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In recent years, artificial intelligence (AI), especially machine learning (ML) and 

deep learning (DL), has represented one of the most exciting advances in science. The 

performance of ML-based AI in many areas, such as computer vision, voice 

recognition, and natural language processing has improved dramatically, offering 

unprecedented opportunities for application in a variety of different domains. In the 

critical domain of healthcare, great potential exists for a broader application of ML to 

improve quality and efficiency. At the same time, there are substantial challenges in 

the development and implementation of AI in healthcare. 

 

This dissertation aims to study the application of state-of-the-art AI technologies in 

healthcare, ranging from original method development to model interpretation and 

real-world implementation. First, a novel DL-based method is developed to 



  

efficiently analyze the rich and complex electronic health record data. This DL-based 

approach shows promise in facilitating the analysis of real-world data and can 

complement clinical knowledge by revealing deeper insights. Both knowledge 

discovery and performance of predictive models are demonstrably boosted by this 

method.  

 

Second, a recurrent neural network (named LSTM-DL) is developed and shown to 

outperform all existing methods in addressing an important real-world question, 

patient cost prediction. A series of novel analyses is used to derive a deeper 

understanding of deep learning’s advantages. The LSTM-DL model consistently 

outperforms other models with nearly the same level of advantages across different 

subgroups. Interestingly, the advantage of the LSTM-DL is significantly driven by 

the amount of fluctuation in the sequential data. By opening the “black box,” the 

parameters learned during the training period are examined, and is it demonstrated 

that LSTM-DL’s ability to react to high fluctuation is gained during the training 

rather than inherited from its special architecture. LSTM-DL can also learn to be less 

sensitive to fluctuations if the fluctuation is not playing an important role.  

 

Finally, the implementation of ML models in real practice is studied. Since at its 

current stage of development, ML-based AI will most likely assistant human workers 

rather than replace them, it is critical to understand how human workers collaborate 

with AI.  An AI tool was developed in collaboration with a medical coding company, 

and successfully implemented in the real work environment.  The impact of this tool 



  

on worker performance is examined. Findings show that use of AI can significantly 

boost the work productivity of human coders. The heterogeneity of AI’s effects is 

further investigated, and results show that the human circadian rhythm and coder 

seniority are both significant factors in conditioning productivity gains. One 

interesting finding regarding heterogeneity is that the AI has its best effects when a 

coder is at her/his peak of performance (as opposed to other times), which supports 

the theory of human-AI complementarity. However, this theory does not necessarily 

hold true across different coders. While it could be assumed that senior coders would 

benefit more from the AI, junior coders’ productivity is found to improve more. A 

further qualitative study uncovers the underlying mechanism driving this interesting 

effect: senior coders express strong resistance to AI, and their low trust in AI 

significantly hinders them from realizing the AI’s value. 
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Chapter 1: Introduction 

In the past decade, artificial intelligence (AI), especially machine learning (ML) and 

deep learning (DL), has represented one of the most exciting advances in science. 

With unprecedented developments, ML-based AI technologies have dramatically 

improved performance in many domains, such as computer vision, voice recognition, 

and natural language processing, to name a few.  

 

While AI holds substantial promises to improve healthcare, significant challenges 

exist. First, with the recent pervasive digitalization in healthcare, huge amount of data 

is available in Electronic Health Records (EHR). However, EHR data is quite 

underutilized, largely due to the data’s complexity. The medical codes usually make 

these complex data fields very hard to analyze. As a result of this “big data 

challenge”, people have to collaborate with domain experts, select a small portion of 

the EHR data, and throw away all other relevant information. Second, the current 

applications of complex AI models in healthcare mostly suffer from the “black box” 

issue. The lack of interpretation hinders the wider adoption of these powerful models. 

Finally, from the business perspective, it is unclear how AI will interact with human 

intelligence in a real work environment. There is an urgent need from AI adopters in 

healthcare to understand how the value of AI could be realized in real practice.  

 

With regard to the three challenges, this dissertation aims to advance the study on 

state-of-the-art AI technologies in healthcare in the following three ways: 1) 

developing a novel AI methodology to solve the “big data challenge”, 2) shedding 
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light on the “black box” of AI in healthcare predictive models, and 3) gaining deeper 

insights into real-world AI implementation and its interaction with human 

intelligence. Each topic is addressed in a different study. 

 

 

Study 1: Every Bit Counts: Using Deep Learning and Vectorization to Analyze 

Healthcare Big Data 

 

The rapid digitization of healthcare has generated large volumes of rich and complex 

data from sources such as claims and electronic health records. Traditional analytic 

approaches, however, only utilize small subsets of these data and often require deep 

domain knowledge. We develop a new Deep Learning-based Vectorization (DLV) 

approach for more comprehensive and efficient analysis of healthcare data. This 

approach automatically converts data elements into standardized numeric vectors, 

enabling new types of computing and improving performance in traditional data 

analysis. We demonstrate the potential of DLV to predict 30-day readmission using 

discharge records that cover all inpatient hospitalizations in Florida. We find that 

DLV easily handles large amounts of clinical information (including non-numeric 

variables), while traditional approaches struggle even to load the data. Furthermore, 

DLV significantly improves the accuracy of 30-day readmission prediction in the 

presence of high-dimensional data, boosting the AUC from 0.61 to 0.79. In addition, 

we demonstrate that the vector representations offered by DLV afford easy 

visualization for better understanding of the clinical data. Overall, the DLV approach 

shows great potential in facilitating the analysis of big healthcare data and can 

complement traditional methods in high-dimensional environments. 
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Study 2: How AI Plays Its Tricks: Understanding the Superior Performance of a 

Deep Learning-Based Approach in Predicting Healthcare Costs 

 

This study aims to advance our understanding of deep learning’s performance in 

predicting healthcare costs. We first design a long short-term memory (LSTM) based 

recurrent neural network (RNN) to incorporate sequential information for more 

accurate healthcare cost predictions. We then propose a novel approach to explore 

what drives the advantage of deep learning over major traditional machine learning 

methods (including linear regression, LASSO regression, ridge regression, and 

random forest). We find that in most traditional prediction models, greater fluctuation 

in data leads to deterioration in prediction performance. In contrast, the LSTM model 

can better incorporate the fluctuation information and actually gain prediction 

accuracy when fluctuation increases. We further visualize how the LSTM model 

processes fluctuations in monthly cost information by examining the output signals of 

the LSTM units. Our work provides insights into the advantages of deep learning 

models in predicting healthcare costs and also generates practical guidance. 

 

Study 3: Friend or Foe? How Artificial Intelligence Affects Human Performance 

in Medical Chart Coding 

 

While the impact of AI on jobs has generated considerable discussion and debate, 

little is known about how AI interacts with workers at different seniority levels across 

different times of the day. We developed an AI solution for medical chart coding in a 

publicly traded company and then evaluated its impact on productivity both within 
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and across individual workers. We find evidence that AI improves worker 

productivity overall, but the productivity gain is mostly associated with human 

workers’ circadian rhythm. Specifically, AI is most beneficial in the morning when 

human performance is also at its peak, rather than afternoon or night when human 

performance slows down. Results also show that the benefits of AI are dependent on 

the worker’s experience level: the productivity of junior workers experiences a 

significantly higher boost from the use of AI than that of senior workers. Further 

analysis reveals that the performance discrepancy is attributable to senior user 

resistance. This paper provides new empirical insights into how AI affects knowledge 

worker productivity, with important implications for wider adoption and use of AI 

among knowledge workers. 
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Chapter 2: Every Bit Counts: Using Deep Learning and 
Vectorization to Analyze Healthcare Big Data 
 

2.1 Introduction 

The past decade saw a sharp increase in the extent to which companies examine large 

amounts of data to uncover hidden patterns and optimize their business, often referred 

to as “big data analytics.” In healthcare, increasing digitalization in both the provider 

and consumer self-health management settings is generating vast amounts of highly 

granular data. These data come from various sources such as electronic health records 

(EHR), claims data, and patient-generated content (Mennemeyer et al., 2016). They 

consist of heterogeneous data elements, including patient demographics, diagnoses, 

biomarkers, laboratory results, and medical prescriptions as well as unstructured and 

nontraditional data such as clinical notes and images. The volume, richness, and 

timeliness of these data represent an unprecedented opportunity for knowledge 

discovery and quality improvement (Bates et al., 2014; Jensen et al., 2012; Sherman 

et al., 2016; Jarow et al., 2017). Effective analysis of these data is critical to 

transforming healthcare into a rapid learning system and guiding the approval and use 

of new treatments (Galson and Simon, 2016). Therefore, there is a call in the 

literature to better use patient-level data to generate useful and actionable insights 

(Angst et al., 2010).  

 

However, traditional healthcare analytics are not designed for high-dimensional data, 

and have difficulty incorporating a large number of features (Xiao et al., 2018). Most 

predictive models rely on the expertise of domain experts, who hand select a limited 
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number of variables. This means that despite the availability of variables in our big 

data era, a large number of available variables are dropped in these models. The 

resulting models may also have limited generalizability across datasets or institutional 

settings. Furthermore, traditional healthcare analytics often entail manual coding of 

non-numeric variables such as codes and texts. The labor-intensive steps in variable 

selection and coding largely limit the healthcare field’s exploitation of big data, 

which tends to be highly dimensional and non-numeric. There is therefore an urgent 

need for new methods to improve the efficiency and convenience of big data analysis 

in healthcare.  

 

In this study, we propose a novel deep learning-based vectorization (hereafter DLV) 

approach for big data analysis in healthcare. The DLV approach affords substantial 

advantages compared to traditional data analytic techniques. First, while a typical 

data analytics project requires a lengthy data preparation and feature extraction 

process, our DLV requires very little data preparation prior to model training. In DLV, 

all the data elements are natural occurrences and there is no need to code new 

variables. Second, DLV converts any structured data element, including demographic 

variables or medical codes, into a standardized vector that can be easily analyzed. 

Third, using deep learning architecture, DLV converts high-dimensional data into a 

reduced dimension with minimum information loss. Finally, the vector representation 

of variables can be easily visualized. This will allow healthcare researchers and 

practitioners to quickly spot significant patterns across data elements and then apply 

their medical knowledge and clinical expertise to generate hypotheses for further 
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analysis. Given these advantages, we expect that DLV can substantially improve the 

efficiency of healthcare data analyses and spur a new stream of research in this 

domain. 

 

Our DLV is built on Word2Vec (Mikolov et al., 2013), which was developed for and 

widely applied to text data analysis. It has revolutionized natural language processing 

(NLP) (Rush et al., 2015; Pennington et al. 2014) and powered applications such as 

Google translate and Apple Siri (Sutskever et al., 2014; Bahdanau et al., 2014; Capes 

et al., 2017). Based on the idea of Word2Vec, new technologies have emerged for 

other forms of data, such as Bio2Vec for protein (Asgari et al., 2015). Our Word2Vec 

DLV is similar to Med2Vec (Choi et al., 2016b), although the latter was developed 

from the perspective of medical code similarity and aims to understand the structure 

of medical codes such as ICD and CPT. We build on the foundation of a number of 

studies that have used deep learning for prediction using EHR and claims data such as 

Doctor AI, GRAM, and Deepr (Choi et al., 2016a; Choi et al., 2017; Nguyen et al., 

2016). Compared to these existing models, we aim to leverage the full big data, rather 

than a subset of them.  By vectorizing almost all elements in EHR data, our work 

extends the scope of DLV to further the understanding of whole clinical practices, 

and in particular as a method of readmissions prediction (e.g., Rose, 2016; Rajkomar 

et al., 2018).  

 

Our study combines deep learning and word vectorization for structured healthcare 

data. This combination of methods may be used for conventional predictive modeling 
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but has a wide range of additional applications. We employ data collected by the 

Florida Agency for Health Care Administration (AHCA) to provide three use cases 

that illustrate the potential applications of DLV. First, word vectorization provides an 

easy framework for data visualization. Second, DLV may be used to map complex 

clinical relationships. We illustrate how DLV can learn correspondences between 

ICD-9 and ICD-10 codes without the need for any domain knowledge. This approach 

could facilitate EHR interoperability. Finally, we use DLV to predict preventable 

hospital readmissions. We find that DLV has an area under the curve (AUC) of 0.79, 

which is substantially higher than conventional risk prediction algorithms.  

 

To summarize, by combining Word2Vec and deep learning, DLV can extract, 

reorganize, and retain the rich information in the complex healthcare big data via 

vectorization. DLV largely reduces costly manual data preparation and can power a 

wide spectrum of data analyses ranging from visualization to prediction.  

 

2.2 The Dimensionality Dilemma 

Machine learning methods, especially deep learning, are often used for flexible non-

parametric predictions in large high-dimensional data environments. They offer two 

advantages: using more detailed data may improve predictive accuracy and a flexible 

model will better reflect heterogeneity across individuals. At the same time, however, 

there are costs to employing flexible and high-dimensional models. Almost all 

existing predictive models use binary variables to code information like diagnosis, 

hospital ID, procedures, etc., which often leads to an input matrix too big to load in 
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the models. Even if the models are able to load the data, the prediction will perform 

poorly due to the sparsity of the input data. Overall, models tend to be 

computationally burdensome and difficult to implement.  

 

Big data in healthcare therefore creates a dimensionality dilemma: while the high-

dimensional data contains rich and useful information, it is often necessary to apply 

ad hoc variable selection to reduce the dimension of the data to fit into the model, 

leading to information loss and lower performance. Typically, there are two major 

strategies for variable selection: data driven and domain knowledge driven. The data 

driven approach chooses variables based on criteria such as correlations with 

outcomes (Shameer et al., 2017), the frequency of occurrence (Futoma et al., 2015), 

or variable selection algorithms (Bayati et al., 2014). Recent machine learning 

models, particularly those estimated via deep learning, employ a statistical method 

(Li et al., 2015; Wang et al., 2014; Zhao et al., 2015) for variable selection. These 

approaches are practical but there is no guarantee that they will keep the most 

relevant predictors. These data driven approaches to dimension reduction may also be 

subject to overfitting.  

 

The domain expertise approach is often used to select a logically relevant data subset 

(e.g., Frizzell et al., 2017; Ouwerkerk et al., 2014; Golas et al., 2018). Predictive 

models for health policy and practice historically emphasize both dimension 

reduction and model specification based on domain knowledge (Desai et al., 2002; 

Hon et al., 2016). While domain knowledge has an intuitive appeal, it has several 
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potential shortfalls. First, this process is labor intensive in high-dimensional 

environments. Second, even if domain experts are aware of the most important 

features, they may miss many relevant ones that improve prediction and capture 

outcome heterogeneity. Third, focusing on what experts know to be important may 

undermine new knowledge discovery. Finally, model selection based on domain 

knowledge can easily lead to overfitting and bias (e.g., Ioannidis, 2005; Fanelli et al., 

2017; Ioannidis et al., 2017).  

 

Our DLV approach eliminates the need for feature selection and is able to incorporate 

all information in a standardized way. DLV converts input data into much shorter 

vectors with much less sparsity. The vectorization in DLV both retains all 

information from the data and reflects the relative relationship among raw variables. 

In addition, the vectorization is achieved automatically through a simple prediction 

task (which we will describe later). This process does not require strong domain 

knowledge nor excessive computational power.  

 

2.3 Methods 

DLV is built on both deep learning and word embedding, and it was actually inspired 

by the functions and structures of brain cells. DLV models have at least three layers: 

an initial input layer, one projection layer, and an output layer. The projection layer 

uses simple modules to transform the data from the preceding layer.1 Parameters from 

 
1 Most deep learning models use hidden layers with non-linear functions, such as sigmoid, which is a 

generalized version of logit, or the rectified linear unit (ReLU). However, for vectorization we use a 

projection layer with a special linear function, which is explained later. 
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these modules are learned during the training process to try to minimize the 

difference between the true and predicted outcomes (LeCun et al., 2015). These 

models may be made more flexible by increasing the number nodes of the projection 

layer. Leveraging increasing computing power and larger training datasets, deep 

learning has been able to model complex functions such as natural language 

translation (Liu and Zhang, 2018). 

 

Word embedding refers to the representation of natural words as vectors. Deep 

learning approaches learn the complex structure of words within sentences and across 

data elements, then uses word embedding to convert the words into vectors. These 

vectors preserve connections among words in the original context and afford the 

words computability. One well-known example is the vectorization of the natural 

words Queen, King, Man, and Woman, which are shown to have the following 

relationship: Queen –Woman = King – Man. In other words, subtracting “Woman” 

from “Queen” gives us something similar to what is left when “Man” is subtracted 

from “King” (which is royalty). One can also generate a “King” representation by 

replacing the gender of “Queen” (“Queen – Woman + Man = King”) (Mikolov et al., 

2013). 

 

While vectorization was initially developed for natural language processing, we 

generalize it to structured healthcare data, which includes a wide range of data types 

such as patient demographics, physician characteristics, insurance benefit design, 

diagnoses, procedures, costs, prescriptions, etc. We regard all the data associated with 
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one visit as one big “sentence.” Vectorization is carried out in a similar fashion to the 

vectorization of natural language.  

 

2.3.1 Major Computing Steps in DLV 

DLV proceeds through two major steps to complete the vectorization of all data 

elements. In Step 1, the raw clinical data is preprocessed to the desirable format. In 

Step 2, a deep learning model is developed to predict the co-occurrence of data 

elements (such as the co-occurrence of “age 60” and “diabetes”). This step 

determines the vectors for each data element while maximizing the prediction 

performance. In other words, DLV achieves the vectorization for all data elements in 

the data by completing a prediction task using a deep learning model. Details of these 

two steps are illustrated below. 

 

 

Figure 1. Data conversion in preprocessing. 

 

In Step 1, DLV begins with a very simple preprocessing step, where variable names 

and values are combined into a data element which we call a word. We illustrate this 

process using information generated from a patient encounter. In Figure 1, each row 

comprises data from a single ambulatory visit. The first column is patient age. We 
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combine “Age” and its value “11” in the first row as “Age_11” (Figure 1). Similarly, 

in that visit, the doctor makes a diagnosis with ICD_2 (where ICD stands for the 

International Classification of Diseases), then this information is converted to 

“Diagnosis_ICD_2”.  

 

We next prepare the dataset for the deep learning model in Step 2. The task of the 

deep learning model is to use a word to predict other words that would co-occur with 

it in the same visit. Therefore, the words are converted into co-occurrence pairs. For 

the first instance in Figure 1, for example, there are three words: {Age_11, 

Diagnosis_ICD_2, Procedure_CPT_3}. Since predictions are directional, as 

illustrated in the bottom of Figure 2, the combination of these three words leads to six 

instances. These instances serve as ground truth for the prediction model using deep 

learning.  

 

 

Figure 2. Training data and the architecture of the neural network in DLV. 

 

In Step 2, we first represent the input and output words as vectors of dummy variables 

(which are called one-hot vectors) corresponding to each individual word. The input 
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vectors are then transformed by simple linear models that are commonly referred to 

as the projection layer (similar to the term “hidden layer”, but hidden layer refers to 

non-linear transformation), and the transformed values from the projection layers are 

used to generate the output vectors. In other words, input vectors are transformed by 

the projection layer to generate prediction of output vectors. The structure of the 

projection layer allows for tremendous flexibility and captures the potentially large 

set of interactions between data elements. The parameters in the projection layer are 

estimated via a loss function called cross entropy using backward propagation. This is 

similar to the idea of maximum likelihood estimation used in conventional regression 

methods.  

 

The above process can be expressed in the mathematical form below. The occurrence 

of the output words, O, given the presence of input words, I, is a function of a high-

dimensional matrix, B. This may be thought of as:  

 ……(1) 

B represents the projection layer. Each input word has a corresponding vector of 

parameters from matrix B that describes its relative position. Further calculations and 

transformation,  , can convert this vector into a probability of co-occurrence.2 After 

minimizing the loss function, each vector within B is taken as the vector 

representation of a given word, where  is the vector representation of the first word 

and .   

