui,vwui if t = 1

pui,vwui + (1− pui,v) max
j>i

f(j, t− 1) if t > 1

(3.11)

The following lemma states that this formulation does indeed provide the
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expected weight of the optimal probing strategy.

Lemma 5. For a patience of tv, the value maxi f(i, tv) is equal to the expected value

of the optimal probing algorithm.

Proof. We begin by showing that for all t ≥ 1 and for all i, the value f(i, t) equals

the maximum possible expected matching weight with t probes, if we first probe edge

(ui, v) and proceed probing edges in decreasing weight. We proceed by induction

on t. Clearly, this holds for f(i, 1) (for all i). Now suppose that for all j, f(j, t− 1)

equals the maximum possible expected matching weight with t−1 probes, if we first

probe edge (uj, v) (and subsequently probe edges of lower weight).

If we probe (ui, v) first, we achieve an expected matching size of pui,vwui +(1−

pui,v)E, where E is the expected matching weight achieved by the remaining probes.

By the inductive hypothesis, this is maximized (over all vertices whose weight is less

than wui) by maxj f(j, t− 1).

It follows from the above that given a patience tv, the value maxi f(i, tv)

represents the maximum possible expected matching weight if we are restricted to

probing edges in order of decreasing weight. However, it follows from Claim 10 that

such a strategy is also optimal over all possible probing orders, and thus maxi f(i, tv)

is the expected value of an optimal probing algorithm.

Clearly, we can construct a table storing all values of f(i, t) with i ≤ m and

t ≤ tv using at most O(mtv) space. Computing each cell of the table requires at

most O(m) time to find maxj>i f(j, t− 1) resulting in at most O(m2tv) time. Since

tv must be less than m, the time and space are guaranteed to be polynomial in the
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size of the input. This procedure is stated explicitly in Algorithm 2.

Algorithm 2: Given a star graph with center v and patience tv, solve
Dynamic Program 3.11 and compute the optimal probing strategy
1 Function StarDP(v, tv, p, w):
2 for i := 1 to m do
3 W [i, 1]← pui,vwui

4 for t := 2 to tv do
5 for i := 1 to m do
6 j∗ ← arg maxj>iW [j, t− 1]

7 W [i, t]← pui,vwui + (1− pui)W [j∗, t− 1]
8 V [i, t]← j∗

9 i∗0 ← maxiW [i, tv]
10 for t := 1 to tv do
11 i∗t ← V [i∗t−1, tv − t+ 1]

12 return (i∗0, i
∗
1, . . . , i

∗
tv−1)

Proof of Theorem 5. This follows immediately from Lemma 5, and the observation

that Algorithm 2 solves Dynamic Program 3.11 in time O(m2tv), producing a prob-

ing strategy with expected matching weight equal to maxi f(i, tv).

3.4.9 Greedy Algorithms For Online Stochastic Matching

While greedy algorithms can provide powerful heuristics for online matching

problems [5], it is not obvious how to behave greedily in the presence of vertex

weights, stochastic edges, and patience constraints. We first illustrate how a naive

greedy approach fails. We then show how to optimally probe a star graph. Finally,

we analyze this greedy algorithm to bound its competitive ratio at 0.5 which is tight

for worst case analysis of greedy algorithms for online matching.
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3.4.10 A Naive Greedy Approach that Fails

One natural idea which may appear to generalize the common greedy ap-

proaches to similar problems is to sort the neighbors of an arriving vertex v in

non-increasing order of expected weight, wupuv. However, the competitive ratio of

this approach can be arbitrarily bad as described in Theorem 6.

Proof. Consider the following underlying bipartite graph. Let the offline vertex set

U contain one vertex u′ of weight 1 and n vertices u1, u2, . . . , un of weight n, where

n is some very large number. Let there be exactly one online vertex v with an

edge of probability pu′v = 1 to the vertex u′ with weight 1 and edges of probability

puiv = 1/(n+ 1) to the remaining offline vertices ui for i ∈ {1, 2, . . . , n}. Let v have

a patience tv = n + 1, meaning that it can probe as many neighbors as we want

until it is matched or we run out of neighbors to probe. Note that we can always

add “dummy” vertices (vertices with no neighbors) to the online set if we want to

capture the setting where both the online and offline sets are large.

The strategy of sorting by expected weight will first probe the edge (u′, v)

because it has the largest expected weight of 1 while the other edges have an expected

weight of n/(n+ 1) < 1. Since the edge (u′, v) has probability 1 of existing and we

are in the probe-commit model, this would match v to u′ deterministically, earning

a weight of 1. However, the optimal algorithm would probe u′ last (probing first the

vertices u1, u2, . . . , un), earning an expected weight of (1− 1/e)n+ 1/e.

Thus, to properly generalize greedy approaches to this setting, we need to fix
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a probing order that maximizes the expected weight achieved by an arriving vertex.

In Section 3.4.8, we show how to do this using dynamic programming.

3.4.11 A 0.5-Competitve Online Algorithm

We present a greedy algorithm which achieves a 0.5-approximation for online

matching with vertex weights, stochastic rewards, and patience constraints in the

adversarial arrival model. In this setting, the vertices of V arrive in an online fashion.

If vertex v is the kth vertex to arrive online, we say v arrives at time k.

Algorithm 3: Use Dynamic Program 3.11 to greedily match arriving ver-
tices
1 Function DPGreedy(U , V , p, w):
2 for Online arriving vertex v ∈ V , with patience tv do
3 (i∗0, . . . , i

∗
tv−1)← StarDP(v, tv,p,w)

4 for t := 0 to tv − 1 do
5 Probe edge (ui∗t , v)

The algorithm is as follows. When a vertex vk arrives at time k, let U ′ denote

the set of offline vertices which are still unmatched. Solve the Dynamic Program 3.11

on the star subgraph SU ′,vk = (U ′, {v}, U ′×{v}). Probe edges in the order given by

the dynamic program (v is matched to the first vertex u for which the edge (u, v)

exists when probed). This procedure is stated explicitly in Algorithm 3.

Let ALG(G) denote the expected size of the matching produced by this al-

gorithm on the graph G. Let OPT(G) denote the expected size of the matching

produced by an optimal offline algorithm. Our main result is given by Theorem 11.

Theorem 11. For any bipartite graph G, ALG(G)
OPT(G)

≥ 0.5.
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3.4.12 A New LP with a Tighter Upper Bound on OPT

We formulate a new LP by adding a new constraint to LP 3.10. This new LP

gives a tighter upper bound on the offline optimal solution, OPT(G). Note that our

algorithm does not need to explicitly solve this new LP. We simply use it in our

analysis.

This new constraint is motivated by the observation that the dynamic pro-

gram (3.11) is optimal for star graphs. Intuitively, for any subgraph G′ of G, the

optimal solution for G′ cannot match more edges in expectation than OPT(G). We

can represent this as a set of constraints which restrict the LP to ensure that the

expected number of matched vertices on any star subgraph of G does not exceed the

optimal value given by the dynamic program (3.11) for that same star subgraph.

This is captured in the new constraint, (3.12d), in the linear program 3.12 below. In

this constraint, we slightly abuse notation and write OPT(U ′, v) to denote OPT(G′)

for a star graph G′ = (U ′, {v}, U ′ × {v}). Recall that OPT (U ′, v) is given by the
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dynamic program (3.11).

maximize
∑
u∈U

∑
v∈V

xu,vpu,vwu (3.12)

subject to
∑
v∈V

xu,vpu,v ≤ 1, ∀u ∈ U (3.12a)

∑
u∈U

xu,vpu,v ≤ 1, ∀v ∈ V (3.12b)

∑
u∈U

xu,v ≤ tv, ∀v ∈ V (3.12c)

∑
u∈U ′

xu,vpu,vwu ≤ OPT(U ′, v), ∀U ′ ⊆ U, v ∈ V (3.12d)

0 ≤ xu,v ≤ 1, ∀u ∈ U, v ∈ V (3.12e)

Let LPOPT(G) denote the value of Linear Program 3.12 on the graph G.

Lemma 6 states that this new LP is still a valid upper bound on the optimal solution.

Lemma 6. For any bipartite graph G, LPOPT(G) ≥ OPT(G).

Proof. Consider an adaptive offline algorithm which is optimal. Let xu,v be the prob-

ability that this strategy probes edge (u, v). For any vertex u ∈ U , the probability

that u is successfully matched is at most
∑

v∈V xu,vpu,v ≤ 1, and similarly for the

probability of successfully matching any online vertex v ∈ V . Thus, this assignment

satisfies constraints (3.12a) and (3.12b). By the definition of OPT, we cannot probe

more than tv edges incident on an online vertex v. So constraint (3.12c) is satisfied.

Finally, we argue that the new constraint (3.12d) is satisfied by this assign-

ment. Suppose instead there is some vertex v′ ∈ V and some U ′ ⊆ U for which
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∑
u∈U ′ xu,v′pu,v′wu > OPT(U ′, v′). Then, we can define a new offline probing strategy

on the star graph (U ′, {v′}, U ′×{v′}) which simply simulates our original algorithm

on G and probes only those edges which are in U ′×{v′}. This achieves an expected

matching weight on the star graph of at least
∑

u∈U ′ xu,v′pu,v′wu > OPT(U ′, v′), but

this contradicts the fact that OPT(U ′, v′) is the optimal expected matching weight

for the star graph. Thus, this assignment must satisfy constraint (3.12d). It follows

that LP 3.12 must have objective value at least as large as the expected matching

weight of the optimal offline algorithm.

3.4.13 Analysis of the DP-based Greedy Algorithm

We will bound the performance of our greedy algorithm relative to the solution

of Linear Program 3.12. Lemma 6 then implies that this bounds the competitive

ratio. In particular, the following lemma, along with Lemma 6, implies Theorem 11.

Lemma 7. For any bipartite graph G, ALG(G) ≥ 0.5 LPOPT(G).

Proof. For the sake of analysis, suppose we have solved LP 3.12 on the graph G.

Let

c(x) =
∑
u∈U

∑
v∈V

xu,vpu,vwu

be the value of the objective function for x and let

cv(x) =
∑
u∈U

xu,vpu,vwu

be the value “achieved” by a given online vertex v with c(x) =
∑

v∈V cv(x). Let
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x∗ be the optimal assignment given by LP (3.12), for the graph G. So c(x∗) =∑
v∈V cv(x

∗) = LPOPT(G).

We will make the following charging argument. Imagine that when a vertex

v is matched to some u ∈ U , we assign 0.5wu to v and for all v′ ∈ V (including v

itself) we assign 0.5xu,v′pu,v′wu to v′. Note we have assigned at most wu weight in

total since
∑

v′∈V 0.5xu,v′pu,v′wu ≤ 0.5wu due to LP constraint (3.12a).

Let wv for online vertex v ∈ V be equal to the weight wu of the offline vertex u

which is matched to v or 0 if v is unmatched at the end of the arrivals. Let Um ⊆ U

be the set of offline vertices which are matched at the end of the arrivals. We define

cv(ALG) = 0.5wv + 0.5
∑
u∈Um

xu,vpu,vwu

as the weight assigned to v in our imaginary assignment. By the linearity of expec-

tation

ALG(G) = E

[∑
v∈V

cv(ALG)

]
=
∑
v∈V

E[cv(ALG)]

Thus, to complete the proof, we must show that

∑
v∈V

E[cv(ALG)] ≥ 1

2
LPOPT(G)

Consider an online vertex v arriving at time k. Let Uv ⊆ U be the set of

vertices available (unmatched) when v arrives and U−v = U \ Uv be the set of

vertices which are already matched when v arrives. Note that when v arrives, it has

already been assigned a value of 0.5
∑

u∈U−v xu,vpu,vwu. After attempting to match
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v to Uv according to DP (3.11), we have assigned an expected value to v of at least

0.5 OPT(Uv, v) + 0.5
∑

u∈U−v xu,vpu,vwu.

Thus, we have

∑
v∈V

E[cv(ALG)] ≥
∑
v∈V

∑
Uv⊆U

Pr[Uv]

0.5 OPT(Uv, v) + 0.5
∑
u∈U−v

xu,vpu,vwu


≥
∑
v∈V

∑
Uv⊆U

Pr[Uv]

0.5
∑
u∈Uv

xu,vpu,vwu + 0.5
∑
u∈U−v

xu,vpu,vwu


≥ 0.5

∑
v∈V

∑
Uv⊆U

Pr[Uv]
∑
u∈U

xu,vpu,vwu

= 0.5
∑
v∈V

∑
u∈U

xu,vpu,vwu

=
1

2
LPOPT(G)

Lemma 7 now implies the main result, a 1
2
-competitive ratio.

Proof of Theorem 11. By Lemmas 6 and 7, we have

ALG(G) ≥ 0.5 LPOPT(G) ≥ 0.5 OPT(G)

3.4.14 A 1/2 Upper Bound for Greedy Under Stochastic Rewards

In [14], Mehta and Panigrahi showed that in the unweighted Stochastic Re-

wards (patience of 1 for online vertices) problem, any algorithm which is “oppor-
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tunistic” achieves a competitive ratio of 1/2. As per [14], an opportunistic algorithm

for the Stochastic Rewards setting is an algorithm which always attempts to probe

an edge incident to an online arriving vertex v ∈ V if one exists. They show that

any opportunistic algorithm achieves a competitive ratio of at least 1/2.

The most simple opportunistic algorithm is the one which, when v ∈ V arrives

online, chooses a neighbor u ∈ U of v arbitrarily and probes the edge (u, v). We call

this algorithm “SimpleGreedy”. The result of [14] shows that SimpleGreedy achieves

a competitive ratio of at least 1/2. Theorem 8, proven below, shows that this is tight

even when restricted to small, uniform p.

Proof. Let k be a fixed positive integer constant. Let U = U0 ∪ Un, where U0 and

Un = {u1, . . . , un} are disjoint, and |U0| = k. Let V = V0 ∪ Vn where V0 and

Vn = {v1, . . . , vn} are disjoint, and |V0| = kn2. Let E = E0 ∪En where E0 = U0×V

and En = {(ui, vi) | i ∈ [n]}.2 Let p = k/n.

For the bipartite graph G(U, V ;E), an offline algorithm can achieve a matching

of expected size at least 2k by first probing edges (u, v) ∈ U0×V0 until all edges are

probed or the maximum possible successful matches, k, is achieved. This strategy

achieves k successful matches among these edges in expectation. Then, the offline

optimal will probe all edges of En in any order, achieving an expected number of

successful matches of k. The total expected size of the achieved matching is then

2k.

On the other hand, an adversary in the online setting may expose all vertices of

Vn before any of the vertices of V0 to the greedy algorithm. SimpleGreedy choosing
2We use the notation [n] = {1, 2, . . . , n}
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arbitrarily may in the worst case choose to probe edges of E0 first, preventing some

vertices of V0 from being matched later. We consider the case where SimpleGreedy

chooses an edge (u, vi) ∈ E0 for each online vertex vi ∈ Vn if any u ∈ U0 is available

at vi’s arrival. We calculate the expected size of the matching produced by this

strategy.

Let M be a random variable corresponding to the size of the final matching,

and let M0 and Mn be random variables corresponding to the number of matched

vertices in V0 and Vn, respectively. Then, the expected size of the matching is

E[M ] = E[Mn] + E[M0] = k + E[M0].

We now consider E[M0]. If l < k vertices of Vn are matched successfully,

then when the vertices of V0 arrive online, there will only be k − l vertices of U0

remaining to be matched. Since |V0| = kn2, greedy will almost surely match all of

them successfully. Thus, we get (as n→∞)

E[M0] =
k−1∑
l=0

(
n

l

)
(1− k/n)n−l(k/n)l(k − l) ∼

k−1∑
l=0

(k − l)n
l

l!
e−k(n−l)/n k

l

nl

∼
k−1∑
l=0

(k − l)e
−kkl

l!
= k

k−1∑
l=0

e−kkl

l!
−

k−1∑
l=1

e−kkl

(l − 1)!

= k

[
k−1∑
l=0

e−kkl

l!
−

k−2∑
i=0

e−kkl

l!

]
= k · e

−kkk−1

(k − 1)!
= k · e

−kkk

k!
.

Finally, we observe that for large k, e−kkk/k! ∼ (2πk)−1/2, due to Stirling’s formula.
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Thus, we get a competitive ratio of

E[M ]

OPT
= lim

k→∞

k +
√
k/(2π)

2k
=

1

2
(3.13)

With a more intricate argument, we can also show that the same upper-bound

of 1/2 even holds for the “random greedy” algorithm, where an online vertex gets

matched to a random available neighbor (if any).
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Chapter 4: Constrained Clustering

In this chapter, we present our work on various constrained clustering prob-

lems. Section 4.1 gives approximation algorithms for several models of constrained

clustering including some new models we introduce. We also prove NP-hardness for

one of the new models that does not directly inherit hardness from known problems.

Then, in Section 4.2, we introduce the notions of pairwise fairness and community

preservation for the k-center problem. We give an approximation algorithm for these

new problems and perform experiments to show how the trade-off between fairness

and optimization can be adjusted in practice.

4.1 Metric Clustering with Pairwise Constraints

Two of the most famous and well-studied clustering problems in areas ranging

from combinatorial optimization to operations research to machine learning are k-

center and k-median. We are given a set of points V in some metric space represented

by a distance function d : V × V 7→ R+. The goal is to select at most k points to

serve as centers and assign each of the remaining points to one of these centers.

In k-center, the objective is to minimize the maximum distance of any point to

its assigned center, while in k-median, we aim to minimize the average assignment
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distance. We can view the chosen centers as defining clusters, where each cluster

includes the points assigned to the corresponding center.

Pairwise constraints represent additional requirements or knowledge about

whether or not specific pairs of points belong together and can be completely unre-

lated to the underlying metric space. Such constraints arise naturally in a variety of

applications (see Section 4.1.2 for examples). In this work, we consider four types of

pairwise constraints: bounded separation probabilities, hard must-link constraints,

soft must-link constraints, and cannot-link constraints. With bounded separation

probabilities (BSP), pairs of points e = {u, v} are given a value pe ∈ [0, 1] and we

must find a randomized clustering where the probability of assigning u and v to

different clusters is at most pe. Hard must-link constraints define pairs of points

which must be assigned to the same cluster in any valid clustering. This is a special

case of bounded separation probabilities where each pe is either 0 or 1. Soft must-

link constraints are defined through a set S that contains pairs of points, each pair

indicating a hard must-link constraint. However, in any feasible solution, we are

allowed to violate at most a certain fraction of the constraints in S in expectation.

Hence, given a number ψ ∈ [0, 1] as input, our randomized clustering should satisfy

at least (1 − ψ)|S| of the pairs in S in expectation. As with BSP, we can see that

hard must-link constraints are also a special case of soft must-link constraints where

ψ = 0. When we allow multiple sets of soft constraints, as we do in our model, then

soft constraints also generalize BSP (we can add each BSP constraint to its own soft

set). Finally, cannot-link constraints state that pairs of points should be separated

and are the natural complement of must-link constraints. Incorporating any of the
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above constraints into k-center or k-median generalizes the original problem, and so

the new variants remain NP-hard.

Our goal here is to study the above mentioned constraints in the classical set-

tings of k-center and k-median. Along the way, we propose a related problem where

there is no limit on the number of centers (we refer to this as the “no-k” version).

While the classical settings are trivial to solve with unlimited centers, the prob-

lem becomes challenging again when pairwise constraints are added. We formally

prove that through an NP-hardness reduction. We also show how our algorithmic

framework can be extended to three broader problems, namely knapsack-center,

matroid-center, and k-supplier. For all constraint cases, except cannot-link con-

straints, we provide algorithms with small constant factor approximations. On the

negative side, we show that finding a solution that minimizes a violation function

of the cannot-link constraints is NP-hard.

4.1.1 Formal Problem Definitions

In this section we formally define the main problems we study. In all settings,

we are given a set of points V with n = |V |. Let d(u, v) ≥ 0 represent the distance

between any u, v ∈ V . Distances obey the triangle inequality, i.e., for u, v, w ∈ V

we have d(u, v) ≤ d(u,w) + d(w, v). We are interested in choosing a set of centers

C ⊆ V and an assignment φ : V 7→ C of points to chosen centers that would satisfy

each problem’s specific requirements. Note that, due to pairwise constraints, we do

not simply assign each point to its nearest center as is common in classical variants.
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k-center with stochastic pairwise constraints. Here, we are given an

integer k > 0 denoting the maximum number of centers that can be selected. For

the bounded separation probabilities, we are given a set P ⊆ V × V of pairs of

points e = {u, v} ∈ P , where u, v ∈ V have a distinct separation probability of

pe ∈ [0, 1]. This value indicates the maximum probability with which we are allowed

to separate u and v in any feasible solution. For soft must-link constraints, we are

given a family of sets S = {S1, S2, . . .} with Si ⊆ V × V and a family of fractions

ψ = {ψ1, ψ2, . . .} with ψi ∈ [0, 1]. Each Si represents a soft set of must-link pairs

of points, with the requirement that we are allowed to separate at most ψi|Si| of

them in expectation. Unlike classical k-center, we naturally require a randomized

assignment to accommodate the stochastic constraints. We seek the minimum R for

which there exists a set of centers C ⊆ V , with |C| ≤ k, and an efficiently-samplable

probability distribution over mappings V → C, such that for a mapping φ sampled

from this distribution, we have the following.

•
∑

u∈C Pr[φ(v) = u] = 1, for every v ∈ V (each v ∈ V must be assigned to

some cluster)

• Pr[d(v, φ(v)) ≤ R] = 1 for every v ∈ V (enforcing the radius R)

• Pr[φ(u) = u] = 1, for every u ∈ C (centers should be assigned to the cluster

they define)

• Pr[φ(v) 6= φ(w)] ≤ pe, ∀e = {v, w} ∈ P (bounded separation probabilities)

• ∀Si ∈ S :
∑
{v,w}∈Si Pr[φ(v) 6= φ(w)] ≤ ψi|Si| (soft must-link constraints)
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No-k-center with stochastic pairwise constraints. This variant is exactly

the same as the problem described above, with one key difference: we have no

cardinality constraint on the set of chosen centers C. This means that we are

allowed to pick as many centers as we want while obeying pairwise constraints and

minimizing the radius.

k-center with hard must-link constraints. This setting is again similar to

k-center with stochastic pairwise constraints, but with a few differences. First of all,

there is no soft must-link set S. All constraints are captured by the set P ⊆ V × V

of pairs of points e = {u, v} ∈ P . However, if {u, v} is such a pair of P then these

two points must deterministically be placed in the same cluster. In other words,

φ(u) = φ(v) with probability one.

k-median with hard must-link constraints. For this setting, we use the

standard assumption used in the k-median literature, that distinguishes the points

that are clients and require service from those that can serve as facilities. Hence,

we have a set of points V , a set of facilities F , and a set P ⊆ V × V capturing

the must-link constraints. We want a subset F ′ ⊆ F , with |F ′| ≤ k, and an

assignment φ : V 7→ F ′ of the points in V to the centers chosen in F ′, such that

∀{v, w} ∈ P : φ(v) = φ(w) and
∑

v∈V d(v, φ(v)) is minimized.

k-center with generalized cannot-link constraints. Here we are given a

parameter k > 0, indicating the maximum number of centers we can open, a target

radius R, a set of cannot-link constraints P and an arbitrary non-negative function

f(P, φ) that penalizes unsatisfiable cannot-link constraints under the assignment

φ : V 7→ C, where C the set of chosen centers. The goal is to open a set of centers
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C with |C| ≤ k, and to come up with an assignment function φ : V 7→ C, such

that ∀v ∈ V : d(v, φ(v)) ≤ R and f(P, φ) is minimized. We say that a cannot-link

constraint e = {v, w} ∈ P is violated when φ(v) = φ(w). The only requirement we

impose on f is that when no constraint is violated, its value should be 0.

Knapsack-center with stochastic pairwise constraints. Each point u ∈

V has a non-negative cost cu ≥ 0, and we are given a global budget B. In this

case, we would like to find a set of centers C such that
∑

u∈C cu ≤ B. The pairwise

requirements remain the same as in k-center with stochastic pairwise constraints.

Matroid-center with stochastic pairwise constraints. Here, the input

also includes a matroidM(V, I), where V is the set of points and I ⊆ 2V contains

the independent sets of M. We would like to find a set of centers C such that

C ∈ I. Once more, the pairwise requirements remain the same as in k-center with

stochastic pairwise constraints.

k-supplier with stochastic pairwise constraints. Here the input points

are given in the form of two disjoint sets F and V . The goal is to find a set of

centers C ⊆ F , with |C| ≤ k, such that the maximum distance of any point in V

to its assigned center in F is minimized. When incorporating pairwise constraints

in this model, we assume that they are only defined between points of V and again

their definition is the same as in k-center with stochastic pairwise constraints.

No-k-supplier with stochastic pairwise constraints. This problem is

exactly the same as k-supplier with stochastic pairwise constraints, but this time

we have no cardinality constraint on the set C.

No-k-median with stochastic pairwise constraints. This variant differs
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from no-k-center in that here we are trying to and minimize the average distance of

points to their assigned centers and not the maximum radius.

4.1.2 Motivations

Since we are introducing some new problems and variants, we take a moment

here to elaborate on the motivations for these problems.

Fairness. In the area of fairness, we wish to avoid clusterings which perpetu-

ate biases in society. Here, points may be job candidates clustered by a recruitment

service to determine which job to advertise to them. The aware approach to fair

classification introduced in the seminal work of [51] assumes that we have access

to an additional metric, separate from the feature space, which captures the true

“similarity” between points (or some approximation of it). This similarity metric

may be quite different from the feature space (e.g., due to redundant encodings of

features such as race) and they argue for the notion of “treating similar candidates

similarly.” In this setting, our framework can guarantee that the probability of any

two points u and v being separated into different clusters is bounded by a function

of their similarity. In addition, the ability to accept arbitrary probabilities lets us

tune this function based on our confidence in the similarity metric.

Semi-supervised learning. Another common example of must-link and/or

cannot-link constraints is in the area of semi-supervised learning [52, 53]. Here, we

may assume some pairs of points have been annotated (e.g., by human experts)

with additional information about their similarity [54] or some data points may

88



be labeled [55, 56] allowing pairwise relationships to be inferred. We then have

to incorporate those extra requirements in our algorithmic setting. In many real-

world applications, must-link and cannot-link constraints will be included together.

However, we consider them separately here to show that must-link constraints alone

are more tractable and admit algorithms with worst case guarantees.1 In addition,

we explore soft must-link constraints where the labeler generating the constraints is

assumed to make some bounded number of errors and our model allows for multiple

labelers with differing accuracies (e.g., from crowdsourcing labels) [57,58].

