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Over the past five years, methods based on deep features have taken over

the computer vision field. While dramatic performance improvements have been

achieved for tasks such as face detection and verification, these methods usually

need large amounts of annotated data. In practice, not all computer vision tasks

have access to large amounts of annotated data. Facial expression analysis is such

a task. In this dissertation, we focus on facial expression recognition and editing

problems with small datasets. In addition, to cope with challenging conditions like

pose and occlusion, we also study unaligned facial attribute detection and occluded

expression recognition problems.

This dissertation has been divided into four parts. In the first part, we present

FaceNet2ExpNet, a novel idea to train a light-weight and high accuracy classification

model for expression recognition with small datasets. We first propose a new distri-

bution function to model the high-level neurons of the expression network. Based

on this, a two-stage training algorithm is carefully designed. In the pre-training



stage, we train the convolutional layers of the expression net, regularized by the

face net; In the refining stage, we append fully-connected layers to the pre-trained

convolutional layers and train the whole network jointly. Visualization shows that

the model trained with our method captures improved high-level expression seman-

tics. Evaluations on four public expression databases demonstrate that our method

achieves better results than state-of-the-art.

In the second part, we focus on robust facial expression recognition under

occlusion and propose a landmark-guided attention branch to find and discard cor-

rupted feature elements from recognition. An attention map is first generated to

indicate if a specific facial part is occluded and guide our model to attend to the

non-occluded regions. To further increase robustness, we propose a facial region

branch to partition the feature maps into non-overlapping facial blocks and enforce

each block to predict the expression independently. Depending on the synergistic

effect of the two branches, our occlusion adaptive deep network significantly outper-

forms state-of-the-art methods on two challenging in-the-wild benchmark datasets

and three real-world occluded expression datasets.

In the third part, we propose a cascade network that simultaneously learns

to localize face regions specific to attributes and performs attribute classification

without alignment. First, a weakly-supervised face region localization network is

designed to automatically detect regions (or parts) specific to attributes. Then

multiple part-based networks and a whole-image-based network are separately con-

structed and combined together by the region switch layer and attribute relation

layer for final attribute classification. A multi-net learning method and hint-based



model compression are further proposed to get an effective localization model and

a compact classification model, respectively. Our approach achieves significantly

better performance than state-of-the-art methods on unaligned CelebA dataset, re-

ducing the classification error by 30.9%

In the final part of this dissertation, we propose an Expression Generative Ad-

versarial Network (ExprGAN) for photo-realistic facial expression editing with con-

trollable expression intensity. An expression controller module is specially designed

to learn an expressive and compact expression code in addition to the encoder-

decoder network. This novel architecture enables the expression intensity to be

continuously adjusted from low to high. We further show that our ExprGAN can

be applied for other tasks, such as expression transfer, image retrieval, and data

augmentation for training improved face expression recognition models. To tackle

the small size of the training database, an effective incremental learning scheme is

proposed. Quantitative and qualitative evaluations on the widely used Oulu-CASIA

dataset demonstrate the effectiveness of ExprGAN.
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Chapter 1: Introduction

1.1 Motivation

Facial expression plays an important role in social communication during our

daily life. In recent years, automatically recognizing and editing expression have

received increasing attention due to their numerous applications. Facial expression

recognition is useful for driver safety, health care, video conferencing, virtual reality,

cognitive science etc. Similarly, facial expression editing has applications in facial

animation, human-computer interactions, entertainment, etc.

While Deep Convolutional Neural Networks (DCNN) have demonstrated im-

pressive performance improvements for many problems in computer vision, one of

the most important reasons behind its success is the availability of large-scale train-

ing databases. However, it is not uncommon to have small datasets in many appli-

cation areas, facial expression recognition being one of them. With a relatively small

set of training images, even when regularization techniques such as Dropout [2] and

Batch Normalization [3] are used, the results are not satisfactory. Motivated by

this, we propose FaceNet2ExpNet, a novel learning algorithm that incorporates face

domain knowledge to regularize the training of an expression recognition network.

Although high accuracy classifiers have been obtained on datasets captured

1



in controlled environments, such as CK+ [4], MMI [5] and OULU-CASIA [6], they

perform poorly when recognizing facial expressions under natural and uncontrollable

variations like pose, illumination, and occlusion. Among all these factors, occlusion

has been considered a highly challenging one. Previous works [7, 8] learn the impor-

tance weights for multiple facial regions. However, the self-attention based methods

lack additional supervision information required to ensure the functionality. Thus,

the network may not be able to locate these non-occluded facial regions accurately

under large occlusions and poses. Motivated by this, we propose an Occlusion Adap-

tive Deep Network to overcome the occlusion problem for robust facial expression

recognition in-the-wild.

Face attributes describe the characteristics observed from a face image. They

include both identity-related attributes such as oval face and non-identity-related at-

tributes like facial expression. Despite their wide applications, face attribute recog-

nition is not an easy task. One reason is that recognizing different face attributes

may require attentions to different regions of the face [9, 10]. For example, local

attributes like Mustache could be recognized by just checking the region containing

the mouth. Other parts of the face do not provide useful information and may even

hamper this particular attribute recognition. However, recognizing global attributes

like Pale Skin may require information from the whole face region. Motivate by this,

we propose a learning-based method that dynamically selects different face regions

for unaligned face attribute prediction.

Models based on generative adversarial networks (GAN) [11] have achieved

great success for face synthesis over the past five years. Starting from DCGAN [12]
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to StyleGAN [13], the generated images have higher resolution and quality. How-

ever, for facial expression generation, due to the small scale of expression datasets,

GAN-based models are relatively unexplored. The synthesized images from ex-

isting methods have low resolution (48 x 48), lacking fine details and tend to be

blurry. Moreover, these approaches can only transform the expression to different

classes, like Angry or Happy. However, in reality, the intensity of facial expression is

often displayed over a range. Motivated by this, we present a new expression edit-

ing model, Expression Generative Adversarial Network (ExprGAN) which has the

unique property that multiple diverse styles of the target expression can be synthe-

sized where the intensity of the generated expression can be continuously controlled

from weak to strong, without the need for training data with intensity values.

1.2 Proposed Algorithms and their Contributions

In this section, we briefly describe the algorithms introduced in this disserta-

tion and their key contributions.

1. Transferring Knowledge from Face Recognition Network for Facial

Expression Recognition:

In this part of the dissertation, we try to answer the following basic question:

How to obtain a light-weight and high accuracy classification model for expres-

sion recognition with small datasets? Popular transfer learning methods utilize

face recognition datasets to pre-train the network, which is then fine-tuned on

the expression datasets. Although this strategy performs adequately, it has
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two notable problems: (i) the fine-tuned face net may still contain information

useful for subject identification. (ii) the network designed for the face recogni-

tion domain is often too big for the expression task, thus the overfitting issue is

still severe. In this part of the dissertation, we address this issue by proposing

a novel learning algorithm that incorporates face domain knowledge to regular-

ize the training of an expression recognition network. Specifically, we propose

a new distribution function to model the high-level neurons of the expression

net using information derived from the fine-tuned face net. Such modeling

naturally leads to a regression loss which serves as feature-level regularization

that pushes the intermediate features of the expression net to be close to those

of the fine-tuned face net. Next, to further improve the discriminativeness of

the learned features, we refine the network with strong supervision from the

label information. Experimental results show that the proposed method im-

proves visual feature representation and outperforms various state-of-the-art

methods on four public datasets.

2. Occlusion Adaptive Deep Network for Robust Facial Expression

Recognition:

In this part of the dissertation, we try to answer the following important ques-

tion: How to achieve accurate facial expression recognition when faces are

partially occluded? Previous expression recognition methods, either overlook

this issue or resolve it based on extreme assumptions. In this part of the

dissertation, we address this issue by proposing an Occlusion Adaptive Deep
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Network to overcome the occlusion problem for robust facial expression recog-

nition in-the-wild. It consists of two branches: a landmark-guided attention

branch and a facial region branch. The landmark-guided attention branch dis-

cards feature elements that have been corrupted by occlusions and guides the

model to focus on the non-occluded facial regions. To further enforce the ro-

bustness and learn complementary context information, we introduce a facial

region branch to train multiple region-based expression classifiers. Experi-

mental results on five challenging benchmark datasets show that our method

obtains significantly better performance than existing methods.

3. A Deep Cascade Network for Unaligned Face Attribute Classifica-

tion:

In this part of the dissertation, we try to answer the following important ques-

tion: How to classify facial attributes without face alignment? Inspired by

the observation that humans focus attention on different face regions when

recognizing face attributes, we propose a learning-based method that dynam-

ically selects different face regions for unaligned face attribute prediction. It

integrates two networks using a cascade: a face region localization network fol-

lowed by an attribute classification network. The localization network detects

face areas specific to attributes, especially those that have local spatial sup-

port. The classification network selectively leverages information from these

face regions to make the final prediction. We show that with no use of align-

ment information, our method reduces the classification error by a significant
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margin of compared with state-of-the-art. We also show the designed model

could select the most relevant face region for predicting each face attribute.

4. Facial Expression Editing with Controllable Expression Intensity:

In conventional methods, either paired training data is required or the syn-

thetic face’s resolution is low. Moreover, only the categories of facial expres-

sion can be changed. In this part of the dissertation, we address this issue by

proposing a novel model called Expression Generative Adversarial Network

(ExprGAN) that can change a face image to a target expression with multiple

styles, where the expression intensity can also be controlled continuously. Our

ExprGAN adopts the generator and discriminator framework in addition to

the expression controller module and the regularizer network. To facilitate im-

age editing, the generator is composed of an encoder and a decoder. The input

of the encoder is a face image, the output of the decoder is a reconstructed one,

and the learned identity and expression representations bridge the encoder and

decoder. To preserve the most prominent facial structure, we adopt a multi-

layer perceptual loss [14] in the feature space in addition to the pixel-wise L1

loss. Moreover, to make the synthesized image look more photo-realistic, two

adversarial networks are imposed on the encoder and decoder, respectively.

Because it is difficult to directly train our model using the small training set,

a three-stage incremental learning algorithm is also developed. We show that

the synthesized face images have high perceptual quality, which can be used

to improve the performance of an expression classifier. We also show that the
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identity and expression representations are explicitly disentangled which can

be exploited for tasks such as expression transfer, image retrieval, etc.

1.3 Organization

This dissertation is organized as follows. Chapter 2 presents a transfer learning

algorithm for facial expression recognition with small datasets. Chapter 3 presents

an occlusion adaptive deep network for in-the-wild facial expression recognition.

Chapter 4 presents a facial region localization network and a Parts and Whole

classification network for unaligned facial attribute classification. Chapter 5 presents

a GAN-based model that can transform the face image to have a new expression

where the expression intensity is allowed to be controlled continuously. Chapter 6

concludes the dissertation and discusses future research directions.
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Chapter 2: Transferring Knowledge from Face Recognition Network

for Facial Expression Recognition

2.1 Introduction

Deep Convolutional Neural Networks (DCNN) have demonstrated impressive

performance improvements for many problems in computer vision. One of the

most important reasons behind its success is the availability of large-scale train-

ing databases, for example, ImageNet [15] for image classification, Places [16] for

scene recognition, CompCars [17] for fine-grained recognition and MegaFace [18] for

face recognition.

However, it is not uncommon to have small datasets in many applications,

like facial expression recognition and medical image classification. With a relatively

small set of training images, even when regularization techniques such as Dropout [2]

and Batch Normalization [3] are used, the results are not satisfactory. The popular

approach is to fine-tune a network that has been pre-trained on a large dataset.

Because of the generalizability of the pre-learned features, this approach has achieved

great success [19].

Motivated by this observation, several previous works [20, 21] on expression
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recognition utilize face recognition datasets to pre-train the network, which is then

fine-tuned on the expression dataset. The large amount of labeled face data [18, 22],

makes it possible to train a fairly complicated and deep network. Moreover, the close

relationship between the two domains facilites the transfer learning of features.

Figure 2.1: The red-boxed images are generated by the model trained with our
FaceNet2ExpNet method, while the black-boxed images are from the face network
fine-tuned on the expression dataset. We can see the images produced by the face net
are dominated with faces, while our model represents the facial expressions better.
Models are visualized by DeepDraw [1].

Although this strategy performs well, it has two notable problems: (i) the

features are ’sticky’, that is, the fine-tuned face net may still contain information

useful for subject identification. This is because of the large size gap (several orders

of magnititudes) between face and expression datasets. As we see from Fig. 2.1,

the images (black-boxed) generated by the face net are dominated by faces as they
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should, which weakens the network’s ability to represent the different expressions.

(ii) the network designed for the face recognition domain is often too big for the

expression task, thus the overfitting issue is still severe.

In this chapter, we present FaceNet2ExpNet, a novel transfer learning algo-

rithm that incorporates face domain knowledge to regularize the training of an

expression recognition network. Specifically, we first propose a new distribution

function to model the high-level neurons of the expression net using information

derived from the fine-tuned face net. This strategy naturally leads to a regression

loss which serves as feature-level regularization that pushes the intermediate fea-

tures of the expression net to be close to those of the fine-tuned face net. Next,

to further improve the discriminativeness of the learned features, we refine the net-

work with strong supervision from the label information. We adopt a conventional

network architecture, consisting of convolutional blocks followed by fully-connected

layers, to design our expression net. The training is carried out in two stages: in the

first stage, only the convolutional layers are trained. We utilize the deep features

from the face net as the supervision signal to make the learning easier. It also con-

tains meaningful knowledge about human faces, which is important for expression

recognition, too. After the first stage of learning is completed, we add randomly

initialized fully-connected (FC) layers and jointly train the whole network using the

label information in the second stage. As observed by previous works [23], FC layers

generally capture domain-specific semantics. So we only utilize the face net to guide

the learning of the convolutional layers and the FC layers are trained from scratch.

Moreover, we empirically find that late middle layer (e.g. pool5 for VGG-16 [24])
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is more suitable for training supervision due to the richness of low entropy neurons.

In both training stages, only expression images are used.

From Fig. 2.1, we observe that the models trained with our method cap-

ture the key properties of different expressions. For example, the angry expression

is displayed by frowned eye brows and a closed mouth; the surprise expression is

represented by a large opened mouth and eyes. This method is different from knowl-

edge distillation [25]. Here we do not have a large accurate network trained on the

same domain to produce reliable outputs from softmax. It is also different from

FitNets [26], which is mainly used to train a thinner and deeper network.

To validate the effectiveness of our method, we perform experiments on both

constrained (CK+, Oulu-CASIA, TFD) and unconstrained expression datasets (SFEW,

RAF). For all the five datasets, we achieve better results than the state-of-the-art.

Moreover, we also conduct experiments on an Ultrasound Abdomen dataset for

anatomical organ classification.

Contributions: We propose a two-stage training algorithm to develop a light-

weight and high accuracy classification model for expression recognition with limited

data. Our method performs better than all previously published works on four

datasets. This method is very general, and can be applied to other domains which

are short of training samples. Moreover, it can also be used as a model compression

method.

