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Context is widely understood to have some influence on how words are 

recognized from speech. This dissertation works toward a mechanistic account of 

how contextual influence occurs, looking deeply at what would seem to be a very 

simple instance of the problem: what happens when lexical candidates match with 

auditory input but do not fit with the syntactic context. There is, however, 

considerable conflict in the existing literature on this question. Using a combination 

of modelling and experimental work, I investigate both the generation of abstract 

syntactic predictions from sentence context and the mechanism by which those 

predictions impact auditory word recognition.  

In the first part of this dissertation, simulations in jTRACE show that the 

speed with which changes in lexical activation can be observed in dependent 

measures should depend on the size and composition of the set of response candidates 



  

allowed by the task. These insights inform a new design for the visual world 

paradigm that ensures that activation can be detected from words that are bad 

contextual fits, and that facilitatory and inhibitory mechanisms for the syntactic 

category constraint can be distinguished. This study finds that wrong-category words 

are activated, a result that is incompatible with an inhibitory syntactic category 

constraint.  

I then turn to a different approach to studying lexical activation, using 

information-theoretic properties of the set of words consistent with the auditory input 

while neural activity is recorded in MEG. Phoneme surprisal and cohort entropy are 

evaluated as predictors of the neural response to hearing single words when that 

response is modeled with temporal response functions. This lays the groundwork for 

a design that can test different versions of surprisal and entropy, incorporating 

facilitatory or inhibitory syntactic constraints on lexical activation when the stimuli 

are short sentences.  

Finally, I investigate a neural effect in MEG previously thought to reflect 

syntactic prediction during reading. When lexical predictability is minimized in a new 

study, there is no longer evidence for structural prediction occurring at the beginning 

of sentences. This supports the possibility of a tighter link between syntactic and 

lexical processing.  
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Chapter 1: Introduction 

 

1.1 Overview 

Auditory word recognition requires identifying stored phonological 

wordforms that are consistent with incoming speech. Many wordforms share initial 

phonemes, so a large portion of the lexicon (the “cohort”) is understood to be 

activated as the onset of a spoken word is perceived and processed (Luce & Pisoni, 

1998; Marslen-Wilson, 1987; McClelland & Elman, 1986; Norris, 1994). In some 

cases, hundreds of milliseconds of auditory input may be necessary before a word is 

uniquely identifiable, or this uniqueness point may not occur before the end of the 

word (Luce, 1986). However, the likelihood of any given lexical candidate is 

influenced not only by how well it matches with what is being heard, but also by how 

well it fits with the sentence context. Therefore, one obvious way in which the 

recognition process might become faster or more robust is if information from the 

context also influences the set of likely candidates, allowing a word to become 

identifiable prior to the point at which it is differentiable on the basis of bottom-up 

perceptual input alone.  

A great deal of work investigating this possibility has indicated that word 

recognition is indeed influenced by information from the context. However, despite 

decades of research, fundamental questions remain about how this occurs. The aim of 

this dissertation is to develop a mechanistic model of exactly how sentence context 

impacts the word recognition process, using computational and experimental tools.   
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One area of particularly strong disagreement has been whether context can 

impose constraints so quickly that contextually inappropriate lexical candidates are 

never considered, or even generated, at all. While potentially very useful, a constraint 

on generation could also have undesirable consequences, in that a word that is 

ostensibly impossible in the context might be impossible to recognize if it was not 

generated as a candidate. Such a constraint would require that information in the 

context be processed and transformed extremely rapidly into criteria for wordform 

exclusion, which would have to interface with the same wordform representations 

activated by the bottom-up cues, and also be able to override those cues. The central 

issues here are the nature of the restrictions that can be derived from the context, 

whether or not a top-down cue can take primacy over a perceptual one, and the speed 

of this potential influence.  

In much of this dissertation, I explore these issues specifically as they relate to 

syntactic category expectations and the mechanism by which those expectations 

influence auditory word recognition. Using syntactic context provides us with quite 

simple initial hypotheses about whether or not a wordform is a good fit for the 

context. This allows us to ask: when context makes it likely that the word being heard 

is, for example, a noun, is this information used to facilitate lexical candidates that 

could be nouns, or inhibit those that can’t be nouns? And how quickly does this 

occur? In this dissertation, I use the term “inhibition” to refer to complete inhibition, 

fully preventing the activation of wrong-category candidates. This type of inhibition 

gives priority to syntactic over acoustic information, and is the only way for a 

constraint on generation to occur. A facilitatory constraint, in contrast, would still be 
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a context effect but would simply boost correct-category candidates, and would allow 

for influence from either or both information sources. While it seems clear that an 

inhibitory constraint could hasten word recognition by restricting the set of 

candidates, a facilitatory constraint could have a similar effect if recognition is based 

on an activation threshold, which would be reached faster by correct-category items 

that have received a boost. The previous literature on the timing and nature of 

syntactic context effects, reviewed in the next section, is mixed in its conclusions. 

Abandoning the assumption that a top-down constraint must be inhibitory (which is 

pervasive, though often not expressed in these terms) makes the puzzling variation in 

previous findings easier to account for. Consideration of the linking hypotheses 

between underlying and observed measures, as I explore in Chapter 2, may also aid 

in unifying this literature. 

This area constitutes an unusually clear testing ground for the interaction of 

top-down and bottom-up information. Testing whether or not a contextual constraint 

seems to be in place requires a strong hypothesis regarding the effects that constraint 

should have on the activation levels of each wordform in a set of lexical candidates. 

In other words, the constraint must be definable in such a way that specific properties 

of the wordforms can make them more or less compatible with it. How easy or hard it 

is to spell out such a hypothesis varies considerably among the set of constraints that 

may apply when word recognition occurs in a sentence. In the case of, for example, 

semantic or pragmatic constraints, it may be difficult to determine exactly which 

wordforms should be more or less likely, and on what basis. In the case of syntactic 

constraints, it is fairly clear that given a certain syntactic parse for the sentence, some 



 

 4 

wordforms are grammatical in the context and others are not. This makes 

investigating the mechanism for the syntactic constraint more tractable, and progress 

in this area should then aid progress toward understanding more complex constraints.  

It is important to acknowledge, however, that even in the relatively simple 

syntactic case the manner in which the syntactic category of lexical items is 

represented is not completely straight-forward, with implications for how we think 

about the constraint. Under a Distributed Morphology (Halle & Marantz, 1993) view 

of the lexicon, root morphemes do not belong to syntactic categories or have features 

that designate them as such. Instead, category-less roots combine, syntactically, with 

categorizing affixes that allow them to then operate in the larger syntactic structure as 

e.g. nouns. Syntactic category, then, is not a stored part of the lexical representation. 

Vigliocco et al. (2011) draw a related distinction between so-called “combinatorial” 

and “lexicalist” views of syntactic category, largely with reference to the question of 

whether nouns and verbs are represented and processed differently in the brain. 

For many psycholinguistic questions, it seems unlikely to matter whether 

syntactic category is a stored feature or is derived. This includes my question, on 

whether and how the set of wordforms under consideration is influenced by 

restrictions from the syntactic context. If some roots never occur in some categories, 

for example, a constraint that is sensitive to these probabilities will be difficult to 

distinguish from one that operates on stored category features. However, sensitivity to 

the fact that a root has not been observed to occur in a certain category is not 

equivalent to a prohibition on it doing so. Thus, I consider the Distributed 

Morphology view to be more explicitly compatible with the possibility that no item is 
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completely excluded from consideration during word recognition on the basis of 

syntactic category (i.e., that there is not an inhibitory constraint). Though the 

terminology used in this dissertation may at times seem to indicate an assumption of 

stored syntactic category information for wordforms, referring to items that can or 

cannot be nouns, I do not intend for this to be a theoretical stance. 

Finally, many questions remain as to how exactly the syntactic parse arises, 

that leads to an expectation for specific categories, but the nature of any syntactic 

constraints on word recognition will figure importantly in our understanding of the 

timing and predictive nature of syntactic structure-building. Eventually, I aim to 

integrate evidence from these two different problems: the structures and algorithms 

that give rise to syntactic prediction, and the effects of those predictions on incoming 

input. To that end, in Chapter 5 I describe efforts to isolate syntactic from lexical 

prediction in sentence processing.  

1.2 Syntactic constraints on word recognition: a methodological conflict 

Many methods have been used to ask whether or not context can constrain the 

generation of lexical candidates during auditory word recognition. Evidence from 

cross-modal priming and gating has consistently indicated that contextually illicit 

competitors are initially available, arguing against a constraint on generation in the 

case of both syntactic context (Seidenberg et al., 1982; Tanenhaus et al., 1979; 

Tanenhaus & Donnenwerth-Nolan, 1984; Tyler, 1984; Tyler & Wessels, 1983) and 

semantic context (Swinney, 1979; Zwitserlood, 1989). However, subsequent evidence 

from the visual world paradigm suggested the opposite conclusion (Magnuson et al., 

2008; Strand et al., 2018), and data from MEG seems to support aspects of both 
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(Gaston & Marantz, 2018). In the following sub-sections, I describe these methods 

and their findings in more detail, as well as the design and interpretation issues that 

make it difficult to extract a coherent picture from this literature. The problem of 

integrating the different contributions of each relevant study can be simplified by 

breaking down the question into two parts. The first concerns timing: when can we 

observe evidence of any kind of influence from the syntactic context? The second 

concerns the nature of the influence: are wrong-category candidates activated or not? 

It is important but unacknowledged in many designs that contextual influence could 

still be observable even if wrong-category competition is occurring.  

1.2.1 Cross-modal priming 

In a cross-modal priming study, a sentence containing a prime word is 

presented (usually) auditorily. At some lag(s) from the onset of the prime word, a 

target word is presented visually, and the dependent measure is the latency of either 

lexical decision or naming for that target word. Faster reaction times to the target are 

expected when it is semantically related to the prime.  

In order to evaluate the impact of syntactic context on lexical access with 

cross-modal priming, early investigators took advantage of different-category, 

different meaning homophones like “watch”, embedding these homophones as primes 

in syntactically constraining contexts such as "I bought the watch" and "I began to 

watch" (Tanenhaus et al., 1979). The target word in a given trial would be 

semantically related to only one of the homophone meanings, e.g. "look" in the 

current example. On any account, reaction times for “look” should be faster after 

hearing the verb form of “watch”; the key question is what happens in the noun-
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biasing context. If syntactic context could fully block consideration of incompatible 

lexical items, the verb meaning of “watch” should never be accessed in the noun-

biasing context, and faster reaction times should not be observed for “look”. 

However, if syntactic context does not act as an immediate or complete constraint on 

generation, some effect on reaction time would be observed in the noun-biasing 

context.  

Tanenhaus et al. (1979) measured the naming latency of the target at three 

time lags after homophone offset: 0 ms, 200 ms, and 600 ms. They indeed found a 

priming effect (shorter naming latency) in the category-incompatible context 

immediately following homophone offset, but this did not occur at the later lags. 

Tanenhaus et al. (1979) took these results as evidence for exhaustive initial access to 

the meanings associated with the ambiguous primes, with syntactic context only 

impacting the process later on. This finding was replicated in a very similar design 

(Seidenberg et al., 1982) and then again with lexical decision rather than naming 

latency as the dependent measure (Tanenhaus & Donnenwerth-Nolan, 1984).  

In an influential review, Tanenhaus and Lucas (1987) concluded that evidence 

for syntactic context effects in cross-modal priming is lacking, as semantic priming 

still occurs for the category-incompatible meaning. They also argued that such 

context effects would actually have little utility, in part because syntactic context is 

rarely fully deterministic of upcoming syntactic category, and syntactic category 

knowledge does not lead to high conditional probability of any single lexical item. 

However, Tanenhaus and Lucas (1987) indicated that a possible exception might be 

the case in which the expected category is of closed-class words, which is a much 
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more restricted set. And indeed, Shillcock and Bard (1993) later conducted a cross-

modal priming study on different-category homophones for which one meaning is a 

closed-class word and the other is an open-class word (e.g. “would”/“wood”). They 

find faster reaction times for “timber” after “wood” in a noun-constraining context, 

but not for “timber” after “would” in a context in which a closed-class verb is 

expected. This was the first and, to our knowledge, only cross-modal priming 

evidence for selective access due to syntactic context.  

 Can we safely conclude from the cross-modal priming results that, with the 

exception of small-set syntactic categories, syntactic context alone does not 

immediately impact lexical access? There are several reasons for caution. First, the 

original three experiments (Seidenberg et al., 1982; Tanenhaus et al., 1979; 

Tanenhaus & Donnenwerth-Nolan, 1984) probed only as early as the acoustic offset 

of the ambiguous prime word. The ideal method for this question would probe 

continuously and as early as acoustic information begins to be processed. 

The lack of evidence for a syntactic category constraint could also simply 

reflect the insufficient power of these cross-modal priming studies to detect a true 

effect. Collapsing across syntactic and semantic context manipulations, a meta-

analysis by Lucas (1999) finds a reliable effect size of ~ 0.2 standard deviations for 

the difference between contextually appropriate and inappropriate priming effects: 

that is, contextually inappropriate meanings are generated and lead to semantic 

priming of their associates, but to a consistently lesser degree than contextually 

appropriate meanings. In most studies, the interaction that would be necessary to 

show this small effect is not significant, and therefore the authors usually concluded 
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that there was no immediate context effect at all. But Lucas points out that even 50% 

power to detect the effect size she observes would require 140 participants, and the 

median sample size across studies is 35. Therefore, the conclusion that context has no 

effect in cross-modal priming may simply be a result of lack of power. Furthermore, 

the meta-analysis suggests that there is evidence of activation of the contextually 

inappropriate meaning, which is not consistent with an inhibitory constraint. The 

contrast between contexts is instead more consistent with a facilitatory constraint that 

boosts the activation of correct-category competitors. 

  A final issue is that these studies rely exclusively on homophones. The 

question they answer is whether both the contextually appropriate and contextually 

inappropriate meanings of a wordform are activated. Homophone-based designs 

cannot indicate whether a lexical candidate with only a contextually inappropriate 

meaning also becomes activated when it matches the input. To answer this question, a 

cross-modal priming study would have to probe for semantic priming from a wrong-

category cohort competitor of the target. Zwitserlood (1989) successfully uses this 

approach to ask about effects of semantic rather than syntactic context. 

1.2.2 Gating 

Gating is a paradigm in which participants are asked to identify word 

fragments. The technique was pioneered by Grosjean (1980) as a way to determine 

exactly how much auditory input is necessary for a word to be correctly identified, 

and what lexical candidates are considered (across participants) before the correct 

identification point. Grosjean showed that on average 333 ms of input are needed to 

identify a word presented in isolation, but that this drops to 245 and 153 ms for words 
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presented in short and long sentence contexts, respectively. These initial data only 

spoke to how quickly a word could be identified, and not to how context impacted the 

process of getting to that point. 

Tyler (1984) reports that when listeners encounter the first 50 ms of a word in 

a syntactically biasing context, on some portion of trials their completions are words 

from the inappropriate syntactic category. Tyler argues that this provides further 

evidence that syntactic contexts fail to constrain word recognition. But her argument 

would be stronger if there were a comparison with a syntactically unconstraining 

baseline condition (McAllister, 1988). In a similar experiment to Tyler’s, McAllister 

(1988) found an increase in correct-category candidates relative to a no-context 

condition, concluding that syntactic context does, indeed, affect the cohort by the first 

gate, even if it has not eliminated all wrong-category responses. This could mean 

wrong-category candidates are only partially inhibited, or that the context effect 

actually works by facilitating correct-category candidates.  

 Another important consideration for gating is that error rates with respect to 

syntactic category should only be assessed when it is clear that the cohort is active. If 

the rate of incorrect-first-phoneme guesses does not yet differ from chance, indicating 

that those guesses are not being driven by an activated cohort, then we would expect 

to see incorrect-category guesses at that sampling point as well, and it would not be 

evidence against a context effect. Therefore, the context question should not be asked 

unless deviations from chance are being assessed for both phonological and 

contextual error rates, at as early a gate as possible. The chance rate for incorrect-

first-phoneme guesses can only be assessed when there is no phonological input, so 
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this would need to be at gate 0, or, from another perspective, in an auditory cloze 

completion task. Only then could we assess whether Tyler (1984)'s 40% incorrect 

first phonemes at Gate 1 reflect phonological competition or not, and therefore 

whether asking about the syntactic category error rate is informative or not. Finally, 

the ideal gate size for an accurate time course estimate has yet to be established.  

1.2.3 Visual world paradigm 

The visual world paradigm tracks participants’ looks to items in a visual 

display while they listen to spoken sentences. Allopenna, Magnuson, and Tanenhaus 

(1998) have proposed an explicit correspondence between observed fixation 

probabilities in the visual world and lexical activation of the words corresponding to 

the pictures. One clear advantage of the VWP over the methods previously described 

is that fixations can be recorded continuously from the onset of the word, providing 

an immediate and incremental measure driven at least to some extent by lexical 

activation. However, simple noun/verb contextual constraints like “to” and “the,” 

which had been used in the gating and cross-modal priming studies, cannot be used 

straight-forwardly in the visual world because the method requires lexical candidates 

to be representable as relatively simple pictures, and this is more challenging for 

verbs than for nouns. Therefore, until very recently, the two strongest pieces of 

evidence from the VWP regarding (morpho-) syntactic contextual constraints used 

substantially different designs (Dahan et al., 2000; Magnuson et al., 2008). Both 

showed that in a syntactically constraining context a wrong-category competitor is 

not fixated more than a distractor item. This suggests that comprehenders are using 

the contextual information so quickly and effectively that they are not influenced by 
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the match between the incoming sounds and the name of the wrong-category 

competitor 

Dahan et al. (2000) tested for effects of syntactic constraints using 

grammatical gender in French, showing that, after hearing a gendered determiner (e.g. 

“un” (masc.) where the target object turns out to be “bouton” (masc.)), people never 

fixate gender-inconsistent cohort competitors (e.g., “bouteille” (fem.)) more than 

irrelevant distractors (e.g. “table”). This appears to be clear evidence that the gender 

cue stops listeners from activating the wrong-gender match. 

Dahan et al’s finding is relevant to the syntactic question, but it is not obvious 

that grammatical gender and syntactic category operate identically within the 

architecture of the word recognition system. In fact, different results for these two 

kinds of contextual information have been observed in gating. Tyler (1984) found that 

competitors of the wrong syntactic category are indeed produced, while Grosjean, 

Dommergues, Cornu, Guillelmon, and Besson (1994) find that competitors of the 

wrong gender are never produced.  

Magnuson et al. (2008) dealt with the difficulty of representing both nouns 

and verbs in the visual world paradigm in a different way. They taught participants a 

novel language composed of texture adjectives and shape nouns, all of which describe 

referents in the visual world. In the test phase they modulated syntactic category 

expectations for adjectives vs. nouns by leveraging pragmatic constraints. When the 

four items in the display consist of two items that share one shape and two items that 

share another shape, an adjective is necessary to uniquely specify any one of the 

items, and participants should therefore expect an adjective after “Click on the...”. 
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However, when the display contains four distinct objects, an adjective is not 

necessary, and participants should therefore expect a noun after “Click on the...”. 

When the participant is expecting an adjective, Magnuson et al. (2008) show 

increased fixations to the shape whose adjective descriptor is a cohort competitor of 

the target adjective (e.g., to the “bupe tedu” when “bup∧ pibe” is the target), but 

shapes whose noun descriptor is a cohort competitor of the target adjective (e.g. the 

“tedɛ bupo”) do not draw increased fixations. Similarly, when the participant is 

expecting only a noun, they show increased fixations to the shape whose noun 

descriptor is a cohort competitor of the target noun, but shapes whose adjective 

descriptors are cohort competitors of the target noun do not draw increased fixations. 

This is exactly consistent with what Dahan et al. (2000) found, but for syntactic 

category rather than grammatical gender.  

Magnuson et al. (2008) take this to be evidence for a continuous integration 

hypothesis. Under this hypothesis, top-down information is used as soon as it is 

available, which could result in a constraint on generation of candidates in some cases 

and a constraint on selection of candidates in other cases. However, as I will discuss 

in Chapter 3, there may be a potential strategy available to participants that could 

conceal competition from wrong-category candidates, if it were occurring. There is 

also the obvious caveat that these results occur in an artificial language in which 

participants have limited training. 

More recently, Strand, Brown, Brown, and Berg (2018) employed a new 

visual world design that bypassed the imageability constraint with the inclusion of 

action pictures as referents for verbs. They presented visual displays with two 
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pictures of objects (e.g. rug, bench) and two pictures of actions (e.g. run, pray), with 

auditorily presented sentences like “They thought about the rug”, in addition to 

grammatically unconstraining sentences like “The word is rug.” They also included 

trials in which the competitor was of the same syntactic category as the target. In line 

with Dahan et al. (2000) and Magnuson et al. (2008)’s findings, Strand et al. (2018) 

found phonological competition effects for syntactically compatible competitors, but 

not for wrong-category competitors (i.e., no looks to “run” during “They thought 

about the rug”). However, as was the case for the Magnuson et al. (2008) design, 

potential strategies exist that could have prevented fixations to the wrong-category 

competitor even if it were activated. It is also worth noting that in an additional 

condition in which Strand et al. cross-splice the onset of a recording of the competitor 

word into the target sentence, they did observe looks to the wrong-category 

competitor. This suggests that sufficiently strong bottom-up input can overwhelm 

top-down information in some circumstances. 

Across three quite different studies, then, the implication from the visual 

world paradigm is consistent: category constraints can prevent phonological 

competition. Even more striking is the contradiction this poses with the gating and 

cross-modal priming results that preceded them. But as with gating, there are 

important design issues that need to be addressed in order for this interpretation of the 

results to stand. Furthermore, and independent of these issues, these designs cannot 

distinguish between inhibitory and facilitatory mechanisms for contextual constraints. 