OTU Clustering. The field of metagenomics involves analyzing environ-

mental samples of genetic material to explore the vast array of bacteria that cannot

be analyzed through traditional culturing approaches. A common practice in the

study of these microbial communities that we explore in detail in Section 6.1 is the

de novo clustering of genetic sequences (e.g., 16S rRNA marker gene sequences) into

Operational Taxonomic Units (OTUs) [59,60] that ideally correspond to clusters of

closely related organisms. One of the most ubiquitous approaches to this problem

involves taking a fixed radius (e.g., 97% similarity based on string alignment [61])

and outputting a set of center sequences, such that all points are assigned to a center

within the given radius [59, 62]. In this case, we do not know the number of clus-

ters a priori, but we may be able to generate many pairwise constraints based on a

distance/similarity threshold as in [60] or reference databases of known sequences.

Thus, the “no-k” variant of our problem is appropriate for this setting where the
1We refer the reader to Section 3.6 of [52] for a conjecture that must-link constraints may be

more valuable than cannot-link constraints.

89



number k should be discovered, but radius and pairwise information is known or

estimated. Other work in this area has considered conspecific probability, a given

probability that two different sequences belong to the same species (easily trans-

lated to a BSP) and adverse triplets, sets of must-link constraints that cannot all

be satisfied simultaneously (an appropriate scenario for soft must-links) [63].

Event planning. When planning multiple events serving a large geographic

area, pairwise constraints naturally supplement the commonly used k-center or k-

supplier objectives. For example, a dating service hosting speed dating events may

choose event locations to minimize client travel distance while assigning pairs of

people who are predicted to be a good match to the same event. In this case, the

compatibility of two people could reasonably be encoded as either BSP or must-

link constraints depending on our goals. In other cases, pairwise constraints may be

added between points which are nearby each other in the distance metric to facilitate

carpooling or busing [64].

Security placement. In security applications such as Stackelberg Security

Games (SSGs), a defender allocates resources so as to protect targets from an ader-

sary. Recent work in security games [65–67] and green security games [68] extends

traditionally-discrete models into continuous action spaces for the defenders and/or

attackers. In such applications, one resource might defend a certain radius, and for

points corresponding to past attacks by the same adversary (in the case of security

games) or noisy readings of an animal’s GPS tracker over time (in the case of green

security games), it may be beneficial to protect/cover them using the same resource.

This can easily be expressed in terms of BSPs or hard must-link constraints.
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Lane finding. Another example of must-link constraints is the lane finding

problem [69,70], where we refine digital maps to the lane level using data from GPS

receivers in cars. The goal is to learn the lane boundaries, essentially assigning each

data point to a lane cluster. In this case, must-link constraints can arise from the

data rather than from some external labeler. A common assumption is that cars

usually stay in one lane. Thus, two sequential data points transmitted from the same

car can be assigned a must-link constraint. While some work treats this as a hard

constraint, assuming no lane changes [69] or that lane changes are labeled [70], our

model allows for soft constraints wherein each car is allowed some bounded number

of lane changes (i.e., violated must-links between sequential pairs). We further note

that while some prior work uses the k-means objective (with centers being lines as

opposed to points), radius-based clustering is a natural fit due to the fixed width of

lanes.

Network Design. Router placement is another area where minimizing the

radius can be balanced against pairwise constraints. Power level of transmission

is related to cluster radius and it is desirable to keep it small, especially if routers

are in remote areas running on battery. At the same time, the routers themselves

could communicate using a low bandwidth network increasing latency for two points

that are not assigned to the same router. If we have identified pairs of points which

communicate frequently, then we seek a clustering which aims to minimize the radius

while assigning as many high frequency pairs as possible to the same cluster.

Combining different types of pairwise constraints. While prior work on

the examples above typically uses only one of the constraint types considered here
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(sometimes combined with cannot-link constraints in heuristic approaches), we note

that it is natural and useful to combine them in many cases. For example, in the

fairness setting discussed above, we may generate must-link constraints from some

labeling of points while incorporating bounded separation probabilities to guarantee

that we respect the similarity metric.

4.1.3 Contributions to Radius-based Constrained Clustering

Here, we summarize the contributions for these problems the will be described

in detail in this document. All of the results in Sections 4.1.4 through 4.1.8 are from

an unpublished manuscript that is joint work with John P. Dickerson, Samir Khuller,

Aravind Srinivasan, and Leonidas Tsepenekas. We describe three major areas of

contribution below and briefly mention additional results in the next section.

BSP and soft must-link constraints. The first element of our contribution

is the introduction of the novel BSP and soft must-link constraints to the problems

defined in Section 4.1.1. These types of constraints model natural applications and

demand randomized clusterings which turns out to be more challenging compared

to the standard deterministic requirements found in the literature. The authors

in [71] also consider a separation constraint, where the separation is deterministic

and depends on the underlying distance between two points. Our BSP constraints

allow room for more flexible solutions due to their stochastic nature, and also capture

more general separation scenarios, since the BSP values can be arbitrarily chosen.

General framework for approximation algorithms. Regarding technical
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results, we provide a summary in Table 4.1 of our bicriteria approximations. The first

element of each tuple is the approximation ratio achieved for the clustering objective,

while the second is the ratio by which we may violate the pairwise constraints under

consideration (e.g., achieve a separation probability of 2pe instead of pe).

In this chapter, we will only provide details of the following two main results.

We design an algorithm for the k-center problem with stochastic pairwise constraints

which achieves a 3-approximation on the optimal radius, a 2-approximation on pre-

serving BSP constraints, a 2-approximation in expectation for soft must-link con-

straints, and exactly satisfies all hard must-link constraints. Moreover, we design

an algorithm for the no-k-center problem with stochastic pairwise constraints which

has exactly the same guarantees as the one described above, but with the ratio for

the radius being 2. These algorithms take the form of a general framework using

linear programming and rounding techniques inspired by [6]. A particularly inter-

esting point is that this framework can simultaneously handle all of these types of

pairwise constraints without individual care for each specific one.

The no-k-center problem and hardness proof. As stated above, we

introduce the no-k-center problem and give an approximation algorithm for it. A

natural question is whether this problem is even hard, and we prove that it is in

fact NP-hard.
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Variation Approximation ratio
(max radius, constraints)

k-center with stochastic pairwise constraints (3, 2)

No-k-center with stochastic pairwise constraints (2, 2)

k-center with hard must-link constraints (2,1)

k-median with hard must-link constraints (9.83, 1)

k-center with generalized cannot-link constraints Not approximable

Knapsack-center with stochastic pairwise constraints (4, 2)

Matroid-center with stochastic pairwise constraints (4, 2)

k-supplier with stochastic pairwise constraints (4, 2)

No-k-supplier with stochastic pairwise constraints (1, 2)

No-k-median with stochastic pairwise constraints (2, 2)
Table 4.1: Summary of upper bounds.

4.1.4 Summary of Additional Contributions

The following are some additional contributions to these problems, the details

of which are omitted from this document.

k-center and k-median with only hard must-link constraints. Must-

link and cannot-link constraints have been studied extensively in the semi-supervised

learning literature for a variety of objectives [52], but we study them purely from

a Combinatorial Optimization perspective. The work of [71] provides a (1 + ε)

approximation for the must-link case, but only in the restricted k = 2 setting. We

are able to show that for k-center with only hard must-link constraints, we can

achieve a 2-approximation. This is tight due to the known hardness of k-center. We

are also the first to show a constant-factor approximation for k-median with only

hard must-link constraints.

Hardness of cannot-link constraints. The authors in [72] prove that even
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approximating a solution to k-center that satisfies a set of given cannot-link con-

straints is NP-hard. We significantly generalize this result, by introducing the

function f that penalizes the violation of cannot-link constraints and show that

k-center with generalized cannot-link constraints cannot be approximated at all,

unless P = NP .

Extensions of our framework to other variants. There are many natural

extensions of our algorithmic results to related problems including k-supplier, no-

k-supplier, knapsack-center, and matroid-center. We are also able to adapt the

algorithm for the no-k version to minimize the assignment cost as in the k-median

problem. These algorithms result from simple modifications to the algorithms of

Sections 4.1.7 and 4.1.8.

4.1.5 Further Related Work

Besides the related work mentioned in the previous subsection, there is also a

long line of research involving similar problems to what we study here.

For the classical formulation of the k-center problem a 2-approximation has

been known for several decades and this is the best possible assuming P 6= NP [73–

75]. The k-median problem is also well-studied and understood. The first constant

approximation for it was given in [76], and the currently best known is 2.611 by [77].

The knapsack-center and the k-supplier problems can both be approximated

within a factor of 3 [73–75]. These results are also the best achievable unless P 6=

NP [75, 78]. For the matroid-center problem, there exists a 3-approximation due
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to [79].

The work of [80] considers a variety of problems that are similar in flavor to the

ones studied here since they involve classical clustering combined with probabilistic

constraints. Namely, they study variations of k-center with outliers, but with each

point having a a probability pu ∈ [0, 1] of being covered in the solution. Then

any algorithm should come up with a randomized assignment that respects these

probabilities and minimizes the radius.

We also develop connections to the uniform-metric-labeling problem intro-

duced by [6]. In our work, the labels are centers and the cost of assigning a point

to a center/label is the distance between them. However, there are a few major dif-

ferences between the problems: 1) we must choose locations for the centers/labels

which determine the assignment cost; 2) our goal is to minimize the maximum as-

signment cost as opposed to the sum; and 3) we have a bound on the separation

probabilities for pairs of points which must be preserved locally for each pair. The

authors in [81] discuss the relation between uniform metric labeling and satisfying

separation-probabilities constraints. However, having the labels being points—and

also having to choose the centers/labels, as in our problem—poses many additional

technical difficulties.

4.1.6 A Useful Subroutine

Here, we mention a rounding procedure by [6] that we use in our results.

Consider a set of elements V , a set of labels L, a set of tuples E ⊆ V × V , and the
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following LP.

∑
l∈L

xl,v = 1 ∀v ∈ V

ze,l ≥ xl,v − xl,w ∀e = {v, w} ∈ E, ∀l ∈ L

ze,l ≥ xl,w − xl,v ∀e = {v, w} ∈ E, ∀u ∈ C?

ze = 1
2

∑
l∈L

ze,l ∀e = {v, w} ∈ E

0 ≤ xu,v, ze, ze,l ≤ 1 ∀u, v ∈ V, ∀e ∈ E,∀l ∈ L

Suppose now that we have a fractional solution to the above LP. Using only the x

values, the authors in [6] provide the following rounding procedure.

Algorithm 4: KT-Round [6]
1 while there exists some v ∈ V that is not integrally assigned to any label

l ∈ L do
2 Pick a label l ∈ L uniformly at random with probability 1

|L| .
3 Pick a value y ∈ [0, 1] uniformly at random.
4 For each v ∈ V that has not been assigned yet, assign it to l if y < xl,v.

Theorem 12 (From [6]). In polynomial expected time, KT-Round assigns each

v ∈ V to a label lv ∈ L, such that ∀e = {u, v} ∈ E : Pr[lu 6= lv] ≤ 2ze and

∀v ∈ V, ∀l ∈ L : Pr[lv = l] = xl,v.

4.1.7 k-center with Stochastic Pairwise Constraints

We now present our result regarding k-center with multiple types of stochastic

pairwise constraints. Our algorithm works in two stages. In the first, it selects a

set of centers using a standard algorithm for k-center. After that, we need to come
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up with a randomized assignment that respects all of our constraints. To achieve

this, we utilize an assignment LP that closely resembles that of Section 4.1.6. To

give some further intuition, the chosen centers of the first phase will serve as labels,

and this will guarantee that all assignments made will result in a maximum radius

that is within a small constant factor of the optimal. The main technical difficulty

lies in proving that the LP we introduce, which uses the approximate centers as

labels, yields a non-empty polytope whose fractional solutions can be rounded by

the procedure of Section 4.1.6.

To begin with, observe that the optimal radius R? must be the distance be-

tween two points, and so by performing a binary search on all of the possible O(n2)

values we can always guess it in polynomial time. Therefore, assume we have guessed

R? correctly. Based on this guess, the first stage of the algorithm uses a standard

approach for picking a set of centers C. All points are initially thought of as uncov-

ered, and C ← ∅. While there still exists some point u ∈ V that is uncovered, we

choose u as a center and include it in C, i.e. C ← C ∪ {u}. Also, all points within

radius 2R? around u are now considered covered. Notice that this process opens at

most k centers. Because R? is the optimal radius, the points that become covered

when we choose a center point u include all points that would appear in its cluster

in any optimal solution. Therefore, since |C?| ≤ k, k iterations suffice to cover all

elements.

Given the set C we write the following LP which will guide us toward an as-
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signment function φ that would satisfy the pairwise constraints. Let P ′ = P
⋃
Si∈S

Si.

∑
u∈C

xu,v = 1 ∀v ∈ V (4.1)

ze,u ≥ xu,v − xu,w ∀e = {v, w} ∈ P ′, ∀u ∈ C (4.2)

ze,u ≥ xu,w − xu,v ∀e = {v, w} ∈ P ′, ∀u ∈ C (4.3)

ze =
1

2

∑
i∈C

ze,u ∀e = {v, w} ∈ P ′ (4.4)

ze ≤ pe ∀e = {v, w} ∈ P ′ (4.5)∑
e∈Si

ze ≤ ψi|Si| ∀Si ∈ S (4.6)

xu,v = 0 if d(u, v) > 3R? (4.7)

xu,u = 1 ∀u ∈ C (4.8)

0 ≤ xu,v ≤ 1 ∀u, v ∈ V (4.9)

The variable xu,v can be interpreted as the probability of assigning point v to

center u ∈ C. To understand the meaning of the z variables, it is easier to think of

the integral setting, where xu,v = 1 iff v is assigned to u and is 0 otherwise. In this

case, ze,u is 1 for e = {v, w} iff exactly one of v and w are assigned to u. Thus, ze is 1

iff v and w are separated. We will eventually show that in the fractional setting ze is

a lower bound on the probability that v and w are separated. Constraint (4.1) simply

states that every point must be assigned to a center. Given the previous discussion,

constraints (4.5) and (4.6) express the pairwise constraints. Constraint (4.7) states

that every point can only be assigned to centers that are within a distance of 3R?
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from it, and constraint (4.8) ensures that each center should be assigned to its own

cluster. One final detail is that constraints (4.2), (4.3), and (4.4) are defined for

distinct v, w. Since it is not by any means trivial that the above LP has a feasible

solution, we need to prove that the polytope it defines is non-empty.

Lemma 8. The polytope defined by LP (4.1)-(4.9) is non-empty.

Proof. For the sake of the analysis, consider the following construction. Let C be

the set of centers obtained from the first stage and C? be the set of centers in the

optimal solution. We define a set Cu for each u ∈ C as follows. Initially, add to Cu all

u′ ∈ C? such that d(u, u′) ≤ R?. In this phase, a u′ ∈ C? cannot be included in more

than one Cu. Remember that for any distinct u, u′′ ∈ C we have d(u, u′′) > 2R?.

Thus, if we had d(u, u′) ≤ R? and d(u′′, u′) ≤ R?, the triangle inequality would be

violated. After this adding phase there may be some centers of C? that are not yet

added to any Cu. Then add u′ ∈ C? to Cu if u was the first to cover u′ during the

the first stage of our algorithm, which means d(u, u′) ≤ 2R?. Notice that the sets

Cu induce a partition of C?. Also, let φ? : V 7→ C? be the optimal randomized

assignment function. Now set:

xu,v :=
∑
u′∈Cu

Pr[φ?(v) = u′]

We will prove that this solution satisfies all the LP constraints.
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Constraint (4.1): For every v ∈ V we have

∑
u∈C

xu,v =
∑
u∈C

∑
u′∈Cu

Pr[φ?(v) = u′]

=
∑
u′∈C?

Pr[φ?(v) = u′]

= 1

The second line follows from the fact that the Cu sets induce a partition of C?. The

last equality follows from C? and φ? being parts of the optimal solution.

Constraint (4.9) holds trivially because of constraint (4.1).

Constraint (4.7): We would like to show that xu,v = 0 if d(u, v) > 3R?. From the

optimal solution, we know that Pr[d(v, φ?(v)) ≤ R?] = 1. Now, take a v ∈ V and

u ∈ C such that d(u, v) > 3R?. Suppose that xu,v =
∑

u′∈Cu Pr[φ
?(v) = u′] > 0.

This implies that there exists a center of C?, u′ ∈ Cu such that d(v, u′) ≤ R?. How-

ever, we know from the way we constructed Cu, that d(u, u′) ≤ 2R?. This violates

the triangle inequality. So xu,v must be 0.

Constraint (4.8): We have that xu,u =
∑

u′∈Cu Pr[φ
?(u) = u′]. By the way we

constructed Cu, we know that all of the centers u′ ∈ C? such that Pr[φ?(u) = u′] > 0

are included in Cu. These are exactly the centers for which d(u, u′) ≤ R?. Therefore,

xu,u = 1.
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Constraints (4.2)-(4.5): First of all, for every e = {v, w} and u ∈ C set ze,u :=

|xu,v−xu,w|. This immediately satisfies constraints (4.2) and (4.3). For that assign-

ment we have:

ze,u =
∣∣∣ ∑
u′∈Cu

Pr[φ?(v) = u′]−
∑
u′∈Cu

Pr[φ?(w) = u′]
∣∣∣

=
∣∣∣ ∑
u′∈Cu

(
Pr[φ?(v) = u′]− Pr[φ?(w) = u′]

)∣∣∣
≤
∑
u′∈Cu

∣∣∣Pr[φ?(v) = u′]− Pr[φ?(w) = u′]
∣∣∣

Therefore, we can easily upper bound ze as follows:

ze =
1

2

∑
u∈C

ze,u

≤ 1

2

∑
u∈C

∑
u′∈Cu

∣∣∣Pr[φ?(v) = u′]− Pr[φ?(w) = u′]
∣∣∣

≤ 1

2

∑
u′∈C?

∣∣∣Pr[φ?(v) = u′]− Pr[φ?(w) = u′]
∣∣∣ (4.10)

The last line follows from the fact that the Cu sets induce a partition of C?. Now

notice that:

Pr[φ?(v) = φ?(w)] =
∑
u∈C?

Pr[φ?(v) = u ∧ φ?(w) = u]

≤
∑
u∈C?

min{Pr[φ?(v) = u], P r[φ?(w) = u]} (4.11)
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To relate (4.10) and (4.11) consider the following trick.

∑
u∈C?

min{Pr[φ?(v) = u], P r[φ?(w) = u]}+
1

2

∑
u∈C?
|Pr[φ?(v) = u]− Pr[φ?(w) = u]|

=
∑
u∈C?

(
min{Pr[φ?(v) = u], P r[φ?(w) = u]}+

|Pr[φ?(v) = u]− Pr[φ?(w) = u]|
2

)
=
∑
u∈C?

Pr[φ?(v) = u] + Pr[φ?(w) = u]

2
= 2/2 = 1 (4.12)

Finally, combining (4.10), (4.11), and (4.12) we get:

ze ≤ 1−
∑
u∈C?

(
min{Pr[φ?(v) = u], P r[φ?(w) = u]}

)
≤ Pr[φ?(v) 6= φ?(w)] ≤ pe

(4.13)

The final inequality follows since φ? satisfies the stochastic constraints.

Constraint (4.6): For every Si ∈ S we have:

∑
e∈Si

ze ≤
∑
{u,v}∈Si

Pr[φ?(v) 6= φ?(w)] ≤ ψi|Si|

The first inequality is due to (4.13), while the second results again from φ? being a

feasible assignment.

Based on Lemma 8 we can find a fractional solution to LP (4.1)-(4.9). Ob-

serve that this solution satisfies constraints (4.1)-(4.4), which are necessary for the

rounding procedure of Section 4.1.6 to be applied, using V as the set of elements,

C as the set of labels, and P ′ as E. Thus, utilizing this rounding algorithm, we get
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an integral assignment, for which the probability that {v, w} ∈ P ′ are assigned to

different centers is at most 2ze. It is clear that in our problem, this solution violates

the separation probability constraints by a factor of 2, due to (4.5), and the soft

must-link constraints again by a factor of 2, this time due to (4.6) and the linearity

of expectation. Moreover, (4.7) and Theorem 12 guarantee that no point is assigned

to a center more than 3R? away from it. Also, since xu′,u = 0 and xu,u = 1 for all

u, u′ ∈ C with u 6= u′, a center can only be assigned to its own cluster, because

of line 4 of the rounding process. We conclude with a final remark regarding the

feasibility of the returned solution. Observe that any two points u, u′ ∈ C are at

distance strictly greater than 2R?. This implies that Pr[φ?(u) 6= φ?(u′)] = 1, and

hence our algorithm clusters the pair {u, u′} in the same manner as the optimal

solution. In other words, we are not required, under any circumstances, to cluster

u and u′ together, and hence having them in different clusters in our solution does

not affect feasibility. All the above discussion leads to the following.

Theorem 13. There exists a polynomial time algorithm for the k-center problem

with stochastic pairwise constraints which achieves a 3-approximation on the optimal

radius, a 2-approximation on preserving BSP constraints, and a 2-approximation in

expectation for the soft must-link constraints.

Observation 14. Note that hard must-link constraints can be easily incorporated

in this framework, since they can be encoded as pe = 0 (i.e., zero probability of

separating the points). This implies that the above algorithm can simultaneously

combine BSPs, soft must-link, and hard must-link constraints. Moreover, since our
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guarantee on BSPs is 2ze, the hard must-link constraints encoded as stated above,

will be satisfied exactly.

4.1.8 No-k-center with Stochastic Pairwise Constraints

Here, we address the variant with no constraint on the number of centers, as

defined in Section 4.1.1. At first glance, this problem may seem trivial, since in

the standard unconstrained setting, having no cardinality requirement allows one

to use all points as centers and thus achieve a maximum radius of 0. However, the

introduction of stochastic pairwise constraints adds significant complexity to the

problem, ruling out such trivial solutions.

No-k-center Hardness

Theorem 15. No-k-center with stochastic pairwise constraints is NP-hard.

Proof. We show the hardness of the no-k problem via a reduction from the minimum

k-cut problem where we are given a graph G = (V,E) with a subset of k vertices in

V that we wish to separate. We seek a cut of size at most γ that separates these k

vertices.

We create a set of points P that consists of three disjoint subsets: Pk, Pnot−k,

and Psatellites. The set Pk contains a point corresponding to each of the k vertices

that we wish to separate in the original minimum k-cut graph. The set Pnot−k

contains a point for each of the other vertices from the original problem. The set

Psatellite is a set of “dummy” points which will contain one point for each point in
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Pk and will force the points in Pk to be added to separate clusters.

We now define the metric space. All of the points in Pnot−k are co-located.

The points in Pk are each at distance greater than R from each other and distance

exactly R from all of the points in Pnot−k. Each point in Psatellites has a single

neighbor point in Pk and is at distance R from its neighbor point, distance greater

than 2R from every other point in Pk, and distance exactly 2R from the points in

Pnot−k. For constraints, we have a hard must-link constraint between each point in

Psatellites and its neighbor in Pk. For each edge e ∈ E from the min cut problem,

we form a soft must-link constraint between the corresponding points in the union

Pk ∪ Pnot−k and add it to the same set S. Finally, the fraction of S we are allowed

to violate would be γ/|E|.

Suppose now that no-k-center with stochastic pairwise constraints can be

solved in polynomial time. For the decision version of the problem this implies

that we can get a yes or no answer when asking if there is a solution for a given

target radius R. The instance we constructed above has a solution of radius R iff

the original min-cut problem has a solution of value at most γ. To see this observe

that although soft constraints are only preserved in expectation, an algorithm which

violates at most γ/|E| constraints in expectation implies that there exists a solution

which violates at most γ/|E| constraints deterministically.
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Approximation Algorithm for No-k Problems

Our algorithm consists of two stages, but differs from that of Section 4.1.7 in

that it does not start by finding centers for the unconstrained problem. The first

stage closely resembles the second stage of the algorithm of Section 4.1.7, since it

uses a similar assignment LP. In fact, a key idea behind our approach is not choosing

any centers prior to solving the LP, but instead allowing each point to be assigned

to any other nearby point. In other words, the label set L is simply V . After that,

we again use the rounding from Section 4.1.6. However, we may have to resolve

the issue of points assigned to centers, but also being centers themselves with other

points assigned to them. To do that, we perform a reassignment step, that slightly

increases the maximum radius of the constructed clustering.

We begin with the assignment LP, assuming once more that we obtained the

optimal radius R? via binary search. There are three changes to the LP from Section

4.1.7. First, the set of centers is now the entire point set (i.e. C = V ). Second,

constraint (4.8) which was stated as xu,u = 1 ∀u ∈ C is no longer used because

we cannot force every point to be assigned to itself. Instead, we replace it with

xu,u ≥ xu,v ∀u ∈ V, ∀v ∈ V . In other words, the fraction of a point u which is

assigned to itself must be greater than the fraction of any other point v assigned to

u. The third change is that we have R? in constraint (4.7).
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∑
u∈V

xu,v = 1 ∀v ∈ V (4.14)

ze,u ≥ xu,v − xu,w ∀e = {v, w} ∈ P ′, ∀u ∈ V (4.15)

ze,u ≥ xu,w − xu,v ∀e = {v, w} ∈ P ′, ∀u ∈ V (4.16)

ze =
1

2

∑
i∈V

ze,u ∀e = {v, w} ∈ P ′ (4.17)

ze ≤ pe ∀e = {v, w} ∈ P ′ (4.18)∑
e∈Si

ze ≤ ψi|Si| ∀Si ∈ S (4.19)

xu,v = 0 if d(u, v) > R? (4.20)

xu,u ≥ xu,v ∀u, v ∈ V (4.21)

0 ≤ xu,v ≤ 1 ∀u, v ∈ V (4.22)

Lemma 9. LP (4.14)-(4.22) defines a non-empty polytope.

Proof. The proof is very similar to that of Lemma 8. Suppose that we know the

set of centers C?, used in the optimal solution, corresponding to R?. Moreover,

we know that there exists a randomized assignment φ? : V 7→ C?, that satisfies

the requirements in the problem’s definition. Let xu,v := Pr[φ?(v) = u], where

the probabilities are those of the optimal assignment. Since every point must be

assigned to a center in C? under φ?, constraint (4.14) holds. Also, because every

point is assigned to a center at a distance at most R? away, constraints (4.20) also

hold trivially. Now we are going to show that constraints (4.15)-(4.18) hold and
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ze is again a lower bound on the probability that the endpoints of e = {v, w} are

separated. Set ze,u = |xu,v − xu,w|. This immediately satisfies constraints (4.15)

and (4.16). Using the same reasoning as in the proof of Theorem 8 we get the two

following inequalities:

ze ≤ 1−
∑
u∈C?

(
min{Pr[φ?(v) = u], P r[φ?(w) = u]}

)
≤ Pr[φ?(v) 6= φ?(w)] ≤ pe

∑
e∈Si

ze ≤
∑
{u,v}∈Si

Pr[φ?(v) 6= φ?(w)] ≤ ψi|Si|

To conclude we need to prove that constraint (4.21) is also satisfied. We

proceed with a case analysis. At first suppose u ∈ C?. This means that xu,u =

Pr[φ?(u) = u] = 1, since u is a center and it is always assigned to its own cluster.