Organization: Section 2.2 briefly introduces related works. The FaceNet2ExpNet

algorithm is presented in Section 2.3. Experimental results and analysis are dis-

cussed in Section 2.4, Section 2.5 and Section 2.6, respectively. We conclude this
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chapter in Section 2.7.

2.2 Related Works

In [27], Zhong et al. observed that only a few active facial patches are use-

ful for expression recognition. These active patches include: common patches for

the recognition of all expressions and specific patches that are only important for

a single expression. To locate these patches, a two-stage multi-task sparse learning

framework is proposed. In the first stage, multi-task learning with group sparsity is

performed to search for the common patches. In the second stage, face recognition

is utilized to find the specific patches. However, the sequential search process is

likely to find overlapped patches. To solve this problem, Liu et al. [28] integrated

the sparse vector machine and multi-task learning into a unified framework. Instead

of performing the patch selection in two separate phrases, an expression specific

feature selection vector and a common feature selection vector are employed to-

gether. To get more discriminative features instead of hand-crafted features, Liu et

al. [29] used a patch-based learning method. Subsequently, a group feature selection

scheme based on maximal mutual information and minimal redundancy criterion is

presented. Lastly, three layers of restricted Boltzman machines (RBM) are stacked

to learn hierarchical features. To further boost performance, a loopy boosted deep

belief network (DBN) framework was explored in [30]. Feature learning, feature se-

lection and classifier design are learned jointly. In the forward phase, several DBNs

extract features from the overlapped facial patches. Then, AdaBoosting is adopted
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to combine these patch-based DBNs. In the fine-tuning phase, the loss from both

weak and strong classifiers are backproped. In [31], to utilize the temporal infor-

mation for video-based expression recognition, a 3D CNN was applied to learn the

low-level features. Then, a GMM model is trained on the features, and the co-

variance matrix for each component composes the expressionlet. Motivated by the

domain knowledge that facial expression can be decomposed into a combination of

facial action units (AU), a deformable facial part model was explored in [32]. Mul-

tiple part filters are learned to detect the locations of discriminative facial parts. To

further cope with pose and identity variations, a quadratic deformation cost is used.

More recently, Jung et al. [33] trained a deep temporal geometry network and

a deep temporal appearance network with facial landmarks and images. To effec-

tively fuse these two networks, a joint fine-tuning method is proposed. Specifically,

the weight values are frozen and only the top layers are trained. In [34], Mollahos-

seini et al. discovered that the inception network architecture works very well for

expression recognition task. Multiple cross dataset experiments are performed to

show the generality of the learned model. In [35, 36], a two-step training proce-

dure is suggested, where in the first step, the network was trained using a relatively

large expression dataset followed by training on the target dataset. Even though

the image is of low resolution and the label of the relatively large dataset is noisy,

this approach is effective. The work closely related to ours is [21], which employed

a peak expression image (easy sample) to help the training of a network with input

from a weak expression image (hard sample). Although both works propose to use

feature maps as supervision signals, our work is different in the following aspects:
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First, for our training, we do not need a pair of same identity and same expression

face images. We adopt a FaceNet to guide the training of the ExpNet, using as

inputs only the face images from the expression dataset. Second, to better learn

expression specific features, we train our network from scratch on the expression

dataset, instead of fine-tuning on a network pretrained for face recognition.

2.3 Approach

2.3.1 Motivation

We write our expression net as:

O = Hθ2(Gθ1(I))

where H represents the fully connected layers, and G corresponds to the convolu-

tional layers. θ2 and θ1 are the parameters to be learned. I is the input image, and

O is the output before softmax.

First, the parameters θ1 of the convolutional layers are learned. In [37], Xie et

al. observed that the high-level neurons decay exponentially. To be more specific,

by denoting the outputs of the lth layer as xc,w,h, and the average response value

over the spatial dimension as

xc =
1

W ×H

W−1∑
w=0

H−1∑
h=0

xc,w,h (2.1)
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where C is the number of output channels in the lth layer, and W , H are the width

and height of the response maps, respectively. Then the distribution function can

be formulated as follows:

f(X l) = Cp · e−||X
l||pp (2.2)

where X l = [x1, ..., xC ] ∈ RC , and Cp is a normalization constant. || · ||pp is the Lp

norm.

To incorporate the knowledge of a face net, we propose to extend Equation

(2.2) to have the following form, i.e., :

f(X l) = Cp · e−||X
l−µ||pp (2.3)

The mean is modeled by the face net, µ = F (I). And F represents the face net’s

convolutional layers. This is motivated by the observation that the fine-tuned face

net already achieves competitive performance on the expression dataset, so it should

provide a good initialization point for the expression net. Thus, we do not want the

latter to deviate much from the former.

Using the maximum likelihood estimation (MLE) procedure, we can derive the

loss function as:

max
θ1

L1 = max
θ1

log f(X l)

= max
θ1

logCp · e−||X
l−µ||

= min
θ1
||Gθ1(I)− F (I)||pp

(2.4)
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Note that if p = 2 and without G, this is the normal l2 regularizer. Thus we can

also view the face net as acting like a regularizer, which stabilizes the training step

of the expression net.

Figure 2.2: Two-stage Training Algorithm. In stage (a), the face net is frozen and
provides supervision for the expression net. The regression loss is backpropped
only to the expression net. The convolutional layers are trained in this stage. In
stage (b), the randomly initialized fully-connected layers are attached to the trained
convolutional blocks. The whole network is trained jointly with cross-entropy loss.
The face net is normally much deeper than the expression net.

2.3.2 Training Algorithm

The training algorithm consists of the following two steps:

In the first stage, we train the convolutional layers using the loss function in

Equation (2.4). The face net is frozen, and the outputs from the last pooling layer
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are used to provide supervision for the expression net. We provide more explanations

on this choice in the next section.

In the second stage, we append the fully connected layers to the trained con-

volutional layers. The whole network is jointly learned using the cross-entropy loss,

defined as follows:

L2 = −
N∑
i=1

M∑
j=1

yi,j log ŷi,j, (2.5)

where yi,j is the ground truth for the image, and ŷi,j is the predicated label. The

complete training algorithm is illustrated in Fig. 2.2.

Our expression net consists of five convolutional layers, each followed by a

non-linear activation function (ReLU) and a max-pooling layer. The kernel size of

all the convolutional layers is a 3× 3 window. For the pooling layer, it is 3× 3 with

stride 2. The numbers of the output channels are 64, 128, 256, 256, 512. After the

last pooling layer, we add another 1× 1 convolutional layer, which serves to bridge

the gap between face and expression domains. Moreover, it also helps to adapt the

dimension if the last pooling layer of the expression net does not match the face net.

To reduce overfitting, we have only one fully-connected layer with dimension 256.

Note, if the spatial size of the last pooling layer between the face net and expression

net does not match exactly, then deconvolution (fractionally strided convolution)

can be used for upsampling.
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2.3.3 Which Layer to Transfer?

In this section, we explore the layer selection problem for the first stage su-

pervision transfer. Since the fine-tuned face network outperforms the pre-trained

network on expression recognition, we hypothesize that there may be interesting

differences in the network before and after fine-tuning. These differences might

help us understand better which layer is more suitable to guide the training of the

expression network.

To this end, we first investigate the expression sensitivity of the neurons in

the network, using VGG-16 as a working example. For each neuron, the images

are ranked by the maximum response values. Then the top K (K = 100 in our

experiments) images are binned according to the expression labels. We compute

the entropy for the neuron x as H(x) = −
∑n

i=1 p(i) log p(i), where p(i) denotes the

histogram count for bin i and n denotes the number of quantized label bins (we

normalize the histogram to a sum of 1). If the neuron has a low entropy, then it

should be more expression-sensitive since its label distribution is peaky. To validate

our assumption, we plot the histogram of the entropy for pool4, pool5, FC6 and FC7

layers. As shown in Fig. 2.3, the low-entropy neurons that are more expression-

sensitive start to emerge in the pool5 layer i.e., the blue and the red lines start to

diverge. While for the pool4 and lower layers, there are few such high-level neurons,

i.e., the blue and the red lines almost overlap.

Since these low entropy neurons indicate layer discriminativeness, we next

compute the number of low expressive score (LES) neurons for each layer (here
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Table 2.1: The number of low expressive score neurons for pre-trained network and
fine-tuned network

Model Pool4 Pool5 FC6 FC7
Pre-trained (CK) 7763 2011 338 248
Fine-tuned (CK) -57 +511 +658 +610

Pre-trained (Oulu-CASIA) 3009 605 48 33
Fine-tuned (Oulu-CASIA) +194 +895 +952 +1086

low expressive score is the entropy lower than the minimum average entropy score

among the four selected layers). In Table 2.1, we find that in comparison with

the pre-trained network, the LES neurons increase dramatically in the fine-tuned

network, especially starting from pool5 layer. For the CK+ dataset, the number

of the low-entropy neurons in the pool4 layer is reduced, while for Oulu-CASIA,

it increases only by 194. For the pool5 layer, it increases by 511 for CK+ and

by 895 for Oulu-CASIA. Moreover, convolutional layers have a larger number of

these neurons than FC layers. These results suggest that maybe late middle layer,

such as pool5, is a good tradeoff between supervision richness and representation

discriminativeness. For the first step of training, we would like the ExpNet to learn

high-level expression semantics from the FaceNet, so we choose the pool5 layer. In

the second step, in order to better adapt to the new domain task (facial expression

recognition), we attach the fully-connected layer and train only with the expression

labels.
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Figure 2.3: Histograms of neuron entropy scores from four different layers for pre-
trained network (red) and fine-tuned network (blue). The X axis is the entropy
value and the Y axis is the number of neurons. The first row plots are for the CK+
dataset, while the plots in the second row are for the Oulu-CASIA dataset.

2.4 Experiments

We validate the effectiveness of our method on five widely used expression

databases: CK+ [4], Oulu-CASIA [6], Toronto Face Database (TFD) [38], Static Fa-

cial Expression in the Wild (SFEW) [39] and Real-world Affective Faces (RAF) [40].

The numbers of images for different expressions are shown in Table 2.2. To demon-

strate the generality of our method, we also conduct one experiment on the Ul-

trasound (US) Abdomen dataset. The abdomen database contains US images for

kidney, spleen and other anatomy organs. In total it has 131,000 frames from pa-

tients. The numbers of images for different organs are shown in Table 2.3. Some

organs have four views, i.e., Left Transverse (LT), Left Longitudinal (LL), Right

Transverse (RT) and Right Longitudinal (RL). In the following, we refer to our

method FaceNet2ExpNet as FN2EN.
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Table 2.2: The number of images for different expression classes

An Co Di Fe Ha Sa Su Ne Total
CK+ 135 54 177 75 147 84 249 327 1308

Oulu-CASIA 240 240 240 240 240 240 1444
TFD 437 457 424 758 441 459 1202 4178

SFEW 255 75 124 256 234 150 228 1322
RAF 705 717 281 4772 1982 1290 2524 12271

Table 2.3: The number of images for different organ classes in the ultrasound ab-
domen dataset

Liver LT Liver LL Liver RT Liver RL Kidney LT Kidney LL Kidney RT Kidney RL Spleen Trans Spleen Long Aorta Gallbladder Iliac IVC Pancreas Other
Train 9582 9015 9849 7671 10295 2827 9980 2840 3255 3115 20748 13747 10102 3228 8892 5787
Test 4354 4100 4645 3158 3555 615 4807 1285 1210 1065 8695 4754 3136 1172 4254 5411

Figure 2.4: Visualizes several neurons in the top hidden layer of our model on CK+
dataset.

Figure 2.5: Visualizes several neurons in the top hidden layer of our model on Oulu-
CASIA dataset.
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2.4.1 Implementation

We apply Multi-task Cascade Convolutional Neural Networks (MTCNN) [41]

for face detection and landmark detection. The faces are normalized, cropped, and

resized to 256 × 256. We utilize conventional data augmentation in the form of

random sampling and horizontal flipping. The min-batch size is 64, the momentum

is fixed to be 0.9 and the dropout is set at 0.5.

For network training, in the first stage, the regression loss is very large. So we

start with a very small learning rate 1e-7, and decrease it after 100 epochs. The total

training epochs for this stage is 300. We also try gradient clipping, and find that

though it enables us to use a bigger learning rate, the results are not better compared

to when a small learning rate was used. In the second stage, the fully connected

layer is randomly initialized from a Gaussian distribution, and the convolutional

layers are initialized from the first stage. The learning rate is 1e-4 (bigger learning

rate like 0.001 led to more sever overfitting because the training dataset size is small

and the network is relatively deep), and decreased by 0.1 after 20 epochs. We train

it for 50 epochs in total. The Stochastic Gradient Descent (SGD) is used as the

optimization algorithm. For testing, a single center crop with size 224 × 224 is

used. The settings are same for all the experiments. We use the face net (VGG-16)

from [42], which is trained on 2.6M face images collected by the authors. For the

VGG fine-tuning baseline, the fc8 layer is trained from scratch while the weights of

the rest layers are initialized from the FaceNet. The learning rate of the fc8 layer is

1e-3 while the rest layers are 1e-4. All the experiments are performed using the deep
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learning framework Caffe [43]. Upon publication, the trained expression models will

be made publicly available.

2.4.2 Neuron Visualization

We first show that the model trained with our algorithm captures the semantic

concepts related to facial expression very well. Given a hidden neuron, the face

images that obtain high response are averaged. We visualize these mean images for

several neurons in Fig. 2.4 and Fig. 2.5 on CK+ and Oulu-CASIA, respectively.

Humans can easily assign each neuron with a semantic concept it measures (i.e. the

text in black). For example, the neuron 11 in the first column in Fig. 4 corresponds

to Anger, and the neuron 53 in Fig. 2.5 represents Happy. Interestingly, the high-

level concepts learned by the neurons across the two datasets are very consistent.

2.4.3 CK+

CK+ consists of 529 videos from 123 subjects, 327 of them annotated with

eight expression labels. Each video starts with a neutral expression, and reaches the

peak in the last frame. As in other works [31], we extract the last three frames and

the first frame of each video to compose the image-based CK+ database. The total

number of images is 1308, which is split into 10 folds. The subjects are divided into

ten groups by ID in ascending order.

In Table 2.4, we compare our approach with both traditional and deep learning-

based methods in terms of average accuracy. We consider the fine-tuned VGG-16
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Figure 2.6: Confusion Matrix of CK+ for the Eight Classes problem. The darker
the color, the higher the accuracy.

face net as our baseline. To further show the superiority of our method, we also

include the results on training from scratch with batch normalization. The network

architecture is same as FNEN. The first block shows the results for six classes,

while the second block shows the results for eight classes, including both contempt

and neutral expressions. Among them, 3DCNN-DAP [32], STM-ExpLet [31] and

DTAGN [33] are image-sequence based methods, while others are image-based. For

both cases, our method performs the best, achieving 98.6% vs the pervious best of

97.3% for six classes, and 96.8% vs 92.1% for eight classes.

