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The first part of this thesis focuses on verifying the quantum nonequilibrium work

relation in the presence of decoherence. The nonequilibrium work relation is a gener-

alization of the second law of thermodynamics that links nonequilibrium work mea-

surements to equilibrium free energies via an equality. Despite being well established

for classical systems, a quantum work relation is conceptually difficult to construct for

systems that interact with their environment. We argue that for a quantum system

which undergoes decoherence but not dissipation, these conceptual difficulties do not

arise and the work relation can be proven similarly to the case of an isolated system.

This result is accompanied by an experimental demonstration using trapped ions.

The second part of this thesis examines the relationship between quantum work

and coherence by constructing analogous quantities in classical physics. It has recently

been shown that quantum coherence can function as a resource for work extraction.

Furthermore, it has been suggested that this property could be a truly quantum

aspect of thermodynamics with no classical analog. We examine this assertion within

the framework of classical Hamiltonian mechanics and canonical quantization. For

classical states we define a so called non-uniformity measure and show that it is a



resource for work extraction similar to quantum coherence. Additionally, we show

that work extracted from non-uniformity and coherence agree in the classical limit.

This calls into question the idea that coherence qualitatively separates classical and

quantum thermodynamics.

The final part of this thesis explores the connection between decoherence and

adiabatic (quasistatic) driving. This topic is inspired by an experiment where it was

seen that strong dephasing suppressed energy level transitions. Using a perturbative

method we investigate this mechanism in the regime of small to moderate decoherence

rate and ask if decoherence can help suppress energy transitions when compared

with an adiabatic process without decoherence. We find that strategies that include

decoherence are inferior to those where decoherence is absent.
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Chapter 1: Background and Context

1.1 Going Beyond Macroscopic Thermodynamics

While this thesis focuses on quantum nonequilibrium aspects of thermodynam-

ics, it is useful to review some of the limitations of classical macroscopic thermo-

dynamics so that we can truly appreciate the successes of modern thermodynamic

research. Thermodynamics, in its original phenomenological formulation [18], is an

oddball among physical theories. Unlike Newton’s Laws, Maxwell’s equations, rela-

tivity, quantum mechanics, and other pillars of physics born out of curiosity for the

natural world, thermodynamics was developed out of necessity by engineers working

to optimize the function of steam engines. It is perhaps this difference in perspective

that helped form macroscopic thermodynamics’ unique structure when compared to

other physical theories. Despite its name, macroscopic thermodynamics is not a dy-

namical theory in the usual sense of the word. The fundamental starting point for

most areas of physics is an equation of motion which models the time dependence

of a system’s degrees of freedom. In macroscopic thermodynamics, there generally is

no Lagrangian or Hamiltonian or even effective differential equation that governs the

time dependence of variables such as volume, internal energy, heat, and work in a

closed, self-consistent way. This stems from the fact that this form of thermodynam-

ics concerns itself only with macroscopic variables that simply do not contain enough

information to describe the fully non-equilibrium behavior typically encountered in
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dynamics.

Instead macroscopic thermodynamics is a phenomenological theory that focuses

on the relationships – often in the form of inequalities – between macroscopic vari-

ables and the energy transferred during transitions between equilibrium states. To

better understand this statement, we now consider some of the basic tenants of ther-

modynamics in the case of an isothermal process. Consider a macroscopic system of

interest immersed in an environment of constant inverse temperature β and driven

by some externally controlled field (or piston, weight, etc.). The first law of thermo-

dynamics is a statement of energy conservation over the course of a thermodynamic

process and is given by

∆Ueq = Q+W (1.1)

where ∆Ueq is the total internal energy change of the system between our equilibrium

states, Q is the total heat exchanged with the thermal reservoir, and W is the work

invested in the system by the external field. On a microscopic level, the heat Q is

associated with the disordered energy transfer that occurs due to contact with the

more or less random degrees of freedom of the environment. In contrast work W

is associated with orderly energy transfer that occurs when an external field is used

to control a system. In thermodynamics, it is often a goal to minimize the work

dissipated (or alternatively maximize work extracted) in a process as the control

degrees of freedom can act as a battery that stores this energy for future mechanical

tasks. The second law of thermodynamics for isothermal processes bounds the work

invested in a system according to

W ≥ ∆Feq = ∆(Ueq − β−1Seq) (1.2)
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where Feq is the equilibrium Helmholtz free energy and Seq is the equilibrium en-

tropy. In the best case scenario, this means the work invested when driving a system

from one equilibrium state to another equals the free energy difference between those

equilibrium states. While statistical mechanics and information theory shed light on

the nature of entropy as a measure of disorder, in macroscopic thermodynamics it is

a phenomenological function determined in an isothermal process through calorime-

try and the fact ∆Seq = βQ for reversible quasi-static processes. In more general

processes, the Clausius theorem can be used to determine entropy.

It must be emphasized that a number of physical assumptions are made within

the framework of macroscopic thermodynamics. The first is that macroscopic ther-

modynamics is only concerned with transitions between equilibrium states – a fact

that stems largely from how entropy is formulated in macroscopic thermodynamics.

Here entropy is the primary function of interest as it characterizes all thermodynamic

aspects of a particular system either directly or through Legendre transformations

to other thermodynamic potentials [18]. Differences in entropy are found empirically

from reversible processes which are necessarily quasi-static and evolve through a se-

quence of equilibrium states. It follows that in this framework entropy can only be

defined in equilibrium.

Additionally there are limitations to studying macroscopic systems. In macro-

scopic thermodynamics variables such as work, heat, internal energy, and volume

take definite values and do not fluctuate. With the aid of statistical physics, we un-

derstand that this fact is not fundamental. Rather the measurement of macroscopic

variables is akin to averaging over huge amounts of microscopic degrees of freedom

where the law of large numbers ensures that fluctuations are virtually non-existent.

The macroscopic assumption also means that one can often ignore all surface effects,

treat environmental interactions as weak, and focus on modeling a material’s bulk as
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an ensemble of weakly interacting parts. When these assumptions hold, the entropy is

a homogeneous first-order function of extensive variables such as internal energy, vol-

ume, and particle number, and one obtains a plethora of additional thermodynamic

information such as the cherished Maxwell relations which surprisingly link quantities

such as compressibility, thermal expansion, and heat capacities of materials.

Modern approaches to thermodynamics aim to overcome these limitations and

provide a formulation of thermodynamics that is valid in nonequilibrium situations

and applies to arbitrarily small systems where thermal fluctuations are important.

The topic of this thesis – quantum thermodynamics – is one of the most recent

iterations in a long line of research aiming to achieve these goals. It follows on

the heels of kinetic theory, open quantum systems, information theory, many-body

physics, and stochastic thermodynamics, to name a few, and, unsurprisingly, is a

highly multidisciplinary field. It is a natural progression of nanoscale thermodynamics

that describes systems so small that the inherent randomness of quantum mechanics

must be accounted for in addition to the randomness introduced by thermal effects.

To get a flavor for how quantum thermodynamics achieves its goals, the remainder

of this chapter focuses on two generalizations of the macroscopic second law (1.2)

which form the building blocks for this thesis. In section 1.2, we will investigate how

work enters into the second law but will not attempt to move beyond equilibrium free

energies. There we will find the surprising result that incorporating both thermal

and quantum work fluctuations allows the second law to be rewritten as an equality.

Along the way, we will be introduced to the important and not fully resolved issue

of defining thermodynamic work in quantum systems. In section 1.3 we will take the

alternative approach to generalizing the macroscopic second law (1.2) in which we

still focus on average work but generalize the concept of free energy to include non-

equilibrium states. We will see in this case how concepts from quantum information

4



theory such as von Neuman entropy and quantum relative entropy play a natural role

in the thermodynamics of quantum systems.

1.2 Quantum Nonequilibrium Work Relation from Multiple Energy

Measurements

In the last few decades, researchers have discovered that properly accounting for

microscopic fluctuations of thermodynamic quantities allows one to rewrite many of

the standard inequalities of thermodynamics as equalities. These results, known as

fluctuation theorems, have become a cornerstone of classical non-equilibrium ther-

modynamics [115, 116] and their extension to the quantum regime has more recently

become a priority in the field of quantum thermodynamics [24, 136]. At the clas-

sical level, fluctuation theorems have provided a method for calculating the values

of equilibrium properties from non-equilibrium information in both simulations and

experiments as well as given foundational insights into the second law of thermo-

dynamics. It is the hope that properly formulated quantum fluctuation theorems

will find similar applications in the quantum setting. In this section we will focus

specifically on the non-equilibrium work relation [62, 63], which is perhaps the best

known and most easily interpreted fluctuation theorem. We will first introduce the

non-equilibirum work relation in the setting of classical Hamiltonian dynamics and

then develop the two time energy measurement formulation of the quantum work

relation which is important background for Chapter 2 of this thesis.

As its name implies, thermodynamic work is the fluctuating quantity at the center

of the non-equilibrium work relation. To better understand the origin these fluctu-

ations, let us consider a classical ideal gas that is initially in thermal equilibrium

with a reservoir of inverse temperature β. At time t = 0 the gas is isolated from
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its environment and then is compressed by a piston which follows a predefined time

dependent protocol of duration τ . At time t = τ the gas is once again put in contact

with the thermal reservoir and allowed to equilibrate. Note that the gas undergoes a

well defined change in free energy ∆Feq since it is in equilibrium at both the beginning

and end of the process. When the gas consists of a macroscopic number of particles

(i.e. N ∼ 1023), the frequency of collisions between the piston and gas particles is

enormous. The law of large numbers ensures that for virtually all initial micro-states

drawn from equilibrium, the differences in pressure at the piston’s surface and hence

the differences in workW are essentially immeasurable from one experimental run to

another.

In contrast, now consider the opposite extreme where there is only a single gas

particle in the container. When sampled from equilibrium, the velocity of the particle

follows the Maxwell-Boltzmann velocity distribution and varies significantly from one

experimental realization to another. When this sampling results in a large velocity,

it is expected that the particle will collide multiple times with the piston. With each

collision, the particle gains or loses energy in the form of work while the motion of the

piston is virtually unaffected. In general, the total work in such an experimental run

is non-zero. Alternatively, there exist situations with measurable probability where

the particle is sampled from equilibrium, has a very small velocity, and is located in

a portion of the container that the piston does not intersect during its motion. Here

it is plausible that the particle does not collide with the piston even once during the

process and hence the net work vanishes. In each case the work performed in the

final equilibration step is zero. From these examples it should now be clear that for

systems with a small number of degrees of freedom, work is not a constant but rather

fluctuates based a system’s initial micro-state.

With this example in mind, we now set up a more general Hamiltonian framework
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in which classical work fluctuations can be more precisely analyzed. Consider a system

that over a time interval t ∈ [0, τ ] is weakly coupled to a thermal reservoir and driven

by an external time dependent control field. In our previous example, the gas is our

system of interest and the piston represents the time dependent control. In any given

realization of the driving process, the micro-state of the system and reservoir are

represented by phase space points denoted respectively by z = (x1, x2, . . . , p1, p2, . . . )

and ζ = (χ1, χ2, . . . , ℘1, ℘2, . . . ). The Hamiltonian of the joint system is given by

Hsys+res(z, ζ, t) = Hsys(z, t) +Hres(ζ) +Hint(z, ζ) (1.3)

where Hsys is the system Hamiltonian, Hres is the Hamiltonian of the thermal envi-

ronment, and Hint is a weak interaction between the system and reservoir. Note that

only the system is driven by the external field and therefore all time dependence of

the composite system is carried by Hsys. Like the gas example, we will assume that

both the system and reservoir are initially in thermal equilibrium at inverse temper-

ature β. In other words, the initial states of the composite system are sampled from

the canonical phase space distribution

π(z, ζ) =
e−β[Hsys(z,0)+Hres(ζ)]

Zc
(1.4)

where Zc is the classical partition function of the joint system and the weak interaction

has been neglected. Unlike the gas example given before, we will not assume that the

system and reservoir are decoupled during the driving process.

At the microscopic level work W is defined as the net energy that flows into the

system via the control field over the course of the process. Since this is the only

mechanism by which the energy of the joint system can change, we conclude that for
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any single realization of the driving process

W =Hsys+res(z(τ), ζ(τ), τ)−Hsys+res(z(0), ζ(0), 0) (1.5)

=

∫ τ

0

∂Hsys

∂t
(z(s), s)ds. (1.6)

This suggests two separate schemes for measuring work in classical Hamiltonian sys-

tems. Line (1.5) suggests measuring the energy of the combined system and reservoir

at both time t = 0 and t = τ and calculating the work by taking the difference of these

energy values. While this procedure is conceptually sound, in practice it not feasible

to make direct measurements of the reservoir. Alternatively, the integral formulation

of work (1.6) is based on continuously measuring the power that is injected into the

system by the control field. When a system’s trajectory can accurately be tracked,

this is generally the preferred method of calculating work as no measurements of the

environment are required. Note that while classical Hamiltonian mechanics focuses on

the integrated power formulation of work (1.6), the total energy change formulation

(1.5) will be of importance in the quantum mechanical systems.

One might expect that fluctuations in the work (1.6) resulting from initial equi-

librium sampling would be more or less random around the mean work value and

contain little thermodynamic information. To the contrary, these fluctuations satisfy

the rather surprising equality

〈e−βW〉 = e−β∆Fsyseq (1.7)

known as the non-equilibrium work relation. Here the average on left hand side of

equation (1.7) is understood to be over all realizations of the process with initial

conditions sampled from the equilibrium distribution (1.4). This is equivalent to
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building a distribution of work from many process realizations and performing the

average with respect to the work distribution directly. Note that the initial and final

equilibrium free energies on the right hand side of equation (1.7) correspond to the

system Hamiltonians Hsys(z, 0) and Hsys(z, τ). The reservoir plays no role in the free

energy difference as its Hamiltonian does not change over the course of the process.

While the work relation as set up in this section can be proven straightforwardly

using the properties of classical Hamiltonian mechanics [65], we now choose to fo-

cus on the applications and interpretation of equation (1.7). A derivation of the

quantum non-equilibrium work relation will be given later in this section. One of

the most important insights from the non-equilibirum work relation is the fact that

work measurements from a highly non-equilibrium process can be used to obtain

valuable equilibrium free energies. From a computational point of view, the work

relation reveals a new way to calculate equilibrium free energy differences from sim-

ulations [34]. Where traditional methods such a thermodynamic integration [69] and

thermodynamic perturbation theory [143] effectively depend on either very slow or

fast driving protocols, the work relation makes no assumption on process speed and

hence adds a parameter over which algorithms can be optimized. At the experimental

level, the work relation allows free energy differences to be inferred by building work

distributions from many experimental trials [15, 29, 42, 54, 66, 80, 112, 117]. This

non-equilibrium approach is especially applicable in experiments in which technical

limitations prohibit quasi-static methods of measuring free energy. On a founda-

tional level, the non-equilibrium work relation can be viewed as a generalization of

the the second law of thermodynamics for isothermal processes (1.2). This connection

is most easily seen through the application of Jensen’s inequality 〈ex〉 ≥ e〈x〉 to the
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work relation (1.7) from which it immediately follows

〈W〉 ≥ ∆Feq. (1.8)

Moreover, the fluctuation theorem can be used to further show that work values

that violate the second law in the sense W < ∆Feq are exponentially rare, making

violations of more than a few kbT all but non-existent [64].

With this we conclude our review of the classical non-equilibrium work relation

and move to the quantum case. Following the classical setup, consider a composite

system consisting of a system of interest weakly coupled to a thermal reservoir that

undergoes a driving process of duration τ . The Hamiltonian of the joint system is

given by

Ĥ(t) = Ĥsys(t)⊗ Îres + Îsys ⊗ Ĥres + Ĥ int. (1.9)

where

Ĥsys =
∑
n

εsys(t)|nsys(t)〉〈nsys(t)| (1.10)

Ĥres =
∑
n

εres|nres〉〈nres|. (1.11)

As before we will assume that the driving field acts only on the system of interest

and that the joint system begins in the thermal equilibrium state

π̂ =
e−β[Ĥsys(0)⊗Îres+Îsys⊗Ĥres]

Zq(0)
(1.12)

where Zq(0) is the quantum partition function at t = 0.

In order to develop a quantum work relation, we must first define quantum

analogs of the various physical quantities in equation (1.7). The equilibrium free
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energy difference of the system comes straightforwardly from the the standard for-

mula Feq = −β−1 lnZq. In contrast, finding a satisfactory definition of the quantum

work distribution is a significantly more challenging task. For simplicity, we now dis-

cuss this issue in the context of an isolated system. Based on the classical integrated

power formulation of work (1.6), one might propose that the operator

Ŵ =

∫ τ

0

dH̃sys

dt
(s)ds = H̃sys(τ)− Ĥsys(0) (1.13)

could act as a sort of work observable for a quantum system. Here we use H̃sys to

denote the system’s Hamiltonian in the Heisenberg picture. This definition seems

reasonable in the context of isolated systems since at the level of expectation values

the average work is equal to the average change in system energy. This is exactly

what the first law of thermodynamics predicts in the absence of heat. Unfortunately,

it can be shown [6, 140] that a work distribution based on measurements of the

observable (1.13) does not satisfy the work relation (1.7). From a thermodynamic

perspective, one might have guessed an observable formulation of work is incorrect.

In thermodynamics work is represented by an inexact differential, meaning it is a

process dependent quantity that cannot be represented by a state function. These

observations lead to the general consensus in the quantum thermodynamics commu-

nity that even for the case of an isolated system quantum, work cannot be formulated

as an observable [128].

An alternative perspective on quantum work can be motivated from the total en-

ergy difference formulation of classical work presented on line (1.5). Here work is

calculated by taking the difference of the joint system and environment energy at

times t = 0 and t = τ . In the quantum case this suggests a protocol, originally devel-

oped in [74, 95, 130], in which work is defined by two projective energy measurements.
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We will now explore this idea. Assume that for t < 0 a quantum system and its sur-

rounding environment are in the thermal equilibrium state (1.12). At time t = 0, a

projective measurement is made of the joint system energy Ĥsys(0)⊗ Îres+ Îsys⊗Ĥres

resulting in energy εsysi (0) + εres with probability p(ij). Note that the weak interac-

tion has been ignored. The system, now in the post measurement state |isys(0), jres〉,

then evolves in the interval t ∈ [0, τ ] according to the unitary Û generated by the

full Hamiltonian (1.9). Finally at t = τ another projective energy measurement is

made which results in energy εsysr (τ) + εress with probability p(rs|ij). The work asso-

ciated with a single realization of the process is then given simply by the difference

W = [εsysr (τ) + εress ] − [εsysi (0) + εresj ]. The work distribution obtained from many

realizations of this procedure is given by

ρ(W) =
∑
ijrs

p(ij)p(rs|ij)δ[W − (εsysr (τ) + εress − ε
sys
i (0)− εresj )] (1.14)

=
∑
ijrs

e−β(εsysi (0)−εresj )

Zq
|〈rsys(τ), sres|Û |isys(0), jres〉|2

× δ[W − (εsysr (τ) + εress − ε
sys
i (0)− εresj )].

Note that the number of values of work outcomes in this scheme exceeds the dimension

of the system and thus agrees with the idea that work cannot be formulated as a

system observable.