Therefore, the constraint is obviously satisfied for every u ∈ C? and v ∈ V . Then

assume u /∈ C?. This implies that in the optimal solution no point will get assigned

to u, since it is not a center. Therefore, for all v ∈ V we have Pr[φ?(v) = u] = 0,

and hence xu,v = 0. This implies that constraint (4.21) is satisfied in this case as

well.

After solving the LP, we round the LP solution as in Section 4.1.7, with the

only difference that this time the label set L is V , enabling us to utilize all points as

possible centers. As we have seen before, this produces a random integral solution

which violates the pairwise constraints by a factor of 2, but this time the maximum

distance between a point and its assigned center is at most R? as mandated by the

LP. However, due to replacing constraint (4.8), some u may be chosen as a center

109



with many points assigned to it, while u itself is assigned to some other point u′.

It may even be the case that u′ gets assigned to u′′, and so on in a long chain.

This situation violates the requirement that each chosen center should be assigned

to its own cluster. To address this, we add a final reassignment step after rounding

to guarantee that points are assigned to an open center that is assigned to itself.

Throughout this reassignment process, we can’t separate any points that have been

assigned together because that could increase separation probabilities.

Let G = (V,E) be the directed assignment graph after rounding where an edge

e = (u, v) ∈ E denotes that point v ended up assigned to point u and u 6= v. If u is

assigned to itself, then there is an out-going edge from u to itself. Before we present

the actual reassignment step, we need to prove that G is a forest of directed trees

with each vertex having out-degree equal to 1.

Lemma 10. G is a forest of directed trees with each vertex having out-degree equal

to 1.

Proof. To see that each vertex has out degree equal to 1, note that each point is

assigned to exactly one center in the rounding procedure (possibly itself). To see

that G contains only trees, suppose for the sake contradiction that G has a directed

cycle. Consider the first vertex u in the cycle to be sampled by step 2 of the rounding

procedure and have vertices assigned to it in step 4. If u wasn’t already assigned to

some other center w, then due to constraint (4.21) u is assigned to itself and hence

the cycle can never close. On the other hand, if u is already assigned to some w,

then w cannot participate in the cycle. This is because u is the first vertex of the
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cycle to be chosen as a center. Therefore, since u has at most one out-going edge,

the cycle cannot close. In either case we reach a contradiction.

Now, observe that for each directed tree T of G, we can take a vertex with

out-degree 0 as the root (i.e., a center correctly assigned to itself). Let L be the

set of leaves, which contains vertices that have in-degree 0. For each vertex v, let

parent(v) be the vertex such that there exists an edge from v to parent(v) and let

children(v) = {w ∈ V | (w, v) ∈ E}. The reassignment step then works for each

tree T , bottom up. For every vertex v that is not the root, consider children(v).

Choose any w ∈ children(v) and make that a center. Afterwards, assign every

point in children(v) to w. Keep going until you only have the root and its children.

At that point you are done, and no further reassignment is needed. The invariant

this step should satisfy is that if two points are assigned to the same center by the

rounding algorithm, then after the reassignment they should also be assigned to the

same center, even if that is different than their previous common center.

Lemma 11. The reassignment step assigns every point to an open center without

separating any points which were clustered together or extending the radius by more

than a factor of 2.

Proof. By definition we always reassign points to a member of their initial cluster,

and thus never separate vertices which were assigned to the same center/cluster. In

each iteration, we simply move a center to a new point which is a member of the

cluster. To see that the radius increases to at most 2R?, note that every edge in G

is a distance of at most R? in the underlying metric space. Each vertex is assigned
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to a center at most R? away initially, and then the center is moved an additional

distance of R?.

All the above discussion leads to the following.

Theorem 16. There exists a polynomial time algorithm for the no-k-center problem

with stochastic pairwise constraints which achieves a 2-approximation on the optimal

radius, a 2-approximation on preserving BSP constraints, and a 2-approximation in

expectation for the soft must-link constraints.

4.2 Pairwise Fair and Community-preserving k-Center Clustering

We now turn our attention to a special case of constrained k-center cluster-

ing where the additional goal is to satisfy two new definitions of fairness that we

introduce. This section is joint work with Darshan Chakrabarti, John P. Dickerson,

Samir Khuller, Aravind Srinivasan, and Leonidas Tsepenekas [82].

As discussed in the previous section, clustering is one of the foundational prob-

lems in unsupervised learning and operations research. In it, we seek to partition n

data points into clusters such that points within each cluster are similar according

to some distance function. Its numerous applications include document/webpage

similarity for search engines [83,84], targeted advertising including employment op-

portunities [85], medical imaging [86,87], and various other data mining and machine

learning tasks. However, as machine learning has become ubiquitous, concerns have

arisen about the “fairness” of many algorithms, especially when the data points rep-

resent human beings. In this case, we seek additional guarantees on how people will
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be treated beyond the typical goal of pure optimization.

The k-center problem is a fundamental clustering problem. The objective is

to select k center points and assign all other points to clusters around them such

that the maximum distance from any point to its assigned center is minimized. The

problem is NP-hard with the best possible approximation factor being 2 assuming

P 6= NP [73,74]. Fairness for k-center can have many definitions depending on the

application. When the points are labeled (e.g., with racial demographics or another

protected class), a group fairness constraint may require clusters to contain a min-

imum amount of diversity among labels [88–90]. However, we consider a different

kind of fairness which bounds the probability that nearby points (presumably sim-

ilar or related) are assigned to different clusters. Our approach can also address

issues of discrimination against protected classes, albeit in a different way.

We introduce two new notions of fairness to the k-center clustering problem,

pairwise fairness and community-preserving fairness. A k-center algorithm is α-

pairwise fair if every pair of points has a probability of at most α of being assigned

to different centers, where α(·) is an increasing function of the distance between the

two points, and α(0) = 0. We define a community as any subset of points with

arbitrary diameter D and a community is preserved if its points are assigned to as

few different clusters as possible (ideally one cluster). Communities do not need to

be known or explicitly identified. An algorithm is β-community preserving if every

community has probability at most β of being partitioned into more than t clusters

where β is an increasing function of the community diameter D and a decreasing

function of the number of clusters t.
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The concept of pairwise fairness is relevant in settings where the points rep-

resent people and certain clusters may be preferable to others. We may assume

the distance between two points represents some similarity between them and by

extension, implies they should be treated similarly (assigned to the same cluster)

with some related probability. We are thus being “fair” to each point by treating

it like its nearby neighbors. The seminal work of [51] also explores this idea of a

“fairness constraint,” that “similar individuals are treated similarly,” but applied to

classification and differing from our work as discussed in Section 4.2.2.

Community preservation becomes relevant in settings where the data points

are people who gain some benefit from sharing a cluster with their near neighbors.

For example, consider the drawing of congressional districts and the practice of

gerrymandering which has gained enormous attention and study recently. In a

single-member district plurality system (e.g., the US House of Representatives),

populations are partitioned into clusters called districts which each elect a single

candidate based on a plurality vote. In this setting, a person or political party may

draw gerrymandered districts in order to divide a community of people with shared

needs, thus weakening or eliminating the power of that community to influence

elections. Many cities in the United states demonstrate this phenomenon. Notably,

the city of Austin, Texas is distributed among five separate congressional districts

while its population is small enough to fit comfortably into two. Although it is the

11th largest city in U.S., Austin residents represent a minority in each of those five

districts [91].

The US Supreme Court ruled on racial gerrymandering in Thornburg v. Gin-
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gles [92], establishing that communities of people belonging to a racial or language

group should not be fractured in order to weaken their vote (subject to very specific

criteria). However, partisan gerrymandering was recently ruled not justiciable by

that court in Rucho v. Common Cause [7], leaving it up to the voters in individual

states to advocate for some fairer approach to districting.

To combat gerrymandering, recent research has explored the use of compu-

tational approaches to draw or evaluate congressional districts [93–96], including

k-clustering approaches [97]. Like many techniques in machine learning, computa-

tional redistricting has the familiar promise of being an impartial arbiter in place

of biased or adversarial human decisions. While this promise cannot be overstated,

we know from the fairness literature that additional fairness constraints are often

necessary. An algorithmic redistricting approach may claim to be unbiased because

it does not use sensitive features such as party affiliation. However, these sensitive

features may be redundantly encoded in other features as in the case of party affilia-

tion correlating with population density in the US. Figure 4.1 gives a simple example

of how a community can be deterministically separated by k-clustering using the

k-center objective.

This notion of preserving communities can also be extended to problems where

people are assigned to a group and benefit from having some neighbors assigned to

the same group as in the problem of assigning students to public grade schools. For

this problem, Ashlagi and Shi [98] incorporated the concept of community cohesion,

keeping neighborhoods together. They illustrate their point by quoting Boston

mayor Menino [99] saying in a 2012 State of the City address, "Pick any street. A
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dozen children probably attend a dozen different schools. Parents might not know

each other; children might not play together. They can’t carpool, or study for the

same tests."

Returning to the issue of protected classes, we observe that the community

fragmentation imposed by current implementations of school lotteries disproportion-

ately affects members of protected classes. On the other hand, members of more

“privileged” classes are more likely to live in a community where assignment is not

determined by lottery.

To further elaborate on the school-choice problem, we note that centers need

not correspond to physical locations of schools. Many school districts, such as

Boston, do not use a model wherein students are always assigned to their nearest

school: e.g., a cluster could be a school bus stop for a set of students who will share

a bus which is assigned to some school. We refer to [98] for more details.

Figure 4.1: An optimal k-center clustering (k = 2) with squares denoting the centers.
This deterministically separates the community of four nearby points in the middle
even though that fractured community has small diameter.

Thus, we see that pairwise fairness and community preservation have broad

applications. Even in the apparently benign application of document clustering, we

can view a document as its author’s voice which could be negatively affected by
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an unfair clustering. These fairness constraints can be useful any time we wish to

treat nearby points similarly, grant equal access to the strength of a community, or

provide protection from efforts to weaken a community.

4.2.1 Definitions and Preliminaries

k-center clustering. In the classical (or unfair) k-center problem, we are given

a set U of n points and a parameter k as input. We assume we can compute some

distance function d(u, v) satisfying triangle inequality on any pair of points u, v ∈ U .

The objective is to choose k points in U to be centers such that we minimize the

maximum distance of any point in U to its nearest center. In clustering, each center

then defines a cluster. Typically, a point is assigned to its nearest center. However,

in fair clustering and other constrained clustering variants, we may assign points to

centers other than the nearest one to satisfy other goals.

α-pairwise fairness. We call a k-center algorithm α-pairwise fair if for every

pair of points u, v ∈ U , the probability that u and v are assigned to different

centers/clusters is at most α = α(u, v) with α(u, v) being an increasing function of

d(u, v). In this paper, we give an algorithm for the function α = d(u, v)/δ where

δ > 0 is some distance chosen by the user. As a corollary, we focus on the natural

case of δ = ψR, where R is the optimal radius that can be achieved by an “unfair”

algorithm solving the classical k-center problem without fairness constraints and

ψ > 0 is a user-specified constant. The distance R is used as a natural property

of the problem input that can suggest what is “reasonable” to expect. In practice,
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δ could be determined by domain knowledge of a specific application. We present

an algorithm that achieves (d(u, v)/δ)-pairwise fairness and show that when α =

(d(u, v)/(ψR)), the price of fairness is not too bad using both theoretical bounds

and experiments.

β-community preserving. We define a community as any subset of points with

arbitrary diameter D, and a community is preserved if its points are assigned to as

few different centers/clusters as possible (ideally just one cluster). In our model,

communities do not need to be known or explicitly identified as part of the input.

An algorithm is β-community preserving if every community has probability at most

β of being partitioned into more than t clusters. Here, β is an increasing function of

the community diameter D and a decreasing function of t. In our algorithm, every

community has probability at most β = (D/δ)t of being partitioned into more than

t clusters, t ≥ 1, where δ > 0 is some distance chosen by the user (This probability

is a decreasing function of t since we may assume D/δ < 1: if D/δ ≥ 1, then

the probability is trivially at most 1). As with pairwise fairness, we examine the

natural choice of δ = ψR. Here, we show that we can give the guarantee that every

community has a probability of at most β = (D/(ψR))t of being partitioned into

more than t clusters. We include t because it captures how fragmented a community

becomes more than simply whether or not it has been separated.

Randomization. Both definitions of fairness assume a randomized algorithm and

the probabilities discussed are over the randomness in the algorithm. As with some
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other fairness problems (e.g., fair allocation of indivisible goods), randomness is es-

sentially required to achieve meaningful gains in fairness. Otherwise, it is easy to

construct worst case examples where a fair deterministic algorithm must place all

points in one large cluster while a fair randomized algorithm could achieve results

close to the unfair optimal. Randomization can even be necessary to meet certain

fairness criteria such as the right to a chance to vote in a district with voter distri-

bution similar to a randomly sampled legal district map [100]. We further note that

our pairwise fairness definition makes no assumption of independence or correlation

between the separation probabilities of different pairs of points. It is an individ-

ual guarantee for each pair of points. Consideration of multiple points at once is

addressed by the community preservation definition.

Focus on δ as a function of optimal unfair radius R. We consider the special

case of δ depending on R in our analysis because R is a reasonable threshold of

nearness related to the properties of a given dataset and the k-clustering task at

hand. For example, if a community is geographically larger than the optimal unfair

clusters themselves, it may be reasonable to partition this community into multiple

clusters whereas a small community which can fit easily into a cluster should have

some chance of being preserved.

Approximation ratio and price of fairness. The approximation ratio of an

algorithm for an NP-hard minimization problem like k-center is typically defined

as a bound on the ratio of the algorithm’s solution to the solution of an optimal
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algorithm. The price of fairness for a fair variant of a problem is the ratio of the best

solution for the fair problem to the best solution for the unfair problem. In our case,

the best benchmark we are able to compare our fair algorithm to is the optimal unfair

k-center solution. Thus, our approximation ratios simultaneously show a bound on

the price of fairness for our proposed fairness definitions. This price of fairness can

affect the choice to use a fair algorithm for both practical and legal reasons. From a

legal perspective, the disparate impact of an unfair algorithm can be permitted due

“business necessity” if the added cost of fairness is too burdensome [101,102], but a

low price of fairness could potentially preclude this defense.

4.2.2 Related Work

There is a long line of work on the classical k-center problem. A 2-approximation

is known and is the best possible assuming P 6= NP [73–75]. Followup work

has studied many variations of the problem including capacitated [103, 104], con-

nected [105], fault tolerant [104,106], with outliers [87,107,108], and minimum cov-

erage [109]. Other settings include streaming [107,110,111], sparse graphs [112], and

distributed algorithms for massive data [87]. However, our formulation of pairwise

fairness and community preservation, has not been studied.

On the fairness side, our notion of pairwise fairness is partially inspired by [51].

That work focused on binary classification as opposed to clustering and used tech-

niques from differential privacy to achieve fairness guarantees. More specifically,

they assume access to a separate similarity metric on the data points and require
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similar points to have similar distributions on outcomes. While our model is related,

it differs in two crucial ways. First, we do not use (or require) a separate similarity

metric. The similarity of two points is defined by the same metric space we are clus-

tering in. Second, we bound the probability that two points are actually assigned

to the same cluster rather than having similar distributions. This is important for

applications in which nearby points derive a benefit from being clustered together or

when the meaning of a cluster is not defined prior to the realization of assignments.

For k-center specifically, [88] considered an entirely different “balance” con-

straint definition of fairness (aka group fairness) wherein each point is given one of

two possible labels and each cluster should contain a minimum percent represen-

tation of each label. Follow-on work expands their model [113, 114] and addresses

concerns in privacy while [115] applied their definition of fairness to spectral cluster-

ing. Additional work improved scalability [90] and improved approximation ratios

while allowing an unfair solution to be transformed into a fair one [89]. Separately,

and motivated by the bias mitigation in data summarization, [116] also looks at a

different form of k-center fairness. Zemel et al. [117] address fairness in classification

by first transforming the input data into an intermediate representation that bal-

ances goodness of representation with removal of certain traits before classification

is performed. This first step is a form of clustering with fairness concerns. Finally,

there are fair service guarantees for individuals that bound the distance from each

point to its nearest center (or facility) [118–120].

Regarding community preservation, [98] observed that assigning students to

schools via an independent lottery mechanism fractures communities by sending
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neighboring students to different schools. They proposed a correlated lottery al-

gorithm that that maintains the same expected outcomes for individual students

while preserving “community cohesion.” We note that they define communities by

partitioning a city into a grid with each square representing a community, whereas

we allow any bounded diameter subset of points to be a community.

Bounding the probability of separating nearby points and similar negative-

binomial-type (or discrete exponential) distributions have been used in numerous

other settings. Some examples include locality sensitive hashing (LSH) [121–123],

randomly shifted grids [124], low diameter graph decompositions [125], and random-

ized tree embeddings [126,127]. Our work differs from this past work in the modeling

of fairness applications and the challenge of balancing fairness with the k-center ob-

jective which is not guaranteed in something like LSH. More commonly, an approach

like LSH is used to speed up and scale clustering algorithms with approximate near

neighbor search or partitioning data for parallel and distributed algorithms.

4.2.3 Our Contributions

In addition to presenting new definitions of fairness in clustering, we show how

any algorithm for the k-center problem can be extended to ensure α-pairwise fairness

and β-community preservation at the expense of a log k approximation factor (also

price of fairness). We bound our fair algorithm in comparison to the optimal radius

achieved in the “unfair” classical k-center problem. There are two reasons for this.

One is that the “unfair” optimal serves as the best known lower bound to the fair
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optimal. The other is that it captures the price of fairness. In other words, it

upper bounds the price we must pay in expanding the radius in order to achieve our

fairness objectives.

Theorem 17. There exists an algorithm which finds an O(log k)-approximation

to the k-center problem (i.e., the maximum cluster radius is at most O(R log k))

with high probability and such that every pair of points u and v is separated with

probability at most α = d(u, v)/(ψR), where R is the maximum radius obtained by

any chosen k-center algorithm and ψ > 0 is a user-specified constant.

The community preserving property in Corollary 2 follows from the pairwise

guarantee. A strength of this formulation is that we do not need to explicitly identify

communities in the data to preserve them with nontrivial probability.

Corollary 2. There is an efficient O(log k)-approximation algorithm for k-center

(i.e., the maximum cluster-radius is at most O(R log k)) with high probability and

such that every subset of points with diameter D is partitioned into more than t

separate clusters, for any t ≥ 1, with probability at most β = (D/(ψR))t where R is

the maximum radius obtained by any chosen k-center algorithm. Here, ψ > 0 is a

user-specified constant.

For both Theorem 17 and Corollary 2, we note that for some pairs of points (or

communities) the value of α (or β) may be greater than 1 and therefore not a valid

probability. For these cases, the bound on fairness is trivially true. The constant

factors in our big-Oh notation also depend on the constant ψ and our experiments

in Section 6.1.10 show that there are not large hidden constants in practice.
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Beyond theoretical results, we further explore the algorithm experimentally in

Section 6.1.10 on 40 different problem instances of a benchmark dataset to show

that it performs as expected or better. On the benchmark problems, we illustrate

in Figure 4.2 how tuning a parameter in our algorithm can adjust the trade-off

between fairness and minimizing the cluster radius. In Section 4.2.6, we evaluate

our algorithm on a real dataset over different target numbers of clusters. The results

suggest that our fair approach is not only more fair, but more consistent in its fairness

as k varies when compared to a standard “unfair” algorithm. Thus, we can remove

the ability of a bad actor to cause unfairness by adjusting the number of clusters k.

While our theoretical and experimental analysis focuses on approximating the

radius and fairness, we note that the running time of our proposed algorithm is

dependent primarily on the algorithm/heuristic for the initial clustering. Our re-

assignment algorithm is rather fast with a running time of O(kn). In practice, the

running time is dominated by the initial clustering rather than our reassignment

algorithm.

4.2.4 The Fair Algorithm

We show how to extend any k-center algorithm to guarantee pairwise fairness

at the expense of a larger approximation factor. The idea is to first run an “unfair”

k-center algorithm and order the clusters arbitrarily. Then, one-by-one, we expand

the radius of each cluster by a value sampled independently from an exponential

distribution. Any point which falls within the radii of more than one of these
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Algorithm 5: FairAlg
1 Step 1: Run any chosen k-center algorithm and order the clusters
arbitrarily from 1 to k. Let R be the maximum distance of any point to
its center.

2 Step 2: Let Ci be a set of points denoting cluster i. Let ci ∈ Ci be the
center of Ci and Ri be the radius of Ci.

3 Step 3: Treat all points including centers as “unclustered” and construct
a new set of clusters denoted C ′i.

4 for i = 1 to k do
5 4: Sample an independent random variable xi from an exponential

distribution with parameter λ = 1/(ψR). Let Xi be the realization of
that random variable.

6 5: Construct cluster C ′i by adding every unclustered point within
radius Ri +Xi from original center ci.

7 6: If ci was unclustered at the start of this iteration designate it as the
center c′i of C ′i. Otherwise, if ci has been added to a previous cluster
Cj, j < i, then choose any other previously unclustered point in C ′i to
be the center c′i. If no such point exists, call the cluster empty.

expanded clusters is assigned to the earliest one in the ordering.

We use Ci to refer to the ith cluster found by the initial “unfair” algorithm

and ci to refer to its center. Similarly, we use C ′i to refer to the ith expanded cluster

that we will finally output and c′i to refer to its center. For readability, we also refer

to Ci and ci as original and C ′i and c′i as final. Let Ri = maxu∈Ci d(ci, u) be the

radius of Ci and R = maxiRi be the maximum radius of any cluster found by the

original clustering step. Let ψ be any chosen constant greater than 0. The approach

is summarized in Algorithm 5.

We note that in the for loop of steps 4 to 6 of Algorithm 5, the centers 1

through k are processed in an arbitrary order. Because of this, our proofs also hold

if the center are processed in a random order or some particular order aligned with

another side objective.
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We first prove that Algorithm 5 achieves α-pairwise fairness for α = d(u, v)/(ψR).

At a high level, the memoryless property of exponentially distributed random vari-

ables allows our algorithm to achieve the guarantee in Lemma 12.

Lemma 12. For any pair of points u and v with distance d(u, v), the probability

that Algorithm 5 separates u and v into two separate clusters is at most d(u, v)/(ψR)

where R is the maximum radius obtained by the initial algorithm used in step 1 and

ψ > 0 is a user-specified constant.

Proof. For an arbitrary pair of points u, v ∈ U , consider the first iteration i in which

at least one of the points is added to a final cluster C ′i. Without loss of generality, let

u be the closer point to the original center ci and note that d(ci, v)−d(ci, u) ≤ d(u, v)

due to triangle inequality. If d(ci, v) < Ri, both points will be added to C ′i regardless

of the value of Xi and the probability of separating them is 0. Otherwise, the

probability of separating them is the probability that the value Ri+Xi falls between

max(d(ci, u), Ri) and d(ci, v) given that Ri +Xi > d(ci, u).

Pr[u and v are separated by C ′i |Ri +Xi > d(ci, u)]

≤ 1− e−λd(u,v) = 1− e−d(u,v)/ψR

≤ d(u, v)

ψR

We now bound the amount that the radius of any cluster will increase beyond

the maximum value R achieved by the original “unfair” algorithm from step 1 of
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Algorithm 5.

Lemma 13. The maximum radius of a cluster found by Algorithm 5 is O(R log k)

with high probability.

Proof. We start by upper bounding the probability that any cluster C ′i contains a

point at distance greater than O(R log k) from the original center ci of Ci. This will

suffice to prove the lemma for the clusters where c′i = ci.

Pr[∃Xi > R log k] ≤ k Pr[Xi > R log k]

= ke−λR log k = ke− log k/ψ

= k1−1/ψ

Now, suppose ci was added to some cluster C ′j, j < i, and could not be chosen as the

final center of C ′i. Then the chosen center c′i of C ′i must be at most R log k distance

from ci with high probability by the above bound and the fact that Xi and Xj were

sampled independently. Thus, by triangle inequality, the radius of such a cluster

would be at most 2R log k = O(R log k) with high probability.

Lemma 14 extends Lemma 12 to community preservation.

Lemma 14. For any subset of points S with diameter D, the probability that Algo-

rithm 5 partitions S into more than t separate clusters, t ≥ 1, is at most (D/(ψR))t

where R is the maximum radius obtained by the initial algorithm used in step 1 and

ψ > 0 is a user-specified constant.
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Proof. To bound the probability of the number of final clusters S is partitioned

into, let j be the index of the last cluster to recruit a member of S. Let CS be

the set of clusters where some w ∈ S has d(ci, w) ≤ Ri + Xi and i ≤ j. In other

words, CS contains the only clusters which could possibly separate S. We observe

that the final number of clusters is upper bounded by the number of clusters in CS

whose radii around original center ci separates S regardless of whether the cluster

C ′i was actually able to recruit any unclustered points from S. We note that such a

separation can increase the number of partitions by at most one.

By the same arguments as in the proof of Lemma 12, given that at least one

point w ∈ S has d(ci, w) ≤ Ri +Xi, the probability that the radius around original

center ci separates S is at most d/ψR. This follows from taking u and v to be the

points in Si which are closest and farthest, respectively, from the center and upper

bounding d(ci, v) − d(ci, u) ≤ d(u, v) ≤ d. We further note that if any C ′i ∈ CS

fails to separate S, then any unassigned points in S will be assigned to C ′i and no

future clusters will be able to separate S. Thus, for S to be split into more than t

clusters, the first t clusters in CS must each separate S. This occurs independently

with probability at most d/ψR for each cluster after conditioning on the clusters’

membership in CS.

4.2.5 Benchmark Dataset Experiments

We ran experiments on the well-known p-median dataset from OR-Lib [128]

which contains 40 different problem instances. It was originally generated for the
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p-median problem [129], but has since been commonly used to evaluate k-center

algorithms and heuristics [130,131]. Another advantage to benchmarking with this

data is that the optimal radius is now known for each of the 40 problem instances

in the dataset. The specified number of centers, k, varies across the instances with

the smallest being k = 5 and the largest being k = 200. We evaluate our approach

on all 40 problem instances.

Experiment Design

We compare three “unfair” algorithms to multiple versions of our fair algorithm

using different parameters. In all cases, we use d(u, v)/RScr as the target separation

probability bound where RScr is the radius found by Scr heuristic defined below.

This choice is somewhat arbitrary, but it provides a fixed target to compare the

different algorithms and the Scr radius serves as a fairly close approximation to unfair

optimal, which we assume is unknown to the algorithms. Thus, if someone were to

apply our algorithm in practice, the radius found by Scr (or other chosen heuristic)

would be their best guess at the optimal radius. Each of the three deterministic

“unfair” algorithms was run once per dataset, while each fair algorithm was run for

10,000 trials in order to evaluate average performance.