The study I present in Chapter 3 is intended to resolve these problems. 
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1.2.4 MEG 

A final piece of evidence in this literature comes from a MEG study (Gaston 

& Marantz, 2018). Rather than probe the status of a single wordform to ask whether it 

is or is not active in the cohort, as occurs in much of the behavioral work described 

above, this study asks about the overall status of the cohort as reflected in the 

processing of any single wordform. Gaston and Marantz examine correlations 

between neural activity in auditory cortex and phoneme-by-phoneme measures that 

are understood to reflect the probability distribution of the cohort. These measures—

phoneme surprisal and cohort entropy—can be calculated for any phoneme in a word 

given a hypothesized cohort and the lexical frequencies of all items in that cohort. 

Phoneme surprisal is the negative log of the conditional probability of a phoneme 

given the phonemes that preceded it, and cohort entropy reflects how much 

uncertainty there is in the probability distribution of items in the cohort. A cohort 

with just one high probability (high frequency) competitor will have low entropy, 

while a cohort with many equally likely competitors will have high entropy. Both 

phoneme surprisal and cohort entropy had previously been shown to correlate with 

neural activity during the processing of single words (as reviewed in Chapter 4).  

Gaston and Marantz (2018) presented words in small syntactically 

constraining contexts (e.g., “the clash persisted”, “to gleam brightly”) and constructed 

hypothesized cohorts constrained by the context in different ways. In one version of 

the constraint, wordforms that cannot be used in the syntactic category that fits with 

the context are dropped from the cohort. In a second version, this same constraint on 

cohort membership is applied, but the frequencies of remaining cohort members are 
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adjusted so that they only reflect the frequency of that wordform in the syntactic 

category allowed by the context. Using those constrained cohorts to calculate new 

surprisal and entropy values, they then tested correlation of neural activity with 

constrained and unconstrained surprisal and entropy.   

Gaston and Marantz (2018) found that the earliest detectable effects of cohort 

dynamics were for the first constrained version of phoneme surprisal, in which the 

only adjustment is that wordforms that cannot be used in the syntactic category 

required by the context are removed from the cohort. However, a major caveat for the 

reported result is that the category-constrained cohort distributions were constructed 

under the assumption that a category constraint could only work via inhibition, such 

that items of the wrong category are not in the cohort. The study is not designed to 

detect the possibility that the category constraint in fact works via facilitation, such 

that items of the correct category are simply activated more strongly, or have higher 

probability, than items of the wrong category. Evidence for this type of constraint 

would require recomputing the category-constrained cohort measures from a new 

hypothesized cohort, and re-evaluating for correlation with the neural data.  

Support for the possibility of facilitation comes from the fact that, in addition 

to the early restricted cohort effect, Gaston and Marantz (2018) also found effects of 

phoneme surprisal calculated from the unconstrained cohort. This could be 

interpreted as evidence for an unconstrained cohort that is active simultaneously with 

the constrained cohort. However, if the constraint in fact operates such that good fits 

are facilitated rather than poor fits inhibited, the constrained and unconstrained 
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cohorts as constructed in this study would each be capturing one aspect of the true 

cohort, and therefore might each display some degree of correlation.  

Because the surprisal effects that Gaston and Marantz report did not begin 

until the second phoneme, we note that it is impossible to say whether this supports 

the idea that the generation of candidates is being constrained by category. We can 

only conclude that as early as there is evidence for the cohort, that evidence is 

consistent with restriction. Brodbeck, Hong, and Simon (2018) also find a lack of 

neural evidence for active cohort dynamics before the second phoneme. Because 

visual world studies examining phonological cohort competition generally use stimuli 

in which both of the first two phonemes are overlapping, current evidence across 

methods could actually be consistent with the cohort being generated at the second 

phoneme, which would make it more likely that Gaston and Marantz (2018)’s 

findings reflect an immediate constraint.  

1.2.5 Summary of the literature 

In conclusion, although much work has investigated the question of whether 

syntactic context can constrain the generation of lexical candidates, the answer is still 

unclear because of conflicts in the results across different methods. Gating and cross-

modal priming indicate (with some caveats) exhaustive initial access of lexical 

candidates despite syntactically constraining context, while the visual world paradigm 

indicates immediate context effects such that wrong-category candidates never 

compete. Evidence from neural activity as measured by MEG cannot rule out early 

exhaustive access but is potentially consistent with an immediate (facilitatory) 

constraint.  
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In this dissertation, I try to resolve this conflict by asking not simply whether 

there is wrong-category cohort competition, but how it is that auditory word 

recognition could be impacted by information from syntactic context. This requires 

close examination of the measures we use we investigate these processes, the 

potential mechanisms for interaction between different sources of information, and 

the mechanics of both auditory word recognition and syntactic prediction. 

1.3 Dissertation outline 

Chapter 2 describes simulations with the jTRACE model of auditory word 

recognition (Strauss et al., 2007) showing the potential influence of an experimental 

task’s response candidate set on how quickly changes in lexical activation can 

translate to changes in response probability. Chapter 3 reports a visual world 

experiment that provides evidence that wrong-category syntactic candidates do 

compete during word recognition, inconsistent with an inhibitory constraint. Chapter 

4 investigates MEG effects of phoneme surprisal and cohort entropy during auditory 

single-word recognition, laying the groundwork for a new study of context effects on 

the cohort whose design I also describe. Chapter 5 reports a MEG study that fails to 

find evidence for syntactic prediction in the absence of lexical predictability. Chapter 

6 presents summary, discussion, and future directions.  
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Chapter 2: Simulations on the relation between lexical activation and 

experimental measures 

 

 

2.1 Introduction 

In Chapter 1, we described a conflict in the results from different methods 

used to investigate syntactic context effects on cohort competition. In this chapter, we 

argue that one factor in accounting for these conflicting results may be the difference 

between forced-choice and free-choice tasks. The limited set of available referents in 

the visual world paradigm leads to a forced-choice task in which the dependent 

measure is a proportion of fixations among a small number of referents on screen. 

With so few response candidates, it may be that bottom-up auditory information 

and/or contextual constraints can be acted on earlier than in a free-choice task like 

gating where participants are free to answer with any word from the lexicon. The size 

and composition of that response candidate set are therefore important properties of 

an experiment.  

We use jTRACE (Strauss et al., 2007) to model forced-choice and free- choice 

scenarios and show that, indeed, bottom-up effects of cohort membership occur 

earlier when there are fewer response candidates available. This occurs under nearly 

all potential combinations of the parameter settings we manipulated, including 

different implementations of frequency. However, we note that the timing difference 

is seen in the simulated dependent measure (response probability), and not in the 

underlying simulated activation levels that are the true quantity of interest. The 
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activation levels are the same regardless of the task. If top-down influences of 

category also lead to timing differences in cohort effects, it could mean that gating 

and visual world results are not actually in conflict.  

It is not yet possible to directly simulate top-down category effects in 

jTRACE, as syntactic category is not represented in the model. As a first step in this 

direction, we simulate these word recognition scenarios using two different frequency 

distributions for the lexicon, meant to approximate category-restricted and 

unrestricted comprehension. These results further substantiate the distinction between 

forced-choice and free-choice paradigms. 

2.2 TRACE model of speech perception 

TRACE is a well-known connectionist model of spoken word recognition 

(McClelland & Elman, 1986). It has been reimplemented in Java as jTRACE (Strauss 

et al., 2007), which is freely available and designed to be accessible to researchers 

wishing to evaluate their own hypotheses. In Figure 1, we reproduce Strauss et al. 

(2007)’s schematic of the TRACE architecture. In this section we describe key 

properties of the model that are relevant for the cross-method discrepancies described 

previously, and that influence our interpretation of the simulations to follow. 

Particularly important is the distinction between activation/response strength and 

response probability. 

As an interactive activation model, TRACE has three layers of processing 

units (features, phonemes, and words) which are both inter- and intra-connected. By 

default, TRACE has feed-forward excitatory connections from the feature to the 

phoneme and the phoneme to the word layers, and feed-back excitatory connections 
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Figure 1. Strauss et al. (2007)'s Figure 1 illustrates the layers and connections in the 
TRACE architecture. Arrows indicate excitatory connections, while lines ending in 
circles indicate within-layer inhibitory connections. Reprinted by permission from 
Springer Nature Customer Service Centre GmbH: Springer Nature, Behavior 
Research Methods, jTRACE: A reimplementation and extension of the TRACE model 
of speech perception and spoken word recognition, Strauss, Harris, and Magnuson, 
Copyright 2007 Psychonomic Society, Inc., 2007. 

 

from the word to the phoneme layer. There are also inhibitory connections among 

units within each layer, but there are no between-layer inhibitory connections. Given 

specific phonological input, TRACE can simulate lexical activation and response 

probabilities for all of the words in its lexicon.  

https://www.springer.com/journal/13428
https://www.springer.com/journal/13428
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Allopenna et al. (1998) were the first to show that TRACE’s simulated 

response probabilities yield a close correspondence with fixation probabilities 

observed in the visual world paradigm. To compute response probability for a given 

word, activation values from TRACE are first converted to response strength, per 

Equation 1. S is response strength, a is activation, and k is a constant.  

Equation 1: S = eka 

This conversion, according to McClelland and Elman (1986), is intended to 

ensure that all values are positive, and to give more weight to stronger activations. 

The default for k in jTRACE is 7, and this default is used in all simulations reported 

in this chapter. Response probability (L) can subsequently be derived from response 

strength using the Luce choice rule, as in Equation 2. In this step, response strength S 

for an item i is divided by the sum of response strengths for all j items in the set of 

possibilities for making a response.  

Equation 2: 𝐿𝐿𝑖𝑖 =  𝑠𝑠𝑖𝑖
∑𝑆𝑆𝑗𝑗

 

The proportion in Equation 2 can therefore be taken to indicate the probability 

of choosing that item out of the alternatives in the response set. Originally, this was 

used by McClelland and Elman (1986) to simulate word identification responses. In 

word identification, the response set should be the whole lexicon, and we assume this 

to also be the case in a task like gating. We refer to these as free-choice tasks. In 

contrast, simulations of the visual world restrict that set of possibilities for making a 
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response to the (usually) four items that are on screen. We refer to these as forced-

choice tasks. 

It is important to note that the response strength for a given word in the 

numerator of Equation 2 will always be the same regardless of the size of the set of 

response candidates it occurs in, as it is a simple function of activation level. 

However, a difference in response probability for that word will arise in forced as 

compared to free-choice scenarios because of differences in the summed response 

strength in the denominator, which varies depending on whether one is summing over 

four items or the entire lexicon. For example, if all items in a 100-word lexicon have 

the same activation/response strength, response probability for each item in a four-

item forced choice will be 25%, while in a free choice from the whole 100-word 

lexicon it will be 1%. This is important because when we ask about syntactic context 

effects, what we are really asking about is the underlying activation level, but the data 

that we use to evaluate the question are typically filtered through the observable 

measure of response probability.   

2.3 Forced-choice task effects 

The first question we investigated with jTRACE was whether the dynamics of 

a forced-choice task among four items are such that the influence of bottom-up 

phonological information can be observed more quickly than is possible in a free-

choice scenario. Specifically, we asked whether the manifestation of cohort 

competition in response probability was affected by the size of the response candidate 

set.   
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2.3.1 Simulation details 

In order to ensure that direct comparisons with previous work using TRACE 

and jTRACE were warranted, we chose to replicate and then extend simulations from 

Dahan, Magnuson, and Tanenhaus (2001) that were executed with the original 

TRACE model and then later validated by Strauss et al. (2007) with jTRACE. They 

provide a template that includes the stimuli used in Dahan et al. (2001)’s original 

experiment, as well as the lexicon used in their TRACE simulation. This makes it 

possible to simulate each of the 17 trials and then average their results for comparison 

with the averaged human data and averaged simulations presented by Dahan et al. 

(2001). 

Each trial included a target, a high-frequency and a low-frequency cohort 

competitor each with the same onset as the target, and a distractor whose onset did 

not overlap. Forced-choice trials evaluated response probability over time for a 

response candidate set consisting of only these four items, while the set for free-

choice trials was the entire lexicon of 301 words (though we only looked at response 

probability for these four items). In this type of design, at some short delay following 

the onset of the target, we generally expect activation and response probability to 

increase for the target and competitors and to decrease for the distractor. Later in the 

trial, at some short delay following the phoneme that differentiates the competitors 

from the target, we expect response probability for the competitors to decrease and 

for the target to continue to increase. 

Therefore, our dependent measure was the cycle at which the response 

probability of the distractor begins to decrease, and then the cycle at which the 
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response probability for the high-frequency competitor begins to decrease. We 

consider the distractor divergence to be the first point at which bottom-up information 

observably shapes the cohort, and this is our primary concern. However, the high-

frequency competitor’s divergence point is also useful to consider because it reflects 

the speed of an update to the cohort without any special considerations that the onset 

of the word might bring. Dahan et al. (2001) tested for differences in fixation 

probability averaged over the 0-200 ms and 200-500 ms time windows within a trial, 

which yielded a rather coarse temporal resolution. However, the figures they provide 

allow rough estimates of the divergence points in their data, for comparison. 

2.3.2 Frequency & activation 

Though not directly related to our question, there are parameter settings in 

jTRACE that were manipulated by Dahan et al. (2001) and which we are therefore 

also concerned with. Dahan et al. (2001) compared simulations in which lexical 

frequency information was added to TRACE by 1) proportionately weighting the 

resting activation levels of word units, 2) proportionately weighting the connection 

strengths between phoneme and word units, or 3) allowing frequency to influence a 

post-activation decision stage. All three options are available for simulation in 

jTRACE. Dahan et al. (2001) find that resting-level and connection-weight 

implementations of frequency both produce simulated fixation probabilities with 

extremely good fit to the human data, while frequency in the post-activation decision 

rule performs less well. Therefore, we ran simulations both ways, one set with the 
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resting-level implementation and one set with the connection-weight 

implementation1.  

The other parameter for consideration is the baseline resting activation default 

set to -0.3 by Dahan et al. (2001), rather than the -0.01 standard for TRACE. This 

ensured that the maximum to which frequency could scale a resting activation level 

was still below zero, guaranteeing stable effects of the frequency biases. We ran 

simulations with both the standard default (-0.01) and Dahan et al. (2001)’s -0.3 in 

order to clarify the implications of their choice. 

2.3.3 Results 

For each simulation, the cycle at which the response probability of the 

distractor began to decrease is reported in Table 1, and the cycle at which the 

response probability of the high-frequency competitor began to decrease is reported 

in Table 2. Each cycle in a TRACE simulation is argued by Dahan et al. (2001) to 

correspond to roughly 12 ms. in human behavioral data. The interacting comparisons 

of free and forced-choice tasks, resting-level (RL) and connection-weight (CW) 

frequency implementations, and standard and reduced baseline resting activation 

                                                 

1 The difference between the two more successful implementations is that, in the simulations, 
frequency implemented in the resting activation levels produces baseline frequency effects prior to the 
onset of bottom-up effects that occur in response to the target input. Baseline frequency effects are not 
observed in the human data, leading Dahan et al. (2001) to conclude in favor of a connection-weights 
implementation of frequency. However, the correspondence between lexical activation and fixations to 
pictures in the visual world paradigm is understood to be driven by the task at hand (usually, to click 
on or look at the intended referent, sometimes in order to answer a question about it). In the absence of 
linguistic input and therefore in the absence of a task, a linking hypothesis between resting activation 
levels and fixations is less obvious, and potentially neutralizes the expected difference between the 
resting-level and connection-weight implementations of frequency.   
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defaults resulted in a 2x2x2 manipulation of Dahan et al. (2001)’s basic high/low 

frequency design. 

 

Table 1. Cycle of divergence for distractor (indexing earliest effect of phonological 
input) 

Default baseline for 
resting activation: 

-0.01 -0.3 

 Resting-
level 
frequency 

Connection-
weight 
frequency 

Resting-
level 
frequency 

Connection-
weight 
frequency 

Forced-choice task 10 14 14 14 
Free-choice task 16 14 14 14 

 

Table 2. Cycle of divergence for high-frequency cohort competitor. 

Default baseline for 
resting activation: 

-0.01 -0.3 

 Resting-
level 
frequency 

Connection-
weight 
frequency 

Resting-
level 
frequency 

Connection-
weight 
frequency 

Forced-choice task 34 35 30 33 
Free-choice task 48 48 41 43 

 

The conditions with the parameter settings used by Dahan et al. (2001) (-0.3 

default baseline, forced choice) matched those reported results, and in all conditions 

the expected frequency effect on cohort competition was observed (more cohort 

competition from the high-frequency competitor). With resting-level frequency and 

the (standard) -0.01 default baseline, we observed that the point at which the 

distractor’s response probability began to decrease was 6 cycles (72 ms.) earlier in the 

forced-choice task than the free-choice task. In the other three parameter 

combinations, the distractor diverged at cycle 14 for both free choice and forced 

choice. For the high-frequency competitor, the divergence point was earlier for forced 
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choice relative to free choice in all parameter combinations, by 10-14 cycles (~120-

168 ms.). This raises the possibility that the isolation of the forced-choice/free-choice 

difference to one condition for the distractor might follow from some other property 

of the model affecting early response strength, which obscures a forced-choice 

advantage except when the standard baseline default and resting-level frequency 

implementation are in place. 

In Figure 2 we show the underlying response strengths that are transformed 

into response probability for the condition that showed a free/forced-choice difference 

for the distractor (standard default baseline and resting level frequency), to make the 

overall dynamics of the trial clear. Recall that response strength is underlyingly the 

same, regardless of the task. In the forced-choice task, only the response strengths of 

the four plotted items factor into response probability. In the free-choice task, it is the 

response strengths of the four plotted items as well as the rest of the lexicon. After the 

first cycle in Figure 2, we see that response strength increases for all four items until 

cycle 24 (288 ms.), when it starts to decrease for the distractor. Response strength is 

increasing for all items from the very beginning of the trial because the resting level 

frequency implementation means that the different items start with different baseline 

activation levels. Lateral inhibition then leads higher-frequency items in the lexicon 

to increase in activation while lower-frequency items decrease, even without bottom-

up input (see Dahan et al. (2001) for further discussion). We believe all four are 

increasing here because they are relatively higher frequency in the lexicon. In any 

case, the decrease in response probability that we observe for the distractor is much 

earlier than cycle 24, even though response strength is still increasing; Figure 3 
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shows the point in the trial at which response probability for the distractor begins to 

decrease in either task (cycle 10 for forced choice and cycle 16 for free choice). To 

understand how this pattern arises from the response strength, we must look at the 

relative rate of increase in response strength from cycle to cycle for the four items in 

either task.  

 

 

Figure 2. The time course of underlying response strength (transformed activation) in 
each condition of the first simulation using the resting level frequency implementation 
and standard default resting baseline. 
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Figure 3. The time course of response probability for the distractor in forced-choice 
(top) and free-choice (bottom) tasks in the resting level frequency/standard default 
resting baseline condition, marking the time that response probability begins to 
decrease. 
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Response probability for the distractor is the response strength of the 

distractor divided by the summed response strengths of the forced-choice set of four 

or summed response strength of the free-choice lexicon. Each of these three quantities 

is increasing at the beginning of the trial (as described above), but at different rates. 

In the forced-choice trials, there are three items consistent with the first phoneme, and 

one distractor item that is not. In the free-choice trials, there are at least three items 

consistent with the first phoneme, as well as many more items that are not. Therefore, 

when the first phoneme is perceived and all words that are consistent with it 

experience a boost in activation, the percentage increase in summed response strength 

for the forced-choice trial is higher than the percentage increase in the summed 

response strength for the free-choice trial, because a higher proportion of items in the 

forced-choice set are experiencing a boost.  

Whenever the percent increase in the response strength of the distractor from 

cycle to cycle is larger than the percent increase in the summed response strength of 

the response set, response probability for the distractor will also increase; if the 

percent increases are equal, response probability will stay the same from cycle to 

cycle (even though response strength is increasing). The point at which the percent 

increase in the response strength for the distractor (the numerator) becomes smaller 

than the percent increase in the summed response strength for the response set (the 

denominator) is the point at which the response probability for the distractor begins to 

decrease; this will occur at some point following the boost in activation that applies to 

the cohort competitors and not the distractor. Because the summed response strength 

in the forced-choice trials (the forced-choice "pool") is increasing proportionally 
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much faster (due to its composition) than the summed response strength in the free-

choice trials (the free-choice "pool"), it surpasses the percent change in response 

strength of the distractor more quickly, and therefore forced-choice trials show an 

earlier divergence of the distractor, as illustrated in Figure 4. This is not due strictly 

to the smaller size of the response candidate set: it is due to the response candidate set 

being disproportionately composed of items whose first phoneme is consistent with 

the input. This means that if the forced-choice candidate set could have the same 

distribution of first phonemes that the overall lexicon had, the timing of the distractor 

divergence would not be expected to differ from the free-choice task. 

 

 

Figure 4. The time course of percent change in response strength for the distractor, 
free-choice pool, and forced-choice pool in the resting level frequency/standard 
default resting baseline condition. Dots indicate the points at which the percent 
change in response strength for the forced-choice or free-choice pool surpasses the 
percent change in response strength for the distractor. 
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 A final implication of the free/forced manipulation in these simulations holds 

for any threshold-based account of lexical access. In a forced-choice scenario under 

the standard baseline/resting-level frequency settings, the response probability for the 

target first crosses 50%, for example, at cycle 43. In a free-choice scenario, this 

occurs at cycle 68, a predicted difference of ~300 ms. In Dahan et al. (2001)’s forced-

choice human data, the target crosses the 50% response probability threshold at 

roughly 550 ms (which would be cycle 46 in a simulation, remarkably close to the 

model's prediction of cycle 43).  