Armed with the work distribution (1.14), we now conclude this section with a

derivation of the quantum nonequilibrium work relation for a system weakly coupled
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to its environment. Observe

〈e−βW〉 =

∫
ρ(W)e−βWdW (1.15)

=
∑
ijrs

e−β(εsysr (τ)+εress −ε
sys
i (0)−εresj ) e

−β(εsysi (0)−εresj )

Zq(0)
|〈rsys(τ), sres|Û |isys(0), jres〉|2

=
∑
ijrs

e−β(εsysr (τ)−εress )

Zq(0)
〈rsys(τ), sres|Û |isys(0), jres〉〈isys(0), jres|Û †|rsys(τ), sres〉

=
Zq(τ)

Zq(0)

= e−β∆Feq .

1.3 Nonequilibrium Generalizations of The Second Law

In the last section, we explored how the nonequilibrium work relation generalizes

the second law of thermodynamics by taking into account work fluctuations. Impor-

tantly we saw that like the macroscopic formulation of the second law, the work rela-

tion connects work to changes in equilibrium free energy. In this section we examine

another generalization of the second law, which we will refer to as the nonequilibrium

second law, that instead focuses on transitions between nonequilibrium states. This

well known result [49, 55, 126] will be used extensively in Chapter 3 of this thesis.

Conceptually the nonequilibrium second law is somewhat less difficult to understand

than the nonequilibirum work relation. Consequently, we will briefly describe the

result and then focus on proving its validity using two different frameworks.

Consider a quantum system in contact with a thermal reservoir that undergoes a

driving process of duration τ . The system’s total Hamiltonian, including the effects

of the driving, is given by Ĥsys(t) while the inverse reservoir temperature is given

by β. The main idea of the nonequilibrium second law is to replace the equilibrium
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free energy Feq = β−1 lnZq with a suitable definition that can also be applied to

nonequilibrium states. Note that in macroscopic thermodynamics, the Helmholtz free

energy can be written as Feq = Ueq−β−1Seq where Ueq and Seq are respectively internal

energy and entropy. Using this fact and our intuition from statistical mechanics, we

define a nonequilibrium free energy for any system density operator ρ̂ according to

F = U − S/β (1.16)

U = Tr[Ĥsysρ̂] (1.17)

S = −Tr[ρ̂ ln ρ̂] (1.18)

where, importantly, thermodynamic entropy has been associated with von Neumann

entropy [124]. Additionally we can link thermodynamic work and heat to the dynam-

ical quantities

〈W〉 =

∫ τ

0

Tr

[
dĤsys

dt
ρ̂

]
ds (1.19)

〈Q〉 =

∫ τ

0

Tr

[
Ĥsysdρ̂

ds

]
ds. (1.20)

which can easily be shown to satisfy the first law ∆U = 〈W〉+ 〈Q〉. These definitions

follow from the idea that work is energy transferred to the system via the external

driving while heat is energy that flows into the system from the reservoir. As a

check, note that in the absence of external driving the Hamiltonain is constant and

the average work (1.19) vanishes. Alternatively, for an isolated system that evolves

solely according to Ĥsys(t) it can be shown that the average heat (1.20) is zero.

More rigorously, it is possible to motivate definitions (1.19) and (1.20) by carefully

accounting for energy transfer in a Hamiltonian model that explicitly includes the

system and thermal reservoir.
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Now consider a process in which an external field invests work 〈W〉 while our

system is driven from an initial state ρ̂(0) to a final state ρ̂(τ). The nonequilibrium

second law states that

〈W〉 ≥ ∆F (1.21)

where ∆F denotes the nonequilibrium free energy difference between states ρ̂(τ)

and ρ̂(0). This result is valid for a wide variety of classical and quantum dynamics

including isolated systems, master equations that effectively model the environment,

and Hamiltonian models that explicitly treat both the system and reservoir [48, 55,

126].

In the remainder of this section we sketch proofs of this result in two differ-

ent contexts. First using theorems from information theory, we will show that the

nonequilibirum second law holds for the case in which the reservoir is modeled by a

Lindblad master equation. The second proof relies on the notion of passive states and

models the environment through repeated interactions with idential thermal auxilary

systems. Note that the argument of functions will often be denoted by a subscript

in sections 1.3.1 and 1.3.2. The subscript may be omitted for expressions where the

argument is clear from context.

1.3.1 Nonequilibrium Second Law for a Quantum Master Equation

Consider a driven quantum system with Hamiltonian Ĥt in contact with a thermal

reservoir at inverse temperature β. The system’s evolution can be modeled by a

Lindblad master equation

dρ̂

dt
= − i

~
[Ĥt, ρ̂] +Dtρ̂ ≡ Ltρ̂ (1.22)

15



where the influence of the thermal bath is captured by a dissipator Dt. Lindblad

master equations are linear in form, preserve the properties of the density operator,

and are the most common way to model a quantum system coupled to an environment

with many degrees of freedom [102]. For this derivation we must use the fact that for

a thermal environment, the dissipator preserves the instantaneous equilibrium state.

In other words we will insist that Dtπ̂t = 0 where

π̂t =
e−βĤt

Tr[e−βĤt ]
. (1.23)

Note that no stronger assumptions on the master equation such as detailed balance (i.

e. no currents in equilibrium) will be necessary to prove the nonequilibrium second

law. Because (1.22) is of Lindblad form, it follows that Lt generates a completely

positive trace preserving (super-)operator

Λt = T exp[

∫ t

0

Lsds]. (1.24)

which governs the evolution of the system according to ρ̂t = Λtρ̂0. In the case where

the dissipator vanishes, we recover the the well known expression for Hamiltonian

dynamics Λtρ̂0 = Ûtρ̂0Û
†
t where Ût is the unitary generated by the Hamiltonain Ĥt.

With our basic setup outlined, we now present a useful mathematical property

of completely positive trace preserving operators and quantum relative entropy that

allows for the derivation of the nonequilibrium second law. Consider density operators

ρ̂ and σ̂. The quantum relative entropy [98] of state ρ̂ with respect to state σ̂ is defined

according to

D(ρ̂, σ̂) = Tr[ρ̂(ln ρ̂− ln σ̂)]. (1.25)

Heuristically it is useful to think of the relative entropy as an abstract distance
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between density operators since it has the properties D(ρ̂, σ̂) > 0 for ρ̂ 6= σ̂ and

D(ρ̂, ρ̂) = 0. That being said, in calculations it is important to recognize relative

entropy is not a true metric. It is not symmetric in the operators ρ̂ and σ̂ and ad-

ditionally fails to satisfy the triangle inequality. For the purposes of deriving the

nonequilibrium second law, the most important property of relative entropy is its

monotonicity under the action of a completely positive trace preserving operator [79].

More precisely, for a completely positive trace preserving operator Λ and any two

states ρ̂ and σ̂, we have the inequality

D(Λρ̂,Λσ̂) ≤ D(ρ̂, σ̂). (1.26)

Recalling that the dynamics of our setup are governed by the completely positive

trace preserving operator (1.24), this means that the relative entropy between any two

states is a monotonically decreasing function of time. For the interested reader, result

(1.26) follows from the properties of completely positive maps and the application of

Uhlmann’s theorem [132].
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With this result the nonequilibrium second law can be proven as follows.

∆F −W = ∆U −∆S/β −W (1.27)

= Q−∆S/β

=

∫ t

0

Tr

[
Ĥs

dρ̂s
ds

+
1

β

dρ̂s
ds

(ln ρ̂s + 1)

]
ds

=
1

β

∫ t

0

Tr

[
dρ̂s
ds

(ln ρ̂s + βĤs)

]
ds

=
1

β

∫ t

0

Tr

[
dρ̂s
ds

(ln ρ̂s + π̂s)

]
ds

=
1

β

∫ t

0

d

ds
D(ρ̂s, π̂u)

∣∣∣∣
u=s

ds

=
1

β

∫ t

0

lim
δ→0

1

δ
[D(ρ̂s+δ, π̂s)−D(ρ̂s, π̂s)] ds

=
1

β

∫ t

0

lim
δ→0

1

δ

[
D(eLsδρ̂s, π̂s) +O(δ2)−D(ρ̂s, π̂s)

]
ds

=
1

β

∫ t

0

lim
δ→0

1

δ
[D(eLsδρ̂s, e

Lsδπ̂s)−D(ρ̂s, π̂s)]︸ ︷︷ ︸
≤0

ds

=⇒ W ≥ ∆F

Here monotanicity of the relative entropy has been applied in the last line of the

derivation. There we recognized that eLsδ is a completely positive operator since Lt

is of Lindblad form at all times.

1.3.2 Nonequilibrium Second Law from Copied Auxiliaries

We now consider a second situation, developed by the author, in which the

nonequilibirum second law can be derived. Consider a composite system made up of a

system of interest and N identical auxiliary systems which play the role of a thermal

environment. Jointly the system and auxiliaries are driven according to Hamiltonian
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dynamics in process of duration τ described by a unitary Û . At times t = 0 and

t = τ , the system’s components are uncoupled and the full Hamiltonian is given by

Ĥ0 = Ĥsys
0 +

∑
n

ĥ(n) (1.28)

Ĥτ = Ĥsys
τ +

∑
n

ĥ(n) (1.29)

where Ĥsys and ĥn are the Hamiltonians of the system of interest and nth auxiliary

system respectively. Note that 1) during the process the full Hamiltonian is arbitrary

and the components may become coupled and 2) the auxiliary Hamiltonian returns

to its initial value at the end of the process. The system components are initially

uncorrelated with the system of interest being described by a density operator ρ̂sys0

and each auxiliary starting in the thermal state

π̂(n) =
e−βĥ

(n)

Tr[e−βĥ(n) ]
(1.30)

where β is inverse temperature. In this setup the relevant thermodynamic quantities

are defined according to

U = Tr[Ĥsysρ̂] (1.31)

W = Uτ − U0 (1.32)

U sys = Tr[Ĥsysρ̂sys] (1.33)

Ssys = −Tr[ρ̂sys ln ρ̂sys] (1.34)

F sys = U sys − Ssys/β (1.35)
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where we emphasize that U is the combined energy of the system and auxilaries. Since

the auxiliary systems explicitly model the thermal environment, no energy change of

the joint system is due to heat and we may equate work with the energy change of

the full system.

The proof of the second law in this context follows from three relatively simple

mathematical properties of Hamiltonian mechanics and canonical states. The first

property is that 1) the von Neumann entropy S of a density operator ρ̂ is invari-

ant under Hamiltonian dynamics. This follows immediately from the fact unitary

dynamics preserve the eigenvalues of ρ̂.

The second important piece of mathematics is analogous to the well known fact

that the lowest energy state for a given entropy is always of canonical form. Specif-

ically, 2) consider a composite system made up of two noninteracting subsystems A

and B with Hamiltonians given respectively by ĤA and ĤB. Assume furthermore

that the dimension of A’s Hilbert space is less than that of B’s. For a given von

Neumann entropy S of the composite system and reduced state ρ̂A of system A, the

joint state ρ̂ that minimizes average energy U is ρ̂A ⊗ π̂B where π̂B is of canonical

form. A proof of this result is given at the end of this section.

The third result that we need for the derivation of the nonequilibrium second law

states that 3) the quantity

W̃(N) = min
ρ̂

∗Tr[Ĥτ ρ̂− Ĥ0ρ̂0] (1.36)

is a non-increasing function of N where N is the number of auxilary systems, the
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asterisk signifies that the minimization is restricted to only states ρ̂ that satisfy

S(ρ̂) = S(ρ̂0) (1.37)

Traux[ρ̂] = ρ̂sysτ , (1.38)

and the initial state is of the form ρ̂0 = ρ̂sys⊗Ni π̂β. This can be seen from the following

argument. From property 2) we know that W̃(N) = Tr[Ĥτ ρ̂
sys⊗Ni π̂β̃−Ĥ0ρ̂0] for some

β̃ different from the initial inverse temperature β. Note that in the minimization that

defines W̃(N+1), one possible choice of ρ̂ consistent with conditions (1.37) and (1.38)

is σ̂ = ρ̂sys ⊗Ni π̂β̃ ⊗ π̂β. It follows immediately from the fact Tr[Ĥτσ − Ĥ0ρ̂0 ⊗ π̂β] =

W̃(N) that W̃(N) ≥ W̃(N + 1). Roughly this means that a larger bath is a more

useful resource for work extraction than a smaller bath.

For the setup defined in this section, the second law can be proven as follows.

Consider the case of N auxiliary systems and a process where the final state of the
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system of interest is given by ρ̂sysτ . Observe,

W = Tr[Ĥτ ρ̂τ − Ĥ0ρ̂0] (1.39)

= Tr[Ĥτ Û ρ̂0Û
† − Ĥ0ρ̂0]

≥ min
ρ̂

∗Tr[Ĥτ ρ̂− Ĥ0ρ̂0] (1.40)

= W̃(N)

≥ lim
N→∞

W̃(N) (1.41)

= lim
N→∞

Tr[Ĥτ ρ̂
sys
τ

N
⊗
i=1

π̂β̃ − Ĥ0ρ̂
sys
0

N
⊗
i=1

π̂β]

= lim
N→∞

U sysτ +NUaux
β̃
− U sys0 −NUauxβ

= ∆U sys + lim
N→∞

N

Uaux
β̃
|1/N→0 +

dUaux
β̃

dSaux
β̃

dSaux
β̃

d(1/N)

∣∣∣∣∣
1/N→0

1

N
+O(

1

N2
)− Uauxβ


(1.42)

= ∆U sys + lim
N→∞

N

(
Uauxβ +

Ssys0 − Ssysτ

β

1

N
+O(

1

N2
)− Uauxβ

)
= ∆F sys.

Note that the line (1.40) of the proof uses fact 1), line (1.41) uses fact 3), and the

expansion in line (1.42) uses the standard formula dU/dS = 1/β and conservation of

entropy of the total joint system.

We now conclude this section with a sketch of the proof of mathematical fact 2).

The goal of the following is to find a state ρ̂ that minimizes the average energy

U = Tr[(ĤA + ĤB)ρ̂] (1.43)
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when restricted to states that satisfy the constraints

f = −Tr[ρ̂ ln ρ̂]− S = 0 (1.44)

gij = TrB[ρ̂]ij − ρ̂Aij = 0. (1.45)

It is convenient to express the density operator of the joint system by

ρ̂ =
∑
mnµν

ρmnµν |m〉〈n| ⊗ |µ〉〈ν| (1.46)

where the basis sets for the subsystems, denoted respectively by |n〉 and |ν〉, are

defined according to

ρ̂A =
∑
n

pAn |n〉〈n| (1.47)

ĤB =
∑
ν

εBν |ν〉〈ν|. (1.48)

The method of Lagrange multipliers asserts that a state ρ̂ that satisfies the constraints

(1.44) and (1.45) is an extremum of the above problem whenever there exists constants

λ0 and λij such that

∂U
∂ρmnµν

= λ0
∂f

∂ρmnµν
+
∑
ij

λij
∂gij

∂ρmnµν
. (1.49)

Note that gij is assumed to be written in the basis |n〉 defined by equation (1.47). Now

consider the canonical state π̂B with inverse temperature β defined by the entropy

balance equation

S = SA + SB (1.50)
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where SA = S(ρ̂A) and SB = S(π̂B). We assumed the dimension of A’s Hilbert

space is less than B’s to ensure equation (1.50) has a solution. Trivially the state

ρ̂ = ρ̂A ⊗ π̂B satisfies the constraints (1.44) and (1.45). We now show through direct

substitution that ρ̂A ⊗ π̂B satisfies (1.49) when the Lagrange multipliers are chosen

according to

λ0 = β−1 (1.51)

λij = 〈j|ĤA|i〉+ β−1(ln pAi − lnZ + 1)δij. (1.52)

When evaluated at ρ̂A ⊗ π̂B, the derivatives of equation (1.49) have the form

∂U
∂ρmnµν

= (〈n|ĤA|m〉+ εBµ δmn)δµν (1.53)

∂f

∂ρmnµν
= −(ln pAn − βεBµ − lnZ + 1)δmnδµν (1.54)

∂gij
∂ρmnµν

= δimδjnδµν . (1.55)

With some algebra it is straightforward to show that equation (1.49) is satisfied by

expressions (1.51)-(1.55). Therefore ρ̂A⊗ π̂B is an extremum which we assume is also

a global minimum.
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Chapter 2: Dephasing and the Quantum Work Relation

Statements of the second law of thermodynamics are generally expressed as in-

equalities. For instance the work performed on a system during an isothermal process

must not exceed the net change in its free energy: W ≥ ∆F . When statistical fluctu-

ations are appropriately included these inequalities can be reformulated as equalities,

such as the nonequilibrium work relation [63]

〈e−βW〉 = e−β∆F (2.1)

where β is an inverse temperature and angular brackets denote an average over rep-

etitions of the process. For classical systems, this prediction and related fluctuation

theorems have been extensively studied both theoretically [65] and experimentally

[15, 29, 42, 54, 66, 80, 112, 117], and have been applied to the numerical estimation

of free energy differences [28, 104].

The last decade has seen growing interest in extending these results to quantum

systems [53]. This pursuit is made challenging both by the fact that classical work

is defined in terms of trajectories – a notion that is typically absent in the quantum

setting – and by the lack of a quantum “work operator” [128]. To avoid these difficul-

ties, many studies have focused on closed quantum systems, which evolve unitarily.

In the absence of a heat bath there is no heat transfer to or from the system and the
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first law of thermodynamics reads,

W = ∆U ≡ Ef − Ei. (2.2)

Here the classical work depends only on a system’s initial and final configuration and

can be determined from two measurements. This idea is easily lifted to the quantum

regime through the two-point measurement (TPM) protocol [74, 95, 130], according to

which the work performed during a single experimental run is the difference between

energy values Ei and Ef resulting from initial and final projective measurements.

If a system is prepared in equilibrium at inverse temperature β with initial Hamil-

tonian Ĥ(0) =
∑
εn|n〉〈n|, then evolves unitarily as the Hamiltonian is varied from

Ĥ(0) at t = 0 to Ĥ(τ) =
∑
ε̄m|m̄〉〈m̄| at t = τ , the TPM work distribution is given

by

p(W ) =
∑
nm

pn pm̄|n δ[W − (ε̄m − εn)]. (2.3)

Here pn = Z−1
0 e−βεn is the probability to obtain the value Ei = εn during the initial

energy measurement, pm̄|n is the conditional probability to obtain the final energy

value Ef = ε̄m, given the initial value εn, and Z0 is the partition function for the initial

equilibrium state. To date, both proposed [41, 61, 90, 110] and implemented [8, 11, 91,

97] experimental tests of the quantum work relation (2.1) have focused on evaluating

equation (2.3) for a closed system.

Subtle conceptual issues arise if the system’s initial state contains coherences in

the energy basis, since such states are disturbed by the initial measurement [68,

122]. Even in this situation equation (2.1) remains valid under the TPM scheme,

provided the diagonal elements of the initial density matrix are given by Boltzmann

factors [129]. These issues will not affect our analysis, as we will always assume our
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system begins in equilibrium, and is thus described by a diagonal (in the energy basis)

density matrix.

A number of authors have proposed definitions of work and derived fluctuation

theorems for quantum systems in contact with general thermal environments [21, 30,

32, 48, 109, 127, 140]. Our more focused aim in this chapter is to consider a quantum

system in contact with a thermal environment that produces decoherence but no

dissipation. From a theoretical viewpoint, we argue that the TPM protocol provides

a natural definition of quantum work in this situation, and we give an elementary,

physically motivated derivation of equation (2.1) that agrees with more general results

obtained by previous authors [3, 67, 89, 106, 107]. We then describe an experimental

implementation constructed from trapped ions that makes use of noise to achieve

the effects of a bath which causes decoherence but no dissipation. From the data

we verify the validity of the quantum work relation, providing the first experimental

confirmation of equation (2.1) for a system undergoing decoherence.