Because of the high accuracy on the six class problem, here we only show the

confusion matrix for eight class problem. From Fig. 2.6 we can see that both disgust
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Table 2.4: The Average Accuracy on CK+ dataset (Person-Independent)

Method Average Accuracy #Exp. Classes
CSPL [27] 89.9% Six Classes

AdaGabor [44] 93.3%
LBPSVM [45] 95.1%

3DCNN-DAP [32] 92.4%
BDBN [30] 96.7%

STM-ExpLet [31] 94.2%
DTAGN [33] 97.3%
Inception [34] 93.2%

LOMo [46] 95.1%
PPDN [21] 97.3%

FN2EN 98.6%
AUDN [29] 92.1% Eight Classes

Train From Scratch (BN) 88.7%
VGG Fine-Tune (baseline) 89.9%

FN2EN 96.8%

and fear expressions are perfectly classified, while contempt is the most difficult to

classify. It is because this expression has the least number of training images, and

the way people show it is very subtle. Surprisingly, from the visualization in Fig.

2.1, the network is still able to capture the speciality of contempt: the conner of the

mouth is pulled up. This demonstrates the effectiveness of our training method.

2.4.4 Oulu-CAS VIS

Oulu-CASIA data set has 480 image sequences taken under Dark, Strong,

Weak illumination conditions. In this experiment, only videos with strong conditions

captured by a VIS camera are used. There are 80 subjects and six expressions in

total. Similar to CK+, the first frame is always neutral while the last frame has

the peak expression. Only the last three frames are used, and the total number of
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Table 2.5: The Average Accuracy on Oulu-CAS dataset (Person-Independent)

Method Average Accuracy
HOG 3D [47] 70.63%
AdaLBP [6] 73.54%
Atlases [48] 75.52%

STM-ExpLet [31] 74.59%
DTAGN [33] 81.46%
LOMo [46] 82.10%
PPDN [21] 84.59%

Train From Scratch (BN) 76.87%
VGG Fine-Tune (baseline) 83.26%

FN2EN 87.71%

images is 1440. A ten-fold cross validation is performed, and the split is subject

independent.

Figure 2.7: Confusion Matrix of Oulu-CASIA. The darker the color, the higher the
accuracy.
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Table 2.6: The Average Accuracy on TFD dataset (Person-Independent)

Method Average Accuracy
Gabor + PCA [49] 80.2%
Deep mPoT [50] 82.4%
CDA+CCA [51] 85.0%

disRBM [52] 85.4%
bootstrap-recon [53] 86.8%

Train From Scratch (BN) 82.5%
VGG Fine-Tune (baseline) 86.7%

FN2EN 88.9%

Table 2.5 reports the results of average accuracy for the different approaches.

As can be seen, our method achieves substantial improvements over the previous

best performance achieved by PPDN [21], with a gain of 3.1%. The confusion

matrix is shown in Fig. 2.7. The proposed method performs well in recognizing fear

and happy, while angry is the hardest expression, which is mostly confused with

disgust.

2.4.5 TFD

The TFD is the largest expression dataset so far, which is comprised of images

from many different sources. It contains 4178 images, each of which is assigned

one of seven expression labels. The images are divided into 5 separate folds, each

containing train, valid and test partitions. We train our networks using the training

set and report the average results over five folds on the test sets.

Table 2.6 summarizes our TFD results. As we can see, the fine-tuned VGG

face is a fairly strong baseline, which is almost on par with the current state-of-the-

art, 86.7% vs 86.8%. Our method performs the best, significantly outperforming
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bootstrap-recon [53] by 2%. From the confusion matrix, we find that fear has the

lowest recognition rate and is easy to be confused with surprise. When inspecting

the dataset, we find the images from the two expressions indeed have very similar

facial appearances: mouth and eyes are wide open.

Figure 2.8: Confusion Matrix of TFD. The darker the color, the higher the accuracy.

2.4.6 SFEW

Different from the previous three datasets, SFEW is targeted for unconstrained

expression recognition. So the images are all extracted from films clips, and labeled

with seven expressions. The poses are large, and the expression is much more

difficult to recognize. Furthermore, it has only 891 training images. Because we do
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Table 2.7: The Average Accuracy on SFEW dataset (Person-Independent)

Method Average Accuracy Extra Train
AUDN [29] 26.14% None

STM-ExpLet [31] 31.73%
Inception [34] 47.70%

Mapped LBP [20] 41.92%
Train From Scratch (BN) 39.55%
VGG Fine-Tune (baseline) 41.23%

FN2EN 48.19%
Transfer Learning [36] 48.50% FER2013

Multiple Deep Network [35] 52.29%
FN2EN 55.15%

not have access to the test data, here we report the results on the validation data.

In Table 2.7, we divide the methods into two blocks, where the first block only

uses the training images from SFEW, while the second block utilizes FER2013 [54]

as additional training data. For both settings, our method achieves best recogni-

tion rates. Especially with more training data, we surpass Multiple Deep Network

Learning [35] by almost 3%, which is the runner-up in EmotiW 2015. We do not

compare the result with the winner [55] since they use 216 deep CNNs to get 56.40%,

while we only use a single CNN (1.25% higher than our method). From the con-

fusion matrix Fig. 2.9, we can see the accuracy for fear is much lower than other

expressions. This is also observed in other works [36].

2.4.7 RAF

To further explore our method on large-scale facial expression dataset, we

conduct experiments on the recently proposed RAF dataset. RAF contains 30,000

in-the-wild facial expression images, annotated with basic or compound expressions
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Figure 2.9: Confusion Matrix of SFEW. The darker the color, the higher the accu-
racy.

by 40 independent human labelers. In this experiment, only images with basic

expressions are used, including 12,271 for training and 3,068 for testing.

As we can see from Table 2.8, our method achieves comparable performance

in terms of total accuracy, which is 86.18% vs. 87.00%. However, Covariance

Pooling [56] requires more computational resource since it needs to compute the

covariance matrix, while our model is more compact and light-weight. Notably,

LTNet [57] obtains accuracy of 86.77% by pretraining the model on a much larger

dataset Affectnet [58]. This validates that our method is also effective on relative

large dataset. From the confusion matrix in Fig. 3.4 we observe that the expression

Disgust is the most difficult category due to the subtleness, which is easily confused
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Table 2.8: The Average Accuracy on RAF dataset (Person-Independent)

Method Average Accuracy Extra Train
DLP-CNN [40] 84.70% None

Covariance Pooling [56] 87.00%
PG-CNN [59] 83.27%

Train From Scratch (BN) 81.75%
VGG Fine-Tune (baseline) 85.56%

FN2EN 86.18%
LTNet [57] 86.77% AffectNet

with the expression Sad or Neutral.

Figure 2.10: Confusion Matrix of RAF. The darker the color, the higher the accu-
racy.

To investigate how the regularization of FaceNet influence the learning of Ex-

pNet, we visualize the attention maps of Train From Scratch (BN), VGG Fine-
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Tune and FN2EN using the gradient weighed class activation mapping (Grad-CAM)

method in [60]. The results are shown in Fig. 2.11. We observe that without the

guidance of FaceNet, the focused facial region by train from scratch is not very

meaningful. For example, in the first row of the Angry expression, the high atten-

tion region includes the eyes with sunglasses. While FN2EN learns to focus on the

cheek and inner brow since these are the most discriminative facial regions. We also

find that FN2EN can avoid the mistake of FaceNet by looking at the correct facial

areas. For example, in the fifth row of the Surprise expression, both train from

scratch and fine-tune FaceNet have a strong attention on the eyes region, and make

wrong predictions (Sad and Happy). While FN2EN is able to extract the expression

features from the mouth region and make the correct prediction.

2.4.8 Ultrasound Abdomen Dataset

The abdomen database contains US images for 16 classes of different anatomy

organs. It includes Liver, Kidney, Spleen, Aorta, Gallbladder, Iliac, IVC, Pancreas

and others. Some organs have four different views: left transverse, left longitudinal,

right transverse and right longitudinal. In total it has 131,003 and 56216 frames from

patients for training and testing. Ultrasound (US) images are especially difficult to

analyze because of low contrast and large intra-variance. Some images from the

dataset are shown in Fig. 2.12.

To show the effectiveness of our method, we adopted two different network

architectures, i.e., AlexNet and VGG16, as our teacher nets. For comparison, three
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Figure 2.11: Attention maps of three different methods. The images’ expression
labels are displayed on the leftmost. The left, middle and right columns show the
predictions of networks train from scratch, fine-tune from FaceNet and FN2EN. A
deep red denotes high attention.

baselines are adopted: training teacher net from scratch, fine-tuning teacher net

and training student net from scratch. The recognition results are shown in Ta-

ble 2.9. We observed that our method achieves significant performance boost, 6%
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Figure 2.12: Sample images from the Ultrasound Abdomen Dataset.

Figure 2.13: (left) The conv1 filters learned by training AlexNet from scratch on the
abdomen dataset. (right) The conv1 filters learned with our method. Our model
learns gabor-like conv1 filters.

improvement when AlexNet used as teacher net and 4% when VGG16 as the teacher

net.

To gain further insight into what our model learns, we visualize the first con-

volution layer of AlexNet training from scratch and the network learned by FN2EN,

respectively. We concatenate the ultrasound image along the channel axis to make

it a color input to the network. From Fig. 2.13, we observed that our model learns

gabor-like fiters. Since ultrasound images are gray scale, our network does not learn
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Table 2.9: The Average Accuracy on Ultrasound Abdomen dataset

Method Average Accuracy
AlexNet 74.92%

AlexNet Fine-Tune 79.97%
Train From Scratch (BN) 75.70%

FN2EN (AlexNet) 81.01%
VGG16 80.70%

VGG16 Fine-Tune 82.98%
Train From Scratch (BN) 81.75%

FN2EN (VGG16) 85.02%

any color blob filters.

2.5 Expression Feature Analysis

We analyze how well different facial attributes are being captured in the ex-

pression representation by computing the mutual information (MI). For this, we

adopt the Mutual Information Neural Estimator (MINE) [61] which provides un-

biased estimation of mutual information on n i.i.d samples by leveraging a neural

network. We conduct our experiments on RAF dataset since it also contains labels

for gender, race and age. The neural network has two fully-connected layers, each

has 50 hidden unites. We find that the MI between the expression feature and the

expression label is the highest, which is 1.43. While the MI between the expression

feature and race is higher than gender and age, which is 1.05.
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2.6 Computational speed analysis

Compared with networks adopted in previous works [21, 33, 34], AlexNet [62]

or VGG-M [63], the size of our network is fairly small. The number of parameters is

11M vs. VGG-16 baseline 138M. The learned expression representation is also very

compact with only 256 dimensions. This is 20 times less compared with VGG-16.

For testing, our approach takes only 3ms per image using a single Titan X GPU.

2.7 Conclusions

In this chapter, we present FaceNet2ExpNet, a novel two-stage training al-

gorithm for expression recognition. In the first stage, we propose a probabilistic

distribution function to model the high level neuron response based on already fine-

tuned face net, thereby leading to feature level regularization that exploits the rich

face information in the face net. In the second stage, we perform label supervision

to boost the final discriminative capability. As a result, FaceNet2ExpNet improves

visual feature representation and outperforms various state-of-the-art methods on

five public expression datasets and one medical dataset.
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Chapter 3: Occlusion Adaptive Deep Network for Robust Facial Ex-

pression Recognition

3.1 Introduction

Facial expression plays an important role in social communication during our

daily life. In recent years, automatically recognizing expression has received increas-

ing attention due to its wide applications, including driver safety, health care, video

conferencing, virtual reality, cognitive science, etc.

Existing methods that address expression recognition can be divided into two

categories. One category utilizes synthesis techniques to facilitate the discriminative

feature learning [64, 65, 66, 67]; while the other tries to boost the performance by

designing new loss functions or network architectures [40, 56, 57, 68]. In the first

category, de-expression residue learning [64] leverages the neutral face images to

distill the expression information from the corresponding expressive images. Zhang

et al. [65] explore an adversarial autoencoder to generate facial images with different

expressions under arbitrary poses to enlarge the training set. However, those works

mainly focus on datasets captured in controlled environments, such as CK+ [4],

MMI [5] and OULU-CASIA [6]. Although high accuracy classifier has been obtained
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on these datasets, it performs poorly when recognizing facial expressions in-the-wild.

In the second category, Li et al. [40] propose a locality preserving loss to enhance

deep features by preserving the locality closeness while maximizing the inter-class

scatters. To address the annotation inconsistency among different facial expression

datasets, Zeng et al. [57] introduce a probability transition layer to recover the

latent truths from the noisy labels. Although expression datasets under nature and

uncontrollable variations are explored, facial expression recognition under partial

occlusions is still a challenging problem that has been relatively unexplored. In real-

life images or videos, facial occlusions can often be observed, e.g. facial accessories

including sunglasses, scarves, and masks or other random objects like hands, hairs

and cups.

Recently, some related works have been proposed to solve this challenge.

Patch-gated Convolutional Neural Network [59] decomposes a face into different

patches and explicitly predicts the occlusion likelihood of the corresponding patch

using a patch-gated unit. Wang et al. [8] propose a self-attention scheme to learn

the importance weights for multiple facial regions. However, the unobstructed scores

are learned without any ground truth of the occlusion information and may be bi-

ased. In this work, we present an Occlusion Adaptive Deep Network (OADN) to

overcome the occlusion problem for robust facial expression recognition in-the-wild.

It consists of two branches: a landmark-guided attention branch and a facial region

branch.

In order to pay attention to the non-occluded facial areas and ignore the

occluded areas, we propose a landmark-guided attention branch to discard feature
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elements that have been corrupted by occlusions. The interest points covering the

most distinctive facial areas for facial expression recognition are computed based

on the domain knowledge. Then the meta information of these points is utilized to

generate the attention maps. The global features are modulated by the attention

maps to guide the model to focus on the non-occluded facial regions and filter out

the information of occluded regions.

To further enhance the robustness and learn complementary context informa-

tion, we introduce a facial region branch to train multiple region-based expression

classifiers. This is achieved by first partitioning the global feature maps into non-

overlapping facial blocks. Then each block is trained by backpropgating the recogni-

tion loss independently. Thus even the face is partially occluded, the classifiers from

other non-occluded regions are still able to function properly. Furthermore, since

the expression datasets are usually small, having multiple region-based classifiers

adds more supervision and acts as a regularizer to alleviate the overfitting issue.

Contributions: We propose OADN, an effective method to deal with the occlusion

problem for facial expression recognition in-the-wild. We introduce a landmark-

guided attention branch to guide the network to attend to the non-occluded regions

for representation learning. We design a facial region branch to learn region-based

classifiers for complementary context features and further increasing the robustness.

Experimental results on five challenging benchmark datasets show that our proposed

OADN obtains significantly better performance than existing methods.