The “unfair” algorithms. In order to compare and evaluate our algorithm, we

implemented three algorithms for the classical k-center problem: Gonz1, Gonz+,

and Scr. The first two are variations of the famous Gonzalez algorithm [74]. While

they do not achieve the strongest results on this dataset, they give theoretically op-
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timal approximations and are known for their exceptional speed and simplicity. The

third algorithm, Scr, achieves nearly optimal results [130] on the dataset. Recent

heuristics have yielded marginal improvements over Scr [131], but we choose Scr be-

cause it achieves nearly the same results while remaining fairly simple to implement

and reproduce.

Fair algorithm implementation. Our implementation of the fair algorithm uses

Scr to find the initial set of centers. We choose Scr since it gets the tightest radius

to begin with. We parameterize our algorithm with the mean, 1/λ, of the expo-

nential distribution we sample from, where λ is the exponential parameter used in

Algorithm 5. For our “Exact” fair algorithm we set λ = 1/RScr which corresponds

to a theoretical separation ratio at most d(u, v)/RScr for each pair of points (u, v).

For our “Medium” fair algorithm, we set λ = 4/RScr since RScr/4 is our target com-

munity radius described in our comparison criteria below. Finally, for our “Tight”

fair algorithm, we simply divide our mean by another factor of 4 to get λ = 16/RScr.

Using three different parameters gives some indication of the compromise that can

be reached between minimizing the radius and optimizing the fairness.

In addition, our implementation makes two natural modifications to Algo-

rithm 5 that do not affect the theoretical bounds. First, the list of centers found

in Step 1 is uniformly randomly permuted before growing the clusters. Second, if

we have to choose a new center point in Step 6, we choose the point in the cluster

which minimizes the radius as opposed to any arbitrary point.
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Comparison criteria. We compared the algorithms in terms of three criteria:

radius, pairwise fairness, and community preservation. First, we looked at the ap-

proximation of the radius with respect to the unfair optimal. This is the ratio of

the radius found by each algorithm to the optimal radius (known for this dataset

due to [132–134]). For the randomized algorithms, we give the average radius across

all trials. More specifically, this is an average taken over the max radius of each

trial derived from the cluster with the largest radius in keeping with the k-center

objective.

To evaluate the pairwise fairness, we considered only pairs of points with

d(u, v) ≤ RScr (i.e. target maximum separation probability at most 1). For each

such pair, we compute the ratio of the algorithm’s separation probability to the

target maximum separation probability. For the deterministic algorithms, the nu-

merator of this ratio is 0 (not separated) or 1 (separated). For the randomized

algorithms, the separation probability is given as the number of trials where the

points were separated divided by the total number of trials (10,000). Then, for each

algorithm, we take the worst separation probability ratio among all pairs of points

with distance at most RScr. For the deterministic algorithms this is determined by

the nearest pair of points which is separated.

In order to address communities, we needed to define some specific type of

community since analyzing every possible subset of points is infeasible. In practical

applications there may be some specific target communities based on domain infor-

mation. However, for this experiment we say that every point defines a community

including itself and all other points within a distance of at most RScr/4 from it. In

131



practical terms, each point could be a person and its community could be that per-

son’s neighborhood. We assume the community radius is smaller than the clustering

radius as is the case with real world examples such as congressional voting districts.

For each point’s community, we count the number of different clusters its points

have been assigned to. To show the worst case, we highlight the most fractured

community, meaning the community split into the most different clusters. For the

randomized algorithms, each community gets an average value over all trials and we

note the community with the worst average.

Experimental Results

Figure 4.2 summarizes the main results of our k-center benchmark dataset

experiments. Overall, we see a clear trade-off between fairness and minimizing the

radius with the three different parameters of our fair algorithm.

For the maximum pairwise separation ratio, even our Tight algorithm is more

fair than any of the unfair algorithms across almost all instances without paying

too much cost in terms of larger cluster radii. This implies that even slight random

perturbation of the clusters can dramatically improve fairness with limited impact

on the maximum radius of the solution. The pairwise separation ratios for the

Exact fair algorithm are roughly 1 or less. Some pairwise separation ratios slightly

above 1 are to be expected even for Exact since this is the worst performance of any

pair of points in a given problem instance and we are running only 10,000 trials of

each randomized algorithm. Likewise, the pairwise separation ratios of the Medium
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Figure 4.2: Comparison across all 40 instances of the pmed dataset. The three
shades of blue circles show our algorithm parameterized by λ of 16/RScr, 4/RScr, and
1/RScr, while other shapes show the unfair algorithms. Points closer to the bottom
are more fair while points closer to the left represent solutions with a smaller radius.
Our algorithm outperforms the unfair algorithms in both separation ratio (left) and
community preservation (right) at the expense of radius as expected. Comparing
the three versions of the fair algorithm, we see a clear trade-off between fairness and
minimizing the radius.
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fair algorithm are roughly upper bounded by 4 as expected. In several cases, the

pairwise separation ratio for Exact is actually below 1 meaning that every pair of

points (u, v) in those instances with d(u, v) ≤ RScr is separated with probability less

than d(u, v)/RScr.

With respect to community preservation, we can see that the performance of

Tight approaches the two Gonzalez algorithms and is only slightly fairer than the

unfair algorithms. However, the maximum average number of different clusters for

Exact is always less than two. On some instances, Scr separates some small com-

munity of nearby points into 6 or more clusters while Exact gives every community

a guarantee that it will be preserved in a single cluster with fairly good probability.

In summary, the fair and unfair algorithms perform as expected yielding a

reasonable trade-off between fairness and small radii. The effect of adjusting the λ

parameter varies based on the structure of the input. In many cases, using a smaller

λ than Exact could be a desirable heuristic if assumptions can be made about the

input. Another option, time permitting, is to perform a binary search for the λ

which best satisfies a desired balance of fairness and cluster tightness.

4.2.6 Experiments on Real Data

We ran additional experiments on a sample of 1,000 points from the adult

dataset [135]. To create the metric space, we normalized the numeric features of

age, education-num, and hours-per-week and used them to define points in euclidean

space.
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Figure 4.3: Comparison over different numbers of clusters, k, from 2 to 20 on the
adult dataset. We measure the maximum pairwise separation ratio (left) and maxi-
mum number of different clusters any community is separated into (right). In both
cases, lower values on the y-axis are more fair. We compare Scr to three versions
of our algorithm parameterized by λ of 16/RScr, 4/RScr, and 1/RScr. We see that
the most extreme fair algorithm, λ = 1/RScr, is not only the most fair, but most
consistent across different values of k.
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Figure 4.4: Comparison over different numbers of clusters, k, from 2 to 20 on the
adult dataset. Here, we measure the maximum radius. In both cases, lower values
on the y-axis represent more optimally compact clusters. We compare Scr to three
versions of our algorithm parameterized by λ of 16/RScr, 4/RScr, and 1/RScr. We
see that the more extreme fair algorithms (smaller λ parameter) suffer a greater
price of fairness, but this is constrained within the theoretical bounds shown in
Section 4.2.4.

Experimental Design

The design is similar to Section 6.1.10 with the following changes. To evaluate

performance while changing the parameter k, we now study a single dataset, but

vary the number of clusters, k, from 2 to 20. Given that we do not know the optimal

radius for this data under different numbers of clusters, we use the actual radius

instead of a ratio in Figure 4.4. In addition, we only consider one “unfair” algorithm,

Scr, which gets closest to the optimal radius in practice.
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Experimental Results

Figure 4.3 shows that the fairer algorithms are more fair as expected. However,

we also see that as we scale the parameter toward greater fairness, the fairness level

becomes more consistent and robust to different values of k. Figure 4.4 illustrates

the price of fairness we pay in terms of the maximum radius of any cluster. In all

plots, we see predictably strange behavior at the extreme low values of k (e.g., when

k = 2, the maximum number of clusters a community can be fractured into is at

most 2).

4.2.7 Future Directions

We introduced and motivated the concepts of pairwise fairness and community

preservation to the k-center clustering problem. To explore the practicality of such

constraints, we designed a randomized algorithm that can be combined with existing

k-center algorithms or heuristics to ensure fairness at the expense of the objective

value. We validated our algorithm both theoretically and experimentally.

In terms of future work, there are several open questions around how these

new fairness concepts can be combined with other constraints or objectives including

other definitions of fairness. For the k-center problem itself, it is unknown whether

our bounds on fairness or the objective function can be improved. Further, one

could ask if these fairness properties can be extended to variants of k-center such

as capacitated k-center which is well-motivated by many real world applications.

Other natural constraints to combine with include other notions of fairness or linkage
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constraints as seen in semi-supervised learning. We note that pairwise fairness and

community preservation can be directly at odds with group fairness (e.g. if points

belonging to the same group tend to be close together in the metric space). Finding

the trade-off between these fairness concepts is an open problem although it is not

clear that many application contexts would require both at the same time. Finally,

these definitions could be extended to other common objectives such as k-median

and k-means. Our algorithm targets α and β which are functions of the unfair

radius R, a natural parameter given the k-center objective. However, for k-median,

we may instead use the average distance from points to centers. While it is easy to

see how our fairness definitions could apply to other objectives, our algorithm does

not extend to these objectives.
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Chapter 5: Effects of Gerrymandering Regulation

This chapter represents joint work with Aravind Srinivasan and Shawn Zhao [136].

5.1 Introduction

Computer algorithms and automated systems have become crucial players in

the game of drawing and evaluating US electoral districts. Governments have in-

creasingly utilized software to draw districts that influence the outcomes of elections

(e.g., to favor a particular political party, incumbent politician, or racial group).

Conversely, academics and enthusiastic citizens have proposed algorithms that pur-

port to be fair alternatives [93, 97, 137], a familiar promise of technology that does

not always hold true even with the best of intentions. More recently, major US court

cases have highlighted computational approaches to evaluate whether a district map

is gerrymandered to favor a particular political party [138–141]. These legal chal-

lenges include a Pennsylvania Supreme Court case which led to the redrawing of

congressional districts in that state [142] and a recent landmark US Supreme court

case [7].

At the heart of algorithms claiming to draw fair, unbiased districts or evaluate

existing maps, we find a series of metrics and constraints that attempt to define
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what makes a district fair, unbiased, or even legal. Our goal in this work is to

illustrate unexplored or under-explored aspects of how our choice of metrics and

constraints can influence voter behavior and how regulations based on these metrics

can be circumvented. In the context of evaluating maps for partisan gerrymandering,

we show that using past voting data to evaluate maps can incentivize strategizing

among voters even in two-party single-member district plurality systems.

In some sense, strategic voting in an election is not inherently bad. The

seminal works of [143, 144] showed that elections with more than two candidates

are not strategyproof. We see this play out regularly in US elections when a voter

prefers a third party candidate, but chooses to vote for their favorite among the

two major-party candidates. However, there are some clear negative effects. First,

strategizing reduces the effectiveness of gerrymandering regulations if players can

get around them even for single election cycles. Second, the ability to strategize may

not be fairly distributed, disenfranchising voters who are less able to strategize. The

work of [145] describes this disparate effect in terms of classifiers. In the specific

case of redistricting and the strategic act of gerrymandering itself, a political party

with a rural voter base can have more power to gerrymander in its favor than an

opposing party with an urban base [146].

The ruling in the most recent US Supreme Court case on partisan gerryman-

dering has essentially left it to states to decide how they will address the issue, if

at all [7]. In doing so, state governments will need to consider the downstream

effects of how they choose to measure and regulate partisan gerrymandering. To

that end, we initiate the study of how measuring gerrymandering using past voter
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behavior can incentivize strategic voting to circumvent regulations. We show that

careful scrutiny should be given to any measurement which uses past voter behavior

to evaluate and affect the choice of district maps.

5.2 Problem Description and Definitions

In this section, we outline many problems and definitions associated with dis-

tricting and gerrymandering, including proposed methods to measure gerrymander-

ing or draw fairer districts. We begin with some basic definitions, then introduce

the growing role of computer science in combating gerrymandering. Finally, we

summarize recent attempts to evaluate or draw districts. Throughout the paper, we

restrict our discussion to the United States political system, where gerrymandering

has become a highly contentious issue, as a guiding example.

5.2.1 Basic Districting and Gerrymandering Definitions

In US politics, many representatives in both federal and state governments

are elected via single-member district plurality systems where voters are partitioned

into districts which each elect representatives with a plurality vote. A plurality vote

awards a seat in government to the candidate who has received the most votes even if

that candidate has not received a majority of the total votes cast. Election districts

may be redrawn every 10 years following a population census. This ensures that

districts respond to population shifts over time and remain reasonably balanced in

terms of the number of voters per district to avoid vote dilution.
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Historically, state governments have been charged with drawing new maps,

and the party which holds a majority of seats in a state’s government may control

the outcome of this process. More recently, some states have transitioned to a

system where an “independent” commission draws the maps. Such commissions

have been controversial in terms of both how their independence can be guaranteed

and whether they violate the US Constitution which assigns this duty to state

governments. Nevertheless, the US Supreme Court has upheld the right of voters in a

state to give redistricting authority to an independent redistricting commission [147].

The present work mainly explores models where the party controlling the majority

of seats also controls the drawing of districts subject to some restrictions. However,

our results may be useful in understanding how to regulate independent commissions

as well.

The strategy of gerrymandering is to influence the outcome of an election

through the process of drawing districts. This can be done by packing many voters

from one group into a single district where they will cast more votes than needed to

win, or cracking voters from that group into multiple districts where they will cast

votes for losing candidates in each district. In both packing and cracking, the idea

is to make the opposing group “waste” as many votes as possible while making one’s

own group waste fewer votes.

The type of gerrymandering depends on the type of groups being targeted and

the intended outcome. Partisan gerrymandering attempts to favor one political

party over another. Similarly, racial gerrymandering attempts to favor one racial

group over another. Incumbent gerrymandering is slightly different in that it creates
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a bias toward re-electing an incumbent candidate. The primary focus of this paper

is partisan gerrymandering. However, these different types are often entangled such

as when there is a correlation between racial demographics and party membership

or when partisan gerrymandering leads to the creation of “safe districts” where

incumbents have an advantage. In fact, laws that prevent the cracking of racial

groups have been used to justify packing members of a racial group for the apparent

purpose of partisan gerrymandering as in Florida’s famously snake-like District 5.

The space of legal district maps is restricted by a set of (sometimes compet-

ing) constraints and objectives that vary from state-to-state. The most common

restrictions are contiguity, community integrity, population balance, hole-freeness,

and compactness. Contiguity simply means that districts should be contiguous

spaces although in the more extreme cases, they may only be connected by nar-

row paths. Community integrity refers to the objective that districts should avoid

splitting defined communities (e.g. counties, towns, etc.) if possible. However, com-

munities are routinely split ostensibly to meet other objectives. Population balance

is the objective that the number of voters in each district should be as balanced

as possible in order to give roughly the same weight to each person’s vote. The

degree to which population balance is violated can depend on other considerations

such as community integrity, and congressional district population sizes within a

state can vary by as much as 897,080 in Texas District 22 to 713,480 in Texas Dis-

trict 13 [148]. There are also several single-district states where the district size

is determined solely by the state population and may be larger than the national

average or smaller districts. Montana’s at-large district has an estimated popula-
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tion of 1,050,493 compared to one of the smallest districts, Rhode Island’s District

2 with 520,389 [148]. Hole-freeness states that no district should be completely sur-

rounded by one other district. Finally, compactness is perhaps the least consistently

defined goal with many possible definitions of compactness existing. These include

k-median-like objectives minimizing the average distance a voter has to travel to a

center point in their district and objectives minimizing ratio of area to perimeter

(see Section 5.2.5 for a discussion of algorithms that use these objectives).

5.2.2 Using Computer Science to Combat Partisan Gerrymandering

There are two main directions where computer science has become involved

in combating partisan gerrymandering: verifying whether a given map is unfairly

gerrymandered and drawing fair maps. Crucial to both directions is the question of

how to measure gerrymandering and define fairness in this context. This is clearly

true for a verifier, and an algorithm for drawing districts must have some notion of

where the line is between fair and unfair in order to avoid crossing it.

Unfortunately, it is not simple to measure whether partisan gerrymandering

has occurred nor is it straightforward to say that partisan gerrymandering is “un-

fair” in the US legal context (e.g. unconstitutional). While gerrymandering may

often seem obvious just by looking at a map, this so-called “eyeball test” is not

robust [149]. It is possible that a strange looking map is actually subject to the ge-

ography of a state with respect to both natural and artificial features that perturb

distances between voters such as mountains or highways. On the other hand, it is
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also possible for a reasonable looking map to be gerrymandered. Then, supposing

we have some test to show that a map is gerrymandered, we must further show that

the practice we measure violates the law in some way. In the US legal system, the

mere practice of gerrymandering is not illegal even though the concept of candidates

choosing their voters instead of the other way around may violate many citizen’s sen-

sibilities. For example, the US Supreme Court has ruled that racial gerrymandering

is unconstitutional while incumbent gerrymandering is allowed [92,150].

5.2.3 Approaches to Measurement

Here, we define and discuss some of the most well-known approaches to mea-

sure partisan gerrymandering. These include the look test, outlier detection, propor-

tionality, competitiveness, the efficiency gap, and compactness. Our work focuses

primarily on outlier detection and proportionality, but is also relevant to any mea-

surement approach using past voting data.

One seemingly obvious standard which may use past voting data is proportion-

ality. This is the idea that the proportion of seats assigned to each party should be

close to the proportion of votes received by each party. However, there are challenges

to this standard as well. Drawing a map which achieves proportional representation

is impossible for states like Massachusetts where voters of the two parties are too

evenly distributed [151] or single-district states. More importantly in the US, courts

have rejected proportionality tests. For the sake of analysis and comparison to other

tests, we consider an achievable proportionality concept of maximally proportional
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maps. A maximally proportional map is one which comes as close as possible to

allocating seats proportionally among all known maps (given the large search space,

we may not know the true most proportional maps).

More central to our work is the recent study of outlier maps. An outlier map

is one which is abnormal by some measure of representation. In this paper, we use

the natural measure of seat count awarded to each party for a map based on past

voting data. Thus, a map may be an outlier if it awards 3 out of 11 total seats to a

given party while almost every other legal map awards 4 or 5 seats to that party.

A key challenge in detecting an outlier map is that it is difficult to determine

what an average map is. The space of all possible maps is too large to check each one.

This has led to approaches that aim to approximately randomly sample from the set

of all possible legal maps using Markov Chain Monte Carlo techniques [138–140].

One can generate thousands of random maps and use past voting data to determine

how many seats each party would win on each map assuming voters were to vote

the same way they have in the past. We can compare a given map to this random

sample to determine if it is an outlier. The seat count measure of representation we

consider is used in [139]. Other works use more fine-grained measures that capture

smaller changes in the distribution of voters to districts [138].

Additional measures which use past voter data include competitiveness and

the efficiency gap. The competitiveness of a district attempts to capture the extent

to which it might be won by either of two parties. The efficiency gap measures

the difference in the number of wasted votes between two parties [152]. Generally

speaking, any vote cast for a losing candidate is wasted, and for a winning candidate,
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a wasted vote is any vote beyond 50% (or alternatively the minimum needed to win

in some variants). This method was used unsuccessfully in a US Supreme Court

case challenging gerrymandering in the state of Wisconsin [153] and critiques of

it can be found in [154, 155]. Nevertheless, we conjecture that an efficiency gap

standard might incentivize participation and truthful voting in contrast to the outlier

detection method discussed here.

Finally, we address measures that explicitly do not take past voting behaviour

into account. These typically involve some mathematical definition of what a good

cluster should look like. For example, a ratio of perimeter to area, average distance

from all voters to single meeting point, or even the average number of neighboring

districts. They often arise in the discussion of algorithms for drawing districts, and

we save a closer examination for Section 5.2.5.

5.2.4 Redistricting Subject to Gerrymandering Regulations

In this paper, we consider models where humans control the redistricting pro-

cess (possibly using any algorithms they please), but they may be restricted by

gerrymandering metrics. In particular, we focus on a model we call the majority

party draw model where the political party currently in power in a state controls

the redistricting process. Thus, we assume a biased, partisan agent is drawing the

maps to favor one party over the other. Districts are drawn by the party holding

the majority of seats in order to maximize that party’s utility subject to any con-

straints. We constrain the drawing party with the typical restrictions that districts
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must be contiguous and balanced in terms of population. In addition, we include

a regulation proposed to reign in partisan gerrymandering, banning outlier maps.

This regulation prohibits the drawing of outlier maps with respect to seat counts

awarded to each party based on the votes cast in the most recent previous election.

5.2.5 Other Approaches to Drawing Districts

While this work primarily studies approaches to measuring gerrymandering

and their potential effects, we briefly discuss the topic of drawing districts as one

might argue, “Why not just use one of the existing tools for drawing fair districts?”

We describe two broad lines of work devoted to drawing districts without partisan

gerrymandering and sketch why these existing techniques, by themselves, may not

be sufficient or desirable. We group the techniques by whether or not they use past

voting data.

The first general class of algorithms embraces the natural idea of drawing

districts without considering voting preferences at all. We describe some of these

works and then argue why it is still important to test them for partisan bias.

Many of these proposed tools attempt to optimize some measure of compact-

ness. A k-median-based algorithm is featured in visualizations of different districting

schemes on the website FiveThirtyEight [156]. The similar objective of balanced cen-

troidal power diagrams is used in [97]. There are also methods that focus on simple,

achievable objectives like the shortest splitline algorithm which recursively finds the

shortest line dividing the population in half until the desired number of equally sized
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districts is found [137].

Although tools in this category are often self-described as unbiased, testing

their output for gerrymandering via unintentional bias (e.g., using measures from

Section 5.2.3) is still needed. In the classic fairness example of classifiers, we know

that sensitive features such as race can be redundantly encoded in other features

even if race itself is omitted from the feature set. Similarly, party membership (or

race) may be encoded in other features of population data that are used by these

algorithms.

In the US, features such as party membership and race are correlated with

urban versus rural residence. Thus, any clustering algorithm which is sensitive to

the density of points being clustered could potentially be biased. For example, a

bias based on population density could be present in algorithms which minimize

average distance from voters to a central meeting point such as those based on the

k-median objective or balanced centroidal power diagrams. This is not to diminish

the value of these algorithms or claim that they are biased, but rather to show

that they should be tested for biases. This evaluation requires a measure like those

described in Section 5.2.3 and studied in our present work.

We note that this concern about hidden bias is not new. Other works have ex-

plored the effects of an urban/rural party split [146,157] and the following statement

expressed by Justice Scalia in [158] was discussed in [141].

Consider, for example, a legislature that draws district lines with no ob-

jectives in mind except compactness and respect for the lines of political
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subdivisions. Under that system, political groups that tend to cluster

(as is the case with Democratic voters in cities) would be systematically

affected by what might be called a “natural” packing effect.

In the second category, are approaches that explicitly use voting data. Some

of these use measures from Section 5.2.3 to guide the algorithm. An evolutionary

algorithm called PEAR uses a combination of objectives including competitiveness

based on past voting data and compactness measured as 4π times the area of a

district divided by its perimeter squared [93]. There are also cake cutting approaches

which allow two parties to divide up a state [159]. This is shown to meet a definition

of fairness to the two major parties, but may not be fair to other groups such as

third parties, geographic regions with shared interests (e.g., farming communities),

or racial groups. Allowing the two major parties to collaborate on drawing a map

may also lead to undesirable incumbent gerrymandering as in California in the

past [160]. While our work does not directly address these tools, it implies that

they could be susceptible to strategic voting.

5.2.6 Other Related Work

Here, we summarize some additional related work on social choice theory and

fairness.

The classic Gibbard-Satterthwaite Theorem [143,144] established that at least

one of the following must hold in ordinal voting systems electing a single candidate.

1. The system is a dictatorship; one voter chooses a winner.
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2. The are only two candidates.

3. The system is not strategyproof and inspires tactical voting.

While our result shows strategizing in a two party election with single candidates

elected per district, we note that in our model, a single voter’s strategy can affect

the outcomes of multiple elections. Even though each district elects a single candi-

date, we show how a vote in one district can affect all districts in future elections.

Thus, our work highlights a situation where the Gibbard-Satterthwaite Theorem

may appear to apply, but surprisingly does not.

In the context of fairness, [145] considered the disparity that results from

different groups having different abilities to strategize. Our work shows how certain

regulations can create additional opportunities for strategic manipulation in voting

systems and opens the question of whether additional disparity results from those

regulations. This is relevant in elections where political parties are scrutinized to

determine if they are leveraging such disparities to disenfranchise groups of voters

(e.g., using voter id laws to target communities living in urban areas where drivers’

licenses are not ubiquitous or restrictions on early voting to target people with less

flexible working hours).

5.3 Our Contributions

We illustrate how using past voting data to regulate the drawing of district

maps can incentivize voters to strategize and vote untruthfully. In particular, we

show that a single-member district plurality system under the policy of banning

151



outlier maps with only two parties is not strategyproof.

Under the policy of banning outliers, we show examples of how a party holding

the majority of seats can vote and draw districts strategically to increase the number

of seats they win. For banning outliers, we provide a heuristic for a party controlling

the districting process to identify pure strategies that lead to winning more seats

and test this heuristic empirically. Finally, we use grid graph models to explore

questions from the US Supreme Court case Rucho v. Common Cause [7] relating to

outlier maps.

While not the primary pursuit of this work, our observations may also be

relevant to the areas of election security and machine learning. In the case of election

security, voter fraud, and tampering with election results, we essentially reveal a

scenario wherein a political party could gain in the long run by generating votes for

the opposing party. Such a scenario may be difficult to detect if one is assuming that

a cheating party would only assign votes to itself. In relation to machine learning, we

can view recent computational efforts to detect gerrymandered maps as classifiers.

Thus, our work explores how these classifiers interact with a broader system.

5.4 Modeling the Game of Voting and Redistricting

We introduce a simple game to model the cycle of drawing districts, voting,

redrawing districts, and voting again. The drawing of districts is constrained by a

regulation which uses past voting data to decide if a district map is legal or not.

The goal of the model is to clearly illustrate how a regulation can incentivize voters
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to vote strategically rather than truthfully and better understand how regulations

might be circumvented.

In this game, there are two political parties, red and blue, which we denote

R and B, respectively. Voters are vertices in a graph G = (V,E) with the number

of vertices |V | = n and the edge set E signifying neighboring voters. We define

a map m as a partition of G into k districts. Each district must be a connected

component in G with size equal to n/k (we assume for simplicity that k is odd and

n/k is an odd integer). In this way, we enforce the rules that districts must be

contiguous and perfectly balanced in terms of population. In Sections 5.5 and 5.7,

we further restrict G to be a grid graph. Thus, in those sections, each district will

be an equal-sized, non-overlapping polyomino as seen in the maps of 3× 3 grids in

Figure 5.1.