2.1 Theoretical Development

When a quantum system is coupled to a thermal environment, there arise two dis-

tinct departures from unitary dynamics: dissipation, that is the exchange of energy,

and decoherence, the leakage of the system’s quantum coherences into the environ-

ment [142]. We will consider situations in which dissipation is negligible over exper-

imentally relevant time scales, but decoherence is substantial. Under such conditions

the environment is a decohering (or dephasing) environment: it suppresses coherences

but does not exchange energy.

Consider a system in contact with a decohering environment. At t = 0, following

a projective energy measurement, the system begins in an energy eigenstate |n〉,
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then it evolves as its Hamiltonian is varied with time. At t = τ its energy is again

measured, yielding ε̄m. By assumption, no energy is exchanged with the environment,

therefore we claim that it is natural to identify work to be the difference between the

initial and final energies, W = ε̄m − εn, just as for a closed quantum system (see

equation (2.2)). If we accept this as a plausible definition of work in the presence of

a decohering environment, then does equation (2.1) remain valid in this situation?

This question can be answered affirmatively within the general framework of quantum

channels [89, 106, 107]. We now take a phenomenological approach to arrive at the

same answer.

We begin by modeling the dynamics of the system. In the energy representation,

a decohering environment does not affect the diagonal elements (populations) of the

system’s density matrix ρ̂(t), but may cause off-diagonal matrix elements (coherences)

to decay. We capture these features with the equation

dρ̂

dt
= − i

~
[Ĥ(t), ρ̂]−

∑
i 6=j

γijρij|i〉〈j| ≡ Lρ̂ , (2.4)

which describes both unitary evolution under Ĥ(t) and the decohering effects of the

environment. Here γij ≥ 0 are phenomenological decay rates for the coherences

ρij ≡ 〈i|ρ̂|j〉, in the instantaneous eigenbasis of Ĥ(t).

Although we have motivated equation (2.4) heuristically, it can also be obtained

from the perspective of quantum detailed balance master equations (QDBME) [4].

These equations are a special type of Lindblad master equation and are of physical

relevance as they rigorously describe a quantum system coupled to an infinite, thermal

quantum reservoir under appropriate assumptions of weak interaction and separation

of time scales [51, 73, 124].

For an N -level quantum system with no degenerate energy gaps, the QDBME
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governing the evolution of the density operator can be written in the form

dρ̂

dt
= − i

~
[Ĥ, ρ̂] +

∑
ij

Jij|i〉〈i|+
∑
i 6=j

Γij|i〉〈j| (2.5)

Jij ≡ Rijρjj −Rjiρii

Γij ≡ (Rii +Rjj − γij)ρij < 0

γij ≡
∑
k

dk(Oki −Okj)
2 ≥ 0

where the Rij’s form a stochastic rate matrix [135] satisfying detailed balance, the

Oij’s form a real orthogonal matrix, and dk > 0 for all k. For the readers conve-

nience, we show in subsection 2.1.1 how this result can be derived from the more

general but less intuitive detailed balance condition presented by Alicki in [4]. The

three terms on the right side of equation (2.5) respectively describe unitary evolution,

dissipation, and decoherence. The dissipative term evolves the diagonal elements of ρ̂

(populations) according to a classical Markov process described by the rate matrix R,

whereas the decohering term causes the decay of off-diagonal elements (coherences).

To model a decohering environment we set all Rij = 0, thereby suppressing thermally

induced transitions between energy eigenstates. This leads immediately to equation

(2.4).

As a final note on equation (2.4), we point out that it can also be derived from

a microscopic model where the environment is explicitly modeled. This setup is

advantageous since all fluctuations in both heat and work can be carefully accounted

for using the TMP protocol on the joint system. Specifically it is possible to argue

that for a strictly dephasing master equation both the mean heat and fluctuations

in heat vanish. In subsection 2.1.2, we present a simple repeated interaction bath

model that exemplifies this point and strengthens the conceptual arguments given
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previously.

Note that evolution under equation (2.4) preserves the identity, LÎ = 0, hence

this evolution is unital, and equation (2.1) follows as an immediate consequence of a

general result derived by Rastegin [106]. To keep our presentation self-contained, we

now derive equation (2.1) assuming only a linear master equation that preserves the

identity.

Let Λτ : ρ̂0 → ρ̂τ denote the quantum evolution that maps an initial density

matrix to a final density matrix, under the dynamics of equation (2.4). After initial

equilibration, an energy measurement at time t = 0 yields an energy eigenvalue

εn with probability pn = Z−1
0 e−βεn , and “collapses” the system into a pure state

ρ̂0 = |n〉〈n|. This state then evolves under equation (2.4) to ρ̂τ = Λτ (ρ̂0) and a final

energy measurement at t = τ yields a value ε̄m with probability pm̄|n = 〈m̄|ρ̂τ |m̄〉.

Summing over all possible measurement outcomes, and using the linearity and identity

preservation of Λτ , we have [106]

〈e−βW〉 =
∑
nm

pn pm̄|n e
−β(ε̄m−εn) (2.6)

=
∑
nm

e−βεn

Z0

〈m̄|Λτ (|n〉〈n|)|m̄〉e−β(ε̄m−εn)

=
1

Z0

∑
m

e−βε̄m〈m̄|Λτ (Î)|m̄〉

=
Zτ
Z0

= e−β∆F .
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2.1.1 Detailed Balance Quantum Master Equations

Consider a quantum detailed balance master equation with a Hamiltonian Ĥ =∑
εi|i〉〈i| and an equilibrium state π̂ satisfying the standard thermal relation

π̂ =
e−βĤ

Tr[e−βĤ ]
. (2.7)

Additionally assume that the gaps εi − εj in the spectrum of Ĥ are non-degenerate.

Under these conditions, Alicki showed [4] that the master equation may be written

in the form

dρ̂

dt
= − i

~
[Ĥ, ρ̂] +

N∑
i,j=1

Dij

{
[X̂ij, ρ̂X̂

†
ij] + [X̂ij ρ̂, X̂

†
ij]
}

(2.8)

where N is the dimension of the system’s Hilbert space and the real numbers Dij and

operators X̂ij satisfy the conditions

Dije
−βεj = Djie

−βεi ; Dij ≥ 0 (2.9)

[Ĥ, X̂ij] = (εi − εj)X̂ij (2.10)

Tr[X̂†ijX̂kl] = δikδjl (2.11)

X̂ij = X̂†ji. (2.12)
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In what follows, we will use the non-degenerate gaps of Ĥ along with conditions

(2.9)-(2.12) to gain insight into the constants Dij and operators X̂ij. This in turn

will allow for equation (2.8) to be written in a form where the processes of relaxation

and decoherence are manifest.

Constants Dij – The constants Dij can largely be interpreted within the framework

of a classical continuous time Markov process [135]. Assuming discrete states indexed

by i, such processes describe the evolution of a probability distribution pi according

to

dpi
dt

=
∑
j

rijpj (2.13)

where rij is a transition rate matrix with the properties

rij


≥ 0; (i 6= j)

= −
∑
k 6=i

rki (i = j).

(2.14)

Furthermore the matrix rij is said to satisfy detailed balance with respect to an

equilibrium probability distribution πi when

rijπj − rjiπi = 0. (2.15)

Given these definitions, one immediately recognizes from condition (2.9) that the

off diagonal elements of Dij coincide with the elements of a transition rate matrix

satisfying the detailed balance condition (2.15) with πi ∝ exp(−βεi). In what follows,
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we will find that the energy populations ρii = 〈i|ρ̂|i〉 relax thermally according to

dρii
dt

=
∑
j 6=i

(2Dij)ρjj + (−2
∑
j 6=i

Dji)ρii (2.16)

=
∑
j 6=i

rijρjj + riiρii.

Hence for i 6= j we will interpret Dij as half the thermally induced transition rate

from energy state j to state i. Note that rii is defined according to equation (2.14)

and Dii 6= rii/2. Condition (2.9) only constrains the constants Dii to be positive.

These numbers will later be interpreted in terms of decoherence rates. Anticipating

these connections, the elements of Dij will be redefined according to

Dij =


rij/2 (i 6= j)

di (i = j).

(2.17)

Operators X̂ij – Before finding the explicit form of the operators X̂ij, it is in-

structive to recast conditions (2.10) and (2.11) in the language of linear algebra.

Specifically note that condition (2.10) dictates that X̂ij is an eigen-operator of the

super-operator [Ĥ, ·] with eigenvalue εi − εj while condition (2.11) asserts that the

operators X̂ij form an orthonormal set with respect to the matrix inner product

〈Â, B̂〉 = Tr[Â†B̂].

First consider the operators X̂ij for which i 6= j. In this case, each eigenvalue

εi− εj of equation (2.10) is non-degenerate (due to the gap structure of Ĥ) and hence

the corresponding eigen-operator X̂ij is confined to a one dimensional eigenspace. By

inspection this eigenspace is determined to be {α|i〉〈j| : α ∈ C}. The normalization
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condition (2.11) further gives the constraint that |α|2 = 1. Without loss of generality,

it is now possible to set

X̂ij = |i〉〈j| (i 6= j) (2.18)

due to the fact that the master equation (2.8) is independent of the phase of α since

X̂ij and X̂†ij appear in conjugate pairs.

For the case where i = j, the eigenvalue in equation (2.10) vanishes and corre-

sponds to the N dimensional eigenspace {
∑

k Oik|k〉〈k| : Oik ∈ C}. Application of

conditions (2.11) and (2.12) gives

Oik ∈ R ;
∑
k

OikOjk = δij (2.19)

which is exactly the condition that the matrix Oik belong to the set of real orthogonal

matrices O(N). In conclusion

X̂ii =
∑
k

Oik|k〉〈k| ; Oik ∈ O(N). (2.20)

The form of the detailed balance master equation in the main body of this

manuscript can now be deduced. Following substitution of equations (2.17), (2.18),

and (2.20) into the master equation (2.8) and some manipulation, the result is given

by

dρ̂

dt
= − i

~
[Ĥ, ρ̂] +

∑
ij

Jij|i〉〈i|+
∑
i 6=j

Γij|i〉〈j| (2.21)

Jij ≡ rijρjj − rjiρii

Γij ≡ [(rii + rjj)/2− γij]ρij ≤ 0

γij ≡
∑
k

dk(Oki −Okj)
2 ≥ 0.
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As stated earlier, the virtue of writing the master equation in the above form is that

the processes of relaxation and decoherence are clearly displayed – they are the second

and third terms on the right hand side of equation (2.21) respectively. The relaxation

is seen to shuffle the diagonal elements of the density operator according to a Markov

process while the decoherence term causes exponential decay of off-diagonal elements.

2.1.2 The Decohering Master Equation from a Hamiltonian Model

In our main theoretical development, we argued that it is plausible no heating

occurs during a decohering process and hence it is reasonable to determine work values

using the two-point measurement protocol. Here we strengthen this argument by

presenting a specific microscopic model where our intuition can be verified according

to the definitions of heat and work presented by Campisi et al [19].

Specifically, we consider a simple repeated interaction model where the bath is

represented by a stream of identical auxiliary systems which we will refer to as units.

Each unit begins in a thermal state π̂ and interacts with the system of interest for a

time δt. Over every interaction interval, the total Hamiltonian (system plus units) is

fixed but the system’s Hamiltonian and the interaction may change suddenly between

intervals. We will denote the total Hamiltonian during the nth interval by

Ĥn = Ĥsys
n ⊗ Îaux + Îsys ⊗ Ĥaux + λV̂n (2.22)

where Ĥsys
n is the system’s Hamiltonian, Ĥaux is the Hamiltonian of the non-interacting

units which each have individual Hamiltonians ĥaux, λ is the interaction strength, and

V̂n is an interaction that acts only on the system and nth unit. Furthermore to assure

the process only produces dephasing in the system of interest, we assume that the
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interaction is of the form

V̂n = Ân ⊗ B̂ (2.23)

where Ân acts on the system and commutes with Ĥsys
n while B̂ acts on the nth unit

and commutes with ĥaux. In the following, we outline two important properties of

this model: 1) the existence of a regime where the system’s dynamics are described by

a decohering master equation and 2) the absence of heat transfer between the system

and units.

In order to show 1), we take

Ĥsys
n = Ĥsys(nδt) (2.24)

Ân = Â(nδt) (2.25)

where Ĥsys(t) and Â(t) are operators that vary continuously with time and make

the standard assumption [102] that Tr[π̂B̂] = 0. Taking the limit δt → 0 while

simultaneously letting the interaction strength grow according to λ = kδt−1/2 where

k is a positive real constant, it can be shown [125] that

dρsys

dt
= − i

~
[Ĥsys(t), ρsys] (2.26)

− C

[
Â(t)ρsysÂ(t)− 1

2
{Â2(t), ρsys}

]

C =
2kTr[B̂2π̂]

~2

Since Ĥ(t) and Â(t) commute at all times, they share a common eigenbasis {|i(t)〉}.

Rewriting the dissipator (second term on the RHS of equation (2.27)) in this basis,
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the master equation becomes

dρsys

dt
= − i

~
[Ĥsys(t), ρsys] (2.27)

−
∑
i 6=j

γij|i(t)〉〈i(t)|ρsys|j(t)〉〈j(t)|

γij =
Tr[B̂2π̂]

~2
(ai − aj)2

where ai are the eigenvalues of Â.

We now show property 2) holds according to the definitions of heat and work

proposed in [19]. In this setup, work is determined (for initially thermal states) by

applying the two point measurement protocol to the joint system and environment.

Assuming that the system is decoupled from the units at the beginning and end of

the process, the work performed during a single realization is given by W = εsysm +

εauxk − εsysn − εauxl where εsysm + εauxk and εsysn + εauxl respectively are the initial and final

energy measurements. Since the total Hamiltonian of the system and units commutes

with Ĥaux at all times, it follows that εauxk = εauxl which implies that the work is fully

determined by local measurements on the system of interest as claimed in the main

text of this manuscript.

2.2 Experimental Verification

To test equation (2.1) experimentally, we employ a two state system engineered

from a 171Yb+ ion’s total angular momentum degree of freedom, using the energy

levels |F = 0,mF = 0〉 ≡ | ↓〉 and |F = 1,mF = −1〉 ≡ | ↑〉 belonging to the

ground-state manifold of 2S1/2 [141]. See [99] for an overview of techniques related to

this system. By applying microwave pulses resonant to our states’ energy difference
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Figure 2.1: (a) and (b)(c) respectively show conceptual and actual experimental
schematics of the TMP protocol in our setup. (b) indicates that in the true experiment
thermal state preparation and initial energy measurement occur in the σ̂z eigenbasis
before being transfered to the basis of σ̂x with the aid of an adiabatic shortcut. (c)
indicates how the system is again rotated–this time from the σ̂y to σ̂z basis–proceeding
the second fluorescence measurement. Note that the level splitting in the σ̂z basis is
set by ∆0 which is the frequency difference between the laser beat-note and ω0.

ω0 ≡ ωHF − ωZ, where ωHF = (2π) 12.642821GHz and ωZ = (2π) 13.586MHz, the
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system can be driven according to the Hamiltonian

Ĥ(t) =
~Ω(t)

2
[σ̂x cosφ(t) + σ̂y sinφ(t)] . (2.28)

Here σ̂x,y are the standard Pauli matrices in the {| ↑〉, | ↓〉} basis while Ω and φ are

parameters controlled through the amplitude and phase of the microwave pulses. In

our experiment, we use the driving protocols

Ω(t) = Ω0

(
1− t

2τ

)
; φ(t) =

πt

2τ
(2.29)

where τ is the duration of the process. Together equations (2.28) and (2.29) represent

the Hamiltonian portion of our system’s dynamics. The decohering term of equation

(2.4) is realized by the addition of noise in the microwave pulse sequence. In our setup

this adds a stochastic term Ω0ξ(t) to the protocol Ω(t) where ξ(t) is gaussian white

noise characterized by zero mean ξ(t) = 0 and variance ∆ξ(t)ξ(t+ τ) = α2δ(τ). Av-

eraging over all realizations of the noise ξ(t) produces an equation of motion identical

to equation (2.4) with γij = γ = 1
2
α2Ω2

0 [26, 78, 85, 121] (see also Appendix 2.5.1).

Given this setup, the procedure for measuring the work applied during a single

experimental trial involves four steps: (i) thermal state preparation, (ii) initial en-

ergy measurement, (iii) application of the driving protocol, and (iv) final energy

measurement, as shown in figure 2.1(a).

Our Hamiltonian has the form Ĥ(t) = B(t) · σ̂, where the field B(t) undergoes

rotation by 90◦ in the xy-plane (see equation (2.28)). For technical reasons the initial

thermalization and both measurements are performed in the σ̂z basis. Therefore af-

ter the initial thermalization and measurement we rotate the system from the z-axis

into the xy-plane, then we implement the driving as per equation (2.28), and finally
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Figure 2.2: The work distributions (a)-(f) correspond to an initial temperature of
T1 = 5.63 µK while (g)-(l) have T2 = 1.70 µK. The driving times τ = 50µs, τ =
10µs, and τ = 5µs represent near adiabatic (a)(g), moderate(a)(c)(h)(i), and fast
(d)(e)(f)(j)(k)(i) driving regimes. The dephasing rate γ took values of 0, 448, and 1340
kHz for the cases of no (a)(b)(d)(g)(h)(j), intermediate (e)(k), and large (c)(f)(i)(l)
dephasing respectively.

we rotate the system back to the z-axis to perform the final measurement. These

rotations do not affect the work distribution. The rotations are achieved with adia-

batic shortcuts [7, 13, 35], which produce transformations equivalent to adiabatically

switching the system’s Hamiltonian, but in a finite time (see Appendix 2.5.4). Figure

2.1 (b)(c) show detailed schematics of the measurement protocols, including these

shortcuts.

(i) Thermal state preparation - We create the initial thermal state using the follow-

ing procedure. First we prepare the pure state |ψ〉 = c↑| ↑〉+ c↓| ↓〉 using a standard

optical pumping sequence followed by the application of resonant microwaves over

a proper duration. After waiting more than 10 times the coherence time (see Ap-

pendix 2.5.2), the state becomes a mixed-state described by the density operator

ρ̂ini = |c↑|2| ↑〉〈↑ | + |c↓|2| ↓〉〈↓ |, which is identical to thermal equilibrium state

exp(−Ĥ(0)/kBT ) with an effective temperature

T =
~Ω0

kB ln(|c↓|2/|c↑|2)
. (2.30)
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For our experiment, Ω0 = 2π × 50 kHz while |c↓|2 took values of 0.605 ± 0.041 and

0.804 ± 0.034, corresponding to effective initial state temperatures of T1 = 5.63 µK

and T2 = 1.70 µK, respectively.

(ii) Initial energy measurement - Following initial state preparation, the energy

of the system is measured using a standard state-sensitive fluorescence detection se-

quence. In this procedure, fluorescence or the absence of fluorescence during the

detection sequence indicate a measurement of the | ↑〉 or | ↓〉 state respectively.

When the ground state | ↓〉 (dark state) is measured, we continue to the next step

of the experiment. If the excited state | ↑〉 (bright state) is detected, we re-prepare

the | ↑〉 state before continuing (see Appendix 2.5.3). As noted above, the actual

measurements are performed with respect to the Hamiltonian ~Ω0σ̂z/2 which is then

switched to ~Ω0σ̂x/2 using an adiabatic shortcut (see Appendix 2.5.4). It should also

be pointed out that the results of our experiment would not be altered if step (i) were

omitted and instead the states | ↑〉 and | ↓〉 were prepared with the known thermal

probabilities. Step (i) is preformed so that our demonstration most closely mimics

the the standard setup of the work relation in which a system is driven from thermal

equilibrium.