Organization: Section 3.2 provides an overview of existing works on deep learning-

based facial expression recognition and facial expression recognition under occlu-
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sions. Section 3.3 presents the proposed occlusion adaptive deep network. Exper-

iment results and conclusions are presented in Section 3.4 and Section 3.5, respec-

tively.

3.2 Related Work

3.2.1 Deep Facial Expression Recognition

Deep learning methods [27, 28, 29, 30, 31, 40, 56, 57, 64, 65, 67, 68, 69] for

facial expression recognition have achieved great success in the past few years. Based

on the assumptions that a facial expression is the combination of a neutral face

image and the expressive component, Yang et al. [64] proposed a de-expression

residue learning to learn the residual expressive component in a generative model.

To reduce the inter-subject variations, Cai et al. [67] introduced an identity-free

generative adversarial network [11] to generate an average identity face image while

keep the expression unchanged. Considering the pose variation, Zhang et al. [65]

leveraged an adversarial autoencoder to augment the training set with face images

under different expression and poses. However, these methods mainly focus on

datasets captured in controlled environments. The facial images are near frontal

without any occlusion. Thus the models generalize poorly when recognizing human

expressions under nature and uncontrollable variations.

Another line of works focus on designing advanced network architectures [56]

or loss functions [40, 57, 68, 69]. Li et al. [40] proposed a deep locality-preserving

Convolutional Neural Network, which preserved the locality proximity by minimiz-
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ing the distance to the K-nearest neighbors within the same class. Building on this,

Cai et al. [68] further introduced an island loss to simultaneously reduce intra-class

variations and augment inter-class differences. Zeng et al. [57] studied the annota-

tion error and bias problem among different facial expression datasets. Each image

is predicted with multiple pseudo labels and a model is learned to fit the latent

truth from these inconsistent labels. Acharya et al. [56] explored a covariance pool-

ing layer to better capture the distortions in regional facial features and temporal

evolution of per-frame features. Although the aforementioned approaches achieve

good performance on the data from the wild, facial expression recognition is still

challenging due to the existence of partially occluded faces. As a result, only few

methods are proposed to address this challenging issue.

3.2.2 Occlusive Facial Expression Recognition

Recently, there are some works starting to investigate the occlusions issue. Li

et al. [7] proposed a gate unit to enable the model to shift attention from the occluded

patches to other visible facial regions. The gate unit estimates how informative a face

patch is through an attention net, then the features are modulated by the learned

weights. Similarly, region attention network [8] cropped multiple face regions and

utilized a self-attention based model to learn an important weight for each region.

However, the self-attention based methods lack additional supervision information

to ensure the functionality. Thus, the network may not be able to locate these

non-occluded facial regions accurately under large occlusions and poses.
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Figure 3.1: Pipeline of the Occlusion Adaptive Deep Network. It consists of two
branches: a Landmark-guided Attention Branch and a Facial Region Branch. The
ResNet50 backbone is shared between the two branches to extract the global fea-
tures. For the Landmark-guided Attention Branch, the facial landmarks are first
detected. Then the interested points are computed to cover the most informative
facial areas. The confidence scores of these points are further utilized to generate the
attention maps, guiding the model to attend to the visible facial components. While
for the Facial Region Branch, the feature maps are divided into non-overlapping fa-
cial blocks and each block is trained to be a discriminative expression classifier on
its own.

3.3 Occlusion Adaptive Deep Network

In this chapter, we propose OADN for robust facial expression recognition in-

the-wild. To be specific, we use ResNet50 [70] without the average pooling layer

and fully connected layer as the backbone to extract global feature maps F from

given images. The feature map is denoted as F ∈ h × w × c, where h,w, c are the

height, width and channel dimensions. We set the stride of conv4 1 to be 1, so a

larger feature map is obtained. For an input image with height H and width W , the

resolution of the output feature F will be H/16 ×W/16 instead of H/32 ×W/32.

This is beneficial to identify the occlusion information and focus on the visible facial
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regions.

As illustrated in Fig. 3.1, OADN mainly consists of two branches: one is the

landmark-guided attention branch, which utilizes a landmark detector to estimate

landmarks and to guide the network to attend to the non-occluded facial areas. The

other one is the facial region branch to divide the global feature maps into blocks

and train region-based classifiers to increase robustness. We describe each branch

and the structural relationship among the two branches in details below.

Figure 3.2: We select 16 points from the original 68 landmarks (a) to cover the
regions around eyes, eyebrows, nose and mouth. We further recompute 8 points to
cover facial cheeks and the areas between eyes and eyebrows.

3.3.1 Landmark-guided Attention Branch

OADN employs a facial landmark detector [71] to obtain landmarks from face

images. The landmark detector is pre-trained on the 300W dataset [72]. Given an

input image, OADN utilizes the detector to extract N = 68 landmarks. For each

landmark, the detector predicts its coordinates and confidence score. Then based on

the detected 68 points, we select or recompute M = 24 interested points that cover

the distinctive regions of face, including the eyes, nose, mouth and cheeks. Fig. 3.2

illustrates the computation results. For those recomputed points (mainly around

eyes and cheeks), we set their confidence scores to be the minimum confidence score
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of landmark points that used to compute them. To remove the occluded facial

regions, we set a threshold T to filter out the landmarks that have confidence scores

smaller than T . Specifically, the interested points are obtained by:

pi =


(xi, yi) if sconfi ≥ T

0 else

(3.1)

where pi denotes the ith interested point, and xi, yi denote the coordinates of

the ith point. si is the confidence score ranged from 0 to 1 and T is the threshold.

We then generate the attention heatmaps consisting of a 2D Gaussian distri-

bution, where the centers are the ground truth locations of the visible landmarks.

For those occluded landmarks, the corresponding attention maps are set to be all

zeros. We further downsample the attention maps by linear interpolation to match

the size of the output feature maps. As shown in Fig. 3.1, the attention map Ai

modulates the global feature maps F to obtain the re-weighted features FA
i . To

achieve this, the feature map F from the backbone is multiplied by each attention

map Ai, i = 1, ...,M element-wisely, resulting M landmark-guided feature maps

FA
i :

FA
i = F � Ai, i = 1, ...,M (3.2)

where Ai is the ith heatmap, and � is element-wise product. Since the attention

map indicates the visibility of each facial component, the landmark-guided feature

map FA
i can attend to the non-occluded facial parts and remove the information

from the occluded regions. Thus, the feature from the visible region is signified and
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occluded part is canceled.

Then global average pooling is applied to each landmark-guided feature map

FA
i to obtain a 2048-D feature fAi , i = 1, ...,M , corresponding to the facial compo-

nent containing the specific interested point. Finally, the component-wise feature

fAi is max-pooled to fuse the features from the non-occluded facial areas and reduce

the redundant partial information. A fully-connected layer is further used to reduce

the dimension from 2048 to 256, and the output is fed into a softmax layer to predict

the expression category of each input face image. We utilize cross-entropy loss to

train the landmark-guided attention branch, which is expressed as follows:

LLAB = −
C∑
i=1

yi log ŷi (3.3)

where ŷi is the prediction, yi is the ground truth and C is the number of

expression classes.

3.3.2 Facial Region Branch

When the face is seriously occluded, the landmark detection results may not

be accurate. Thus relying on the landmark-guided attention branch solely is not

enough. OADN utilizes a Facial Region Branch (FRB) to learn useful context

information and further increase the robustness.

Given the global feature maps F , we first divide them into small m× n non-

overlapping blocks. Each facial region feature FR
i ∈ m × n × c, i = 1, ..., K, with

K = d h
m
e · dw

n
e is then fed into a global average pooling layer to obtain a region-level
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feature fRi . Afterwards, a fully-connected layer is employed to reduce the dimension

of fRi from 2048 to 256. Finally, a softmax layer is applied to each region to get a

set of predictions yRi , where i = 1, ..., K.

To train the facial region branch, we minimize the cross-entropy loss over the

K regions independently. Formally, the loss is expressed as:

LFRB = −
C∑
i=1

K∑
j=1

yi log ŷRi,j (3.4)

where K is the number of facial regions, ŷRi,j is the probability of the jth region

prediction, and yi is the ground truth expression category.

To be able to make an accurate prediction based on facial region only, OADN

learns more discriminative and diverse features at a finer-level. Thus the partial

occlusion will have a less effect on the network compared with standard model.

Moreover, the size of the expression recognition dataset is usually not very large.

Training multiple region-based classifiers adds more supervision and reduces the

overfitting.

3.3.3 Relationship between the Two Branches

OADN is specifically designed to handle the occlusion problem for in-the-

wild facial expression recognition. The landmark-guided attention branch explicitly

guides the model to focus on the non-occluded facial areas, learning a clean global

feature. While the facial region branch promotes part-level features and enables the

model to work robustly when the face is largely occluded. Combining the benefits
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from each branch, we train OADN by the following loss:

L = λLLAB + (1− λ)LFRB (3.5)

where λ is the loss combination weight. LLAB and LFRB are defined in Equation

(3.3) and (3.4).

3.4 Experiments

3.4.1 Datasets

We validate the effectiveness of our method on two largest in-the-wild expres-

sion datasets: RAF-DB [40] and AffectNet [58]. The in-the-wild datasets contain

facial expression in real world with various poses, illuminations, intensities, and

other uncontrolled conditions. We also evaluate our method on three recently pro-

posed real-world occlusion datasets: Occlusion-AffectNet[8], Occlusion-FERPlus [8]

and FED-RO [7]. The occlusions are diverse in color, shape, position and occlusion

ratio.

Figure 3.3: The interest points with confidence scores greater than the threshold T
are shown in red points. We can see the occluded facial areas are removed.
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3.4.2 Implementation Details

Preprocessing. The standard MTCNN [41] is used to detect five face land-

marks for all the images. After performing similarity transformation accordingly,

we obtain the aligned face images and resize them to be 224 x 224 pixels. To de-

tect landmarks from occluded images, we use SAN [71] pre-trained on the 300W

dataset [72] to get 68 face landmarks. We also try another landmark detector [73]

and similar results are obtained. Then we select 18 points covering eyebrows, eyes,

nose and mouth, and recompute eight points related with facial cheeks. The confi-

dence scores of these recomputed points are the minimum score of the points that

used to compute them. In all experiments, we set the threshold T of the confidence

score to be 0.6, thus the landmarks with confidence scores smaller than it are re-

moved. Fig. 3.3 shows the computed interested points after thresholding. From it

we can see the occluded facial regions are discarded. Finally, we generate attention

maps consisting of a Gaussian with the centers to be the coordinates of the visible

points. For those occluded points, the attention maps are all zeros. We resize the

attention maps to be 14× 14 to match the size of the global feature maps F .

Training and Testing. We employ the ResNet50 as our backbone, removing

the average pooling layer and the fully connected layer. We modify the stride of

conv4 1 from 2 to 1, so a larger feature map with size 14 × 14 is obtained. We

initialize the model with the weights pre-trained on ImageNet [74]. The mini-batch

size is set to be 128, the momentum is 0.9, and the weight decay is 0.0005. The

learning rate starts at 0.1, and decreased by 10 after 20 epochs. We train the
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Table 3.1: Test Set Accuracy on RAF dataset

Method Average Accuracy

RAN [8] 86.90%
OADN(ours) 89.83%
ResiDen [76] 76.54%

ResNet-PL [77] 81.97%
PG-CNN [59] 83.27%

Center Loss [78] 83.68%
DLP-CNN [79] 84.13%

ALT [80] 84.50%
gACNN [7] 85.07%

OADN(ours) 87.16%

model for a total of 60 epochs. Stochastic Gradient Descent (SGD) is adopted as

the optimization algorithm. During training, only random flipping is used as data

augmentation. For testing, a single image is used and the predication scores from

the landmark-guided attention branch and the facial region branch are averaged

to get the final prediction score. The settings are same for all the experiments.

For evaluation, the total accuracy metric is adopted. Considering the imbalance

of the expression classes, confusion matrix is also employed to show the average

class accuracy. The deep learning framework Pytorch [75] is used to conduct the

experiments. Upon publication, the codes and trained expression models will be

made publicly available.

3.4.3 Results Comparison

RAF [40] contains 30,000 in-the-wild facial expression images, annotated with

basic or compound expressions by 40 independent human labelers. In this experi-
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Table 3.2: Validation Set Accuracy on AffectNet dataset

Method Average Accuracy

RAN [8] 59.50%
OADN(ours) 64.06%

VGG16 [82] 51.11%
GAN-Inpainting [83] 52.97%

DLP-CNN [40] 54.47%
PG-CNN [59] 55.33%

ResNet-PL [77] 56.42%
gACNN [7] 58.78%

OADN(ours) 61.89%

ment, only images with seven basic expressions are used, including 12,271 for train-

ing and 3,068 for testing.

Table. 3.1 shows the results of our method and previous works. Our OADN

achieves 87.16% in terms of total accuracy on the test set, outperforming all the

previous methods. Compared with the strongest competing method in the same

setting gACNN [7], OADN surpasses it by 2.1%. This is because OADN explicitly

utilizes the meta information of landmarks to depress the noisy information from the

occluded regions and enhances the robustness with multiple region-based classifiers.

To have a fair comparison with [8], we also pre-trained our model on a large-scale face

recognition dataset VGGFace2 [81]. OADN achieves a new state-of-the-art result

with an accuracy of 89.83% to the best of our knowledge, outperforming RAN by

2.93%. This validates the superiority of the proposed method.

We show the confusion matrix in Fig. 3.4. The average class accuracy is

computed using the mean diagonal values of the confusion matrix. From the figure,

we can see OADN achieves an average class accuracy of 83.21%, surpassing DLP-
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Figure 3.4: Confusion Matrix of RAF-DB. The darker the color, the higher the
accuracy.

CNN [40] by 9%, which is 74.20%. In addition, it is observed that Fear and Disgust

are the two most confusing expression, where Fear is easily confused with Surprise

because of the similar facial appearance While Disgust is mainly confused by Neutral

due to the subtleness of the expression.

AffectNet [58] is currently the largest expression dataset. There are about

400,000 images manually annotated with seven discrete facial expressions and the in-

Table 3.3: Validation Set Accuracy on Occlusion-AffectNet and Pose-AffectNet
dataset

Method Occ. Acc. Pose>30 Acc. Pose>45 Acc.

RAN [8] 58.50% 53.90% 53.19%
OADN(ours) 64.02% 61.12% 61.08%
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Figure 3.5: Confusion Matrix of Affectnet. The darker the color, the higher the
accuracy.

tensity of valence and arousal. Following the experiment setting in [7], we only used

the images with neutral and six basic emotions, containing 280,000 images for train-

ing and 3,500 images from the validation set for testing since the the test set is not

publicly available. Very recently, Wang et al. [8] released the Occlusion-AffectNet

and Pose-AffectNet datasets where only images with challenging conditions are

selected as the test sets. For the Occlusion-Affectnet, each image is occluded with

at least one type of occlusion: wearing mask, wearing glasses, etc. There are a total

of 682 images. For the Pose-AffectNet, images with pose degrees larger than 30 and

45 are collected. The number of images are 1,949 and 985, respectively.