2.3.4 Summary 

The aim of these simulations was to determine whether changes in response 

probability in response to bottom-up phonological input occurred earlier in forced-

choice tasks. We found some evidence in favor of this idea. When looking at how 

quickly response probability was diminished for a distractor whose first phoneme 

does not match the input, we found that under certain parameter settings (standard 

default baseline activation, and a resting-level implementation of frequency), this 

impact occurred six cycles (~72 ms) earlier for a forced-choice relative to a free-

choice scenario. When looking at how quickly response probability was diminished 

for a cohort competitor with an inconsistent third phoneme, we found that this 

occurred 120-168 ms earlier in forced-choice relative to free-choice scenarios across 

all parameter settings. These results suggest that task could be an important 

determinant of the observed timing of influences (whether top-down or bottom-up) on 

cohort competition.  
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2.4 Category effects 

The next set of simulations was intended to explore the effect of a syntactic 

category restriction on the distinction between forced and free-choice scenarios. 

Ideally this would be implemented through a substantial change to the architecture of 

the TRACE model itself, by adding a category layer such that category expectations 

could impose top-down influence on word activations. However, as any modification 

to the TRACE/jTRACE architecture is a complex endeavor with cascading 

ramifications, we adopted a rough approximation in the current study that allowed us 

to explore this question with the existing model. Category restriction was 

implemented as a manipulation of the frequencies associated with each lexical item, 

such that each item’s activation was weighted by its frequency of occurrence in the 

expected category. Therefore the type of category restriction we approximated is 

necessarily one that applies immediately, and prior to the onset of the target, such that 

its effects on the lexicon are already complete. As in the previously described 

simulations, Experiment 1 from Dahan et al. (2001) was used as a starting point. The 

design, of course, did not include a condition that would allow assessment of whether 

a category-inappropriate cohort competitor would initially be considered a candidate 

or not. Instead, the goal was to establish a rough set of expectations regarding the 

potential influence of a constrained lexicon on the basic dynamics of a trial. Though 

we consider this set of simulations exploratory, one prediction is that cohort effects 

might manifest more quickly in a category-constrained lexicon, as an instance of 

context speeding word recognition. For now, we are concerned only with the effects 
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of the category constraint within our simulations, and not with their mapping on to 

human data 

2.4.1 Simulation details 

Investigating the frequency counts used by Dahan et al. (2001) and provided 

in jTRACE revealed several inconsistencies. Both measures were obtained from 

Francis and Kučera (1982), but for some words the counts were for noun usage only, 

while for others the counts were collapsed across categories. To remedy this, overall 

frequency counts for each word in the simulation lexicon were extracted from the 

SUBTLEX-US database (Brysbaert & New, 2009), along with noun-specific counts 

(Brysbaert et al., 2012a). Two lexicons were then created: one with overall frequency 

counts and one with noun-specific counts.  

2.4.2 Results 

The same 2x2x2 manipulation of free/forced-choice scenario, resting-level 

and connection-weight frequency, and standard and reduced baseline default 

activation was then evaluated via simulation, using the noun-specific lexicon and then 

the general lexicon. The results for the distractor are in Table 3, and for the high-

frequency competitor are in Table 4. We note that in Table 3, the divergence point 

for the distractor in the -0.3 default baseline/resting level condition, with a general 

lexicon, is unaccountably early. 
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Table 3. Cycle of divergence for distractor. 

 Default 
baseline for 
resting 
activation: 

-0.01 -0.3 

  Resting-
level 
frequency 

Connection-
weight 
frequency 

Resting-
level 
frequency 

Connection-
weight 
frequency 

Noun-
specific 
lexicon 

Forced-choice 
task 

13 14 14 14 

Free-choice 
task 

18 14 14 14 

General 
lexicon 

Forced-choice 
task 

3 14 1 14 

Free-choice 
task 

17 14 1 14 

 
Table 4. Cycle of divergence for high-frequency cohort competitor. 

 Default 
baseline for 
resting 
activation: 

-0.01 -0.3 

  Resting-
level 
frequency 

Connection-
weight 
frequency 

Resting-
level 
frequency 

Connection-
weight 
frequency 

Noun-
specific 
lexicon 

Forced-choice 
task 

37 34 31 32 

Free-choice 
task 

54 44 41 40 

General 
lexicon 

Forced-choice 
task 

35 34 30 32 

Free-choice 
task 

50 44 41 40 

 

Otherwise, as in the previous simulations, we saw a forced-choice advantage 

in all conditions for the high-frequency competitor, and in the standard default 

baseline/resting level frequency condition for the distractor. In the current 

simulations, it was also this specific parameter combination that showed a difference 

due to the change of lexicon. What we observe, for these scenarios, is that the 
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divergence points are actually somewhat slower with the noun-specific lexicon than 

the general lexicon (also see Figure 5 and Figure 6). This is surprising given 

prevailing notions that context speeds and aids in word recognition. Our simulations  

Forced choice: 

 

Free choice: 

 

Figure 5. The time course of response probability for the distractor in forced (top) 
and free-choice (bottom) tasks in the resting level frequency/default resting baseline 
condition, marking (with a dot) the time that response probability begins to decrease. 
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Forced choice: 

 

 Free choice: 

 

Figure 6. The time course of response probability for the high-frequency competitor 
in forced (top) and free-choice (bottom) tasks in the resting level frequency/default 
resting baseline condition, marking (with a dot) the time that response probability 
begins to decrease. 
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could support the possibility that the way in which context speeds or aids the process 

is not faster cohort competition. Conversely, if faster cohort competition were 

understood to be a reliable consequence of contextual constraint, these simulations 

would point to a different implementation of the constraint, and not one in which 

items from the incompatible syntactic category are effectively not in the lexicon.   

2.4.3 Summary 

A category-restricted lexicon unexpectedly leads to slower distractor and 

competitor divergence than a general lexicon does. Exactly what properties of the 

model lead to the unexpected direction of this effect deserves further scrutiny, and 

comparison with matched human data would be illuminating. Our results suggest that 

this approach could be used to shed light on both the mechanism for the contextual 

constraint (in humans) and the way in which it alters word recognition. These results 

also reinforce the forced-choice advantage observed with the original frequency 

values in our first set of simulations. This advantage again occurs across the board 

when measured for the high-frequency competitor, but only with a specific 

combination of parameter settings when measured for the distractor.  

2.5 Discussion 

The goal of these simulations was to begin exploring the hypothesis that 

context effects appear earlier when the response candidate set is very small (in the 

visual world paradigm) than when it is unrestricted (in, for example, gating). Our 

findings were a first step toward quantifying the effect of the size and composition of 

the response candidate set on typical response dynamics. Examining simple bottom-

up phonological competition effects in jTRACE simulations of Dahan et al. (2001), 
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we found that the response probability of an item ruled out by the current input begins 

to decrease systematically earlier when the response candidate set is restricted. One 

important lesson from these simulations was that these differences caused by the 

response candidate set manifest only in response probability, and not in underlying 

lexical activation.  

For a researcher aiming to assess changes in lexical activation, the visual 

world might then provide a more faithful estimate of its time course than methods 

with larger response candidate sets. This idea runs counter to the intuition that a small 

candidate set might enable unnaturally early effects on the cohort, but is a simple 

clarification once activation and response probability are properly distinguished. 

Importantly, the set-size effects we observe are not effects of the size of the set, per 

se, but of its composition, or more specifically its distribution of items that are or are 

not affected by the input. The link with size is because small sets are more likely to 

have distributions that are skewed relative to the unrestricted lexicon. Thus, the 

contrast we observe between simulated response probability profiles in free and 

forced-choice tasks illustrates that inferences about activation from response 

probability depend heavily on set composition. Changes in the response probability of 

a critical item must be interpreted in the context of any activation changes occurring 

for other items in the response candidate set.  

Another, testable prediction arises from this insight: a dependent measure 

reflecting lexical activation directly, without the mediating influence of a behavioral 

response, should align more closely with the time course derived from the visual 

world than the time course derived from gating. MEG and EEG, allowing neural 
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activity in response to speech to be recorded with fine-grained temporal resolution 

during passive listening, are likely to be the best candidates, and could provide more 

accurate timing estimates that do not rely on assumptions about the link between 

activation and fixations. 

My primary question is about the activation of category-incompatible lexical 

candidates during word recognition, an issue surrounded by conflict in the literature. 

These simulations have not addressed that question directly, but they have revealed a 

new potential framework for understanding cross-method differences, and they have 

highlighted an important design consideration for any future work. Evidence that a 

forced-choice task makes it possible for bottom-up phonological effects to occur 

earlier in response probability than would be possible in free choice, as our 

simulations have suggested, is of course logically independent of evidence for or 

against the constrained generation of candidates. Definitively resolving the conflict 

will require using the same stimuli and maximally similar set-ups in the visual world, 

gating, and a neural measure, and testing TRACE's predictions fully will require 

direct comparisons of the timing of top-down and bottom-up effects in each dataset. 

But it is likely that changes in activation due to top-down influences, like syntactic 

category, would be subject to the same influence of the response candidate set in the 

conversion to response probability. The relative delay between forced-choice and 

free-choice effects would not necessarily be the same, because it would depend on 

exactly how distorted the distribution of categories is within the forced-choice set as 

compared to the free-choice set. And, of course, the categories in this case would be 

syntactic rather than phonological. But if TRACE is correct, and if set composition 
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has a remotely similar effect on top-down cohort activation changes as it does on 

bottom-up changes, one potential explanation for the observed conflict is that the 

delayed syntactic category effect in gating arises from changes in activation that are 

the same as those causing earlier effects in the visual world; the visual world would 

simply be reflecting them in behavior more quickly.  

In the next chapter, we report a new experiment capitalizing on these insights 

from our simulations. This study was set up to specifically distinguish facilitation and 

inhibition as mechanisms for a category constraint, while resolving design issues in 

some previous experiments asking whether wrong-category cohort competition is 

occurring. 
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Chapter 3: A visual world study on facilitation vs. inhibition as 

mechanisms for the syntactic constraint on cohort competition2 

 

 

3.1 Introduction  

3.1.1 Overview 

We are concerned, in this chapter, with whether or not lexical items compete 

for recognition as the word being heard even when their syntactic category is 

incompatible with the context. Different methods for asking this question have 

yielded different outcomes, as reviewed in Chapter 1. In Chapter 2, we showed that 

the size and composition of response candidate sets might help explain that variation, 

and are important in experimental design and interpretation. Our simulations suggest 

the possibility (which will require considerable follow-up) that visual world designs 

allow activation changes to be transmitted to response probability more quickly than 

designs with larger response candidate sets. In this chapter, we report a new 

experiment in the visual world paradigm that is set up to distinguish the effects of a 

facilitatory and an inhibitory syntactic category constraint, an issue that has not 

previously been addressed3.  

                                                 

2 Margaret Kandel, Anna Namyst, Nadiya Klymenko, Oliver Bentham, Reese Alpher, 
and Lalitha Balachandran assisted with stimulus preparation and data collection for 
Experiment 1. Some of the results of this study were previously reported in the 
Proceedings of the 11th International Conference on the Mental Lexicon 2018. 
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Our interest is in the set of words that are under consideration as auditory 

input unfolds, and whether that set is influenced by syntactic category; our focus in 

the visual world is therefore on fixations to pictures whose names have the same 

onset as the word being spoken, and either are or are not consistent with the syntactic 

context. Though a lack of fixations to wrong-category items in previous visual world 

results makes the constraint appear inhibitory, we argue that previous designs actually 

made such fixations difficult or impossible to detect. If we find evidence that the 

constraint is in fact facilitatory, this would present a second possible explanation for 

observed conflict in the literature. Our simulations allow for the possibility that the 

constraint is indeed inhibitory, as it appears in the visual world, but delayed in some 

tasks. Evidence for facilitation in this new experiment would instead align the visual 

world with cross-modal priming and gating under a facilitatory account. Of course, it 

is possible both that the constraint is facilitatory and that set size/composition matter 

for effect timing. 

Our visual world design has several important features. In contrast to previous 

visual world experiments on syntactic constraint, one notable design choice we made 

in order to increase the sensitivity of our measure was that critical trials do not 

actually include the target (e.g., when the auditory input was ‘He chose the 

battleship’, the display would include an image of cohort competitor balcony, but no 

battleship). As discussed in Chapter 2, using response probability as a dependent 

measure for making inferences about changes in lexical activation requires extreme 

care in causal attribution. The response probability for any given item is jointly 

determined by its own activation and by the activations of the other members of its 
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candidate set. Therefore, a change in response probability can only be unambiguously 

attributed to a given item if it is the only item whose activation could be changing due 

to the input. In our design, therefore, we omitted the target so that the cohort 

competitor would be the only item whose activation should change due to the 

auditory input, as this specific activation change was the crucial object of study. 

Huettig and McQueen (2007) also argue that target-less trials may serve as a more 

sensitive measure for evaluating cohort competition because looks are not being split 

between the target and the competitor (see also Brock & Nation (2014)).  

The other difficult design choice we were faced with was how best to 

implement a syntactic context manipulation involving noun and verb contexts, given 

that there are inherent differences in the imageability of verbs and concrete nouns. 

One approach in past work has been to compare fixations to verb referents (action 

pictures) and noun referents (object pictures) in, for example, verb context. However, 

this means that visual correlates of syntactic category could drive fixations 

independent of the unfolding of the target word (an issue we consider further in the 

Discussion section of this chapter). To avoid this possibility, our displays only 

contained pictures of objects, and we compared fixations to the same object in noun- 

vs. verb-constraining auditory contexts. For example, in a trial whose critical 

competitor picture was of a balcony, we asked whether looks to that balcony would 

increase relative to baseline in a verb context (“to bask”) in the same way that they 

were expected to in a noun context (“the battleship”).  
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These two design choices help ensure that the patterns in fixation probability 

that we observe in our data are the clearest possible reflection of lexical activation 

that the visual world paradigm allows.  

3.1.2 Predictions 

Our predictions with respect to the mechanism for the category constraint are 

as follows. We assume in all cases that bottom-up input leads to an increase in 

activation over baseline for the competitor but not the distractors.  

In the verb context (“to bask”), a category constraint acting via total inhibition 

of wrong-category candidates should stop activation of wrong-category, noun-only 

“balcony” as well as the other (wrong-category, noun-only) distractors, such that 

fixations do not increase relative to a baseline for any of them. In contrast, a category 

constraint acting via facilitation of correct-category, verb-compatible candidates in 

the verb context should not affect the activation of wrong-category, noun-only 

“balcony” or the distractors, meaning that fixations should still increase relative to a 

baseline.  

However, in the noun context (“the battleship”), an inhibitory category 

constraint for wrong-category candidates would be irrelevant for the four correct-

category, noun-only pictures, leading to the typical increase in fixations for the 

competitor (balcony). A facilitatory category constraint for correct-category, noun-

compatible candidates, in the noun context, would increase the activation of all four 

noun-only pictures equally and so should also not cause any additional changes in 

response probability other than the change caused by the phonological input. Thus, 

we are predicting normal cohort competition for balcony in the noun context 
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condition, under either type of constraint, while in the verb context such competition 

should only occur under facilitation. 

We acknowledge that in naturally occurring language, it is not the case that 

noun-only items are fully ruled out following infinitival “to” or that verb-only items 

are fully ruled out following “the.” This is true, however, in the repetitive structure of 

our stimuli, and we believe it to be a reasonable heuristic in our design; we leave a 

finer-grained accounting of probabilistic syntactic prediction to future work. 

 Because the prediction for a facilitatory constraint is indistinguishable from a 

null result in which there is no difference for competition between the two contexts, 

we included a second manipulation in which a context effect predicts a difference in 

fixations to the competitor regardless of the constraint being inhibitory or facilitatory. 

This expected difference would also yield information about the timing of the 

constraint.  

3.2 Methods  

3.2.1 Assumptions about the visual world paradigm 

Our study relies on basic phonological cohort competition effects, in which 

fixations to a phonological onset competitor increase in the first 200 to 400 ms after 

target word onset (cf. Allopenna et al. (1998), and many others following). The 

specific effects expected under any given design in the visual world paradigm depend 

on one’s assumptions about the way in which stimulus-driven fixations arise. 

Magnuson (2019) provides a thorough account of different potential linking 

hypotheses for the visual world, and their relative merits. In this section, we explicitly 
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outline our own assumptions about the paradigm, aligned most closely with 

Magnuson’s Linking Hypothesis 2.   

Participants have been instructed that they will be completing a task which 

will require them to have perceived and processed the pictures presented to them 

visually. This task need not be as obvious as to “Look at the…” or “Click on the…” 

picture; more passive engagement is also sufficient. Huettig and McQueen (2007) 

show that phonological competition arises even without any task at all, though we 

prefer assurance of at least a basic level of attention.  

1. Pictures are presented to the participant at least 1000 ms before auditory input 

begins. 

2. Participants scan the visual scene, and perceive the pictures. Lexical items 

associated with the pictures are activated, and then phonological 

representations corresponding to the lexical items are activated. This set of 

phonological representations is actively maintained or focused in short-term 

memory.  

3. Auditory input begins. Perception of the first phoneme of a word leads to the 

activation of all phonological representations that are consistent with the 

input. Each subsequent phoneme further facilitates representations that are 

still consistent with the input. Activation of phonological representations 

eventually leads to activation of corresponding lexical representations, but the 

exact timing of this process is not relevant for the current considerations. 

4. Per Huettig and McQueen (2007)'s "phonological hypothesis," phonological 

representations have been retrieved or activated on the basis of visual (picture) 
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information as well as on the basis of auditory (speech) information. Attention 

is shifted to a picture if there is a match such that representations are activated 

via both routes. 

5. Scanning of the visual scene continues for the duration of the trial. Pictures 

will be fixated if there is a match between the visually and auditorily activated 

representations. The proportion of fixations among the pictures is determined 

by their relative activation levels. TRACE (McClelland & Elman, 1986) 

proposes the Luce Choice Rule for conversion from activation to fixation 

probability. 

6. If the auditory input changes the activation levels of a phonological 

representation that matches with one of the visually activated representations, 

these changes in activation lead to changes in fixation proportion. It takes 

roughly 200 ms for a saccade to be planned and executed, but cancellation of 

planned saccades may be somewhat faster. We expect changes in auditory 

input to manifest as changes in fixation proportion with at least a 100 ms lag, 

though conventional wisdom is that the lag is closer to 200 ms. 

The assumption that phonological representations of visually presented 

pictures are activated in the absence of auditory input is sometimes referred to as the 

“implicit naming hypothesis” and is not universally accepted. An alternative 

hypothesis to implicit naming is that cohort competition effects arise via matching at 

the level of conceptual or visual features. In this scenario it is not necessary for the 

visual route to activate up to phonological representations. Instead, auditory input 

activates phonological, then lexical, then conceptual and possibly visual 



 

 50 

representations, and fixations are driven by matches with conceptual representations 

activated by the pictures or simply their visual features. This is the essence of the 

assumption of independence between language processing and visual processing 

made by Allopenna et al. (1998). 

The logic in implicit naming, in contrast, is that when participants are given 

preview time, the visual input has a head start in activating up to the phonological 

level, so matching can occur as soon as the auditory input activates to the 

phonological level. We assume, in addition to implicit naming, that attempted 

matching occurs at every level, and thus conceptual/visual matching will also occur 

once these levels of representation have been activated from the auditory input. 

However, if phonological representations have already been activated by the pictures 

when auditory input begins, this is the first match that can be made. 

We assume implicit naming because of Huettig and McQueen (2007)’s 

finding that cohort competition effects are eliminated when there is not sufficient time 

to preview the visual scene before the onset of auditory input. If typical cohort 

competition effects arise via conceptual/visual matching rather than phonological 

matching, the presence or absence of preview time should be irrelevant. The visual or 

conceptual features of the pictures are readily available with no time needed for 

activation of alternative levels of representation; it therefore does not matter how long 

the pictures are available before the auditory input begins. However, if advance visual 

input is required for cohort competition effects to arise, it must be that time is 

required for the pictures to activate their corresponding phonological representations, 

so that the match at that level can drive fixations. If this has not occurred in advance, 
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the phonological competitor may no longer be consistent with the word being heard 

by the time attempted matching at the conceptual/visual level occurs. This explains 

why Huettig and McQueen still found semantic and shape competition effects in the 

absence of preview (and why such effects occur at all).  

A more extensive, incremental manipulation of preview time would help 

differentiate these two hypotheses, and could be used to shed light on the timing of 

the various sub-processes involved in auditory word recognition. Magnuson (2019) 

argues that the implicit naming hypothesis is implausible because it is unlikely that 

people activate the names for every object and visual scene that they encounter in 

normal life. If it is the case that they don’t do so in normal life but they do engage in 

implicit naming in the visual world paradigm due to task demands, Magnuson notes 

the risk that language processing as measured in the visual world is then highly 

distorted. However, it is not known to what extent the activation of phonological 

representations from the pictures actually distorts the activation of phonological 

representations from the auditory input, which is what we aim to measure in this 

paradigm. For example, it could be the case that what is maintained in short-term 

memory for each picture is a pointer to the phonological representation. The “match” 

driving fixations would be whether or not a phonological representation activated by 

the auditory input has a pointer from the short-term memory representation of the 

visual display. Implicit naming would thus enable a convenient window onto 

phonological representations without actually influencing them.   

3.2.2 Design details 

3.2.2.1 Noun-only competitors  
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Our first manipulation used 30 sets of four noun-only pictures (i.e., pictures 

whose names could only be used as nouns, according to the SUBTLEX-US corpus 

(Brysbaert & New, 2009)). Within each set, no picture names shared an onset. For 

example: balcony, moustache, curtain, wheelbarrow. The four pictures were 

presented in the corners of a 3x3 grid. We counter-balanced the auditory context they 

were presented with such that half of the displays occurred with a noun context for 

Group A participants and a verb context for Group B participants, and half of the 

displays occurred with the opposite category. For example, a sentence containing a 

noun-only auditory target (battleship) would be “He chose the battleship for his 

birthday.” One picture (here, balcony) was a phonological onset competitor of the 

auditory target, as determined by the CMU pronouncing dictionary (Weide, 1994). 