(iii) Application of driving with dephasing - At this point noisy microwave pulses

are applied to the system resulting in evolution according to the Hamiltonian (2.28)

with the protocols (2.29) and decoherence. For our trials, τ took values 50µs, 10µs,

and 5µs representing near adiabatic, intermediate, and fast driving speeds. The

decoherence rate γ in equation (2.4) was set to 0, 448, or 1340 kHz which correspond

to the cases of no, intermediate, or large dephasing strength respectively.

(iv) The final energy measurement - Prior to the final energy measurement, an-

other adiabatic shortcut is used to switch the system’s Hamiltonian–this time from

~Ω0σ̂y/4 to ~Ω0σ̂z/4. Following this transfer, the energy of the system is once again
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measured using a state-sensitive fluorescence detection sequence. By calculating the

difference between the initial and final energy measurements, a work value for the

experimental trial is obtained.

Figure 2.2 shows the work distributions resulting from experiments conducted

with twelve different combinations of effective temperature T , driving time τ , and

decoherence rate γ. From the data, it is clear that decoherence non-trivially affects

the work distribution for a given process – for instance compare (d) - (f) in figure

2.2. A more careful inspection reveals that the qualitative behavior of the work

distribution is governed by a competition between driving speed and decoherence.

For near-adiabatic driving, the work distribution is peaked at values W = ε̄i − εi

corresponding to the measurement of two energies with the same quantum number.

Increasing driving speed (decreasing τ) tends to induce transitions among energy

states with different quantum numbers, thereby broadening the work distribution.

This effect is exemplified in figure 2.2 by distributions (a), (b), and (d). In contrast,

decoherence in the eigenbasis of Ĥ(t) suppresses these transitions bringing the work

distribution closer to its adiabatic form. This can be seen by comparing the near adi-

abatic distribution (a) with the fast driving cases (d),(e), and (f) which have varying

degrees of decoherence. Interpreting this decoherence as environmental measurement

of the system’s energy, one can see that the system is forced to follow the adiabatic

trajectory due to wave function collapse. When the collapse rate γ becomes large,

the system becomes trapped in an eigenstate of the instantaneous Hamiltonian – a

scenario analogous to the quantum Zeno effect.

With these distributions, the work relation can be tested for each choice of the

experimental parameters T , τ , and γ by direct comparison of the left and right hand

sides of equation (2.1). Note that the quantity 〈e−βW〉 is calculated using the work

distribution while e−β∆F follows straightforwardly from knowledge of the energy levels
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of Ĥ(0) and Ĥ(τ). The results of these calculations, shown in figure 2.3, agree to

within the error of the experiment and hence validate the work relation.
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Figure 2.3: Comparison of the exponential average of work for distributions (a)-(l) in
figure 2.2 to the exponential of the free energy difference calculated from the initial
and final energy levels of Ĥ(t).

2.3 Multiple Interpretations

While our theoretical development focuses on environment-induced decoherence,

the dephasing master equation (2.4) can be interpreted in various ways. For in-

stance, (a) the same master equation describes – at the ensemble level – a system

that evolves unitarily but is interrupted at random by projective measurements. More

precisely, if our experimenter makes measurements in the instantaneous eigenbasis of

Ĥ(t) at times dictated by a Poisson process with rate γ, then the density operator

resulting from averaging over all measurement realizations obeys equation (2.4), with

γij = γ. Yet another interpretation of the dephasing master equation arises when
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(b) one averages over noise that is introduced by adding an appropriately designed,

randomly fluctuating term to the bare system Hamiltonian Ĥ(t) [85, 121]. The va-

lidity of equation (2.1) in case (a) has been noted explicitly by Campisi, Talkner and

Hänggi [22, 23], and in case (b) by Campisi, Pekola and Fazio [20]. More generally,

both interpretations, (a) and (b), support a fluctuation theorem because the system

evolves according to a unital channel during each realization, and the average of any

number of unital maps is again unital, hence Rastegin’s general analysis [106] applies.

Thus the non-unitary dephasing term appearing in equation (2.4) can arise either

due to weak coupling to a bath, as described earlier, or due to externally imposed

randomness, as described in the previous paragraph. In this paper we focus on the

former interpretation because it most closely resembles the canonical setup for fluc-

tuation theorems, namely a small system coupled to a bath in thermal equilibrium.

As outlined in the experimental section of this manuscript, we simulate the effects

of a decohering bath by the addition of noise to produce dephasing. Of course, our

experiments can equally well serve as a direct verification of the above-mentioned

prediction of Ref. [20].

2.4 Discussion and Conclusions

Throughout this manuscript we have considered systems that experience only de-

coherence, but significant theoretical progress has been made in understanding quan-

tum fluctuation theorems in situations where dissipation is also important. We outline

some of these advances as they give context for our results and provide direction for

future experimental work.

Perhaps the most conceptually appealing framework that addresses general ther-

mal environments is based on considering the system and environment jointly as a
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closed composite system [19, 21, 32, 127]. Here the TPM scheme can be employed as

the work is simply the change in energy of the joint system. (In the weak coupling

limit, work can also be defined as ∆U − Q where the energy change ∆U and the

heat Q are obtained by applying the TPM protocol separately to the system and

environment.) Despite defining a work distribution that satisfies equation (2.1), this

approach suffers from the need to measure bath degrees of freedom, which is difficult

to realize in practice.

Other studies of the work relation overcome this issue by defining work at the sys-

tem level without referencing an environment. In this vein there are several equivalent

formalisms for treating quantum detailed balance master equations [27, 47, 81–84, 118]

of which we focus on the quantum jump trajectory method [56, 59, 60, 76, 82, 83, 89].

Originally developed in the field of quantum optics [31], this approach treats a sys-

tem’s density operator as an average over pure states evolving according to stochastic

trajectories. The construction of these trajectories is called an unraveling and is gen-

erally not unique. When this unraveling is chosen properly, a consistent trajectory-

based thermodynamics can be defined in a manner similar to classical stochastic ther-

modynamics, and the work relation remains valid [56, 59, 60, 76, 82, 83, 89]. When

applied to the decohering master equation (2.4), the quantum trajectory approach

agrees with the theoretical development section of this paper.

Various approaches might be taken in future experimental tests of quantum fluc-

tuation theorems. For instance, rather than producing decoherence through the ad-

dition of noise, the results of this manuscript could be complemented with an exper-

iment using a true decohering bath engineered from an interaction commuting (at

all times) with the bare Hamiltonians of the system and environment. For systems

with dissipation, the quantum work relation could be tested for general thermal en-

vironments using the TPM protocol and a continuous environmental measurement
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technique [102, 103, 138, 139] such as single photon detection in a cavity QED exper-

iment. Alternatively using only the TPM protocol on a dissipative system, one could

test the energy change fluctuation theorem which is a modified version of equation

(2.1) devised by Pekola and co-workers [101]. For non-unital dynamics, Goold et

al [50] have obtained fluctuationlike relations for heat, in the context of the quantum

Landauer Principle. It remains an open, interesting question whether the quite gen-

eral approach of Ref. [50] can be used to obtain an experimentally testable version

of the nonequilibrium work relation (2.1) when both decoherence and dissipation are

present. Alternative frameworks for defining heat and work present yet another direc-

tion for potential experimental tests of quantum fluctuation theorems. For example,

in Elouard et al [44–46], energy changes are expressed in terms of three contribu-

tions – work, classical heat, and quantum heat. In the interpretation developed in

Ref. [44], work is defined differently than in the present manuscript, and the energy

changes measured in our experiment include contributions from quantum heat. Us-

ing a definition of work similar to that of Ref. [44], Deffner et al [33] have derived

a modified version of equation (2.1) that accounts for the thermodynamic cost of

projective measurements.

In summary, we have studied the quantum work relation for a system in contact

with a decohering bath. We obtained equation (2.1) within a simple, phenomenologi-

cal model that complements the more general approaches of unital quantum channels

and quantum trajectories. Using a system constructed from trapped ions subjected to

noisy dynamics, we conducted an experiment that demonstrated the work relation’s

validity for a dephasing process and represents the first test of equation (2.1) beyond

the regime of closed quantum systems. These results demonstrate the applicability

of fluctuation theorems to open quantum systems, at least for the special case of a

decohering heat bath, and may spur additional tests of the work relation for systems
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with dissipation.

While this manuscript was under review, we learned that Naghiloo et al [96], also

under review, describes experimental work verifying equation (2.1) for an open quan-

tum system in which feedback control is used to compensate for the heat exchanged

with the environment.

2.5 Appendices

2.5.1 Stochastic Noise and Decoherence Rate

In our experiment, decoherence is induced by the introduction of noise. The

system is driven by the total Hamiltonian

Ĥ(t) =
~[Ω(t) + Ω0ξ(t)]

2
σ̂~n(t) (2.31)

where σ̂~n(t) = σ̂x cosφ(t) + σ̂y sinφ(t) and ξ(t) is Gaussian white noise characterized

by 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t + τ)〉 = α2δ(τ). Ĥ(t) can be decomposed into a control

part Ĥc(t) = ~Ω(t)σ̂~n(t)/2 and stochastic part Ĥs(t) = ~Ω0ξ(t)σ̂~n(t)/2.

Taking the ensemble average over all noise realizations, the evolution of the system

is described by the Lindblad master equation[9, 85, 135]

dρ̂

dt
= − i

~
[Ĥc(t), ρ̂]− γ(ρ↓↑| ↓〉〈↑ |+ ρ↑↓| ↑〉〈↓ |) (2.32)

where | ↑〉, | ↓〉 are the instantaneous eigenvectors of Ĥc(t) and γ is the decoherence

rate which satisfies

γ =
(αΩ0)2

2
. (2.33)

In practice we applied discrete noise with a sampling rate of Rs instead of ideal
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continuous-Gaussian white noise. When R−1
s /2 is much less than the duration of the

operation, the digital noise can be approximated as Gaussian white noise, with auto-

correlation function 〈ξ(t)ξ(t+ τ)〉 = σ2R−1
s δ(τ). Therefore equation (2.33) should be

revised as

γ =
(σΩ0)2

2Rs

(2.34)

In our experiment, the systems decoheres for durations of 5µs, 10µs and 50µs

and the noise sampling rate is set to 1 MHz. Hence the decoherence rate is given by

γexp = (σΩ0)2/2 MHz when Ω0 is measured in MHz.
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Figure 2.4: Power spectral density of discrete Gaussian white noise with standard
deviation σ = 5 and sampling rate 1 MHz.

2.5.2 Thermal State Preparation

We use the magnetic field sensitive states |2S1/2, F = 1,mF = −1〉 ≡ | ↑〉 and

|2S1/2, F = 0,mF = 0〉 ≡ | ↓〉 to create an effective two state system with a typ-

ical coherence time of 0.14 ms. After preparing a superposition state with the de-
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Figure 2.5: Experiment results of decoherence rate γ relation with (σΩ0)2R−1
s . Here

sampling rate is set as 1 MHz.

sired populations, we wait 1.5 ms for the system to decohere. We confirm that the

state is effectively thermal using state-tomography [141]. As shown in figure 2.7,

the off-diagonal components of the density matrix are negligible for both effective

temperatures used in our setup.

2.5.3 Energy Measurements

The first and the second energy measurements are performed in the σ̂z basis using

standard fluorescence detection as shown in figure 2.6. Depending on whether the

system is in the excited state | ↑〉 or ground state | ↓〉, fluorescence or no fluorescence

respectively occurs during the detection sequence. When the ground state | ↓〉 (dark

state) is measured, the system remains unchanged during the detection sequence and

we simply continue to the next step of the experiment. If the excited state | ↑〉 (bright

state) is detected, the system is left in a mixture of the three levels of F = 1 in 2S1/2

manifold. Therefore, we re-prepare the | ↑〉 state using standard optical pumping and
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Figure 2.6: Energy levels of our 171Yb+ ion system. The two level system used in our
experiment is composed from the states ↑ and ↓. Transitions between these states
are driven using resonant microwaves.

a π-pulse of microwaves before continuing the experiment. A fluorescence detection

sequence is also used for the final measurement which constitutes the end of an

experimental run.

2.5.4 Adiabatic Rotation

For our setup, the initial and the final energy measurements are performed in the

σ̂z basis. Between the measurement sequences and the driving protocol, the state of

the system must be transferred between the z-axis and x-y plane of the Bloch sphere.

To accomplish this task, we use adiabatic shortcuts – a protocol that has the same

effect as an adiabatic switching of the Hamiltonian but occurs in finite time [7, 13, 35].

Specifically we apply an additional counterdiabatic term to our Hamiltonian during
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Figure 2.7: Density matrices after preparing effective thermal states, which are equiv-
alent to (a) T eq1 = 5.63 µK and (b) T eq2 = 1.70 µK.

the switching process to achieve the shortcut.

After thermal state preparation and the first energy measurement, our system

collapses into the | ↑〉 or | ↓〉 state. In principle, we have to adiabatically rotate the

| ↑〉 or | ↓〉 state to the corresponding state in the x-y plane of the Bloch sphere. In

our experiment, the coherence time of a superposition of the | ↑〉 and | ↓〉 states is

short and hence would introduce an error in the rotation if it were carried out in a

truly adiabatic fashion. Therefore, we apply an adiabatic shortcut to reduce the time

for the rotation. In this scheme, we change the Hamiltonian of the system according

to

Ĥ1(t) =
∆0

2
σ̂z cos (ω1t) +

Ω0

2
(σ̂x sin (ω1t) + σ̂y) (2.35)

where ω1 = Ω0 = ∆0 = (2π)50 kHz and t varies from t = 0 to t = π/2ω1 = 5 µs. The

term proportional to σ̂y is the counterdiabatic which suppresses the excitations. Note

that true adiabatic rotation requires at least hundreds of µs, which is much longer
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than transfer time using the adiabatic shortcut.

After the driving sequence, we rotate the system’s state back to the z-axis of the

Bloch sphere using the Hamiltonian

Ĥ2(t) =
Ω0

4
(σ̂y cos (ω2t) + σ̂x) +

∆0

4
σ̂z sin (ω2t) (2.36)

where ω2 = Ω0/2 = ∆0/2 = (2π)25 kHz and t varies from t = 0 to t = π/2ω2 = 10 µs.

This time the courterdiabatic term is proportional to σ̂x.
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Chapter 3: Insights on Quantum Work and Coherence from Classical

Physics

The ubiquitous role of coherence in quantum systems makes it a natural point

of study in the field of quantum thermodynamics. In recent years, there has been

a significant interest in understanding whether coherence can act as a resource in

thermodynamic settings. For example the utility of coherence has been investigated

in the context of work extraction [68, 119, 123], quantum heat machine operation

[70, 94, 111, 114, 133], and quantum resource theories [1, 17, 58, 72, 87, 134].

Beyond determining the thermodynamic differences between coherent and inco-

herent quantum states, the quantum character of coherence has also made it a focus of

research aiming to separate the quantum and classical aspects of thermodynamics. Of

particular interest have been situations in which coherence leads to quantum thermo-

dynamic results that are qualitatively different or superior to that of their classical

counterparts. However this line of reasoning is complicated by the fact that there

are multiple definitions employed for describing quantum-classical correspondences

depending on the context and physical problem at hand.

In this chapter, we attempt to better understand the role of coherence in thermo-

dynamics by examining quantum and classical work extraction for cyclic processes.

Specifically, we consider the maximum average work that can be extracted from a sys-

tem that is subject to a thermal environment and driving fields under the constraint
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that these external influences vanish before and after the process. Such a process is

cyclic in the sense that the dynamics are fully described both initially and finally by

the system’s base Hamiltonian. It has been shown [68] that for quantum systems,

more work can be extracted from states with coherence in the energy basis than from

their incoherent counterparts. Since incoherent states lack quantum features such as

superposition of energy levels, they are often called classical and this work extraction

result is sometimes viewed as a signature of a quantum thermodynamic advantage.

We test this assertion by comparing quantum and classical systems within the

framework of canonical quantization. Here quantum density operators are analogous

to phase space probability distributions while the quantum and classical Hamiltonians

are linked by the standard procedure of replacing position and momentum coordinates

with their respective quantum operators. A defining feature of quantum states with

energy basis coherence is that they are non-stationary with respect to the system

Hamiltonian. Using this property, we are naturally led to connect non-stationary

classical states to quantum density operators with coherences in the energy basis.

In this picture, incoherent quantum states correspond to mixtures of classical micro-

canonical distributions while quantum states with coherence can be related to classical

states where probability is non-uniformly distributed between nearby energy shells.

Analogous to the quantum case, we show that these classical non-uniformities lead

to additional work extraction when compared to the corresponding microcanonical

mixture. Furthermore we develop, a framework of so-called energy-equivalent sets

in which we can directly compare the work extracted from quantum coherence and

classical non-uniformity in the classical limit ~ → 0. In this regime we find that

the work extracted from quantum coherence does not vanish and furthermore agrees

with results pertaining to classical non-uniformity. This suggests that in the context

of cyclic work extraction and canonical quantization, coherence may not provide a
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qualitative difference between quantum and classical thermodynamics.

The structure of this chapter is as follows. In section 3.1 we lay out the optimal

work extraction problem and review the results of Kammerlander and Anders. [68]

showing work can be extracted from coherence. We then go on in section 3.2 to

introduce non-uniformity as a classical analogue to coherence and show it is a resource

for classical work extraction. In section 3.3 we define energy-equivalent sets and use

this concept to more directly compare work extraction from quantum coherence and

classical non-uniformity. Finally section 3.4 outlines how this research relates to other

notions of quantum and classical in thermodynamics and comments on possible future

extensions of this research.

3.1 The Work Extraction Problem and Quantum Coherence

Consider a system with self-Hamiltonian Ĥ0 that is initially isolated and described

by a density operator ρ̂0. Throughout this chapter, we will assume that Ĥ0 is non-

degenerate and has eigenvectors |n〉 and eigenvalues εn arranged such that the energies

increase monotonically with n. The non-degenerate spectrum assumption ensures

that there is a well-defined energy basis in which coherence can be considered. At

time t = 0, the system is subjected to a time dependent external driving field and

coupled to a thermal environment with inverse temperature β. In the driving interval

t ∈ (0, τ), we use Ĥ(t) to denote the full system Hamiltonain which includes the

base system Hamiltonian Ĥ0 and all time dependent effects of the driving. After a

duration τ , the external field is turned off and the reservoir is removed leaving the

system isolated with Hamiltonian Ĥ0 and density operator ρ̂τ . The process is cyclic

in the sense that the system’s dynamics are fully described by Ĥ0 at t = 0 and t = τ .

Note that the following discussion is relatively insensitive to the exact dynamics used

55



to model the system’s evolution in the interaction interval. We will only demand 1)

that in the absence of driving the system relaxes to the thermal equilibrium state

and 2) that the dynamics supports a generalized second law linking suitably defined

notions of free energy and work.