Each voter v has a true preference for one of the two parties. The set of true

preferences for all voters P ∈ {R,B}n is known to both parties at the start of the

game and does not change over the course of the game. Having true preferences

known to the parties captures the fact that parties may know more about their

voters (including how they have influenced them) in comparison to the regulation

which only “sees” how people have voted. Without loss of generality, we assume

the red party holds the majority of seats at the start of the game. We also use

qv ∈ {R,B} to denote the most recent vote by each voter v and let Q ∈ {R,B}n

be the known set of votes from the most recent election. We reiterate that set Q of

votes from the previous election is known to both parties and the regulation at all

times.
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Finally, we have a regulation ψ : m 7→ {legal, banned} which determines whether

a given map m is legal to use or banned and cannot be used. For the remainder of

this work, we focus on the regulation of banning outliers. In this case, ψ also takes

as input the previous votes Q, set of all possible maps M (or a set of maps sampled

from M in Section 5.8), and a threshold τ ∈ (0, 1]. If the fraction of maps awarding

the same number of seats to the red party as m is less than τ , then m is banned.

Otherwise, it is legal. In other words, m is a banned outlier if the number of maps

awarding the same number of seats to red as m is less than τ |M |.

At the start of the game, we let Q = P assuming that in a prior election

voters cast votes according to their true preferences. The reason for this choice is

two-fold. First, it is the simplest and easiest to analyze case which still addresses our

major question of whether strategic voting can be incentivized by gerrymandering

regulation. Second, this models the adoption of a new regulation. We can assume

that voters have been voting their true preferences in the past and the game starts

at the moment when the regulation is imposed.

The game proceeds in four rounds so that we can observe the effect of a round

of voting on which maps can legally be chosen. The objective of each party in this

zero sum game is to win as many total seats as possible.

Round 1: The majority party (red) draws a map m subject to a gerrymandering

regulation ψ. The voters’ true preferences are used as the past voting

data for the purpose of regulating this first round (i.e., Q = P ).
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Round 2: All voters vote simultaneously, but voters of the same party may col-

lude. The votes are tallied, and each district’s seat is awarded to

whichever party won the majority of votes in that district.

Round 3: The party which won the majority of seats in Round 2 draws a new

map m subject to ψ. However, Q is now the set of votes from Round

2 and this may affect ψ.

Round 4: Again, all voters vote simultaneously, but voters of the same party may

collude. The votes are tallied, and each district’s seat is awarded to

whichever party won the majority of votes in that district.

While this game only captures two election cycles, we will show that it is able

to reveal an incentive to vote strategically. Natural extensions to more cycles or

more rounds of voting before redistricting will be addressed briefly in Section 5.10.

We further note that in this short game, we can assume voters will vote their true

preferences in Round 4 since these final votes are only used to determine the outcome

of a single election.

5.4.1 Simplifying Assumptions

Here, we outline and discuss a number of simplifying assumptions in our model

and analysis. Further discussion of these assumptions and related future directions
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appears in Section 5.10.

To simplify the analysis of collusion, we assume each party controls all of its

voters and chooses how they will vote. Furthermore, we require each voter to vote

for one of the two parties. They do not have the option to abstain or vote for some

third party. Therefore, in our model, a candidate winning a plurality of votes also

wins a majority. To further guarantee clear majorities without ties, we use an odd

number of districts with an odd number of voters in each district.

We consider the utility of a party to be a linear function of seat count. This

reduces the space of strategies to explore since a party cannot gain utility by sacri-

ficing a seat in one round in order to gain a seat in another round. However, one

could also envision a more complex model with a nonlinear function that captures

real world effects. For example, in many cases in the US system, their is a large

added benefit to holding a 2/3rd majority. In a nonlinear model, sacrificing a seat

in one round to win a seat in another could be beneficial.

We note that in the US system, there are typically multiple elections between

the rounds of redistricting that can occur following each decennial population census.

Thus, our abstraction replaces a series of elections with a single voting round.

5.5 A Simple Example Game on a 3× 3 Grid

To illustrate our game from Section 5.4 and the effects of regulation, we start

by looking at the regulation of banning outliers applied to a specific set of voter

preferences on a 3× 3 grid with 3 districts of size 3. In this setting, we can clearly
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(1)

B B B

R R R

R R R

(2)

B B B

R R R

R RB R

(3)

B B B

R R R

R RB R

(4)

B B B

R R R

R RB R

(5)

B B B

R R R

R RB R

(6)

B B B

RB R R

R RB R

(7)

B B B

R RB R

R RB R

(8)

B B B

R RB R

R RB R

(9)

B B B

R R R

R RB R

(10)

B B B

R R R

R RB R

Figure 5.1: All 10 possible maps of a 3× 3 grid into 3 contiguous districts of equal
size. Blue B’s indicate voters who prefer the blue party and red R’s indicate voters
who prefer the red party. Squares with a crossed-out R followed by a B represent
red party voters who can vote for the blue party in Round 2 in order to make map
1 appear to be a non-outlier map for the next round of drawing districts. Map 1 is
the only map which awards 3 seats to the red party under true preferences, making
it the favorite map for red, but also an outlier.

visualize an exhaustive set of maps.

A 3 × 3 grid admits 10 maps of 3 districts when contiguity and population

balance are the only restrictions. Figure 5.1 shows all 10 maps along with a set of

true voter preferences and strategies. The top row of voters prefer the blue party,

while the bottom two rows prefer the red party. We can see plainly in Figure 5.1

that the red party would prefer the first map which partitions the voters into three

columns. This map cracks the blue party so that red wins all 3 seats and it is the

only map in which red wins 3 seats as opposed to 2.

For this simple example game, we consider the regulation of banning outliers

with a threshold of τ that is strictly greater than 0.1, essentially the smallest mean-

ingful threshold for this graph (we consider smaller, more realistic values of τ in

later sections). Thus, the first map in Figure 5.1 will be banned with respect to the
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voters’ true preferences P and therefore banned in Round 1. Because this is the

preferred map for the red party, but it cannot be chosen given the regulation ψ and

voting history Q = P , we call map 1 the target map for red. In other words, this

is the map that red would like to draw in Round 3 in order to win an extra seat in

the game.

Now, suppose one or more of the red voters were to vote for blue in Round

2 without giving up a seat in that round. This could make it appear that the first

map will award 1 seat to blue in future elections when in fact the red voters could

then vote truthfully to award all seats to red. We may then ask if blue can respond

with its own strategic voting, but in this case red has a pure strategy for any choice

of starting map that blue cannot respond to as stated in Observation 18.

Observation 18. For any choice of starting map the red party has a pure strategy

(illustrated in Figure 5.1) which leads to winning 5 seats total over the course of the

two voting rounds in the game defined in Section 5.4.

Note that in several maps (2, 3, 4, 5, 9, and 10) in Figure 5.1, red can flip a

single voter to blue in order to make it appear that the middle column district of

map 1 will be awarded to blue. In addition, this will not cause red to lose a seat

in Round 2 voting compared to voting true preferences. To potentially counter this

effect, blue could flip its voter in the middle column to red. However, this would

cause blue to lose that voter’s district in Round 2, immediately giving 3 seats to

red. Conversely, in other maps (6, 7, and 8) blue can afford to flip one voter to

red without losing a district and this forces red to flip two voters from two separate
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districts to guarantee that map 1 will not be an outlier when drawing a map in

Round 3. Thus, given any legal starting map (all maps besides map 1), red can

vote strategically to win 5 seats overall in the game, whereas truthful voting would

only yield 4 seats overall. In Section 5.6, we explore this phenomenon more by

establishing a set of conditions that permit a majority party to strategize in more

general settings.

5.6 Conditions for Strategizing Against Banning Outliers

In the previous section, we saw the existence of a set of preferences which

incentivized strategic voting to gain seats when outlier maps are banned. Now, we

define a set of conditions under which a pure strategy exists for the majority party

to gain at least one seat by carefully drawing maps and influencing its supporters

to vote strategically. Taken together these conditions are sufficient to incentivize

strategic voting, but may not be necessary, especially when mixed strategies are

considered.

In order to strategize, the majority party must be able to find two maps, a

starting map which it can legally choose in Round 1 and a target map which awards

the party more seats than the starting map, but is an outlier under true preferences.

Additionally, given a starting map and target map, we identify a set of majority

party voters called the shills who will vote for the opposing party in the first vote

of Round 2, but then revert to supporting the majority party in the second vote

of Round 4. We also require a set of minority party voters called the accomplices
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whose truthfull votes in Round 2, combined with the shills’ fake votes, can be used

to construct a district which appears to favor the minority party while actually

favoring the majority party under true preferences. We note that the accomplices

from the minority party are, of course, unwilling accomplices whose votes will be

used against their own party no matter how they vote. The majority party will put

them in the following position. If the accomplices vote truthfully in Round 2, their

party will ultimately lose a seat in Round 4, while if they vote untruthfully in Round

2, their party will immediately lose a seat in Round 2. Given these definitions, the

conditions below are sufficient for the majority party to strategize.

1. There exists a starting map which is not an outlier with respect to true pref-

erences.

2. There exists a target map which awards more seats to the majority party than

the starting map, but is an outlier with respect to true preferences.

3. There does not exist a non-outlier map which, if chosen in all rounds, awards

as many or more seats than the combination of choosing the starting map

followed by the target map under true preferences.

4. In the starting map, the shills are in a different district from the accomplices.

5. In the starting map, the majority party does not lose a seat if the shills all

vote for the minority party.

6. In the starting map, the minority party will lose a seat if any one of the

accomplices votes for the majority party.
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7. In the target map, the shills are in the same district as the accomplices.

8. In the target map, the district containing the shills and accomplices will go to

the majority party under true preferences, but appears to go to the minority

party if the shills and accomplices vote for the minority party in the first

round.

9. The target map is not an outlier in Round 3 if the accomplices and all majority

party voters besides the shills vote truthfully in Round 2.

Using these conditions, we can identify opportunities to strategize as described

in the next section.

5.7 Heuristic for Strategizing Against Banning Outliers and Experi-

ments

Based on the conditions from Section 5.6, we devise a heuristic for finding pure

strategies for the majority party subject to the regulation of banning outliers. To

test this heuristic, we use a grid graph model with a 5 × 5 grid and 5 districts of

size 5.

5.7.1 The Heuristic

We implemented a simple heuristic which takes a set of preferences as input

and searches for starting maps, target maps, accomplices, and shills satisfying the

conditions from Section 5.6. Considering all potential (starting map, target map)
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pairs takes at most O(τ |M |2) time since there are O(|M |) potential starting maps

and only O(τ |M |) possible target maps given that target maps are outliers by def-

inition. Searching a pair of maps to find shills and accomplices takes O(n) time

with the appropriate preprocessing of each map. Thus, the entire process requires

O(nτ |M |2) time per preference set. However, the practical running time is much

faster since we can stop as soon as we find a satisfying pair of maps.

5.7.2 Experiment Design

We test our heuristic in the scenario of a 60/40 split in the true preferences

of voters. Our “state” is a 5 × 5 grid with 5 districts of size 5. For this grid, we

consider all possible sets of true preferences where the majority party has 15 of 25

total voters (∼3.2 million preference sets). A benefit of using this simple model is

that we can consider all 4,006 contiguous and balanced district maps in order to

identify outliers for a given set of preferences. This divorces the analysis of outlier

regulation policies from the questions of how to sample maps and detect outliers

that are the focus of [138–140].

Outlier threshold We choose a threshold τ of 2% for banning outliers. In other

words, given a true preference set P or voting history Q, any particular seat count

awarded to the majority in less than 2% of the 4,006 possible maps is considered an

outlier and any maps awarding that many seats would be banned. Aside from being

a “natural looking” threshold, this choice is well-suited to our scenario. For a large

number of true preference sets, the 2% threshold bans maps that award all 5 seats

162



Figure 5.2: The number of preference sets out of 3,268,760 total where a map
awarding 5 seats to the majority party is an outlier according to percentage thresh-
olds (1% - 7%).

to the majority party (Figure 5.2). On the other hand, it allows maps that award 4

seats to the majority party for nearly all true preference sets (Figure 5.3). Awarding

4 seats to the majority may be seen as a reasonable deviation from proportionality

due to the geography of the voter population. Allowing this amount of deviation is

one way for regulators to be clear that they are not enforcing proportionality.

During the two district drawing rounds (1 and 3), the majority party is allowed

to choose any of the non-outlier maps. During the voting rounds (2 and 4), both

parties’ voters may vote strategically, but our heuristic draws maps based on pure

strategies where either only the majority party has an incentive to vote strategically

or no party votes strategically. For each set of true preferences, we test whether our

heuristic can find a strategy to gain more total seats than could be gained through

voting truthfully.
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Figure 5.3: The number of preference sets out of 3,268,760 total where a map
awarding 4 seats to the majority party is an outlier according to percentage thresh-
olds (1% - 6%).

5.7.3 Experimental Results

Figure 5.4 shows the results of our experiments. We see that for roughly half

of the 3,268,760 preference sets, maps awarding all 5 seats to the majority party

are not outliers. In those cases, no strategizing is needed. The majority party can

simply pick a map which awards it 5 seats and use that map for the entire game.

However, on most of the remaining preference sets, the majority party is limited to

choosing maps in Round 1 that award fewer than 5 seats under true preferences,

but our heuristic is able to find a pure strategy which leads to winning an additional

seat in Round 4. For fewer then 200,000 preference sets, the best non-outlier map

awarded 4 seats and we were not able to find a strategy. We do not know if any

pure or mixed strategies exist for these preference sets.
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Figure 5.4: Illustrating the ability of our heuristic to find pure strategies on all
3,268,760 preference sets with 15 majority party voters. (4,4) indicates preference
sets where non-outlier maps award 4 seats to the majority party under true pref-
erences and our heuristic is unable to strategize for more seats in the second vote.
(4,5) indicates preference sets where non-outlier maps award 4 seats to the majority
party under true preferences and our heuristic finds a pure strategy to win 5 seats
in the second vote. (5,5) indicates preference sets where non-outlier maps award 5
seats to the majority party under true preferences and thus, there is no benefit to
strategizing. This figure omits 12 preference sets where the best non-outlier map
awards only 3 seats under true preferences and we can strategize to win 4 seats in
the second voting round.
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5.8 Application of our Heuristic and Model to Real Voting Data

5.8.1 Background

North Carolina is often highlighted as one of the most gerrymandered states

in the nation. In the 2012 North Carolina congressional election, over half of the

total votes went to Democratic candidates, yet only four of the thirteen congres-

sional representatives were Democrats [139]. In fact, court cases have struck down

North Carolina’s 2012 and 2016 congressional maps for partisan gerrymandering

and a case involving North Carolina’s map recently went all the way to the Supreme

Court in [7]. In one effort to address this issue, the “Beyond Gerrymandering”

project sponsored by the Duke Center for Political Leadership, Innovation, and Ser-

vice brought together an independent commission of 10 bipartisan retired judges to

redraw North Carolina’s congressional map without the use of past political data

or election results with the intention to generate a more fair district map. The hy-

pothetical map that was produced as a result of this summit will be referred to as

the judges’ map.

5.8.2 Our Results in Brief

In order to lend credence to our model and heuristic, we apply simplified

versions to real North Carolina voter data. In the more restricted model, we find

one possible strategy for the Republican party to circumvent an outlier ban by using

the judges’ map as a starting map and the 2016 North Carolina congressional map as
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a target map. The changes outlined in the next section make the problem of finding

a strategy much more tractable for the larger, messier real world problem. However,

we also describe how this more restricted model can still inform our understanding

of real scenarios.

5.8.3 Modified Model

We retain concepts of our original game such as banning outliers, a two-party

system, and four-round drawing-voting-drawing-voting cycle, as outlined in Sec-

tion 5.4. We treat each of the 2,692 voter tabulation districts (VTDs) in North

Carolina [139] as points on a planar graph and districts as a partition of this

graph into connect subgraphs. Each VTD is encoded with Democratic and Repub-

lican votes. Crucially, we modify our original game such that the strategizing is

one-sided. While the majority party can strategize, the minority party must vote

truthfully. Thus, this model prevents the minority party from counter-strategizing.

In our previous model, each basic unit was an equivalent voter. In this case, each

basic unit (a VTD) does not carry the same weight and the number of potential

reactionary strategies from the minority party increases dramatically.

While this restricted game captures fewer real scenarios, we highlight two

interesting observations. First, our model is motivated by the idea of a “surprise

attack” in which one party decides to manipulate votes to gain an advantage and

the other party either does not expect the attack or knows, but cannot mobilize a

counter strategy. In practice, this surprise attack could even be a secret attack via
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hacking electronic voting systems. Second, although the majority party strategy we

find may not be an optimal pure strategy in the original game, it can be used to

illustrate the existence of some mixed strategy in the original game. Thus, it still

shows an incentive for strategic voting on real data in a less restricted game.

5.8.4 Conditions for Strategizing on the Modified Model

We modify our conditions from Section 5.6 to account for the inability of the

minority party to react. The shills and accomplices are now groups of voters within

VTDs. However, they still perform the same role as in our original model. Taken

together, these conditions are sufficient, but may not be necessary, for a party to

strategize in the modified model of this section. Note that we have maintained the

numbering from Section 5.6 in the list below to facilitate easier comparison between

the two lists.

(1) There exists a starting map which is not an outlier with respect to true pref-

erences.

(2) There exists a target map which awards more seats to the majority party than

the starting map, but is an outlier with respect to true preferences.

(3) There does not exist a non-outlier map which, if chosen in all rounds, awards

as many or more seats than the combination of choosing the starting map

followed by the target map under true preferences.

(5) In the starting map, the majority party does not lose a seat if the shills all
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vote for the minority party.

(7) In the target map, the shills are in the same district as the accomplices.

(8) In the target map, the district containing the shills and accomplices will go to

the majority party under true preferences, but appears to go to the minority

party if the shills and accomplices vote for the minority party in the first

round.

(9) The target map is not an outlier in Round 3 if all voters besides the shills vote

truthfully in Round 2.

In comparison to the conditions from Section 5.6, conditions (4) and (6) are

no longer needed and (9) is slightly relaxed. This is because we are assuming in the

modified model that the minority party accomplices vote truthfully. Thus, we do

not need to meet conditions that discourage the accomplices from strategic voting

or account for that possibility.

5.8.5 Simplified Heuristic

Because there is now an enormous number of possible maps and a large set of

voters, we cannot search exhaustively like our procedures from our grid model. In

addition to drastically narrowing our search space to specific starting (judges’ map)

and target (2016 map) maps, we implement a more targeted heuristic for identifying

shills. For the most competitive districts (least margin between voters of the two

parties) in our target map not already won by the majority party, we obtain the
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Figure 5.5: Plot of Republican seat distributions of the false voter preferences after
all of the Republican votes in the judges’ map district 9 VTDs have been flipped
to Democrat votes. We determined the seat counts of the false voter preferences
on 7319 total maps generated by Monte Carlo Markov Chain that we retrieved
from [139]. We note that under our false voter preferences, the 2016 map awards 9
Republican seats which is not an outlier for the false preferences. However, the true
voter preferences award 10 seats on the 2016 map, which is an outlier.

list of VTDs in those districts. We then flip as many majority voters from those

VTDs as possible without losing any districts on the starting map, such that those

VTDs entirely consist of minority votes in Round 2. We then compare the new

set of voter preferences on the starting map and target map within the sampling

distribution of maps to make sure neither are outliers. We perform this procedure

on each district in our target map from most competitive to least competitive until

we find a successful strategy or have exhausted the set of losing districts.

5.8.6 Experiment Design

We note that the judge’s map awards 9 out of 13 seats to the Republican party

and is therefore not an outlier, while the 2016 map awards 10 out of 13 seats to the

Republican party and is an outlier [139]. We test our modified model over North
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Carolina 2016 House voting data. We set the judges’ map as our starting map and

the 2016 map as our target map. We set the Republican Party as the majority

party and the Democratic Party as the minority party. Voter data, the judges’ map,

the 2016 map, and a sampling distribution of maps were retrieved from the Github

provided in [139].

5.8.7 Results

We find that flipping all of the Republican votes to Democrat votes in VTDs

found in district 9 of the judges’ map causes district 2 of the 2016 map to seem to

be a Democratic district without the Republicans losing any districts in the judges’

map. However, according to the real voting history, district 2 of the 2016 map is a

Republican district. Thus, under the false preference sets, the 2016 map seems to

award only 9 seats to the Republicans. From Figure 5.5, we note that 9 seats is not

an outlier under the flipped voter preferences. This enables the Republican party

to draw the 2016 map in Round 3 and secure 10 seats in Round 4. Thus, we have

shown the existence of a successful strategy in our modified model to go from the

bipartisan judges’ map to the gerrymandered 2016 map which was shown to be an

outlier [139].

5.9 Questions Raised in Rucho v. Common Cause

In this section, we address several questions raised during the recent US

Supreme Court case Rucho v. Common Cause [7]. All of these issues were dis-
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cussed in the opening oral arguments of that case. We consider them as they relate

to the regulations and models explored in this paper.

5.9.1 Banning Outliers versus the Proportional Allocation Objective

Skeptics of the outliers metric and banning outliers regulation have argued

that it is similar to or a proxy for a proportionality rule. Using basic grid models

models, we illustrate where these two rules diverge in valuing and restricting maps.

First, we note that Justices Alito, Gorsuch, Kavanaugh, and Roberts have

asked in some way whether a rule which includes outlier detection (among other

tests) amounts to a proportionality rule in the oral arguments of [7]. This is not an

unreasonable concern. The concept of banning outliers contains important features

which are open to manipulation such as

1. Which metric do you use to compare maps (e.g., seat count [139] or variance

in the proportions of one party’s voters among the districts [138])?

2. How do you set the threshold for what kind of map is an outlier?

3. How do you choose among multiple non-outlier maps which may nevertheless

assign more seats to one party or another?

4. How do you define the space of legal maps that you are sampling from? In other

words, how closely can your mathematical constraints on what constitutes a

legal map approximate the legal definitions in state constitutions?

We show here that despite these concerns, the concept of banning outliers
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differs from enforcing or favoring proportionality in important ways. On our 5 × 5

grid model, we observe what percentage of maps award proportional representation

for given sets of preferences. Figure 5.6 captures all possible preference sets on a 5×5

grid with 20 majority voters and 5 minority voters. Figure 5.7 captures all possible

preference sets on a 5× 5 grid with 15 majority voters and 10 minority voters. It is

clear that the seats awarded by the most proportional map can differ greatly from the

most likely randomly chosen maps that respect the voter geography. In the case of 20

majority voters, we found that a proportional map was the most likely random map

for only 6.9% of the preference sets and for the case 15 majority voters a proportional

map was most likely in only 41.5% of preference sets. Comparing Figures 5.6 and 5.7

also suggests that proportional maps are generally more rare when the minority

party represents a smaller proportion of the population, while proportional maps

are more common for preference sets with more even splits between the parties.

Perhaps the most convincing argument for the difference between outlier detec-

tion and proportionality comes in Figure 5.6. We can see that for many preference

sets, proportional maps exist, but are rare and could be explicitly forbidden under

a regulation banning outliers. In other words, for certain arrangements of voters,

proportional maps could actually be outlawed by banning outliers.

5.9.2 Individual Harm

Central to the argument that partisan gerrymandering is unconstitutional is

the notion of individual harm. We may ask if an individual’s vote was diluted by
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Figure 5.6: Charting all possible preference sets on a 5 × 5 grid with 20 majority
voters and 5 minority voters. We show the numbers of preference sets in which
a given percentage of maps achieves proportional representation. The large bar
on the left at 0% indicates preference sets where no map awarded proportional
representation. The second bar from the left indicates the number of preference sets
in which only 1% of maps awarded proportional representation (i.e. preference sets
in which proportion maps exist, but are very rare).

Figure 5.7: Charting all possible preference sets on a 5 × 5 grid with 15 majority
voters and 10 minority voters. We show the numbers of preference sets in which a
given percentage of maps achieves proportional representation.
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a map based on their political preference. A line of inquiry in [7] focused on the

following situation. Suppose we can show that for a given individual, most maps

place them in a district where their chosen party wins, but the proposed map is one

of a few maps which does not. Can this test be used to show individual harm?

Here, we give evidence of a problem with this test. Suppose there are many

such individuals and no single map is fair to all of them. In this case, no determin-

istically drawn map could be considered fair. However, it could still be argued that

a randomly drawn map is fair by this standard (this could trivially be achieved by

picking a map uniformly at random from the set of sampled maps).

As evidence of this issue, we consider a 5 × 5 grid where the majority party

has 13 voters in a checkerboard pattern. In this simple example, each voter can be

placed in a district where their party wins in over 64% of maps. However, there

is no single map which provides this opportunity to all 13 of those voters. Under

a philosophy that places value on the most likely maps for a given geography, this

raises the question of whether a deterministically drawn district can truly be called

fair.

5.10 Conclusion, Recommendations, and Future Directions

We have shown first and foremost that careful scrutiny should be given to any

measurement which uses past voter behavior to evaluate and affect the choice of

electoral district maps. The model we presented primarily serves to illustrate the

basic phenomenon of strategic voting in the presence of gerrymandering regulation.
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To better understand this issue, more complex models should be considered.

One of the most unrealistic assumptions in this work is that a political party

is able to totally control all of its voters. An obvious concern with the current

model is whether it is feasible to organize a large enough group of voters from

one party to cast votes for the opposing party in some, but not all elections on

a single ballot. Perhaps the only real analog close to this would be the hacking

scenario in which people’s votes are changed illegally and without their knowledge.

Thus, if we wish to consider the possibility of actual strategic voting in practice,

we must modify the model in some way. A natural extension would be to consider

the realistic influence that political parties do have over a voter’s decision between

voting for their preferred party or abstaining. It would be interesting to model

and explore whether parties can distort gerrymandering measurement by choosing

where to spend their limited budgets on “get out the vote” efforts using the power

of modern tools such as targeted advertising.

Other useful directions would be to add noise to the model or change the

number rounds. The total number of rounds as well as the number of voting rounds

between redistricting could be arbitrary. Voter preferences might have some proba-

bility to change between rounds. While our four-round model is sufficient to show

a basic incentive to vote strategically, richer behavior might evolve in a longer pro-

cess. For example, majority party voters in our model vote truthfully in Round 4 to

capitalize on their choice of a favorable map in Round 3. However, minority party

voters might then wish to voter strategically if Round 4 were not the final round.

Regarding the problem of finding strategies to circumvent regulation, the
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heuristics presented here were fairly simple and lightweight. It is likely that more

sophisticated algorithms and more computing power could be employed to greater

effect especially on real data. As with any problem in algorithmic game theory there

is the two-fold challenge of figuring out what the optimization problem is as well as

how to solve it. We essentially identified one type of strategy and how to execute

it. However, there are likely other approaches, especially when considering different

models.

Finally, it is worth considering how gerrymandering metrics that use past

voting data can be less susceptible to strategizing. We note that a metric which

uses voting data from multiple elections would likely be harder to trick. In the US

system in particular, data from senate and gubernatorial races could be especially

useful since the voters within a state are not partitioned into districts for these

elections and that could have a confounding effect on incentives.
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Chapter 6: String Algorithms and Bioinformatics

In this chapter, we present our work on string algorithms with applications

in bioinformatics and genomics. Section 6.1 presents a tool and data structure, we

developed for fast and precise clustering of 16S rRNA gene sequences inspired by the

Method of the Four Russians (originally published in [161]). Section 6.2 details a

deeper theoretical investigation into how to make the Method of the Four Russians

more space-efficient (originally published in [162]). Finally, Section 6.3 describes

new algorithms and techniques for the maximum duo-preservation string mapping

problem (originally published in [8]).