The remaining pictures were considered distractors. Note that in typical visual world 

designs, in which the word being heard is also pictured in the display, this word is 

called the “target”. In our design, the word being heard is not pictured in the display. 

We continue referring to this word that is heard as the “auditory target”. The picture 

in the display whose name has an overlapping onset with the auditory target is 

referred to as the competitor.  

We measured the proportion of fixations to each of the four pictures following 

the onset of “battleship,” and looks to the balcony were expected to increase relative 

to a baseline, in a time window roughly 200 to 400 ms after the onset. The task for 

participants was to indicate via button press after each trial whether they had seen 

anything on the screen related to what they were hearing. The verb context version of 

each item used the same visual grid and contained the same pronoun and main verb 
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and a target with the same two-phoneme onset. For example: “He chose to bask in the 

sun.”  We did not employ a fully within-subjects design here because we did not want 

the same participant to see identical grids twice, which we expected would make 

competitor status more predictable. 

 In many visual world designs, the same picture will occur as target, 

competitor, and/or distractor (potentially counter-balanced across participants) to 

ensure there are no differences between these pictures (other than presence or absence 

of onset overlap) that could explain any observed effects. Our crucial comparison 

involves identical visual stimuli occurring in different auditory contexts, so we did 

not have this concern, and thus we did not fully rotate pictures between the 

competitor and distractor roles. However, because of the limited size of the set of 

pictures that met our criteria (described below), we did have to employ repetition of 

individual pictures. Competitors were each used twice as distractors in other grids. 

Half of the competitors also served (twice) as the targets in filler trials with noun 

context sentences. This ensured that repetition of a picture did not make its condition 

(as competitor or distractor) predictable. Because of those pictures that appeared three 

times in the experiment as critical items (once as competitor, twice as filler target), 

we broke up the presentation list into three blocks, and allowed only one repetition 

per block. The order of these three blocks was counter-balanced (interacting with the 

counter-balancing of contexts for a total of 24 lists), and the order of trials within 

these blocks was pseudo-randomized. Each block was then broken in half for 

presentation of 20 trials at a time. Participants were able to take a break after each 
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half-block of 20 trials. Distractor items that never appeared as competitors/targets 

were repeated five times across the course of the experiment. 

3.2.2.2 Noun/verb-ambiguous competitors 

 As described above, a facilitatory implementation of the category constraint 

does not make different predictions for the noun and verb contexts when noun-only 

competitors are used. Since all pictures in the display have noun labels, a constraint 

that boosts activation for all nouns should affect all picture labels identically, and 

hence have the same effect on response probabilities as if the category constraint 

simply failed to apply. To address this concern, we included a second manipulation 

aimed at distinguishing these possibilities by using competitors that were noun/verb 

category ambiguous (e.g. “soap”). Given some assumptions about the implementation 

of multiple-category lexical items, both the inhibition and the facilitation account 

would predict a positive effect of context in this second manipulation. 

As above, four pictures were presented in the corners of a 3x3 grid. A 

competitor picture with a noun/verb ambiguous name (e.g. a bar of soap) was 

included in addition to three other distractor pictures with noun-only names. All 

category designations were according to the SUBTLEX-US part-of-speech tags. In 

most trials (27 out of 30), the frequency of the target name was biased towards noun 

usage, according to SUBTLEX-US. Noun bias ranged from 69.98% to 99.84%, with 

a mean of 93.1%. Items were counterbalanced across participants to appear in either 

noun contexts (“He neglected the sofa in the playroom”) or verb contexts (“He 

neglected to socialize the puppies when they were young”). As above, our hypotheses 
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were evaluated against fixation proportions to the soap roughly 200-400ms after the 

onset of the critical word (“socialize” or “sofa”). 

In the first manipulation, when we compare response probabilities for the 

same competitor picture in the two contexts, we are comparing a context in which the 

constraint should have applied and a context in which it should not have applied. The 

inhibitory constraint causes activation changes to all four noun-only pictures in the 

verb context but not the noun context. The facilitatory constraint causes activation 

changes to those noun-only pictures in the noun context but not the verb context; 

however, because in the noun context the same change occurs for all four pictures, 

there is no observable response probability difference, and therefore no difference 

from the context in which there is no constraint applying and so no response 

probability difference. While the inhibitory constraint does cause a change for all four 

pictures, that change is something along the lines of multiplication by zero (or, 

alternatively, return to baseline), and this means that the proportional activation 

change for the competitor versus distractors is different, because the distractors were 

already at baseline. This competitor/distractor difference is what creates a visible 

change in response probability, relative to the context where no changes occurred. 

In this second manipulation, because the competitor is noun/verb ambiguous, 

it should be affected in both contexts, under either constraint. In all cases, the change 

in activation for the noun/verb ambiguous competitor will be different from the 

change in activation for the noun-only distractors, such that if we were comparing to 

a context in which no constraint applied, we would see the change in response 

probability. We are not comparing to such a context, but the extent of 
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competitor/distractor difference will vary between the two contexts that we are 

comparing, which is what leads us to expect a difference in response probability.  

More specifically, a category constraint acting via inhibition of wrong-

category candidates should inhibit activation of “soap” in the context of “to socialize” 

more than it should inhibit activation of “soap” during the context of “the sofa,” 

because soap is used more often in noun contexts than verb contexts, and we assume 

that such a category constraint would operate proportionally with respect to 

frequency. Distractors, with activation already at or near baseline, should see little 

change in activation whether the constraint applies to them or not. We would then 

expect to see more fixations to “soap” during “sofa” than during “socialize.” A 

category constraint acting via facilitation of correct-category candidates should, we 

suggest, have nearly indistinguishable effects from the inhibitory constraint. “Soap” 

should be facilitated in the context of “to socialize” just as in the context of “the 

sofa,” but simply to a lesser extent, based on its frequency imbalance. Distractor 

activation will increase in the noun context and not the verb context, which could 

somewhat neutralize the advantage in the noun context due to the noun-biased 

frequency, but we would still expect more competition in noun than verb context. 

Therefore, if our assumptions about the representation of category-ambiguous words 

hold, this second manipulation leads us to expect a context effect under either 

constraint, and so could provide positive evidence that participants are applying some 

form of category constraint. This is useful in the case that the first manipulation 

yields no difference and therefore does not distinguish facilitation and no constraint. 

We note that the exact details of expected activation and proportion changes vary 
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considerably with one’s assumptions about the implementation of facilitatory and 

inhibitory constraints.  

This second manipulation also provides timing information about the category 

constraint that would be impossible to glean from the first manipulation, if the 

category constraint is implemented via facilitation. In the first manipulation, because 

all four picture labels have the same category status, the application of the category 

constraint, whether immediate or delayed, should have the same effect on all four 

pictures, assuming that the effect is proportional. Because our dependent measure is a 

proportion of fixations, we should not see a change. However, in the second 

manipulation, a category constraint should affect the noun-verb ambiguous item 

differentially from the noun-only distractors. If fixations to the soap differ during 

“sofa” and “socialize,” the timing of this difference can indicate when the category 

constraint is applied. 

We were only able to find 27 usable stimulus triplets (picture word, noun 

context competitor word, verb context competitor word) in which the noun frequency 

was higher than the verb frequency. Three with higher verb than noun frequency were 

included in the experiment so that the number of trials per condition would not be 

skewed, but these three were not included in the analysis. For these 27 useable 

competitor words, the mean SUBTLEX frequency per million as a noun was 22.03 

and as a verb was 1.28. The mean frequency of the noun-only distractors was 7.92. 

Recall that because our comparison is between the same display of pictures in 

different auditory contexts, frequency differences between pictures in the display are 

not inherently problematic. 
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The set of distractor pictures used was the same as the set used for the first 

manipulation, but re-shuffled among grids. Half of the competitor pictures appeared 

twice as targets in filler trials with verb context sentences. These pictures that were 

used as both competitors and targets were also used twice as distractors in filler trials 

with noun-context sentences, so that it was not the case that any time a noun-verb 

picture appeared, it was guaranteed to be a target or competitor. 

3.2.2.3 Filler trials with targets 

In addition to the two critical manipulations described, we also included filler 

trials in which the display contained a referent for the auditory target, so that in half 

of the trials one of the picture names would actually be mentioned in the sentence. 

These filler trials also allowed us to verify the presence of the most basic type of 

visual world effect in our data: increased fixations to the picture matching the 

auditory target. In 30 noun-context filler trials, the display contained the target and 

three distractors. For example, the four pictures might be: balcony, sword, tractor, 

clock. The auditory sentence would be “He chose the balcony with a view of the 

ocean.” In 30 verb-context filler trials, the display also contained the target, but in this 

case it was a noun-verb ambiguous item (e.g. a bar of soap with the auditory sentence 

(“He neglected to soap his hands thoroughly.”).  

Participants were warned in the initial instructions that they might see 

instances in which an action in the sentence was related to an object on screen. This 

was made clear with a practice trial that included a picture of a shovel along with the 

sentence “He refused to shovel the snow.” Participants seemed to find these instances 

completely straightforward and they answered “yes” (that they had seen something on 
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the screen related to what they were hearing) without issue. These trials were 

necessary to ensure that participants had motivation to look at the pictures when the 

sentence context indicated a verb. Notably, we also included noun-verb pictures as 

distractors in the noun-context filler items (e.g. “clock” above) so that it would not be 

the case that in all occurrences of a noun-verb picture, that picture was a cohort 

competitor or target. 

3.2.3 Stimulus creation 

To construct our set of picture stimuli, we started with all color line drawings 

of objects available from the BCBL (Duñabeitia et al., 2018) and SVLO (Rossion & 

Pourtois, 2004) repositories, as well as a small number of supplemental clip-art 

drawings. Many visual world experiments use black and white line drawings, but we 

retained color in order to preserve the predictably elicited names, and because our key 

contrast was between two conditions presenting identical visual stimuli. Color 

differences between individual pictures were thus irrelevant. We reviewed the full set 

of possible pictures and excluded any pictures for which multiple names seemed 

possible, the picture showed a scene or more than one object, the object in the picture 

was not immediately recognizable, or the picture called to mind a verb before a noun. 

We then restricted this set to those whose names were listed in SUBTLEX-US 

(Brysbaert & New, 2009) and listed as usable only as nouns or only as nouns or 

verbs. We removed pictures whose names had fewer than 3 phonemes or nasals as the 

third phoneme following a vowel as the second phoneme. Finally, we took the subset 

of the remaining pictures that could form a triple with a noun-only and verb-only 

onset competitor listed in SUBTLEX-US (Brysbaert & New, 2009). 
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The sentence frames we used (e.g. “She wanted to/the…”, “They chose 

to/the…”) were adapted from Fox and Blumstein (2016). See Appendix A for a full 

list of stimuli (also available for download on OSF). We always used the past tense, 

and equally rotated pronoun use across conditions. The remainder of the sentence 

following the critical item was not subject to any specific considerations other than 

felicitousness. Our critical items always had a two-phoneme onset overlap with the 

corresponding/counter-balanced critical item and the corresponding picture in the 

display (as in Allopenna et al. (1998) and many following, in which two phonemes 

are shown to be sufficient for eliciting cohort competition). The sentences were 

recorded by a female native speaker of English who read from a list of the 120 items 

whose order had been fully randomized. Two recordings were made and the clearer 

recording of each item was used. After recording we used Praat (Boersma & 

Weenink, 2014) to normalize the stimulus files at 65 dB and resample to 22.5 kHz. 

 Using naturally recorded full sentences meant that our context words (to, the) 

contained some co-articulation potentially providing advance knowledge of the onset 

identity of the critical word to follow (see Salverda, Kleinschmidt, & Tanenhaus 

(2014) for thorough consideration of this issue). Though this might lead to cohort 

competition effects occurring up to 70 ms earlier than if we had used neutral tokens 

of “to” and “the,” this is not an issue in our design, since the onset identities of our 

critical words are necessarily matched within pairs, such that co-articulation cues in 

the noun and verb contexts should be the same. We also intended this experiment to 

reflect the conditions of natural speech as closely as possible, so cross-spliced neutral 

tokens would have been undesirable in this respect. 

https://osf.io/598t3/?view_only=f99aaa5f4a9b4fab8f22434253b6ce4a
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 A different co-articulation concern might be that the differing third phoneme 

between e.g. battleship and bask with respect to the third phoneme in balcony might 

cause the timing of the termination of cohort competition to vary between the two 

conditions. This should not occur systematically so as to introduce a confound for our 

contrast of interest. However, to mitigate this, we made the third phoneme the same 

in the noun and verb competitor words whenever possible, so that co-articulation 

during the onset would be different in the same way from the target.  

 Finally, following recording, we used the Montreal Forced Aligner 

(McAuliffe et al., 2017) to identify word and phoneme boundaries inside the audio 

files. 

3.3 Procedure 

We used a tower-mounted SR Research Eyelink 1000 eye-tracker, which has a 

sampling rate of 1000 Hz, to record eye movements. For the majority of participants, 

only the right eye was tracked. 14 participants had the left eye tracked instead due to 

technical issues. Participants were seated comfortably with their chin resting on the 

chin rest of the tower mount. The setup was such that the distance from participants' 

eyes to the center of the (23 inch) monitor presenting the visual stimuli was 38.4 

inches. Participants heard stimulus sentences via speakers located next to the monitor. 

We performed a nine-point calibration, and then presented four practice trials 

and allowed participants to ask questions about the task and request adjustments to 

the volume before starting the first block of the study. The experiment was presented 

using SR Research's Experiment Builder software. In each trial, a 3x3 grid appeared 

on the screen with a picture in each of the four corners. The grid was displayed for 
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1000 ms before the sentence started playing and disappeared when the sentence ended 

(since the auditory target was mid-sentence, this yielded more than 1000 ms of 

preview, which was more than sufficient for phonological competition to arise via 

implicit naming of the pictures). After a 300 ms blank, the task question appeared on 

the screen (“Did you see anything on the screen related to what you were hearing?”) 

and remained until the participant’s button press. After the button press, a dot 

appeared in the center of the screen for drift correction, after which there was a 300 

ms blank and then the next grid was presented. After every block of 20 trials, 

participants were given the option to take a break. A mandatory break occurred every 

two blocks, when re-calibration was performed. We also re-calibrated after any 

additional voluntary breaks. Each of the six blocks of 20 trials lasted three to four 

minutes. The entire experiment took roughly 25 minutes. 

3.4 Participants & statistical power 

To determine the appropriate sample size for this study, we started with 

Huettig and McQueen (2007)'s phonological competition effect for noun pictures in 

noun context. There was no existing design or analysis that exactly matched our 

design and planned analysis, and we considered the Huettig and McQueen 

competition effect to be as comparable as possible to what we expected to observe in 

our study because their design also omitted a target. However, the design in that study 

differed from ours in that it included a semantic and a shape competitor. The analysis 

also differed from our planned analysis in that it computed the ratio of the competitor 

fixation proportion to the summed competitor and distractor fixation proportions and 

compared this value to 0.5, while we compared competitor fixations to the 
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competitor’s own baseline (see next section). Huettig and McQueen also tested 

averages within 100 ms. time windows, while we used temporal cluster tests. Thus, 

our sample size estimate for achieving 80% power is only an approximation, given 

the information available to us. 

The Huettig and McQueen phonological competition effect is present in 

several time windows, but the smallest t-value with which it manifests is 3.3. With a 

sample size of 30, this constitutes an effect size (Cohen’s dz) of 0.602. However, 

because effect sizes in published studies are systematically over-estimated (recently 

discussed by e.g. Vasishth, Mertzen, Jäger, & Gelman (2018)), we used a more 

conservative estimate of 0.4. Power analysis using G*power (Faul et al., 2009) 

indicates that for a repeated measures one-tailed t-test with desired alpha of 0.05 and 

desired power of 80%, the necessary sample size for a simple phonological 

competition effect is 41. However, our intention was to test for the equivalent of an 

interaction that would indicate whether or not the phonological competition effect 

differed between context conditions.  

Conventional wisdom indicating that interaction designs should maintain the 

same N per cell would dictate doubling the sample to 82 participants. However, 

because the nature of the expected effect was a "knock-out" interaction in which the 

simple effect is present in one condition but absent in the other, the interaction effect 

size can be estimated at roughly half the magnitude of the main effect. Therefore, 

"knock-out" interactions are considered to require four times as many participants, 

yielding a recommended sample size of 164 (see e.g. Simonsohn (2015)). We 

collected data from 165 participants, but 21 datasets were excluded due to technical 
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issues or because the participant reported learning a language other than English 

before age 7, so only 144 were included for analysis. Thus, with 144 rather than 164 

participants, we in fact had power of 76%, not 80%, to detect the expected knock-out 

interaction based on the Huettig and McQueen phonological competition effect.   

For the manipulation in which we used noun-verb ambiguous competitors, we 

expected competition effects to be larger because of the higher frequency of the 

picture names. But we also did not expect the interaction between contexts for this 

manipulation to be a "knock-out" interaction; the effect in verb context was predicted 

to be attenuated but not completely eliminated, which would make the effect harder to 

detect. Therefore, we could not calculate or even approximate the necessary sample 

size for 80% power in this case. 

All participants were recruited from the University of Maryland community 

and were at least 18 years of age. All gave informed consent and were compensated 

for their time with course credit or cash ($12/hour, and sessions typically lasted one 

hour).  

3.5 Analysis 

Because the task for participants was to indicate whether they had seen 

anything on the screen that was related to what they were hearing, and relatedness is 

subjective, we did not use task response accuracy as a filter for dataset inclusion. The 

data were processed by first removing all samples labeled by the eye-tracking 

software as saccades. Our threshold for the number of samples that could be missing 

from a trial was 2000, i.e., 2 seconds of data; any trials exceeding this threshold were 

excluded. For each fixation sample, we coded whether it was to a competitor/target or 
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to one of the distractors. Using onset information from the output of the Montreal 

Forced Aligner (McAuliffe et al., 2017), we also coded what word in the sentence the 

sample had occurred during. We did not include for analysis the three items from the 

critical noun-verb ambiguous condition that were verb-biased rather than noun-

biased. 

We then extracted only the fixations that occurred during the context word 

and the critical item, taking a 400 ms window time-locked from the onset of the 

context word and a 1000 ms window time-locked from the onset of the critical word. 

For each participant and condition, for each time point in these two relative time 

courses, we calculated the proportion of instances of this time point across trials for 

which the fixation was to the competitor. Here and following, we will use the term 

“competitor” to refer to the picture name whose onset overlaps with the word being 

heard. In filler trials, this competitor turns out to fully match the auditory target. This 

gave us a single time course of proportions of looks to the competitor for each 

participant and condition, in the context and critical windows. Finally, for each 

participant and condition we computed the mean proportion of fixations to the 

competitor in the first 100 ms of the context word; this served as the baseline for that 

participant/condition. We subtracted this baseline from the proportion of fixations at 

each time point in the critical window to create a "competitor advantage" reflecting 

any increase in the proportion of fixations to the competitor relative to a time window 

when looks could not have been driven by the difference between conditions. We 

then smoothed the data using a 20 ms Hamming window. The time courses of the 

competitor advantage for each participant were submitted to temporal cluster tests.  
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For filler trials in which the competitor (the critical item) turns out to fully 

match the auditory target, the temporal cluster tests were one-sample t-tests against 

zero to determine when there was a reliable competitor advantage. This was done 

separately for noun-only competitors and noun-verb ambiguous competitors. For the 

critical trials, the temporal cluster tests were related-measures t-tests to determine 

whether there was a difference in the time course of the competitor advantage 

between the noun and verb contexts. This was done separately for noun-only 

competitors and noun-verb ambiguous competitors. We then conducted one-sample t-

tests against zero asking when there was a reliable competitor advantage within each 

context.  

Temporal cluster tests were always one-tailed and conducted with 10,000 

permutations and a threshold of p < .05 for forming clusters. For fillers, we conducted 

tests in a single window from 100 to 1000 ms, because the competitor advantage is 

expected to increase systematically throughout the entire window. For critical trials, 

we conducted tests in two separate windows, based on the results of Strand et al. 

(2018) and Huettig and McQueen (2007). Both found that fixations to competitors 

began to decrease slightly after 500 ms, so we broke the epoch into two equal-sized 

windows that would capture this. The first window, from 100 to 550 ms, was where 

we expected competition to occur robustly (at least in the correct context). In the 

second window, from 550 to 1000 ms, we expected weaker and tapering competition 

from (at least) the noun-only competitors. We used the same time windows for the 

noun-verb ambiguous competitors.  
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The choice to evaluate the proportion of competitor fixations relative to its 

own baseline is not completely standard. Many visual world analyses instead consider 

when fixations to the competitor exceed fixations to the distractor items. However, it 

is difficult to ensure that fixations to the competitor and distractors at the beginning of 

the trial are perfectly matched; they may vary due to slight differences in frequency, 

visual salience, or simply chance. Since what we are interested in assessing is when 

(and to what extent) the activation of the competitor exceeds what its activation level 

was before auditory input, we maintain that the increase in the proportion of fixations 

to the competitor is the most directly relevant dependent measure. This comparison is 

possible in our design exactly because the competitor is the only item whose 

activation can be expected to change, making it straight-forward to reason from 

changes in its proportion of fixations. In a typical design that includes a target, the 

change in the proportion of fixations to the competitor is also influenced by changes 

in activation for the target. Comparison between the competitor and the distractors is 

therefore preferable in these designs because the distractor proportions are also 

influenced by the target.  