Specifically, we assume that the dynamics satisfy a generalized non-equilibrium

second law of the form

Wq ≤ −∆F q (3.1)

where work extracted, nonequilibrium free energy, internal energy, and entropy are

respectively defined by

Wq =−
∫ τ

0

Tr[
dĤ

dt
ρ̂]dt (3.2)

F q =U q − Sq/β (3.3)

U q =Tr[Ĥρ̂] (3.4)

Sq =− Tr[ρ̂lnρ̂]. (3.5)

The superscript “q” refers to quantum and distinguishes this case from the classical

setup that will be introduced later. It must be stressed that definitions (3.3)-(3.5)

generalize the standard equilibrium notions [18] of free energy, internal energy, and

entropy to all non-equilibrium states of a quantum system. The generalized non-

equilibrium formulation of the second law (3.1) bounds work extraction for fully non-

equilibrium processes and is in no way restricted to transitions between equilibrium

states. Such a result is possible for a wide range of dynamics including detailed

balance master equations, isolated Hamiltonian systems, and even strongly coupled

systems where the system and bath are explicitly modeled [49]. Observe that we

follow engineering convention and work extraction is positive. While quantity (3.2)
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should be interpreted as average work extracted from an ensemble, fluctuations will

not be considered in this chapter and hence (3.2) will simply be referred to as work

extracted.

We use the definition (3.2) of work for several reasons. It is one of the oldest

and most established notions of thermodynamic work in quantum systems [5, 105].

Additionally it agrees with the notion of average work derived from the quantum

work (quasi-) distribution in [122], which satisfies a fluctuation theorem. Finally this

definition closely resembles those used in classical stochastic thermodynamics [39, 115]

and, as we see in later sections, agrees with results from classical Hamiltonian physics.

It must be acknowledged, however, that there are alternative definitions of average

work commonly used in quantum thermodynamics. For instance, defining a work

distribution according to the popular two-time energy measurement protocol [74, 95,

130] leads to a mean value that disagrees with (3.2) whenever ρ̂0 has initial energy

coherences. Additionally some definitions of work coming from quantum resource

theory [87] have a so-called work-locking property which prevents the extraction of

work from coherence. These resource theory definitions, which explicitly model the

heat bath and demand that work is transferred deterministically, also disagree with

(3.2).

With cyclic processes and work defined, we now review the results of [68] related

to the optimization of work extraction for a process that removes coherence. In

other words, for the remainder of this section we will consider isothermal processes

during which the system begins in a state ρ̂0 that contains coherences (i.e. non-zero

off-diagonal elements in the eigenbasis of Ĥ0) and ends in the diagonal state

σ̂ =
∑
|n〉〈n|ρ̂0|n〉〈n|. (3.6)
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Note that σ̂ has energy populations identical to ρ̂0 but unlike the initial state has

no off-diagonal elements. By examining this situation, we can determine the extent

to which coherence (in the energy basis) represents a thermodynamic resource. The

maximum work extraction W̃q is defined by the largest possible value of (3.2) for a

fixed system Hamiltonian Ĥ0, inverse reservoir temperature β, and initial state ρ̂0.

The process duration τ is unconstrained and the maximization is performed over

all cyclic protocols Ĥ(t) that lead to the final decohered system state σ̂. In this

scenario, the non-equilibrium second law (3.1) bounds the maximum work according

to W̃q ≤ F q0 −F qσ. This inequality can in turn be saturated by the driving protocol

Ĥ(t) =


Ĥ0 t ≤ 0

− ln[(1− t/τ)ρ̂0 + t/τ σ̂]/β 0 < t < τ

Ĥ0 τ ≤ t

(3.7)

assuming that τ is sufficiently large so that the process is essentially quasi-static from

t = 0+ to t = τ−. Notice that processes of this type are also used in [49] to saturate the

non-equilibrium second law for both quantum systems and discrete state stochastic

systems. Intuitively, this protocol consists of a sudden change of the Hamiltonian at

t = 0 that brings the instantaneous equilibrium state into coincidence with ρ̂0 (since

Ĥ(0+) = −β ln ρ̂0), followed by a quasistatic step where the system evolves through

a sequence of equilibrium states, before a final step in which the cyclic process is

completed by turning off the external field. Our assumption that the full dynamics

drives the system towards the instantaneous thermal equilibrium ensures that in the

quasistatic limit the system tracks the instantaneous equilibrium state. For a two

state system undergoing protocol (3.7), an example of a density operator’s evolution

on the Bloch sphere is shown in figure 3.1. For the benefit of the reader, a derivation
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Figure 3.1: Bloch sphere representation of the maximum work extraction protocol
for coherence removal. The white and yellow dots respectively represent an arbitrary
initial density operator ρ̂0 and the corresponding energy decohered state σ̂. The axis
of Hamiltonian rotation is represented by an arrow crossing the sphere’s center with
vertical orientation corresponding to Ĥ0. (a) Hamiltonian suddenly changes at t = 0
(b) quasistatic transition over the interval 0 < t < τ (c) Hamiltonian is suddenly to
Ĥ0 at t = τ .

of the work extracted in protocol (3.7) is presented in appendix 3.5.2 from which it

follows that

W̃q(Ĥ0, ρ̂0) = F q0 −F qσ (3.8)

= (���
��:0U q0 − U qσ)− 1

β
(Sq0 − Sqσ)

=
1

β
D(ρ̂0|σ̂)

≡ 1

β
C(ρ̂0)

≥ 0.

Intermediate details of calculation (3.8) are presented in appendix 3.5.1. In the above,

D(ρ̂0|σ̂) is the quantum relative entropy [98, 137] of state ρ̂0 with respect to σ̂ which
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is defined according to

D(ρ̂0|σ̂) = Tr[ρ̂0(ln ρ̂0 − ln σ̂)]. (3.9)

Despite failing to fulfill all the properties of a distance measure, the relative entropy

satisfies the relations D(ρ̂1|ρ̂2) > 0 for ρ̂1 6= ρ̂2 and D(ρ̂|ρ̂) = 0. Crucially this ensures

that optimal work extraction is always positive for a coherence removal process. The

quantity C(ρ̂0) is a well known measure of a quantum state’s total (energy basis)

coherences called the relative entropy of coherence [12]. When states are represented

in the eigenbasis of Ĥ0, C(ρ̂0) vanishes for diagonal density operators and increases

monotonically with a state’s off-diagonal elements as quantified by the l1-norm mea-

sure of coherence Cl1 =
∑

nm |〈n|ρ̂0|m〉|.

With equation (3.8) we conclude our review of previous research by Kammer-

lander and Anders. [68] linking coherence to work extraction. In other words, this

result simply states the optimal work extraction from coherence removal is always

positive and moreover given by the thermal energy kBT times the total coherence

as measured by C(ρ̂0). In the quantum thermodynamics literature, it is common

to refer to incoherent states as classical (or quasi-classical) and view coherence as

an indicator of truly quantum phenomenon. In this light, result (3.8) is sometimes

presented as a signature of quantum systems’ thermodynamic advantage over their

classical counterparts. In the next section we probe this assertion by considering the

quantum classical correspondence from the perspective of canonical quantization.
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3.2 Classical Systems and Work Extraction from Non-uniformity

While coherence is often associated with quantum features such as superposition

and entanglement, quantum states with energy basis coherence are fully characterized

by a property they share with many classical states– namely non-stationary dynamics.

As can be seen from the von Neumannn equation

dρ̂

dt
= − i

~
[Ĥ0, ρ̂], (3.10)

incoherent states that commute with Ĥ0 remain fixed in time whereas only those

states with coherences in the energy basis evolve non-trivially when subject to the

system’s base dynamics. Contrary to much of the language surrounding quantum

coherence, this suggests that quantum states with energy coherence are analogous to

classical states which are non-stationary. In this section we aim to develop this idea

by both building an intuition for classical non-stationary states and investigating the

relation of these states to the classical work extraction problem.

Consider a classical system with N degrees of freedom and phase space coordi-

nates z = (x1, ..., xN , p1, ..., pN). The state of the system is described by a probability

density ρ(z) over phase space and the system’s dynamics are generated by the Hamil-

tonian H0(z). Since our previous arguments assumed that the quantum Hamiltonian

was non-degenerate, we will analogously demand that the classical Hamiltonian is

ergodic. Roughly this means that every system trajectory traverses the entirety of its

energy shell given sufficient time and excludes Hamiltonians with non-trivial symme-

tries or disconnected energy shells.

Stationary and non-stationary states can be characterized in the classical context
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with the help of Liouville’s equation

∂ρ

∂t
= {H(z), ρ} =

∑
i

∂H
∂xi

∂ρ

∂pi
− ∂H
∂pi

∂ρ

∂xi
. (3.11)

Clearly classical states lack time dependence whenever the Poisson bracket {H(z), ρ}

vanishes. For ergodic systems, this condition is satisfied exactly by densities of the

form ρ(z) = f(H(z))/K. Here f(·) is any function of a single real variable where the

normalization factor K =
∫
f(H)dz exists. It is straightforward to show that such

states can be written in the form

ρ(z) =

∫
ηρ(E)ωE(z)dE (3.12)

where ηρ(E) =
∫
ρ(z)δ(H(z) − E)dz is the state’s marginal energy distribution and

ωE(z) = δ(H(z)−E)/Ω(E) is the microcanonical distribution corresponding to energy

E. Furthermore writing ωE(z) in the limiting form

ωE(z) = lim
∆E→0

I[E,E+∆E](H(z))∫
I[E,E+∆E](H(z))dz

(3.13)

where I[E,E+∆E](·) is the indicator function over the interval [E,E + ∆E], it is im-

mediately apparent that the probability density of a microcanonical state is uniform

between infinitesimally spaced energy shells. Combining these facts, we deduce that

the stationary states in this setup are mixtures of microcanonical energy distributions

and can be distinguished by their uniform probability densities on level surfaces of the

Hamiltonian. In contrast, non-stationary states are signified by non-uniformly spread

probabilities between infinitesimally spaced energy shells in phase space. Examples

of uniform and non-uniform states are graphically depicted in figure 3.2.

With quantitative and qualitative notions of non-stationary classical states in
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Figure 3.2: Illustration of uniform (left) and non-uniform (right) distributions be-
tween infinitesimally separated energy shells.

hand, we now move to the issues of developing a classical analog for the quantum

coherence removal process and understanding such a process’s relationship with clas-

sical work extraction. Recall from the quantum setup that an energy decohering

process is one in which a non-stationary state ρ̂ becomes a stationary state σ̂ with-

out altering the state’s energy populations. In analogy, for any classical state ρ(z)

with energy distribution ηρ(E), we may associate a unique uniform state σ(z) via the

correspondence

σ(z) =

∫
ηρ(E)ωE(z)dE (3.14)

and define a non-uniformity removal process as one in which the state ρ(z) transitions

to σ(z). Much like the quantum state σ̂, the classical state σ(z) is stationary and has

an energy distribution identical to the original state ρ(z).

For a variety of dynamics modeling an isothermal process, it can be shown [55, 126]

that classical systems obey the generalized non-equilibrium second law

Wc ≤ −∆F c (3.15)
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where the classical thermodynamic quantities are given by

Wc =−
∫ τ

0

(∫
∂H
∂t

ρ(z)dz

)
dt (3.16)

F c =U c − Sc/β (3.17)

U c =

∫
H(z)ρ(z)dz (3.18)

Sc =−
∫
ρ(z)ln[hNρ(z)]dz (3.19)

and h is a constant with dimensions of action that ensures the argument of the

logarithm is dimensionless. We will choose h to coincide with Planck’s constant as

this will facilitate comparisons of quantum and classical work extraction later in this

chapter. Note that unlike the quantum von Neumann entropy which is always non-

negative, the classical Shannon entropy (3.19) can become arbitrarily negative for

probability distributions that are highly concentrated in phase space. As before, this

second law can be saturated [55, 126] with the classical protocol

H(z, t) =


H0(z) t ≤ 0

− ln[(1− t/τ)ρ0(z) + t/τσ(z)]/β 0 < t < τ

H0(z) τ ≤ t

(3.20)

which is shown in appendix 3.5.2 and has roughly the same interpretation as the

quantum case. At time t = 0 the Hamiltonian is suddenly changed from H0(z) to a

new Hamiltonian tailored such that ρ0(z) is the new thermal equilibrium state. This

has the effect of stabilizing the initial state. In the interval (0, τ), the quasistatic

switching of the Hamiltonian drives the system through a sequence of equilibrium

states which begins at ρ0(z) and terminates at σ(z). At t = τ the cyclic process is
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completed by suddenly returning the Hamiltonian toH0. It follows that the maximum

work extraction for a non-uniformity removal process is given by

W̃c(H0(z), ρ0(z)) = F c0 −F cσ (3.21)

= (���
��:0U0 − Uσ)− 1

β
(S0 − Sσ)

=
1

β
D(ρ0(z)|σ(z))

≥ 0.

The details of calculation (3.21) are similar to the quantum case, which can be found

in appendix 3.5.1. Inspired by the quantum relative entropy of coherence, we define

a classical relative entropy of non-uniformity according to

D(ρ(z)|σ(z)) =

∫
ρ(z) ln

ρ(z)

σ(z)
dz (3.22)

and assume that it quantifies the non-uniformity of classical states in the same way

the that relative entropy of coherence measures coherence in quantum systems.

In this section we have shown that the effects of coherence in quantum work extrac-

tion are at least qualitatively similar to a suitably defined classical setup. States with

quantum coherence are defined by their non-stationary behavior which is manifest in

classical systems through the notion of non-uniformity. Removal of non-uniformity is

analogous to removal of coherence and moreover, like the quantum case, the optimal

work that can be extracted during such a process is given by the thermal energy kbT

multiplied by a relative entropy. Building on this qualitative comparison, the next

section puts forward a framework in which these results can be compared on a more

quantitative level.
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3.3 A Quantitative Comparison of Work Extraction from Coherence

and Non-uniformity

For both classical and quantum systems, the optimal work extracted when the

system’s initial non-stationary features are removed is a function of the system’s base

Hamiltonian and initial state. In this section, we present a correspondence between

the quantum operators Ĥ0 and ρ̂ and classical phase space functions H(z) and ρ(z) so

that quantum and classical values of work can be more quantitatively compared. To

facilitate the Hamiltonian correspondence, we will assume for the remainder of this

chapter that our system has N degrees of freedom and a Hamiltonian of the kinetic

plus potential type. In this context, the process of canonical quantization gives a

straightforward recipe for determining Ĥ0 from H(z). Here the quantum Hamilto-

nian is derived from its classical counterpart by elevating position and momentum

coordinates in phase space to quantum operators satisfying the canonical commu-

tation relation. Due to the lack of cross position momentum terms in kinetic plus

potential type Hamiltonians, there is no ambiguity in this process.

While canonical quantization provides a bridge between quantum and classical dy-

namics, finding a reasonable one-to-one correspondence between classical and quan-

tum states is somewhat less straightforward. Common approaches which map density

operators into phase space [25, 57] suffer from undesirable properties. For instance,

neither the Wigner nor Husimi function representation of the quantum thermal state

correspond to the classical thermal phase space distribution. Additionally, the Wigner

function in general fails to be positive while the Husimi function is dependent on a

choice of coherent states.

To circumvent such issues, our study focuses on comparing energy-equivalent sets
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of classical and quantum states rather than individual states. We define a quantum

energy-equivalent set to consist of all states that share a particular energy distribu-

tion with respect to the system’s Hamiltonian. An example is the quantum thermal

energy-equivalent set given by

Πq = {ρ̂ |〈n|π̂|n〉 = 〈n|ρ̂|n〉} (3.23)

π̂ =
1

Zq
e−βĤ0 (3.24)

where π̂ is the thermal equilibrium state, Zq is the quantum partition function, and as

before |n〉 are the eigenstates of the Hamiltonian. Note that in addition to including

the equilibrium state π̂, the set Πq also includes exotic far from equilibrium states

that have significant energy basis coherence such as the pure state

|π〉 =
∑
n

√
e−βεn

Zq
|n〉. (3.25)

For examples of the state (3.25) in quantum optics see [10, 40]. Similarly to the

quantum case, we define a classical energy-equivalent set to consist of all phase space

distributions with a particular marginal energy distribution η(E) and positive Shan-

non entropy measured according to definition (3.19). The entropy condition, roughly

speaking, allows for a fair comparison of quantum and classical energy-equivalent sets

and will be further justified later in this section. Here an example is given by the

classical thermal energy-equivalent set

Πc = {ρ(z) |ηρ(E) = ηπ(E), Sc(ρ(z)) ≥ 0} (3.26)

π(z) =
1

Zc
e−βH0(z) (3.27)
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where π(z) is the classical canonical distribution and ηρ(E) and ηπ(E) are the marginal

energy distributions corresponding respectively to ρ(z) and π(z). Just as Πq contains

members with energy basis coherences, the classical set Πc contains members with

substantial non-uniformity between nearby energy shells. For instance, in the case of

a harmonic oscillator, the set Πc includes the phase space density

ρ(E, T ) =

(
βe−βE

)
︸ ︷︷ ︸

ηπ(E)

(
ω
eδ cos(ωT )

I0(δ)

)
︸ ︷︷ ︸

ζ(T )

(3.28)

where E and T are the canonical energy and tempus (angle-like) coordinates [71]

defined according to q =
√

2E/mω2 cos(ωT ) and p =
√

2mE sin(ωT ), δ is positive

parameter, and I0 is the modified Bessel function of order zero. The distribution

ζ(T ) is the well known von Mises distribution, which is a rough analog to a Gaussian

distribution for an angular coordinate. In our example the mean of ζ(T ) is zero and

its variance is controlled by the parameter δ. In other words, the distribution is

concentrated on the positive x-axis of phase space.

With quantum and classical energy-equivalent sets defined, we now turn our at-

tention to formulating a correspondence between these sets. Consider a positive

function of a single real variable f(·) with the property that the normalization fac-

tors Kq = Tr[f(Ĥ)] and Kc =
∫
f(H(z))dz are finite. With the aid of f(·) we

construct the quantum reference state σ̂f = f(Ĥ)/Kq and classical reference state

σf (z) = f(H(z))/Kc and propose that it is reasonable to compare the energy-

equivalent sets

Σq
f = {ρ̂ |〈n|σ̂f |n〉 = 〈n|ρ̂|n〉} (3.29)

Σc
f = {ρ(z) |ηρ(E) = ησf (E), Sc(ρ(z)) ≥ 0}. (3.30)
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Note that if we take f(·) = e−β(·), then the reference states take the form σ̂f = π̂ and

σf (z) = π(z) and we obtain a correspondence between the thermal energy-equivalent

sets Πq and Πc. With this example in mind we can gain some intuition on the physical

meaning of the function f(·). Just like the Boltzmann factor e−β(·) allows one to

ascertain the relative frequencies of a system’s microstates in thermal equilibrium,

the function f(·) determines the relative frequencies of a system’s microstates when

drawn from the reference state σ̂f or σf (z).

In the context of the isothermal work extraction problem, linking the sets Σq
f

and Σc
f has a few desirable properties. Firstly these sets are fully defined by the

Hamiltonains Ĥ0 and H(z) and hence the correspondence between Σq
f and Σc

f fol-

lows straightforwardly from canonical quantization of the Hamiltonian. Additionally

in this thermodynamic setting, it is natural to construct a correspondence between

quantum and classical states that maps the classical thermal state to its quantum

counterpart. In this vein, the choice f(·) = e−β(·) produces the sets Πq to Πc which

respectively contain the classical and quantum thermal states.