6.1 16S rRNA Gene Clustering

16S rRNA amplification and sequencing plays a major role in the study of

microbiota. This gene codes for the small ribosomal subunit and is highly conserved

in bacteria, which makes it an ideal marker gene for taxonomic analysis. However,

even a small dataset of 16S rRNA sequencing reads may contain millions of distinct

sequences due to both biological processes and errors in sequencing. Thus, it is help-

ful to cluster this data around a much smaller number of representative sequences

for further analysis.
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Originally, the pipeline for clustering 16S rRNA gene [163] sequences involved

building a multiple sequence alignment of all sequences, computing a pairwise dis-

tance matrix of sequences based on the multiple sequence alignment, and clustering

this matrix [164]. However, finding the best multiple sequence alignment is compu-

tationally intractable and belongs to the class of NP-hard problems [165]. Another

natural, but inefficient way of clustering sequences is to perform every possible pair-

wise comparison to compute a similarity metric such as edit distance and perform

hierarchical clustering to merge closely related sequences together. Again, this is

inefficient since the resulting running time is guaranteed to be at least quadratic in

the total number of sequences.

The need for computational efficiency in many genomic applications moved

to the forefront with the development of faster and cheaper DNA sequencing tech-

nologies. Currently, metagenomic sequencing datasets can contain over 1 billion

short reads [1]. At this scale, the more naive strategies described above can prove

to be very expensive and take months to generate clusters. In response, heuristic-

based methods like greedy clustering have become commonplace. While some of

these methods still have worst case quadratic running time, they can run faster in

practice [166–168].

Greedy Clustering. The greedy clustering approach (similar to CD-HIT

[166], UCLUST [167], and DNACLUST [168]) can be described at a high level as

follows. Let the multiset S be the set of n sequences to be clustered. Let m be the

maximum length of any sequence in S. For simplicity of exposition and analysis, we

will assume throughout this section of the proposal that all sequences have length
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exactly m. We also assume m is much smaller than n.

First, de-replicate the multiset S to get the set U of distinct sequences. Op-

tionally, impose some ordering on U . Then, iteratively remove the top sequence

from U to form a new cluster center sc. Recruit all sequences s ∈ U that are within

d distance from sc. When we recruit a sequence s, we remove it from U and add

it to the cluster centered at sc. If sc does not recruit any sequences, we call it a

singleton and add it to a list of singletons, rather than clusters. We continue this

process until U is empty.

We order the sequences of U in decreasing order of their abundance/multiplicity

in S. This is also the default ordering used by UCLUST. Alternatively, DNACLUST

uses decreasing order of sequence length. The reason for ordering by abundance is

that assuming a random error model, the abundant sequences should be more likely

to be “true” centers of a cluster. The reason for DNACLUST ordering by length is

to preserve triangle inequality among sequences in a cluster when performing semi-

global alignment allowing gaps at the end with no penalty. Semi-global alignment

is necessary for comparing reads generated by specific sequencing technologies such

as 454 (no longer being used). However, since we perform global alignment, triangle

inequality is guaranteed regardless of the ordering and thus, ordering by abundance

is preferred.

We show that some of these heuristics still struggle under certain conditions by

scaling inefficiently and/or producing an inexact greedy clustering. To address this,

we developed and implemented a new method for reducing that worst case quadratic

running time of exact greedy clustering in practice when the distance metric is the
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Levenshtein distance [169] and similarity is determined by a maximum distance of

d. Our algorithm improves the speed of the recruitment step wherein we seek all

strings within d distance of a chosen center. In addition to promising experimental

results, we give slightly weaker, but provable, guarantees for our techniques while

many existing methods do not. We also analyze the quality of the clusters output

by our method in comparison to the popular greedy clustering tool UCLUST. We

show that the clusters we generate can be both tighter and larger due to our method

being exact. In other words, our clusters are both lower diameter in terms of the

pairwise similarity of all points they contain and at the same time these tighter

clusters contain more points. In particular, we observe that our tool outperforms

UCLUST when searching for clusters of low diameter which were shown to be ideal

in some cases [170].

6.1.1 Related Work

The problem of comparing a query string against a large string database has

been widely studied for at least the past twenty years. For similarity metrics like the

edit distance, a dynamic programming algorithm [171] can be used to compare two

sequences in O(m2) time, wherem is the length of the sequences. When we only wish

to identify strings which are at most edit distance d apart, the running time for each

comparison can be reduced to O(md) [172] using a modified version of the standard

dynamic programming algorithm. This type of sequence alignment is referred to

as banded alignment in the literature since we only need to consider a diagonal
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“band” through the dynamic programming table. The simple dynamic programming

approach can also be sped up by using the Four Russians method [173, 174], which

divides the alignment matrix into small square blocks and uses a lookup table to

perform the alignment quickly within each block. This brings the running time down

to O(m2 log(log(m))/ log(m)) and O(m2/ logm) for arbitrary and finite alphabets,

respectively. Myers [175] considered the similar problem of finding all locations at

which a query string of length m matches a substring of a text of length M with

at most d differences. They used the bit vector parallelism in hardware to achieve

a running time of O(mM/w) where w is the machine word size. However, when

used for clustering sequences, these methods need to perform pairwise comparison

of all sequences, thereby incurring the high computational cost of O(n2) comparisons

where n is the total number of sequences.

Sequence search against a database is a crucial subroutine in sequence cluster-

ing in general and greedy clustering in particular. However, an interesting property

of 16S rRNA gene data is that many of the sequences generated by experiments

are highly similar to each other. To exploit sequence similarity and reduce the

computation performed in dynamic programming, the DNACLUST [168] algorithm

lexicographically sorts the sequences and compares sequences against the center se-

quence in sorted order. Since the adjacent sequences in sorted order share a long

prefix, the part of the dynamic programming table corresponding to their longest

common prefix remains unchanged, allowing the “free” reuse of that part of the table

for further alignments. This method fails when two sequences differ at the start but

are otherwise similar. In this case, the entire dynamic programming table needs to
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be recomputed. The UCLUST [167] algorithm uses the USEARCH [167] algorithm

to compare a query sequence against a database of cluster centers. However, the

algorithm used by UCLUST makes several heuristic choices in order to speed up the

calculation of clusters and thus, the resulting clusters are not guaranteed to satisfy

any specific requirement. For example, the distances between sequences assigned to

the same cluster should ideally satisfy triangle inequality (ensuring that the cluster

diameter is at most twice the radius) and the cluster diameters should be both fairly

uniform and within the bounds specified by the user.

6.1.2 Distance Metric

We use the same edit distance-based similarity metric as DNACLUST [168],

namely

similarity = 1− edit distance
length of the shorter sequence

Here, we define edit distance to be Levenshtein distance with uniform penalties for

insertions, deletions, and substitutions. The “length of the shorter sequence” refers to

the original sequences’ lengths without considering gaps inserted by the alignment.

We say that two sequences are similar if their alignment meets or exceeds a given

similarity threshold. Let d be the maximum edit distance between two sequences

aligned to the same cluster. This distance is usually computed from a similarity

threshold provided by the user, e.g., 97% [61]. Our algorithm performs banded

alignment with d as the maximum allowable distance. If we determine that two

sequences have distance greater than d, we need not report their actual distance.
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In the past, a common threshold used was 97% and several works still advo-

cate for this [60]. However, there is evidence recently that higher thresholds at or

above 99% are a better choice [170]. Our approach takes the threshold as an input

parameter, but is optimized to run at 99%, the default, or higher. This is partially

due to the philosophy that it is better to cluster conservatively upfront and merge

clusters downstream if desired.

6.1.3 Intervals

Our algorithm involves dividing each sequence into overlapping substrings of

length k at regular intervals. We formalize the definition of an interval as follows.

Given a period length p such that k = p+d+ 1, we divide each sequence into bm/pc

intervals of length k. For i ∈ {0, 1, . . . , bm/pc − 1}, the ith interval starts at index

ip inclusive and extends to index ip+ k exclusive. We will see in Section 6.1.7 that

we must choose p to be at least d. However, choosing a larger p may give a better

speedup when dealing with highly similar sequences. Further, for an interval i, we

define bi to be the number of distinct substrings for interval i over all sequences in S

and we define b = maxi bi. We will show in Section 6.1.8 that when b is much smaller

than n we get some theoretical improvement on the running time. Figure 6.1 shows

an example of how a sequence is partitioned into a set of overlapping substrings.

We store these intervals in a data structure we call an Edit Distance Interval Trie

(EDIT) which is described in detail in Section 6.1.9.
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Figure 6.1: An example of how a string is divided in overlapping substrings called
intervals. In this case, the length of each substring (k) is 8. Since the substrings
must overlap by d+ 1 characters, which in this case is 3, the period length (p) is 5.

6.1.4 Our Contributions

We developed a method for recruiting in exact greedy clustering inspired by

the classical Four Russians speedup. In Section 6.1.5, we describe our algorithm

and prove that the worst case theoretical running time is better than naive all-

versus-all banded alignment under realistic assumptions on the sequencing data

used for clustering. In section 6.1.10, we present experimental results from using our

method to cluster a real 16S rRNA gene dataset containing about 2 million distinct

sequences. We show that on real data the asymptotic running time of the algorithm

grows linearly with the size of the input data. We also evaluated the quality of the

clusters generated by our method and compared it with UCLUST, which is one of

the widely used methods. We show that our method generates tighter and larger

clusters at 99% similarity both when considering edit distance and evolutionary

distance. At 97% similarity, we show that the our method produces clusters with a

much tighter edit distance diameter compared to UCLUST. While UCLUST runs

faster at similarities 97% and less, our approach is faster at higher similarities. In
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particular, we highlight that UCLUST does not scale linearly at the 99% similarity

threshold while our approach does.

6.1.5 Outline of Techniques and Results

We show two ways in which the classical Four Russians speedup can be adapted

to banded alignment and give a theoretical bound for our approach. Then, we

describe a trie-like data structure for storing and querying sequences. Finally, we

present empirical results in comparison to UCLUST.

6.1.6 Classic Four Russians Speedup

In the classical Four Russians speedup of edit distance computation due to [173,

174], the dynamic programming table is broken up into square blocks of size k-by-k

as shown in the center of Fig. 6.2. These blocks are tiled such that they overlap by

one column/row on each side (for a thorough description of this technique see [176]).

When computing banded alignment, we only need to tile the area within the band

as in the righthand of Fig. 6.2. Let the maximum edit distance be d and the string

lengths be m. Then our block size k can be as small as d+ 1 and we require roughly

2m/k blocks in total.

The high level idea of the Four Russians speedup is to precompute all possible

solutions to a block function and store them in a lookup table (In our implemen-

tation we use lazy computation and store the lookups in a hash table instead of

precomputing for all inputs). The block function takes as input the two substrings
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Figure 6.2: Example of classic Four Russians. Left: a single block. For any input
in the upper left corner, we can sum that value with one path along the edges of the
block to recover the value in the lower right corner. The offset value in the lower
right corner may be different for the row and column vectors overlapping at that
cell. In this example, the lower right cell is one more than its left neighbor and one
less than its above neighbor. Center: the full dynamic programming table divided
into nine 5 × 5 blocks. The offset values in the example block may not correspond
to the optimal alignment of the two substrings shown since they depend on the
global alignment between the two full length strings. Right: blocks covering only
the diagonal band in the context of banded alignment.

to be compared in that block and the first row and column of the block itself in the

dynamic programming table. It outputs the last row and column of the block. We

can see in the Fig. 6.2 that given the two strings and the first row and column of the

table, such a function could be applied repeatedly to compute the lower right cell of

the table and therefore, the edit distance. In our application, cells outside the band

shown on the right in Fig. 6.2 will not be used since any alignment visiting those

cells must have distance larger than d.

There are several tricks that reduce the number of inputs to the block function

to bound the time and space requirements of the lookup table. For example, the

input row and column for each block can be reduced to vectors in {−1, 0, 1}d (or

{−1, 0, 1}k for the general problem). These offset vectors encode only the difference

between one cell and the next (see Fig. 6.2) which is known to be at most 1 in the
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edit distance table. It has also been shown that the upper left corner does not need

to be included in the offset vectors. This bounds the number of possible row and

column inputs at 3d (or 3k in general) each [173]. More generally, when edit costs

are derived from a penalty matrix, the number of row/column inputs is bounded

by ψk where ψ is the number of possible offset values and depends on the penalty

matrix. However, we only consider unit costs in this section.

Notice that for the banded alignment problem, this may not provide any

speedup for comparing just two strings of length m. Indeed, building and querying

the lookup table may take more time than simply running the classical dynamic

programming algorithm restricted to the band of width 2d + 1. However, our final

algorithm will do many such comparisons between different pairs of strings using the

same lookup table. In practice, we also populate the lookup table as needed rather

than pre-computing it. This technique, known as lazy computation, allows us to

avoid adding unnecessary entries for comparisons that don’t appear in our dataset.

Additionally, decomposing sequences into blocks will be a crucial step in building

the data structure in Section 6.1.9.

6.1.7 Our Approach to the Four Russians Speedup

Notice that the previous approach will not offer much benefit in practice when

d is small (e.g. d = 2). The overhead of looking up block functions and stitching

them together may even be slower than simply running dynamic programming on a

block. Further, our dataset may not require us to build a lookup table comparing
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all possible strings of length k.

Here, we consider a different block function. This function is designed for

situations in which we wish to use a block size k that can be larger than d + 1.

The blocks now overlap on a square of size d + 1 at the upper left and lower right

corners. We will call these overlapping regions overlap squares. Our block function

now takes as input the two substrings to be compared and the first row and column

of the the upper left overlap square. It outputs the first row and column of the lower

right overlap square as well as the difference between the upper left corners of the

two overlap squares.

Thus, we can move directly from one block to the next, storing a sum of

the differences between the upper left corners. In this case, reaching the final lower

right cell of the table requires an additional O(d2) operation to fill in the last overlap

square, but this adds only a negligible factor to the running time.

This approach succeeds when the number of possible substring inputs to the

block function is limited by some properties of the dataset as opposed to an absolute

theoretical upper bound such as O(|σ|k) based on the number of possible strings of

length k for an alphabet σ. Rather than computing and storing all possible inputs,

we simply store the inputs encountered by our algorithm. The advantage is that a

larger block size reduces the number of lookups needed to compare two strings which

is m/(k−d−1) for this approach. Naturally, the same tricks such as offset encoding

of the input rows and columns as some vector in {−1, 0, 1}d can be applied.

Another benefit of this approach is that it is more straightforward to implement

in practice. Each block depends on the full output of one previous block. In contrast,
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Figure 6.3: Example of our approach to the Four Russians speedup. Left: a block
for maximum edit distance d = 2. The output δ represents the offset from the upper
left corner of the current block to the upper left corner of the next block. We only
need to consider a diagonal band of the block itself. Right: using these blocks to
cover the diagonal band of the dynamic programming table for banded alignment.

the classical approach requires combining partial input from two previous blocks and

also sending output to two separate blocks.

6.1.8 Theoretical Bound on the Running Time of Our Approach

To give some intuition, we prove a theoretical bound on the running time

under the assumption of at most b distinct substrings per interval in the dataset.

This is a reasonable assumption for certain application in computational biology.

For example, the 16s rRNA gene is highly conserved and thus b is much smaller

than n for such datasets. While standard banded alignment takes O(n2md), we

show that for small enough b this can be reduced to O(n2m). We prove this bound

for our approach to using the Four Russians speedup for banded alignment, but it

extends to the classical approach as well.

Theorem 19. If b ≤ n
3d
√
d
, we can find all pairs of distance at most d in O(n2m)

time.
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Proof. To simplify, we will assume the lookup table is pre-computed. Then, we

must show that if b ≤ n
3d
√
d
, then building the lookup table and doing the actual

string comparisons can each be done in O(n2m) time. We further assume k ≈ 2d

(in practice we choose a larger k).

First, we show that there are at most m
k−db

232d entries in the lookup table.

There are at most m
k−d intervals and since each interval has at most b distinct strings,

there are at most b2 relevant string comparisons. Each distinct string comparison

must be computed for all 32d offset vector inputs. The cost of generating each lookup

entry is simply the cost of computing banded alignment on a block, kd. Thus, the

lookup table can be built in time m
k−db

232dkd. Keeping our goal in mind we see that

m

k − d
b232dkd ≤ n2m is true when b ≤ n

3d
√
d

since k ≈ 2d

To bound the running time of the string comparisons, notice that comparing

two strings requires computing m
k−d block functions. The time spent at each block

will be O(k+d) to look up the output of the block function and update our sum for

the next corner. Thus, building the lookup table and computing the edit distance

between all pairs using the lookup table each take O(n2m) time.

6.1.9 The Edit Distance Interval Trie (EDIT)

To facilitate the crucial step of identifying all strings within edit distance d of

a chosen cluster center, we construct a trie-like data structure on the intervals. This

structure will be built during a pre-processing stage. Then, during recruitment, any
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recruited sequences will be deleted from the it. The procedure for building this

structure is summarized in Algorithm 6 and illustrated in Figure 6.4. The main

benefit, like any trie, is that it exploits prefix similarity to avoid duplicating work.

The mapping in step 2 of Algorithm 6 is a one-to-one mapping to integers from

one to the number of distinct substrings. It reduces the size of the data structure

since the number of distinct substrings will typically be much less than all possible

length k strings on the given alphabet. This mapping also speeds up calls to the

lookup table during the recruitment subroutine summarized in the next section.

Algorithm 6: Build-EDIT
1 Partition each sequence into overlapping intervals of length k, such that

each interval overlaps on exactly d+ 1 characters.
2 Map each distinct substring of length k appearing in our list of interval

strings to an integer.
3 Assign an integer vector signature to each sequence by replacing each

block with its corresponding integer value.
4 Insert these signatures into a trie with the leaves being pointers to the

original sequences.

(1) s1: A C T G G A C A G T T
s2: A C T G G A C A A A C
s3: A C T G G T C A G T T

(2) A C T G G 1
G G A C A 2
C A G T T 3
C A A A C 4
G G T C A 5

(3) s1: 1, 2, 3
s2: 1, 2, 4
s3: 1, 5, 3

(4)

Root 1
2

5

3

4

3

s1

s2

s3

Figure 6.4: Example illustrating the steps of Algorithm 6 with d = 1 and k = 5.
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6.1.10 Experimental Results

Properties of our recruitment algorithm and data structure

In this section, we highlight some key features of our recruitment algorithm

and the EDIT data structure. To evaluate our method, we used a dataset consisting

of about 57 million 16S rRNA amplicon sequencing reads with 2.7 million distinct

sequences. To understand the impact of the number of input sequences to cluster on

the average number of comparisons in each recruitment step, we ran our algorithm

on different input sizes at different similarity thresholds. We counted the average

number of tree nodes explored while recruiting a particular center sequence and

used it as a quantitative representation of the amount of comparisons made since

all nodes represent a substring of fixed length k. Figure 6.5 shows the plots for the

average number of tree nodes explored for different similarity thresholds. For the

95% and 97% similarity thresholds, the average number nodes explored decreases

as more sequences are clustered. This happens because of the fact that although

more sequences are clustered, due to the lower similarity threshold a large number

of sequences get clustered in each traversal of the tree. For 99% similarity thresh-

old, the average number of nodes explored increases initially with the number of

sequences, but becomes uniform after about 100, 000 sequences. The strict increase

in the number of nodes can be explained by the high similarity threshold. However,

in all cases, the number of nodes explored by each center does not increase linearly

with the number of input sequences. Thus the total number of comparisons made

for given dataset is observed to be increasing as function of n rather than the worst
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Figure 6.5: Plots for the average number of nodes explored in the tree while recruit-
ing sequences to a cluster center.

case n2.

Running time analysis

We compared the running time of EDIT and UCLUST on a subsample 1.07

million distinct sequences at different similarity thresholds. Figure 6.6 shows the plot

for running time at different similarity thresholds. We observed that the running

time of EDIT stays fairly constant at different similarity thresholds whereas the

running time of UCLUST was very low for lower similarity thresholds, but increased

non-linearly at higher similarity thresholds. Especially, between 98.5% to 99%, the

running time of UCLUST grows 5 folds. We did further analysis of running time

at 99% similarity threshold using different sample sizes as input. Figure 6.6 shows

the running time comparison of UCLUST and EDIT. It can be observed that, the

running time of UCLUST on large sample sizes ( > 1 million) grows much faster

that the running time of EDIT, which scales almost linearly. For the largest sample

of 2.7 million sequences, UCLUST running time was ten times greater than EDIT

running time. This evaluation implies that higher similarity thresholds ( > 98%),

EDIT was faster compared to UCLUST. Also, the running time of EDIT showed
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Figure 6.6: Running time comparison of EDIT and UCLUST as a function of simi-
larity threshold and number of sequences.

low variance compared to UCLUST for different similarity thresholds.

Evaluation of clusters

We subsampled 135,880 distinct sequences from the entire dataset and ran both

methods at the 97% and 99% similarity thresholds. We then compared the outputs

of both methods using three metrics: the cluster size, the cluster diameter based on

the sequence similarity, and the cluster diameter based on the evolutionary distance.

To compute the cluster diameter based on sequence similarity, we computed the

maximum edit distance between any two sequences in each cluster. To compute

the cluster diameter based on evolutionary distance, we first performed a multiple

sequence alignment of the sequences in each cluster using clustalW [177]. Once

the multiple sequence alignment was computed, we used the DNADIST program

from the phylip [178] package to compute a pairwise evolutionary distance matrix.

The maximum distance between any pair of sequences is defined as the DNADIST

diameter. Using two orthogonal notions of cluster diameter helps to define the

“tightness” of clusters. Figures 6.7 and 6.8 show violin plots for different comparison
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Figure 6.7: Evaluation at similarity threshold of 99%. All of the plots are log scaled.

Figure 6.8: Evaluation at similarity threshold of 97%. All of the plots are log scaled.

metrics at the 99% and 97% similarity thresholds, respectively. At the 99% similarity

threshold, EDIT is able to produce larger clusters compared to UCLUST. The edit

distance diameters for the clusters generated by EDIT is fairly well constrained.

However, the edit distance diameters for the clusters generated by UCLUST had a

large variance, implying that several dissimilar sequences may be getting clustered

together. The DNADIST diameter for both methods was comparable. At the 97%

similarity threshold, both EDIT and UCLUST generated similar sized clusters. Even

in this case, the edit distance diameter for UCLUST clusters showed a larger variance

compared to the edit distance diameter for EDIT clusters. The DNADIST diameter

for UCLUST has slightly more variance compared to that of EDIT clusters, implying

some of the clusters generated by UCLUST had sequences with a large evolutionary

distance between them. This validation confirms that the sequences in the clusters

produced by EDIT at different similarity thresholds are highly similar to each other.
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At the 99% similarity threshold, we observed a stark difference between the

cluster sizes of EDIT and UCLUST. For example, the two largest clusters produced

by EDIT had sizes 7,978 and 3,383 respectively whereas the two largest clusters

produced by UCLUST were of sizes 249 and 233, which is almost 30 times smaller

than the largest EDIT cluster. To investigate this further, we used BLAST [179] to

align all clusters of UCLUST against the top two largest clusters of EDIT. We only

considered the alignments with 100% alignment identity and alignment coverage. We

observed that 765 distinct UCLUST clusters had all of their sequences aligned to the

largest EDIT cluster and 837 distinct clusters had at least 80% of their sequences

aligned to the largest EDIT cluster. Only 82 UCLUST clusters out of 16,968 total

(not including singletons) had less than 80% of their sequences mapped to the largest

EDIT cluster. Those 82 clusters accounted for only 255 sequences, roughly 30 times

fewer than the number of the sequences in the largest EDIT cluster alone. As far

as singletons (the clusters with only one sequence) are concerned, EDIT generated

22,318 singleton clusters whereas UCLUST generated 33,519 singleton clusters. For

the size of the sample considered in this analysis, this difference is very significant.

This evaluation implies that at a high similarity threshold, heuristic based methods

like UCLUST tend to produce fragmented clusters whereas EDIT was able to capture

a higher number of similar sequences in a single cluster.
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6.2 Succinct Four Russians Speedup for Edit Distance

Edit distance (a.k.a. Levenshtein distance) is one of the most natural and

ubiquitous measures of similarity between two strings. In the most common vari-

ant, unit cost, it counts the minimum number of edits needed to transform one

string into another. Here, we use the Levenshtein definition of edits which include

insertions, deletions, or substitutions of a single character. However, in some cases

edit operations may be assigned differring costs from a penalty matrix and addi-

tional operations (e.g. inversions or transpositions) may be considered. Computing

this distance is a fundamental problem with applications in many areas such as

computation biology, natural language processing, and information theory.

The most well known algorithms use dynamic programming to solve the prob-

lem in O(m2) time where m is the length of the strings. The only improvement

to this has been the Four Russians algorithm [173], running in O(m2/ logm) time.

While the conditional hardness results, such as [180], suggest this is unlikely to be

improved further for arbitrary strings even on small alphabets [181].

The problem of comparing a string against a large set of sequences is of central

importance in domains such as computational biology, information retrieval, and

databases. The banded alignment variant (a.k.a. the d differences approximate

string matching problem), in which we only report the distance when it is at most

some parameter d is also highly relevant. It is useful in numerous settings wherein

we only care about finding small distances or the maximum distance between any

two strings in known to be small. As stated in the previous section, solving this
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problem is a key subroutine in many greedy clustering heuristics for gene clustering.

Another area of research surrounding the Four Russians speedup is how to

apply it in practice. While the theoretical result uses a block size of logm, such a

large block size is impractical due the size of the lookup table exceeding hardware

constraints. For the unit cost version, [182] showed how to drastically reduce the

required space, especially for large alphabets, by avoiding redundant string compar-

isons. We show that our approach can be combined with theirs to reduce the space

(and preprocessing time) requirement even further.

6.2.1 Related Work

The edit distance problem is extremely well-studied and the following related

work is by no means exhaustive. We focus on the aspects most related to our

problem: pairwise comparison, the Four Russians speedup, and one-against-many

comparison. For simplicity, we describe all results in the context wherein all strings

have length exactly equal to m.