As shown in Table. 3.3, OADN achieves the best performance with an accuracy
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Table 3.4: Test Set Accuracy on FED-RO dataset

Method Average Accuracy

RAN [8] 67.98%
OADN(ours) 71.17%

VGG16 [82] 51.11%
ResNet18 [70] 64.25%

GAN-Inpainting [83] 58.33%
DLP-CNN [40] 60.31%
PG-CNN [59] 64.25%
gACNN [7] 66.50%

OADN(ours) 68.11%

of 61.89% on the validation set. Compared to the strongest competing method in

the same setting gACNN [7], OADN surpasses it by 3.1%, which is a large margin.

OADN also significantly outperforms RAN [8] by 4.56%, when both pre-trained on a

large-scale face recognition dataset. On the Occlusion-AffectNet and Pose-AffectNet

datasets, the performance gap between OADN and RAN is further increased. As

a comparison, OADN exceeds RAN by 5.52%, 7.22% and 7.89% on the test sets

with occlusion, pose degree greater than 30 and 45, respectively. This validates the

effectiveness of the proposed method on the occluded facial expression recognition

problem. The confusion matrix is shown in Fig. 3.5. From it we can find both

Disgust and Anger are the most difficult expressions to classify.

FED-RO [7] is a recently released facial expression dataset with real world

occlusions. Each image has natural occlusions including sunglasses, medical mask,

hands and hair. It contains 400 images labeled with seven expressions for testing.

We train our model on the joint training data of RAF and AffectNet, following the

method [7].
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As shown in Table. 3.4, OADN achieves the best performance with an accu-

racy of 68.11%, improving gACNN by 1.61%. OADN also significantly outperforms

RAN by 3.19%. This validates the superiority of the proposed approach. From the

confusion matrix shown in Fig. 3.6, we can see both Surprise and Happy have high

accuracy, while Fear and Disgust are easily confused with Surprise and Sad.

Figure 3.6: Confusion Matrix of FED-RO. The darker the color, the higher the
accuracy.

FERPlus [84] is a real-world facial expression dataset initially introduced dur-

ing ICML 2013 Challenge [54]. It consists of 28,709 training images, 3,589 validation

images and 3,589 test images. Each image is labeled with one of the eight expres-

sions by 10 independent taggers. Recently, Wang et al. [8] released the Occlusion-

FERPlus and Pose-FERPlus datasets, where images under occlusion and large
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Table 3.5: Test Set Accuracy on Occlusion-FERPlus and Pose-FERPlus dataset

Method Occ. Acc. Pose>30 Acc. Pose>45 Acc.

RAN [8] 83.63% 82.23% 80.40%
OADN(ours) 84.57% 88.52% 87.50%

pose (>30 and >45) are collected from the FERPlus test sets. Following [8], we

trained our model on the training data of FERPlus and test on these challenging

datasets.

Table 3.5 reports the test accuracy. Our OADN significantly surpasses RAN by

a large margin with 6.29% and 7.10% improvements on the Pose-FERPlus datasets.

OADN also achieves better performance on the Occlusion-FERPlus dataset. This

validates the effectiveness of our method on recognizing facial expressions under

challenging conditions.

3.4.4 Ablation Study

In this section, we conduct extensive ablation studies on RAF dataset to an-

alyze each component of OADN.

The impact of the landmark confidence threshold T . The confidence

scores of the interested points are utilized to select the points from the non-occluded

facial areas. From Equation (3.1), the points with confidence scores higher than T

are kept. We can see from Fig. 3.7 (a) that with T = 0.6, OADN achieves the best

performance. When T is further increased, the performance drops quickly since

some important facial areas which may not be occluded are also thrown away. On
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the other hand, when T becomes less than 0.6, OADN starts to perform worse.

This is because noisy information from the occluded areas are also included, which

deteriorates the clean features.
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Figure 3.7: The impacts of the confidence threshold T , number of regions K and
the loss combination weight λ on the performance of OADN.

The impact of the number of regions K. In the facial region branch, we

partition the global feature maps into K blocks and train an expression classifier

from each block independently. So K decides the granularity of the part-level fea-

tures. From Fig. 3.7 (b), it is observed that the best accuracy is achieved at K = 4.

When K = 1, the facial region branch equals to the standard ResNet50 classifier.

The worse performance indicates the necessity to learn features at part-level. How-

ever, increasing K to be a large number like 16 does not bring further increasement.

This is because when the facial region is too small, it lacks enough information to

make the prediction due to the occlusion. Thus the classifiers are confused and the

training is stagnated.

The impact of the loss combination weight λ. To train OADN, we jointly

optimize the loss from the landmark-guided attention branch (LAB) and the facial

region branch (FRB) as defined in Equation (3.5). The loss weight λ controls the
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relative importance of each loss. When λ equals 1, only LAB is utilized. While

λ = 0 means only FRB is used. From Fig. 3.7 (c), we can find that LAB obtains

better performance since the network is guided to attend to the most discriminative

facial areas. While combining the two branches achieves better performance than

using either one branch alone. This validates the effectiveness of the complementary

features learned by the two branches.

3.4.5 Visualization

Fig. 3.8 shows some expression recognition examples of the gACNN [7] and our

OADN method on the FED-RO dataset. The classification results show that gACNN

is vulnerable to large head poses and heavy facial occlusions. On the contrary, our

OADN can work successfully in the same situation.

Figure 3.8: Comparison of the gACNN method and our OADN method on the
FED-RO dataset. Red and green texts indicate the error and correct predictions.

3.5 Conclusions

In this chapter, we present an occlusion adaptive deep network to tackle the

occluded facial expression recognition problem. The network is composed of two

branches: the landmark-guided attention branch guides the network to learn clean
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features from the non-occluded facial areas. While the facial region branch in-

creases the robustness by dividing the last convolutional layer into several part

classifiers. We conduct extensive experiments on both challenging in-the-wild ex-

pression datasets and real-world occluded expression datasets. The superior results

show that our method outperforms existing methods and achieves robustness against

occlusion and various poses.
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Chapter 4: A Deep Cascade Network for Unaligned Face Attribute

Classification

4.1 Introduction

Face attributes describe the characteristics observed from a face image. They

were first introduced by Kumar et al. [85] as mid-level features for face verifica-

tion [86] and since then have attracted much attention. The last few years have wit-

nessed their successful applications in hashing [87], face retrieval [88], and one-shot

face recognition [89]. Recently, researchers have begun to investigate the possibility

of synthesizing face images based on face attributes [12, 90].

Despite their wide applications, face attribute recognition is not an easy task.

One reason is that recognizing different face attributes may require attentions to

different regions of the face [9, 10]. For example, local attributes like Mustache

could be recognized by just checking the region containing the mouth. Other areas

of the face do not provide useful information and may even hamper this particular

attribute recognition. However, recognizing global attributes like Pale Skin may

require information from the whole face region. Most current studies do not pay

special attention to this problem. They either detect facial landmarks and extract
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hand-crafted features from patches around them [85, 91] or train a deep network to

classify the attributes by taking a whole face as input [92, 93, 94, 95].

In this chapter, we propose a learning-based method that dynamically selects

different face regions for unaligned face attribute prediction. It integrates two net-

works using a cascade: a face region localization (FRL) network followed by an

attribute classification network. The localization network detects face areas specific

to attributes, especially those that have local spatial support. The classification

network selectively leverages information from these face regions to make the final

prediction.

For accurate face region detection, our localization network is constructed

under a multi-task learning framework. The lower layers which are used to extract

low level features are shared by all the tasks while the high-level semantics are

learned separately. Moreover, a global average pooling step is applied to force the

network to learn location-sensitive information [96]. Although the network is trained

in a weakly-supervised manner with attribute labels only, the detected face regions

are consistent with what one may expect. As a result, face alignment algorithms

which are usually sensitive to occlusion, variations of pose and illumination are not

needed.

For each face region (also called a part) detected by our localization network,

we train a separate attribute classification network, called a part-based subnet. The

localized face parts may not contain enough contextual information for predicting

global attributes. Thus, a whole-image-based subnet is also trained. To combine

the information from the part-based and whole-image-based subnets, a two-layer
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fully-connected classifier is built on top of the output attribute scores. The first

layer is used to select the relevant subnet for predicting each attribute, while the

second layer is designed to model the rich attribute relations. The integrated system

is called the parts and whole (PaW) network.

Since the face region localization network is supervised by attribute labels, it

is appealing to adapt its weights to initialize the subnets in PaW. However, features

from the localization network, which are mainly designed for localization purpose,

are generally not very discriminative for attribute classification. To this end, a multi-

net learning method is proposed. It utilizes a network with enhanced attribute clas-

sification capability to train the localization network to find a more discriminative

solution.

A naive implementation of the PaW network is problematic since the number

of total parameters increases linearly with the number of attributes, and the subnet

adapted from the FRL network is not very compact. To jointly train the PaW

network end-to-end, a hint-based model compression technique is further proposed.

This not only leads to a compact model with only 11M parameters, but also reduces

the training time significantly.

We applied the proposed method to CelebA dataset [92]. With no use of

alignment information, our method achieves an accuracy of 91.23%, reducing the

classification error by a significant margin of 30.9% compared with state-of-the-

art [92]. Moreover, our model could select the most relevant face region for predicting

each face attribute.

Contributions: We design a weakly-supervised localization network to accurately
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Figure 4.1: Overview of our face attribute recognition framework. It consists of a
facial region localization (FRL) network and a Parts and Whole (PaW) classification
network. The localization network detects a discriminative part for each attribute.
Then the detected face regions and the whole face image are fed into the PaW
classification network. The region switch layer (RSL) selects the relevant subnet
for predicting the attribute, while the attribute relation layer (ARL) models the
attribute relationships.

locate attribute regions. We also propose a hybrid classification network to dy-

namically choose the pertinent face regions for predicting different attributes. A

hint-based model compression technique is explored to obtain a compact model.

We show that the performance of unaligned face attribute classification is signifi-

cantly improved by the proposed method.

Organization: Section 4.2 provides an overview of existing works on face attribute

recognition, weakly supervised object localization and model compression. Sec-

tion 4.3 presents the proposed face region localization network and attribute clas-

sification network. Experiment results and conclusions are presented in Section 4.4

and Section 4.5, respectively.
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4.2 Related Works

Face Attribute Recognition Early works [85, 91] on face attribute recognition

used manually defined face parts to extract features and then train a linear SVM

classifier. This strategy though is well suited for near-frontal faces, is heavily de-

pendent on the accuracy of landmark detection. Recently, with the emergence of

large-scale data and deep neural networks, holistic methods [92, 93, 97] have pro-

duced better performance than the part-based method. Liu et al. [92] noticed that

a deep model pre-trained for face recognition implicitly learns attributes. Huang

et al. [97] employed a quintuplet loss to combat the imbalanced data distribution

problem. These methods typically use the whole face image to train a deep network,

ignoring the fact that different facial attributes have different attentional facial re-

gions. This problem has been recently noticed in [98, 99]. Murrugarra-Llerena and

Ko-vashka [99] created human gaze maps for each attribute such that only features

within the saliency maps are used for attribute recognition. Our method differs from

the aforementioned approaches in the sense that the face parts are localized auto-

matically without relying on detected landmarks or human gaze data. Moreover, our

classification network can dynamically select the relevant face regions for predicting

different attributes.

Weakly Supervised Object Localization Despite training with only image-level

labels, recent works [100, 101, 102] showed that deep Convolutional Neural Networks

(CNN) have remarkable object localization ability. Zhou et al. [101] proposed a class

activation mapping method to localize the objects with class labels only. The design
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of our face region localization network is motivated by this work. However, to fully

utilize the correlations among different face attributes, the localization network is

designed in a multi-task learning framework.

Model Compression To obtain a compact model, several methods including net-

work distillation [103], parameter pruning [104] have been proposed. Recently,

knowledge distillation [25] has been shown to be very effective to teach a small

student model. However, it can not be directly applied to our problem: the teacher

net uses soft labels which contain rich ambiguous information to supervise the stu-

dent net, while for attribute classification, the output has only one logit for each

attribute. Thus, a new loss function based on hints is proposed to replace soft label

supervision.

4.3 Proposed Method

The proposed method contains two networks: a localization network and an

attribute classification network. An overview of the framework is shown in Fig. 4.1.

First, we adopt the multi-net learning method to train a face region localization

(FRL) network. Then one attentional region is detected for each attribute by the

FRL network, which is fed into the PaW network for attribute prediction. To train

the PaW end-to-end, a hint-based method is further applied to compress the model.

The details of the proposed approach are discussed below.
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4.3.1 Face Region Localization (FRL) Network

One challenge in designing a face region localization algorithm is that we

do not have the labeled regions available. Murrugarra-Llerena and Kovashka [99]

used human gaze to label the related region for each attribute, however, this is

both time consuming and expensive. Inspired by the success in weakly supervised

object localization [101], we apply a global average pooling (GAP) network for the

localization task, and train it in a weakly-supervised way where only face attribute

labels are needed. In this network structure, a GAP layer is used to pool features

from the last convolutional layer, and a fully-connected layer is followed to predict

the attribute score. A localization heatmap, Hj, for the j-th attribute, is obtained

by applying the class activation mapping method. Hj =
∑N

i=1wj,iFi, i = 1, ..., N ,

where Fi is the output feature maps from the last convolutional layer and wj,i is

the i-th weight of the fully connected layer for predicting the j-th attribute. N is

chosen to be 32 in our experiments.

We design the FRL network using multi-task learning [105] strategy, where

each attribute can be seen as one separate task. It has five VGGNet [82] convo-

lutional modules shared by all the attributes, and a domain adapted convolutional

layer which has M different branches for each attribute, where M = 40 is the num-

ber of face attributes. The weights of the network are initialized from the VGG-Face

CNN [42] which is trained on a large-scale face recognition dataset.
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4.3.1.1 Multi-Net Learning

Since the supervision of the FRL network comes from the attribute tags, it

is appealing to transfer its weights to the subnets in PaW for faster convergence

and better performance. However, training the FRL net in a plain way leads to

less discriminative features due to GAP regularization [101]. This is also verified in

our experiments. To this end, a multi-net learning (MNL) method is proposed to

boost the classification performance of the GAP feature, which yield improved final

attribute classification.

The network architecture for MNL is shown in Fig. 4.2. Except for the FRL

network (blue and red boxes), another two fully-connected layers (gray box) are also

attached to the output of the fifth convolutional module. We call it a classification

branch because of its improved performance on the classification task compared with

the localization branch. The idea is to simultaneously train the two different types

of networks with the same attributes loss. Meanwhile the first several convolutional

layers are constructed to be shared between them. The gradients from both clas-

sification and localization branches are backpropagated to the shared layers. This

extra supervision from the classification branch regularizes the training process to

search for a more discriminative solution. Interestingly, we find this simple learning

strategy is beneficial for both branches in terms of classification performance. After

the multi-net training is completed, the classification branch is removed, and only

the localization branch is kept for extracting attribute-specific heatmaps.