3.6 Results 

For the noun-only filler trials (Figure 7) in the window of 100-1000 ms, the 

competitor advantage was found to be significantly different from zero starting 175 

ms after auditory target onset and persisting for the remainder of the epoch (p < 

0.001). Note, again, that we use the term “competitor advantage” for competitors in 

filler trials as well as for competitors in our critical trials; it refers to the increase in 

fixations relative to baseline for the item whose onset overlaps with the auditory 
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target, and in filler trials the rest of the word is a match as well. For the noun-verb 

ambiguous filler trials (also plotted in Figure 7), the competitor advantage was found 

to be significantly different from zero for the entire analysis window (p < .001). 

These results indicate that participants did, indeed, look more at the pictures whose 

names they were hearing. The competition effects are somewhat earlier than is often 

observed but given the available co-articulatory cues on the context word, this is not 

surprising. In the second half of the trial, the proportion of looks to the target appears 

to reach a slightly higher maximum for the noun-only relative to the ambiguous 

condition, though we had no hypotheses regarding such a difference. This could 

potentially indicate that participants had slightly less confidence in the noun-verb 

ambiguous pictures as referents in verb context than they did in the noun-only 

pictures as referents in noun context. 

 

 

Figure 7. For filler trials, the smoothed time course of competitor advantage relative 
to baseline following auditory target onset, for noun-only ('reg') and noun-verb 
ambiguous ('ambig') competitors, which are fully consistent with the auditory target. 
Shading indicates one standard error.  
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For our first critical manipulation, which focused on cohort competitors 

whose names were category-unambiguous nouns, there were no clusters indicating a 

difference in the competitor advantage between the noun and verb contexts (Figure 

8). One-sample t-tests in each context in the early window (100-550 ms) indicate 

significant clusters in which the competitor advantage differs from zero in both the 

noun context, from 263 to 550 ms (p < .01), and in the verb context, from 316 to 453 

ms (p < .05). In the later time window, we found significantly increased fixations to 

the noun-only competitor in the noun context (550-706 ms and 749-928 ms, both p < 

.05) but not in the verb context. The magnitude of the competition effect (a difference 

in fixation proportions of ~0.04, relative to baseline) is comparable to, if slightly 

larger than, what can be observed in the plots from Huettig and McQueen (2007) and 

Strand et al. (2018), though neither computes or reports exactly this measure. An 

obvious concern about our failure to find a difference between the noun and verb 

contexts is that this could have been due to lack of power, despite our efforts to 

ensure a sufficient sample size. However, the knock-out interaction that we expected 

was such that there would be no competition in the verb case, and we found a 

significant effect in this condition. Thus, while there may be a smaller difference 

between the conditions that we are unable to detect, we do have positive evidence 

against the inhibitory effect as it was hypothesized. 
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Figure 8. For the noun-only competitor in critical trials, the smoothed time course of 
competitor advantage relative to baseline following auditory target onset, in noun 
and verb contexts. Shading indicates one standard error. 

 

For our manipulation of noun-verb ambiguous competitors (Figure 9), we 

also observed standard cohort competition effects, but again there were no clusters 

indicating a difference in the competitor advantage between the noun and verb 

contexts. Competitor advantage effects were numerically bigger than in the noun-only 

manipulation, likely due to the higher overall lexical frequency of the competitor 

names. One-sample t-tests in each context in the early window indicate significant 

clusters in which the competitor advantage differs from zero in the noun context, 

from 197 to 550 ms (p < .001), and in the verb context, from 270 to 550 ms (p < .01). 

In the later time window we found significant competition in both contexts, ending at 

801 ms in the noun context (p < .01) and 963 ms in the verb context (p < .001). 
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Figure 9. For the noun-verb ambiguous competitor in critical trials, the smoothed 
time course of competitor advantage relative to baseline following auditory target 
onset, in noun and verb contexts. Shading indicates one standard error. 

 

3.7 Discussion 

In this study, we used the visual world paradigm to ask whether and how 

syntactic context constrains lexical activation. Our design was intended to distinguish 

between facilitatory and inhibitory mechanisms for the syntactic context constraint. In 

syntactic context, is it the case that the activation of wrong-category candidates is 

prevented, that the activation of correct-category candidates is boosted relative to 

wrong-category candidates (which still compete), or that activation is unaffected by 

category status? Participants heard auditory targets that they could expect to be either 

nouns or verbs on the basis of the syntactic context. We measured fixations to 

pictures of cohort competitors that could only be nouns or were strongly noun-biased. 

The study was designed to maximize the chance that the activation of wrong-category 

competitors would be detectable if it were occurring. This was done by not including 

any other items in the display that could cause changes in response probability and by 
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making sure that the pictures could not be classified as noun- or verb-associated 

based on visual properties alone. These decisions were partially informed by our 

simulations in jTRACE (Chapter 2), which demonstrated the importance of the 

response candidate set in interpreting response probability.  

Given these design parameters, we did find immediate cohort competition 

from wordforms that were incompatible with their syntactic context, with no evidence 

that it differed from competition in the correct context. This contrasts with previous 

work in the visual world (Magnuson et al., 2008; Strand et al., 2018) but it is 

consistent with earlier evidence for wrong-category competition in cross-modal 

priming (Seidenberg et al., 1982; Tanenhaus et al., 1979; Tanenhaus & Donnenwerth-

Nolan, 1984) and gating (Tyler, 1984; Tyler & Wessels, 1983). We observe the same 

pattern of significant but indistinguishable cohort competition from noun-biased 

cohort competitors in noun and verb contexts. 

Our finding of competition in both noun and verb contexts for the noun-only 

competitors is inconsistent with the predictions of an inhibitory account that we 

would see normal cohort competition in the noun context and no cohort competition 

in the verb context, as Strand et al. (2018) and Magnuson et al. (2008) had found for 

the analogous comparisons in their designs. This finding is consistent with both a 

facilitatory account and an account in which syntactic context did not constrain 

lexical activation at all.   

Our manipulation of noun-verb ambiguous competitors was aimed at 

distinguishing these two remaining alternatives, but the results were somewhat 

equivocal. We expected that a constraint that operates in proportion to frequency in 
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the category, whether faciliatory or inhibitory, would lead to greater activation and 

competition in the noun context than the verb context, because our noun-biased items 

would be either more facilitated or less inhibited. Without a constraint, the noun-verb 

ambiguous competitors should appear the same in both contexts. We found a 

numerical difference between the contexts, but the difference was not significant, 

suggesting that either that the syntactic constraint does not apply to the competition 

process or that we lacked the power to detect a relatively small modulation in the 

competition effect. Because our power analysis did not extend to this condition, we 

cannot know what our power was in this case.  

3.7.1 Considerations for the inhibitory account 

Our findings do not support an inhibitory constraint in which wrong-category 

competitors are not activated. We believe an assumption that constraints on cohort 

competition are inhibitory is implicit in many experimental designs, because the 

effect of interest is simply the presence or absence of wrong-category competition. 

Testing for a facilitatory constraint, in contrast, requires examining the modulation of 

correct-category competition. Why did we observe wrong-category competition when 

two previous visual world studies (Magnuson et al., 2008; Strand et al., 2018) did not, 

and so appear to support the inhibitory account? In each case, the appearance of such 

a constraint could have arisen because of design properties that led participants not to 

fixate on wrong-category competitors even though they were activated. Another 

possibility is that the designs made it difficult for changes in activation to be detected 

in response probability.  



 

 74 

For Magnuson et al. (2008), the issue is whether the experimental context 

impacted the way in which images were implicitly labeled by participants. As 

discussed in Chapter 1, this study used an artificial language consisting of texture 

adjectives and shape nouns that could be used to describe the items presented on 

screen. When four different shapes were presented, participants could expect that they 

would hear only a shape noun after "Click on the..", because using an adjective would 

be unnecessarily specific. When two items had the same shape, participants could 

expect that an adjective would be used to differentiate them, and therefore that they 

would hear an adjective after "the." This was the basis of the expected syntactic 

constraint on cohort competition. Wrong-category competitors were included in the 

display to test whether they would be fixated more than distractors. This consisted of, 

for example, shapes whose texture adjectives were cohort competitors of the target's 

shape noun when only a shape noun was expected. Failure to look at these 

competitors more than distractors was taken to be evidence that their phonological 

representations were not actually competing in the cohort, due to the syntactic 

constraint.  

However, for observable cohort competition to occur requires that there be a 

match between the name for the picture and lexical representations activated by the 

auditory input; we assume that this match is what drives fixations. We want to know 

whether wrong-category phonological representations are activated by the auditory 

input, and in order for their activation to be detectable in fixations, there would need 

to be a picture name with which a match could occur. The logic of this study 

therefore relies on the assumption that participants use the same implicit label, of the 
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form “adjective-noun”, for each image on every trial, regardless of the pragmatic 

context, so that in e.g. trials where a noun is expected, if adjectives are nevertheless 

activated by the auditory input, they can still match with the picture name and drive 

fixations, because the picture name contains the adjective. But if the pragmatic 

context for the noun trials led participants to implicitly label the images with their 

shape (noun) name only, then even if adjectives are activated via the auditory input 

(which is our question) there will be no opportunity for them to match, and therefore 

no way for them to drive fixations. This would make wrong-category cohort 

competition undetectable.   

Put another way, if the task requires paying attention only to a shape’s noun 

descriptor or only to a shape’s adjective descriptor, it would be reasonable for 

comprehenders to label the referents only with respect to their adjective or noun 

descriptors. If this is the case, then it is unsurprising that onset overlap between the 

auditory target and the other, irrelevant descriptor word for the shape would not drive 

increased fixations, even if wrong-category cohort competitors were activated by the 

auditory input, because the irrelevant descriptor word for the shape would not be 

available for a match. Though it is possible that comprehenders do implicitly name 

both the adjective and the noun even though the task discourages it, the explanation 

we are proposing cannot be ruled out. 

In the case of Strand et al. (2018), the issue is instead related to potential 

strategies arising from regularities in the stimuli. Strand et al. (2018) include pictures 

of actions in their visual world design, so that verbs can also have referents and they 

can plausibly ask whether participants fixate verb competitors during noun contexts 
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and vice versa. This solves a major problem for the visual world paradigm. 

Unfortunately, though, it also introduces a new one. Because action pictures depict 

fundamentally different entities than object pictures do, they tend to be visually quite 

distinct. In fact, it is generally easy to surmise from a line drawing whether its 

intended referent is a noun or a verb. Most verb pictures involve a human or animal in 

motion, and most noun pictures involve a simple object. Because Strand et al. 

(2018)'s design is such that a verb target always has a verb picture as a referent and a 

noun target always has a noun target as a referent, we suspect that it was possible for 

participants to know after the context word, before the target word has started, which 

two of the four pictures on screen could be the referent and therefore which they 

should look at. In other words, they could know not to look at the wrong-category 

competitor even before the critical word had started. So this, again, is a case where 

the activation of wrong-category competitors becomes undetectable, because the link 

that would allow it to drive behavior is overcome by a more powerful strategy.  

An additional concern in the Strand et al. (2018)'s design is that the presence 

of correct-category distractors has the potential to obscure changes in activation from 

wrong-category competitors. The logic of studies of this kind is that increased looks 

to a wrong-category competitor, relative to a distractor, is evidence of increased 

activation. But if the distractor itself might receive an activation boost, by virtue of 

being associated with the same category that is supported by the context, then this 

might mask any increased looks to the wrong-category competitor. 

Beyond these visual world studies, as reviewed in Chapter 1, other previous 

results are more consistent with the absence of an inhibitory constraint. Findings from 
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gating have never been consistent with an inhibitory constraint, because they have 

shown that wrong-category options are initially proposed. Cross-modal priming is 

restricted to homophony and only demonstrates an inhibitory-appearing constraint 

200 ms after word offset, which is too late to bear on the question of initial cohort 

competition. We conclude that the previous literature, in combination with our 

finding, does not support the possibility of an immediate inhibitory constraint that 

prevents initial wrong-category competition.  

3.7.2 Considerations for the facilitatory account 

We observed more competition from our noun-biased noun/verb ambiguous 

competitors in noun context than verb context, consistent with the presence of a 

syntactic constraint, but this difference was not statistically significant. An a priori 

estimate of the effect size for this manipulation was not possible. However, if there is 

a true effect that we failed to detect due to lack of power, even with 144 participants, 

this raises questions for the viability of the visual world paradigm in answering 

questions along these lines, unless experimenters are willing to drastically surpass the 

typical sample size. Even with large sample sizes, while there may be other potential 

visual world designs that could provide positive evidence for a facilitatory constraint, 

the design considerations that we have discussed in this paper considerably restrict 

the space of possibilities. We have described why noun-only and verb-only 

competitors should not be compared in the same display, both because activation of 

only one item in the display should be manipulated at one time for clear inferences 

about response probability, and because of the action/object picture confound. 

However, once all four items in the display have the same syntactic category, a 
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proportional increase that applies to all four equally, due to the context, will be 

impossible to see as a change in response probability. Comparisons of competition in 

and out of context are also potentially problematic because of the possibility that 

there is some degree of default expectation for nouns as targets in the visual world 

paradigm, since it relies on easily imageable referents. Future work will therefore 

need to seek alternative evidence for or against the facilitatory constraint likely 

outside the visual world paradigm. 

Support for a faciliatory constraint would mean that findings of wrong-

category competition in cross-modal priming and gating are not evidence against the 

existence of the constraint, as they would have been under inhibition. Wrong-

category competition is expected in this scenario, and in order to bear on the presence 

or absence of a constraint on lexical activation, these methods would need to establish 

whether or not there is increased competition for words from the correct category 

relative to the incorrect one, or for the correct category relative to no context. 

McAllister (1988) finds that there is such a pattern in gating, where the presence of 

context leads to a change in the percentage of incorrect-category items proposed but 

does not eliminate those incorrect-category items entirely. This has not been shown in 

the relevant cross-modal priming design, but it is exactly the type of effect that Lucas 

(1999) identifies in her meta-analysis of (primarily) semantic context effects in cross-

modal priming. She notes that most of the studies she considers are not adequately 

powered to detect such an effect, as we argue may also have occurred in our visual 

world study.  
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 What would a facilitatory constraint mean for our understanding of lexical 

representation, word recognition, and lexical access? The presence of a constraint at 

all, and especially an immediate one, would indicate the status of syntactic category 

as the type of lexical feature that can be used as a cue to alter wordform activation. 

Furthermore, a facilitatory constraint means that the effect of auditory input on the 

cohort is not overridden or outweighed by top-down syntactic information. An 

inhibitory constraint could make it impossible to recognize a word that appears in a 

highly unexpected syntactic context or if the context was misheard; preserving 

bottom-up information, as a faciliatory constraint would, could have significant 

utility. However, among the different types of information that sentence context 

provides, we would argue that syntactic category expectations lead to some of the 

clearest predictions for what should or shouldn't be considered next. Category 

restrictions are harder to violate than plausibility restrictions, for example, as 

violations can lead to ungrammatical phrases or sentences. Therefore, syntactic 

category information should be a good candidate for an inhibitory constraint, if one 

exists. That not even syntactic category appears to operate this way makes it perhaps 

less likely that other types of information would do so, and raises questions about 

potential implementational issues with such a mechanism.  

3.7.3 The no-constraint account 

If we take our null effect for noun-verb ambiguous competitors to mean that 

there is indeed no effect of syntactic context on cohort competition, we must explain 

the appearance of such an effect in previous work. We have described how this could 

have occurred in the visual world paradigm. In cross-modal priming and gating, if 
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there is no constraint we should not observe any modulation of competition due to 

context. This is fairly simple to reconcile with the case of cross-modal priming, for 

which early probe points showed no context effects (though a high-powered study 

would be necessary to more confidently rule them out). The later constraints observed 

in cross-modal priming are harder to explain under an account where syntactic 

context has no impact at all, though these timepoints are later than the time window 

generally analyzed in visual world data. The modulation in competition in gating 

(McAllister, 1988) is also problematic for the no-constraint account unless gating 

itself is disregarded because of the possibility of conscious reflection before a 

participant proposes a competitor. Nevertheless, we can revisit Tanenhaus and Lucas 

(1987)’s point that a syntactic category constraint on competition might not actually 

be useful in easing or speeding word recognition. It could also be that syntactic 

category is not represented on the lexical item in such a way that it is possible for it to 

be used in a cue-based search, or that in the style of TRACE it is not represented as a 

layer whose activation can feed down to influence wordform units. 

3.7.4 Caveats 

A final explanation for our findings that we must acknowledge is that 

particular aspects of our own study resulted in context information being simply 

ignored or not being usable quickly enough, in a way that is unrepresentative of 

processing in natural situations. Although possible, we find this explanation 

somewhat hard to reconcile with the fact that Strand et al. (2018) found that syntactic 

context impacted looks in a similar visual world design with very similar sentences. 

While we suspect that wrong-category competition was not detectable in that design 
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because visual properties of the pictures tracked syntactic category, allowing an 

alternative strategy for avoiding wrong-category visual referents, this strategy still 

itself relied on the early availability of context information. If participants could 

visually identify potential noun and verb referents at the beginning of the trial, and 

then used that information once they heard "to" or "the" to restrict looks to referents 

of the right category, the immediacy of their context effect indicates that the 

necessary constraint from "to" or "the" was available by the onset of the critical word. 

There is no obvious reason that the same should not be true in our study, since we 

used similar sentence contexts. Nevertheless, a study in which more time is available 

between the context cue and the onset of the target word, or in which the sentence 

context is more involved and might lead to stronger predictions, would help clarify 

this issue.  

We also note that our second manipulation, designed to distinguish facilitation 

and a lack of constraint, depended on a separate set of assumptions about how 

homophony is mentally represented and accommodated during lexical access. In 

order to ask whether a constraint was in place, we tested whether noun-verb 

ambiguous (but noun-biased) items competed more in noun context than verb context, 

assuming that the constraint would lead them to compete in proportion to their 

frequency in the category. If our assumptions are misplaced regarding the 

representation of homophony or the way it specifically is influenced by context, it 

could be that we should not expect such an effect even if a syntactic constraint is 

applying. However, it is difficult to imagine designs that avoid this problem, and 

general understanding of the interaction between homophony and category 
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representation is not so developed that there is an obvious alternative prediction for 

our design.  

Finally, as we acknowledged at the outset of this paper, we have restricted our 

consideration of the syntactic constraint to the contrast between total inhibition (by 

which activation levels are reduced to zero, or to baseline) and facilitation. Partial 

inhibition, in which activation of wrong-category candidates is not completely 

reduced, yields an outcome that would be extremely difficult to distinguish from the 

outcome of a facilitatory constraint: more activation for the correct category than the 

wrong category. It might be possible to make this distinction in a design comparing 

competition in and out of context.   

3.7.5 Integrating with simulations from Chapter 2 

We note that both the simulations that we report in Chapter 2 and the visual 

world results we report here point to the fact that the presence of early wrong-

category competition does not necessarily mean there is no constraint in place. Our 

simulations suggested that one way to explain cross-method conflicts in the timing of 

syntactic constraints on cohort competition could be that the immediate constraint 

apparent in previous visual world studies is correct, and the same underlying 

activation changes simply take longer to manifest in response probability for tasks 

with larger response candidate sets. If our visual world study had yielded evidence for 

inhibition, this would have been consistent with the possibility that the inhibitory 

constraint apparent in the visual world is simply delayed in other methods. We did 

not see evidence for inhibition, and a facilitatory account presents an alternative 

solution for the conflict. However, we leave open the possibility that both 
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explanations have some truth, or that they interact. The lessons from the simulations 

apply equally well regardless of the mechanism for the constraint, and could still 

contribute to our understanding of timing differences across methods even if the 

constraint is facilitatory. 

3.7.6 Further questions 

 Our study has focused on a relatively simple test case for the question of 

whether and how context affects word recognition. Investigating syntactic context, 

specifically, makes it relatively easy to say which lexical items should be considered 

compatible or incompatible with the context, and therefore which should be subject to 

the contextual constraint (depending on its implementation). However, it is often not 

the case that syntactic context unambiguously predicts or rules out entire syntactic 

categories. Though a very repetitive experimental setting may make contextual cues 

fully or nearly deterministic, syntactic context is rarely deterministic in natural 

language (even for the simple examples we used in this study), and category 

predictions are therefore likely to be probabilistic. Furthermore, as employed and 

explored in our second manipulation, many wordforms are compatible with more than 

one syntactic category. The extent to which the different category usages of the same 

wordform map onto the same or overlapping meanings is also quite variable. Each of 

these areas of uncertainty is relevant for a complete understanding of how syntactic 

context functions as a constraint on word recognition. Another obvious area needing 

more consideration is the recognition of multimorphemic words, whose complexity 

we have largely avoided here. Finally, how exactly syntactic category expectations 

arise from syntactic structure-building and prediction, and in what form, is an open 
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question. Scaling from syntactic to other even less deterministic forms of context only 

complicates these matters further, but a thorough mechanistic account of even the 

simplest type of context effect is a necessary first step. 