At this point, we are in the position where optimal work extraction can be quan-

titatively compared for quantum and classical systems. To do so, we maximize the

optimal quantum (3.8) and classical (3.21) work extraction, respectively, over the sets

Σq
f and Σc

f . We denote the optimal quantum work over the set Σq
f by W̃q(Ĥ0,Σ

q
f )

and the optimal classical work over the set Σc
f by W̃c(H0(z),Σc

f ). Despite not being

able to link the members of Σq
f and Σc

f in a one-to-one way, this allows us to simply

ask if states with quantum coherence are more or less useful for work extraction than

classical states with non-uniformity. In the following, it is useful to note that the

von Neumannn entropy of a quantum state is always non-negative and is exactly zero

for pure quantum states. Furthermore the quantum energy-equivalent set Σq
f always

contains pure states, an example of which is |ψ〉 =
∑

n

√
〈n|σ̂f |n〉|n〉. In the classical
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case our setup demands that the Shannon entropy is non-negative. Like the quantum

case, this bound can always be saturated by a member of the classical set Σc
f that is

sufficiently concentrated in phase space. Observe that,

W̃q(Ĥ0,Σ
q
f ) = max

ρ̂∈Σqf

W̃q(Ĥ0, ρ̂) (3.31)

= max
ρ̂∈Σqf

[(���
��:0U qρ − U qσ)− (Sqρ − Sqσ)/β]

= (Sqσ −
�
�
�
�>

0
min
ρ̂∈Σqf

Sqρ)/β

= Sqσ/β

W̃c(H0(z),Σc
f ) = max

ρ(z)∈Σcf

W̃c(H0(z), ρ(z)) (3.32)

= max
ρ(z)∈Σcf

[(���
��:0U cρ − U cσ)− (Scρ − Scσ)/β]

= (Scσ −
�
��

�
��*0

min
ρ(z)∈Σcf

Sρ)/β

= Scσ/β.

This shows that for both the quantum set Σq
f and classical set Σc

f , the maximum work

extracted is given by the reference state entropy multiplied by thermal energy kBT .

It is now clear as to why we demanded that the classical entropy be non-negative.

Had we not made this restriction, Σc
f would include states with arbitrarily negative

values of the Shannon entropy and hence W̃c(H0(z),Σc
f ) would have diverged. Beyond

mathematical convenience, the condition Sc ≥ 0 can be physically motivated as it

prohibits probability distributions concentrated in volumes of phase space smaller

than the quantum limit hN . To see this consider a classical distribution that is

uniform on a phase space region with 2N -dimensional volume V and zero elsewhere.

The classical entropy of this state is given by Sc = −log(hN/V ) which is non-negative
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exactly when V ≥ hN . Roughly this ensures that the classical states in Σc
f satisfies

the uncertainty principle and resemble the quantum states in the set Σq
f at finite h

but allows all classical probability distributions in the limit of vanishing h.

Of particular interest is comparing quantum and classical work extraction in the

limit h→ 0. In general both the quantum and classical entropies diverge in this regime

so instead of considering the classical and quantum work extraction individually, we

look at the difference

∆ = W̃ q(Ĥ0,Π
q)− W̃ c(H0(z),Πc) (3.33)

= (Sqσ − Scσ)/β.

We now show using standard arguments from semi-classical physics that in the clas-

sical limit Sqσ and Scσ agree and hence the difference in work ∆ vanishes. In the

semi-classical limit it is well known that the quantum density of states g(E) can be

approximated by the number of hN volume cells that fit into the classical phase space

volume between E and E + dE. Using this reasoning, one can make the association

g(E) ≈ Ω(E)/hN where Ω(E) is the classical micro-canonical partition function. It

follows immediately that

Kq = Tr[f(Ĥ0)] =
∑
n

f(En)g(En) ≈
∫
f(E)

Ω(E)

hN
dE =

Kc

hN
. (3.34)

where Kq and Kc are the normalization factors associated with the reference states
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σ̂f and σf (z). Now considering the quantum-classical work difference ∆, we find

lim
h→0

∆ =
1

β
lim
h→0
{−Tr[σ̂ ln σ̂] +

∫
σ(z) ln[hNσ(z)]dz} (3.35)

=
1

β
lim
h→0
{−
∑
n

g(En)
f(En)

Kq
ln[
f(En)

Kq
] +

∫
Ω(E)

f(E)

Kc
ln[hN

f(E)

Kc
]dz}

=
1

β
lim
h→0
{−
∫

Ω(E)

hN
f(E)

Kc/hN
ln[

f(E)

Kc/hN
]dE +

∫
Ω(E)

f(E)

Kc
ln[hN

f(E)

Kc
]dz}

= 0.

For thermal energy-equivalent states this can also be established by writing

∆π = (
1

β
+

∂

∂β
) log

Zc

Zq
(3.36)

and applying the well known result [75] that the quantum partition function Zq for

kinetic plus potential type Hamiltonians can be expanded in a power series of h where

the first term is exactly the classical partition function Zc. From this we can conclude

that in the classical limit, the work extracted from the coherence of a quantum state

ρ̂ ∈ Σq
f does not exceed the work that could be extracted from the non-uniformity

of a classical state σ(z) ∈ Σc
f . This strengthens the argument from previous sections

of this chapter that the work extracted from coherence is qualitatively similar to

work extracted from non-uniformity. Furthermore it calls into question the idea that

quantum coherence could be a resource that somehow divides the realms of quantum

and classical thermodynamics.

3.4 Discussion and Conclusions

In this chapter we reviewed how work can be extracted from quantum coherence

and investigated the classical analog of this process. Through the concept of non-
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stationary dynamics, we linked quantum states with coherence to classical states with

non-uniform probability densities between nearby energy shells. We showed that like

coherence in the quantum case, non-uniformity in classical phase space densities is a

resource that always allows for more work extraction than from the corresponding uni-

form state. Furthermore for quantum and classical energy-equivalent sets, we showed

that the maximum work extracted from coherence coincides with the maximum work

extracted from non-uniformity in the limit of vanishing h.

Beyond making a link between work, quantum coherence, and classical non-

uniformity, this research aims to clarify issues related to quantum-classical correspon-

dence in quantum thermodynamics. Many studies in quantum thermodynamics are

written from the perspective of quantum information theory. This is with good reason

as the function of nanoscale components making up quantum computers will certainly

be limited by thermal effects. It is within the realm of quantum thermodynamics to

understand these effects and quantify the energetic costs of managing them. That

being said, quantum information often focuses on a quantum-classical correspondence

centered around comparing classical and quantum computers. Particularly in quan-

tum thermodynamics, it is common to link a density operator ρ̂ to a corresponding

diagonal state
∑
|n〉〈n|ρ̂|n〉〈n| and refer to this diagonal state as “classical.” One

reason for this procedure is that the operation of a discrete state classical stochas-

tic computer governed by permutations and a rate equation can be mimicked by a

quantum computer evolving through a sequence of diagonal states. In this correspon-

dence a classical stochastic computer can essentially be thought of as an incoherent

quantum computer. From a thermodynamics perspective, this means quantum coher-

ence is a resource for work extraction with no analog in classical stochastic systems.

Following the language of Levy and Gelbwaser in chapter 4 of [14], we believe that

this type of correspondence should be referred to as a quantum-stochastic correspon-

73



dence to avoid confusion with the more traditional quantum-classical correspondence

presented in this chapter.

In the future it would be useful to more completely investigate the link between

work, coherence, and non-uniformity in the small h limit. One possibility could

be to look at work extraction from Gaussian phase space functions. In this situa-

tion, states could be linked on a one-to-one basis as a Gaussian Wigner function can

also be directly interpreted as a classical phase space density. In the small ~ limit

these states also do not suffer from the divergences in work extraction produced by

the maximization over the sets Σq
f and Σc

f presented in this text. Additionally, no

entropy condition would need to be introduced as the quantum and classical state

would always be concentrated in exactly the same phase space volume. It is also

important to note that while we found agreement in work extraction between quan-

tum coherence and classical non-uniformity for energy-equivalent sets, there could be

other reasonable connections between quantum density operators and classical phase

space distributions where disagreement remains even in the small h limit. Such sit-

uations could allow for a quantum advantage similar to the results found using the

quantum-stochastic correspondence.

3.5 Appendices

3.5.1 Connecting Entropy and Relative Entropy

Consider quantum and classical systems with respective Hamiltonians Ĥ0 and

H(z). For both quantum and classical systems, the non-equilibrium free energy of

any state can be expresses in terms relative entropy. Specifically for quantum and
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classical states ρ̂0 and ρ(z)0, we have

F qρ = −D[ρ̂0|π̂]/β (3.37)

F cρ = −D[ρ(z)0|π(z)]/β. (3.38)

In general differences of free energy, such as those that bound work extraction in the

non-equilibrium second laws (3.1) and (3.15), cannot be expressed in terms of a single

relative entropy. In this appendix we show that free energy differences between states

with identical energy distributions can be written as a single relative entropy. This

fact is especially important as it ensures that in an optimal process the energy ex-

tracted from a state’s non-stationary features is always positive. This is a key feature

that allows for quantum coherence and classical non-uniformity to be interpreted as

thermodynamic resources.

In the quantum case, we define the energy decohered state corresponding to ρ̂0

according to σ̂ =
∑
|n〉〈n|ρ̂0|n〉〈n|. The free energy difference between states ρ̂0 and

σ̂ can be calculated as follows.

F q0 −F qσ = (Sqσ − S
q
0)/β (3.39)

= Tr[ρ̂ ln ρ̂]− Tr[σ̂ ln σ̂]

= Tr[ρ̂ ln ρ̂]−
∑
n

〈n|ρ̂|n〉 ln(〈n|σ̂|n〉)

= Tr[ρ̂ ln ρ̂]−
∑
n

〈n|(ρ̂ ln σ̂)|n〉

= Tr[ρ̂ ln ρ̂]− Tr[ρ̂ ln σ̂]

= D(ρ̂|σ̂)

≥ 0
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Alternatively for a classical system, the stationary state corresponding to ρ0(z) is

given by σ(z) = η(H(z))/Ω(H(z)) where η(E) is the marginal energy distribution

of ρ(z) and Ω(E) is the microcanonical partition function. The classical free energy

difference of ρ(z) and σ(z) is given by

F c0 −F cσ = (Scσ − Sc0)/β (3.40)

=

∫
ρ(z) ln[hNρ(z)]dz −

∫
σ(z) ln[hNσ(z)]dz

=

∫
ρ(z) ln[hNρ(z)]dz −

∫
η(H(z))

Ω(H(z))
ln[hN

η(H(z))

Ω(H(z))
]

∫
δ[E −H(z))]dEdz

=

∫
ρ(z) ln[hNρ(z)]dz −

∫
η(E) ln[hN

η(E)

Ω(E)
]dE

=

∫
ρ(z) ln[hNρ(z)]dz −

∫
(

∫
ρ(z)δ[H(z)− E]dz) ln[hN

η(E)

Ω(E)
]dE

=

∫
ρ(z) ln[hNρ(z)]dz −

∫
ρ(z) ln[hNσ(z)]dz

= D(ρ(z)|σ(z))

≥ 0

3.5.2 Optimal Isothermal Work Extraction

In this appendix section we show that the quantum protocol (3.7) and classical

protocol (3.20) saturate the generalized non-equilibrium form of the second law. Note

that for both the quantum and classical case, our key assumption is that in the absence

of driving the system relaxes to the thermal equilibrium state. This ensures that in

the limit of quasistatic driving the system trajectory simply tracks the instantaneous

equilibrium state.
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Before considering protocols (3.7) and (3.20), it is useful to review the formulas

Tr[
dĤ

dλ
π̂(λ)] =

d

dλ
[−β−1 lnZq(λ)] (3.41)∫

∂H
dλ

π(z, λ)dz =
d

dλ
[−β−1 lnZq(λ)] (3.42)

which are well known from the thermodynamic integration technique of free energy

calculation. Here λ is a parameter that characterizes a sequence of Hamiltonians and

π represents the instantaneous equilibrium state. In other words this result states

that the equilibrium average of the λ derivative of the Hamiltonian is equal to λ

derivative of the equilibrium free energy.

Consider a quantum system initial described by density operator ρ̂0 and driven

according to protocol (3.7). The initial step of this protocol consists of a instantaneous

change of the Hamiltonian from Ĥ(0−) = Ĥ0 to Ĥ(0+) = −β−1 ln ρ̂0. The associated

work is performed is given by

Wq
0−→0+

= −
∫ 0+

0−

Tr[
dĤ

dt
ρ̂]dt (3.43)

= Tr[(Ĥ(0−)− Ĥ(0+))ρ̂0]

= Tr[(Ĥ0 + β−1 ln ρ̂0)ρ̂0]

= U q0 − β−1Sq0

= F q0 .

In the quasistatic step of the protocol, we make use of the fact that the system follows

a sequence of equilibrium states and apply equation (3.41) where λ can in this case
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be identified with time. The resulting work is given by

Wq
0+→τ− = −

∫ τ−

0+

Tr[
dĤ

dt
ρ̂]dt (3.44)

= −
∫ τ−

0+

Tr[
dĤ

dt
π̂]dt

= −
∫ τ−

0+

d

dt
[−β−1 lnZq(t)]dt

= β−1(Tr[e−βĤ(0+)]− Tr[e−βĤ(τ−)])

= β−1(Tr[ρ̂]− Tr[σ̂])

= 0

A calculation similar to (3.43) leads to the work extraction Wq
τ−→τ+ = −F qσ during

the final instantaneous change of the Hamiltonian at t = τ . Thus the total work over

the entire process is Wq = F q0 −F qσ as claimed section 3.1. With the aid of equation

(3.42), an analogous calculation for the classical system shows that protocol (3.20)

also saturates the generalized non-equilibirum second law.
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Chapter 4: An Attempt to Suppress Transitions in Adiabatic Pro-

cesses via Deoherence

Adiabatic driving is a powerful method of state preparation in quantum systems.

In this chapter we will follow the nomenclature of quantum mechanics and use the

term adiabatic to mean quasi-static. Let us examine the prototypical problem of

ground state preparation as an example. Consider a Hamiltonian Ĥ and assume that

it is desirable to prepare our system in its ground state |g〉 but unfortunately it is

not feasible to do so directly. To overcome this challenge we instead consider an

alternative Hamiltonian Ĥ0 with the ground state |g0〉 that is easily prepared. By

initializing our system in the state |g0〉 and driving according to the Hamiltonian

Ĥ(εt) where Ĥ(0) = Ĥ0 and Ĥ(1) = Ĥ, the quantum adiabatic theorem ensures

that at t = 1/ε our system is overwhelmingly likely to be found in the desired final

ground state |g〉 given that ε is sufficiently small (slow driving) and the ground state

is not degenerate at any point in our driving protocol (positive spectral gap). One

application of current relevance which exactly fits this paradigm is adiabatic quantum

computation [2]. In this situation, the Hamiltonian Ĥ is engineered such that its

ground state |g〉 encodes the solution to an optimization problem. While the state

|g〉 cannot be produced directly, the ground state of a much simpler Hamiltonian can

be used in conjunction with the procedure outlined above to produce |g〉 nonetheless.

The downside of producing quantum states using this procedure is that it often
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takes a long time. In the case of adiabatic quantum computing, successful computa-

tion mandates [43] that the process duration T = 1/ε must be of order 1/δ2 where δ is

the minimum spectral gap of Ĥ(εt) in the interval t ∈ [0, 1/ε]. For sufficiently complex

Hamiltonians where δ is often very small, long process duration can make gathering

statistics inconvenient or in the worst case spoil the entire setup when weak envi-

ronmental effects culminate to significantly perturb the system. Due to these issues,

improving the rate at which quantum states are transported along their adiabatic

trajectories is an active area of research. In recent years, for instance, there has been

significant interest is so called shortcuts to adiabaticity [131]. In the transitionless

tracking variant of this approach [13, 36–38], a counterdiabatic Hamiltonian V̂ (t) is

specially constructed such that states driven according to Ĥ(εt)+V̂ (εt) exactly follow

their adiabatic trajectories for any protocol duration T = 1/ε.

In this chapter we take a different approach and ask if transitions can be suppressed

in an adiabatic processes through careful coupling to an environment. Somewhat

against standard intuition, we specifically focus on the situation where a system

undergoes decoherence in the instantaneous eigenbasis of its Hamiltonain Ĥ(εt). This

occurs for instance when the environmental coupling is tuned such that no energy is

transfered between the system and environment. See section 2.1 or alternatively [120]

for a more in depth look at this scenario.

Our intuition for examining decoherence in the context of adiabatic driving pro-

tocols is rooted in both experiment and theory. In Chapter 2 of this thesis, quantum

work was measured in a trapped ion system for a variety of initial states, decoherence

rates γ, and process durations T = 1/ε. It was found that for all process dura-

tions, large decoherence rates led to work distributions that closely agreed with the

adiabatic work distribution corresponding to slow driving and no decoherence. For

example see panels (a),(c) and (f) of figure 2.2. This suggests that in the presence
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of strong decoherence, no energy transitions took place and the dynamics guided

eigenstates of the initial Hamiltonian to the corresponding eigenstates of the final

Hamiltonian. This can be understood from a theoretical viewpoint by interpreting

decoherence in terms of an environment making effective energy measurements of the

system. Each measurement causes the system’s wave function to collapse into one

of the energy eigenstates of the instantaneous Hamiltonian according to the reduc-

tion postulate of quantum mechanics. When the decoherence rate or equivalently

the number of measurements per unit time becomes large, the quantum Zeno effect

[93, 100] ensures that the probability of the system transitioning from one eigenstate

to another becomes vanishingly small. One might hope that outside of the strong

decohering regime, this mechanism still can be used to suppress energy transitions.

With this motivation in mind, we now precisely state the problem on which this

chapter focuses. Consider a slowly driven system subject to decoherence whose evo-

lution can be modeled by the master equation

dρ̂

dt
= − i

~
[Ĥ(εt), ρ̂]− γ

∑
i 6=j

Π̂i(εt)ρ̂Π̂j(εt) ≡ L(εt)ρ̂ (4.1)

where Ĥ(εt) is the system Hamiltonian, Π̂i(εt) is the projection operator onto the

ith eignestate of Ĥ(εt), ε > 0 is a small parameter related to process duration via

T = 1/ε, and γ > 0 is the decoherence rate. Note that the second term on the right

hand side of equation (4.1) causes the off-diagonal elements of the density operator

ρ̂ to decay in the instantaneous eigenbasis of the Hamiltonian as would be expected

for energy basis decoherence. Throughout this chapter we will assume that at all

times in the process interval t ∈ [0, 1/ε] the spectrum of Ĥ(εt) is non-degenerate. We

additionally assume that the system is initially prepared in the ground state ρ̂(0) =

Π̂0(0) = |0(0)〉〈0(0)| of Ĥ(0) but point out that our analysis is easily generalized to
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other initial eigenstates. Our aim is to determine if in the slow driving limit the

success probability of the system ending in the ground state P0 = Tr[Π̂0(T )ρ̂(T )] can

be increased for small to moderate values of γ > 0 when compared to traditional

adiabatic setups where γ = 0. Focusing on the regime where γ is not too large

and therefore the dynamics is not dominated by the decoherence ensures that we

are considering the experimentally relevant situation where equation (4.1) describes

a system that is weakly coupled to its environment.

To analyze this problem we take advantage of the small parameter ε and construct

approximate solutions to equation (4.1) using the method of multi-scale perturbation

theory. This approach is similar to the technique of adiabatic perturbation theory

[108] which was developed for systems that can be described by a state vector evolving

according to the Schrodinger equation. In the multi-scale framework we find that

in agreement with our intuition, the zeroth order solution of (4.1) exactly tracks the

system’s ground state. By examining first order corrections to the system’s evolution,

we are then able to obtain leading order expressions for the success probability P0

which we can compare to the standard situation without decoherence. The key result

of this chapter is that in the regime of slow driving and small to moderate decoherence

rate, the master equation (4.1) always produces more energy transitions than the

corresponding system without decoherence. In other words, the standard intuition

that decoherence should be avoided is correct– isolating a system is always a better

strategy for suppressing transitons than coupling to an environment where equation

(4.1) holds.