 
2  includes a matrix multiplication (B, I, and another parameter matrix) and a softmax transformation, 

which is similar to logistic transformation, converting the results to probabilities. For more technical 

details, please refer to Mikolov et al., 2013.  
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These vectors can be used to perform a wide range of calculations and have many 

potential interpretations. We illustrate this potential in use cases below. First, in 

Section 2.4 we show that vectorization affords easy visualization, leading to 

knowledge discovery and easy computing. We then show how DLV substantially 

improves readmission risk prediction compared to traditional models in Section 2.5.  

 

2.4 DLV Applications – Visualization and Easy Computing 

We provide three examples to illustrate DLV’s potential applications. First, we 

illustrate how word vectorization facilitates data visualization. Second, we show how 

word vectorization allows for simple but intuitive mappings of complex clinical 

concepts even in the absence of domain knowledge. Third, we show how DLV can 

substantially improve clinical prediction (presented in Section 2.5). These 

applications employ commonly available administrative claims data.  

 

We use hospital outpatient records provided by the Florida Agency for Health Care 

Administration (AHCA). The outpatient data include encounter-level data for all 

ambulatory surgeries and emergency department visits from 213 healthcare facilities 

in the state of Florida, totaling 11,284,760 records. We choose to focus on the 

outpatient data from Quarter 1 to Quarter 4 of 2015 because the transition from ICD-9 

to ICD-10 codes took effect on October 1, 2015 and we leverage this transition as a 

setting to verify our method.  
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There are 100 fields in the focused data. The 100 fields fall into the following 

categories: system identifiers, time stamps, facility characteristics, patient residence, 

patient demographics, payers, patient discharge status, billing codes (i.e., ICD, 

Current Procedural Terminology (CPT) or Healthcare Common Procedure Coding 

System (HCPCS) codes), practitioner identifiers, and various charges. The vector 

length is 205,790. We exclude system record ID, year, facility Medicare number, 

facility region, facility county, patient county, patient state, and 15 variables 

involving different charges. All remaining words co-occurring in the dataset form the 

word list. Using DLV, each word is represented by a vector drawn from matrix B.  

 

2.4.1 Visualizing Vectors for Pattern Discovery 

To examine the information contained in the word vectors and their ability to reflect 

the relationships among words, we visualize the relationship among all words in the 

dataset. We use a dimension reduction method 3  similar to principal component 

analysis to plot these high-dimensional vectors in two-dimensional space. Figure 3 

shows the plot of the top 1,500 words by frequency.4 The distance between any two 

dots in the figure represents the relationship of the two corresponding words.  

 

Generating a figure like Figure 3 allows us to draw a number of conclusions about the 

conceptual relationships within the clinical data. First, it is easy to categorize words 

based on the distances between them. In the left bottom area of the map, most of the 

 
3 t-distributed stochastic neighbor embedding (t-SNE), a technique used for dimensionality reduction in 

visualization. 
4 Note that users can extend beyond the first 1,500 words to plot all that occur with any frequency. 



 

 17 

 

words are about ZIP codes and facilities. These two measures have an intuitive 

relationship, which DLV has learned from the data. Most words in the center of 

Figure 3 are CPT codes while most words on the right are diagnoses. The diagnoses 

show three distinct subtypes: admission diagnosis toward the bottom, “other 

diagnosis” at the top, and principal diagnosis in the middle as a link between the two. 

Within each cluster, the grouping and positions of the words are also interpretable. 

We observe, for example, that diagnosis codes from the same ICD family tend to 

group together. 

  

Figure 3. t-SNE of the first 1,500 words, with close-ups of ages. 

 

 

Vector-based visualization facilitates pattern detection in high-dimensional data. 

Figure 3, for example, plots all age-related words in a line according to numerical 

value (see the enlarged section in Figure 3). It is interesting to note that the line is 
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split into three discontinuous segments: those under the age of 18, those aged 18 to 64, 

and those aged 65 and over. These relationships have intuitive explanations. Those 

aged 65 and older are Medicare eligible and often transition to retirement, while 18-

year-olds often transition to school or work and also lose eligibility for Florida’s 

Kidcare insurance program. In summary, the vectorization of age groups successfully 

captures the dramatic eligibility changes that patients in our dataset undergo at age 18 

and age 65. 

 

 

Figure 4. Example principal diagnosis codes in the t-SNE visualization. 

 

 

Another example of the way DLV can capture diagnostic relationships is the 

clustering of diagnosis codes as shown in Figure 4. (This figure zooms in on the 

example region for principal diagnosis codes from Figure 3, i.e. a portion of the 

middle subtype in the green cluster.) In this figure, we observe that the ICD codes in 



 

 19 

 

family 786.5 5  are overlapped (in the bottom right box), indicating the great 

consistency of medical knowledge (ICD coding system) and clinical practice (DLV 

based clustering). Another interesting example is in the left box. The four ICD codes 

are clustered into two groups that are close to each other. ICD 920 is “Contusion of 

face, scalp, and neck except eye(s)” and ICD 959.01 is “Head injury, unspecified,” 

while ICD 873.0 and ICD 873.42 represent “Open wound of scalp” and “Open wound 

of forehead,” respectively. One explanation for this division into two groups may be 

that both ICD 920 and ICD 959.01 point to a relatively broader scope while ICD 

873.0 and ICD 873.42 focus on a specific region of the head. Yet based on their 

proximity in our visualization, it is clear that these two groups are related.  

 

2.4.2 Computability of Words 

To illustrate the computability of the clinical data enabled by DLV, we leverage a 

policy change that occurred during the span of our data: the conversion of ICD-9 to 

ICD-10 on October 1, 2015. We demonstrate the computability of DLV by predicting 

the corresponding ICD-10 code from the existing ICD-9 code. Despite the availability 

of mapping tools designed to match ICD-9-CM and ICD-10-CM classifications, 

many codes share complex, entangled and non-reciprocal relationships that may lead 

to confusion and incorrect coding (Boyd et al., 2013). A study that examined the 

transition to ICD-10-CM in emergency departments found that 27% of the transitions 

represented convoluted multidirectional mappings, of which 23% were clinically 

incorrect (Krive et al., 2015). Another recent study found that 25% of internal 

 
5 ICD coding structure incorporates the family of codes. Usually, the digits after decimal indicate the 

subcategory of the diagnoses.  
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medicine ICD-9-CM codes have convoluted mapping to ICD-10-CM and more than 

half of those mappings could result in potential clinical inaccuracies or administrative 

errors (Caskey et al., 2018). The ambiguity and inaccuracy of these mappings may 

affect physician reimbursement, impact the workflow process, and undermine quality 

measurement. Our approach can help organizations developing mapping tools to 

harmonize electronic health measures.  

 

The essential challenge posed by the ICD transition is that our data contains pairs of 

ICD codes representing the same diseases. Though each pair is for the same disease 

and maybe even be for the same clinical practice, patient characteristics, and other 

factors, there are significant differences between them. Differences in the coding 

system structures (ICD-9 and ICD-10), seasonal differences, and many other 

differences could all be absorbed by the two codes in one pair. Yet instead of 

identifying factors driving the differences code by code, DLV considers the 

differences as a whole and can remove them. Given that there is no way to measure 

exact differences as a whole, we use the best proxy and leverage the two special 

words: “Quarter 3” and “Quarter 4.” These words uniquely map to the use of ICD-9 

and ICD-10 respectively. Therefore, if the same disease was represented by ICD-9 (in 

Quarter 3 of 2015) and then ICD-10 (in Quarter 4 of 2015), we should be able to 

predict the vector of the ICD-10 code as follows: 

 ……(2) 
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If our DLV approach works, then the predicted ICD-10 vector should have high 

similarity with the actual ICD-10 vector. We use the cosine similarity of the vectors, 

which ranges from completely unrelated at 0 to a perfect correspondence at 1. To 

illustrate, we first use the case of disease “Epigastric pain.” In ICD-9, the code is 

789.06. This corresponds to R10.13 in ICD-10.6 We find that the cosine similarity 

between the vector for 789.06 and the vector for R10.13 is 0.85. Applying the simple 

arithmetic of Equation 2 raises the cosine similarity to 0.97. This illustrates how DLV 

can be used to map complex clinical relationships without relying on domain 

knowledge.  

 

We further conduct a systematic examination of the relationship defined in the 

conversion equation. We test this capability using ICD-9/ICD-10 coding pairs with a 

unique correspondence. Since many codes occur rarely in any given quarter, we limit 

our analyses to the 100 most common primary diagnosis codes. We focus on unique 

mappings as ICD-10 allows for more detail and increases diagnostic distinctions. For 

example, ICD-9 code 789.09 (“Abdominal pain, other specified site”) corresponds to 

R10.10 (“Upper abdominal pain, unspecified”), R10.2 (“Pelvic and perineal pain”), 

and R10.30 (“Lower abdominal pain, unspecified”). Given the data limitation, there 

might be codes that are not well represented in our data. Therefore we also exclude 

pairs whose raw similarity scores are lower than 0.25, resulting in the exclusion of 5 

pairs. These 5 pairs are really outliers, since we can see that the lowest similarity after 

 
6 According to ICD10Data.com (https://www.icd10data.com/Convert/789.06), accessed September 30, 

2017. 

https://www.icd10data.com/Convert/789.06
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the exclusion is 0.65. Our final sample comprises 34 common and uniquely 

corresponding ICD-9/ICD-10 codes.  

 

Equation 2 is used to convert the ICD-9 code to an ICD-10 code, and we compare the 

cosine similarity [between ICD-9 and ICD-10] and that [between computed ICD-10 

and ICD-10]. Figure 5 presents the comparison of raw similarity and calculated 

similarity between ICD-10 and the predicted ICD-10. Across all the 34 pairs, the base 

cosine similarity across matched words is 0.79, and this increases to 0.92 when 

adjusting for the Quarter 3 and 4 vectors. The quarter vectors increase fit by 16.5% 

(on average). The increase in similarity is statistically significant at p<0.01, despite 

the relatively small sample size.  

 

Figure 5. Primary diagnosis code conversion using DLV. 

 

 

2.5 Using DLV to Predict 30-Day All-Cause Hospital Readmission 

We apply DLV to predicting patients’ risk of unplanned 30-day hospital readmission. 

As one of the most important hospital quality measures, the 30-day readmission rate 

is tied to as much as maximum of 3% Medicare reimbursement. Given this 



 

 23 

 

importance, readmission is also becoming a focus of business studies (Senot et al., 

2015; Zhang et al., 2016). However, predicting readmission risk remains a difficult 

task (Ben-Assuli and Padman, 2019). In a literature review published in JAMA in 

2011, Kansagara et al. reported that most earlier risk prediction models using 

retrospective administrative data performed poorly (c-statistics 0.55-0.65).  

 

Models used by the Centers for Medicare and Medicaid Services (CMS) to predict 

30-day all-cause readmissions for the three conditions (i.e., heart failure, acute 

myocardial infarction, and pneumonia) initially targeted by its Hospital Readmissions 

Reduction Program had c-statistics between 0.61 and 0.63. These three health 

problems are both common and require high out-of-sample predictive accuracy. DLV 

has several potential advantages over conventional methods as it requires no 

parametric or functional form assumptions and can readily handle high-dimensional 

data. The CMS condition-specific readmission model is used as a benchmark (Chen 

and Grabowski, 2017; National Quality Forum, 2015).  

 

We compare the out-of-sample predictive performance for 30-day acute myocardial 

infarction (AMI) readmissions for the CMS and DLV models. Both models are 

estimated using 2008 hospital inpatient discharge data7 for AMI patients. The raw 

data include 285 variables capturing patient demographics, diagnoses, and procedures 

as well as patient locations and provider identifiers. We identify the target condition 

 
7 We choose the year 2008 in order to control for confounding effects that might have arisen from the 

national hospital readmissions reduction program (HRRP) under the Affordable Care Act (ACA). 

Since July 2009, the Centers for Medicare and Medicaid Services (CMS) Hospital Compare website 

began publicly reporting hospital performance in mortality and 30-day readmission. 
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by the principal diagnosis of the index hospitalization, using the ICD-9 codes. More 

specifically, we identify patients hospitalized with a primary diagnosis of ST-segment 

elevation myocardial infarction (STEMI) (ICD-9 codes 410.1x, 410.2x, 410.3x, 

410.4x, 410.5x, 410.6x, 410.8x, and 410.9x) or non-ST-segment elevation myocardial 

infarction (NSTEMI) (ICD-9 code 410.7x) during the years 2008. Most variables are 

categorical and the full range of variation is high-dimensional. Each five-digit ICD-9 

code has more than 14,000 possible values (as there could be multiple ICD-9 codes in 

one visit). Given this task, conventional risk adjustment methods use experts’ domain 

knowledge and ad-hoc statistical tests to select relevant variables and functional 

forms. Our DLV approach uses the full range of observed variation, including 7 

continuous variables and 15,811 dummy variables following the process described in 

Section 2.2.  

 

The CMS model is estimated by logistic regression while the DLV model is estimated 

via deep learning.8 The models are estimated on an 80% subsample of our data. We 

then use the estimated parameter, or vectors in the case of DLV, to generate 

predictions on the 20% testing sample. Model fit is evaluated using the AUC for the 

testing data sample. These out-of-sample results are reported in Table 1. We find that 

the CMS model has an AUC of 0.61 (Column 1, Table 1), while the DLV model has 

an AUC of 0.79 (Column 4, Table 1). This represents a 30% improvement.  

 
8  DLV estimation technical details: The DLV deep learning model employs a cross-entropy loss 

function – similar to maximum likelihood estimation – and a single hidden layer with 200 nodes. Each 
word is converted to a 300-dimensional vector. The number of hidden layers and the dimensions of the 

vectors are user-determined parameters. Increasing either the number of layers or the dimensions of the 

vectors would increase the model’s flexibility, analogous to estimating models with more flexible 

functional forms. The importance of these assumptions can be tested by estimating models with more 

hidden layers and higher-dimensional vectors. We employ a relatively simple deep learning model and 

the results about DLV’s performance are likely conservative.  
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As previously stated, DLV gives us two advantages: incorporating a large amount of 

clinical data via vectorization, and deep learning. To verify whether the above 30% 

improvement is due to vectorization or simply to deep learning, we also apply a deep 

learning model using the original predictors in the CMS model and report our results 

in Column 2 of Table 1 Surprisingly, the deep learning model has an AUC of 0.57, 

slightly worse than the logistic regression. This is likely due to the fact that the 

variables included in the CMS model are selected based on their performance in a 

parametric model, specifically logistic regression. These findings suggest that DLV’s 

superior performance is driven by its ability to incorporate high-dimensional data; 

however, model flexibility may be important in the variables not selected for the 

CMS model.  

 

Table 1. Comparison of out-of-sample accuracy for 30-day AMI readmissions. 

 (1) (2) (3) (4) 

Model CMS CMS-DL Med2Vec DLV 

No. Variables 209 209 3,929 15,811 

AUC 0.61 0.57 0.70 0.79 

Estimator Logistic regression Deep learning 

without DLV 

Deep learning 

with Med2Vec 

Deep learning 

 

Finally, we compare DLV’s performance with existing models using Med2Vec (Choi 

et al., 2016b; Nguyen et al., 2016). While the vectorization is similar, they only 

vectorized medical codes (diagnosis codes and procedure codes), rather than the 

whole dataset. We therefore performed the vectorization for medical codes only. As 
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reported in Column 3 of Table 1, Med2Vec leveraged 3,929 variables and achieved 

AUC of 0.70. Compared to the DLV’s AUC at 0.79, it clearly demonstrates the great 

value of incorporating more data in improving prediction performance.   

 

We further evaluate the model’s performance on readmissions for all patients in 2008. 

In this example we estimate the model using an 80% sample of all hospital 

admissions and 59,685 variables vectorized by DLV. We attempt to use deep learning 

with and without DLV. Once again, we evaluate out-of-sample accuracy by 

calculating the AUC for a 20% testing sample. 

 

Table 2. Performance of readmission predictive models across traditional machine 

learning, deep learning, and deep learning with DLV. 

Model Deep learning Deep learning Deep learning 

Configuration Without DLV With Med2Vec With DLV 

Input variables 
All numerical and 

dummy variables 

Medical code vectors 

12,934 

All vectorized info 

59,698 

Performance 

(AUC) 
Failed to load data# 0.63 0.77 

#: Data too large to be loaded into a computer with 40 GB of memory.  

 

 

As a comparison, the healthcare data are coded as binary variables for deep learning 

without the DLV model, giving us 59,698 variables (including 13 numerical). 

However, the deep leaning model could not be estimated, even with a relatively high-

end computing facility. 9  In contrast, DLV runs smoothly and yields the best 

 
9 The random forest failed to converge after 100 hours of computing and the penalized regression 

failed to load the data on a computer with 40 GB of memory.  
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performance. The DLV model yields an AUC of 0.77 for the entire population, which 

is significantly better than the previous best performance in the literature: 0.55-0.65 

as summarized by Kansagara et al. (2011). Again, we conducted vectorization 

following Med2Vec and generated 12,934 variables. Using exactly the same deep 

learning model, the performance of Med2Vec is 0.63. This again demonstrated the 

advantage of incorporating more data into the model, a key aspect of DLV compared 

to existing approaches.  

 

2.6 Conclusion and Discussion 

The goal of our proposed DLV approach is to facilitate the utilization and analysis of 

rich healthcare data. This approach leverages cutting-edge deep learning 

technologies, and it can be easily applied to most administrative claims or EHR 

datasets. DLV achieves its efficiency and comprehensiveness in healthcare data 

analytics via: 1) standardized data preparation, which reduces effort and requires less 

domain knowledge; 2) the format of output vectors, which makes downstream 

analyses much more efficient; 3) comprehensive dimension reduction, which retains 

the most information in low dimension vectors; and 4) ease of visualization.  

 

DLV can be used to visualize connections among entities, unveil their relationships, 

and drive computation for deeper insights. Combined with healthcare domain 

knowledge, this user-friendly approach can expedite and expand knowledge 

discovery and hypothesis generation based on readily available real-world data. 

Future research should examine how the size, quality, and richness of different 
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healthcare datasets might affect the performance of DLV and establish best practices 

for the standardization and wider use of this approach. We hope our work serves as a 

starting point of an exciting and productive new area in health services research. 

 

We find that DLV can substantially improve clinical prediction. Our model achieves 

an AUC of 0.79 – significantly better than conventional risk adjustment models, 

which have an average AUC ranging from 0.55 to 0.65 (Kansagara et al., 2011). This 

is also slightly higher than the performance achieved by Rajkomar et al. (2018) (AUC 

of 0.75-0.76) using much more detailed EHR data to train the model on Google’s 

internal distributed computation platforms.10 DLV also reduces the dimensionality of 

this prediction problem, greatly reducing the computational resources required to 

estimate models.  

 

As a pioneering exploration of applying deep learning for vectorizing all clinical 

factors, this paper does have some limitations. First, the data used in this study does 

not include all possible data elements in clinical data. With richer datasets, we believe 

that DLV can perform even better. Second, more healthcare use cases can be 

developed using DLV; however, given the limitation of the data, only visualization 

and readmission prediction were examined. Further studies can use DLV for more 

tasks in medical knowledge discovery and other predictive models.   

 

 
10 Note that the settings of this study and Google’s are not quite comparable. But we hope to give 

audience a sense of the cutting-edge industry research. Though the nature of the prediction tasks could 

be different, Google uses more detailed measures and should perform better.  
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Chapter 3: How AI Plays Its Tricks: Understanding the Superior 
Performance of a Deep Learning-Based Approach in Predicting 
Healthcare Costs 
 

3.1 Introduction 

In  recent years, the information systems (IS) community has been actively 

developing and evaluating new analytical tools to leverage big data in business (Pant 

and Sheng, 2015; Abbasi et al., 2016) across different domains (Meyer et al., 2014; 

Adamopoulos et al., 2018), including healthcare (Agarwal and Dhar, 2014; Abbasi et 

al., 2019). Deep learning, as one of the latest advances in machine learning, is 

showing great promise due to its superior performance in pattern recognition (LeCun 

et al., 2015; Najafabadi et al., 2015). However, the level of its applicability to 

healthcare cost prediction has not been studied. In this study, we aim to contribute to 

a better understanding of the performance of deep learning models in predicting 

patients’ future costs and to provide guidance to practitioners and researchers alike. 