3.8 Conclusion 

Our visual world study and the jTRACE simulations that informed it provide 

new perspectives on the interaction between top-down and bottom-up input in 

language processing, as well as on the measures we use to study that interaction. An 

understanding of the cognitive mechanisms by which syntactic context influences 

cohort competition has so far been lacking, and previous evidence on whether a 

constraint applies at all has been conflicted. We showed with simulations in jTRACE 

that the speed with which bottom-up cohort competition effects can be expected to 

manifest in a behavioral measure depends on the size and composition of the response 

candidate set for the task. This can potentially be extended to our understanding of 

the timing of top-down influences on the cohort and is important for study design and 

comparison. In a visual world eye-tracking study building on this understanding, we 

employed a new design to distinguish whether the potential category constraint 

operates by boosting good fits for the context while allowing wrong-category 

competition, or by inhibiting wrong-category competition altogether. We found that 

wrong-category competition does occur, which is incompatible with an inhibitory 

constraint on word recognition due to syntactic category expectations. 
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Chapter 4: Studying the cohort via neural effects of phoneme surprisal 

and cohort entropy4 

 

 

4.1 Introduction 

4.1.1 Overview 

The core problem, in this dissertation, is how the activation of lexical 

candidates in response to auditory input is influenced by syntactic context. I am 

specifically investigating whether syntactic constraints on activation function to 

facilitate good contextual fits or inhibit lexical candidates whose syntactic category is 

incompatible with the context. Lexical activation, however, cannot be directly 

observed. In the previous chapters, we have discussed the relative merits of a variety 

of behavioral measures that have been used to investigate lexical activation. We have 

considered cross-modal priming, gating, and in particular, the visual world paradigm, 

which we argue is the most viable behavioral method for this question. However, the 

visual world paradigm allows us to probe the activation levels of just a single item in 

the mental lexicon during an experimental trial, and we must do so indirectly, via 

fixation proportions. These fixation proportions can easily obscure the activation 

patterns of a critical item over time, and are subject to other driving forces besides 

                                                 

4 Experiment 2 was analyzed in collaboration with Christian Brodbeck. Daphne Amir, 
Fen Ingram, and Stephanie Pomrenke assisted with stimulus selection, and Aura Cruz 
Heredia assisted with some of the MEG data collection. Unfortunately, data for 
Experiment 3 could not be collected due to the COVID-19 pandemic. 
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lexical activation. In Experiment 1, a visual world study reported in the previous 

chapter, we used a design intended to isolate the link between lexical activation and 

fixation proportions to the fullest extent possible. That study yielded an effect that is 

inconsistent with an inhibitory syntactic constraint on lexical activation, but did not 

yield positive evidence for the presence of a facilitatory syntactic constraint, or 

information about constraint timing.  

In the work reported in this chapter, we advance an experimental approach 

that holds promise for more effective investigation of the syntactic constraint. Neural 

measures allow us to record responses to experimental stimuli while participants 

listen passively rather than, for example, look at pictures or respond to probes. These 

measures thus require fewer assumptions about the mapping between cognition and 

behavior. However, we still need hypotheses about how lexical activation should 

influence measurable neural activity during listening, in order to be able to ask how 

activation is affected by contextual constraint. A starting point might be the use of 

simulated lexical activation levels of experimental stimuli to predict neural activity at 

any given phoneme. One challenge for this approach is that jTRACE does not have a 

sufficient lexicon or phoneme inventory to do this for a large set of stimuli, though 

future models might. Another challenge is that even with simulated activation values 

in hand, we would need to calculate measures that reflect properties of the whole 

cohort (e.g., size, summed activation, or a measure of variability or dispersion), since 

our neural measures do not have the resolution to record a response that we could 

reasonably understand to reflect the activation of just a single lexical representation.  
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With these difficulties in mind, we pivot to a different conceptual framework 

in this chapter, moving from auditory word recognition as a process of fluctuating 

lexical activation levels to auditory word recognition as a process characterized by 

shifts in probability. In this view, a wordform that is competing as a candidate has 

increased probability rather than increased activation, and all relevant cognitive 

computations are expressed in terms of probability. Importantly, this is not a claim 

that probabilities are simply computed over activations. We follow prior work in 

hypothesizing that information-theoretic properties of the set of lexical candidates are 

likely to be reflected in measurable neural activity. Many such properties could be 

computed over the set of candidates, but in this chapter we focus on the two that have 

supporting evidence in the neural literature: phoneme surprisal and cohort entropy. 

Both are based on probabilities, given the phonemes in a word that have been heard. 

For phoneme surprisal, the relevant probability is that of the current phoneme, while 

for cohort entropy what matters is the probabilities of the various words that could 

complete the phoneme sequence. We can easily estimate these probabilities using 

corpus frequencies, and they satisfy our requirement for summary properties that can 

be calculated for a single phoneme but are influenced by the dynamics of the entire 

distribution of candidates.  

In earlier chapters, we argued that investigating activation via probability in 

the visual world paradigm is difficult because the probability of fixation on an item of 

interest is influenced both by activation of the item of interest and activation of other 

items in the set under consideration. In this case, we are arguing that the use of 

probability is specifically beneficial, by essentially the same logic. The crucial 
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difference is that in the case of the visual world paradigm, the set over which 

probability is computed is the four items on screen, which is not of any particular 

theoretical significance. In the cases of cohort entropy and phoneme surprisal, 

probability is defined with respect to the cohort of lexical candidates or the phonemes 

that make them up. That cohort is our object of interest, as we try to ask how it is 

affected by syntactic context. Thus, its influence on probabilities is useful. 

There is not strong evidence making either the activation or probability 

account of word recognition more likely. Because our main concern is the influence 

of syntactic context, we can be largely agnostic about the correct framework for this 

problem, at this stage of research. Whether we are investigating activation or 

probability, what matters is whether it is impacted by a syntactic constraint. With 

neural measures, we simply need to be able to observe some way in which the cohort 

of wordforms under consideration influences phoneme-level processing. Though 

there may be interesting places in which activation and probability make different 

predictions, we expect them to be highly correlated in many instances. Thus, in this 

chapter, we switch to a probability framework in large part out of convenience. Of 

course, in the long term, it will be important to understand which framework better 

characterizes the cognitive processes underlying auditory word recognition. 

4.1.1.1 Cohort entropy and phoneme surprisal 

Phoneme surprisal is a variant on the conditional probability of a phoneme 

given the preceding phonemes in a word, where lower probability phonemes have a 

higher surprisal. Probability is usually estimated from frequency. Consider a lexicon 

that has only four equally frequent words, /bri/, /dra/, /blo/ and /blu/. Following a /b/ 
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word onset, /r/ will have a higher surprisal value than /l/, because /l/ occurs more 

often in that position. However, if the frequency of the word /bri/ were doubled, the 

surprisal values of /l/ and /r/ after /b/ would become equivalent. Importantly, while 

phoneme surprisal reflects the conditional probability of just a single phoneme, 

computing it requires reference to all wordforms in the lexicon and their token 

frequencies.  

Phoneme surprisal can be computed for each phoneme in a word. The 

surprisal of the first phoneme comes from the probability of that phoneme as a word 

onset in the language (in the example lexicon above, first phoneme surprisal will be 

larger for /d/ than /b/). Phoneme surprisal has been seen as a good candidate for a 

measure that would impact neural activity because of existing evidence from many 

cognitive domains that predictable stimuli elicit strongly reduced neural responses. 

Thus, more neural activity is expected in response to higher surprisal, or less 

predictable, phonemes. Phoneme surprisal at position i in a wordform is defined as: 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 =  −𝑠𝑠𝑙𝑙𝑙𝑙2 𝑠𝑠(𝑘𝑘𝑖𝑖 | 𝑘𝑘1, … 𝑘𝑘𝑖𝑖−1) 

 

where 𝑘𝑘𝑖𝑖 is the phoneme at position i and i = 1 for the first phoneme in the wordform. 

𝑠𝑠(𝑘𝑘𝑖𝑖 | 𝑘𝑘1, … 𝑘𝑘𝑖𝑖−1) is therefore the conditional probability of phoneme 𝑘𝑘𝑖𝑖 given the 

sequence of phonemes that preceded 𝑘𝑘𝑖𝑖 in the wordform. In practice, we use 

wordform frequencies from a corpus to calculate conditional phoneme probabilities 

within a word. When Ci is the cohort of possible wordforms w consistent with the 
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sequence of phonemes up to and including position i, surprisal at position i is 

calculated as: 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 =  −𝑠𝑠𝑙𝑙𝑙𝑙2  
∑ 𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓(𝑤𝑤)𝐶𝐶𝑖𝑖
𝑤𝑤

∑ 𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓(𝑤𝑤)𝐶𝐶𝑖𝑖−1
𝑤𝑤

 

 

Cohort entropy is a very different property of the set of lexical candidates, 

though we use the same wordform frequencies to calculate it. Phoneme surprisal is 

determined by the probability of the current phoneme following a specific phoneme 

sequence. Cohort entropy instead reflects how much uncertainty there is about what 

the most likely word completion is, given the current phoneme sequence.  

Therefore, one property of the set of candidates that entropy will reflect is 

how many options there are. With the example lexicon (/bri/, /dra/, /blo/ and /blu/), 

when the listener hears /d/ there is no uncertainty about what word is being heard, as 

the only option is /dra/. Entropy at /d/ is thus zero. When the listener hears /b/, 

entropy is higher because there are three options.  

However, entropy also reflects probability, as estimated from frequency. 

When the frequency of /bri/ in the example lexicon was doubled, /r/ and /l/ became 

equally likely after /b/. So, the entropy of the distribution of options, when hearing 

/b/, was very high, as there was maximal uncertainty about what would follow. In 

contrast, when all four items in the lexicon had the same frequency, /l/ was more 

likely than /r/ following the /b/ onset, because there were two /bl/ options. Thus, there 

was more certainty about what would follow /b/, and less entropy at /b/. Cohort 

entropy at position i in a wordform is defined as: 



 

 91 

 

𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠𝑙𝑙𝑠𝑠𝑒𝑒𝑖𝑖 =  −�𝑠𝑠(𝑤𝑤 | 𝑘𝑘1, …𝑘𝑘𝑖𝑖) × 𝑠𝑠𝑙𝑙𝑙𝑙2 𝑠𝑠(𝑤𝑤 | 𝑘𝑘1, … 𝑘𝑘𝑖𝑖)
𝐶𝐶𝑖𝑖

𝑤𝑤

  

 

where 𝑤𝑤 is each wordform in the cohort Ci of wordforms consistent with the sequence 

of phonemes 𝑘𝑘1, … 𝑘𝑘𝑖𝑖. Cohort entropy therefore differs crucially from phoneme 

surprisal in that it is based on, given a sequence of phonemes, the conditional 

probabilities of wordforms that might complete the sequence rather than the 

conditional probability of the phoneme that is occurring in the current position. In 

practice, we again calculate cohort entropy using corpus frequencies, such that cohort 

entropy is given by: 

 

𝑓𝑓𝑒𝑒𝑒𝑒𝑠𝑠𝑙𝑙𝑠𝑠𝑒𝑒𝑖𝑖 =  −�
𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓(𝑤𝑤)

∑ 𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓(𝑤𝑤)𝐶𝐶𝑖𝑖
𝑤𝑤

× 𝑠𝑠𝑙𝑙𝑙𝑙2  
𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓(𝑤𝑤)

∑ 𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓(𝑤𝑤)𝐶𝐶𝑖𝑖
𝑤𝑤

𝐶𝐶𝑖𝑖

𝑤𝑤

 

 

when Ci is the cohort of possible wordforms w consistent with the sequence of 

phonemes up to and including position i. 

Entropy, like surprisal, can be computed at each phoneme in a wordform. 

However, once a wordform is the only option given the input, entropy becomes zero. 

One way to link entropy to neural activity is to hypothesize that more uncertainty 

drives more activity. This is intuitive for the sense in which more competitors will 

often lead to higher entropy. However, as we have described, the relative distribution 

of probability among the candidates also matters for entropy, and it is not obvious 
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why a set of candidates with equal probabilities should necessarily drive more neural 

activity than a set of candidates with unequal probabilities. Therefore, a second 

linking hypothesis between entropy and neural activity is that low entropy, and higher 

certainty about what the word being heard will turn out to be, is a precondition for 

other processes to be engaged. Ettinger, Linzen, and Marantz (2014) discuss a version 

of this hypothesis, in which predictions for upcoming input are only made when 

entropy is low.    

Both cohort entropy and phoneme surprisal have been shown in several 

instances to correlate significantly with neural activity in auditory cortex at a 

phoneme-by-phoneme level, as we will review in Section 4.1.2. However, we cannot 

know whether entropy and surprisal are the correct, direct linking hypotheses between 

the cognitive and neural processes underlying word recognition and the neural 

response as measured by (in most cases) MEG. Correlation with these variables could 

arise because the variables themselves are correlated with other properties or 

processes that are the true modulators of the neural response.  

It is also unclear whether effects of cohort entropy and phoneme surprisal are 

linked to different levels of representation involved in the word recognition process. 

We discuss, in the literature review below and in discussion of Experiment 2, how the 

profile of entropy and surprisal effects across studies differs, and how this could be 

informative about their different underlying causes. Phoneme surprisal reflects 

phoneme probability within a word (thus assuming correctly identified word 

boundaries), and it is closely related to overall measures of phonotactics in a 

language. Cohort entropy, on the other hand, concerns the probabilities of lexical 
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candidates for the word being heard. Effects of cohort entropy seem to require 

involvement of lexical or wordform representations. This could also be true of effects 

of phoneme surprisal if they reflect phoneme-level probabilities arising from the set 

of wordforms under consideration, in real time. However, phoneme surprisal effects 

could equally well arise from phoneme-level probabilities that are tracked or stored 

independent of wordform-level probabilities, even if wordform-level probabilities are 

ultimately still their source. In that scenario, surprisal effects alone are not evidence 

for a phoneme-by-phoneme cohort updating process. Nevertheless, many studies 

using these measures have tended to assume that both cohort entropy and phoneme 

surprisal effects reflect the dynamics of the wordforms under consideration at each 

phoneme. Thus, distinctions drawn between entropy and surprisal effects are usually 

with respect to the notions of uncertainty vs. prediction error, rather than wordform 

vs. phoneme probability.     

4.1.1.2 Experiments 2 & 3  

Calculating entropy or surprisal requires some knowledge of what wordforms 

should be competing, given the input (i.e., what the cohort of possible wordforms is), 

and what the frequencies or probabilities of those wordforms are. The default way to 

do this is to take all wordforms consistent with the input phonemes, and the overall 

frequencies of those wordforms in the language. The premise of Experiment 3 in this 

chapter is that, given a contextual constraint that we want to investigate, we can 

hypothesize how the cohort might be affected, both in terms of which wordforms 

compete, and what their relative frequencies are in the context. Given this hypothesis, 

we can calculate entropy and surprisal using cohorts that are not simply all words 
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consistent with the input, or whose frequencies are not simply the overall frequency 

of the wordform. We can then ask whether these entropy and surprisal values do a 

better job of predicting neural activity than those calculated from default cohorts and 

frequency values. Specifically, we construct cohorts under the influence of a 

hypothetical, facilitatory syntactic constraint, and contrast them with cohorts under 

the influence of an inhibitory constraint, or no constraint at all. The design of 

Experiment 3 builds on prior work (Gaston & Marantz, 2018) with some refinement 

of both the design and the analysis method, as well as a new understanding, due to the 

previous chapter, that a syntactic constraint need not be inhibitory.  

Before conducting Experiment 3, however, we believed it necessary to run a 

simple study on the recognition of single words that would establish baseline entropy 

and surprisal effects. We had two motivations for this. The first was that even entropy 

and surprisal effects computed in the default way present with significant variability 

in the current literature, as we discuss in the next section. They are also usually tested 

for in service of some other primary question. However, fine-grained conclusions 

about the restricted cohort require that effects of the unrestricted cohort be both well 

understood and predictable. The presence of simply any entropy or surprisal effect is 

not sufficient. Therefore, Experiment 2 in this chapter was intended to demonstrate 

effects of basic, unconstrained entropy and surprisal in single words, with no other 

manipulations. We consider Experiment 2 a necessary benchmark in refining the use 

of entropy and surprisal as reliable measures for probing the composition of the 

cohort in neural data. 
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Our second motivation for Experiment 2 was that a new analysis method had 

been introduced for analyzing neural responses to continuous speech in source-

localized MEG data. This method, modeling temporal response functions, is better 

equipped than previous analyses to deal with acoustic and other confounding 

variables and the nature of overlapping phoneme responses. We intended to apply this 

analysis method to Experiment 3, but needed to first demonstrate its efficacy for 

single words and controlled contexts rather than continuous speech. Experiment 2 

allows us to do this.  

4.1.2 Literature review 

 In the following sub-sections, we first review reports of cohort entropy and 

phoneme surprisal effects in neural data when the stimuli are single words or 

controlled contexts, and then when continuous speech is used. We discuss several 

additional studies that we consider related but not strictly relevant because of 

differing dependent measures or formulations of entropy and surprisal. Finally, we 

summarize the literature and patterns that we observe in the manifestation of entropy 

and surprisal effects, which may have relevance for understanding the processes 

driving these effects. 

We do note, to start, that several studies using behavioral measures of auditory 

word recognition (lexical decision reaction time or production latency after listening) 

have demonstrated effects of cohort entropy or phoneme surprisal (Baayen et al., 

2007; Balling & Baayen, 2012; Bien et al., 2011; Kemps et al., 2005; Wurm et al., 

2006). However, as each phoneme in a word has its own surprisal or entropy value, 

but only one data point per word can be collected with these behavioral measures, 
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experiments must compute cumulative or composite versions of entropy or surprisal, 

or ask about the influence of entropy or surprisal at just a single time point within the 

word on reaction time at the end of the word. These studies therefore have limited 

informativity for the role of entropy or surprisal in incremental auditory processing.  

4.1.2.1 Single words and controlled contexts 

 The first evidence for cohort entropy or phoneme surprisal effects in neural 

data comes from Gagnepain et al. (2012), who, using MEG, attempt to explicitly 

distinguish accounts of spoken word recognition in which the process is characterized 

by lexical competition (and therefore lexical uncertainty, or entropy) from accounts in 

which the key computation is segment prediction error (or surprisal). Gagnepain et al. 

consider these two alternatives to be mutually exclusive. The fundamental distinction 

that they draw concerns how lexical candidates that are inconsistent with the input are 

removed from consideration: via segment prediction error or because of inhibition 

from other lexical candidates that receive more support from the input. This is 

therefore a mechanistic hypothesis with different predictions for how competition 

should manifest in neural data. They do not make clear, however, why it could not be 

the case that uncertainty over lexical candidates could not still be relevant in a 

segment prediction model of spoken word recognition.   

 Gagnepain et al. use a novel word consolidation paradigm in which 

participants are taught new words on Day 1 which, after sleep consolidation and entry 

into the lexicon, should extend the uniqueness points of existing words. For example, 

learning the word “formubo” would extend the uniqueness point of the word 

“formula.” Upon hearing “formula” on Day 2, then, entropy just prior to the new 
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uniqueness point should increase (relative to words that do not have a new 

competitor) because there is now lexical uncertainty when previously there was not. 

Prediction error at that segment should not change. In contrast, just after the new 

uniqueness point, prediction error should increase (again, relative to words that do not 

have a new competitor) because there was an alternative at that segment when 

previously there was not. Entropy at that segment should not change. Rather than 

examining variation in surprisal or entropy that occurs naturally across words and 

how well this variation predicts neural activity (the approach of nearly all other 

studies described in this section) they are instead considering the effects of deliberate 

manipulations of these variables.  

 The first dependent measure that Gagnepain et al. employ is averaged global 

field power, or the root mean square of the sensor data across all gradiometers. In the 

time window prior to the new uniqueness point, they find no difference between 

words that did or did not have a new competitor added. In the time window after the 

new uniqueness point, they do find a difference, with an increase in averaged global 

field power in the condition for which increased prediction error is expected. This 

pattern is supported by source-localized data in superior temporal gyrus (STG), and is 

consistent with the hypothesized outcome of the prediction error account rather than 

the lexical competition account. This manipulation does not provide timepoint-by-

timepoint information about the degree to which neural activity correlates with 

entropy or surprisal, but it does provide evidence for the predictive value of surprisal, 

and the segment prediction error account, in which, they propose, STG is coding the 

difference between predictions and input, and prediction error is fed upwards to 
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update the lexical representations under consideration. The lack of a neural effect of 

entropy is not, of course, evidence against the lexical competition account.  

 Subsequent MEG studies have tested for correlations between neural activity 

and entropy or surprisal throughout the time course of a word. Ettinger, Linzen, and 

Marantz (2014) ask whether surprisal effects are heightened in bimorphemic relative 

to monomorphemic words, perhaps because morphological structure can strengthen 

the phoneme predictions that may lead to surprisal effects. They also examine effects 

of entropy and allow for the possibility that both surprisal and entropy might matter. 

In their continuous variable analysis, they use temporal cluster tests to assess 

correlation between entropy or surprisal and neural activity in transverse temporal 

gyrus (TTG), superior temporal gyrus (STG) and middle temporal gyrus (MTG) ROIs 

during a single-word lexical decision task. Because many of the following studies use 

the same method, we explain this approach in greater detail here.  

Within each ROI, neural activity is averaged over all sources, yielding (for 

each trial) a single activity value at each timepoint in the epoch for analysis. Phoneme 

surprisal and entropy values are calculated for each timepoint (so, for example, if the 

second phoneme in the word starts at 100 ms, each timepoint from 0 to 100 ms will 

be assigned the phoneme surprisal and cohort entropy value for the first phoneme). At 

each timepoint a mixed effects model is evaluated with neural activity as the 

dependent value and entropy or surprisal from 200 ms prior as a fixed effect. The 200 

ms lag is a data-driven choice made in the absence of prior literature on the latency of 

surprisal effects. Testing correlation between surprisal values and neural activity 100, 

150, or 200 ms later, they find the strongest effects with the 200 ms lag. After t-



 

 99 

values for the correlation coefficients at each time point are computed, a cluster-based 

permutation test serves as correction for multiple comparisons. The details of 

permutation tests can vary. In this case, the independent variable (i.e., surprisal or 

entropy) is randomly permuted 1000 times, and t-values for the correlation 

coefficients at each time point are computed on each permutation. For any clusters of 

significant t-values, t-values are summed within the cluster.  Significance is evaluated 

by comparing the cluster with the largest t-value sum found with the true independent 

variable to the distribution of the largest sums generated on each permutation.  