To localize the face region, we upsample the location heatmap to the original
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image size 224×224, and find the position that corresponds to the maximum value.

Then, a 64 × 64 patch centered around this position is cropped from the original

image as the detected face region. We empirically found this patch size to be suf-

ficient for most face parts. This process is repeated for each attribute and M face

regions are obtained.

4.3.2 Attribute Classification Network

As shown in Fig. 4.1, the proposed attribute classification network PaW con-

tains M part-based subnets and one whole-image-based subnet. After getting the

predicted attributes scores from each subnet, a two-layer fully-connected classifier

is adopted to combine them.

4.3.2.1 Parts and Whole (PaW) Classification Network

Suppose x0 represents the whole face image, x1, ..., xM represent face region

related to each face attribute. gi, i ∈ 0, ..,M represent the (M +1) subnets. Each xi

is first fed into its corresponding subnet gi to predict the M attribute scores {si,j},

where si,j represents the predicted score of the j-th attribute by the i-th subnet. The

reason why we train each part-based subnet to predict M attributes instead of the

one related to the input region is based on the observation that some attributes can

usually be predicted by other ones [106]. The predicted scores si,j will be fed into a

region switch layer (RSL) which is designed as rj =
∑M

i=0Wijsij, j = 1, ...,M,W ∈

R(M+1)×M whose element in the i-th row and j-th column is Wij. RSL adopts a
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Figure 4.2: Multi-Net Learning.

group fully-connected structure, where the j-th output is only connected with the

j-th attribute scores predicted by all subnets. Especially, it could balance the scores

from the part-based and whole-image-based subnets by putting more weight to the

one that is more important. An attribute relation layer (ARL), which is a fully-

connected layer, then takes these rj, j ∈ 1, ...,M as input to predict the final score for

each face attribute. ARL here is used to further model the high correlations among

the face attributes. The PaW network is trained end-to-end with the sigmoid cross

entropy loss: Lattr =
∑M

j=1 yj log oj+(1−yj) log(1−oj), where yj’s are the attributes

labels, and oj’s are the outputs from the ARL layer.

4.3.2.2 Hint-based Model Compression

Training the PaW network in a naive way is both memory demanding and time

consuming, since the total number of network parameters increases substantially as

the number of attributes becomes large, and the subnet architecture adapted from

the FRL network is not very compact. To obtain a compact subnet model, we
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further propose a model compression technique. Motivated by [107, 108], we design

a hint loss to make the student net (SNet) reconstruct the feature maps from the

teacher net (TNet). It can be expressed as:

Lhint(w) = ||Tk(I)− Sl(I, w)||2, (4.1)

where k (l) is the chosen layer of the teacher (student) net to transfer (add) su-

pervision, w are the weights of the student net to be learned, and I is the whole

face image. The network architecture is shown in Fig. 4.3. Besides the hint loss,

the student network is also supervised by the attributes loss. Thus, the total loss

function can be written as LS = λ1Lhint + λ2Lattr. The FRL network trained by

MNL is adopted as the teacher network to teach the whole-image-based subnet (or

the student net). Since it is fully-convolutional and deeper layer generally captures

high-level semantics [109, 110], we set the supervision layer k to be the teacher net-

work’s last convolutional layer. During training, the weights of the teacher network

are frozen, and only the student network is learned. The training algorithm is car-

ried out in two stages: first setting λ1 = 1, λ2 = 0, and training S with only the

hint loss. In this way, the knowledge of the teacher network could help the student

network find a good initialization. Then we set λ1 = 0, λ2 = 1 and train S with

attribute loss only. After the whole-image-based subnet is learned, its weights are

used to initialize all the part-based subnets in PaW.
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4.3.3 Training Methodology

The training process is carried out as follows:

1. First, MNL is adopted to train the FRL network with superior classification

performance;

2. Then hint-based compression method is applied to train a compact whole-

image-based subnet g0 using the learned FRL network as the teacher net.

3. Initialize each part-based subnet {gi}Mi=1 using the weights from g0 and then

train each subnet gi independently using the corresponding attentional face

region;

4. By fixing all the part-based subnets and the whole-image-based subnet, the

RSL and ARL are learned;

5. Finally, the PaW network is fine-tuned by back-propagating errors from ARL

to all the lower layers of the part-based subnets and the whole-image-based

subnet.

All the subnets and the two layer fully-connected model are trained under the su-

pervision of attribute labels. The third and forth steps initialize the classification

model to be close to a good local minimum, which is important for the successful

training of PaW.
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Figure 4.3: Hint-based Model Compression.

4.4 Experiments

4.4.1 Dataset

We use the CelebA dataset [92] in our experiments, since it has been widely

used for face attributes classification. It consists of 202,599 face images collected

from the Internet and annotated with 40 binary attributes. As suggested in [92],

162,770 of these images are used for training, 19,867 and 19,962 are reserved for

validation and testing respectively. Both unaligned and aligned sets are provided and

we applied our method on the unaligned one (uCelebA). To conduct experiments

on uCelebA, we use the publicly available face detector [41] to detect faces. For

560 images which have no face detected, we use the provided landmarks to get

the groundtruth bounding box (we empirically expand the minimum bounding box

containing all landmarks twice to cover the neck and hair region). For 15,181 images
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with multiple faces detected, we select the bounding box that has maximum overlap

with the groundtruth bounding box. This is the only preprocessing step applied to

the unaligned images.

4.4.2 Implementation details

We applied MNL to train the FRL network. The learning rate is fixed to be

0.0001, and the network is trained for 10 epochs with batch size of 128. The FRL

network is then compressed with a learning rate of 1e−7 for the hint loss training

and 0.0001 for the attribute loss training. The part-based subnets are trained for 15

epochs with the weights initialized from the whole-image-based subnet. After that,

the RSL and ARL are trained with a learning rate of 0.1 with all subnets fixed.

Finally, a learning rate of 0.001 is applied to train the PaW network in an end-to-

end manner. Stochastic gradient descent (SGD) is used to train all the networks.

The momentum and weight decay are set at 0.9 and 0.0005 for all the experiments

respectively. Horizontal flipping is applied for data augmentation. We use Caffe [43]

to implement our networks.

4.4.3 Ablative Analysis

4.4.3.1 Face Region Localization

In this section, we evaluate the FRL network qualitatively. Fig. 4.4 shows

the location heatmaps corresponding to several attributes. We observe that the

localized parts are quite semantically meaningful, even though some face images
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have large pose variations or under occlusion. For example, the eye area produces

the highest response for the Arched Eyebrow attribute even though the woman

wears sunglasses. While for the attribute of Wavy Hair, the network localizes the

head region although the man wears a hat. We also examine it quantitatively in the

Classification Results section to show that accurate region localization is essential

for good classification results.

5 O Clock 
Shadow

Big 
Nose

Arched 
Eyebrow

Wavy
Hair

Heavy
Makeup

Bald

Figure 4.4: Location heatmaps from the face region localization network. Face
regions that correlate with facial attributes are discovered.
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Table 4.1: Average classification accuracy on uCelebA dataset.

Methods Classif. Branch Loc. Branch
Without MNL - 91.01

MNL 91.05 91.07

Table 4.2: Fine-grained classification accuracy on CUB-200 dataset.

Methods Classif. Branch Loc. Branch
Without MNL on full image - 67.40

MNL on full image 72.10 71.66
Without MNL on crop - 71.90

MNL on crop 75.76 76.03

4.4.3.2 Multi-Net Learning

In this section, we study the ability of MNL for obtaining a localizable and

discriminative deep representation. Table 5.1 summarizes the attribute classification

results from classification and localization branches. We find that MNL consistently

improves the classification performance of the localization branch, achieving an ac-

curacy of 91.07% vs. 91.01% with/without MNL.

To further test the proposed MNL, we applied it on the popular CUB-200-

2011 dataset [111] for fine-grained object recognition. The dataset contains 11,788

images, with 5,994 images for training and 5,794 for testing. The network archi-

tecture is same as the one used in uCelebA, except that the last layer is replaced

with 200 output nodes (the number of classes). The weights are initialized from

VGGNet [82]. Table 4.2 summarizes the results. We find that the localization

branch performs worse than the classification branch, with almost 4% performance

gap. After applying MNL, the accuracy of the localization branch is improved from

67.40% to 71.66% when using the full image. We also adopt the same localization
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Figure 4.5: Visualization of the region switch layer weights. For each attribute, the
blue and the red bar represent the weight values of RSL that corresponds to the
part-based subnet and whole-image-based subnet respectively. It shows that the
weights of the part-based subnets are higher for the local attributes. For global
attributes, the whole-image-based subnet is assigned larger weight.

technique as [101] to identify the bounding box of the birds in both the training

and testing sets. With the cropped bird images as training data, the performance

of the localization branch is further improved from 71.90% to 76.03%. This further

demonstrates that MNL is able to improve the discriminativeness of the GAP-based

localization network.

4.4.3.3 Hint-based Model Compression

In this section, we analyze the effectiveness of our model compression tech-

nique. To show the flexibility and robustness of our method, we experiment with

three student nets (SNet1, SNet2 and SNet3) with different sizes. Table 4.3 shows

the network architectures and their classification results. We use s× s× n(t) to de-

note kernel size s×s with n output feature maps, where t is the number of repeated

convolution modules. We observe that the proposed method is able to compress

a deep network to a relatively shallow network, with little performance drop. For

SNet3, which achieves an accuracy of 90.60%, the depth is shortened from 14 to 5,
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Table 4.3: Comparison of average accuracy and compactness between different com-
pressed models on uCelebA dataset.

Layer TNet SNet1 SNet2 SNet3
Conv1 3x3x32(2) 3x3x32 3x3x32 3x3x16
Pool1 2x2x32 2x2x32 2x2x32 2x2x16
Conv2 3x3x64(2) 3x3x64 3x3x64 3x3x32
Pool2 2x2x64 2x2x64 2x2x64 2x2x32
Conv3 3x3x128(3) 3x3x128 3x3x128 3x3x64
Pool3 2x2x128 2x2x128 2x2x128 2x2x64
Conv4 3x3x256(3) 3x3x256 3x3x256 3x3x128
Pool4 2x2x256 2x2x256 2x2x256 2x2x128
Conv5 3x3x512(3) 3x3x512 3x3x512 1x1x1280
Conv6 3x3x1280 3x3x1280 1x1x1280 n/a
Classifier GAP GAP GAP GAP

FC40 FC40 FC40 FC40
Accuracy 91.07 91.02 90.89 90.60
Param. 19M 6M 2M 0.27M

Table 4.4: Comparison of average accuracy and compactness on the aligned CelebA
dataset.

Method Accuracy Param.
SOMP [112]-thin-32 89.96 0.22M

SOMP [112]-branch-32 90.74 1.49M
Low Rank [113] 90.88 4.52M

SNet3 90.89 0.27M

and the number of parameters is reduced from 19M to 0.27M.

To further compare our approach with existing methods, we also train our

models on the aligned CelebA dataset. The results are summarized in Table 4.4.

We find that our SNet3 model achieves similar or better accuracy compared to these

state-of-the-art methods, while being much more compact and thus faster.
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Figure 4.6: Attribute relation weights learned on uCelebA dataset. Red and yellow
colors indicate high values while blue and green colors denote low values.

4.4.3.4 PaW Classification Network

In this section, we evaluate the classification performance of the proposed

PaW network. Before showing the results, we first explore whether RSL assigns

appropriate weights to different subnets for attribute prediction and whether ARL

learns meaningful attributes correlations.

Face Region Selection We visualize the weights of RSL in Fig. 4.5. Although
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Table 4.5: Performance comparison with state of the art methods on 40 binary facial
attributes. The best results are shown in bold.
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each subnet predicts M attribute scores simultaneously, only the weights of the

corresponding part-based subnet against the whole-image-based subnet are shown

here. The weight magnitude indicates the importance of the subnet for predicting

the attribute. Interestingly, we find that the part-based subnet related to the local

attribute, e.g. 5 o Clock Shadow and Bushy Eyebrows, is always assigned the largest

weight among the M + 1 subnets. We also observe that for global attributes, e.g.

Attractive, Blurry, Heavy Makeup, and Pale Skin, the whole-image-based subnet

achieves the highest weight. Intuitively those global attributes should obtain more

information from the whole-image-based subnet. This validates the region selection

ability of the RSL.

Face Attribute Correlation The learned ARL weights are visualized in Fig. 4.6.

We find that attribute pairs that are mutually exclusive such as (Attractive, Blurry),

(Black Hair, Blond Hair) and (No Beard, Goatee) are assigned lowest weights.

Rarely co-occurring attribute pairs like (Male, Heavy Makeup) are also assigned

low weights. Pairs of attributes such as (Chubby, Double Chin), (Heavy Makeup,

Wearing Lipstick) and (Smiling, High Cheekbones) that commonly co-occur are
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given relatively higher weights. Moreover, the weights are asymmetric, for example,

a person who wears lipstick is very unlikely to have a beard, but not the other way

round. This is also reflected in the learned weights. This shows that ARL captures

the attribute relationships.

Classification Results We show that our model achieves state-of-the-art results on

uCelebA dataset. In the following experiments, each subnet adopts the architecture

of SNet3 in Table 4.3.

We compare PaW with two baselines:

1. Part-only: each part net is trained on the detected face region to predict all

face attributes. Then the attribute score from the most related part-based subnet

is adopted for testing.

2. Whole-only: this method does not have part nets. It is trained with the

whole face image only and is used to directly predict all attributes.

Table 4.5 summarizes the classification performances. We observe that the

PaW net performs consistently better than either the Part-only or Whole-only

method alone, achieving an accuracy of 91.23% vs. 90.60% for Part-only and

90.46% for Whole-only on uCelebA. This shows that RSL learns to selectively com-

bine information from part-based and whole-image-based subnets. For unaligned

face attribute classification on uCelebA dataset, we achieve the highest recognition

rates across the board on all attributes and decrease the average recognition error

from 12.70% to 8.77%, a reduction of 30.9%. Our method on the aligned CelebA

also achieves an accuracy of 91.33% vs. 90.94% compared with the state-of-the-

art [94]. This validates the effectiveness of the proposed attribute classification
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network. Also, the small performance gap on uCelebA and the aligned CelebA

means that we practically eliminate the alignment step, and hence no special anno-

tations are needed. Although the PaW network contains multiple part-based and

whole-image-based subnets, the total number of parameters is only 11 M.

To test the importance of the FRL network, we further employ a baseline that

divides each image into 4×4 non-overlapping blocks to simulate crude part detectors.

Then part-based subnets and whole-image-based subnet are trained the same way as

before. It achieves an average accuracy of 90.95% on uCelebA. However, we found

that the weights corresponding to the whole-image-based net in the RSL are always

higher than those of the part-based subnets for predicting all the attributes. This

is because coarse region localization makes the part-based subnets unreliable, thus

all the predictions are essentially made by the whole-image-based subnet only. This

validates the effectiveness of the proposed FRL network.