 

Healthcare cost is an important research topic in the IS community. For instance, 

Dranove et al. (2014) examined the impact of electronic medical records (EMR) on 

hospital operating costs. Adjerid et al. (2018) used transaction cost economics to 

study the reduction of healthcare spending caused by health information exchanges 

(HIEs). Atasoy et al. (2017) further dug into the spillover effect of health IT 

investment among hospitals in same regions. As healthcare cost has become a 

prominent research focus, substantial effort has been exerted to make cost prediction 
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accurate (Morid et al., 2017), and the resulting insights and improvements are utilized 

across multiple health applications.  

 

Multiple stakeholders now recognize precise prediction of an individual patient’s 

future costs as critically important (Bates et al., 2014). The Centers for Medicare and 

Medicaid Services (CMS), for instance, has a long history of using cost prediction 

models for patient risk adjustment in reimbursement (Wynand et al., 2000; Schone 

and Brown, 2013). Individual and group healthcare cost predictions are used to 

improve healthcare plan design and to decide which plans employers offer to their 

employees. Healthcare organizations also find prediction highly useful in designing 

targeted interventions to improve quality of care, especially in resource-constrained 

environments (Ganser et al., 2015; Anderson and Bjarnadottir, 2016; Srinivasan et al., 

2017). As the US healthcare system moves from volume- to value-based 

reimbursement mechanisms, cost prediction is playing a central role in initiatives 

such as population health management and bundled payment. Finally, underwriters 

and benefit companies use healthcare prediction extensively to manage insured 

populations. Healthcare cost prediction, of high-cost patients in particular, can drive 

insights into the variability within the healthcare system, potentially leading to more 

efficient use of healthcare resources.   

 

The majority of cost prediction models use past cost information, mostly obtained 

through claims data, as an important predictor of future healthcare costs (Bertsimas et 

al., 2008; Sushmita et al., 2015; Kim and Park, 2019). The claims data reflects each 
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interaction with the healthcare system (provided the interaction is covered by 

insurance), so the claims cost information is therefore reflective of both disease 

burden and utilization patterns. For example, a patient seeking care through the 

primary care system will have a different cost pattern than a patient with the same 

condition who mainly seeks care through emergency departments. As a result, the 

cost information for each patient can be viewed as a sequence of time stamps 

indicating the patient’s health status and utilization of the healthcare system over a 

period of time. This sequence reflects both patient disease progress and utilization 

patterns, which can both be valuable in predicting future costs. 

 

Given this sequential nature of cost data, it is surprising that the past use of healthcare 

costs in the literature has mostly been limited to averages of different cost 

components (e.g., pharmacy costs and inpatient costs) (Duncan et al., 2016; Sushmita 

et al., 2015; Kuo et al., 2011; Frees et al., 2013; Morid et al., 2017) while ignoring the 

more complex patterns in the time series. A few papers have shown that detecting 

cost patterns can improve prediction (Bertsimas et al., 2008, Morid et al., 2019). 

Despite the potential usefulness of complex sequential patterns, as reflected in a 

recent extensive literature review by Morid et al. (2017), most papers still fall back on 

simple cost averages. 

 

Methodological limitations are one possible reason for the under-utilization of 

sequential patterns in the existing literature. Traditionally, healthcare cost modeling 

has utilized regression models (e.g., Ash et al., 2000; Cumming et al., 2002; Zhao et 
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al., 2005); however, the performance of such approaches has been found wanting 

(Schone and Brown, 2013), and by design regression models are unable to 

automatically incorporate complex cost patterns. Over the past decade multiple 

papers have tried to apply traditional machine learning models such as classification 

and regression trees and gradient boosting (Sushmita et al., 2015; Duncan et al., 

2016). Yet these traditional methods often need manual feature engineering, which 

requires strong domain knowledge and which, even in expert hands, can only cover a 

limited scope of features. 

 

In this study, we address this gap in the literature by proposing a new LSTM-based 

approach to better incorporate the sequential patterns in cost prediction in an 

automatic manner. Compared to standard approaches, deep learning models have 

significant potential for improving patient cost prediction: studies have shown that 

recurrent neural network models effectively leverage sequential information in 

several domains such as natural language processing (Cho et al., 2014; Devlin et al., 

2018). Furthermore, deep learning models have the potential to provide this improved 

prediction accuracy without extensive prior feature engineering. Some previous 

studies have included neural networks among their supervised learning approaches 

(Morid et al., 2017), but the modeling has not been at the scale necessary to take 

advantage of the recent development of deep learning. 

 

Despite the potential benefits of deep learning, there are reasons to doubt whether it 

necessarily outperforms traditional machine learning models. First, individual 
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healthcare costs pose a challenging prediction problem due to both unforeseeable 

acute events (such as accidents) and other, sometimes unpredictable fluctuations. It is 

possible for a patient who is healthy for years, to be suddenly diagnosed with a severe 

condition that causes their costs to skyrocket. These sometime unexpected 

fluctuations pose a challenge for any predictive model and it is not clear whether deep 

learning models can outperform other methods utilizing sequential claims 

information. Second, deep learning requires a large training dataset. Researchers have 

not yet studied the appropriate length (time period) of sequential data that facilitates 

the optimal performance of deep learning approaches. As a result, little is known 

about the boundary conditions of the data size needed in order for the use of deep 

learning to be advantageous.  

 

We therefore aim to 1) develop a deep learning model for individual patient cost 

prediction, and conduct a series of rigorous tests to benchmark its performance; and 

2) generate insights that promote a better understanding of deep learning models’ 

advantage in incorporating time series information for precise cost prediction. To our 

knowledge this is the first study to introduce the deep learning approach for 

individual patient cost prediction. We suggest a novel way to examine the 

performance of the deep learning model, demonstrating how it outperforms 

traditional machine learning models when the fluctuation in the input data is high. 

Our research also holds significant value for the practice of cost prediction through 

the introduction of best practices and suitable architecture. 
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The remainder of the chapter is organized as follows. In Section 3.2 we describe the 

data and the experimental setup, followed by model description and performance 

results in Section 3.3. We analyze the model’s performance in Section 3.4, provide 

practical guidelines in Section 3.5 and conclude in Section 3.6. 

 

3.2 Data Sources and Data Modeling 

This study is based on claims data which has a long tradition of use for healthcare 

research. Its efficacy for both medical and healthcare research is due in part to its 

large scale, potentially long follow-up time, near real-time availability, and relatively 

low cost compared to other sources. The claims data is generated during the 

interaction between patients and the healthcare system, and it records the objective 

information into key information such as diagnosis (up to 10 per visit), procedures, 

prescription information, provider and point of service details and demographic 

information. Based on these underlying data, both disease burden and utilization 

patterns can be derived. While claims data has well-known limitations -- for example, 

a lack of diagnostic and prognostic information when compared to medical records, 

as well as variability due to differences in coding practices -- it continues to be an 

important source of healthcare research data (Bjarnadottir et al., 2016). 

 

The claims dataset used in this study is de-identified HIPAA-compliant insurance 

claims data for 1,434,912 residents of nine counties in upstate New York (the greater 

Rochester area). The repository includes claims records from employer-insured, 

Medicare, and Medicaid members, which is all aggregated by a central agency, the 
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Finger Lakes Health Systems Agency. The dataset contains much of the standard 

claims information, including both medical and pharmacy claims, along with 

demographic information such as age, gender and payer type. The data corresponds to 

62,406,379 healthcare encounters that took place between 2007 and 2013. For the 

purpose of this study, we consider the members’ total cost, which is the sum of costs 

for hospital and other medical services and pharmacy costs. On average, a patient had 

43.5 visits during the study period and $252.50 was paid for each encounter.   

 

Table 3. Summary statistics of key cost and demographic variables. 

 mean  std  min  q1  median  q3  max 

Cost in 2007  $2756  $5334  $0  $467  $1060  $2590  $157574 

Cost in 2008  $3101  $6054  $0  $513  $1169  $2880  $288186 

Cost in 2009  $3199  $6344  $0  $510  $1169  $2944  $426721 

Cost in 2010  $3430  $6778  $0  $545  $1258  $3155  $249050 

Cost in 2011  $3689  $7328  $0  $593  $1347  $3329  $348876 

Female  59.62%  49.07%  -  -  -  -  - 

Age (start of 2012)  47  25  1  22  51  67  89 

 

 

The goal of this study is to provide accurate future individual cost predictions. As 

only partial data is available for 2013, we use the members’ information from 2007 

through 2012. To ensure that we are making cost predictions for members who are 

actively enrolled during the outcome period, we select 2011 as the outcome year and 

only include patients who have at least one claim in 2012 (meaning that they did not 

drop out in the middle of 2011). As a result, our final dataset contains 367,523 

patients. We will use patients’ information from 2007 to 2010 to predict their total 

cost in 2011. 
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The input features include demographic information (birth year and gender) and 

annual cost for each of the past four years. For the past 48 months, the average cost 

per encounter for each month, the number of encounters each month, the average 

number of claims each month, and the average number of claims paid each month are 

also incorporated. As a result, we have a total of 198 input features. The dependent 

variable is the member’s total cost in 2011. 

 

We randomly split the data into training (80%), validation (10%) and testing data 

(10%). We analyzed the cost distributions and the distributions of demographic 

variables to ensure a balanced data split across the three subsets. All training was 

performed on the training data, model selection utilized the validation data, and the 

testing data was only used at the end of the experiment to estimate the out-of-sample 

performance. The performance measure, the mean absolute error, is reported on the 

testing data. 

 

3.3 Models and Performance 

We discuss the development and the performance of our RNN-based deep learning 

model below and we compare its performance with simple baselines and traditional 

machine learning models. 
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3.3.1 Deep Learning Models 

When constructing a deep learning architecture, there are no mathematical formulas 

to fall back on, nor are there universal comprehensive guidelines. The appropriate 

architecture is determined by the nature of the data at hand as well as the data mining 

task, and the architecture is constrained by the available computational power. We 

point the interested reader to two introductory works by Andrej Karpathy in which he 

shares his experiences and suggests best practices (Karpathy 2019a; Karpathy 2019b).  

 

We utilize RNN architecture for our deep learning model; specifically, we use long 

short-term memory (LSTM) units to capture the sequential claims information. This 

LSTM model outperformed other RNN models including standard RNN and Gated 

Recurrent Unit (GRU) in our experiments. The LSTM units have a complex design 

that incorporates both short memories (information in the last period) and long 

memories (information in the very early periods) into long sequences. This ability to 

“remember” long sequences is key to LSTM’s advantage and has proven to be a 

powerful property in number of applications. For example, LSTM-based RNN 

models are the current technology leaders in Natural Language Processing (NLP) 

fueling translations and chatbots. It is also the method used by IS researchers for 

complex sequential data analytics (Liu et al., 2019). Compared to traditional models 

like hidden Markov models, which incorporate a finite number of prior choices, 

LSTM has fewer limitations on memory and does not require a prior density 

distribution of the inputs. Another advantage of LSTM is its ability to manage the 

gradient vanishing problem, which has hindered successful training of many other 
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RNN models.  Given the high complexity in healthcare cost prediction, an LSTM 

model may provide better performance than the standard RNN model due to the 

aforementioned advantages. 

 

We build an LSTM model (hereafter noted as LSTM-DL) to take advantage of the 

sequential information in the time-series data. For the 48 months in our training data, 

there are four sequences: (1) the number of encounters of each month; (2) the average 

cost per encounter in each month; (3) the number of total claims each month; and (4) 

the number of paid claims each month. We could combine these four sequences into a 

single time series (and input the data as a four-dimensional vector), or keep the four 

time series separate. By combining the four sequences into one, we could potentially 

leverage the interactions among different sequences for better prediction. 

Alternatively, we could keep the four sequences separate to reduce noise (potentially 

helping the model to learn unique patterns in each sequence), and then integrate the 

output using a hidden layer in the later stage. There is no clear guidance suggesting 

that one approach is always better than the other. We adopted the parallel design due 

to its performance advantage (a detailed comparison is provided in Appendix A).    

 

The resulting architecture is presented in Figure 6. The monthly payment information 

(average cost per encounter, 48 features) is input to an LSTM layer with 400 LSTM 

units. The LSTM output is then fed to a fully-connected layer with 200 nodes. In 

parallel, the number of encounters each month, number of total claims each month, 

and number of paid claims each month are each input to a separate LSTM layer 
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followed by a fully-connected layer, each with 50 units. The larger number of units 

for the average encounter costs reflects the importance of cost information in 

healthcare cost prediction. The four separate LSTM outputs are then merged, together 

with the sex, birth year, and the annual total cost for each member. The merged data 

goes through another fully-connected layer with 300 nodes and then generates the 

final output layer that generates the predicted cost. We directly use the average 

absolute error as the loss function. An Adam optimizer (Kingma and Ba, 2014) is 

adopted to optimize the model parameters on the training data. 

 

The final values of the parameters in the trained model were selected based on the 

model’s performance on validation data: when the model’s performance stabilized, 

we then selected the epoch (iteration) with lowest prediction error on validation data. 

The performance becomes stable after epoch 217. The average performance on 

validation data from epoch 217 to 226 is $2,560 (standard deviation is 0.23, 

indicating that the model is stable). The corresponding average performance on 

testing data is $2,630 (standard deviation is 0.50). In what follows we use the LSTM 

model trained after 220 epochs (which performed the best on the validation data) and 

with a testing error of $2,630. 

 

During our model development and as a post comparison, we contrasted the 

performance of the LSTM-DL model with the performance of other LSTM 

architectures. To create these variants, we altered the basic architecture in a number 

of different ways. First, we merged the four parallel layers and fed the merged 
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sequence into a single LSTM layer (as discussed above); second, we de-emphasized 

the cost information by changing the number of LSTM units for different input 

information; and finally we experimented with removing the fully-connected layers. 

All these variants of the LSTM architecture perform worse than the proposed model, 

with the difference in MAE ranging from $4 to $9. Detailed results are reported in 

Appendix A. 

 

Figure 6. The architecture of the neural network. 

Note: Each node (represented by a cycle) in an LSTM layer is a standard LSTM node 

that takes in the whole sequence (univariate time series of 48 time steps) of input 

data. 
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3.3.2 Benchmark Models 

In addition to comparing our LSTM-DL model with other possible LSTM 

architectures, we compared its performance with baselines and with several 

traditional machine learning models. Since healthcare costs have been shown to offer 

a strong summary of a member’s health and to be a strong prediction of future costs, 

for our baseline model we use the average of each member’s previous years’ costs as 

the prediction for his/her cost in 2011. In other words, we use the past one year cost 

and the average costs over the past two years, past three years, and past four years as 

baselines. In the testing data, the average absolute errors of the baseline predictions 

are $3,239, $3,395, $3,638, and $3,480, respectively. 

 

We then fit a number of traditional machine learning models to the data, including 

linear regression, regularized regression (LASSO as well as ridge regression), and 

random forest (RF). All the machine learning models were trained on the same 

training data as the LSTM-DL model (including the same features). Then, for 

methods having multiple configurations and training parameters, the model was 

selected based on the validation data. 

 

We performed a grid search11 to tune any model parameters. A grid search aids in 

parameter tuning by running all possible model configurations from possible 

parameter options and selecting the best combination (based on the validation data). 

 
11 We used grid search instead of random search or Bayesian model-based optimization because the 

hyperparameter tuning is for the baseline models, and it is essential to reliably cover the possible 

combinations. The girds were made small enough to incorporate the possibilities. For baseline group, 

computational efficiency is not a major concern.  
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For both LASSO and ridge regression, α is set to seven different values: 0.001, 0.01, 

0.1, 1, 10, 100, and 1,000. For the RF model, we used different fine-tuned model 

parameters using 10 trees, then expanded the size of the forest to 500 trees. 

 

Five parameters were tuned for the RF model: the maximum depth of the tree (3, 

None), the maximum number of features (1, 3, 10), the minimum number of 

observations for a node to be split (2, 3, 10), the minimal number required for a leaf-

node (1, 3, 10), the objective function (mean squared error, mean absolute error), and 

the bootstrap option (On, Off). As a result, 216 RF models were generated. 

 

3.3.3 Performance Comparison 

Model performance is summarized in Table 4. The mean absolute error of the linear 

regression model is $3,165, almost the same as the error of ridge regression ($3,165, 

with α = 1000) and very similar to that of the LASSO regression ($3,158, with α = 

100). The best performance for the RF model corresponds to no restriction on the 

maximum depth of the individual trees, the maximum feature set to 3, the minimum 

number for a split set to 2, the minimal number required for a leaf set to 10, objective 

function set to the mean absolute error and bootstrapping utilized. The corresponding 

absolute error is $2,715, significantly lower than that of the regression models. In 

addition, we compared the LSTM-DL model to a standard RNN, one-dimensional 

convolutional neural networks (CNN1d), and two-dimensional convolutional neural 

networks (CNN2d) using different architectures (including the architecture of the 

proposed model). The difference between the LSTM-DL model and other deep 
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learning models ranged from 1.0% to 6.0% (details are provided in Appendix A). 

Among all the models, the LSTM-DL model has the best performance. 

 

We use deep learning for regression; the RNN architecture is utilized. We use LSTM 

units in deep learning to capture the sequential information. Using exactly the same 

input information (198 features), the deep learning model achieved the best 

performance. 

 

Table 4. The mean absolute error (and the mean absolute percent error in parentheses) 

of all cost prediction methods. 

Model  
Testing data MAE 

(MAPE*)  
Validation data MAE 

Baseline  $3239 (203.27%)  $3156 

Linear Regression  $3165 (248.06%)  $3121 

Ridge Regression  $3165 (248.05%)  $3121 

LASSO Regression  $3158 (252.45%)  $3113 

RF  $2715 (135.63%)  $2643 

LSTM-DL  $2630 (105.68%)  $2559 

*The MAPE calculation excludes two members with zero cost 

 

By design, the LSTM-DL model is significantly more complex that the other machine 

learning approaches, especially the regression models. If cost fluctuation is important, 

the regression models are unable to capture that information directly from the time 

series input. However, feature engineering can incorporate some of the characteristics 

of the time series, improving the machine learning models. As a step in that direction, 

we include the standard deviations of each sequence as additional input features. The 

performance of the regression models improved: the linear regression model from 

$3,165 to $3,155, ridge regression from $3,165 to $3,155, and LASSO regression 
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from $3,158 to $3,152. Interestingly, the performance of RF remains stable. The 

improvement in the three regression-based models indicates that incorporating 

additional variables through key feature engineering could improve their 

performance. In contrast, one of the advantages of deep learning is its lower need for 

feature engineering. 

 

The mean of the outcome variable on the testing sample is $3,687. As a result, the 

LSTM-DL error corresponds to 71.34% of the mean. We heed many caveats when 

comparing predictive performance across papers that utilize different data; however, 

this percentage compares favorably with published papers that report the mean 

absolute error of annual cost prediction using large study cohorts: 93% by  Cumming 

et al. (2002), 98%   by Powers et al. (2005), 78.8% by Bertsimas et al. (2008), 75% 

by Kuo (2011), 146.87% by Frees(2013), and 80.0% by Ramamurthy et al. (2017). 

While one cannot directly compare predictive performance across datasets, this 

indirect comparison can serve as a clue to the relative performance of the different 

approaches in the published literature. We further note that some of these studies use 

significant (manual) feature engineering in their machine learning models. 

 

Subgroup Performance. To further examine the robustness of LSTM-DL’s 

performance advantage, we partition the data based on healthcare costs, age, gender 

and diagnoses for subgroup comparison. Figure 7 summarizes this analysis using 

members in the testing dataset and their outcomes. In Figure 7 (a), patients are 

divided into ten equal-sized groups according to their cost in 2010. We observe that 
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the LSTM model is the best model across all the patient groups, but most 

significantly, it performs the best for high-cost patients (groups 9 and 10). In Figure 7 

(b), we compare the performance across patients based on birth year, dividing the 

patients into three equally sized age groups. Again, while the LSTM-DL model 

performs best across all groups, the difference is the largest for the oldest members 

(group 1); we again note that the advantage of LSTM-DL is bigger in the high-cost 

group (oldest). In Figure 7 (c) we note that the advantage of LSTM-DL is similar for 

the two genders.  