Ettinger et al. found significant effects of phoneme surprisal at the end of the 

word in all three ROIs, in ~200 ms clusters starting roughly 750 ms after word onset, 

showing more neural activity with higher surprisal. Given the built-in lag, this 

indicates effects of surprisal for the phonemes occurring in the window ~550-750 ms 

after word onset. They also found a facilitatory effect of cohort entropy (less neural 

activity with increasing entropy) in TTG for phonemes occurring in the window 135-

177 ms after word onset. For the purposes of this chapter, we disregard their 

manipulation of morphological complexity. We note that entropy and surprisal were 

not evaluated in the same model, so it is not possible to say whether either effect 

persists when the other variable is taken into account. However, the entropy effect 

does appear to have a different presentation here, both temporally and spatially. 

Ettinger et al. propose that the dual effects of entropy and surprisal they observe 

could be because prediction is delayed under conditions of high entropy.  

 Lewis and Poeppel (2014), examining effects of imageability during spoken 

word recognition, also consider effects of a variety of cohort-related variables, 
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including biphone frequency, “cohort competition” (100x the ratio of word frequency 

to cohort size, defined as “the summed frequency of all items beginning with the 

same two phonemes”), cohort entropy, and phonological neighborhood density. Like 

Ettinger et al. (2014), the task was single-word lexical decision, but the stimuli were 

restricted to monosyllabic and monomorphemic nouns. In a similar temporal cluster 

test analysis on ROI averages, they find significant effects of biphone frequency in 

STG (160-191 ms, though it is unclear what lag, if any, is employed), and cohort 

competition in STS (255-276 ms). In this case, each evaluated variable is residualized 

with respect to all remaining variables. It appears that effects of neighborhood density 

in pMTG (327-347 ms) and cohort entropy in STS (250-280 ms) did not survive 

correction for multiple comparisons via the cluster tests. 

 Gwilliams and Marantz (2015) study single-word responses in STG and TTG 

during lexical decision in Arabic. For the final consonant in the root, which is the 

second to last phoneme in the word, they compute both a typical linear surprisal and a 

morphological surprisal conditioned only on the interspersed phonemes of the root. In 

time windows 100-200 ms and 150-350 ms after the onset of the root-final phoneme 

in their two ROIs, they conduct temporal cluster tests on the correlation coefficients 

for each variable.  

In this study, correlation coefficients came from a single mixed effects model 

that included all independent variables, and the two surprisal variables were 

decorrelated in stimulus selection. These are both important methodological 

considerations given the high degree of correlation that can occur between entropy 

and surprisal and between different versions of either variable, making it difficult to 
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partition the variance explained by any single predictor unless steps like these are 

taken.  

Gwilliams and Marantz report significant clusters for morphological surprisal 

in STG from 130-156 ms and 289-342 ms post-phoneme onset, as well as in TTG 

from 294-338 ms, showing more neural activity with increasing surprisal in all cases. 

Note that this approach is different from that of Ettinger et al. (2014) because a 200 

ms lag between variable and response is not assumed; instead, surprisal for only one 

phoneme is evaluated, and the time window in which it is a significant predictor of 

the neural data is then discovered, as time-locked from that phoneme’s onset.  

 The final MEG study using this general approach is Gaston and Marantz 

(2018). In this study, we computed three different versions of entropy and of surprisal 

in order to ask which better predicted neural activity in STG and TTG during the 

processing of words presented in minimal syntactic contexts. In the calculation of 

both entropy and surprisal, the set of words assumed to be competing for recognition 

must be extracted from a corpus, along with their frequencies. We evaluated 

hypotheses about restriction of the cohort due to the syntactic context by restricting 

the set of words that we used to calculate entropy and surprisal, the logic being that if, 

for example, only nouns compete for recognition in noun contexts, phoneme surprisal 

values calculated from the set of nouns should better predict neural activity than 

phoneme surprisal values calculated from the set of all words. Put another way, we 

calculated entropy and surprisal using probabilities that incorporated the syntactic 

context. 
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We computed unconstrained entropy and surprisal, to match previous studies, 

as well as two constrained versions. The first (the “form-conditional” constraint) 

simply removed from the set of possibilities any word that could not possibly occur in 

the syntactic context in which the target word was being presented. The second 

(“usage-conditional”) constrained version of entropy and surprisal took the original 

set of words and altered the frequencies associated with them to reflect frequency of 

occurrence in the syntactic context. This meant that words that could not appear in the 

specified context had a frequency of zero (with the same result as the first constraint) 

but words that could appear in the context were adjusted so that their probability 

reflected their distribution of possible syntactic categories. For example, the word 

“clash” can be a noun or verb, and has an overall frequency of 1.314 per million 

words. Its frequency per million words as a noun is 0.902, so this is the frequency 

value we would use to calculate entropy or surprisal in noun context. In calculating 

our constrained variables this way, we made an implicit assumption that a syntactic 

category constraint would operate by inhibiting items with incompatible syntactic 

categories. At the time, the possibility of a facilitatory constraint was not yet 

apparent.  

 Targets were category-ambiguous noun/verb homonyms (e.g., ache, clash) 

that were presented in a context meant to trigger an expectation for a noun (“the clash 

persisted”), an expectation for a verb (“to gleam brightly”) or in a context where the 

pre-target cue was a nonword and therefore did not lead to a category expectation 

(“juh ache prone”). Participants were asked to judge the acceptability of the three-

word phrases, and the third word in the phrase was always selected such that it would 
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only form an acceptable phrase with the first two words if the context word had been 

correctly comprehended. For example, “the frown darkly” is an unacceptable phrase 

if the context word is correctly interpreted as “the” rather than “to.”  

 Rather than assume a fixed lag between variable and response, our analysis 

approach was more similar to that of Gwilliams and Marantz (2015), in that we 

computed correlation between our predictors and neural activity at each source and 

time point in epochs time-locked to phoneme onsets. The distributed nature of 

acoustic information makes phoneme boundaries difficult to identify definitively, and 

it is even more difficult to identify the point in the speech signal at which a phoneme 

should become identifiable to a listener, as this may be influenced by predictability. 

For these purposes, we used boundaries as determined by a forced aligner. Because 

we then use spatiotemporal cluster tests on the correlation coefficients, discovering 

from the data what the apparent lag is between onset and response, our analysis is less 

impacted by the uncertainty of the boundary than an analysis that assumes a fixed lag.  

The spatiotemporal cluster tests in this study were conducted within a merged 

STG/TTG ROI. Using a model at each phoneme that incorporated all six entropy and 

surprisal values, for targets in the noun and verb contexts we found an effect of form-

conditional phoneme surprisal 340-450 ms after the onset of the second phoneme, 

effects of form-conditional and unconstrained phoneme surprisal 150-450 and 320-

450 ms, respectively, after the onset of the third phoneme, and an effect of usage-

conditional phoneme surprisal 190-370 ms after the onset of the final phoneme. Most 

but not all effects had the same directionality of previously reported surprisal effects: 

more neural activity with higher surprisal. The effects at the second and third 
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phonemes were interactions, such that the correlation coefficients differed between 

noun and verb contexts. Generally, it appeared that correlations were stronger in the 

noun contexts.  

We took these findings to indicate that there is some form of syntactic 

constraint operating on the cohort, perhaps in a step-wise fashion, and that some 

sensitivity to the unconstrained cohort is also maintained. In light of the evidence 

from the visual world paradigm reported in Chapter 3, we now see that simultaneous 

effects of constrained and unconstrained variables, when the constraint is computed to 

be inhibitory, may indicate that a facilitatory constraint better captures the state of the 

cohort (because category-incompatible items have non-zero probabilities). The 

interactions with context may indicate that our assumptions in applying the syntactic 

constraint to the cohort were more accurate for noun than verb contexts. In other 

words, the assumption that “the” leads to an expectation for nouns may be more 

accurate than the assumption that “to” leads to an expectation for verbs.  

We also note that the constrained and unconstrained cohort variables are 

highly correlated with each other, and entropy and surprisal also show a high degree 

of correlation at some points in the word. One consequence of this is that an effect of 

entropy found in an initial analysis evaluating entropy and surprisal variables in 

separate models was not replicated in the unified model mentioned above. Even when 

correlated variables are evaluated in the same model, caution is warranted in 

distinguishing their effects and interpreting the significance of individual estimates, 

as is always true when multicollinearity is present in a linear model. Replication 

across datasets is therefore especially important.  



 

 105 

A final issue is that the response to each phoneme likely overlaps significantly 

with the response to previous phonemes, and this is unaccounted for in the analysis. It 

is difficult to know exactly what impact this might have on analysis outcomes. 

Overlapping neural responses mean that the neural activity values we are evaluating 

for correlation with an associated cohort variable are noisy. This is complicated by 

correlation between cohort variables for successive phonemes. 

4.1.2.2 Continuous speech 

We next consider two studies that use naturalistic, narrative speech as the 

stimulus, rather than single words, and that employ an analysis method that accounts 

for acoustic variables and the overlapping nature of successive phoneme responses. In 

both cases, though words appear in context, cohort variables do not reflect the context 

and are calculated in the same way that they are in single-word studies.  

Brodbeck, Hong, and Simon (2018) analyze MEG data by estimating the 

response time course at each source dipole as the sum of the estimated responses for 

each of a series of acoustic and lexical predictors. Each estimated response is the 

linear convolution of a response function and a time series for the predictor; 

overlapping phoneme responses are therefore explicitly modeled. Correlation can 

then be assessed between the estimated and observed responses for different models 

that do or do not include any given predictor, at each source point, and cluster tests 

used to determine at which source points the correlation differences are significant. 

We describe the TRF analysis method in great detail in the Analysis section for 

Experiment 2 in this chapter. Brodbeck, Hong, and Simon (2018) evaluate the 

following potential predictors of neural activity: acoustic envelope, acoustic onsets, 
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phoneme onsets, word onsets, and both word-initial and non-initial cohort entropy, 

phoneme surprisal, cohort size, and cohort reduction. The cohort variables are 

calculated without regard for context, and assuming that word boundaries are 

accurately recognized. 

We reproduce their results in Figure 10 below. They find that of the lexical 

predictors, only non-initial phoneme surprisal and cohort entropy significantly 

improve correlation with the neural response, in superior and middle temporal areas, 

peaking at 114 and 125 ms after phoneme onset, respectively. The lack of first-

phoneme effects is consistent with the previously reported studies. Acoustic envelope, 

acoustic onsets, word onsets, and phoneme onsets, none of which are modeled in 

previous studies, are all significant predictors and should therefore be accounted for 

in future studies in case of confounds with variables of interest. Brodbeck, Hong, and 

Simon also report data for a cocktail-party paradigm in which participants attend to 

one talker in a two-talker mix. Acoustic effects for the speech of both talkers still 

occur. However, Brodbeck, Hong, and Simon find no effects of the lexical predictors 

corresponding to the unattended speech, and for the attended speech they observe 

effects only of word onsets and of (non-initial) cohort entropy. This accords with 

cohort entropy reflecting probability over wordforms and phoneme surprisal 

reflecting probability over phonemes; if surprisal is a phoneme prediction error 

signal, it makes sense that it is no longer relevant when predictions cease to match the 

form of the input, which is mixed with the second speaker. 

Di Liberto et al. (2019) use a combination of TRF and canonical correlation 

analysis for EEG data collected during naturalistic listening. While they also include 
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acoustic variables, their primary question relates to a variable reflecting phonotactic 

probability as computed by the BLICK model (Hayes & Wilson, 2008), for which 

they find significant coupling with EEG signal. They report that this phonotactic 

measure performs better than cohort entropy or surprisal, but they do not report 

whether they observe significant correlation for those variables.  

 

Figure 10. Figure 2 from Brodbeck, Hong, and Simon (2018), showing significant 
predictors in TRF analysis of continuous speech. Reprinted from Current Biology, 
Vol. 28, Issue 24, Brodbeck, Hong, and Simon, Rapid transformation from auditory to 
linguistic representations of continuous speech, pages 3976-3983.e5, Copyright 
(2018) Elsevier Ltd, with permission from Elsevier. 

https://www.cell.com/current-biology/home
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4.1.2.3 Alternative approaches 

Finally, four additional MEG studies have relevance for the overall feasibility 

of using information-theoretic variables with neural data, but are not directly 

comparable to the studies discussed so far because they employ a different dependent 

measure or a different means of calculating entropy or surprisal.  

Brennan et al. (2014), in a semantic priming paradigm with lexical decision on 

the target word, test for but fail to find a correlation between cohort entropy at the 

first phoneme of the target and 10-20 Hz power in the window of a priming effect 

starting at ~270 ms. They note that it may be difficult to observe entropy effects for 

monosyllabic words as they exhibit relatively little variation in entropy. 

Kocagoncu et al. (2017) compute cohort entropy not from corpus frequencies 

but from confidence scores provided by participants for each lexical candidate 

proposed in a gating task with five increments of 25 ms. Description of this gating 

task in the Methods section of the paper is ambiguous, so it is unclear whether the 

first fragment ends 50 or 125 ms before the word’s corpus-defined uniqueness point. 

Kocagoncu et al. compute the change in entropy from the first gate to the gating-

defined uniqueness point of the word, which is the point at which the word is 

correctly identified by 80% of participants, with at least 80% confidence. This point 

is on average 69 ms later than the corpus-defined uniqueness point. They then use this 

measure as a predictor of neural activity (during a nonword detection task) prior to 

and following the gating-defined uniqueness point. They find significant effects in 

STG and supramarginal gyrus from -400 to -376 ms, in MTG from -224 to -180 ms, 

and in IFG from -244 to -172 ms. 
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Gwilliams et al. (2020) present naturalistic speech during MEG recording and 

train decoding models to predict stimulus features from sensor activity. The logic 

behind this type of approach is that decoding accuracy should vary to the extent that 

these stimulus features are relevant at a given time point. Gwilliams et al. evaluate 

decoding accuracy as a function of entropy and surprisal (among other things). For 

non-first phonemes, they find that decoding accuracy is higher for low surprisal 

phonemes in the window 120-132 ms after phoneme onset, concluding that 

processing can start earlier for predictable phonemes. They also (again for non-first 

phonemes) find higher decoding accuracy for phonemes with higher cohort entropy 

from 304-328 ms after phoneme onset, interpreting this to mean that maintenance of 

phonetic information is prolonged during lexical uncertainty. 

Finally, Donhauser and Baillet (2020) train an artificial neural network to 

predict the next phoneme and the next word in naturalistic auditory input given the 

context, which is information about the previous 35 phonemes (phoneme identities, 

durations, pauses, and the roughly 10 words that the phonemes make up). They use 

these probabilistic phoneme predictions to compute a surprisal measure (“surprise”) 

which reflects the conditional probability of a target phoneme given the context, and 

an entropy measure (“uncertainty”) that reflects the uncertainty of the predictive 

distribution of the next phoneme, given that target phoneme. Their surprisal measure 

is in line with the calculation of surprisal used in the previously reviewed studies, but 

uses the probability distribution generated by the neural network rather than corpus 

frequencies. Their entropy measure, in contrast, reflects entropy over upcoming 

phonemes (as predicted by the neural network), while the entropy measures in the 
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previously reviewed studies reflect entropy over possible wordforms that match the 

input. Using a TRF approach for MEG analysis along the lines of Brodbeck, Hong, 

and Simon (2018) and Di Liberto et al. (2019), Donhauser and Baillet find effects of 

both uncertainty and surprise, and that these effects persist when biphone and 

triphone probabilities are taken into account. Donhauser and Baillet thus argue that 

their measures do not simply reflect phonotactics.  

The problem with this approach, however, is that we cannot know what 

information in the previous 35 phonemes is contributing to the neural response. A 

context of 35 phonemes consists of the preceding phonemes in the word being heard 

as well as several previous words, which then allows for the contribution of syntactic 

and semantic information from the sentence in which the word appears. The more 

typically used surprisal measure is conditioned just on the target word, and to what 

extent the context prior to the target word influences surprisal (as explored by Gaston 

and Marantz (2018)) is an important question. By showing that uncertainty and 

surprise are accounting for variance above and beyond biphone and triphone 

probabilities, Donhauser and Baillet show that their 35-phoneme context is 

contributing something beyond very local context, and this is useful. However, we 

cannot know to what extent this 35-phoneme context out-performs even simple word-

based surprisal, let alone whether syntactic and semantic information are also 

important.  

4.1.2.4 Summarizing  

To summarize the literature on neural data, we start with the seven studies 

presenting single words or small, controlled contexts (Brennan et al., 2014; Ettinger 
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et al., 2014; Gagnepain et al., 2012; Gaston & Marantz, 2018; Gwilliams & Marantz, 

2015; Kocagoncu et al., 2017; Lewis & Poeppel, 2014). Within this group, phoneme 

surprisal effects are found in all four studies that test for them (Ettinger et al., 2014; 

Gagnepain et al., 2012; Gaston & Marantz, 2018; Gwilliams & Marantz, 2015). All of 

these effects localize to STG, TTG, or MTG (though in almost all cases they are not 

looked for outside of these ROIs). Their timing, however, is variable. The effects 

reported by Ettinger et al. (2014) and Gagnepain et al. (2012) are not time-locked to 

phoneme onsets, but manifest toward the end of the word. Gwilliams and Marantz 

(2015) test only (and time-lock from) the second to last phoneme, and find effects in 

both the 100-150 ms range and the 250-350 ms range. Gaston and Marantz (2018) 

observe effects time-locked from the second, third, and final phonemes, in the 350-

450 ms range as well as more sustained effects starting in the 150-200 ms range.  

We suspect that this variability is largely due to the variation in analysis 

approaches. The Gagnepain et al. effect reflects a manipulation specific to that time 

range, and so it would not have been possible to see surprisal effects elsewhere in that 

design. The Ettinger et al. analysis assumes a fixed 200 ms lag between stimulus time 

point and neural response, which severely restricts their ability to detect any 

correlation that doesn’t conform to this assumption. The Gwilliams and Marantz 

(2015) and Gaston and Marantz (2018) results are more comparable because they 

both use (spatio-) temporal cluster tests, but the effects reported by Gaston and 

Marantz are ~50-100 ms later. We acknowledge, though, that the precise onset and 

offset estimates from cluster tests should not be overly interpreted (see Sassenhagen 

and Draschkow (2019)). The studies are also conducted in different languages, and 
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examine different variants on surprisal. We would need to see surprisal effects from 

two studies with similar stimuli and the same analysis method to know more 

definitively whether the observed variation is cause for concern.  

Entropy effects occur in three of the six studies that tested for them. However, 

for Gaston and Marantz (2018) the reported entropy effect does not then persist in a 

model that includes surprisal (so we cease considering it), and Ettinger et al. (2014) 

do not test a combined model. The effect reported by Kocagoncu et al. (2017) is for 

an entropy measure that uses gating responses rather than corpus frequencies and is 

not computed on a phoneme-by-phoneme basis. We conclude then that the evidence 

for phoneme-level cohort entropy effects in non-naturalistic designs is weak, while 

phoneme surprisal effects are temporally variable but reliably present.  

Among the studies with naturalistic stimuli (Brodbeck, Hong, and Simon, 

2018; Di Liberto et al., 2019; Donhauser & Baillet, 2020; Gwilliams et al., 2020), it is 

more difficult to form generalizations because of the variation in methods, dependent 

measures, and means of calculating the variables. Di Liberto et al. (2019) do not 

report whether entropy and surprisal are significant predictors in their dataset (only 

that a measure of phonotactics performs better). Gwilliams et al. (2020) are not 

testing for the presence of entropy and surprisal effects, but report higher decoding 

accuracy for lower surprisal phonemes 120-132 ms after phoneme onset, and higher 

decoding accuracy for higher entropy phonemes 304-328 ms after phoneme onset.  

 Brodbeck, Hong, and Simon (2018) report surprisal effects with a peak 

latency (at 114 ms) slightly earlier than any effects reported by Gwilliams and 

Marantz (2015) or Gaston and Marantz (2018), the two most comparable single-word 
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studies. Brodbeck, Hong, and Simon also report a closely following entropy effect 

with peak latency at 125 ms. This is just a single data point, but taken at face value, it 

contrasts with the weakness of evidence for entropy effects in the non-naturalistic 

studies. A potential task or stimulus distinction for cohort entropy effects is unlike the 

robust appearance of surprisal effects across different types of studies. One 

explanation could be that the effect size for cohort entropy is smaller and less likely 

to be detected in (likely) underpowered studies. Another possibility is that there are 

more (and more varied) processes likely to correlate with surprisal than with entropy. 

However, we did note earlier in this chapter that while cohort entropy effects seem to 

require the involvement of wordform representations, there is ambiguity as to whether 

this is true for phoneme surprisal effects, which could arise because wordform 

probabilities lead to phoneme probabilities, or because phoneme probabilities are 

independently tracked. A dissociation in the types of studies that yield cohort entropy 

and phoneme surprisal effects could support the possibility that only cohort entropy 

effects arise from wordform probabilities, if wordform probabilities are not invoked 

by some tasks or stimuli. Stronger support for this dissociation (and its interpretation) 

will require deliberate task or stimulus manipulations with the same analysis method. 

4.1.3 The current studies 

We now describe two studies, one completed and one proposed, with the goal 

of advancing the use of entropy and surprisal as a means to study context effects on 

the cohort. In both, we have used or plan to use the TRF analysis method that allows 

us to incorporate acoustic variables and deal with phoneme response overlap.  
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Experiment 2 is a simple, single-word design that allows us to establish 

baseline expectations for entropy and surprisal effects in single words, using TRFs, in 

a task that is not lexical decision and should encourage processing above the form 

level. We find robust surprisal but not entropy effects, and for non-initial phonemes 

only. 

Given the results of Experiment 2, we describe the proposed design for 

Experiment 3, which will present simple sentences that provide a syntactic context for 

auditory word recognition and will allow us to compare facilitatory and inhibitory 

versions of surprisal and entropy for stimuli in which the variables are de-correlated. 