The structure of this chapter is as follows. In section 4.1, we develop the framework

of multi-scale perturbation theory through a simple example. We then go on in section

4.2 to apply this method to analyze the master equation (4.1) up to first order in the

driving rate ε. The results of the multi-scale analysis are validated numerically in
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section 4.3. Finally in section 4.4, we interpret the results of the multi-scale analysis

in the context of preventing energy transitions in a adiabatic process.

4.1 Introduction to Multi-Scale Perturbation Theory

Perturbation theory is a collection of mathematical techniques which take ad-

vantage of a small parameter ε to transform a difficult problem into a (many times

infinite) hierarchy of simplified equations. The analysis of these simplified equations

is often significantly more tractable than the original problem and leads to approx-

imate solutions that can be systematically improved. While the most basic form of

perturbation is used in virtually every area of physics, the multi-scale perturbation

theory that we apply in this chapter for the analysis of the quasistatic master equa-

tion (4.1) is somewhat less known. For the benefit of the reader, this section gives

a pedagogical introduction to this technique with a focus on solving systems of first

order differential equations that feature multiple time scales.

Before introducing multi-scale perturbation theory, we will briefly review standard

perturbation theory with the aid of a simple example that can be exactly solved

using other methods. Through this example we will uncover some of the pitfalls

of the standard theory which subsequently will motivate the multi-scale approach.

Consider the initial value problem

dx

dt
= v

dv

dt
= −x− 2εv x(0) = 0 v(0) = 1 (4.2)

where v(t) and x(t) are real functions and ε > 0 is a small parameter. Furthermore
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note that the exact solution for x(t) is given by

x(t) =
e−εt√
1− ε2

sin(
√

1− ε2t). (4.3)

Physically one can think of equation (4.2) as describing the motion of a weakly

damped harmonic oscillator of mass m = 1 and damping constant γ = 2ε that is

initially at the origin with unit velocity.

Approaching this problem from standard perturbation theory dictates that we

expand the equation (4.2) in a power series of ε using x(t) =
∑
x(i)(t)εi and v(t) =∑

v(i)(t)εi and apply the principle of dominant balance (i.e. matching terms according

to their order in the small parameter ε) to obtain the hierarchy

dx(0)

dt
= v(0) dv(0)

dt
= −x(0) x(0)(0) = 0 v(0)(0) = 1 (4.4)

dx(1)

dt
= v(1) dv(1)

dt
= −x(1) − 2v(0) x(1)(0) = 0 v(1)(0) = 0 (4.5)

dx(2)

dt
= v(2) dv(2)

dt
= −x(2) − 2v(1) x(2)(0) = 0 v(2)(0) = 0 (4.6)

...
...

...
....

The first order approximate solution x[1] = x(0) + εx(1) and the corresponding leading

order error term ∆[1] = ε2x(2) that results from solving equations (4.4), (4.5), and

(4.6) are given by

x[1](t) = sin(t)− sin(t)εt (4.7)

∆[1] = 1/2[sin(t)− cos(t)t+ sin(t)t2]ε2. (4.8)

Here we have our first indication that standard perturbation theory has not produced

a satisfactory result. The first order approximate solution (4.7) diverges in the long
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time limit while the exact solution (4.3) approaches zero. Despite no explicit as-

sumptions pertaining to the time interval over which we solve (4.2), our approximate

solution is only valid when |x[1]| � |∆[1]| which breaks down for εt ≈ 1. This issue

occurs due to the presence of unbounded time dependent factors called secular terms

and is common in problems where a system’s dynamics includes mechanisms that

influence the system at vastly different rates.

Multi-scale perturbation theory is an alternative approximation scheme that aims

to systematically remove secular terms and extend the validity of solutions in the

time domain. Mathematically the method is based on replacing functions of a single

time variable governed by ordinary differential equations with functions of multiple

variables (called timescales) and a corresponding system of partial differential equa-

tions. Unlike the single variable case, the multi-variable problem does not admit a

unique solution which allows one to choose a solution without secular terms.

We now outline the muti-scale method by analyzing the problem (4.2) with two

timescales. Consider new multi-variable functions x̃(t, τ) and ṽ(t, τ) with the property

that x̃(t, εt) = x(t) and ṽ(t, εt) = v(t). Combining this condition with the single

variable problem (4.2), one concludes that the partial differential equations

∂x̃

∂t
= ṽ − ε∂x̃

∂τ

∂ṽ

∂t
= −x̃− 2εṽ − ε∂ṽ

∂τ
x̃(0, 0) = 0 ṽ(0, 0) = 1 (4.9)

must hold on the line τ = εt in the t-τ plane. One of the main conceptual leaps

of multi-scale perturbation theory is to now further demand that the multi-variable

functions x̃(t, τ) and ṽ(t, τ) satisfy equation (4.9) for all t, τ > 0. In this new multi-

variable problem, the initial conditions in (4.9) are no longer sufficient to fully specify

a unique solution and it is exactly this freedom we will use to remove secular terms.

The next step in the multi-scale process is to perform standard perturbation theory
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to multi-variable equation (4.9). To do so we replace x̃(t, τ) and ṽ(t, τ) with their

power series expansions in the small parameter ε and apply the principle of dominant

balance. The resulting hierarchy of equations is given by

∂x̃(0)

∂t
= ṽ(0) ∂ṽ(0)

∂t
= −x̃(0) (4.10)

∂x̃(1)

∂t
= ṽ(1) − ∂x̃(0)

∂τ

∂ṽ(1)

∂t
= −x̃(1) − 2ṽ(0) − ∂ṽ(0)

∂τ
(4.11)

∂x̃(2)

∂t
= ṽ(2) − ∂x̃(1)

∂τ

∂ṽ(2)

∂t
= −x̃(2) − 2ṽ(1) − ∂ṽ(1)

∂τ
(4.12)

...
...

where ṽ(0)(0, 0) = 1 and all other initial conditions are zero. Integrating equations

(4.10) and applying initial data, we obtain

x̃(0)(t, τ) = ṽ(0)(0, τ) sin(t) + x̃(0)(0, τ) cos(t) (4.13)

ṽ(0)(t, τ) = ṽ(0)(0, τ) cos(t)− x̃(0)(0, τ) sin(t). (4.14)

Note that at this point the zeroth order solution is not fully specified as the τ de-

pendence of x̃(0)(t, τ) and ṽ(0)(t, τ) has not been determined. To complete the zeroth

order calculation, we must examine the first order equations (4.11) and demand that

secular terms of x̃(1)(t, τ) and ṽ(1)(t, τ) vanish. Inserting expressions (4.13) and (4.14)
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into (4.11) and solving the resulting equations yields

x̃(1)(t, τ) = [A(τ) sin(t) + F (τ) cos(t) +G(τ) sin(t)]− [A(τ) cos(t) +B(τ) sin(t)]t︸ ︷︷ ︸
s1

(4.15)

ṽ(1)(t, τ) = [B(τ) sin(t) + J(τ) cos(t) +K(τ) sin(t)] + [A(τ) sin(t)−B(τ) cos(t)]t︸ ︷︷ ︸
s2

(4.16)

where A = (1 + ∂τ )x̃
(0)(0, τ), B = (1 + ∂τ )ṽ

(0)(0, τ), F = x̃(1)(0, τ), G = ∂tx̃
(1)(0, τ),

J = ṽ(1)(0, τ), and G = ∂tṽ
(1)(0, τ). If we insist that the secular terms s1 and s2

vanish for all times, we conclude that A(τ) = 0 and B(τ) = 0 or equivalently

∂x̃(0)

∂τ
(0, τ) = −x̃(0) ∂ṽ(0)

∂τ
(0, τ) = −ṽ(0). (4.17)

This implies that the zeroth order solutions decay exponentially with the slow time

variable τ . Utilizing the initial condition x̃(0, 0) = 0, we are left with the zeroth order

approximation for the weakly damped oscillator’s position

x̃[0](t, εt) = e−εt sin(t). (4.18)

Unlike the results of standard perturbation theory which lead to divergent solutions,

the multi-scale approach produces a result that decays to equilibrium in a similar

fashion to the exact solution (4.3). Furthermore, it can be shown that the error in

solution (4.18) remains of order ε for all times and does not break down when εt ≈ 1.

Note that while this method produced a solution which tracks the exact solution for

all times in this particular example, we generally only expect a two timescale approach

give solutions valid until ε2t = ετ ≈ 1. Generally solutions will have secular terms in
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the τ variable which cannot be removed without introducing additional slower time

scales.

There are two ways in which the solution (4.18) can be systematically improved.

The first is to decrease the error of the approximation inside its time interval of validity

through the addition of higher order corrections. For instance, in our example we

could form a first order approximate solution x̃[1] = x̃(0) +εx̃(1) once the τ dependence

of x̃(1) in equation (4.15) is determined. Similar to the process for finding the slow

time dependence of x̃(0), the τ dependence of the first order correction can be found

by integrating (4.12) and demanding that the solution x̃(2) have no secular terms in

the variable t. It is a general feature of multi-scale perturbation theory that the nth

order terms can only be fully determined after examining the secular terms of the

(n+ 1)th and higher order terms.

A second way of improving a multi-scale solution is to extend its validity in the

time domain. This is accomplished through the introduction of additional timescales.

For instance in our example we could have used three timescales t,τ = εt, and T = ε2t.

In this case we would eliminate secular terms in both the t and τ variables and find

solutions that break down for ε3t = εT ≈ 1 rather than ε2t = ετ ≈ 1. Notice that in

this three time scale example it would generally be necessary to look at secular terms

arising in the (n+1)th and (n+2)th expansion terms to fully determine the nth terms.

Had our example had three timescales, it would have been necessary to look at the

second order equation to determine the T dependence of the zeroth order solution.

It must be pointed out that multi-scale perturbation theory cannot be regarded

as a turn-crank method for finding approximations. While it is customary to use

timescales t,εt, ε2t, . . . , it is possible to introduce variables that are more complicated

functions of t and ε. Additionally it is common to have both t and ε appear explicitly

in a system’s equations of motion. In this case, there can be ambiguity in how
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these factors are written in terms of the timescales being considered. In slow driving

problems, for instance, a Hamiltonian might depend on εt. In the case of three

time scales t,τ = εt, T = ε2t this could be written as either εt, τ , or T/ε. For these

reasons it is often said that there is quite a bit of art to using multi-scale perturbation

theory. That being said, it is best practice to choose timescales using physical intuition

from the problem at hand. Generally it is also preferable to introduce timescales

into the equation of motion in the simplest way possible before moving to more

complicated schemes. With this understanding of the multi-scale method we now

move to analyzing the quasi-static decohering master equation.

4.2 Multiscale Analysis of the Quasistatic Master Equation

In our multi-scale analysis of the quasi-static decohering master equation, we make

the ansatz that the relavent timescales in our problem are t and τ = εt. The timescale

t captures the fast evolution of the density operator over durations in which the super-

operator L is essentially constant. Alternatively, the timescale τ parameterizes the

small changes to the system that accumulate over long time intervals due to the slow

driving of the master equation. Recasting the master equation (4.1) as a partial

differential equation in the variables t and τ , we obtain

∂ρ̂

∂t
= L(τ)ρ̂− ε∂ρ̂

∂τ
(4.19)

where now ρ̂ = ρ̂(t, τ) and our initial condition is ρ̂(0, 0) = Π̂0(0). Throughout the

analysis of equation (4.19), we will make use of the of the spectral decomposition of
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the super-operator L which is given by

L =
∑
ij

λij|i〉〈j|Tr[|j〉〈i|(·)] (4.20)

λij = −i(Ei − Ej)/~− γ(1− δij) ≡ iωij − γ(1− δij). (4.21)

Observe that we made the natural choice to replace the argument of L with the

variable τ rather than leaving it in the form εt. Note that in this section we only

will work with multi-variable functions and hence will not distinguish between the

single variable function ρ̂(t) in equation (4.1) and the multi-variable function ρ̂(t, τ)

in equation (4.19). Expanding the density operator in the series ρ̂(t, τ) = ρ̂(0)(t, τ) +

ρ̂(1)(t, τ)ε+ ρ̂(2)(t, τ)ε2 + . . . leads to the hierarchy of initial value problems

∂ρ̂(0)

∂t
= L(τ)ρ̂(0) ρ̂(0)(0, 0) = Π̂0(0) (4.22)

∂ρ̂(1)

∂t
= L(τ)ρ̂(1) − ∂ρ̂(0)

∂τ
ρ̂(1)(0, 0) = 0 (4.23)

∂ρ̂(2)

∂t
= L(τ)ρ̂(2) − ∂ρ̂(1)

∂τ
ρ̂(2)(0, 0) = 0 (4.24)

...
....

Before moving onto the details of this analysis, it is useful to present some notation

that greatly simplifies the calculation. For any super operator O, we define

Õ(·) =
∑
ijkl

1− δ(λij − λkl)
λkl − λij

|i〉〈j|Tr[|j〉〈i|O|k〉〈l|Tr[|l〉〈k|(·)]] (4.25)

Res(O)(·) =
∑
ijkl

δ(λij − λkl)|i〉〈j|Tr[|j〉〈i|O|k〉〈l|Tr[|l〉〈k|(·)]] (4.26)

O−1(·) =
∑
ij

δ(λij)

λij
|i〉〈j|Tr[|j〉〈i|(·)] (4.27)
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where δ(0) = 1 and vanishes elsewhere, λij are the eigenvalues of L defined in (4.21),

and Res stands for residual. Operationally definition (4.25) is calculated by first

representing O eigenbasis of L, deleting any element Oijkl where λij − λkl = 0, and

finally dividing all remaining elements Oijkl by the difference λij − λkl. Likewise

Res(O) comes from again representing O in the eignebasis of L but deleting all

elements where λij−λkl 6= 0. Finally O−1 is to be understood as a generalized inverse

that agrees with the normal matrix inverse for invertable matrices but remains well

defined for non-invertable matrices.

4.2.1 0th Order Solution

Integration of equation (4.22) results in a preliminary 0th order solution

ρ̂(0)(t, τ) = eL(τ)tρ̂(0)(0, τ). (4.28)

Inserting (4.28) into equation (4.23) and integrating leads to a preliminary 1st order

term

ρ̂(1)(t, τ) = eL(τ)t[ρ̂(1)(0, τ)−
∫ t

0

e−L(τ)s∂ρ̂
(0)

∂τ
(s, τ)ds︸ ︷︷ ︸

I(1)

] (4.29)

I(1) = [e−L(τ)t

˜̃
dL
dτ
eL(τ)t −

˜̃
dL
dτ
− d̃L
dτ
t+ Res(

dL
dτ

)
t2

2
]ρ̂(0)(0, τ) +

∂ρ̂(0)

∂τ
(0, τ)t (4.30)

where the super-operator tilde notation is defined in equation (4.25). The intermedi-

ate steps in the calculation of integral I(1) are presented in section 4.5.2. Demanding
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that the secular terms vanish in equation (4.29), we find the conditions

Res(
dL
dt

)ρ̂(0)(0, τ) = 0 (4.31)

∂ρ̂(0)

∂τ
(0, τ) =

d̃L
dτ
ρ̂(0)(0, τ). (4.32)

As shown in appendix 4.5.3, equations (4.31) and (4.32) determine the slow time scale

dependence of ρ̂(0) which in turn leads to the full 0th order solution

ρ̂(0)(t, τ) = ρ̂(0)(τ) = Π̂0(τ). (4.33)

This confirms that a system prepared in its ground state and governed by equation

(4.1) simply tracks its instantaneous ground state in the slow driving limit.

4.2.2 1st Order Solution

Applying the 0th order result (4.33) to the 1st order preliminary term (4.29) gives

the simplification

ρ̂(1)(t, τ) =eL(τ)t{ρ̂(1)(0, τ)−
∫ t

0

e−L(τ)sdΠ̂0

dτ
ds} (4.34)

=eL(τ)t{ρ̂(1)(0, τ)− [(I − e−L(τ)t)L−1dΠ̂0

dτ
+
���

���
���

�:0

(I − LL−1)
dΠ̂0

dτ
t]

=eL(τ)t[ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
] + L−1dΠ̂0

dτ

which is the starting point for this section’s calculation. The slow time dependence

of (4.34) is determined by eliminating the secular terms of the second order term
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ρ̂(2)(t, τ). Inserting (4.34) into (4.24) and integrating leads to

ρ̂(2)(t, τ) = eL(τ)t[ρ̂(2)(0, τ)−
∫ t

0

e−L(τ)s∂ρ̂
(1)

∂τ
(s, τ)ds︸ ︷︷ ︸

I(2)

] (4.35)

I(2) = [e−L(τ)t

˜̃
dL
dτ
eL(τ)t −

˜̃
dL
dτ
− d̃L
dτ
t+ Res(

dL
dτ

)
t2

2
][ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
] (4.36)

+
d

dτ
[ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
]t+ [(I − e−L(τ)t)L−1 + (I − LL−1)t]

d

dτ
[L−1dΠ̂0

dτ
].

An outline of the calculation of integral I(2) is given in appendix section 4.5.4. De-

manding that the secular terms vanish in equation (4.35), we find the conditions

Res(
dL
dτ

)[ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
] = 0 (4.37)

d

dτ
[ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
] =

d̃L
dτ

[ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
] (4.38)

−(I − LL−1)m
d

dτ
[L−1dΠ̂0

dτ
].

The secular equations (4.37) and (4.38) are solved in appendix 4.5.5 which results in

the first order term

ρ̂(1)(t, τ) =
∑
i

κi(τ) + L−1dΠ̂0

dτ
(4.39)

κi 6=0(τ) =

∫ τ

0

2γ(1− δi0)

ω2
i0 + γ2

|〈i|d|0〉
dτ
|2ds (4.40)

κ0(τ) = −
∑
i 6=0

κi. (4.41)
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In the instantaneous eigenbasis of the Hamiltonian, the first order term (4.39) takes

the form

ρ̂
(1)
00 (t, τ) = −

∑
i

∫ τ

0

2γ(1− δi0)

ω2
i0 + γ2

|〈i|d|0〉
dτ
|2ds (4.42)

ρ̂
(1)
ii,i 6=0(t, τ) =

∫ τ

0

2γ(1− δi0)

ω2
i0 + γ2

|〈i|d|0〉
dτ
|2ds (4.43)

ρ̂
(1)
i0,i 6=0(t, τ) =

1

iωi0 − γ
〈i|d|0〉

dτ
(4.44)

where ρ̂
(1)
0i,i 6=0(t, τ) = ρ̂

(1)
i0,i 6=0(t, τ)∗ and all other matrix elements vanish. Equations

(4.42),(4.43), and (4.44) are the main result of this chapter and quantify the deviation

of the density operator ρ̂(t) from the adiabatic trajectory Π̂0(t).

4.3 Numerical Validation

In this section we validate results (4.42),(4.43), and (4.44) via a simple numerical

example. In keeping close to the original motivations for this research, we consider

a two state system driven according to protocol (2.28) which is used in the experi-

mental setup found in Chapter 2 of this thesis. Specifically in equation (2.28) we will

measure time in terms of the characteristic Hamiltonian timescale so that Ω0 = 1 and

relate the duration of protocol to the slowness parameter via T = 1/ε. With these

simplifications the Hamiltonian becomes

Ĥ(t) =
~Ω(t)

2
[σ̂x cosφ(t) + σ̂y sinφ(t)] (4.45)

Ω(t) =
~
2

(
1− εt

2

)
; φ(t) =

πεt

2
. (4.46)

The instantaneous ground and excited state of the Hamiltonian will be denoted by

|−(εt)〉 and |+(εt)〉 respectively. This process can be interpreted as a spin interacting
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with a magnetic field that starts at t = 0 in the x-dirction with strength ~/2 and

ends at t = 1/ε in the y-direction with strength ~/4 where both the field’s angle

and strength change at a uniform rate. The system evolves according to the quasi-

static dephasing master equation (4.1) with decoherence rate γ and is initially in the

ground state Π̂−(0) of the Hamiltonian (4.45). Note that ~ plays no role in any of

the following calculations as the contribution from the Hamiltonian exactly cancels

the prefactor attached to the von Neumann term of the master equation.