 

In Figure 7 (d), we compare performance by diagnosis across patients with the 100 

most common diagnoses. The minimal frequency is 647/36753 (anemias); the 

maximal frequency is 9953/36753 (nonallopathic lesions). Note that the same 

member may be present in multiple subgroups. Again, we observe that LSTM 

achieves the lowest error consistently across most diagnoses, with the exception of 

only one single diagnosis group, “malignant neoplasm of prostate” (with a mean cost 

of $9,226), where RF outperforms LSTM-DL.  

 

We further studied model performance on the dataset broken down by chronic disease 

burden with each member's chronic diseases identified using the chronic condition 

coding scheme from AHRQ’s Healthcare Cost and Utilization Project 12 . The 

performance of the model for members with at least one chronic disease was 

consistently better than that of the benchmark models. Similarly, we broke down the 

 
12 Chronic diseases are identified according to the ICD9 diagnosis codes using the translation file 

downloaded from the AHRQ’s H-CUP project via this link: https://www.hcup-

us.ahrq.gov/toolssoftware/chronic/chronic.jsp. 
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dataset by body system affected (for example the circulatory, the respiratory or the 

digestive systems); here again, LSTM-DL consistently outperformed the other 

models.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 7. Model performance as a function of 2010 costs, age, gender and diagnosis. 
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Overall, our subgroup analyses confirm that for most subgroups, LSTM-DL 

consistently achieves better prediction performance than other models. 

 

3.4 Understanding the Role of Fluctuations in Cost Prediction 

In this section we present a novel approach to understanding the prediction 

improvements of the LSTM-DL model: specifically, we use regression modeling to 

understand what drives errors and differences in performance. Starting with a study of 

the performance of the LSTM-DL model as a function of the variability in members’ 

monthly costs, we apply this approach to gain insight into the role of such 

fluctuations in the data and how they affect model performance. We further 

decompose overall fluctuation into three components:  trend, seasonality, and the 

remainder. We then study the LSTM computational units and their outputs for a more 

intuitive understanding of how the model responds to different levels of fluctuation. 

 

To avoid selection bias, we interpret the deep learning by not choosing the best on our 

testing data, which may be less generalizable. We use the trained deep learning model 

after 210 epochs, whose error is $2597.17. It is a stable model because the two epochs 

before and after it are all at the same error level: prediction error is $2598.26 for 

Epoch 208, $2599.02 for Epoch 209, $2599.75 for Epoch 211, and $2597.68 for 

Epoch 212. 

 



 

 48 

 

3.4.1 How Fluctuation Affects Prediction Accuracy 

We focus on the fluctuation in the time series of healthcare costs; the monthly costs in 

the past 48 months are used to calculate the fluctuation, where members are indexed 

by i, and time period is indexed by t:  

 

……(3) 

We then define the dependent variable modelErrAbs, as the absolute error of each of 

the approaches (LSTM, the strongest baseline, linear, LASSO and ridge regression, 

and RF). For instance, LSTMErrAbs, is the LSTM model’s performance (measured by 

the absolute error). 

 

……(4) 

 

Table 5. Impact of fluctuation on absolute model performance 

 (1)  

LSTMErrAbs 

(2)  

Past1yearErrAbs 

(3)  

LinearErrAbs 

(4)  

LASSOErrAbs 

(5)  

RidgeErrAbs 

(6) 

RFErrAbs 

Fluctuation  -0.21*** 1.27*** 0.24*** 0.25*** 0.24*** -0.15*** 

 (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) 

Paid2011  0.86*** 0.64*** 0.67*** 0.67*** 0.67*** 0.83*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Birth Year  5.51*** 0.88 -10.47*** -10.94*** -10.47*** 3.51*** 

 (0.36) (1.06) (0.6) (0.59) (0.6) (0.41) 

Gender  -87.45*** -125.05*** -105.58*** -82.51*** -105.54*** -83.54*** 

 (8.39) (24.54) (13.86) (13.79) (13.86) (9.43) 

Constant  -11193.73*** -1830.74*** 21022.13*** 21918.02*** 21018.81*** -7134.94*** 

 (711.35) (2081.47) (1175.41) (1169.87) (1175.5) (799.88) 

Notes: Standard errors in parentheses 

Significance is indicated by *** p<0.01, ** p<0.05, * p<0.1 

The columns headed LSTMErrAbs, Past1yearErrAbs, LinearErrAbs, LASSOErrAbs, 

RidgeErrAbs, and RFErrAbs, show the absolute prediction errors of LSTM-DL, past 

one year, linear regression, LASSO regression, ridge regression, and RF, 

respectively. 
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Table 6. Impact of fluctuation on model performance difference 

 (1)  

LSTM-Past1year 

(2)  

LSTM-Linear 

(3)  

LSTM-LASSO 

(4)  

LSTM-Ridge 

(5) 

LSTM-RF 

Fluctuation  -1.48*** -0.45*** -0.46*** -0.45*** -0.06*** 

 (0.02) (0.01) (0.01) (0.01) (0.00) 

Paid2011  0.22*** 0.19*** 0.19*** 0.19*** 0.03*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) 

Birth Year  4.63*** 15.99*** 16.45*** 15.98*** 2.00*** 

 (0.98) (0.40) (0.39) (0.40) (0.21) 

Gender  37.60* 18.13* -4.94 18.09* -3.91 

 (22.72) (9.29) (9.17) (9.29) (4.89) 

Constant  -9362.99*** -32215.86*** -33111.75*** -32212.54*** -4058.79*** 

 (1926.64) (787.76) (777.82) (787.59) (414.65) 

Notes: Standard errors in parentheses 

Significance is indicated by *** p<0.01, ** p<0.05, * p<0.1 

The columns headed LSTM-Past1year, LSTM-Linear, LSTM-LASSO, LSTM-Ridge 

and LSTM-RF show the differences between the LSTM prediction errors and the 

baseline, the linear regression, the LASSO regression, the ridge regression and the 

RF prediction errors, respectively 

 

Equation 4 focuses on model performance (the absolute error), where modelErrAbsi is 

the absolute error of a model, Fluci is the fluctuation derived from the monthly cost of 

each member, and Xijs are control variables, gender, birth year, and patient healthcare 

cost in 2011. The significance of β1 indicates whether the model’s performance is 

significantly impacted by the monthly cost fluctuations after accounting for age, 

gender and 2011 costs: a negative sign of β1 indicates that fluctuation leads to lower 

absolute error and thus better prediction. The results are reported in Table 5. 

 

The coefficient of Fluci in the LSTM-DL model (Column 1 in Table 5) is 

significantly (p<0.01) negative. This finding demonstrates that LSTM-DL generates 

significantly better predictions when the monthly costs have high fluctuation even 

after accounting for overall healthcare cost in the outcome year, birth year, and 
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gender. Interestingly, in most other traditional prediction models (past one year, linear 

regression, LASSO regression, and ridge regression) the coefficients of fluctuation 

are all significantly (p<0.01) positive, meaning that these models’ performance is 

degraded by the fluctuations (Columns 2-5 in Table 5). The only exception is RF 

(Column 6), which can leverage the fluctuation to improve prediction, although the 

magnitude of improvement is smaller than the magnitude of improvement attained by 

LSTM-DL. This finding is also consistent with our exploration in Section 3.3.3, in 

which we found that using the standard deviations as additional inputs can improve 

the performance of regression models but not RF. The results here again indicate that 

regression models cannot utilize fluctuation information by themselves while RF can 

leverage fluctuation information to some extent. Overall, the results in Table 5 

confirm that LSTM-DL shows superior performance when facing higher fluctuations, 

while most other models’ performance declines. 

 

Next, we examine how the performance advantage of LSTM-DL varies when facing 

different levels of fluctuation. We set the dependent variable, LSTM-Modeli, as the 

difference between the absolute error obtained by the LSTM-DL model and that 

obtained by a machine learning method. For example, when comparing LSTM-DL 

with linear regression, the dependent variable becomes LSTM-Lineari, which equals 

LSTMErrAbsi - LinearErrAbsi. Since we are comparing the absolute prediction errors, 

a negative value of the above variable means a reduction in prediction error, and 

therefore a greater performance advantage of LSTM. 
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……(5) 

 

In Equation 5, β1 indicates how fluctuation is related to the LSTM-DL model’s 

relative advantage after controlling for costs, age and gender. A negative β1 means 

that when facing higher monthly cost fluctuations, LSTM’s performance advantage 

(in reducing the prediction errors) is even greater. As reported in Table 6, the 

coefficients of fluctuation for the performance difference between the LSTM-DL 

model and all other models are significantly (p<0.01) negative, indicating that the 

superior performance of LSTM-DL to other methods can in each case be significantly 

connected to members with high fluctuations. Therefore, we conclude that compared 

to all other methods we have investigated, LSTM-DL shows the greatest advantage in 

a context of highly-variable observations. 

 

Further Explorations of Fluctuation: We further study the impact of variability using 

different definitions of fluctuation. First, we decompose the cost series into its time 

series components (trend, seasonality and the remainder). Due to their high 

correlations, we run a separate analysis on each component. We consistently find that 

the higher the fluctuations in each component, the bigger the advantage of the LSTM-

DL model (after controlling for the member’s overall cost, age and gender). The 

estimate of the impact is similar across the three components but highest for trend. 

Second, we alter the definition of fluctuation to only reflect large increases in costs 

(defined as at least 100% and at least $50). Using this definition, we again 
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consistently find that the higher the fluctuation, the bigger the advantage of the 

LSTM-DL model. Details of these additional analyses can be found in Appendix B. 

 

Overall, our findings indicate that LSTM models can do much better than other 

models when facing high fluctuation in the sequential data of patient costs. It is 

surprising to see that while greater fluctuation makes other traditional models deliver 

less precise predictions, it actually makes LSTM models deliver unequivocally better 

performance.  

 

One possible explanation of this finding may lie in the information offered by 

fluctuations. The fluctuations in an input cost sequence reflect cost changes caused by 

many complex patterns. However, most of these patterns are not explicit and are hard 

to recognize. Since traditional machine learning models cannot easily recognize these 

patterns, the fluctuations are only noise to them. LSTM models, on the other hand, 

can leverage the complex patterns contained in the input sequence: to them, the 

fluctuations are not noise, but useful inputs. Therefore, we believe that LSTM models 

outperform other models through utilizing the so-called noise. 

 

3.4.2 Unfolding LSTM Processing 

To understand how the LSTM-DL model leverages fluctuations to a greater extent 

than other models, we focus on the LSTM computational units and specifically on the 
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400 LSTM units that process the cost information and visualize their output13 for 

different input sequences. The LSTM outputs will be passed on to the next fully-

connected layer (i.e., the 200 nodes in the layer). More specifically, the last value of 

the output sequence will be passed on (which is a common practice in recurrent 

neural network design because the last value incorporates the information from all 

previous values in the output sequence). Each node in the fully-connected layer 

weights each of the 400 inputs for further processing.  

 

To gain a more intuitive understanding of how LSTM incorporates fluctuation 

information in its prediction, we randomly select a patient with high fluctuation and a 

patient with low fluctuation from the testing sample. We then feed their data to the 

trained model and visualize the output of the LSTM units. In Figure 8, the top row 

reflects the high-fluctuation patient, and the bottom row the low-fluctuation patient. 

The first column (A) shows the output of the LSTM-DL model. In each figure, the 

red line is the actual cost sequence (i.e. input to the LSTM). Each of the 400 green-

blue lines reflects the outputs of a single LSTM node. The green-blue color represents 

the average weight given by the nodes in the following fully-connected layer to the 

last value in the sequence. The shape of each line reflects the output sequence of the 

corresponding LSTM unit. In comparing A1 and A2 in Figure 8, it is evident that the 

trained LSTM-DL model is capable of responding differently to the fluctuation in the 

 
13 For each individual patient, we input the cost sequence of the past 48 months into the LSTM layer. 

The cost sequence is fed into all 400 LSTM nodes in the layer. Consequentially, by construction each 
of the LSTM nodes will output a sequence of the same length. More specifically, each LSTM node 

processes the input sequentially and calculates an output sequence one value at a time, with each 

subsequent output value dependent on those before it. In other words, each value in the output 

sequence is dependent on all the previously calculated output values. Finally, the sequence is passed on 

to the subsequent layer; however, as is typical in these models, only the last value in the output 

sequence is utilized by the next layer. 
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cost sequence: the high fluctuation in the first patient triggers much stronger output. 

The LSTM-DL model is able to translate the fluctuation to measurable signals and 

pass them on to the next layers. This is largely consistent with our findings regarding 

the LSTM-DL model’s ability to make use of fluctuation patterns.        

 

 

A1 

 

B1 

 

C1 

 

A2 

 

B2 

 

C2 

 

Figure 8. Real patients with high and low fluctuation. 

Note: These patients are from the testing data, which was not exposed to any of the 

models during model training. 
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We next manipulate the knowledge in the learning step and train two models: LSTM-

DL-high, which was trained using only members with high fluctuation data (top 

25%), and LSTM-DL-low, which was trained using only data from members with 

low fluctuation data (bottom 25%). We then examine the output of the LSTM layers 

of these two models to study the reaction to high- and low-fluctuation cost sequences. 

LSTM-DL-high (Figure 8 B1) shows a strong reaction to the fluctuations and output 

sequences, with even larger reactions when compared to LSTM-DL in A1; LSTM-

DL-low reduces the fluctuations in the raw sequence and passes relatively flatter 

signals to the next layers (Figure 8 C1). Similar patterns are observed across the low-

fluctuation patient input (B2 and C2 in Figure 8). There are significant distinctions 

between the three models, suggesting that the ability to identify and amplify useful 

fluctuation signals is not inherent to LSTM itself. Rather, this is gained during the 

learning process.   

 

In addition to the real patient data, we also construct input sequences using common 

functions such as constant, linear, and quadratic functions. The insights obtained are 

similar and are reported in Appendix C. 

 

3.5 Sensitivity to Sample Size and Heterogeneity 

While we show solid evidence that the LSTM-DL model outperforms other models, 

this performance is achieved by fully utilizing the 48 months of data and the entire 

data set. In reality, however, high turnover is typical in claims data, as members may 

switch insurance plans or move causing discontinuity in claims histories. When 
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applying machine learning models, then, decision makers often face the tradeoff 

between a shorter time sequence with a larger sample size or a longer time sequence 

but with fewer patients meeting the inclusion criteria.  

 

In this section, we examine the sensitivity of LSTM-DL’s advantage with respect to 

these two key modeling decisions: the duration of the observation period (or, 

equivalently, the sequence length) and the dataset size. Furthermore, given that there 

is substantial heterogeneity among patients in their degree of fluctuation, we explore 

how segmenting, i.e. building different LSTM models for different patient groups, 

can benefit predictive performance. Findings from these explorations provide useful 

guidance for the practical application of LSTM models in practice. 

 

3.5.1 Input Data 

Length of the Observation Period. One may hypothesize that the longer the 

observation period, the better the achievable prediction. Yet at the same time, recent 

information is more relevant to cost prediction (as a member´s current health status is 

the most relevant for future health expenditures). To examine the impact of the length 

of the observation period, we vary the observation period for the same cohort of 

patients by duration: 36, 24, 12, 6, and 3 months, and we contrast the performance 

with the performance obtained using full 48-month period model. As summarized in 

Table 7 and visualized in Figure 9, the performance of the LSTM model is 

remarkably robust to the sequence length. As the observation period is shortened, its 

performance deteriorates only mildly. For example, reducing the observation period 
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from 48 months to 36 months results in a small performance drop of only $6. We find 

that LSTM’s performance is significantly reduced when the sequence length is 6 

months or shorter. Yet it is worth noting that even if only 6 months of data are used, 

the LSTM model’s performance is still better than all other models (including RF). 

This analysis also leads to the following observation of the RF model’s performance: 

it deteriorates as the input length increases. Given that RF’s performance is better 

than LSTM-DL using the most recent 3 months, extending the sequence length hurts 

RF’s performance (while it benefits LSTM-DL). This is again reflective of the fact 

that the most recent healthcare costs are most representative of a member’s health 

status, and the fact that RF’s performance often deteriorates as the number of (less 

relevant) features grows. In contrast, the LSTM model can selectively (through its 

forget gate) “forget” the noise in the early periods. This finding highlights the 

advantage of the LSTM model as well as its ability to utilize longer inputs. 

 

Table 7. Model performance and input length. 

Number of Months 3 6 12 24 36 48 

Linear Regression $3171 $3165 $3162 $3163 $3164 $3121 

Ridge Regression $3171 $3165 $3162 $3163 $3164 $3121 

LASSO Regression $3171 $3163 $3161 $3160 $3158 $3113 

RF $2676 $2680 $2686 $2704 $2712 $2715 

LSTM-DL $2703 $2675 $2655 $2640 $2636 $2630 

 

Table 8. Model performance and training dataset size. 

Training Size  6.25% 12.5% 25% 50% 100% 

Linear Regression  $3243 $3197 $3182 $3177 $3165 

Ridge Regression  $3230 $3193 $3180 $3176 $3165 

LASSO Regression  $3178 $3166 $3165 $3167 $3158 

RF  $2743 $2737 $2724 $2717 $2715 

LSTM-DL  $2793 $2839 $2720 $2642 $2630 
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Figure 9. Model performance and input length. 

 

 

Figure 10. Model performance and training dataset size. 

 

Training Dataset Size. We next vary the size of the training dataset to examine its 

impact on our proposed LSTM-DL model. The data was down-sampled using random 

selection. As expected, as the training dataset size decreases, the performance of the 

LSTM-DL model deteriorates. However, as reported in Table 8 and Figure 10, it 
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remains the best model when the sample size is reduced to 25% of the original 

sample.  When the training dataset size is further reduced to 12.5% and below, the RF 

model outperforms the LSTM-DL model. This finding highlights the fact that the 

LSTM-DL model does not always outperform other machine learning models; a 

sufficient amount of training data is needed to realize the advantage of LSTM models. 

One practical implication is that in the tradeoff between longer sequence and larger 

sample size, LSTM seems to be more sensitive to the sample size. 

 

3.5.2 Patient Segmentation 

As discussed above, fluctuations are an important aspect of the LSTM-DL model’s 

performance. One may therefore hypothesize that additional value could be gained 

from fitting separate models on low- and high-fluctuation cohorts. To that end, we 

retrained two separate LSTM-DL models using only high-fluctuation data (top 25%) 

and low-fluctuation data (bottom 25%) as discussed in Section 3.4.1. What we found 

is that the performance of these two fluctuation-specific models, on high- and low-

fluctuation members respectively, was no better than the performance of the original 

model, as detailed in Table 9. Other experiments, including segmenting the 

population by level of healthcare costs and level of seasonality also show no benefit 

of segmentation and retraining. While the reduction in training dataset size might 

affect performance when the population is segmented into multiple sub-cohorts, at the 

same time, the fact that our original model performs equally well as sub-group 

models indicates its high robustness and high applicability. 
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Table 9. Strategic segmentation. 

Training set  Model name 

Performance 

on high 
fluctuation 

testing data 

Performance 

on 
low-fluctuation 

testing data 

Average cost 
in 2011 in 

testing data 

Performance 
on all testing 

data 

All members  LSTM-DL $4455 $1641 $3729 $2630 

Low fluctuation 

members  

LSTM-DL-

low 
$4655 $1721 $2199 $2835 

High fluctuation 

members 

LSTM-DL 
high 

$4740 $1872 $6472 $2914 

Note: the best model for each training data set is selected based its performance on 

validating data. 

 

3.6 Conclusions and Discussion 

Deep learning models have the potential to improve predictions in data-rich 

environments such as healthcare settings, which makes them highly worthy of 

research and consideration. Taking advantage of recent developments in deep 

learning, we develop an LSTM model that captures simple time series information for 

accurate cost predictions. This LSTM-DL model outperforms other machine learning 

models in our experiments using a large quantity of claims data. More importantly, 

this study presents a novel investigation into the performance of LSTM models. We 

not only show that our LSTM-DL model consistently performs well across different 

subgroups of patients, but we also acquire insights into how the LSTM-DL model 

takes advantage of variability in members’ cost structures in order to outperform 

other methods. This study therefore makes important contributions to the application 

and understanding of LSTM models for more accurate prediction of healthcare costs. 
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We would like to note several limitations of this study. Since claims data is widely 

available, relatively easy to use, and comes at a low cost, it forms the basis for our 

study and is one of the most widely used data resources for work in population 

management and health research. Further, since previous research has established the 

importance of claims cost information for future cost predictions, this information 

was key in our study. However, other types of claims data, including diagnosis, 

procedures, prescriptions and potentially even lab information, might also contribute 

to more accurate, albeit more complex, models. This is an interesting avenue for 

future research. In addition, claims data does not capture the patient’s clinical details 

to the same extent as full-scale EMR data, which may also include clinical notes. 