4.5 Conclusions

In this chapter, we propose to learn attentional face regions to improve at-

tribute classification under unaligned condition. To this end, a weakly-supervised

face region localization network is first designed. Then the information from those

detected regions are selectively combined by the hybrid classification network. Vi-

sualization shows our method not only discovers semantic meaningful attributes

regions, but also captures rich correlations among attributes. Moreover, our results

outperform previous methods on the unaligned CelebA dataset by a large margin.
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Chapter 5: Facial Expression Editing with Controllable Expression

Intensity

5.1 Introduction

Facial expression editing is the task that transforms the expression of a given face

image to a target one without affecting the identity properties. It has applications

in facial animation, human-computer interactions, entertainment, etc. The area has

been attracting considerable attention both from academic and industrial research

communities.

Existing methods that address expression editing can be divided into two

categories. One category tries to manipulate images by reusing parts of existing

ones [114, 115, 116] while the other resorts to synthesis techniques to generate a

face image with the target expression [52, 117, 118]. In the first category, traditional

methods [114] often make use of the expression flow map to transfer an expression

by image warping. Recently, Yeh et al. [116] applied the idea to a variational

autoencoder to learn the flow field. Although the generated face image has high

resolution, paired data where one subject has different expressions are needed to

train the model. In the second category, deep learning-based methods are mainly
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used. The early work by Susskind et al. [117] used a deep belief network to generate

emotional faces, which can be controlled by the Facial Action Coding System (FACS)

labels. In [52], a three-way gated Boltzmann machine was employed to model the

relationships between the expression and identity. However, the synthesized images

of these methods have low resolution (48 x 48), lacking fine details and tend to be

blurry.

Moreover, existing works can only transform the expression to different classes,

like Angry or Happy. However, in reality, the intensity of facial expression is often

displayed over a range. For example, humans can express the Happy expression

either with a huge grin or by a gentle smile. Thus it is appealing if both the type

of the expression and its intensity can be controlled simultaneously. Motivated

by this, in this chapter, we present a new expression editing model, Expression

Generative Adversarial Network (ExprGAN) which has the unique property that

multiple diverse styles of the target expression can be synthesized where the intensity

of the generated expression can be continuously controlled from weak to strong,

without the need for training data with intensity values.

To achieve this goal, we specially design an expression controller module. In-

stead of feeding in a deterministic one-hot vector label like previous works, the

expression code generated by the expression controller module is used. It is a real-

valued vector conditioned on the label, thus more complex information such as

expression intensity can be described. Moreover, to force each dimension of the

expression code to capture a different factor of the intensity variations, the condi-

tional mutual information between the generated image and the expression code is
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maximized by a regularizer network.

Our work is inspired by the recent success of the image generative model,

where a generative adversarial network [11] learns to produce samples similar to

a given data distribution through a two-player game between a generator and a

discriminator. Our ExprGAN also adopts the generator and discriminator frame-

work in addition to the expression controller module and the regularizer network.

However, to facilitate image editing, the generator is composed of an encoder and

a decoder. The input of the encoder is a face image, the output of the decoder is

a reconstructed one, and the learned identity and expression representations bridge

the encoder and decoder. To preserve the most prominent facial structure, we adopt

a multi-layer perceptual loss [14] in the feature space in addition to the pixel-wise

L1 loss. Moreover, to make the synthesized image look more photo-realistic, two

adversarial networks are imposed on the encoder and decoder, respectively. Because

it is difficult to directly train our model using the small training set, a three-stage

incremental learning algorithm is also developed.

Contributions: We propose a novel model called ExprGAN that can change a face

image to a target expression with multiple styles, where the expression intensity can

also be controlled continuously. We show that the synthesized face images have high

perceptual quality, which can be used to improve the performance of an expression

classifier. Our identity and expression representations are explicitly disentangled

which can be exploited for tasks such as expression transfer, image retrieval, etc.

We develop an incremental training strategy to train the model on a relative small

dataset without the rigid requirement of paired samples.
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Figure 5.1: Comparison of previous GAN architectures and the proposed ExprGAN.

Organizations: Section 5.2 provides an overview of existing works on deep gener-

ative model and facial expression editing. Section 5.3 presents the proposed facial

expression generative adversarial network. Experiment results and conclusions are

presented in Section 5.4 and Section 5.5, respectively.

5.2 Related Works

5.2.1 Deep Generative Model

Deep generative models have achieved impressive success in recent years. There

are two major approaches: generative adversarial network (GAN) [11] and varia-

tional autoencoder (VAE) [119]. GAN is composed of a generator and a discrimi-

nator, where the training is carried out with a minimax two-player game. GAN has

been used for image synthesis [12], image superresolution [120], etc. One interesting

extension of GAN is Conditional GAN (CGAN) [121] where the generated image can

be controlled by the condition variable. On the other hand, VAE is a probabilistic
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model with an encoder to map an image to a latent representation and a decoder

to reconstruct the image. A reparametrization trick is proposed which enables the

model to be trained by backpropogation [122]. One variant of VAE is Adversarial

Autoencoder [123], where an adversarial network is adopted to regularize the latent

representation to conform to a prior distribution. ExprGAN also adopts an autoen-

coder structure, but there are two main differences: First, an expression controller

module is specially designed, so a face with different types of expressions across a

wide range of intensities can be synthesized. Second, to improve the generated image

quality, a face identity preserving loss and two adversarial losses are incorporated.

5.2.2 Facial Expression Editing

Facial expression editing has been actively investigated in computer graph-

ics. Traditional approaches include 3D model-based [124], 2D expression mapping-

based [125] and flow-based [114]. Recently, deep learning-based methods have been

proposed. Susskind et al. [117] studied a deep belief network to generate facial

expression given high-level identity and facial action unit (AU) labels. In [52], a

higher-order Boltzman machine with multiplicative interactions was proposed to

model the distinct factors of variation. Cheung et al. [118] proposed a decorrelating

regularizer to disentangle the variations between identity and expression in an un-

supervised manner. However, the generated image is low resolution with size of 48

x 48, which is not visually satisfying. Recently, Yeh et al. [116] proposed to edit the

facial expression by image warping with appearance flow. Although the model can
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generate high-resolution images, paired samples as well as the labeled query image

are required.

The most similar work to ours is CFGAN [126], which uses a filter module

to control the generated face attributes. However, there are two main differences:

First, CFGAN adopts the CGAN architecture where an encoder needs to be trained

separately for image editing, while for the proposed ExprGAN, the encoder and

the decoder are constructed in a unified framework. Second, the attribute filter

of CFGAN is mainly designed for a single class, while our expression controller

module works for multiple categories. Most recently, Zhang et al. [127] proposed a

conditional AAE (CAAE) for face aging, which can also be applied for expression

editing. Compared with these studies, ExprGAN has two main differences: First,

in addition to transforming a given face image to a new facial expression, our model

can also control the expression intensity continuously without the intensity training

labels; Second, photo-realistic face images with new identities can be generated for

data augmentation, which is found to be useful to train an improved expression

classifier.

5.3 Proposed Method

In this section, we describe the architecture of ExprGAN. We first describe

the Conditional Generative Adversarial Network (CGAN) [121] and the Adversarial

Autoencoder (AAE) [123], which form the basis of ExprGAN. Then the design of

ExprGAN is detailed. The architectures of the three models are shown in Fig. 5.1.
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5.3.1 Conditional Generative Adversarial Network

CGAN is an extension of a GAN [11] for conditional image generation. It

is composed of two networks: a generator network G and a discriminator network

D that compete in a two-player minimax game. Network G is trained to produce

a synthetic image x̂ = G(z, y) to fool D to believe it is an actual photograph,

where z and y are the random noise and condition variable, respectively. D tries to

distinguish the real image x and the generated one x̂. Mathematically, the objective

function for G and D can be written as follows:

min
G

max
D

Ex,y∼Pdata(x,y)[logD(x, y)]

+ Ez∼Pz(z),y∼Py(y)[log(1−D(G(z, y), y))]

(5.1)

5.3.2 Adversarial Autoencoder

AAE [123] is a probabilistic autoencoder which consists of an encoder Genc, a

decoder Gdec and a discriminator D. Apart from the reconstruction loss, the hidden

code vector g(x) = Genc(x) is also regularized by an adversarial network to impose

a prior distribution Pz(z). Network D aims to discriminate g(x) from z ∼ Pz(z),

while Genc is trained to generate g(x) that could fool D. Thus, the AAE objective

function becomes:

min
Genc,Gdec

max
D

Lp(Gdec(Genc(x)), x)

+ Ez∼Pz(z)[logD(z)] + Ex∼Pdata(x)[log(1−D(Genc(x))]

(5.2)
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where Lp(, ) is the pth norm: Lp(x
′, x) = ||x′ − x||pp

5.3.3 Expression Generative Adversarial Network

Given a face image x with expression label y, the objective of our learning

problem is to edit the face to display a new type of expression at different intensities.

Our approach is to train a ExprGAN conditional on the original image x and the

expression label y with its architecture illustrated in Fig. 5.1 (c).

5.3.3.1 Network Architecture

ExprGAN first applies an encoder Genc to map the image x to a latent repre-

sentation g(x) that preserves identity. Then, an expression controller module Fctrl

is adopted to convert the one-hot expression label y to a more expressive expres-

sion code c. To further constrain the elements of c to capture the various aspects

of the represented expression, a regularizer Q is exploited to maximize the condi-

tional mutual information between c and the generated image. Finally, the decoder

Gdec generates a reconstructed image x̂ combining the information from g(x) and

c. To further improve the generated image quality, a discriminator Dimg on the de-

coder Gdec is used to refine the synthesized image x̂ to have photo-realistic textures.

Moreover, to better capture the face manifold, a discriminator Dz on the encoder

Genc is applied to ensure the learned identity representation is filled and exhibits no

“holes” [123].

88



5.3.3.2 Expression Controller Networks Fctrl and Q

In previous conditional image generation methods [127, 128], a binary one-hot

vector is usually adopted as the condition variable. This is enough for generating

images corresponding to different categories. However, for our problem, a stronger

control over the synthesized facial expression is needed: we want to change the ex-

pression intensity in addition to generating different types of expressions. To achieve

this goal, an expression controller module Fctrl is designed to ensure the expression

code c can describe the property of the expression intensity except the category in-

formation. Furthermore, a regularizer network Q is proposed to enforce the elements

of c to capture the multiple levels of expression intensity comprehensively.

Expression Controller Module Fctrl To enhance the description capability,

Fctrl transforms the binary input y to a continuous representation c by the following

operation:

ci = Fctrl(yi, zy) = |zy| · (2yi − 1) i = 1, 2, . . . , K (5.3)

where the inputs are the expression label y ∈ {0, 1}K and uniformly distributed

zy ∼ U(−1, 1)d, while the output is the expression code c = [cT1 , . . . , c
T
K ]T ∈ RKd, K

is the number of classes. If the ith class expression is present, i.e., yi = 1, ci ∈ Rd

is set to be a positive vector within 0 and 1, while cj, j 6= i has negative values

from -1 to 0. Thus, in testing, we can manipulate the elements of c to generate the

desired expression type. This flexibility greatly increases the controllability of c over

synthesizing diverse styles and intensities of facial expressions.
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Regularizer on Expression Code Q It is desirable if each dimension of c

could learn a different factor of the expression intensity variations. Then faces with

a specific intensity level can be generated by manipulating the corresponding expres-

sion code. To enforce this constraint, we impose a regularization on c by maximizing

the conditional mutual information I(c; x̂|y) between the generated image x̂ and the

expression code c. This ensures that the expression type and intensity encoded in

c is reflected in the image generated by the decoder. The direct computation of

I is hard since it requires the posterior P (c|x̂, y), which is generally intractable.

Thus, a lower bound is derived with variational inference which extends [129] to the

conditional setting:

I(c; x̂|y)

= H(c|y)−H(c|x̂, y)

= Ex̂∼Gdec(g(x),c)[Ec′∼P (c′|x̂,y)[logP (c′|x̂, y)]] +H(c|y)

= Ex̂∼Gdec(g(x),c)[DKL(P (·|x̂, y)||Q(·|x̂, y))+

Ec′∼P (c′|x̂,y)[logQ(c′|x̂, y)]] +H(c|y)

≥ Ex̂∼Gdec(g(x),c)[Ec′∼P (c′|x̂,y)[logQ(c′|x̂, y)]] +H(c|y)

= Ec∼P (c|y),x̂∼Gdec(g(x),c)[logQ(c|x̂, y)] +H(c|y)

(5.4)

For simplicity, the distribution of c is fixed, thus H(c|y) is treated as a constant.

Here the auxiliary distribution Q is parameterized as a neural network, thus the
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final loss function is defined as follows:

min
Q
LQ = −Ec∼P (c|y),x̂∼Gdec(g(x),c)[logQ(c|x̂, y)] (5.5)

5.3.3.3 Generator Network G

The generator network G = (Genc, Gdec) adopts the autoencoder structure

where the encoder Genc first transforms the input image x to a latent representation

that preserves as much identity information as possible. After obtaining the identity

code g(x) and the expression code c, the decoder Gdec then generates a synthetic

image x̂ = Gdec(Genc(x), c) which should be identical as x. For this purpose, a

pixel-wise image reconstruction loss is used:

min
Genc,Gdec

Lpixel = L1(Gdec(Genc(x), c), x) (5.6)

To further preserve the face identity between x and x̂, a pre-trained discrimi-

native deep face model is leveraged to enforce the similarity in the feature space:

min
Genc,Gdec

Lid =
∑
l

βlL1(φl(Gdec(Genc(x), c)), φl(x)) (5.7)

where φl are the lth layer feature maps of a face recognition network, and βl is the

corresponding weight. We use the activations at the conv1 2, conv2 2, conv3 2,

conv4 2 and conv5 2 layer of the VGG face model [42].
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5.3.3.4 Discriminator on Identity Representation Dz

It is a well known fact that face images lie on a manifold [130, 131]. To ensure

that face images generated by interpolating between arbitrary identity representa-

tions do not deviate from the face manifold [127], we impose a uniform distribution

on g(x), forcing it to populate the latent space evenly without “holes”. This is

achieved through an adversarial training process where the training objective is:

min
Genc

max
Dz

Lzadv =Ez∼Pz(z)[logDz(z)]

+ Ex∼Pdata(x)[log(1−Dz(Genc(x))]

(5.8)

5.3.3.5 Discriminator on Image Dimg

Similar to existing methods [128, 132], an adversarial loss between the gener-

ated image x̂ and the real image x is further adopted to improve the photorealism:

min
Genc,Gdec

max
Dimg

Limgadv = Ex,y∼Pdata(x,y)[logDimg(x, y)]+

Ex,y∼Pdata(x,y),zy∼Pzy (zy)

[log(1−Dimg(Gdec(Genc(x), Fctrl(zy, y)), y))]

(5.9)
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5.3.3.6 Overall Objective Function

The final training loss function is a weighted sum of all the losses defined

above:

min
Genc,Gdec,Q

max
Dimg ,Dz

LExprGAN = Lpixel + λ1Lid + λ2LQ

+ λ3L
img
adv + λ4L

z
adv + λ5Ltv

(5.10)

We also impose a total variation regularization Ltv [133] on the reconstructed image

to reduce spike artifacts.