The most well-known approach for computing the edit distance between a

pair of strings of length m uses dynamic programming and requires O(m2). This

was later improved to O(m2/ logm) in 1980 using the Four Russians speedup [173,

174] and [183] achieved O(m2/ logm) for unrestricted scoring matrices. The Four

Russians speedup, originally proposed for matrix multiplication, has been adapted

to many problems besides edit distance including: RNA folding [184], transitive

closure of graphs [185], and matrix inversion [186]. On the negative side, [180]
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recently showed that no algorithm for edit distance can do better than m2−ε time

unless the Strong Exponential Time Hypothesis (SETH) is false and [181] extended

this to include strings on a binary alphabet. They accomplished this by reducing

a satisfiability problem to edit distance and showing that a subquadratic algorithm

for edit distance implies a subexponential algorithm for satisfiability. However, if

we fix a maximum distance d and only care about reporting the exact distance

when it’s less than d, we call this the banded alignment problem. This problem has

seen improvements to O(md) time [187] and the current best algorithm takes only

O(m+ d2) time [188,189].

One-against-many edit distance comparison involves comparing a single string

to a set of n other strings. Here, we consider only the banded alignment version

of the problem wherein we seek to find the distance to all strings within maxi-

mum distance d. This problem can be solved in O(nm + nd2) or O(nmd) time

by iteratively applying the pairwise banded alignment algorithms discussed above.

Heuristic approaches may run much faster in practice by exploiting properties of

the input strings such as prefix similarity and storing the set of strings in a clever

data structure such as a trie or BK-tree [187]. However, little theoretical progress

has been made. A popular approach to this problem in the context of spell checkers

employs Levenshtein automata and/or transducers [190–192]. Assuming d is a fixed

constant, these algorithms run in O(nm) time. However, in practice they consider

extremely small values of d (at most 3 or 4) and their runtime appears to grow

exponentially in d. In the context of gene clustering in computational biology, [161]

show that all pairs banded alignment can be performed in O(n2m) time under the
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assumption that all strings are extremely similar. They also use an extension of the

Four Russians speedup to one-against-many banded alignment, but our approach to

this problem requires no assumptions on the input strings.

The Four Russian speedup is well-studied in context of the regular expression

membership problem where the goal is to determine if a particular string matches a

given regular expression. Myers [193] showed that for a regular expression of length

P and a string of length m, the exact regular expression membership problem (no

mismatches are allowed) can be solved in O(mP/ logm) time using the Four Russian

speedup compared to the naive O(mP ) runtime. Wu, Manber, and Myers [194]

extended this result for approximate regular expression membership problem where

the goal is to check if a string is within an edit distance d from the given regular

expression. They showed that approximate regular expression matching problem

can be solved in O(mP/ logd+2m) time.

Space efficiency is also a major concern in practical applications of the Four

Russians speedup since the entire lookup table must be stored in main memory.

Thus, block sizes as small as k = 4 or 5 may be used. The classical approach for

the unit cost variant uses O(32kk|Σ|2k) space. Kim, Na, Park, and Sim [182] showed

how to remove the dependence on the alphabet size, generating a lookup table in

O(32k(2k)!k2) time and O(32k(2k)!k) space. This offers a significant improvement,

for example, when |Σ| = 20 for protein sequences or |Σ| = 26 for the English

language.
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6.2.2 Preliminaries

For simplicity of presentation, we assume all strings have equal length m.

However, the results extend easily to the case where strings have different lengths.

We assume the lookup table is any data structure that can perform lookups and

insertions in O(k) time for blocks which are identified by distinct keys of length

O(k).

See Section 6.1.6 for a summary of the classical four Russians approach.

6.2.3 Our Contributions

We show a new way to store and query block functions. For a given pair of

strings corresponding to a k-by-k block in the dynamic programming table, we store

an entry in the lookup table using only O(k2 lg k) time and O(k2) space. We show

how to query this entry in O(k) time. By contrast, the classical approach requires

O(ψ2kk2) time and O(ψ2kk) space, where ψ is the number of possible offset values

and depends on the costs of edits, to store a lookup entry for a pair of strings since

it computes the function for all possible row/column offset vectors and O(k) time

per query. Thus, we improve the time and space complexity of that aspect by a

factor of at least ψ2k/k and remove the dependence on ψ. This result is stated in

Theorem 20.

Theorem 20. Given two strings corresponding to a k-by-k block, we can store a

lookup entry using O(k2 lg k) time and O(k2) space such that given any values for

the first row and column of the block, we can compute the last row and column of
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the block in O(k) time.

We demonstrate the power of our technique for block functions by designing

an algorithm for the fundamental problem of one-against-many banded alignment.

In particular, comparing one string of length m to n other strings of length m

where we only need to report distances within a maximum distance threshold d can

be performed in O(nm + md2 lg d + nd3) time. When d is reasonably small, this

improves on the common, naïve approach which requires O(nmd) time to iteratively

run anO(md) time pairwise banded alignment algorithm. It also approaches the best

theoretic result of O(nm+nd2) achieved by using the best known pairwise algorithm

running in O(m+d2) time [188,189]. We note that the author of [188], describes the

O(m + d2) time algorithm as “impractical” and “primarily of theoretical interest”.

We are somewhat more optimistic, observing that our algorithm blends neatly with

approaches such as those described in the previous section on gene clustering and

as discussed in Section 6.2.6, can be implemented in a way that exploits the prefix

similarity occurring in practice.

Theorem 21. Performing banded alignment with maximum distance d between a

string of length m and n other strings also of length m can be done in O(nm +

md2 lg d+ nd3) time.

We extend the classic result of [173] which computes the edit distance be-

tween two strings in O(m2/ logm) time to remove the dependence on ψ even when

edits have costs derived from a penalty matrix. Here, the number of entries in the

lookup table does not depend on the penalty matrix. We acknowledge that [183]
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also achieves the same O(m2/ logm) running time on unrestricted scoring matri-

ces. However, there are some differences between our approach and theirs which

may make one or the other more advantageous in different settings. Most notably

our approach adheres more closely to the classic Four Russians speedup and uses a

uniform block size which is necessary for our one-against-many algorithm. Uniform

block sizes also allow our technique to be combined easily with the space-efficient ap-

proach in [182] and the gene clustering technique in [161] since both rely on splitting

the dynamic programming table into uniform size blocks. For [161], this is crucial

to exploiting the prefix similarity among highly conserved genomic sequences. On

the other hand, the blocks in [183] vary in size in a clever way to take advantage of

the compressibility of the strings being compared. This yields a faster running time

for pairwise comparison of strings with small entropy, O(hn2/ log n), where h ≤ 1 is

the entropy of the text.

Theorem 22. Given a penalty matrix for edit operations, the edit distance between

two strings can be computed in O(m2/ logm) time.

In practical applications wherein space efficiency is important and smaller

block sizes k are used (notably k < |Σ|), [182] showed how to remove the depen-

dence on the alphabet size for the unit cost version, generating a lookup table in

O(32k(2k)!k2) time and O(32k(2k)!k) space. Combining their work with ours yields

an improvement to O((2k)!k2 lg k) time and O((2k)!k2) space. Figure 6.9 illustrates

the differences in space efficiency achieved by each approach for small block sizes k.

Theorem 23. For a block size k, a lookup table can be generated in O((2k)!k2 lg k)
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time and O((2k)!k2) space such that we can find the unit cost edit distance between

two strings of length m in O(m2/k) time.
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Figure 6.9: Plots showing the theoretical space efficiency for different block sizes k
on alphabet sizes 2, 4, and 26. MP is the classic approach [173], KNPS is the space
efficient version from [182], BG is our approach, and Combined is the combination
of our method and [182].

6.2.4 Storing and Querying the Block Function

Here, we consider the crucial subroutine in our algorithms and prove Theo-

rem 20. For a block size k, we first show how to store a lookup entry for any two

strings of length k in O(k2 lg k) time and O(k2) space. Then, we show how, given

two strings of length k and the first row and column of the block, we can compute
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the last row and column in O(k) time by querying the corresponding lookup entry.

Notice that in contrast to the classical Four Russians speedup, the information we

precompute and store for a block function is based only on the two strings being

compared. Thus, we avoid having to store an entry for each of the 32k possible in-

put vectors considered in [173] (For unit costs, they encode rows/columns as offset

vectors in {-1, 0, 1} since the values in adjacent cells differ by at most 1, yielding

3k possible inputs each for the row and column vectors).

Notation

We start by defining some notation, illustrated in Figure 6.10. Let U =

{u1, u2, . . . , u2k−1} be an ordered set of the cells in the first row and column of

the block and let V = {v1, v2, . . . , v2k−1} be an ordered set of the cells in the last

row and column of the block. For both sets, the ordering starts with the upper right

corner and ends in the lower left corner. Thus, both u1 and v1 correspond to the

upper right corner, uk corresponds to the upper left corner, vk corresponds to the

lower right corner, and both u2k−1 and v2k−1 correspond to the lower left corner.

For each pair of cells (u, v), we store the least cost cu,v of any path through the

block from u to v. If no such path exists, we set cu,v =∞ and if u and v correspond

to the same cell, we set cu,v = 0. Note that cu,v is not necessarily based on the

optimal alignment within the entire block. It corresponds to an alignment of the

subset of the block with u as the upper left corner and v as the lower right. Also,

recall that this block will be part of a larger dynamic programming table and the
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Figure 6.10: Illustration of how the dynamic programming table is represented as
a bipartite graph of least cost paths. Left: The dynamic programming table for a
block comparing the strings “ACAT” and “TAGA” with all u, v, cu, and cv labeled.
Right: The bipartite graph representation. Note that this will be a complete,
weighted bipartite graph with costs cu,v for all pairs in U × V .

path through the block corresponding to the best global alignment may not be the

same as the path corresponding to the best local alignment within the block.

We can think of this set of costs as a complete, weighted bipartite graph

G = {U, V, U × V } with weights cu,v on the edges. We also use cu and cv to

denote the values stored in the corresponding cells of the block within the dynamic

programming table. When we query a block function for two strings, the cu values

(input row and column) will be given as input and our goal will be to compute

the cv values (output row and column). Thus, if we consider the values stored in

the cells after the full dynamic programing table has been computed, we have that

cv = minu∈U(cu + cu,v).
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Storing Lookup Entries

For every pair of substrings we wish to query eventually, our lookup table will

simply store the cost cuv for every edge in the graph G defined by comparing those

substrings. These cost values will be stored in a |V | × |U | matrix M with a row for

each v ∈ V and a column for each u ∈ U . Cell Mji will contain cuivj . We now show

that computing G and storing M for any pair of substrings of length k can be done

in O(k2 lg k) time.

Lemma 15. Given a pair of strings of length k, we can compute all cu,v in O(k2 lg k)

time.

Proof. Note that each cu,v can be seen as the weight of the shortest path in a grid

graph of dimension k×k. Thus the algorithm of [195] can be applied. That algorithm

requires O(k2 lg k) preprocessing time and can then compute each of the O(k2) cu,v

entries in O(lg k) time. This leads to an overall running time of O(k2 lg k).

For completeness, we also state the simple fact that the space requirement for

an entry is O(k2).

Lemma 16. Given a pair of strings of length k, storing the entry requires O(k2)

space.

Proof. The proof follows directly from the fact that we are simply storing the edges of

a complete, weighted bipartite graph G = {U, V, U×V } with |U | = |V | = 2k−1.
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Querying a Block Function

Given the two substrings and the input row and column vectors, we now show

how to use our lookup entry matrixM to compute the output row and column (a.k.a

all cv for v ∈ V ) in O(k) time.

Lemma 17. Given the input row and column vectors and the O(k) × O(k) lookup

entry matrix M , we can compute the output row and column in O(k) time using the

SMAWK algorithm [196].

Proof. Let ~w be the vector of all cu values generated from the input row and column

vectors. Scaling each column of M by the corresponding cell in ~w gives us a new

matrix M ′ wherein the minimum value in each row j is our desired output value

cvj = minu∈U(cu + cu,vj). It is known that M ′ is totally monotone [195, 197] and

thus we can find row minima in O(|U |) = O(k) time using the classic SMAWK

algorithm [196]. Note that we need not explicitly generateM ′ since the value of any

cell we wish to query can be computed from M and ~w as M ′
ji = Mji + ~wi.

The proof of Theorem 20 follows from Lemmas 15, 16, and 17.

Alternatives to Query a Block Function without SMAWK

While our algorithm for banded alignment in Section 6.2.5 uses larger block

sizes than the typical pairwise Four Russians approach, in many cases, the blocks

will be small enough for SMAWK to be inefficient in practice. As such, we introduce

a simpler query algorithm here and briefly discuss the potential for future work to
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speed up the query function in practice.

This simpler query algorithm achieves a slightly worse asymptotic running

time of O(k lg k) and can be described as follows. Recall that our goal is to find the

minimum value of each row in the totally monotone matrix M ′ with |U | columns

and |V | rows. We first find the minimum value in row |V |/2 and let mincol be the

column containing that cell. We then perform the same operation recursively on two

submatrices ofM ′. The first submatrix includes all rows up to |V |/2 and all columns

up to (and including)mincol. The second includes the rows after |V |/2 and columns

from mincol to |U |. We do not claim this simpler algorithm is a novel approach

to finding row minima and include it merely to illustrate possible alternatives to

SMAWK.

Lemma 18. The algorithm described here runs in O(k lg k) time and outputs the

correct result.

Proof. For the running time, note that each recursive call nearly partitions the

columns ofM ′ (pairs of submatrices overlap at single columns), resulting in O(|U |) =

O(k) time spent at each level of recursion. Since we split the rows in half at each

level, there will be O(lg |V |) = O(lg k) levels total, giving a final running time of

O(k lg k).

The correctness follows directly from the properties of totally monotone ma-

trices also utilized in the analysis of SMAWK.

Looking to the future, we note that neither SMAWK nor the algorithm in this

section leverage all of the specific properties of the matrix M ′. For example, M ′ is
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not an arbitrary totally monotone matrix. It comes from M , a matrix which we can

afford to spend k2 time preprocessing, scaled by ~w, a vector with the property that

adjacent cells differ by at most 1 in the unit cost setting.

6.2.5 One-against-many Comparison

Extending the Four Russians Approach to Banded Alignment

For our algorithm for one against many banded alignment, we use the extension

to banded alignment from [161] which simplifies both the analysis and practical

implementation. The extension uses a slightly different block function and way of

tiling blocks to cover the relevant diagonal “band” of the dynamic programming

table. The blocks now overlap on a square of size d + 1 at the upper left and

lower right corners. We will call these overlapping regions overlap squares. The

block function still takes as input the two substrings to be compared. The set U

contains only the first row and column of the the upper left overlap square and V

contains only the first row and column of the lower right overlap square as well as

the difference between the upper left corners of the two overlap squares.

Thus, we can move directly from one block to the next, storing a sum of

the differences between the upper left corners. In this case, reaching the final lower

right cell of the table requires an additional O(d2) operation to fill in the last overlap

square, but this adds only a negligible factor to the running time.
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Figure 6.11: Example of our approach to the Four Russians speedup. Left: a block
for maximum edit distance d = 2. The output δ represents the offset from the upper
left corner of one block to the upper left corner of the next block. Note that we only
need to consider a diagonal band of the block itself. Right: using these blocks to
cover the diagonal band of the dynamic programming table in the context of banded
alignment.

Our Algorithm

We start with some notation and definitions. For a string s, let si,i+k be a

length k substring starting at index i of s. We define two types of block compar-

isons, identities and differences, based on the strings being compared. An identity

comparison is between the substring si,i+k and another substring that is identical to

one of the substrings sj,j+k for j ∈ {i− d, i− d+ 1, . . . , i, . . . , i+ d}. All other com-

parisons are difference comparisons. In other words, identity comparisons between

two strings will come from long common subsequences between the two strings. Dif-

ference comparisons will come from the locations where an edit occurs. Note that

we can stop comparing two strings once we’ve encountered more than d differences

among their prefixes. Let S be a set of strings and let p be the single string we wish

to compare to all strings in S.

The algorithm can be summarized as follows. We first compute and store
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lookup entries for all possible identity comparisons for each block in p. We then

perform pairwise comparisons between p and each string in S. A pairwise com-

parison is computed as follows. For each block, we first query the lookup table

using the corresponding substrings. If we find an entry (similarity comparison), we

query it as described in Section 6.2.4. Otherwise (difference comparison), we per-

form standard banded alignment on the two strings with the first row and column

of the table initialized to the values of the input row and column of the block. If

at any time during a pairwise comparison the distance accumulated exceeds d, then

we immediately halt and move on to the next pair.

We divide the analysis into three parts: the time to compute and store the

lookup table, the time to query the lookup table during pairwise comparison, and

the time to compute the block function for difference comparisons.

Lemma 19. The time to compute and store the lookup table for all block identity

comparisons in a single string p of length m and max distance d is O(md2 lg d).

Proof. Let the block size k = 2d. Then p will be divided intom/d−1 blocks. For any

given block, let pi,i+k be the substring of p corresponding to that block. Then, for

every j ∈ {i−d, i−d+ 1, . . . , i, . . . , i+d}, we need to store the comparison between

pi,i+k and pj,j+k. We need not compare pi,i+k to any substrings outside this range

since that would imply an alignment of distance greater than d. Thus, for each block

we need to store lookups for at most 2d + 1 = O(d) different identity comparisons.

Computing the lookup entry for each comparison takes O(k2 lg k) = O(d2 lg d) time

by Theorem 20. Putting it all together, we have O(m/d·d·d2 lg d) = O(md2 lg d).
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Lemma 20. Excluding the time to compute block functions for difference compar-

isons, the time to compare a string p of length m to n other strings using the pre-

computed lookup table is O(nm).

Proof. Each pairwise comparison involves computing m/d − 1 block functions. If

a block corresponds to an identity comparison querying the block function takes

O(k) = O(d) time by Theorem 20. Otherwise, if it’s a difference comparison block,

the only time will come from checking the lookup table which we’ve assumed takes

O(d) time. It follows that the running time for each pairwise comparison is O(m)

and comparing p to all n strings requires O(nm) time.

Lemma 21. The time needed to compute block functions for difference comparisons

between p and all n other strings is O(nd3).

Proof. Notice that each edit is present in at most two overlapping blocks. It fol-

lows that for a given pair of strings, the number of block queries corresponding

to differences can be at most 2(d + 1) = O(d) since we will halt a comparison if

the distance ever reaches d + 1 or more. Thus, the running time to compute the

full dynamic programming for difference blocks for all n pairwise comparisons is

O(n · d · d2) = O(nd3).

The proof of Theorem 21 follows from combining Lemmas 19, 20, and 21.

6.2.6 Extensions and Applications

In this section, we briefly show how the results of Section 6.2.4 can be applied

to other settings in which the Four Russians speedup is used for computing string
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edit distance.

Comparing Two Arbitrary Strings with a Penalty Matrix

As with the classical Four Russians, when the alphabet size is constant, we

can choose the block length k to be an appropriate logarithmic function of the string

length m such that the lookup table can be computed efficiently. For an alphabet

Σ, there are |Σ|2k pairs of string of length k. By Theorem 20, each pair requires

O(k2 lg k) time to compute the lookup entry regardless of the costs of the edits. Thus,

the preprocessing for k = (log|Σ|m)/2 takes O(m log2m log logm) time. Since the

total number of blocks in the dynamic programming table is O(m2/k2) and com-

puting each block function from the lookup table takes O(k) time by Theorem 20,

the running time to compute the distance using the lookup table is O(m2/ logm).

This completes the proof of Theorem 22.

Improved Space-efficiency

The approach in Section 6.2.4 can be combined with the work of [182] to

achieve the improved time and space bound in Theorem 23 for computing the lookup

table. Notice that Theorem 20 gives a time and space bound for each pair of

substrings for which we need to compute a block function. Specifically, each pair

of strings contributes O(k2 lg k) time and O(k2) space. As a complement, [182]

showed how to encode strings in such a way that we reduce the number of redundant

string comparisons. There, the number of strings compared is reduced to O((2k)!).

215



Theorem 23 follows from these simple observations.

Exploiting Prefix Similarity in One-against-many Comparison

Since the one-against-many banded alignment algorithm in Section 6.2.5 uses

the same extension to banded alignment as [161], it can be combined with other

techniques from that paper. In particular, they divide all of the strings in the

database S into blocks and store the blocks in a trie-like data structure. This

allows them to exploit prefix similarity of the strings of S and further improve the

running time in practice. Additionally, that uses lazy computation, the technique of

computing and storing the lookup table on-the-fly rather than precomputing it to

heuristically avoid comparing substrings which don’t actually appear in the dataset.

In the context of Theorem 21, that could potentially reduce the md3 factor.

6.2.7 Conclusion and Future Directions

In this section, we provided an approach to storing and querying block func-

tions in the Four Russians speedup for edit distance computation using less time

and space than the original method. We demonstrated how this approach can lead

to an algorithm for the one-against-many banded alignment problem. Finally, we

showed how our approach can easily be combined with prior work to gain additional

improvements such as space-efficiency.

The problems of comparing two similar strings and one-against-many compar-

ison of highly similar strings have applications in variety of domains. For example,
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searching a query sequence against the database of multiple sequence within a cer-

tain similarity threshold is one of the basic tasks in designing database management

systems. In the case of document plagiarism detection, the task is to compare two

documents which are assumed to be highly similar to each other. In the case of

computational biology, sequence similarity detection is a ubiquitous task in most

analysis. Although there have been efficient algorithms proposed in literature, they

are not very easy or practical to implement on a routine basis. Our algorithm may

bridge this gap and be easier to implement while yielding similar theoretical bounds.

There are many questions and potential future directions following this work.

One natural question is whether the techniques in this paper can be applied to other

problems yielding a Four Russians speedup. In many cases, such as boolean matrix

multiplication, the answer is no. However, problems more closely related to edit dis-

tance may yield some improvement. Regarding the specific problems in this paper,

the O(nd3) term in the one-against-many result can likely be improved to O(nd2)

to match [188] and doing so using practical techniques would be a nice addition to

this work. Similarly, improving the constant factors in the query by using a more

specialized algorithm than SMAWK (even an asymptotically worse algorithm) could

enhance the practical applications of our approach. On the hardness side, which of

these results are tight?
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6.3 Maximum Duo-preservation String Mapping

String comparison is a fundamental problem in many fields such as bioinfor-

matics and data compression. The difference between two strings is often measured

by some notion of edit distance, the number of edit operations required to transform

one string into another. The classic Levenshtein distance definition includes inser-

tion, deletion, and/or substitution operations on single characters. However, the

more general edit distance with moves problem studied in [198] allows an additional

operation wherein an entire block of text is shifted within a string.

Variations of these shift operations, also known as rearrangements, are com-

monly studied in genomics [199, 200] with several biologically motivated twists on

the above definition. String comparison of DNA or protein sequences can provide an

estimate of how closely related different species are. In data compression, we may

want to store many similar strings as a single string along with the edits required

to recover all strings. These two applications even overlap naturally in the field of

bioinformatics where extremely large datasets of biological sequences are common.

For example, the challenge of pan-genome storage is to store many highly similar

sequences from the same clade such as a bacterial species.

One way to capture just the “moves” operation on two strings which are permu-

tations of each other is the Minimum Common String Partition problem (MCSP).

In that problem, we cut (partition) each string into a multi-set of substrings such

that the two multi-sets are identical and the number of cuts is minimized. This pa-

per studies the complementary problem to MCSP, the Maximum Duo-Preservation
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String Mapping Problem (MPSM) and its weighted variant (MWPSM). Our goal

is to find a one-to-one mapping from the letters of one string to the other. The

objective is to maximize the pairs of consecutive letters (duos) which map to pairs

of consecutive letters in the other string (i.e. pairs that are not cut in MCSP).

While MCSP has been well-studied for some time, a recent flurry of work

on MPSM has given us a deeper understanding of that problem. Mehrabi [201]

introduced the Maximum Weight Duo-Preservation String Mapping Problem (MW-

PSM) to better capture applications in comparitive genomics. Beyond identifying

the number of block moves, the weighted variant allows us to address questions like,

"How far did these blocks move?" This better captures the concept of “synteny”

in genetics [202, 203]. Also addressing practical considerations, Dudek, et al [204]

included a quadratic time version of their approximation algorithm whereas much

of the prior work has focused on improving the approximation in polynomial time.

6.3.1 Problem Description

The Maximum Duo-Preservation String Mapping Problem (MPSM) is defined

as follows. We are given two strings A = a1a2 . . . an and B = b1b2 . . . bn of length n

such that B is a permutation of A. Let ai and bj be the ith and jth characters of

their respective strings. A proper mapping π from A to B is a one-to-one mapping

with ai = bπ(i) for all i = 1, . . . , n. A duo is simply two consecutive characters from

the same string. We say that a duo (ai, ai+1) is preserved if ai is mapped some bj

and ai+1 is mapped to bj+1. The objective is to return a proper mapping from the
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letters of A to the letters of B which preserves the maximum number of duos. Note

that the number of duos preserved in each string is identical and by convention we

count the number of duos preserved in a single string rather than the sum over both

strings. Let OPTMPSM denote the number of duos preserved from a single string

in an optimal solution to the MPSM problem. Figure 6.12 shows an example of an

optimal mapping which preserves the maximum possible number of duos.

A: a b c d d c b a

B: b c a d d c a b

Figure 6.12: Illustration of a mapping π from A to B that preserves 3 duos: bc, dd,
and dc. A solution to the complementary MCSP problem on the same strings would
be partitions PA = a, bc, ddc, b, a and PB = bc, a, ddc, a, b with |PA| = |PB| = 5.

The complementary Minimum Common String Partition problem (MCSP)

seeks to find partitions of the strings A and B where a partition PA of A is defined

as a set of substrings whose concatenation is A. The objective is to find minimum

cardinality partitions PA of A and PB of B such that PB is a permutation of PA.

Let OPTMCSP denote the cardinality of a partition in an optimal solution. We can

see that OPTMCSP = |PA| = |PB| = n − OPTMPSM . The variants, k-MPSM and

k-MCSP, add the restriction that each letter occurs at most k times in each string.

For a given algorithm, let ALGMPSM be number of duos preserved by the algorithm.

The approximation ratio for that algorithm is defined as OPTMPSM/ALGMPSM .

In MWPSM, a weight is assigned to every pair of preservable duos and we

seek to maximize the weight of the solution. While [201], discusses using weights to

capture the positions of preserved duos within their respective strings, the weights
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in MWPSM can be arbitrary and are not required to be a function of position.

6.3.2 Related Work

The Maximum Duo-Preservation String Mapping Problem (MPSM) was in-

troduced in [205] along with the related Constrained Maximum Induced Subgraph

(CMIS) and Constrained Minimum Induced Subgraph (CNIS) problems. They used

a linear programming and randomized rounding approach to approximate the k-

CMIS problem which they show is a generalization of k-MPSM. This led to a k2-

approximation for k ≥ 3 and a 2-approximation for k = 2. This was improved

by [206] to a 4-approximation independent of k and running in O(n3/2) time as well

as approximation ratios of 3 for k = 3 and 8/5 for k = 2. [206] also showed that

k-MPSM is APX-hard even for k = 2, meaning no polynomial-time approximation

scheme (PTAS) exists assuming P 6= NP . The approximation was subsequently

improved to 3.5 using local search [207], 3.25 using a combinatorial triplet match-

ing approach [9], and finally 2 + ε for any ε > 0 in nO(1/ε) time, again using local

search [204]. The work of [204] also presented a 2.67-approximation running in

O(n2) time.