Therefore, LSTM models taking advantage of additional clinical information through 

both additional claims information and EMR records have the potential to further 

improve and advance the science of healthcare cost prediction. We also note that 

some of our empirical findings above may be limited due to our specific dataset, and 

further study is needed to confirm their generalizability. 

 

In conclusion, the continuous advancement of deep learning technology provides 

additional opportunities for future improvement of healthcare cost prediction. We 

believe that attention mechanisms, capsules, and other emerging deep learning trends 

may also offer fruitful directions for future research, as they have the potential to 

make even better use of the available information to generate more accurate 

predictions. As big data and advanced machine learning models become mainstream 

in data rich environments, including many IS research areas, translating deep learning 
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technology to these application areas requires care. The approach taken in this study 

can serve as a road map for considering input data and variables, constructing 

appropriate architecture, and using regression modeling to understand performance 

drivers. 
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Chapter 4: Friend or Foe? How Artificial Intelligence Affects 

Human Performance in Medical Chart Coding 

 

4.1 Introduction 

Artificial intelligence (AI) is shaping our lives dramatically (Brynjolfsson et al., 

2018a; Hosanagar, 2019) and is now broadly heralded as a potential stimulus for an 

economic revolution. Industry projections estimate that AI’s contribution to the US 

economy will be $15.7 trillion by 2030, constituting a boost of up to 26% in GDP 

(PwC, 2017). The anticipated effect on the workforce is striking: because of AI, up to 

400 million workers globally may need to shift jobs by 2030 (Manyika et al., 2017). 

One of the leading domains for AI application today is healthcare, where the 

landscape has changed rapidly in the past two decades, fueled by the adoption of new 

technologies and widespread digitization of health-related data. All major players in 

the healthcare ecosystem, including government agencies (Talley et al., 2011), 

healthcare providers (Krittanawong et al., 2017), insurance companies (Kose et al., 

2015), and pharmaceutical manufacturers (Ekins, 2016), express enthusiasm about the 

potential benefits of AI. Given the size (about one-fifth of GDP) and nature 

(extensive knowledge work) of the healthcare industry, the impact of AI on work in 

this setting may be substantial.  

 

Unlike past automations that displaced humans in manual work and routine cognitive 

tasks, AI, especially given recent developments in machine learning (and its subfield 
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of deep learning), is increasingly outperforming humans in high-level cognitive tasks 

(He et al., 2015; Mnih et al., 2015). For example, while it takes over a decade of 

training to be a radiologist capable of interpreting mammograms, recent tests have 

shown that AI can outperform radiologists in diagnosing breast cancer from X-ray 

images (McKinney et al., 2020), suggesting that it could potentially replace 

professional experts. AI’s superior performance can be attributed to two factors: (1) 

advances in AI helps better extract insights and knowledge from data, thus rendering 

professionals’ years of training and experience less valuable; and (2) human workers 

may be prone to physical constraints such as attention deficits and exhaustion due to 

their natural circadian rhythms (Van Dongen et al., 2000). Indeed, it has been shown 

that fatigue later in the day leads to poor judgement and diagnostic errors among 

health providers (Krupinski et al., 2010; Lee et al., 2013). In contrast, AI is 

indefatigable and consistent in its performance throughout the day.  

 

On the other hand, as an alternative plausible to the perspective of AI replacing the 

human expert, there are reasons to believe that AI complements, rather than 

substitutes for, human labor. At its current technological maturity and capability, AI 

still has a way to go before it can replace professionals (Davenport and Dreyer, 2018). 

If AI mainly automates explicit and simple tasks, this makes people with rich 

experience more productive in leveraging AI, as they can focus on the tacit and 

complex tasks (Pakdemirli, 2019). Similarly, if AI’s role is to mainly assist decision 

making, it can place considerable cognitive burden on a human to digest the 

information from AI as additional input. Therefore, a human worker might be able to 
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leverage AI better during the peak hours of productivity. Given the magnitude of the 

potential economic impact of AI (Korinek and Stiglitz, 2017), obtaining a deeper 

understanding of the interplay between human labor and AI in the context of complex 

cognitive tasks is important for executives and policy makers seeking to maximize 

productivity gains.  

 

In this study, we report one of the first empirical studies on how AI affects the 

performance of workers with different experience levels and at different points in 

their circadian rhythm. For this investigation, we implement a machine learning-

based AI solution in a knowledge work setting in a publicly traded US company in 

the healthcare sector. Our AI is built for medical coding and automatically identifies 

patient conditions in medical charts, thereby offering an opportunity to enhance care 

delivery and reimbursement for insurance companies and healthcare providers.  

 

The AI for the medical coding task offers an ideal setting for studying AI’s impact on 

productivity for several reasons. First, medical coding (specifically risk adjustment 

coding) is a complex and cognitively non-routine task, which is generalizable to 

many other knowledge-intensive jobs. Second, the AI used in this study is a typical 

machine learning-based AI that is considered state-of-the-art for business use. 14 

Third, medical coding has well-defined output quantity and quality at the individual 

coder level, thereby offering appropriate metrics for quantifying AI’s impact on 

 
14 Given that most machine learning models focus on specific and well-defined tasks, the mainstream 

use of AI in business does not replace human work but rather complements it, as previously discussed. 

Consistent with current industry practice, the medical coding AI in this study is designed to augment 

human intelligence.  
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productivity. Using detailed data from the coding of 1,231,447 patient charts over a 

one-year period in a natural experiment setting, we measure the impact of AI on 

medical coders’ productivity, followed by an analysis of the differential impact of AI 

on productivity conditional on workers’ experience levels and circadian rhythm. We 

further conduct a series of qualitative analyses to gain a deeper understanding of the 

nuances and underlying dynamics of AI’s impact. 

 

Our study yields several novel findings. First, we identify an interesting pattern in the 

AI’s performance: AI boosts productivity overall, but rather than helping humans 

during lower productivity periods (afternoon and night), AI helps most in the 

morning, an effect that is contemporaneous with human performance peaks. This 

supports the complementary relationship between AI and human capital. Second, 

while human/AI complementarity would lead us to predict that humans with rich 

work experience would most fully realize the benefits of AI, our findings suggest a 

different relationship between AI and workers’ experience: senior workers realize 

lower benefits from AI than their junior colleagues. Our qualitative analyses help 

resolve this puzzle: we find that workers’ trust in AI is crucial to productivity gain, 

and senior workers are less trusting of AI. 

 

This study makes significant contributions to AI research relevant for business. First, 

it is part of a nascent stream of literature that empirically tests the causal effect of AI 

in improving productivity among knowledge workers in the healthcare field. Second, 

this paper reveals how AI interacts with human workers of different experience levels 
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and at different times of the day. While our research setting is healthcare, the findings 

are generalizable to knowledge-intensive work in other domains, and they yield 

important managerial implications for the wider usage of AI in business.  

 

4.2 Theory and Background 

4.2.1 Productivity and AI 

There are several well-known mechanisms by which AI can increase productivity. 

First, AI can free workers from the time and effort required for certain well-defined 

tasks. To illustrate, in one of the most successful examples of AI in medicine, AI 

outperformed typical medical staff in making diagnoses based on medical images 

(Gulshan et al., 2016). By leveraging AI for specific aspects of a job, worker time can 

be released for other tasks, thereby improving human productivity. Second, AI can 

reduce well-documented errors in human judgment (Danziger et al., 2011; De 

Martino et al., 2006) such as anchoring (Tversky and Kahneman, 1974) and recency 

effects (Tzeng, 1973). Given the significance of human judgment in the economy 

(Kahneman and Tversky, 1979), AI can further improve productivity by addressing 

potential bias in human cognition and assuring quality output.15 

 

However, despite the optimism and hype surrounding AI, empirical evidence for its 

positive effects on economic productivity is scant (Case and Deaton, 2017; Syverson, 

2017). The handful of studies to date have not found overwhelming evidence for 

 
15Although the presence of bias in AI is not the focus of this paper, we acknowledge that, to the extent 

that an AI may be trained on data from humans, it may encapsulate biases. 
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increased productivity; in fact, researchers have offered several explanations for why 

the effect of AI turns out to be insignificant, dubbing this disappointing reality “the 

AI productivity paradox” (Brynjolfsson et al., 2018b).  

 

We aim to shed light on the mechanism by which AI interacts with different aspects 

of human performance, examining differences both within and across workers. First, 

we focus on how AI affects individual worker productivity as the worker’s 

performance varies across time, and we do so by examining one aspect of the 

artificial-human intelligence complementarity that is less understood. That is, human 

productivity varies based on circadian rhythm, which is the “self-sustained oscillator 

with an inherent frequency [that] underlines human 24-hour periodicity” (Aschoff, 

1965). This “biological clock” determines the human body’s level of functioning and 

therefore exerts significant impact on human productivity (Folkard, 1975; Dzogang et 

al., 2018). For example, it has been found that shift workers who need to stay active 

against their internal circadian rhythm experienced negative impacts on health 

(Weibel et al., 1995; Kitamura et al., 2002). In another study of about two million 

students, Pope (2016) found that productivity, as measured by academic performance, 

was significantly higher in a morning class than in an afternoon class. In healthcare, 

radiologists have been found to exhibit decision fatigue later in the day, which leads 

to worse outcomes (Krupinski et al., 2010; Lee et al., 2013). 

 

Since AI has no human circadian rhythm, it can potentially complement and maintain 

or even improve the productivity of human workers during their innately less 
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productive periods. However, it is not clear whether AI’s largest effect will 

materialize at the peak or the valley of the human circadian rhythm. Theoretically, the 

outcome should be driven by the relationship between the human input and the AI 

input. If human and AI inputs are interchangeable, AI’s impact on productivity would 

be stronger during the night (the performance valley) than the morning (the 

performance peak), since human coders slow down at night (see Figure 13) and there 

would therefore be greater opportunity for AI to contribute. However, if strong 

complementarities exist between human and AI input, AI should be most effective in 

the presence of peak human performance. This is especially likely given the current 

uses of AI in knowledge work, where AI tends to focus on narrow tasks that are part 

of the input that facilitate final human decision making (Tegmark, 2017). It is 

therefore possible that AI helps productivity most when the human is at a more 

capable stage in their circadian rhythm, i.e., in the morning, and can better leverage 

the AI input. 

 

4.2.2 Heterogeneity in Leveraging AI 

All workers might not be equally capable of exploiting the potential of AI. In fact, 

studies from the history of technological innovation give cause for concern that AI 

may disproportionately advantage certain types of human workers (David, 2015; 

Decker et al., 2017). Such heterogeneity in human collaboration with new 

technologies mainly comes through the pathway of technology-skill complementarity 

(Goldin and Katz, 1998). This complementarity between human skills and new 

technologies has been a central focus of many studies, confirming that workers who 
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better complement a new technology will gain more from its adoption (Autor et al., 

2003; Bartel et al., 2007).  

 

In recent decades and in comparison with change associated with other types of 

automation, the changes in IT have been argued to be an especially strong example of 

skill-biased technology change (SBTC) (Krusell et al., 2000). Using data from the 

1990s, Bresnahan et al. (2002) find a strong tendency for IT to favor skilled labor. 

They posit that IT in terms of computers and network devices makes data more 

readily available and easier to analyze to obtain business insights, and highly 

educated employees can most effectively leverage this new capability and generate 

greater value.  

 

There are reasons to believe that AI will continue the trend that IT started and will 

also prove to be an instance of SBTC. As such, in order to assess the quality and 

veracity of AI outputs, the human user needs to possess a breadth of knowledge 

around the task that AI facilitates. This includes an understanding of practice, data-

related knowledge, and exposure to the data. Interpretation involves understanding 

the real meaning of the output and comprehending the judgment of the AI. It also 

involves filtering the output of AI and finding ways to check the results (accuracy) 

and decide which parts of the AI output require further attention and consideration. 

This reasoning suggests that workers with in-depth knowledge and proficiency 

around their work might be able to make fuller use of AI. Thus, we would expect 
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seniority to play a role in moderating the impact of AI, and senior workers should be 

better positioned to exploit AI than their junior colleagues.  

 

However, from an alternative perspective it could also be argued that senior workers 

would be disadvantaged in collaborating with AI. This would be, first, because 

previous generations of IT mostly focus on communication (email, web, and social 

networks) and information processing (office suites, databases, and statistical 

software). These technologies serve as facilitators to provide necessary information to 

users, with high-level decision making remaining vested in the human. However, AI 

has now elevated decision support capabilities to a new level, where rather than 

simply preparing input to help humans make high-level decisions, it is getting close to 

making those decisions. Indeed, for the first time in history we see the potential of AI 

to outsmart humans and pose a potential threaten to our future if out of control, a 

concern posed in an open letter signed by Stephen Hawking, Elon Musk and more 

than 8,000 other scholars (Russell et al., 2015).  

 

It is well known that experts, such as senior human workers, are more likely to 

display a lack of confidence and trust in judgments that are not their own (Liu et al., 

2017). The self-confidence engendered by virtue of their experience and expertise 

could lead them to discount the AI’s recommendations (Bradley, 1981). In other 

words, senior workers may experience a loss of control when AI is introduced in the 

workplace and, as a result, resist accepting it.   
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Further exacerbating senior workers’ concern about losing control is the fact that 

many algorithms employed by advanced AI are notorious for their lack of 

interpretability (Pasquale, 2015), and studies of the black box issue point to the 

difficulty humans have in understanding an AI’s reasoning processes. Furthermore, 

AI output can also be biased by the training data, which may result from 

incompleteness (Beymer et al., 2013), skewness (Gitelman, 2013), non-

representativeness (Attenberg et al., 2011), or errors in data preprocessing (Zook et 

al., 2017). Compared to novice users, experts are more likely to spot errors and 

imperfections in AI. Such limitations of the AI can further reduce their trust in the 

AI’s output.  

 

To summarize, there are multiple factors at play that would determine how AI’s 

impact is moderated by a human worker’s level of experience. Since AI targets high-

level complex decision making that requires substantial domain expertise, senior 

workers enjoy the advantage of leveraging the output of AI. At the same time, 

however, senior workers tend to have greater difficulty accepting AI and less trust of 

AI output. Also, if an expert spends extra time evaluating and resolving the conflict 

between their own judgment and AI recommendations, their productivity gain will be 

less than that of junior workers. This ambiguity in the theoretical prediction 

underscores the need for the empirical insights that we offer in this study.  
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4.3 Research Context 

4.3.1 Background 

Our research context is the medical coding industry. In the US healthcare system (and 

in many other countries as well), patient conditions and treatments need to be 

transformed into standardized codes in the billing process. Accurate medical coding is 

necessary for both timely and correct payment and for efficient clinical decision 

making. Historically, medical coding is a labor-intensive job that involves manual 

code evaluation. It is of considerable economic significance: the market size of the 

medical coding industry was $10.6 billion worldwide in 2016 and is increasing 10% 

per year (Grand View Research, 2018).  

 

In our study, we focus on one of the most difficult coding tasks – risk adjustment 

coding from medical charts, which requires human workers to review the complete 

medical chart, especially the unstructured physician notes, and make judgments about 

whether the patient has certain medical conditions such as diabetes. The health 

conditions identified are designated as risks and used to adjust reimbursements, i.e., 

for the same clinical procedure, reimbursement for treatments received by patients 

with higher risks will be higher. The industry has widely adopted the Hierarchical 

Condition Categories (HCC) coding system created by the Centers for Medicare and 

Medicaid Services (CMS) (Li et al., 2010). The economic value of coding activity is 

substantial: an average HCC code has a reimbursement value of several thousand 

dollars (Pope et al., 2004). 
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We note that the practice of medical chart coding is representative of the activities 

that typical knowledge workers do in other industries. The job is a non-routine task 

because HCC codes are not directly included in the medical charts, so coders need to 

read, understand, and interpret the information in order to decide which HCC codes 

should be reported. Moreover, every medical chart includes large amounts of patient-

specific information, requiring a coder to exercise comprehensive reasoning, 

judgment, and decision making for every medical chart (Dimick, 2010). To tackle this 

complex task, our collaborator, a leading public healthcare analytics company that 

provides medical chart coding services to multiple insurance companies, employs 

hundreds of coders who have collectively coded over 36 million medical charts in the 

past decade.  

 

The coding process is as follows: first, every time a coder requests a new chart to 

code, a medical chart is randomly assigned to them. Once assigned, the medical chart 

is displayed on the coder’s desktop screen. The coder first spends some time 

browsing the chart and forms a basic understanding of the patient’s medical profile, 

such as whether the patient has diabetes, cancer, or hypertension. In the second step, 

the coder then goes through the chart to identify evidence for specific codes. Each 

coder is subject to post-reviews of randomly selected coded charts to minimize 

coding errors and to ensure quality. According to the company’s policy, all coders 

must maintain over 90% accuracy in their reported HCC findings. Otherwise, the 

coder will be asked to complete a training program (usually lasting several days) and 

will not be assigned work for the duration of training.  
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Based on discussion with experts and management teams in the company, we 

identified the time spent reviewing a medical chart as the measure of a coder’s 

productivity. While one might think that the HCC codes are the ultimate output, the 

number of HCC codes that can be detected is not purely driven by coder efforts but is 

also determined by the nature of information in the chart. In addition, for every 

possible code identified, a coder expends almost as much effort to determine whether 

that code is a false positive to ensure quality. Given that the charts are randomly 

assigned and the coding quality is well maintained across coders, the average time 

taken to code a chart reflects a natural measure of productivity.   

 

4.3.2 Development of the AI 

We developed a machine learning-based AI to facilitate the labor-intensive process of 

medical chart coding. Specifically, the task that this AI accomplishes is to highlight 

sentences with at least one potential HCC code. To do this, the AI first processes all 

sentences in the chart through a filter. This filter relies on a dictionary, developed and 

maintained by experts in the company, to capture all possible keywords that could 

indicate HCC-related health conditions. However, keyword matching yields too many 

false positives. In the second step, then, a machine learning model is deployed to 

evaluate the probability that the focal sentence contains valid HCC codes, and it then 

highlights that sentence for the coder to preview. This process is illustrated in Figure 

11. 
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A. Two example pages 

 

  

B. AI findings from two example pages 

 

Figure 11. Example of ai findings in a medical chart. 
Note: The highlighted areas in A are done by AI and are magnified in B. 

 

For model development, we used 26,000 labeled medical charts, out of which 24,000 

were randomly selected as training data. After training, the model was tested on the 

remaining 2,000 charts. We developed several versions of the AI using different 

approaches, including support vector machine (SVM), convolutional neural networks 

(CNN) and recurrent neural networks (RNN). Our implementation is based on the 

SVM version due to its superior computing efficiency. The area under the curve 

(AUC) is 0.97. Our SVM model outputs a probability, which allows us to customize 
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the threshold to control the recall (how many HCC codes could be missed by the AI). 

The company set the threshold as 0.90 (recall as roughly 95%) for the best outcome. 

 

Given its superior performance, this AI is a potential game changer in the industry. 

Before the introduction of machine learning-based AI, both academia and industry 

had expended significant effort in entity recognition from clinical notes using rule-

based models. One of the most famous tools is cTAKES (Savova et al., 2010). During 

our model development, then, we benchmarked our AI models with the performance 

of cTAKES on our data. Given a level of recall (approximately 90%) similar to that 

required of our SVM model, the precision of cTAKES is only 6.5%. Given such a 

high false positive rate, it is not feasible for coders to use rule-based models in real 

coding work, and prior to this AI, our collaborator had not successfully implemented 

any models for HCC coding. Our AI achieves a precision of about 30% while 

maintaining a recall of roughly 95%. With its exclusive ability to handle the 

cognitively complex task of HCC coding, it is making a big difference in coder 

performance. The company has implemented it in daily practice, and executives 

attribute significant revenue generation to its use.   