In this setup, the first order expansion coefficients (4.43) and (4.44) reduce to

ρ
(1)
++(t) =

∫ εt

0

2γ
[(s− 2

2

)2
+ γ2

]−1π2

16
ds (4.47)

=
π2

4

[
arccot(γ) + arccot

( 2γ

εt− 2

)]
ρ

(1)
+− =

iπ

4

[
i
(s− 2

2

)
− γ
]−1

. (4.48)

The first order approximate solutions for the density operator elements are given by

ρ
[1]
++ = ερ

(1)
++ and ρ

[1]
+− = ερ

(1)
+− since ρ

(1)
++ = ρ

(1)
+− = 0. The most important property

that our approximate solution must faithfully replicate is the probability the driving

protocol fails to end in the ground state at t = T = 1/ε. Particularly denoting the

exact excited state population by ρ++, we expect the error ∆++ = |ρ++ − ρ[1]
++| to be

of second order in ε. This is best checked by examining the logarithm of ∆++ as a

function of the logarithm of 1/ε and verifying that the resulting slope is −2 in the

limit of small ε. For γ = .5, figure 4.1 shows this is indeed the case for both ∆++ and

∆+− = |ρ+− − ρ[1]
+−| using a numerical simulation of the exact solution.

To be complete, we also check that the approximate solutions (4.47) and (4.48)

closely track the exact solutions when time and dephasing rate are varied. Figure 4.2

shows time traces of ρ
[1]
++ and ρ

[1]
+− and the corresponding exact solutions ρ++ and ρ+−
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Figure 4.1: Log-Log Plot of protocol duration 1/ε vs density operator component
error. The dephasing rate is taken to be γ = .5 and the density operator components
are evaluated at t = 1/ε. The solid line corresponds to y = −2x and has the same
slope as the log component error in the slow driving limit.

obtained by numerical simulation for constant γ = .5 and ε = .025. Alternatively,

figure 4.3 shows the γ dependence of ρ
[1]
++ and ρ

[1]
+− and the corresponding exact

solutions ρ++ and ρ+− obtained by numerical simulation for constant ε = .025 and

t = 1/ε = 40. In both cases, the approximate solutions closely resemble the exact

solutions.
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Figure 4.2: Plots of Approximate and Exact Density Operator Components as a
Function of Time. In these plots the γ = .5 and ε = .025. Note that the density
operator component ρ

[1]
+− fails to track the exact solution for small times. This is

due to the fact the boundary conditions of the first order coefficient ρ(1) can only
be satisfied when the time dependence of the Hamiltonian is smoothly turned on at
t = 0. Despite this, the solution is well approximated for most of the relevant time
interval.
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Figure 4.3: Plots of Approximate and Exact Density Operator Components as a
Function of Dephasing Rate. In these plots ε = .025 and t = 1/ε = 40. The exact
solution confirms that the dependence of the excited state population with γ is a
Lorentzian function.
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4.4 Results and Discussion

Recall that we examined adiabatic processes in the presence of decoherence to

determine whether it is possible to further suppress energy transitions when compared

to the standard case of purely Hamiltonian adiabatic driving. In this section we

show that contrary to our hypothesis, decoherence always introduces additional level

transitions in the slow driving limit.

For the sake of conversation, let us consider the case in which our system begins

in the ground state of the Hamiltonian Ĥ(0) and our goal is to drive the system to

the ground state of the final Hamiltonian ˆH(1) corresponding to t = 1/ε = T . The

failure probability that our system ends in a state other than the ground state is given

by

Pfail =1− Pground (4.49)

=1− ρ00(t)

=1− [1 + ερ
(1)
00 (t, τ = 1) +O(ε2)]

=ε
[∑
i 6=0

∫ τ

0

2γ

ω2
i0 + γ2

|〈i|d|0〉
dτ
|2ds

]∣∣∣∣
τ=1

+O(ε2).

Note that multi-scale perturbation theory ensures that this approximation remains

valid despite being evaluated for the large process duration t = 1/ε. Equation (4.49)

shows that for any γ > 0 our failure probability is linear in the inverse process

duration ε assuming we are in the slow driving regime. Alternatively in the case

where γ = 0 and there is no decoherence, equation (4.49) predicts that the failure

probability is of order ε2. It follows that in the slow driving limit where ε is very

small, the failure probability with decoherence is an order of magnitude larger than

the failure probability without decoherence. For the example given in the validation
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section (4.3) of this chapter this prediction can be tested by plotting the logarithm

of failure probability vs the logarithm of duration.
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Figure 4.4: Log-log plot of protocol duration 1/ε vs numerical failure probabilities
Pfail(γ). The dephasing rate is taken to be γ = .5 and the density of the failure
probabilities are evaluated at t = 1/ε. The solid reference lines have slopes of −1 and
−2. Note that for small ε, the decohering case γ = .5 has a failure probability that
is linear in ε while in the Hamiltonian case γ = 0 the failure probability is quadratic
in ε.

In conclusion, we believe that this analysis is good evidence that in the regime of

slow driving and small to moderate decoherence, suppression of energy level transi-

tions is best achieved using conventional methods rather than with a scheme including

decoherence. This does not rule out the situation in which decoherence is the dom-

inant term in the master equation. In Chapter 2 of this thesis, strong decoherence

created by the addition of classical noise induced adiabatic evolution. In this chapter

we studied small to moderate decoherence because it fits the paradigm of a system
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weakly coupled to a bath. In the future it would be interesting to investigate if

the strong decoherence regime could nonetheless be achieved through reservoir engi-

neering. In that case, we expect that decoherence could aid in suppressing energy

transitions in a way similar to the strong classical noise seen in Chapter 2.

4.5 Appendices

4.5.1 Formulas

In this appendix section we present a list of formulas used in other sections of this

appendix. Consider a matrix A(τ) that changes with a parameter τ and a constant

matrix B. The following are true

d

dτ
eA(τ) =

∫ 1

0

eA(τ)α dA

Aτ
eA(τ)(1−α)dα. (4.50)∫ t

0

e−Asds = (I − e−At)A−1 + (I − AA−1)t (4.51)∫ t

0

e−AsBeAsds = e−AtB̃eAt − B̃ + Res(B) (4.52)

where definitions (1.36), (1.36), and (1.36) have been used.
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4.5.2 Calculation of I(1)

In this appendix section we sketch the calculation of integral I(1) which is defined

in equation (4.29).

I(1) =

∫ t

0

e−L(τ)s{ d
dτ

[eL(τ)s]ρ̂(0)(0, τ) + eL(τ)s∂ρ̂
(0)

∂τ
(0, τ)}ds

={
∫ t

0

e−L(τ)s

∫ 1

0

eL(τ)sα[
dL
dτ
s]eL(τ)s(1−α)dαds}ρ̂(0)(0, τ) +

∂ρ̂(0)

∂τ
(0, τ)t

={
∫ t

0

∫ s

0

e−L(τ)r dL
dτ
eL(τ)rdrds}ρ̂(0)(0, τ) +

∂ρ̂(0)

∂τ
(0, τ)t

={
∫ t

0

[e−L(τ)s d̃L
dτ
eL(τ)s − d̃L

dτ
+ Res(

dL
dτ

)s]ds}ρ̂(0)(0, τ) +
∂ρ̂(0)

∂τ
(0, τ)t

=[e−L(τ)t

˜̃
dL
dτ
eL(τ)t −

˜̃
dL
dτ
− d̃L
dτ
t+ Res(

dL
dτ

)
t2

2
]ρ̂(0)(0, τ) +

∂ρ̂(0)

∂τ
(0, τ)t

Note that the second line follows from the integral (4.50).

4.5.3 1st Order Secular Conditions

In this appendix section we solve the first order secular conditions (4.31) and

(4.32) to determine the function ρ̂(0)(0, τ). Examination of condition (4.31) gives

Res(
dL
dτ

)ρ̂(0)(0, τ) =
∑
ij

|i〉〈j|
���

���
���

�:
dλij
dτ

Tr[|j〉〈i|dL
dτ
|i〉〈j|]Tr[|j〉〈i|ρ̂(0)(0, τ)]

+
∑

(i,j)6=(j,k)

|i〉〈j|
���

���
���

�:0
Tr[|j〉〈i|dL

dτ
|k〉〈l|]Tr[|l〉〈k|ρ̂(0)(0, τ)]δ(λij − λkl)

=
∑
ij

|i〉〈j|dλij
dτ
〈i|ρ̂(0)(0, τ)|j〉

Since dλij/dτ generically vanishes only for i = j, one can conclude that (4.31) is

satisfied only when ρ̂(0)(0, τ) =
∑

i κi(τ)Π̂i(τ) where κ is a constant. Using this
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insight and the secular equation (4.32), we deduce

∑
i

(
dκi
dτ

Π̂i + κi
dΠ̂i

dτ
− κi

d̃L
dτ

Π̂i) = 0

=⇒
∑
i

(
dκi
dτ
���

���:
δij

Tr[Π̂jΠ̂i] + κi
�
��

�
��*

0

Tr[Π̂j
dΠ̂i

dτ
]− κi

��
�
��

��*
0

Tr[Π̂j
d̃L
dτ

Π̂i]) = 0

=⇒ dκi
dτ

= 0

Noting that our initial conditions dictate κ0(0) = 1 and κi 6=0(0) = 0, it follows that

κ0(τ) = 1 and κi 6=0(τ) = 0 which implies ρ̂(0)(0, τ) = Π̂0(τ).

4.5.4 Calculation of I(2)

In this appendix section we sketch the calculation of integral I(2) which is defined

in equation (4.35). Note that portions of this calculation are formally very similar to

the calculation of I(1) with ρ̂(0)(0, τ) replaced by ρ̂(1)(0, τ) − L−1dτ Π̂0. Accordingly

some intermediate steps are omitted. Inserting equation (4.34) into (4.35) we obtain

I(2) =

∫ t

0

e−L(τ)s ∂

∂τ
[eL(τ)s(ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
) + L−1dΠ̂0

dτ
]ds

=

∫ t

0

{ ∂
∂τ

[eL(τ)s][ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
] + eL(τ)t ∂

∂τ
[ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
]

+
∂

∂τ
[L−1dΠ̂0

dτ
]}ds

=[e−L(τ)t

˜̃
dL
dτ
eL(τ)t −

˜̃
dL
dτ
− d̃L
dτ
t+ Res(

dL
dτ

)
t2

2
][ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
]

+
d

dτ
[ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
]t

+ [(I − e−L(τ)t)L−1 + (I − LL−1)t]
d

dτ
[L−1dΠ̂0

dτ
]
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4.5.5 2nd Order Secular Conditions

Following the same arguments made in appendix section 4.5.3 to solve equation

(4.31), one can conclude that condition (4.37) leads to

ρ̂(1)(0, τ)− L−1dΠ̂0

dτ
=
∑
i

κ(τ)Π̂i(τ)

where κi are scalar constants. Inserting this result into the secular condition (4.38)

and tracing both sides according to Tr[Π̂i(·)] gives

dκi
dτ

=− Tr[Π̂i(I − L−1L)
d

dτ
[L−1dΠ̂0

dτ
]]

=− Tr[Π̂i
d

dτ
[L−1dΠ̂0

dτ
]]

=− d

dτ
Tr[
��

��
��*

0

Π̂iL−1dΠ̂0

dτ
] + Tr[

dΠ̂i

dτ
L−1dΠ̂0

dτ
]

=Tr[(
d|i〉
dτ
〈i|+ |i〉d〈i|

dτ
)
∑
rs

1− δrs
λrs

|r〉〈s|Tr[|s〉〈r|(d|0〉
dτ
〈0|+ |0〉d〈0|

dτ
)]]

=
∑
rs

1− δrs
λrs

(〈s|d|i〉
dτ

δir + δis
d〈i|
dτ
|r〉)(〈r|d|0〉

dτ
δ0s + δ0r

d〈0|
dτ
|s〉)

=
1− δi0
λi0

〈0|d|i〉
dτ
〈i|d|0〉

dτ
+ δi0

∑
s

1− δ0s

λ0s

〈s|d|i〉
dτ

d〈0|
dτ
|s〉

+ δi0
∑
r

1− δr0
λr0

d〈i|
dτ
|r〉〈r|d|0〉

dτ
+

1− δ0i

λ0i

d〈i|
dτ
|0〉d〈0|

dτ
|i〉

=− (1− δi0)(
1

λi0
+

1

λ0i

)|〈i|d|0〉
dτ
|2 + δi0

∑
j

(1− δ0j)(
1

λ0j

+
1

λj0
)|〈j|d|0〉

dτ
|2

=(1− δi0)
2γ

ω2
i0 + γ2

|〈i|d|0〉
dτ
|2 − δi0

∑
j

2γ(1− δ0j)

ω2
j0 + γ2

|〈j|d|0〉
dτ
|2
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from which it follows

κi 6=0(τ) =

∫ τ

0

2γ(1− δi0)

ω2
i0 + γ2

|〈i|d|0〉
dτ
|2ds

κ0(τ) = −
∑
i 6=0

κi.

Using the results of this appendix section, the first order correction (4.34) takes its

final form

ρ̂(1)(t, τ) =eL(τ)t[L−1dΠ̂0

dτ
+
∑
i

κiΠ̂i] + (I − eL(τ)t)L−1dΠ̂0

dτ

=
∑
i

κiΠ̂i + L−1dΠ̂0

dτ
.

In order to calculate the matrix elements (4.42),(4.43), and (4.44), it is useful to note

L−1dΠ̂0

dτ
=
∑
ij

1− δij
λij

|i〉〈j|Tr[|j〉〈i|(d|0〉
dτ
〈0|+ |0〉d〈0|

dτ
)]

=
∑
ij

1− δij
λij

|i〉〈j|(〈i|d|0〉
dτ

δj0 + δi0
d〈0|
dτ
|j〉)

=
∑
i

(1− δi0)(
1

λi0
〈i|d|0〉

dτ
|i〉〈0|+ 1

λ0i

|0〉〈i|d〈0|
dτ
|i〉).
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Chapter 5: Conclusions and New Directions

In this thesis we investigated a variety of topics in quantum thermodynamics and

beyond.

Chapter 2 focused on the quantum nonequilibrium work relation in the presence

of decoherence. There we argued in a heuristic way that heat plays no role in energy

changes of a system that experiences decoherence but not dissipation. This heuristic

approach was complimented by a Hamiltonian model that explicitly accounted for

the bath and also showed the absence of heat. This allowed us to equate work

with system energy change and thus build a work distribution using the two time

energy measurement protocol. The resulting work distribution then was shown to

satisfy a fluctuation theorem which was experimentally demonstrated using a system

of trapped ions and decoherence simulated by classical noise.

Chapter 3 delved into the relationship between quantum work and coherence. Im-

portant results in quantum thermodynamics show that coherence is a resource that

can always be used to extract additional work when compared to incoherent states.

It has been suggested that this could be a true signature of quantum thermodynamics

divergence from the thermodynamics of classical systems. We investigated this later

assertion in the framework of classical Hamiltonian dynamics and canonical quanti-

zation. We found that classical phase space distributions have a quantity analogous

to coherence that we called non-uniformity. We showed that like coherence, non-

uniformity allows for additional work extraction when compared to the correspond-

106



ing uniform state. Going further, we developed the idea of energy equivalent sets

which allowed a more quantitative comparison of quantum coherence with classical

non-uniformity. Importantly in the classical limit of small ~, we found that the work

extracted from non-uniformity and coherence agreed– at least in the case of energy

equivalent sets. We concluded that while coherence does offer an advantage when

quantum systems are compared to discrete state classical systems, coherence does

not offer a wholesale advantage when quantum Hamiltonian systems are compared

to their classical Hamiltonian counterparts.

Finally Chapter 4 took inspiration from the experimental portion of Chapter 2 and

asked if decoherence could assist in suppressing transitons in an adiabatic (quasistatic)

process. In addressing this question, we developed an approximate solution for the a

decohering master equation in the slow driving limit using multi-scale perturbation

theory. These solutions were tested against a simulation of the experimental protocol

from Chapter 2 and found to accurately track the numerical solutions. Our core

finding was that in the regime of slow driving and moderate decoherence, the standard

adiabatic scheme always leads to less transitions than the corresponding scheme with

decoherence.

Based on the results of this thesis and insights from my advisor, collaborators,

and the broader community, I see numerous possible directions of future research

in quantum thermodynamics. As some final food for thought, I outline two such

problems as a conclusion to this thesis.

In chapter 3 of this thesis, we saw that the nonequilibirum second law could

be saturated in both the quantum and classical setting using protocols (3.7) and

(3.20). While these protocols are acceptable at the purely theoretical level, they

leave much to be desired in terms of actual experimental implementation. These

protocols generally require control of a Hamiltonian that is a complicated function

107



of both position and momentum which cannot be carried out in the context of an

experimentally controlled potential. I believe that investigating the intersection of

thermodynamics and restricted control could be a fruitful direction of future research.

For instance assume a system with base Hamiltonian Ĥ is driven from a state ρ̂0 to

a state ρ̂τ . The nonequilibrium second law states that 〈W〉 ≥ ∆F , which is the best

bound one can find assuming an arbitrary driving protocol. Would it be possible to

obtain a stronger bound for the work invested if one restricted the protocol to only

manipulations of a position dependent potential? For research along this direction

see [16, 77, 86].

Another issue that we touched on briefly in both chapters 2 and 3, is the debate

surrounding quantum work. Quantum work has been approached from the perspec-

tive of ensemble averages [4], the two time energy measurement scheme [74, 95, 130],

path integrals [122], quantum histories [92], Bohmian trajectories [113], and quantum

resource theory [52] to name just a few. Understanding the resulting zoo of often

inconsistent work definitions has become of important topic in the field of quantum

thermodynamics. One property that many of these approaches have in common is

that the effects of the external control system are incorporated into the setup via

a time dependent Hamiltonian. We believe that aspects of quantum work could be

clarified by explicitly modeling the control field as a Hamiltonian system. In this

approach work can be defined as the energy change of the auxiliary control system.

One approach to obtaining such a model could be to append an auxiliary system to

the system of interest and considering the limit in which the auxiliary system’s mass

goes to infinity. An alternate method could be to append an auxiliary system with

a Hamiltonian proportional to its momentum coordinate that couples to the system

of interest through its position. Such a model’s Hamiltonian, sometimes called a
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quantum clock [88], is written as

Ĥ = Ĥsys(X̂/V ) + P̂ V (5.1)

where V is a constant with dimensions of velocity and X̂ and P̂ correspond respec-

tively to the control field’s position and momentum operators. Here the reduced

dynamics of the system will be identical to the non-autonomous case with Hamilto-

nian Ĥsys(t) provided the control field starts in the the position eignestate |x = 0〉.

It is the opinion of the author that this autonomous approach would show that the

uncertainty relation ∆X∆P ≥ ~/2 applied to the control field contributes to the

difficulty of defining quantum work.
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