5.3.3.7 Incremental Training

Empirically we find that jointly training all the subnetworks yields poor re-

sults as we have multiple loss functions. It is difficult for the model to learn all

the functions at one time considering the small size of the dataset. Therefore, we

propose an incremental training algorithm to train the proposed ExprGAN. Overall

our incremental training strategy can be seen as a form of curriculum learning, and

includes three stages: controller learning stage, image reconstruction stage and im-

age refining stage. First, we teach the network to generate the image conditionally

by training Gdec, Q and Dimg where the loss function only includes LQ and Limgadv .

g(x) is set to be random noise in this stage. After the training finishes, we then

teach the network to learn the disentangled representations by reconstructing the

input image with Genc and Gdec. To ensure that the network does not forget what is
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already learned, Q is also trained but with a decreased weight. So the loss function

has three parts: Lpixel, Lid and LQ. Finally, we train the whole network to refine

the image to be more photo-realistic by adding Dimg and Dz with the loss function

defined in Equation (5.10). We find in our experiments that stage-wise training is

crucial to learn the desired model on the small dataset.

5.4 Experiments

We first describe the experimental setup and then the three main applications:

expression editing with continuous control over intensity, facial expression transfer

and conditional face image generation for data augmentation .

5.4.1 Dataset

We evaluated the proposed ExprGAN on the widely used Oulu-CASIA [6]

dataset. Oulu-CASIA has 480 image sequences taken under Dark, Strong, Weak

illumination conditions. In this experiment, only videos with Strong condition cap-

tured by a VIS camera are used. There are 80 subjects and six expressions, i.e.,

Angry, Disgust, Fear, Happy, Sad and Surprise. The first frame is always neutral

while the last frame has the peak expression. Only the last three frames are used,

and the total number of images is 1440. Training and testing sets are divided based

on identity, with 1296 for training and 144 for testing. We aligned the faces using

the landmarks detected from [41], then cropped and resized the images to dimension

of 128 x 128. Lastly, we normalized the pixel values into range of [-1, 1]. To alleviate

94



overfitting, we augmented the training data with random flipping.

5.4.2 Implementation Details

ExprGAN mainly builds on multiple upsampling and downsampling blocks.

The upsampling block consists of the nearest-neighbor upsampling followed by a 3

x 3 stride 1 convolution. The downsampling block consists of a 5 x 5 stride 2 convo-

lution. Specifically, Genc has 5 downsampling blocks where the numbers of channels

are 64, 128, 256, 512, 1024 and one FC layer to get the identity representation g(x).

For Gdec, it has 7 upsampling blocks with 512, 256, 128, 64, 32, 16, 3 channels. Dz

consists of 4 FC layers with 64, 32, 16, 1 channels. We model Q(c|x̂, y) as a factored

Gaussian, and share many parts of Q with Dimg to reduce computation cost. The

shared parts have 4 downsampling blocks with 16, 32, 64, 128 channels and one FC

layer to output a 1024-dim representation. Then it is branched into two heads, one

for Dimg and one for Q. Q has K branches {Qi}Ki=1 where each Qi has two individual

FC layers with 64, d channels to predict the expression code ci. Leaky ReLU [134]

and batch normalization [3] are applied to Dimg and Dz, while ReLU [62] activation

is used in Genc and Gdec. The random noise z is uniformly distributed from -1 to 1.

We fixed the dimensions of g(x) and c to be 50 and 30, and found this configuration

sufficient for representing the identity and expression variations.

We train the networks using the Adam optimizer [135], with learning rate of

0.0002, β1 = 0.5, β2 = 0.999 and mini-batch size of 48. In the image refining stage,

we empirically set λ1 = 1, λ2 = 1, λ3 = 0.01, λ4 = 0.01, λ5 = 0.001. The model is
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implemented using Tensorflow [136].

Happy

Sad

Fear

Input Angry Disgust Fear SadHappy Surprise

GT

ExprGAN

CAAE

GT

ExprGAN

CAAE

GT

ExprGAN

CAAE

Figure 5.2: Visual comparison of facial expression editing results. For each input, we
compare the ground truth images (top), the synthetic images of ExprGAN (middle)
and CAAE (bottom). Zoom in for details.
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5.4.3 Facial Expression Editing

In this part, we demonstrate our model’s ability to edit the expression of

a given face image. To do this, we first input the image to Genc to obtain an

identity representation g(x). Then with the decoder Gdec, a face image of the desired

expression i can be generated by setting ci to be positive and cj, j 6= i to be negative.

A positive (negative) value indicates the represented expression is present (absent).

Here 1 and -1 are used. Some example results are shown in Fig. 5.2. The left column

contains the original input images, while the middle row in the right column contains

the synthesized faces corresponding to six different expressions. For comparison, the

ground truth images and the results from the recent proposed CAAE [127] are also

shown in the first and third row, respectively. We see that faces generated by

ExprGAN preserve the identities well. Even some subtle details like the transparent

eyeglasses are also kept. Moreover, the synthesized expressions look natural. In

comparison, CAAE failed to transform the input faces to new expressions with fine

details, and the generated faces are blurry.

We now demonstrate that our model can transform a face image to new types

of expressions with continuous intensity. This is achieved by exploiting the fact

that each dimension of the expression code captures a specific level of expression

intensity. In particular, to vary the intensity of the desired class i, we set the

individual element of the expression code ci to be 1, while the other dimensions of

ci and all other cj, j 6= i to be -1. The generated results are shown in Fig. 5.3. Take

the Happy expression in the forth column as an example. The face in the first row
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Disgust

Weak

Strong

Disgust

SurpriseSadHappyAngry Fear Neutral

Sad

Disgust SurpriseSadHappyAngry Fear Neutral

Figure 5.3: Face images are transformed to new expressions with different intensity
levels. The top row contains the input faces with the original expressions, and the
remaining rows show the synthesized results. Each column corresponds to a new
expression with five intensity levels from weak to strong. The Neutral expression
which is not in the training data is also generated.

which corresponds to the first element of ci being 1 displays a gentle smile with

mouth closed, while a big smile with white teeth is synthesized in the last row that

corresponds to the fifth element of ci being 1. Moreover, when we set all ci to be

-1, a Neutral expression is able to be generated even though this expression class is

not present in the training data. This validates that the expression code discovers

the diverse spectrum of expression intensity in an unsupervised way, i.e., without

the training data containing explicit labels for intensity levels.

5.4.4 Facial Expression Transfer

We now demonstrate our model’s ability to transfer the expression of another

face image xB to a given face image xA. To do this, we first input xA to Genc

to get the identity representation g(xA). Then we train an expression classifier to
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predict the expression label yB of xB. With yB and xB, the expression code cB can

be obtained from Q. Finally, we can get an image with identity A and expression

B from Gdec(g(xA), cB). The generated images are shown in Fig. 5.4. We observe

that faces having the source identities and expressions similar to the targets can be

synthesized even for some very challenging cases. For example, when the expression

Happy is transferred to an Angry face, the teeth region which does not exist in the

source image is also able to be generated.

IdA ExprB IdA+ExprB IdA ExprB IdA+ExprB

Figure 5.4: Facial expression transfer. Expressions from the middle column are
transferred to faces in the left column. The results are shown in the right column.

5.4.5 Face Image Generation for Data Augmentation

In this part, we first show our model’s ability to generate high-quality face

images controlled by the expression label, then quantitatively demonstrate the use-

fulness of the synthesized images. To generate faces with new identities, we feed in

random noise and expression code to Gdec. The results are shown in Fig. 5.5. Each
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Angry

Fear

Happy

Sad

Surprise

Disgust

Figure 5.5: Random generated subjects displaying six categories of expressions.

column shows the same subject displaying different expressions. We can see that

the synthesized face images look realistic. Moreover, because of the design of the

expression controller module, the generated expressions for the same class are also

diverse. For example, for the class Happy, there are big smile showing teeth and a

gentle smile with mouth closed.

We further demonstrate that images synthesized by our model can be used

for data augmentation to train a robust expression classifier. Specifically, for each

expression category, we generate 0.5K, 1K, 5K, and 10K images, respectively. The
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Table 5.1: Comparison of expression recognition accuracy with different numbers of
synthesized images.

# Syn. Images 0 3K 6K 30K 60K
Accuracy (%) 77.78 78.47 81.94 84.72 84.72

classifier has the same network architecture as Genc except one additional FC layer

with six neurons is added. The results are shown in Table 5.1. We can see by

only adding 3K synthetic images, the improvement is marginal, with an accuracy of

78.47% vs. 77.78%. However, when the number is increased to 30K, the recognition

accuracy is significantly improved, reaching 84.72% with a relative error reduction

by 31.23%. The performance starts to saturate when more images (60K) are

utilized. This validates the high perceptual quality of the synthetic face images.

5.4.6 Feature Visualization

In this part, we demonstrate that the identity g(x) and expression c represen-

tations learned by our model are disentangled. To show this, we first use t-SNE [137]

to visualize the 50-dim identity feature g(x) on a two dimensional space. The re-

sults are shown in Fig. 5.6. We can see that most of the subjects are well separated,

which confirms that the latent identity features g(x) learn to preserve the identity

information.

To demonstrate that the expression code c captures the high-level expression

semantics, we perform image retrieval experiment based on c in terms of Euclidean

distance. For comparison, the results with expression label y and image pixel space

x are also provided in Fig. 5.7. As expected, the pixel space x sometimes fails to
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Figure 5.6: Identity feature space. Each color represents a different identity and the
images for one identity are labeled.

retrieve images from the same expression. Similarly, the images retrieved by y do

not always have the same style of expressions as the queries. For example, the

query face in the second row shows a big smile with teeth, but the retrieved image

by y only has a mild smile with mouth closed. However, with the expression code

c, we observe that face images with similar expressions are always retrieved. This

validates that the expression code learns a rich and diverse feature representation.

5.5 Conclusions

In this chapter, we present ExprGAN for facial expression editing. To the

best of our knowledge, it is the first GAN-based model that can transform the

face image to have a new expression where the expression intensity is allowed to
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Query 𝑐 𝑥𝑦

Figure 5.7: Expression-based image retrieval. First column shows query images.
Other columns show top one retrieval based on c, y and x.

be controlled continuously. The proposed model learns the disentangled identity

and expression representations explicitly, allowing for a wide variety of applications,

including expression editing, expression transfer, and data augmentation for training

improved face expression recognition models. We further develop an incremental

learning scheme to train the model on small datasets. Our future work will explore

how to apply ExprGAN to a larger and more unconstrained facial expression dataset.
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Chapter 6: Conclusions and Directions for Future Work

6.1 Summary

In this dissertation, we focused on facial expression recognition and editing

with limited data, and made novel contributions by proposing a two-stage training

algorithm for expression recognition, and introducing the first GAN-based model

that can transform the face image to have a new expression where the expression in-

tensity is allowed to be controlled continuously. In addition, to tackle the challenges

due to occlusion and poses, we also proposed an occlusion adaptive deep network

to recognize expressions when faces are partially occluded and proposed a method

that learns attentional face regions to improve attribute classification performance

under unaligned condition.

In the first part of this dissertation, we presented FaceNet2ExpNet to train

a light-weight and high accuracy expression classifier on small datasets. In the

first stage, we proposed a probabilistic distribution function to model the high level

neuron response based on already fine-tuned face net, leading to feature level reg-

ularization that exploits the rich face information in the face net. In the second

stage, we performed label supervision to boost the final discriminative capability.

As a result, FaceNet2ExpNet improves visual feature representation and outper-
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forms various state-of-the-art methods on five public expression datasets and one

medical dataset.

In the second part of this dissertation, we introduced an occlusion adaptive

deep network to tackle the occluded facial expression recognition problem, which

is composed of two branches. The landmark-guided attention branch guides the

network to learn clean features from the non-occluded facial areas. While the facial

region branch increases the robustness by dividing the last convolutional layer into

several part classifiers. We conducted extensive experiments on both challenging

in-the-wild expression datasets and real-world occluded expression datasets. The

superior results show that our method outperforms existing methods and achieves

robustness against occlusion and various poses.

In the third part of this dissertation, we proposed a parts and whole framework

for unaligned facial attributes classification. A weakly-supervised face region local-

ization network is first designed. Then the information from those detected regions

are selectively combined by the hybrid classification network. Visualization shows

that our method not only discovers semantically meaningful attributes regions, but

also captures rich correlations among attributes. Moreover, our results outperform

state-of-the-art by a significant margin on the unaligned CelebA dataset.

In the last part of this dissertation, we presented ExprGAN for facial expres-

sion editing. The proposed model learns the disentangled identity and expression

representations explicitly, allowing for a wide variety of applications, including ex-

pression editing, expression transfer, and data augmentation for training improved

face expression recognition models. We further developed an incremental learning
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scheme to train the model on small datasets. Our future work will explore how to

apply ExprGAN to a larger and more unconstrained facial expression dataset.

6.2 Directions for Future Work

In Chapter 2, we proposed a transfer learning algorithm to utilize a face recog-

nition network for expression recognition. We only used feature maps of the last

convolution layer to provide supervision in the first stage. Adding other layers may

further improve the performance. Another possible direction of future work is to

explore activation-based spatial attention maps [138] instead of the simple feature

maps used in this dissertation.

In Chapter 3, we presented an occlusion-adaptive deep network for occluded

facial expression recognition. We used the meta information of facial landmarks to

guide the model to learn representations from the non-occluded facial regions. One

possible direction of future work is to train the network to predict a face segmenta-

tion mask [139] directly instead of manually setting the threshold of the confidence

score as done in this dissertation.

In Chapter 4, we introduced a cascade network for unaligned facial attributes

classification. Though we focus on facial attributes in this dissertation, the proposed

framework is very general and can be applied to other tasks like facial action unit

detection. In the parts and whole classification network, we proposed an attribute

relation layer to model the relationship between different attributes. Another pos-

sible direction of future work is to explore a more complex relation model like the
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Graph Convolutional Neural Network [140].

In Chapter 5, we proposed a generative model for continuous expression edit-

ing. In this dissertation, we mainly focused on frontal faces. The model can be

extended to generate faces with different poses by incorporating a pose variable.

Moreover, another interesting future direction is to enable the model to generate

faces with a relative control on the expression intensities [141].
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[100] Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Is object localiza-
tion for free? Weakly-supervised learning with convolutional neural networks.
In IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[101] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. Learning deep features for discriminative localization. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2016.

[102] Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid. Weakly su-
pervised object localization with multi-fold multiple instance learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(1), 2016.
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