 

This AI system is representative of current state-of-the-art applications of AI in 

knowledge work: the AI assists the human who makes the final decisions. For 

example, one of the most successful use cases of AI in medicine is diagnoses from 

imaging, where AI suggests the diagnosis and human doctors make the final 

determination (Hainc et al., 2017; Hosny et al., 2018). Similarly, the AI developed for 
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this study highlights sentences where a code might be identified and suggests the 

HCC code that may apply, but it still requires human coders to review its findings. As 

noted by industry experts (Williams, 2015), the singularity of AI is still decades 

away, and the majority of current AI applications are similar to our use case, in which 

AI facilitates rather than completely replaces human decision making. Therefore, 

findings from this study are pertinent to the current practice of AI use in business. 

 

4.3.3 AI Implementation 

The AI system went online in July 2018. With help from management, 80 coders 

were selected to represent the full spectrum of coding seniority levels. 16  The 

remaining 468 coders who did not have access to the AI constitute our control group. 

To help us understand the impact on productivity, we collected data for a year before 

AI was used. This pre-treatment period runs from July 16, 2017 to April 30, 2018 

(May and June 2018 were excluded due to the adjustment for transition). We also 

have coder performance data from July 1, 2018 to October 31, 2018, which is defined 

as the post-treatment period.17 During our study period, no major changes were made 

to the work procedures aside from the implementation of AI. The 80 coders in the 

treatment group reviewed and coded 196,995 charts. The control group (468 coders) 

 
16 While one might prefer using a random sample of coders as the treatment group, some practical 

concerns preclude us from doing so. There is a relatively high turnover in coding jobs, and there is a 

concern that the randomization process would enlist coders who might not have sufficient history for 

the pre-trend data or who might drop out soon, which would introduce bias in the analysis of long-term 
productivity. We therefore opt for a more stable treatment group and perform extensive validation tests 

that are described later. 
17 Our sample includes a longer pre-treatment period to better examine the trends of the treatment and 

control groups before the AI implementation. In our robustness test, we also use a shorter pre-

treatment period (the same length as the post-treatment period) and confirm that all the results remain 

the same (results in Table 24). 
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coded 1,034,452 medical charts in the same period for a total of 1,231,447 medical 

charts in the study sample.18  

 

Table 10. Summary statistics. 

 Treated Control 

Pre Post Pre Post 

Num of Charts 138,937 58,058 803,707 230,745 

Num of Charts per Coder 
1736.71 

(293.12) 

774.11 

(301.00) 

1770.00 

(306.64) 

744.34 

(320.44) 

Review Time (in min) 
14.46 

(26.55) 

14.08 

(27.88) 

12.87 

(27.33) 

12.87 

(27.54) 

Num of Pages 
34.57 

(51.08) 

35.24 

(50.28) 

34.39 

(48.71) 

35.06 

(49.55) 

Num of HCC Codes 
0.42 

(0.80) 

0.27 

(0.60) 

0.58 

(0.94) 

0.33 

(0.69) 

Percentage of Round 1 Coding 
99.99% 

(1.00%) 

100.00% 

(0.00%) 

96.59% 

(18.15%) 

98.11% 

(13.62%) 

Percentage of Charts Finished in Early 

Morning 

0.89% 

(9.39%) 

0.05% 

(2.16%) 

9.22% 

(28.93%) 

15.26% 

(35.96%) 

Percentage of Charts Finished in Morning 
19.01% 

(39.24%) 

23.98% 

(42.70%) 

22.64% 

(41.85%) 

25.43% 

(43.55%) 

Percentage of Charts Finished in Afternoon 
38.72% 

(48.71%) 

43.66% 

(49.60%) 

32.63% 

(46.89%) 

29.14% 

(45.44%) 

Percentage of Charts Finished at Night 
41.38% 

(49.25%) 

32.32% 

(46.77%) 

35.51% 

(47.85%) 

30.17% 

(45.90%) 

Percentage of CMS Coding 
56.69% 

(49.55%) 

70.74% 

(45.49%) 

29.54% 

(45.62%) 

66.52% 

(47.19%) 

Standard Deviation in Parentheses 

 

Pooling both groups together, the average time to code one medical chart is 13.11 

minutes with a standard deviation of 27.32; the average number of pages is 34.58 

with standard deviation of 49.21. Focusing only on treated medical charts, the 

average time spent on one medical chart is 14.35 minutes with a standard deviation of 

 
18 The number of charts per coder in the two study groups is different, which is largely due to the high 

turnover rate of this job. As previously mentioned, we selected stable coders for the treatment group, 

resulting in a lower turnover rate and thus a higher number of charts per coder.  
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26.95; the average number of pages is 34.77 with a standard deviation of 50.85. The 

summary statistics of each group in both pre-AI and post-AI periods are reported in 

Table 10.  

 

4.4 Results: Impact of AI on Productivity 

4.4.1 Model-Free Evidence 

 

We first present model-free evidence of the impact of AI on coder productivity. For 

each month, Figure 12 plots the average time (in minutes) that it took coders in both 

the treatment and control groups to code one medical chart. As shown in the figure, 

the trends of the control group and treatment group are very similar with modest 

fluctuations. In the pre-period (July 2017–April 2018), coders in the treatment group 

spent 1.69 more minutes on each medical chart than coders in the control group. 

Leveraging this average difference between the two groups in the pre-treatment 

period, we can calculate the reduction of coding time due to AI implementation. The 

dotted line in Figure 12 shows the time that the treatment group would have spent on 

an average medical chart if that 1.69 minute difference had remained consistent 

throughout the study. Comparing this dotted-line projection to the observed trend, we 

see that AI reduced the coding time for an average medical chart by 0.41 minutes 

(2.95%) in August, 1.04 minutes (6.61%) in September, and 1.57 minutes (9.92%) in 

October. Overall, the average coding time per chart is 14.60 minutes for the treatment 

group in the pre-treatment period, which further decreased to 14.18 minutes in the 

post-period. Meanwhile, the average coding time for the control group increased from 
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12.91 minutes to 13.50 minutes. Comparing the two differences, we conclude that 

coding time was reduced by 1.01 minutes (6.92%) per medical chart after AI 

implementation. 

 

 

Figure 12. Trends in medical chart coding time. 

 

 

To examine the circadian rhythm of human workers, we introduce dummy variables 

to indicate the time of day (according to local completion time) that each medical 

chart was coded. Time of day is categorized as early morning (12 a.m.–7 a.m.; 1,263 

charts completed by the treatment group during our study period), morning (7 a.m.–1 

p.m.; 40,335 charts completed by the treatment group), afternoon (1–5 p.m.; 79,140 

charts completed by the treatment group), or night (5 p.m.–12 a.m.; 76,257 charts 

completed by the treatment group). As presented in Figure 13, the average coding 

time during the pre-treatment period varies across different times of day, suggesting 

the presence of variance in productivity of human workers. Statistics show that the 

average coding time is the shortest in the morning (12.2 minutes). Compared with this 



 

 82 

 

best period, the productivity of coders dropped 13.9% in the afternoon and 31.1% at 

night. This finding also indicates that the highest human productivity (the peak of 

human circadian rhythm) is in the morning and the lowest human productivity (the 

valley of human circadian rhythm) is at night.  

 

   

Figure 13. Medical chart coding time by human circadian rhythm. 
 

 

4.4.2 AI Impact on Productivity 

 

Equation 6 depicts our formal empirical specification. To eliminate potential 

confounders, we conducted coder-level fixed effects analysis. In our model, the 

dependent variable (Yi) is the time (in minutes) spent on a medical chart. Post is a 

dummy variable that takes the value 0 for the pre-AI period and 1 for the post-AI 

period. AI (omitted in the fixed effects model) is 1 for the treatment group, i.e., those 

80 coders who are assigned to use the AI, and 0 for the remaining coders, who do not 

use AI. The interaction term Post * AI captures the effect of AI on review time.  
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 ……(6) 

 

We also included a set of medical chart-level characteristics as control variables. We 

controlled for the time of day coding by including three dummy variables, morning, 

afternoon, and night (early morning as default). The length of medical charts was 

controlled for using number of pages (NumPage). Finally, the type of coding (i.e., 

different versions of HCC codes from CMS and HHS), the round of coding (the 

company uses a second round of coding for quality control), and month when coding 

was performed were also incorporated into our model. Individual coder 

characteristics are controlled using fixed effects. 

 

The estimation of AI’s impact on productivity is reported in Table 11. To validate the 

consistency of the results across specifications, we used an OLS model with chart-

level controls (Column 1) and coder fixed effects with chart-level controls (Column 

2). As reported in Column 2, the coefficient of Post * AI is -1.62, which is statistically 

significant (p<0.01). On average, the AI reduces coding time by 1.62 minutes 

(11.10% in pre-treatment period) per medical chart. Concerns might be raised about 

whether the productivity increase was due to a reviewer’s rush to complete the job, 

thereby lowering output in terms of the number of codes extracted. We therefore 

further controlled for the number of HCC codes found in the medical chart and 

estimated the model again. The coefficient of Post * AI is again negative and 

significant (-1.61, see Column 3), further affirming the result. Our analysis indicates 

that combining AI with human coders does boost productivity in knowledge work.  
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Table 11. AI impact on medical chart coding time. 

 (1) (2) (3) 

 
Main Result  

(OLS) 

Main Result  

(Coder Fixed 

Effects) 

Main Result  

(Coder Fixed 

Effects) 

Dependent 

Variable: 

 
Review Time Review Time 

    

Post 1.19*** 2.64*** 2.35*** 

 (0.22) (0.66) (0.65) 

AI 0.75***   

 (0.08)   

Post X AI -0.56*** -1.62*** -1.61*** 

 (0.15) (0.57) (0.58) 

NumHCC   5.30*** 

   (0.14) 

Constant 0.41 -11.17 -10.84* 

 (1.06) (7.72) (6.56) 

    

Control Variables: NumPage, Round of Coding, Type of Coding, Time of Day 

    

Observations 1,231,447 1,231,447 1,231,447 

R-squared 0.07 0.06 0.09 

Number of Coders 548 548 548 

Robust Standard Errors in Parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

4.4.3 AI and Workers’ Circadian Rhythm 

To formally test the interaction between the AI and workers’ circadian rhythm, we 

used the model specified in Equation 7.  

 

 
……(7) 
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Results are reported in Table 12. Since it is not common for coders to work in the 

early morning (less than 1% of the medical charts are processed during this time 

period) our regression results focus on morning, afternoon and night. Overall, it is 

interesting to note that only the morning and afternoon coefficients in Column 1 are 

significant (p<0.01), suggesting that the effects of AI are not detectable at all times of 

day. Regarding the magnitude, the coefficient of morning is -2.88 while that of 

afternoon is -1.65, indicating that AI’s boost to productivity is much larger in the 

morning. In the meantime, the coefficient for night is only -0.39, indicating that AI’s 

effect at night is only 23.6% of its effect in the afternoon and 13.5% of its effect in 

the morning. Comparing the relative effects at different times of day, we see that AI 

leads to lower (-1.68, p<0.1) review time in the morning (Column 2 of Table 12), i.e., 

greater productivity boost, while the effect is not as strong in the afternoon or night 

(Columns 3 and 4 of Table 12). This finding is consistent with the human circadian 

rhythm (Pope 2016), indicating that the strongest effects of AI are realized at the peak 

of human productivity. As human productivity declines to its lowest point (night), 

AI’s effect becomes insignificant. At their lowest point of performance, coders’ 

ability to collaborate effectively in reviewing AI recommendations might not be good 

enough to trigger the full realization of AI’s value, and the benefits of 

complementarity are not discernible. Overall, the findings in Table 12 strongly 

suggest that rather than AI displacing human input, human and artificial intelligence 

are complementary, further confirming the collaborative nature between human and 

AI in the medical coding tasks.  
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Table 12. AI impact and circadian rhythm (with coder fixed effects). 

 (1) (2) (3) (4) 

 Moderator 

Time of day 

Moderator 

Morning 

Moderator 

Afternoon 

Moderator 

Night 

Dependent Variable: Review Time Review Time Review Time Review Time 

     

Post  2.48*** 2.29*** 2.38*** 

  (0.68) (0.67) (0.67) 

Post X AI  -1.20* -1.59** -2.17*** 

  (0.68) (0.69) (0.56) 

Post X EarlyMorning 2.91***    

 (0.85)    

Post X Morning 1.94** -0.55   

 (0.80) (0.67)   

Post X Afternoon 2.48***  0.22  

 (0.67)  (0.34)  

Post X Night 2.25**   -0.11 

 (0.88)   (0.74) 

Post X AI X EarlyMorning -2.02    

 (1.44)    

Post X AI X Morning -2.88*** -1.68*   

 (0.77) (0.90)   

Post X AI X Afternoon -1.65***  -0.10  

 (0.60)  (0.63)  

Post X AI X Night -0.39   1.75 

 (1.20)   (1.21) 

Morning 4.30*** 4.17*** 3.97*** 4.00*** 

 (0.68) (0.56) (0.51) (0.51) 

Afternoon 3.74*** 3.57*** 3.58*** 3.65*** 

 (0.63) (0.48) (0.50) (0.48) 

Night 5.62*** 5.48*** 5.51*** 5.48*** 

 (0.63) (0.52) (0.52) (0.51) 

Constant -11.00* -10.89* -10.81 -10.84* 

 (6.56) (6.54) (6.56) (6.57) 

     

Control Variables: NumPage, NumHCC, Round of Coding, Type of Coding 

     

Observations 1,231,447 1,231,447 1,231,447 1,231,447 

R-squared 0.09 0.09 0.09 0.09 

Number of Coders 548 548 548 548 

Robust Standard Errors in Parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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4.4.4 Collaboration between AI and Workers of Different Experience Levels 

If technology and experience are complementary, one would expect that senior 

workers will benefit more from AI than their less experienced colleagues. 

Alternatively, as discussed in Section 4.2.2, they may feel uneasy with the AI’s 

recommendations. We now report analyses to test these competing conjectures. Based 

on the recommendation of company management, we measure workers’ experience 

based on their tenure (number of years in the coding job) and classify coders into 

senior (10 or more years’ experience) and junior (less than 10 years’ experience) 

categories.19 In the treatment group, there are 27 senior coders who completed 83,900 

medical charts during the study period. The 53 junior coders completed 113,095 

medical charts in the same period. Correspondingly, in the control group, 101,346 

charts were completed by 65 senior coders and 933,106 charts by 403 junior coders. 

We create a dummy variable for each seniority level, then interact the two seniority 

level dummies with the treatment effect Post * AI.  

 

Results are reported in Table 13. As shown in Column 1, we find the moderating 

effect for junior coders to be negative and significant (p<0.01), which means that AI 

helps junior workers to shorten chart review time and improve productivity. 

Interestingly, the moderating effect of senior coder is small and positive, while not 

statistically significant. The fact that this value is positive suggests that the AI might 

even be slowing senior coders down (i.e., it takes them longer to review a chart when 

using AI). The statistical significance of a greater productivity boost for junior coders 

 
19 We also use multiple cutoffs such as 8 years, 9 years, 11 years, and 12 years to define senior coders, 

and obtain consistent results. More details are provided in Appendix G.  
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is further supported by a Wald test (p<0.05). We also confirm this result by analyzing 

the effect within the treatment group (80 coders). Based on the regression results in 

Column 1, we plot the review time for the two seniority levels before and after AI 

implementation in Figure 14, which clearly shows that junior coders enjoying a 

greater productivity boost.   

 

Table 13. AI benefit to workers at different seniority levels by circadian rhythm (with 

coder fixed effects). 

 (1) (2) (3) (4) (5) (6) (7) 

 Full 

Sample 

Morning Afternoon Night Morning 

Constant 

Sample 

Afternoon 

Constant 

Sample 

Night  

Constant 

Sample 

Dependent 

Variable: 

Review 

Time 

Review 

Time 

Review 

Time 

Review 

Time 

Review 

Time 

Review 

Time 

Review 

Time 

        

Post X Senior 0.98 -0.60 0.52 2.00 -0.83 0.51 1.21 

 (0.78) (0.67) (0.67) (1.39) (0.69) (0.73) (1.42) 

Post X Junior 2.56*** 1.45** 1.06* 4.19*** 1.28** 0.53 3.62** 

 (0.67) (0.62) (0.59) (1.41) (0.56) (0.63) (1.48) 

Post X AI X Senior 0.12 -1.00 -0.82 2.15 -1.23* -1.24* 1.67 

 (0.73) (0.61) (0.65) (1.66) (0.67) (0.75) (2.04) 

Post X AI X Junior -2.14*** -2.68*** -1.12 -2.43 -3.10*** -1.09 -2.05 

 (0.78) (0.77) (0.78) (1.51) (0.82) (0.88) (1.56) 

Constant -10.74* 3.40 -1.57*** 5.36 4.45** 3.03* 6.53*** 

 (6.40) (4.33) (0.20) (4.93) (2.16) (1.82) (1.67) 

        

Control Variables: NumPage, NumHCC, Round of Coding, Type of Coding, Time of Day 

        

Observations 1,231,447 280,953 408,631 431,257 232,210 320,886 318,290 

R-squared 0.09 0.08 0.17 0.06 0.12 0.17 0.05 

Number of Coders 548 479 541 519 251 251 251 

Robust Standard Errors in Parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Figure 14. Visualization of the moderating effect of seniority level. 
 

Given that the coder’s circadian rhythm significantly affects productivity, we further 

examine the above findings for each time period of the day. Results are reported in 

Table 13. Theoretically, if human input is substitutable by machine intelligence, AI 

should be more able to make up the loss of human performance in the “valley” of the 

circadian rhythm. However, our findings do not support this conjecture. We find that 

AI’s benefit to junior coders is significantly higher in the morning (Column 2 of 

Table 13), which is the peak of human circadian rhythm (as reflected in Figure 13). 

This suggests that junior coders need to be at maximal human performance in order to 

extract more value from AI. When human performance is at lower levels (afternoon 

and night), the impact of AI on junior coders becomes insignificant. We also confirm 

that the moderating effect of seniority is consistently insignificant across different 

time intervals (Columns 2–4 of Table 13). Overall, our findings show that AI helps 

junior coders more, and is most effective when the human performance is at peak 

level.  
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One point worth mentioning is that each coder works independently and is not 

assigned to work at a specific time of day. We confirmed that the findings are not 

driven by certain coders working certain scheduled shifts by comparing the 

distribution of medical charts across different times of day for individual coders and 

for the whole sample. First, it is not the case that any single coder works 

predominantly at a particular time of day. Focusing on the treatment group, we 

observed that with only three exceptions, almost all of the coders coded at all three 

time intervals (morning, afternoon, and night). Second, the medical charts finished in 

each time interval were not predominantly completed by specific coders. For 

morning, afternoon, and night, no coder’s work accounted for more than 7% of the 

total charts. Nevertheless, we further constructed a constant sample of 251 coders 

who coded more than 200 charts in all of the three time intervals. In the resulting 

constant sample, 957,614 charts were completed. Of those charts, 160,382 were 

completed by 46 coders in the treatment group. We utilized the constant sample and 

conducted the same analyses described above. The outcomes are similar to our 

original results (Columns 5–7 of Table 13), reinforcing the robustness of the findings. 

 

4.5 Robustness and Falsification Check 

We demonstrated a significant improvement in medical chart coding productivity due 

to the use of AI. As discussed in Section 4.4.2, one might be concerned that the 

increased productivity comes at the cost of a decrease in the output; that is, coders 

might speed up their work but identify fewer HCC codes. To uncover the impact of 

the AI on output quality, we modify Equation 6 by using the number of detected HCC 
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codes as the dependent variable. The number of detected HCC codes was used as the 

measure for quality under the condition that the error rate of the detected codes did 

not change significantly in the post-reviews. This result is reported in Column 1 of 

Table 14. Post * AI has a positive and insignificant coefficient, which means that AI 

does not lead to a deterioration in quality. If anything, the positive sign suggests that 

AI tends to help workers find slightly more HCC codes on average. Meanwhile, we 

do not observe significant differences in quality gains across the two seniority levels 

(Column 2 of Table 14).  