The recent interest in MPSM led to the study of several variants includ-

ing Maximum Weight Duo-preservation String Mapping (MWPSM), k-MPSM, and

fixed-parameter tractability (FPT). The weighted variant of MPSM was introduced

in [201] along with an algorithm achieving a 6-approximation. That work was the

first to apply the local ratio technique developed by Bar-Yehuda and Even [208]
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to an MPSM problem. Recent work on k-MPSM led to a (1.4 + ε)-approximation

for 2-MPSM [209]. On the FPT side, [210] showed that MPSM is fixed-parameter

tractable when parameterized by the number of preserved duos and [211] achieved

a faster running time with a randomized algorithm.

The Minimum Common String Partition problem (MCSP) has been exten-

sively studied from many angles including polynomial-time approximation [198,205,

212–215], fixed-parameter tractability [216–219], and heuristics [220–222]. FPT al-

gorithms have been parameterized by maximum number of times any character oc-

curs, minimum block size, and the size of the optimal minimum partition. Heuristic

approaches range from an ant colony optimization algorithm [220] to integer linear

programming (ILP) based strategies [221,222] which in some cases solve the problem

optimally for strings up to 2, 000 characters in length.

The problem was shown to be NP-hard (thus implying MPSM is also NP-

hard) and APX-hard even for 2-MCSP [213]. The current best approximations

are an O(log n log∗ n)-approximation due to [198] for general MCSP bases on the

related edit distance with moves problem and an O(k)-approximation for k-MCSP

due to [214]. Applications to evolutionary distance and genome rearrangement can

be found in [199,200].

Unclaimed results in prior work: An analysis of prior work shows that

4-approximations to both problems studied here can be achieved using slight mod-

ifications to existing work. For MWPSM, the algorithm in [206] can be extended

by choosing a maximum weight matching and partition rather than maximum

cardinality. For the unweighted problem, Goldstein and Lewenstein [223] showed
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an O(n) time greedy algorithm for MCSP. Although not discussed in their paper

which pre-dated MPSM, we note that the greedy algorithm for MCSP achieves a

4-approximation for MPSM by a fairly straightforward charging argument. Formal

proofs of these claims are outside the scope of this work and we leave them to the

interested reader. Additionally, we will not refer to these approximations when com-

paring our work to previous best known results. We simply mention them here for

completeness and to give a nod to two nice papers in the area.

6.3.3 Our Contributions

We show a transformation of the Maximum Duo-Preservation String Mapping

(MPSM) problem into a related tractable problem. This transformation leads to

new algorithms for both weighted and unweighted MPSM. For the weighted case,

we present an 8/3-approximation running in O(n3) time. This improves upon the

previous best 6-approximation in polynomial time [201] (a tighter bound on the

running time is not given in the paper). It also matches the best quadratic time ap-

proximation for the unweighted problem of 2.67 and approaches the best unweighted

approximation of 2 + ε for any ε > 0 in nO(1/ε) time, both due to [204]. We further

show in Corollary 3 that we can improve the running time at the cost of a weaker

approximation. For the unweighted case, we present the first linear time algorithm

with an 8/3-approximation again matching the previous best quadratic time algo-

rithm and coming fairly close to the best known (2 + ε)-approximation achieved by

a significantly larger running time. In particular, the move from quadratic to linear
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time in length of the strings is significant for practical settings wherein the string

length may be long enough that quadratic time is prohibitive. Finally, we intro-

duce the first streaming algorithm for MPSM in the streaming model where each

string is read one character at a time. We show that a single pass suffices to find a

4-approximation on the size of an optimal solution using only O(α2 lg n) space.

In addition, the techniques here are novel to this problem and may inspire

future improvements. While [9] also used a form of triplet matching, the structure

of the triplet matching is different as is the approach to achieving a feasible solution

to MPSM. Our main results are summarized in the theorems below.

Theorem 24. There exists an algorithm which finds an 8/3-approximation to MW-

PSM on strings of length n in O(n3) time.

Corollary 3. Using the approximate weighted matching algorithm of [224], we can

find an 8/(3(1− ε))-approximation to MWPSM on strings of length n for any ε > 0

in O(n2ε−1 lg ε−1) time.

Theorem 25. There exists an algorithm which finds an 8/3-approximation to MPSM

on strings of length n over alphabets of size α in O(n+ α7) time.

Corollary 4. There exists an algorithm which finds an 8/3-approximation to MPSM

on strings of length n over constant-sized alphabets in O(n) time.

Theorem 26. There exists a single-pass streaming algorithm which finds a 4-approximation

to the size of an MPSM on strings of length n over alphabets of size α using only

O(α2 lg n) space.
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6.3.4 Preliminaries

Let A = a1a2 . . . an and B = b1b2 . . . bn be two strings of length n with ai and

bj being the ith and jth characters of their respective strings. A duo DA
i = (ai, ai+1)

contains a pair of consecutive characters ai and ai+1. We use DA = (DA
1 , . . . , D

A
n−1)

and DB = (DB
1 , . . . , D

B
n−1) to denote the sets of duos for A and B, respectively. We

similarly define a triplet TAi = (ai, ai+1, ai+2) as a set of three consecutive characters

ai, ai+1, and ai+2 in the string and sets of triplets TA = (TA1 , . . . , T
A
n−2) and TB =

(TB1 , . . . , T
B
n−2) for strings A and B, respectively. Observe that the duos DA

i and

DA
i+1 correspond to the first two and last two characters, respectively, of the triplet

TAi . We refer to duos DA
i and DA

i+1 as subsets of the triplet TAi .

A proper mapping π from A to B is a one-to-one mapping from the letters of

A to the letters of B with ai = bπ(i) for all i = 1, . . . , n. Recall that a duo (ai, ai+1)

is preserved if and only if ai is mapped to some bj and ai+1 is mapped to bj+1. We

call a pair of duos (DA
i , D

B
j ) preservable if and only if ai = bj and ai+1 = bj+1. For

MWPSM, let w(DA
i , D

B
j ) be the weight gained by mapping DA

i to DB
j .

For consistency, we define the concept of conflicting pairs of duos using the

terminology of [206]. Two preservable pairs of duos (DA
i , D

B
j ) and (DA

h , D
B
` ) are said

to be conflicting if no proper mapping can preserve both of them. These conflicts

can be of two types type 1 and type 2. In type 1 conflicts, either i = h ∧ j 6= ` or

i 6= h∧ j = `. In type 2 conflicts, either i = h+ 1∧ j 6= `+ 1 or i 6= h+ 1∧ j = `+ 1.

The algorithms here only show how to map the characters of the preserved

duos. In all cases, note that any unmapped characters can be mapped arbitrarily
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to identical characters in the other string in linear time.

6.3.5 Main Techniques and Algorithm for MWPSM

For both algorithms, we first solve a weighted bipartite matching problem we

call Alternating Triplet Matching (ATM). In this section, we define ATM, show that

a solution to ATM has weight at least 3/4 of an optimal solution to MWPSM, and

finally show that we can convert a solution to ATM to a feasible duo mapping while

preserving 1/2 of its weight. Combining these facts leads to an 8/3-approximation

to MWPSM.

The Alternating Triplet Matching (ATM) Problem

Here, we define this problem in terms of MWPSM. Modifications for the un-

weighted variant (to admit a faster solution) will be defined in Section 6.3.6. Let

TA
′

= {TAi | i is odd}, TB
′

= {TBi | i is odd} and TB
′′

= {TBi | i is even}. Through-

out, we refer to triplets starting at odd indices in their respective strings as odd

triplets and similarly use the term even triplets. Note, we do not use the even

triplets from A.

Using these subsets, we formulate bipartite matching problems on two separate

graphs G′ = {TA′ , TB′ , E ′} and G′′ = {TA′ , TB′′ , E ′′}. The edges of G′ depend on

the letters in the triplets. Consider triplets TA′i = (DA
i , D

A
i+1) and TB′j = (DB

j , D
B
j+1).

For each pair of duos DA
h and DB

` with h ∈ {i, i+ 1}, ` ∈ {j, j + 1}, and DA
h = DB

` ,

we add an edge e = (TA
′

i , TB
′

j ) with weight w(e) = w(DA
h , D

B
` ). Additionally, if
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TA
′

i = TB
′

j , we add an edge e = (TA
′

i , TB
′

j ) between them with weight w(e) =

w(DA
i , D

B
j ) + w(DA

i+1, D
B
j+1). In other words, the edge gets the combined weight of

the duo pairs preserved by mapping the substring TA′i to the substring TB′j . The

graph G′′ is defined similarly. There could be up to five edges total if the triplets

contain one letter repeated (e.g. “AAA”). In the case of multiple edges between a

pair of triplets, we only need to consider the heaviest edge among them since each

triplet can be matched at most once. However, we keep all edges for the sake of

simplifying some of the proofs. Figure 6.13 illustrates the procedure of generating

an ATM instance.

MWPSM Algorithm and Analysis

Let OPTG′ and OPTG′′ be the weights of maximum weight matchings in G′ and

G′′, respectively. Note that we can find these matchings in the time it takes to com-

pute maximum weight bipartite matching. Since our graphs have O(n) vertices and

could have O(n2) edges, this takes O(n2 lg n+n ·n2) = O(n3) time [225]. Lemma 22

states that either OPTG′ or OPTG′′ will be a (3/4)-approximation to the weight of an

optimal solution to MWPSM, OPTMWPSM . Let OPTATM = max(OPTG′ , OPTG′′).

Lemma 22. OPTATM ≥ (3/4)OPTMWPSM .

Proof. We divide the edges of OPTMWPSM into two partitions. The first partition,

P same, includes mappings, in which both letters occur at odd indices or both letters

occur at even indices. The second partition, P diff , includes the remaining mappings

wherein one letter is at an odd index and the other is at an even index (this could
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(1)
A: A A A C A G T C T. . . . . .

B: A A A G T C A T C. . . . . .
3 345 1 3 2 51

(2)
TA

′ :

TB
′ :

AAA ACA AGT TCT

AAA AGT TCA ATC
6 14 2 5

(3)
TA

′ :

TB
′′ :

AAA ACA AGT TCT

AAG GTC CAT
4 11 3 2

Figure 6.13: Illustration of how to generate an ATM instance from an MWPSM
instance. (1) Substrings of the original two strings, A and B, starting at some odd
index and featuring weighted edges representing the weight of preserving a pair of
duos. (2) The graph G′ with thicker edges representing an exact match between two
triplets. In the case of multiple edges between a pair of triplets (e.g. the five edges
between the “AAA” triplets), we only show the heaviest weight edge. (3) The graph
G′′. Note that that the weight of a mapping which maps the two “AGTC” strings
to each other is 6, which can be achieved by a matching in G′, but not in G′′.

be odd from A, even from B or even from A, odd from B).

Note that the mapping of each preserved pair of duos (DA
i , D

B
j ) will be con-

tained in one of these two partitions. Without loss of generality, let the weight

of P same be at least the weight of P diff . We show how to transform OPTMWPSM

into a feasible bipartite matching in G′ while retaining the full weight of P same and

at least half of the weight of P diff . Thus, we retain at least 3/4 of the weight of
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OPTMWPSM .

For each triplet in the vertex set of G′ that contains one or two preserved

duos from P same, we can add an edge to our matching with weight equal to the

weight of the preserved duos. This works because consecutive pairs of preserved duos

(DA
i , D

B
j ) and (DA

i+1, D
B
j+1) with i and j both being odd will correspond to a “double”

edge in the ATM instance with weight equal to w(DA
i , D

B
j )+w(DA

i+1, D
B
j+1). On the

other hand, if i and j are both even, then the duos of (DA
i , D

B
j ) and (DA

i+1, D
B
j+1)

are contained in four different triplets and will be added separately. Thus, we can

maintain all of the weight of P same in a matching in G′.

A slightly trickier case arises with P diff . Any consecutive pairs of preserved

duos (DA
i , D

B
j ) and (DA

i+1, D
B
j+1) in P diff will have i and j of different parity. This

results in the duos being contained in three triplets, two from one partition and one

from the other. That means the edges in the ATM instance capturing the weights

of the two pairs will be conflicting. Thus we can only preserve the weight of one of

the two pairs in our ATM solution. To guarantee that we add at least half of the

weight of P diff to our solution, we further partition it into pairs (DA
i , D

B
j ) with i

being odd and those with i being even. Then we simply choose the heavier of those

two partitions to add to our ATM solution.

For the case where P diff is heavier than P same, we can do a similar construction

for G′′. Thus, our ATM solution in either G′ or G′′ could have at least 3/4 the weight

of an optimal solution to MWPSM.

We can now show how to transform an optimal solution to ATM (the heavier
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of the two matchings) into a feasible string mapping which preserves at least half

of the weight of the ATM solution. Let G = (DA, DB, E) be a bipartite graph on

the duos of A and B with edge weights equal to the weight of preserving each pair

of duos. We first show how to convert an ATM solution into a matching M in G.

Then, we show how to resolve conflicts of type 2 (conflicts of type 1 will not arise

since M is a matching).

The transformation is simply a reversal of how we constructed the ATM

graphs. For each edge between triplets in our ATM solution (the heavier of the

two matchings in G′ and G′′), we add an edge or edges to M corresponding to the

duos that “created” that triplet edge.

To resolve conflicts, we consider the conflict graph C wherein we have a node

for each edge in M and an arc between nodes if their corresponding edges are in

conflict. We can prove that C has maximum degree 2, meaning it will be a collection

of paths and cycles. Further, we note that each cycle will have even length due to

Lemma 23 and the fact that the underlying graph is bipartite. Thus, for each path

or cycle, we choose the heavier of the two maximal independent sets in that path

or cycle to add to our final MPSM solution. Lemma 23 establishes that C has

maximum degree 2.

Lemma 23. Each edge in M conflicts with at most one other edge at each endpoint.

Proof. First, we note that each duo is contained in at most one triplet edge from

the ATM solution and therefore can only be matched once in M . In other words,

M is a classical matching in the bipartite graph of duos. This follows from the fact
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that consecutive triplets in a string starting at only odd (or only even) indices will

overlap at exactly one letter.

This ensures that no conflicts of type 1 can arise since that would require a duo

to be matched twice. We can also show that at most one conflict of type 2 arises at

each endpoint. Without loss of generality, consider the endpoint DA
i . Consider the

duos DA
i−1 and DA

i+1 where such a conflict might arise. Notice that one of these duos

must have come from the same triplet as DA
i , while the other comes from a different

triplet. The duo from the same triplet will either be unmatched or matched as a

non-conflicting parallel edge. Thus no conflict arises from that duo. The duo from

a different triplet could contribute at most one conflicting edge by the above claim

that each duo is matched at most once. Applying this argument to both endpoints

of a given edge completes the proof.

Lemma 24. M can be converted into M ′, a feasible solution to MWPSM, such that

the weight of M ′ is at least (1/2)OPTATM ≥ (3/8)OPTMWPSM .

Proof. The conflict graph on the edges of M must be a collection of paths and even

length cycles since it has maximum degree 2 and G is bipartite. We can simply

decompose each path or cycle into two independent sets and choose the heavier of

the two. This operation discards at most half of the weight of M while removing all

conflicts and leaving us with a feasible solution to MWPSM.

The proofs of Theorem 24 and Corollary 3 follow from the preceding lemmas.

231



6.3.6 Linear Time Algorithm for Unweighted MPSM

The basic approach follows roughly the same steps as the weighted algorithm

from Section 6.3.5: construct an ATM instance, solve the matching problem, trans-

form the solution into a duo matching on the strings, and resolve conflicts. We

show that with a small modification, each step can be done in linear time for the

unweighted problem. The key insight that allows for this speedup is that identical

triplets can be collapsed into single vertices and we can solve a b-matching problem

we call b-ATM. In the b-matching variant of classical matching, each vertex in the

graph has a capacity and can be matched that many times. We will abuse notation

a bit and refer to each vertex as having capacity b, although we actually allow the

capacity of each node to be different. The following subsections illustrate how to

perform the aforementioned steps and bound the running time of each step.

Constructing the b-ATM Instance in O(n+ α4) Time

We construct a triplet matching problem as in Section 6.3.5 with one crucial

adjustment: identical triplets are collapsed into single vertices with capacity equal

to the number of occurrences of that triplet in its given set (TA′ , TB′ , or TB′′).

The number of times each vertex is allowed to be matched is equal to its capacity.

Similarly, each edge can be matched multiple times up to the smaller capacity among

its two endpoints. Algorithm 7 shows how to construct a b-ATM instance from the

two input strings in linear time.

As in Section 6.3.5, let OPTG′ and OPTG′′ be the weights of maximum weight
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Algorithm 7: Construct b-ATM
1 Traverse each string to build a set of triplets with counts for A′, B′, and

B′′.
2 For G′ and G′′, create a vertex for each triplet with capacity equal to its

count. Add edges between the triplets as in Section 6.3.5 with the
following modification. If two triplets match exactly, give the edge weight
2 and if they only share a duo in common, give the edge weight 1.

b-matchings in G′ and G′′, respectively. Lemma 25 states that either OPTG′ or

OPTG′′ will be a (3/4)-approximation to the size of an optimal solution to MPSM,

OPTMPSM . Let OPTb-ATM = max(OPTG′ , OPTG′′) as constructed by Algorithm 7.

Lemma 25. OPTb-ATM ≥ (3/4)OPTMPSM .

Proof. This proof follows from Lemma 22. Suppose we constructed an ATM instance

as in Section 6.3.5, but for the unweighted problem. By Lemma 22, we would have

OPTATM ≥ (3/4)OPTMPSM . Now note that we can collapse all identical triplet

vertices in each partition of OPTATM to get a feasible solution to the b-ATM problem

without reducing the weight.

Lemma 26. Algorithm 7 constructs a graph with O(α3) vertices and O(α4) edges

in O(n+ α4) time.

Proof. Step 1 of the algorithm clearly runs in less than O(n + α4) time. It simply

traverses each string once, storing the triplets in some appropriate data structure

with constant insert and query time.

To bound the running time of step 2, we first bound the number of edges

created. Note that the bipartite graph of b-ATM has O(α3) vertices in each partition

since that is the maximum number of 3-mers in an alphabet of size α. To bound
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the edge set, notice that for any 3-mer, there exist at most 4α other 3-mers with a

substring of length 2 in common. Thus, the max degree of each node is O(α) and

the size of the edge set E is at most O(α4). When adding edges, we can check for

the existence of each edge in constant time, again assuming the triplet are stored in

some appropriate data structure.

Solving b-ATM Quickly

Algorithm 8 shows how to solve b-ATM within our time constraints. Lemma 27

proves the correctness of this algorithm while Lemma 28 bounds its running time.

Algorithm 8: Solve b-ATM
1 Add each edge with weight 2, corresponding to two identical triplets, to

the matching.
2 Find a maximum b-matching in the remaining “unweighted” graph using

maximum flow techniques.

Lemma 27. Algorithm 8 finds a maximum weight b-matching in the b-ATM in-

stance.

Proof. Here, we need to justify Step 1 of Algorithm 8 by showing that there always

exists some maximum b-matching which contains all of the edges corresponding to

identical pairs of triplets. First note that it is feasible to include all such edges since

they can never conflict with each other. For each triplet in one partition, there is

at most one identical triplet in the other partition.

We apply the following claim iteratively to complete the proof. Given a max-

imum weight b-matching M which does not include all identical pair edges, we can
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always add one such edge without decreasing the weight of the solution. Consider

an arbitrary identical pair edge e that is not in M . To add e to M we need to

remove at most two edges from M , one for each endpoint of e. Since e has a weight

of 2 while the removed edges have weights of 1 each, swapping those edges for e will

not reduce the weight of the solution.

Lemma 28. Algorithm 8 runs in O(n) time plus the time to compute an unweighted

maximum b-matching on a graph with O(α3) vertices and O(α4) edges and total

capacity O(n). Using current maximum flow algorithms, Algorithm 8 can run in

O(n+ α7) time.

Proof. If the graph were unweighted, we could find a maximum b-matching in

O(|V ||E|) = O(α7) time using the maximum flow approach in [226]. Fortunately,

by Lemma 27, we can first add all edges with weight 2 to our solution. Thus, we

are left with an “unweighted” residual problem that can be solved using a maximum

flow algorithm.

Transforming b-ATM to a Duo Matching and Resolving Conflicts

Now that we have solved our b-ATM problem we need transform it back to

a duo matching. The obvious challenge here is that each b-ATM vertex represents

roughly b copies of a given 3-mer that must each be assigned to a triplet in the

original string in linear time while preserving the weight of the b-ATM solution.

There are b! such assignments and b could be on the order of n. However, the

important observation here is that we can do this arbitrarily and still preserve the
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size of the b-ATM solution.

Algorithm 9: Transform b-ATM to MPSM
1 Assign each copy of a 3-mer and its edge from the b-ATM solution to a

triplet from the original strings to get an ATM solution.
2 Transform the ATM solution into a duo matching as detailed in

Section 6.3.5
3 Resolve conflicts by traversing the paths/cycles of the conflict graph and

discarding every other edge.

Lemma 29. Algorithm 9 constructs a feasible solution to MPSM with size equal to

half the weight of OPTb-ATM .

Proof. The proof follows from Lemma 24. Notice that we assign exactly one copy of

a 3-mer to each triplet and the result is a feasible solution to the ATM problem.

Lemma 30. Algorithm 9 runs in O(n) time.

Proof. Assigning each copy of a 3-mer and its edge to a triplet can be done in

constant time if we maintain lists of the indices at which each 3-mer occurs in each

string, resulting in O(n) time overall. Similarly, generating the duo-matching can

easily be done in O(n) time. Resolving conflicts in the unweighted problem involves

traversing O(n) edges and removing every other one which can be done in O(n) time

as well.

The proofs of Theorem 25 and Corollary 4 follow from the preceding lemmas.

6.3.7 A Streaming Algorithm for MPSM

We observe that the algorithm of [206] can be adapted into a single-pass

streaming algorithm in the streaming model where each string is read one char-
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acter at a time. We present an algorithm using O(α2 lg n) space and giving a

4-approximation of the size of an MPSM solution without providing an explicit

mapping. In [206], they upper bound MPSM by a maximum matching in the duo

graph. Then they show that a feasible MPSM solution can be found while preserving

at least 1/4 of the edges in the matching.

The algorithm is simple. Maintain a counter for each 2-mer in the alphabet

and a counter for the size of the matching. While processing the first string, count

the number of occurrences of each 2-mer. For the second string, each time you

encounter a duo with a nonzero count, decrease its count by 1 and increase the size

of the matching by 1. At the end, divide the size of the matching by 4 to get a

4-approximation to the size of the optimal MPSM. The following Lemmas establish

the space-efficiency and correctness of the the algorithm.

Lemma 31. The streaming algorithm uses only O(α2 lg n) space where α is the

alphabet size and n is the length of the strings.

Proof. The number of 2-mers from an alphabet of size α is α2. We require only

O(lg n) bits of space for each 2-mer counter since no 2-mer could appear more than

O(n) times where n is the length of the strings. Similarly, we keep just one counter

for the size of the matching which requires only O(lg n) bits of space since the size of

the matching is at most n. In addition to the counters, we must store the previously

seen letter since our streaming model involves reading one character at a time, but

we are counting duos. However, this only requires O(lgα) space.

Lemma 32. The streaming algorithm achieves a 4-approximation to MPSM.
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Proof. We first show that the size of a maximum matching in a bipartite duo graph

G as defined in [206] is equal to the sum of the minimum number of occurrences of

each duo among the two strings. Notice that G can be decomposed into a set of con-

nected components for each 2-mer since each vertex only has edges to other vertices

corresponding to the same 2-mer. Further, each of these connected components is a

complete bipartite graph with maximum matching size equal to the minimum size

of the two partitions.

Thus, computing the above sum gives us the size of the maximum matching.

We note that the number of times the matching size counter increase due to vertices

of a given 2-mer is exactly equal to the minimum number of times that 2-mer appears

in either of the two strings.

Finally, as shown in [206], a maximum matching in the duo graph is an upper

bound on the optimal solution to MPSM and can always be converted into a feasible

MPSM solution while preserving at least 1/4 of its size.

The proof of Theorem 26 follows from Lemmas 31 and 32.

6.3.8 Conclusion and Future Directions

We showed a transformation of the Maximum Duo-Preservation String Map-

ping (MPSM) problem into a related tractable problem. This led to new algorithms

for both MWPSM and MPSM. For the weighted case, we presented a tighter approx-

imation closing in on the best unweighted result using a reasonably fast algorithm.

We also showed that the running time could be improved at the expense of a slightly
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weaker approximation. For the unweighted case, we presented the first linear time

algorithm with an approximation matching the previous best quadratic time algo-

rithm and fairly close to the best known approximation achieved by a significantly

larger running time. Finally, we presented the first streaming algorithm for MPSM

showing that a constant approximation is achievable in the single-pass streaming

model.

We believe the most pressing future direction is to explore the applications

and utility of this problem further. The complementary relationship with Mini-

mum Common String Partition (MCSP) has driven much of the current interest in

MPSM. However, given their relationship, new approximations for MPSM do not

directly lead to any improvements for MSCP. It is reasonable to ask if the study of

MPSM can teach us anything about MCSP or at least inspire new heuristics. We

note that some current linear-time algorithms for MCSP are greedy algorithms [223]

with a proven lower bound of Ω(n0.46) [227] (Although this bound arises from care-

fully constructed strings over a (log n)-sized alphabet). This is in contrast to the

best known approximation for MCSP, O(log n log∗ n) [198]. Perhaps the linear time

MPSM algorithm presented here could be combined with greedy approaches leading

to better, more robust heuristics. Further, since MPSM currently appears to be

“easier” than MCSP, it would be fruitful to explore more applications for MPSM

itself in bioinformatics, data compression, and beyond.

On the theoretical side, the biggest questions revolve around the factor of 2

approximation. Is this tight for MPSM conditioned on some hardness conjecture or

can we do better? It surely seems like a natural bound. Regardless, can we achieve
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a 2-approximation in linear time? Likewise, for MWPSM, a 2-approximation could

be seen as the next major goal. All of this seems within reach, using existing ideas

or different tools such as LP rounding techniques. Another direction would be to

add edit operations. It seems that MWPSM could be adapted to handle the cost

of substitutions. However, this is nontrivial since existing algorithms assume that

letters which do not belong to preserved duos can be mapped at no penalty.

Finally, we propose variants of MWPSM that may admit a faster approxi-

mation than we have seen here. Suppose the weights are not arbitrary, but follow

some “rules”. [201] suggested the weight of a duo-preservation could be a function

of the “closeness” of the mapping in terms of the positions of the characters in their

respective strings. However, [201] and our work consider only arbitrary weights.

One could imagine a weight function like w(DA
i , D

B
j ) = n − |i − j| that does not

require us to examine every edge in the duo graph. Of course, the function need

not be so naive as any metric or geometric weight functions admit faster matching

algorithms [228].
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