 

To further confirm that our results are driven by AI rather than by common 

environmental factors that affect coding in general, we conducted a falsification test. 

Note that besides HCC coding, coders in this study also work on other chart coding 

tasks, such as CRG, HEDIS, and CDPS coding. Since our AI was developed to 

improve HCC coding, these non-HCC coding tasks should not be affected by the AI. 

Therefore, they serve as good candidates for the falsification test.   

 

During our study period, 246,847 of these non-HCC medical charts were coded by all 

coders (52,208 by the treatment group and 194,639 by the control group). We use the 

same regression model (Equation 6) for these non-AI coding tasks; results are in 

Columns 3 and 4 of Table 14. The coefficient of Post*AI is insignificant, indicating 

that worker productivity in non-AI coding tasks did not increase in the same period. 

Also, the moderating effects of experience levels are not significant, further 
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confirming the insignificant influence of AI implementation on non-AI coding tasks. 

Therefore, our main finding is less likely to be due to factors unrelated to the AI.  

 

Table 14. Robustness checks (with coder fixed effects). 

 (1) (2) (3) (4) 

 NumHCC NumHCC - 

Seniority Level 

Other Coding 

Types 

Other Coding 

Types - Seniority 

Level 

Dependent Variable: NumHCC NumHCC Review Time Review Time 

     

Post 0.04*  6.62  

 (0.02)  (6.73)  

Post X AI 0.01  3.07  

 (0.02)  (2.08)  

Post X Senior  -0.01  5.08 

  (0.03)  (6.71) 

Post X Junior  0.05**  7.01 

  (0.02)  (6.74) 

Post X AI X Senior  0.06*  7.75 

  (0.04)  (4.88) 

Post X AI X Junior  -0.01  1.76 

  (0.02)  (2.20) 

Constant -0.00 0.00 -26.95** -27.08** 

 (0.22) (0.22) (11.76) (11.72) 

     

Control Variables: NumPage, NumHCC, Review Time, Round of Coding, Type of Coding, Time 

of Day 

     

Observations 1,231,447 1,231,447 246,852 246,852 

R-squared 0.10 0.10 0.17 0.17 

Number of Coders 548 548 392 392 

Robust Standard Errors in Parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

We also conducted a series of additional robustness checks, which are reported in the 

Appendix D - H. In these tests we address the following concerns: the distinction 

between the treated coders and coders in the control group stays the same over time 

(Appendix D); 2) the treatment effect is consistent when comparing only with the 
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most recent months in the pre-treatment period (Appendix E); 3) the advantage of 

junior coders in utilizing AI is not driven by their rapid reaction to the AI 

implementation, but rather, the advantage is consistent over time (Appendix F); 4) the 

findings persist if different thresholds are used to split senior and junior coders 

(Appendix G); and 5) the findings are not driven by the learning effects of new coders 

(Appendix H).  

 

4.6 What Mechanisms Underlie Differences in Response to AI? 

Our finding that AI helps junior workers more during their peak performance period 

supports the theoretical conjecture that AI complements, rather than substitutes, 

human workers. However, if AI and human capital are truly complementary, it is 

puzzling why senior workers, with more experience, benefit less from AI compared to 

junior coders. We previously suggested that “experts” may have a tendency to 

disregard the recommendations of an AI, preferring instead to rely on their own 

judgment. In this section, we conduct additional qualitative analyses to further 

uncover the mechanism of AI’s impact on senior coders.   

 

We first collected qualitative feedback from senior coders through focus groups and a 

formal survey after the AI was implemented. We learned that senior coders do not 

trust AI to perform as well as humans and tend to focus on the errors made by the AI. 

Senior coders also complained more about the errors than junior coders did. Indeed, 

one senior coder commented: 
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“I don't fully trust the tool to identify codes. I haven't been told if it is 

supposed to highlight knowns or not so when I see a known not highlighted I 

question if the tool is working correctly.” 

Also, given that the senior coders have higher skill levels, they are more likely 

to detect imperfections in the AI output, which further deteriorates their trust in the 

AI:  

“Many areas of the record are highlighted that are not appropriate for 

coding. Once one area of the record, whether or not appropriately, is 

highlighted, I need to review the entire record. I have not found this to be 

helpful.” 

 

The comments suggest that as a result of their low trust in AI, these senior coders 

opted to review all the information in the charts rather than solely focusing on the 

areas highlighted by AI. The role of trust is also supported by an additional small-

scale lab study we conducted in the company’s work environment. The nine coders20 

in this lab study were typical coders recruited from the coding team, and they had no 

prior exposure to the AI. They were asked to code 100 pre-selected charts (randomly 

selected from the medical chart pool). While all nine coders worked on the 100 

medical charts independently, they were randomly assigned into three groups (three 

coders per group) that used different coding methods.  

 
20 The goal of this lab study is to explore the role of trust on the effect of this AI. Overall, we want to 

examine the impact of the provided instructions, which are used to mimic the actions with and without 

trust. We don’t expect that senior and junior coders will act significantly differently in following the 

detailed instructions. Therefore, the coders do not need to be senior coders. These 9 coders are selected 

because they were not exposed to this AI yet, and it has a mixture of seniority level  that are balanced 

across study groups.  
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Specifically, Group 1 was the control group without AI, which involved reading 

through the whole medical chart to find HCC codes, replicating the standard coding 

practice before AI implementation. The method for Group 2 was designed to mimic 

the case of coders who do not trust AI: although AI findings were provided to them, 

these coders were instructed to not rely on the AI results but to still review all the 

information in the chart. Group 3 was designed to replicate the scenario in which 

coders trust AI. Therefore, coders in Group 3 only validated the AI findings, and the 

validated HCC codes constituted their final coding result.  

 

Table 15. Verifying the mechanism of low productivity due to lack of trust. 

  Group 1 

Control group 

Group 2 

No trust in AI  

Group 3 

High trust in AI  

Coder 1 2 3 4 5 6 10 11 12 

Coder tenure (years) 7 4 6 7 2 9 5 7 9 

Per chart time (min) 15.77 11.43 18.91 18.97 22.96 23.4 9.14 7.98 8.29 

NumHCC per chart 1.54 1.62 1.68 1.64 1.61 1.66 1.54 1.46 1.54 

Num of charts 100 100 100 100 100 100 99 98 99 

Num of AI findings / / / 1095 1095 1095 1095 1084 1095 

Per chart time (min) 15.37 21.78 8.45 

NumHCC per chart 1.61 1.64 1.51 

NumHCC per min 0.1047 0.0753 0.1787 

Note: we used NumHCC per chart as a proxy of quality measure, which shows no  

statistically significant differences across the three groups. In addition, as indicated in 

the last row, the number of HCC codes per minutes also suggests that the 

comprehensive productivity is the highest for high trust in AI and the lowest for no 

trust in AI.  

 

The results are reported in Table 15. Group 3, whose coding method placed a high 

level of trust in AI, achieved much higher productivity ((21.78-8.45)/21.78=61.2% 

less coding time) than Group 2 (no trust). Group 3 also demonstrated 45.0% ((15.37-
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8.45)/15.37) more productivity than the control group. This result confirms that AI 

can significantly improve productivity if coders trust it. It is also noteworthy that the 

average medical chart coding time of Group 2 is much higher (41.7%) than the 

control group. This demonstrates one critical point: AI is not necessarily beneficial – 

in fact, a lack of trust in AI could lead to a negative impact on productivity. The 

findings from this lab study therefore show the importance of trust in leveraging AI 

for high productivity.  

 

Lastly, we note that in this lab study we sought to create contexts with sharp 

differences: i.e., coders were instructed to fully trust or not trust the AI. In reality, 

coders’ trust in AI more likely exists on a continuum between full trust and no trust. 

This low trust might explain why some senior coders in our main study still benefit 

from AI, but less so than junior coders.  

 

Overall, evidence from the qualitative feedback as well as the lab study indicated that 

trust in AI plays an important role in AI productivity gain. Since senior coders tend to 

believe that they have better expertise than AI and possess greater confidence in their 

own judgment, they display a more emphatic lack of trust. Therefore, increasing 

senior coders’ trust in AI, or at least in the good intentions of those responsible for its 

implementation, could persuade and enable these highly experienced individuals to 

realize the full potential of AI in their work.  
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4.7 Discussion and Conclusion 

AI is one of the most powerful new technologies at this point in history, and it could 

significantly affect the economy and change the way we work. However, we have 

limited knowledge about how AI affects individual workers’ productivity. In this 

empirical study in a knowledge-intensive work setting, we find that AI has a positive 

impact on knowledge workers’ productivity, and crucially, we find that the magnitude 

of the benefit depends on the coders’ circadian rhythm. Human experts perform best 

on medical chart coding in the morning and worst at night; correspondingly, AI 

boosts performance most in the morning and least at night. We also find that the 

benefits of AI are heterogeneous among knowledge workers, with junior coders in 

our study experiencing greater gains in productivity. Senior coders, although more 

highly experienced and knowledgeable, are less likely to trust AI and therefore 

benefit less from it.  

 

The findings in this study also offer indications on one fundamental issue, which is 

whether AI is displacing human labor. The overall positive effect of AI, the 

heterogeneity regarding circadian rhythm, and the high trust group (Group 3) in the 

lab study are all confirming the complementarity between AI and human experts. 

This strongly suggests that while AI can replace a significant portion of human input, 

this replacement cannot be extended to all human work, which means part of human 

input is irreplaceable in this setting. Moreover, as we find that high performance (the 

peak of circadian rhythm) can better realize AI’s value, thus, it is reasonable to 

believe senior coders are capable of gaining more than their junior colleague. In other 
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words, AI does not erase the important role of work experience. Since our study 

setting is a typical knowledge work environment and the level of AI is quite 

representative, we expect these implications to be highly applicable to other contexts.  

 

Our work contributes to research at the nexus of healthcare and IT. IS researchers 

have studied the impact of different technologies in healthcare (Ganju et al., 2016; 

Appari et al., 2018), and the human ability to utilize technology is a core focus of this 

literature (Atasoy et al., 2017; Karahanna et al., 2019). Our study highlights the need 

to better understand the potential of AI in the healthcare field. Broadly speaking, this 

study also contributes to the literature on the business value of information 

technology and on SBTC theory.  

 

We acknowledge several limitations of this study. First, the sample is drawn from one 

company, which may cause concerns about the generalizability of our findings. 

However, the coding task performed by this company’s employees is typical of 

knowledge work tasks. In addition, the AI created for this study is representative of 

AI at the present developmental stage. Therefore, the conclusions we derive from this 

study can inform a broader spectrum of contexts in which AI is used. Second, the 

coding industry is characterized by a high turnover rate. To ensure the continuity of 

productivity before and after the AI adoption, coders in the treatment group were not 

randomly selected but drawn from the company’s more stable workers. We conducted 

extensive checks (including the falsification test, the placebo test, and the parallel 

trend) to strengthen the robustness of our findings. One interesting avenue for future 
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research would therefore be to examine the effect of AI in a randomized field 

experiment.
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Appendices 

Appendix A: Details of Model Comparisons 

Deep learning models 

During our model development and as post comparison, we compared the 

performance of the proposed LSTM-DL model with different LSTM architectures as 

well as with other neural network models, as summarized in Table 16 and detailed 

below.  

 

In LSTM-combine, instead of inputting the four sequential features into four parallel 

LSTM layers, we combined the four sequences and fed the merged sequence into an 

LSTM layer that is the same size as the summation of the four parallel layers in our 

original model. This adjustment in the design allows interactions of the four 

sequences. However, the unique patterns in each sequence would be less likely to be 

identified and utilized. This model achieved slightly worse performance than our 

proposed model.   

 

LSTM-equalWeight does not emphasize the importance of the cost information. 

Instead of a 400-node layer for the cost sequence and 50-node layers for the other 

three sequences, the LSTM-equalWeight model reduces the cost LSTM layer to 50 

nodes, which is the same weight as other sequences. This model’s performance is $9 

worse than the original model. 
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LSTM-equalNumNodes has the same number of nodes as the original LSTM-DL 

model. One concern with the LSTM-equalWeight model is that the total number of 

LSTM nodes was reduced, which could be a reason for its lower performance. 

Therefore, in LSTM-equalNumNodes, we increased the number of nodes for the four 

LSTM layers from 50 to 138, which combined is equal to the number of LSTM nodes 

in the original model. This model achieved a slightly better performance than LSTM-

equalWeight, but it was still worse than our proposed model.  

 

LSTM-noFC compares our original model to a model without the fully-connected 

layers immediately after the initial LSTM layers. In the design of our proposed 

model, these fully-connected layers are used to assemble the features identified by 

LSTM nodes. Given that one may question the necessity of using the fully-connected 

layers, we removed them for comparison purposes. The resulting performance is on 

par with the LSTM-equalWeight model.  

 

Finally, we compared the LSTM model with a standard RNN, CNN1d, and CNN2d, 

using the exact architecture of the proposed model as well as the architecture of 

LSTM-combine. Please refer to Table 16 for details; the highest performing model in 

this group is CNN2d-combine, with an MAE that is $26 higher than the original 

proposed model. 
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Table 16. Performance of deep learning models. 

Model Name 

Final 

performance 

on testing 

data 

Best 

performance 

on 

validation 

data 

Model description 

LSTM-combine  $2634 $2562 

In LSTM-DL, the input series were taken by parallel 

LSTM layers first. This model merges the input series 

first and feeds them into a single LSTM layer. 

LSTM-

equalWeight  
$2639 $2565 

In LSTM-DL, the cost LSTM layer has 400 nodes while 

the other 3 LSTM layers have 50 nodes each. In this 

model, we reduce the number from 400 to 50 nodes. 

LSTM 

equalNumNodes  
$2637 $2563 

LSTM-equalWeight reduces the number of nodes for one 

LSTM layer. Therefore, the total number of nodes is 

smaller than for our proposed model. In this model, we 

use approximately the same number of nodes (138 *4) as 

in the proposed model (400+50*3). 

LSTM-noFC  $2639 $2567 

One may ask whether it was necessary to use a fully-

connected layer right after each LSTM layer. This model 

removes that fully-connected layer. 

Standard RNN  $2657 $2583 
This uses standard RNN instead of LSTM. Other 

architecture is exactly the same as our proposed model. 

Fully-connected  $2710 $2634 

This model uses fully-connected layers to replace LSTM 

layers for the deep learning model. Other architecture is 

exactly the same as our proposed model. 

Fully 

connected-combine  
$2789 $2712 

This model uses fully-connected layers to replace LSTM 

layers for the deep learning model. Other architecture is 

exactly the same as the LSTM-combine model. 

CNN1d  $2664 $2590 
This model uses CNN1d instead of LSTM. Other 

architecture is exactly the same as our proposed model. 

CNN1d-combine  $2666 $2588 

This model uses CNN1d instead of LSTM. Other 

architecture is exactly the same as the LSTM-combine 

model. 

CNN2d-combine  $2655 $2580 

This model uses CNN2d instead of LSTM. Other 

architecture is exactly the same as the LSTM-combine 

model. 

Note: The best model for each training dataset is selected based on its performance 

on the validating data. 

 

Time series models 

Beyond demonstrating that our proposed LSTM model performs best among deep 

learning models, we also compared it with time series models. Since our finding 



 

 103 

 

focuses on the fluctuations and other factors related to the input sequences, it is 

important to show that this performance cannot be easily achieved by ordinary time 

series models. More specifically, as reported in Row 1 of Table 17, we used the 48 

monthly costs to predict the total cost in 2011, which is the summation of the 12 

predicted monthly costs in 2011. We used the Python package “pyramid” to develop 

ARIMA models for each of the patients and select the best hyper-parameters for the 

ARIMA model. The performance of the ARIMA-month model yielded a worse 

performance than the baseline. In Row 2 of Table 17, our input was aggregated to the 

annual level. Using the four annual costs as a short time series input and using the 

same model development strategy, ARIMA-year achieved a performance of $3,128, 

which is better than the most basic baselines but still significantly worse than the 

proposed models. This comparison suggests that time series models perform far 

worse than the proposed LSTM-DL model in this task, which in part is explained by 

the high variability in the time series. 

Table 17. Performance of ARIMA models. 

Model Name 

Final 
performance 

on testing 

data 

Best 
performance 

on validation 
data 

Model description 

ARIMA-month  $3362  $3304 

This ARIMA model uses the past 48 monthly costs to 

predict the 12 monthly costs in 2011. Grid search is 

applied to find the best model for each individual 

patient. 

ARIMA-year  $3128  $3055 

This ARIMA model uses the past 4 yearly costs to 

predict the annual cost in 2011. Grid search is applied 

to find the best model for each individual patient. 
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Appendix B: Study of Other Decompositions of Fluctuations 

In the main body of the paper we studied the performance of the different models 

broken down by each patient’s level of fluctuation. In this appendix we further study 

the impact of fluctuations broken down by time series components, then we analyze 

fluctuation using an alternative definition of fluctuation. 

 

Time series decomposition 

We use time series decomposition techniques to separate each patient’s cost sequence 

into three components: trend, seasonality, and the remainder (Cleveland et al., 1990). 

The trend of a patient cost is the overall tendency of the healthcare cost to change 

over time, revealing its “changing direction.” The seasonality of a member’s cost 

series is the periodic variation within a fixed period (12 months, in this study). 

Seasonality is influenced by certain recurring factors, such as annual checkups, 

weather patterns, the patient’s work calendar, etc. The remainder or noise comprises 

the leftover factors that cannot be explained by either trend or seasonality. 

 

 We decompose the monthly cost series using an additive time series model; each 

patient’s monthly cost series (representing 48 months) is decomposed to trend, 

seasonality, and remainder series (each 48 months long). To implement this 

decomposition, we use a two-step approach. First, we de-trend the series utilizing 

changes in the moving average with a 12-month window. Second, we estimate 

seasonality on this de-trended series. The remainder is the original value with the time 
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dependent trend and seasonality subtracted. Finally, we calculate the fluctuation in 

each of the time series components (utilizing Equation 3 in the main body). 

 

Using the dependent variables defined in the main text, we fit the following 

regression models: 

 

……(8) 

 

……(9) 

 

where Component Fluci refers to the fluctuation in each of the three time series 

components. Trend Fluci is the fluctuation derived from the trend component of the 

monthly cost series of each patient; Seasonal Fluci is each member’s fluctuation 

derived from the seasonality component; and REM Fluci is the fluctuation derived 

from the remainder component.  

 

Similar to the analysis in the main body, we use two dependent variables to 

understand 1) how LSTM-DL performs given the fluctuation of different 

components, and 2) whether LSTM-DL performs better or worse than other methods 

when facing different levels of fluctuation in the three components. The significance 

of β1 indicates 1) whether the LSTM-DL model is significantly impacted by the 

fluctuations of each of the three components (for Equation 8) and 2) whether the 

LSTM-DL model performs significantly better (negative coefficient) or worse 
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(positive coefficient) than other methods when faced with fluctuations in each of the 

three components (after controlling for overall cost, age and gender) (for Equation 9). 

 

Since all three components are highly correlated, we report how LSTM-DL 

performance is influenced by each of the three components independently in Column 

1 of Tables 18 through 20. To make the coefficients of fluctuation comparable across 

all three components, we normalize the three fluctuations as independent variables. 

We note that the LSTM-DL model performs better when the fluctuation of all three 

components is high (after controlling for the member's overall cost, age and gender). 

These predictive advantages for members with high fluctuation may result from the 

ability of our LSTM-DL model to capture sequential changes as discussed in the main 

text. The similarity of magnitude among the three components reflects their high 

correlations but suggests that the LSTM-DL model can exert its maximum advantage 

in situations where there is high trend fluctuation (-293.12) compared to high 

seasonal fluctuation (-253.12) and high remainder fluctuation (-260.97). 

 

Columns 2 through 6 of Tables 18 through 20 compare the performance of the LSTM 

model to that of the other machine learning models as a function of the fluctuation in 

decomposed time series. In summary, high trend fluctuation, seasonal fluctuation, and 

remainder fluctuations are all correlated to the high performance of our LSTM-DL 

model. 
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Table 18. Impact of trend fluctuation on LSTM model performance. 

 
(1)  

LSTMErrAbs 

(2)  

LSTM-

Past1year 

(3)  

LSTM-Linear 

(4)  

LSTM-

LASSO 

(5)  

LSTM-Ridge 

(6) 

LSTM-RF 

Trend Fluc  -293.12*** -1737.61*** -619.91*** -631.22*** -619.44*** -83.43*** 

 (8.99) (24.94) (9.96) (9.83) (9.95) (5.24) 

Paid2011  0.86*** 0.21*** 0.19*** 0.19*** 0.19*** 0.03*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Birth Year  5.51*** 7.90*** 15.98*** 16.46*** 15.98*** 2.02*** 

 (0.36) (1.00) (0.40) (0.39) (0.40) (0.21) 

Gender  -87.14*** 44.31* 18.81** -4.24 18.77** -3.79 

 (8.39) (23.26) (9.28) (9.17) (9.28) (4.89) 

Constant  -11385.82*** -17173.97*** -32643.72*** -33561.31*** -32638.96*** -4155.25*** 

 (709.22) (1967.13) (785.18) (775.34) (785.01) (413.52) 

Notes: Standard errors in parentheses 

Significance is indicated by *** p<0.01, ** p<0.05, * p<0.1 

LSTMErrAbs is the absolute prediction error of the LSTM model; the columns headed 

LSTM-Past1year, LSTM-Linear, LSTM-LASSO, LSTM-Ridge and LSTM-RF show the 

differences between the prediction errors of the LSTM model and the baseline, the 

linear regression, the LASSO regression, the ridge regression and the RF prediction 

errors, respectively. 

 

Table 19. Impact of seasonal fluctuation on LSTM model performance. 

 
(1)  

LSTMErrAbs 

(2)  

LSTM-

Past1year 

(3)  

LSTM-Linear 

(4)  

LSTM-

LASSO 

(5)  

LSTM-Ridge 

(6) 

LSTM-RF 

Seasonal Fluc  -253.12*** -1486.24*** -535.17*** -545.88*** -534.81*** -73.73*** 

 (8.87) (24.92) (9.91) (9.79) (9.91) (5.16) 

Paid2011  0.86*** 0.20*** 0.18*** 0.18*** 0.18*** 0.03*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Birth Year  6.10*** 11.54*** 17.23*** 17.72*** 17.23*** 2.17*** 

 (0.36) (1.01) (0.40) (0.40) (0.40) (0.21) 

Gender  -85.47*** 54.37** 22.34** -0.66 22.29** -3.33 

 (8.41) (23.63) (9.39) (9.28) (9.39) (4.89) 

Constant  -12533.67*** -24278.59*** -35074.02*** -36015.91*** -35066.39*** -4446.31*** 

 (708.16) (1988.97) (790.83) (781.39) (790.64) (411.82) 

Notes: Standard errors in parentheses 

Significance is indicated by *** p<0.01, ** p<0.05, * p<0.1 

LSTMErrAbs is the absolute prediction error of the LSTM model; the columns headed 

LSTM-Past1year, LSTM-Linear, LSTM-LASSO, LSTM-Ridge and LSTM-RF show the 

differences between the prediction errors of the LSTM model and the baseline, the 

linear regression, the LASSO regression, the ridge regression and the RF prediction 

errors, respectively. 
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Table 20. Impact of remainder fluctuation on LSTM model performance. 

 
(1)  

LSTMErrAbs 

(2)  

LSTM-

Past1year 

(3)  

LSTM-Linear 

(4)  

LSTM-

LASSO 

(5)  

LSTM-Ridge 

(6) 

LSTM-RF 

REM Fluc  -260.97*** -1475.10*** -528.99*** -538.37*** -528.67*** -73.64*** 

 (8.87) (24.95) (9.92) (9.81) (9.92) (5.16) 

Paid2011  0.86*** 0.20*** 0.18*** 0.18*** 0.18*** 0.03*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Birth Year  6.02*** 11.71*** 17.31*** 17.81*** 17.31*** 2.17*** 

 (0.36) (1.01) (0.40) (0.40) (0.40) (0.21) 

Gender  -85.23*** 56.36** 23.08** 0.11 23.03** -3.24 

 (8.41) (23.65) (9.40) (9.29) (9.40) (4.89) 

Constant  -12385.26*** -24612.27*** -35239.74*** -36210.36*** -35231.44*** -4453.11*** 

 (707.54) (1990.12) (791.43) (782.17) (791.24) (411.74) 

Notes: Standard errors in parentheses 

Significance is indicated by *** p<0.01, ** p<0.05, * p<0.1 

LSTMErrAbs is the absolute prediction error of the LSTM model; the columns headed 

LSTM-Past1year, LSTM-Linear, LSTM-LASSO, LSTM-Ridge and LSTM-RF show the 

differences between the prediction errors of the LSTM model and the baseline, the 

linear regression, the LASSO regression, the ridge regression and the RF prediction 

errors, respectively. 

 

Table 21. Impact of fluctuation on absolute model performance. 

 (1)  

LSTMErrAbs 

(2)  

Past1yearErrAbs 

(3)  

LinearErrAbs 

(4)  

LASSOErrAbs 

(5)  

RidgeErrAbs 

(6) 

RFErrAbs 

Fluctuation  -42.62*** 99.03*** 9.56** 4.86 9.57** -30.04*** 

 (-2.74) (-8.36) (-4.50) (-4.49) (-4.50) (-3.06) 

Paid2011  0.85*** 0.69*** 0.68*** 0.68*** 0.68*** 0.83*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Birth Year  7.27*** -15.15*** -13.83*** -14.60*** -13.82*** 4.77*** 

 (-0.36) (-1.11) (-0.60) (-0.60) (-0.60) (-0.41) 

Gender  -71.91*** -178.71*** -113.42*** -89.37*** -113.38*** -72.57*** 

 (-8.50) (-25.97) (-13.99) (-13.93) (-13.99) (-9.50) 

Constant  -14385.92*** 29669.92*** 27713.72*** 29266.98*** 27697.60*** -9413.51*** 

 (-723.85) (-2210.45) (-1190.85) (-1185.94) (-1190.92) (-808.69) 

Notes: Standard errors in parentheses 

Significance is indicated by *** p<0.01, ** p<0.05, * p<0.1 

The columns headed LSTMErrAbs, Past1yearErrAbs, LinearErrAbs, LASSOErrAbs, 

RidgeErrAbs, and RFErrAbs show the absolute prediction errors of LSTM-DL, past 

one year, linear regression, LASSO regression, ridge regression, and RF, 

respectively. 
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Table 22. Impact of fluctuation on model performance difference. 

 (1)  

LSTM-Past1year 

(2)  

LSTM-Linear 

(3)  

LSTM-LASSO 

(4)  

LSTM-Ridge 

(5) 

LSTM-RF 

Fluctuation  -141.64*** -52.17*** -47.47*** -52.18*** -12.58*** 

 (-7.96) (-3.14) (-3.11) (-3.14) (-1.58) 

Paid2011 0.17*** 0.17*** 0.17*** 0.17*** 0.03*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) 

Birth Year 106.79*** 41.51*** 17.46* 41.46*** 0.66 

 (-24.72) (-9.76) (-9.67) (-9.75) (-4.92) 

Gender 22.42*** 21.10*** 21.88*** 21.10*** 2.51*** 

 (-1.06) (-0.42) (-0.41) (-0.42) (-0.21) 

Constant  -44055.84*** -42099.64*** -43652.90*** -42083.53*** -4972.42*** 

 (-2103.82) (-830.29) (-822.84) (-830.06) (-418.52) 

Notes: Standard errors in parentheses 

Significance is indicated by *** p<0.01, ** p<0.05, * p<0.1 

The columns headed LSTM-Past1year, LSTM-Linear, LSTM-LASSO, LSTM-Ridge 

and LSTM-RF show the differences between the prediction errors of the LSTM model 

and the baseline, the linear regression, the LASSO regression, the ridge regression 

and the random forest prediction errors, respectively. 

 

An alternative measure of fluctuation 

Fluctuation, time series decomposition and variability in costs are not the only way to 

represent cost changes. Motivated by the realities of health care costs – where small 

fluctuations may not reflect a change in the underlying health condition of the 

member – we define an alternative measure of fluctuation focusing on “large 

increases” within a period. Specifically, given a sequence of monthly costs seq = [x1, 

x2, …, x48], we define the month over month change as change = [diff1, diff2, …, 

diff48], where diffi = xi - xi-1. When considering changes in health care costs, however, 

just considering the relative change is not sufficient, as a change from $1 to $5 is a 

400% increase but is not meaningful. We therefore impose a twofold condition to 

specify a large change; the absolute difference needs to be larger than $50 and the 

relative increase needs to be larger than 100%. For each member, we summarize the 
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number of large increases over the 48-month period. Tables 21 and 22 summarize the 

results. We perform the same regression analyses as before and find the results to be 

consistent with the other fluctuation analysis. In this case and after controlling for 

age, gender and the overall costs in 2011, the higher the number of meaningful 

increases, the better the LSTM model performance and its relative performance 

compared to other methods. 
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Appendix C: Signal Analysis of Polynomial and Step Functions 

To further study the reactions of the LSTM units to the input sequences, we study 

their reactions to simple functions, and we include some examples here along with 

insights obtained through this analysis. 

 

As explained in Figure 8 in the main text, we focus on the 400 LSTM units that 

process the cost information and visualize their output. The red line in each figure is 

the cost sequence that is input. Each of the 400 green-blue lines reflects the output of 

a single LSTM unit in response to the input. The shape of each line reflects the output 

sequence of the corresponding LSTM unit. The green-blue color represents the 

average weight given by the nodes in the fully-connected layer to the last value in the 

sequence; the darker the color, the more weight that is given to the output of the 

corresponding LSTM unit.  

 

This study reinforces the findings in the main text about the LSTM units’ ability to 

handle fluctuation in cost sequences of real patients. LSTM-DL-high consistently 

reacts with a high level of fluctuation to even constant or simple inputs. As for 

LSTM-DL-low, any input patterns are less reflected in the output. Across these cases, 

we consistently observe the LSTM-DL model abstracting patterns from the 

fluctuating inputs at a level between the levels of LSTM-DL-high and LSTM-DL-

low. Using these simulated input sequences, we demonstrate that the ability to react 

to fluctuations is learned and not inherent from LSTM structure. This is consistently 

demonstrated in various sequences (generated by different functions).  
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One special and interesting insight is that when the input is a constant (see Figure 15), 

the LSTM-DL model reflects the most stable output signal. LSTM-DL-high outputs 

signals with high fluctuations. LSTM-DL-low’s output signals also exhibit more 

fluctuations than those of LSTM-DL. 

 

 

A3 

 

B3 

 

C3 

 

A4 

 

B4 

 

C4 

 

Figure 15. Simulated input – constant. 
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A5 

 

B5 

 

C5 

 

Figure 16. Simulated input – linear. 

 

 

 

A6 

 

B6 

 

C6 

 

Figure 17. Simulated input – quadratic. 
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A7 

 

B7 

 

C7 

 

Figure 18. Simulated input – two stage constant. 

 

 

 

A8 

 

B8 

 

C8 

 

Figure 19. Simulated input – two stage constant + linear. 

 

 



 

 115 

 

 

A9 

 

B9 

 

C9 

 

Figure 20. Simulated input – two stage constant + quadratic. 
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Appendix D: Placebo Test for Trends in the Pre-Treatment Period 

 

Table 23. Additional robustness checks – parallel trend (with coder fixed effects). 

 (1) (2) 

 Placebo Placebo  

Dependent Variable: Review Time Review Time 

   

Post -0.03  

 (0.43)  

Post X AI 0.24  

 (0.55)  

Post X Senior  0.16 

  (0.66) 

Post X Junior  -0.03 

  (0.44) 

Post X AI X Senior  -0.16 

  (0.86) 

Post X AI X Junior  0.46 

  (0.74) 

Constant -4.62 -4.62 

 (4.02) (4.02) 

   

Control Variables: NumPage, Round of Coding, Type of Coding, 

Time of Day 

   

Observations 942,644 942,644 

R-squared 0.06 0.06 

Number of Coders 534 534 

Robust Standard Errors in Parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Our data covers a 17-month period, from July 2017 to October 2018. One potential 

concern is that the distinction between the control group and the treated group could 

change over time. Especially during the pre-period, the difference-in-differences 

estimation requires that the difference between the treatment group and control group 

is constant (i.e., the parallel trend assumption). Therefore, we conducted a placebo 

test in which we split the pre-period into two by considering the new calendar year as 
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a “treatment.” In this placebo test, July–December 2017 is the pre-treatment period 

and January–April 2018 (months before the actual AI treatment) is the post-treatment 

period. We use the same models as in the main findings and report the results of this 

placebo treatment in Table 23. Neither the main treatment effect nor the heterogeneity 

across seniority levels are significant, indicating that distinction between the two 

groups is stable across the pre-period. This placebo test provides further evidence that 

the findings in the paper are driven by AI rather than by temporal trends.  
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Appendix E: Comparison with Recent Performance 

 

Table 24. Additional robustness checks – comparison with recent performance (with 

coder fixed effects). 

 (1) (2) 

 Same Year Same Year  

Dependent Variable: Review Time Review Time 

   

Post 2.96***  

 (0.84)  

Post X AI -1.97***  

 (0.68)  

Post X Senior  1.45 

  (0.93) 

Post X Junior  3.80*** 

  (0.88) 

Post X AI X Senior  -0.21 

  (0.68) 

Post X AI X Junior  -3.00*** 

  (0.95) 

Constant 2.89 2.65 

 (1.76) (2.06) 

   

Control Variables: NumPage, NumHCC, Round of Coding, Type of 

Coding, Time of Day 

   

Observations 602,152 602,152 

R-squared 0.07 0.09 

Number of Coders 483 483 

Robust Standard Errors in Parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

We set the pre-treatment period at 10 months in order to confirm the parallel trend of 

the two groups. However, the length of the pre-treatment period may also raise a 

concern, as one may argue that the actual treatment effect should be assessed by 

comparing the post-period with fewer distal months in the pre-treatment period. We 

therefore exclude the medical charts completed in the year 2017 and assess the 
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treatment effects by comparing the post-period with only the final months of the pre-

treatment period. As reported below, we find that our main findings are consistent 

and robust (Table 24), suggesting that our results are not driven by a comparison of 

the post-treatment period with a distant pre-period. 
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Appendix F: Temporary vs. Persistent Advantage of Junior Coders 

 

Table 25. Additional robustness checks – effect on worker seniority over time (with 

coder fixed effects). 

 (1) (2) (3) (4) 

 Excluding July 2018 Excluding July 2018 Excluding 

July&August 2018 

Excluding 

July&August 2018 

Dependent 

Variable: 

Review Time Review Time Review Time Review Time 

     

Post -0.50  -1.17**  

 (0.46)  (0.46)  

Post X AI -1.60***  -1.34**  

 (0.61)  (0.66)  

Post X Senior  -1.94***  -1.97*** 

  (0.60)  (0.61) 

Post X Junior  -0.17  -0.41 

  (0.50)  (0.51) 

Post X AI X Senior  0.31  0.32 

  (0.77)  (0.81) 

Post X AI X Junior  -2.21***  -2.05** 

  (0.84)  (0.95) 

Constant -10.32 -10.21  -3.84 

 (6.57) (6.40)  (4.05) 

     

Control Variables: NumPage, NumHCC, Round of Coding, Type of Coding, Time of Day 

     

Observations 1,148,554 1,148,554 1,075,923 1,075,923 

R-squared 0.09 0.09 0.06 0.09 

Number of Coders 546 546 543 543 

Robust Standard Errors in Parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

One alternative explanation for why senior coders lag behind junior coders in 

realizing the benefits of AI is that it takes longer for senior coders to learn and adapt 

to new technologies. If that is the case, then junior coders’ advantage should be 

temporary and would be mostly driven by the starting period (e.g., their younger age 

and higher technological aptitude means that they would adopt the technology faster). 
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To address this concern, we exclude the starting month (July) from the post-period 

and re-estimate the AI’s differential impact with regard to seniority levels. As 

presented in Table 25, all the results are consistent. We further exclude the first two 

months in the post-period (July and August 2018) and use only the last two months in 

the post-period (September and October 2018); this analysis yields the same result. 

This robustness check suggests that senior coders’ disadvantage in leveraging AI is 

persistent rather than temporary.  
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Appendix G: Thresholds for Seniority 

Although the company’s managers suggested 10 years of experience as the threshold 

for senior coders, we conduct further analysis to reinforce the generalizability of the 

findings about seniority level. We use alternate thresholds of 8 years, 9 years, 11 

years, and 12 years to define senior coders, and we estimate the same regression 

model as before to examine how seniority level influences the AI’s effects. The 

results are reported in Table 26. The coefficient of Post X AI X Junior is significant 

(p<0.05) across all thresholds, while that of Post X AI X Senior is insignificant. We 

also see that the magnitude is bigger for junior coders than senior coders.  

 

Table 26. Additional robustness checks – threshold for seniority (with coder fixed 

effects). 

 (1) (2) (3) (4) 

 8+ Years as Senior 9+ Years as Senior 11+ Years as Senior 12+ Years as Senior 

Dependent Variable: Review Time Review Time Review Time Review Time 

     

Post X Senior 0.81 0.82 1.40 2.20*** 

 (0.72) (0.73) (1.49) (0.63) 

Post X Junior 2.90*** 2.82*** 2.38*** 2.35*** 

 (0.69) (0.69) (0.65) (0.65) 

Post X AI X Senior -0.79 -0.83 -0.73 -1.44 

 (0.79) (0.83) (1.68) (1.52) 

Post X AI X Junior -1.26** -1.25** -1.64*** -1.61*** 

 (0.62) (0.62) (0.61) (0.59) 

Constant -10.84* -10.82* -10.86* -10.84* 

 (6.36) (6.37) (6.56) (6.56) 

     

Control Variables: NumPage, NumHCC, Round of Coding, Type of Coding, Time of Day 

     

Observations 1,231,447 1,231,447 1,231,447 1,231,447 

R-squared 0.09 0.09 0.09 0.09 

Number of coders 548 548 548 548 

Robust Standard Errors in Parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix H: New Coders 

One concern is that our findings regarding AI’s effect could be driven by newly hired 

coders whose productivity is not stable. In this case, the findings would include the 

learning efforts of new coders (new coders in the treated group would become more 

productive, but new coders in the control group would become less productive). To 

address this concern, we exclude all coders who joined the coding team in 2018; 1 

coder in the treated group and 43 coders in the control group were excluded. We 

examined AI’s main effect and its heterogeneity on both seniority level and time of 

day. All the results remain consistent (Table 27).  
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Table 27. Additional robustness checks – new coders (with coder fixed effects). 

 (1) (2) (3) 

 No New Coders No New Coders 

Seniority Level 

No New Coders 

Time of Day 

Dependent Variable: Review Time Review Time Review Time 

    

Post 2.35***   

 (0.65)   

Post X AI -1.62***   

 (0.58)   

Post X Senior  0.96  

  (0.78)  

Post X Junior  2.56***  

  (0.67)  

Post X AI X Senior  0.11  

  (0.73)  

Post X AI X Junior  -2.16***  

  (0.78)  

Post X EarlyMorning   2.89*** 

   (0.85) 

Post X Morning   1.95** 

   (0.81) 

Post X Afternoon   2.43*** 

   (0.68) 

Post X Night   2.28** 

   (0.90) 

Post X AI X EarlyMorning   -2.05 

   (1.44) 

Post X AI X Morning   -3.00*** 

   (0.78) 

Post X AI X Afternoon   -1.59*** 

   (0.60) 

Post X AI X Night   -0.42 

   (1.21) 

Constant -10.84* -10.74* -11.00* 

 (6.57) (6.42) (6.58) 

    

Control Variables: NumPage, NumHCC, Round of Coding, Type of Coding, Time of 

Day 

    

Observations 1,214,320 1,214,320 1,214,320 

R-squared 0.09 0.09 0.09 

Number of Coders 504 504 504 

Robust Standard Errors in Parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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