This is an advance over Gaston and Marantz (2018), who do not examine the 

possibility of facilitation, use more highly correlated constrained and unconstrained 

variables, and can’t account for overlapping phoneme responses or acoustic variables. 

While Brodbeck, Hong, and Simon (2018) deal with some of these methodological 

issues, and their stimuli occur (naturalistically) in syntactic contexts, they do not 

evaluate context-constrained variables. In full narratives, it is extremely difficult to 

quantify the many different influences that various aspects of the context might have 

on the cohort. Fully accounting for these influences is a longer-term goal, but our 

starting point is isolating the contributions of a relatively simple contextual constraint 

(syntactic category), whose expected influence on the cohort is more easily 

quantified.  

4.2 Experiment 2 

In this study, we presented single, monomorphemic words with randomly 

occurring semantic relatedness probes, while recording MEG data. We analyze the 
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neural response to auditory word recognition using temporal response functions. This 

is the first time this analysis technique has been applied to single words rather than 

continuous speech. We believe the benefits of this new application to be largely with 

respect to our understanding of cohort effects in single-word recognition when 

acoustic variables and phoneme response overlap are accounted for. However, the 

analysis of single words with the TRF approach is also useful because there should be 

far less overlap with the neural response from the previous word than occurs in 

continuous speech. This is a relatively new method for continuous speech in MEG, 

and establishing consistency between different stimulus types would be a helpful 

validation of the approach. Any consistent divergence, of course, would also be 

informative.    

Our primary concern is how basic entropy and surprisal effects manifest in a 

design with no other manipulations, and how they compare to previous effects 

obtained from (1) continuous speech analyzed with the same method and (2) single 

words analyzed with different methods. We are also interested in whether the lack of 

first phoneme cohort effects noted by two previous studies replicates in our data. This 

experiment is intended to lay the groundwork for the use of TRF analysis for auditory 

word recognition in simple syntactic contexts.  

4.2.1 Materials & Methods 

4.2.1.1 Participants 

We collected data from 24 people (a subset of those who participated in the 

study reported in Chapter 5). All participants were right-handed, native speakers of 

English, and seven were also native speakers of additional languages. None reported 
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history of neurological or linguistic impairment, brain injury, or hearing loss. All 

reported normal or corrected-to-normal vision. The procedure was approved by the 

University of Maryland Institutional Review Board and all participants provided 

written informed consent. Participants were compensated with their choice of $15 or 

1 course credit per hour of participation. The full session (including Experiment 4 and 

the localizer reported in Chapter 5) lasted 2 hours. 

One dataset was excluded without looking at the data because the participant 

was very tired and an earbud fell out during the experiment. After this exclusion, we 

computed accuracy on the relatedness task and excluded any participant with 

accuracy lower than a cutoff 1 standard deviation below the mean. This excluded 

three of 23 participants. After preprocessing, two additional datasets were excluded 

due to extreme noise. 18 datasets are therefore included in our analysis.  

4.2.1.2 Stimuli 

The Massive Auditory Lexical Decision (MALD) database makes lexical 

decision data and recordings of 26,793 words (and 9592 pseudowords) freely 

available (Tucker et al., 2019). The timing of phoneme boundaries in each recording 

is also provided. Rather than make new recordings of our chosen stimuli, we opted to 

use MALD recordings because we would then have lexical decision data, phoneme 

boundaries, and a variety of other lexical variables readily available for all of our 

stimuli. This would also allow us to consider our data in the context of other 

published experiments and analyses using the MALD dataset. We also hope to make 

our MEG data freely available to add to the richness of this open dataset. 
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To create our stimuli, we started with the full list of real words included in 

MALD. We then removed any items that were not monomorphemic as indicated by 

MALD, and then from this set, anything still tagged as multimorphemic according to 

CELEX (Baayen et al., 1995). We removed any items with missing information in the 

MALD dataset of item-level variables. We then removed any items whose list of parts 

of speech included: Preposition, Interjection, Name, Unclassified, Conjunction, 

Pronoun, Determiner, Letter, Not, Ex, Article, To. Finally, we sorted the items 

according to frequency and removed the lowest 10%. We were left with 4144 items.  

From this list, we removed by hand any additional multimorphemic items that 

had not been caught by the MALD or CELEX tagging. Because the recordings were 

made by speakers of Canadian English, we also removed any item for which the 

pronunciation in the recording was noticeably divergent from American English. 

Finally, we removed inappropriate and particularly evocative words. This left us with 

a total of 2676 items. From a random sample of 1500 of these items, we removed any 

homophones, and then of those remaining we used a random sample of 1000 in the 

experiment. 1000 was our target number because the length of the experiment had to 

be kept to a maximum of 20 minutes in order to fit into the recording session along 

with the studies reported in Chapter 5. 

The full lists of stimuli and probes (see below), are reproduced in Appendix 

A. These items, as well as associated stimulus variables from MALD, are also 

available for viewing and download on OSF.  

 

 

https://osf.io/u56ea/?view_only=7bba4c45ed454476b6e1506769a90801
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4.2.1.3 Task 

To ensure attention, we pseudo-randomly presented a semantic relatedness 

probe after some words. Probes were single words, presented visually, and 

participants were instructed to answer as to whether the probe was related at all to the 

word that they had just heard. There was no advance warning for probe trials, so 

attention was required on each auditory trial in case it was to be followed by a probe 

trial. 

We selected this task so that it would apply equally well to all types of words, 

and because we did not want button presses to occur on critical trials (as would 

happen in e.g. lexical decision). The probe trials for which we expected participants 

to answer “No” were selected randomly from the list of eligible words that we did not 

end up using for auditory trials. Probe trials for which we expected participants to 

answer “Yes” were synonyms taken from the WordNet 

(https://wordnet.princeton.edu) page of the preceding auditory item, and were also 

monomorphemic so as not to be trivially distinguishable from “No” trials. There was 

no overlap between probe words and words used in auditory trials. Which auditory 

trials would be followed with a probe were randomly selected. “Yes” and “No” 

probes were equally distributed. 

4.2.1.4 Procedure 

This study was always at the end of the experimental session, following 

Experiment 4 and the localizer from Chapter 5. Participants wore foam earbuds and 

volume was adjusted to the comfort level of the participant. Participants lay supine 

inside the magnetically shielded room and looked at a screen overhead, while holding 

https://wordnet.princeton.edu/
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a button box in each hand. They were instructed that they would hear a long series of 

random words, and that they should simply listen to the words. They were instructed 

to keep their eyes open because a probe word would occasionally appear on the 

screen with a question mark, and they were to answer (with left hand for No, right 

hand for Yes) whether the word on the screen was related in any way to the word they 

had heard just before it.  

We used Presentation (Neurobehavioral Systems, Inc., www.neurobs.com) to 

present the experiment. Our parameter and scenario files are available for download 

from OSF. There were 1000 auditory trials interspersed with 97 probe trials. The 

amount of time between trials was 267 ms. A visual fixation cross was on screen 

continuously during auditory trials and during the inter-trial interval. Each auditory 

trial simply consisted of presentation of the auditory stimulus, and lasted the length of 

the auditory stimulus. Probe trials were pseudo-randomly distributed throughout the 

experiment with a maximum interlude of 20 trials between probes. During probe 

trials, a probe word would be presented visually, with a question mark (e.g. 

“podium?”). The probe stayed on the screen until the participant pressed a button to 

indicate whether the probe was related in any way to the word that had played 

immediately before it.  

The experiment lasted roughly 17 minutes. There was no built-in break, but 

participants were instructed that if they wished to take a break, they should simply 

delay their button press on a probe trial. 

 

 

https://osf.io/u56ea/?view_only=7bba4c45ed454476b6e1506769a90801
https://osf.io/u56ea/?view_only=7bba4c45ed454476b6e1506769a90801
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4.2.1.5 MEG data collection 

 Before recording, we used a Polhemus 3SPACE FASTRAK to digitize 

participant head shapes as well as the positions of five affixed marker coils. These 

marker coils were used to record head position relative to the MEG sensors before 

and after each study in the session.  

 We recorded continuous MEG data, inside a magnetically shielded room, with 

a 160-channel axial gradiometer whole-head system (Kanazawa Institute of 

Technology, Kanazawa, Japan). Our sampling rate was 1000 Hz, and we used an 

online 60 Hz notch filter and 200 Hz low-pass filter.   

4.2.1.6 MEG pre-processing 

 We processed the data using mne-python version 0.19.2 (Gramfort et al., 

2013, 2014) and eelbrain version 0.31.1 (Brodbeck, Proloy Das, et al., 2019). The 

TRF analysis was conducted with mne-python version 0.20.5 and eelbrain version 

0.32.dev0.  

During file conversion with mne-python’s kit2fiff GUI, we excluded any 

faulty marker measurements. We co-registered each digitized head shape with the 

Freesurfer (Fischl, 2012) “fsaverage” brain, using mne-python’s co-registration GUI. 

We first used rotation and translation to align the digitized head shape and average 

MRI by the three fiducial points. We then used rotation, translation, and 3-axis 

scaling to minimize the distance between digitized head shape and average MRI 

points using the iterative closest point (ICP) algorithm. Convergence was always 

achieved within 40 iterations. For one participant, outlying points on the digitized 

head shape were removed between fitting to the fiducials and applying ICP.  
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 Flat channels were automatically removed, and we used temporal signal space 

separation (Taulu & Simola, 2006) for removal of extraneous artifacts, with a buffer 

duration of 10 seconds.  

We then used ICA (independent components analysis, with extended infomax 

method) for removal of ocular, cardiac, and other extraneous artifacts. Decomposition 

was performed using all of the data, with a 1-40 Hz filter applied, and then we 

visualized the components with a 1500 ms epoch from each word’s onset. After 

selecting ICA components for removal, we proceeded with a 1-20 Hz filter, and 

down-sampled the data to 100 Hz for analysis. 

 To compute the noise covariance matrix, we used 2 minutes of empty room 

data recorded before or after each session. We defined the source space on the white 

matter surface with a four-fold icosahedral subdivision, with 2562 sources per 

hemisphere. Orientation of the source dipoles was fixed perpendicular to the white 

matter surface. For minimum norm current estimation, we used the MNE noise 

normalization method with SNR of 1 and did not use depth weighting. 

The anatomical labels we used to create search areas for the spatiotemporal 

cluster tests came from the Freesurfer ‘aparc’ parcellation.  

4.2.1.7 Analysis 

Behavioral data 

Mean accuracy was computed after the exclusion of one participant a priori. 

The mean number of correct probe responses was 73.6 (out of 97) with a standard 

deviation of 18.4. The number of correct probe responses was lower than one 

standard deviation below the mean for three participants, so they were excluded from 
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further analysis. One participant answered 13 of 97 probes correctly. We kept this 

participant in the dataset because this was so far below chance that we assumed they 

had reversed which hand they were supposed to use to make Yes and No responses.  

Neural data 

 Our TRF analysis largely followed Brodbeck, Hong, and Simon (2018), with 

some differences noted below. Brodbeck, Presacco, and Simon (2018) describe the 

method in detail; we re-describe it here in a manner intended to be more accessible 

for readers not overly familiar with linear kernel estimation.  

For each stimulus variable of interest, a time series was created indicating the 

value of the predictor at each time point in the stimulus. We used the stimulus 

variables that had been found significant in the Brodbeck, Hong, and Simon (2018) 

data: acoustic envelope, acoustic onset, word onset, phoneme onset, cohort entropy, 

and phoneme surprisal. For acoustic predictors (acoustic envelope and acoustic 

onset), the value of the predictor can vary continuously at each time point. See 

Brodbeck, Hong, and Simon (2018) for description of how these variables are 

calculated. For lexical predictors, values are non-zero only at time points labeled as 

phoneme onsets (i.e., lexical predictors consist of impulses at phoneme onsets). Of 

these lexical predictors, the phoneme onset and word onset predictors each consist of 

binary impulses, while the predictors for cohort entropy and phoneme surprisal 

consist of impulses that are scaled continuously according to the variable value at that 

phoneme. In Figure 11 below, we reproduce Figure 1 from Brodbeck, Hong, and 

Simon, which illustrates how these stimulus variables are modeled. Entropy and 

surprisal are calculated using frequency information from SUBTLEX (Brysbaert & 
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New, 2009) and phoneme sequence information from the CMU pronouncing 

dictionary (Weide, 1994). 

Our study did not actually present a continuous stimulus (rather, individual 

words with short intervening pauses), but a single time series reflecting predictor 

values (or pauses) throughout the entire experiment could still be created. Probe trials 

were modeled simply as silence. The timing of phoneme onsets was taken from the 

forced aligner information made available with the MALD recordings. 

For each participant, at each source point, each stimulus variable is then convolved 

with a -100 to 500 ms kernel (or “temporal response function”) to create an estimated 

response for that predictor for the full duration of the stimulus. The sum of these 

linear convolutions across all predictors is the estimated response for the source point, 

for which correlation with the actual neural response can be evaluated. The kernel (or 

TRF) for a predictor can be thought of as an estimated evoked response occurring in 

response to each time point in which that predictor is non-zero, and it scales with the 

predictor value. We are estimating the evoked responses for all predictors we think 

might be relevant, summing them when they overlap in time, and then summing over 

all predictors to create the estimated neural response.  

The first step in this process is, for each source point, to jointly estimate an 

optimal kernel for each predictor, using a coordinate descent algorithm. The kernel 

has a window of -100 to 500 ms around each event. To model the neural response at a 

given time point, we take, for a given predictor, the predictor value at time t in the 

stimulus multiplied by the kernel value at 0 ms in that predictor’s kernel, the predictor 

value at time t-10 ms in the stimulus multiplied by the kernel value at 10ms, the 



 

 124 

 

 

Figure 11. Figure 1 from Brodbeck, Hong, and Simon (2018), illustrating how 
different types of stimulus variables are represented in their analysis. Reprinted from 
Current Biology, Vol. 28, Issue 24, Brodbeck, Hong, and Simon, Rapid 
transformation from auditory to linguistic representations of continuous speech, 
pages 3976-3983.e5, Copyright (2018) Elsevier Ltd, with permission from Elsevier. 

https://www.cell.com/current-biology/home
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predictor value at t-20 ms multiplied by the kernel value at 20 ms, etc, repeated up to 

t-490 ms in the stimulus and 490 ms in the kernel, and we sum over each of these 

timepoints. This is because we are modeling the overall response as being the sum of 

the response contributed at that timepoint by each kernel that has had its onset in the 

last 500 ms. The 10 ms time steps are because the data are down-sampled to 100 Hz. 

We also repeat this procedure for 100 ms in the other direction, and add this value to 

the sum. This step helps account for any advance cues in the auditory signal. We do 

this for each predictor and sum over all predictors. Finally, we add an error term. 

For a given predictor at a given time point, for each overlapping kernel 

contributing to the response, if the predictor value for that kernel or the kernel value 

for that time point is zero, there is no contribution to the response from that predictor 

for that kernel point. The better the predictor, and the higher its value at that time 

point, the higher its kernel value should be.   

How, in practice, can we estimate the optimal kernel for many predictors at 

once in a continuous time series? The algorithm to estimate the optimal kernel starts 

with a value of zero for each time point in each predictor’s kernel. At each time point 

in the duration of the kernels, on each iteration of the algorithm, the predictor for 

which an increase in its kernel value at that time point leads to the largest reduction in 

error predicting the summed response in the training data is identified, and this 

change is evaluated for its error reduction with held-out test data. Iterations stop when 

error can no longer be decreased in the training data or increases in the test data. To 

maximize the amount of training data available, we use four-fold cross validation so 

that each partition of the data serves once as the test data when the other three 
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partitions are training data. The optimal kernels estimated on each of the four 

repetitions are then averaged together. 

Once the averaged, optimal TRF for a predictor is identified, it is convolved 

with the stimulus variable for a fifth held-out partition of the data, and the 

convolutions for each predictor are summed to create the estimated response for that 

partition. Once an estimated response has been created for each partition, from a 

kernel estimated via the other four, the five partitions are recombined, and correlation 

between the estimated and actual response over the full course of the stimulus at this 

source point can be computed. Thus, the four-fold cross-validation described above 

for estimating the kernel is actually nested within five-fold cross-validation; on each 

repetition, four partitions are used to estimate the kernel, and that estimated kernel is 

tested using the fifth partition. The rationale for this fifth “fold” in the cross-

validation process is that we do not want to use the actual neural response to help 

create an estimated response, and then ask about the correlation between them; we 

instead use some of the data to create an estimated response, and then see how well 

this estimated response correlates with the remaining data.   

To evaluate whether a given predictor significantly improves the estimated 

neural response (i.e., increases the correlation between the estimated and observed 

neural response), we go through the entire described process for a model that contains 

the predictor, and a model that doesn’t5. At each source point, then, we have two 

                                                 

5 Note that for Brodbeck, Hong, and Simon (2018), cross-validation was not used for 
model comparison. Instead, cross-validation was used to estimate the optimal kernel, 
and then this optimal kernel was convolved with the complete stimulus variable, for 
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correlation values for each participant, and we can compute a t-value for the 

difference between the two correlation values. We use a permutation cluster test over 

the left and right temporal lobes to ask if there are clusters of sources in which the t-

values are elevated, indicating that correlation between the estimated and actual 

response was significantly higher when the variable of interest was included in the 

model. If it was not, we remove that variable from the model. This approach can also 

be used simply to ask whether the correlation values for a specific model are 

significantly different from zero.  

Having established that each predictor in a model is contributing significantly 

to the model fit with the observed data, we re-estimate a final set of TRFs using the 

full dataset rather than holding out the fifth partition. We can then examine the 

individual predictors’ TRFs in order to ask at what source and time points they are 

significantly different from zero. A specific predictor’s TRF has a value at each 

source and time point, for each participant. We can compute, at each source and time 

point, a t-value for the difference between the TRF value and zero, in this set of 

participants, and evaluate significance with a permutation cluster test over both 

sources and time points.  

Our intention was to use model comparison to evaluate whether there were 

entropy and surprisal effects in our data, and to follow up on the lack of such effects 

                                                 

an estimated response of the entire dataset. This was done using the true predictor, 
and then again using a shuffled version of that predictor which should have had no 
predictive value. They then tested for a difference between the correlation values for 
the model with the true and the shuffled predictor. We now use cross-validation for 
this step, following Brodbeck et al. (2019), because it better handles correlation 
between predictors. 
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at the first phoneme noted by Brodbeck, Hong, and Simon (2018) and Gaston and 

Marantz (2018). We then planned to examine the TRFs of significant predictors for 

timing and location information.   

4.2.2 Results 

Our starting model included acoustic envelope, acoustic onset, word onset, 

non-initial phoneme onset (i.e., phoneme onsets that are not the first phoneme onset, 

which is co-extensive with word onset), phoneme surprisal, and cohort entropy at 

each phoneme. Our first question was whether first phonemes should be excluded 

from the phoneme surprisal and cohort entropy estimates, following the prior 

evidence discussed above on this point. To answer this question we compared the 

starting model to a model in which surprisal and entropy at the first phoneme are 

modeled as separate predictors from surprisal and entropy at non-initial phonemes. 

The more complex model, in which they are modeled separately, was significantly 

better (tmax = 4.02, p = .010). There was no significant difference upon removal of 

both first phoneme surprisal and first phoneme entropy simultaneously (tmax = 2.61, p 

= .499), removal of first phoneme surprisal alone (tmax = 3.30, p = .375), or removal 

of first phoneme entropy alone (tmax = 2.11, p = .862). Thus, we proceeded without 

either predictor. The lack of first phoneme cohort effects is consistent with Brodbeck, 

Hong, and Simon (2018) and Gaston and Marantz (2018). 

Having removed entropy and surprisal for the first phoneme as predictors, we 

asked whether correlation improves when entropy and surprisal of the second 

phoneme are tested as separate predictors in the model from entropy and surprisal of 

subsequent phonemes. The model in which they are not separate predictors is 
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significantly better (tmax = 7.69, p < .001), indicating that (other than word onsets) the 

ordinal position of the segment is not relevant to modeling entropy and surprisal. 

Similarly, although word onset was already being modeled separately from non-initial 

phoneme onsets, to confirm that this reflects a qualitative difference about word 

onsets we also checked whether there was any significant improvement when the 

second phoneme onset was modeled separately from subsequent phoneme onsets. 

There was not (tmax = 2.67, p = .572). 

Having resolved these preliminary questions about how best to formulate the 

model, we tested our primary research questions: do phoneme surprisal and cohort 

entropy improve the estimated neural response in a single-word design? We found 

that indeed, a model with (non-initial) phoneme surprisal was significantly better than 

a model without it (tmax = 7.64, p < 0.001). However, removing (non-initial) cohort 

entropy led to no significant difference (tmax = 2.93, p = .400). Even when surprisal is 

absent from the model, removal of entropy still does not yield a significant difference 

(tmax = 3.18, p = .127). This contrasts with Brodbeck, Hong, and Simon (2018), for 

whom entropy and surprisal were both significant.  

Finally, we tested the remaining variables, and as expected, word onset was a 

significant contributor (tmax = 5.59, p < .001), as were the acoustic predictors (tmax = 

8.20, p < .001).  

Having established that model fit with the observed neural data is improved 

by the acoustic predictors, word onset, non-initial phoneme onset, and non-initial 

phoneme surprisal, we then examined the estimated response for phoneme surprisal, 

which for the left hemisphere shows a first peak at 70 ms and a second peak at 290 
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ms, in posterior superior and middle temporal areas. The right hemisphere response 

appears somewhat more temporally diffuse. Figure 12 shows the TRF for each 

source point (Figure 12A), the difference in correlation between the estimated and 

actual response at each source point when the model does or doesn’t include surprisal 

(Figure 12B), and the current estimate at each source point for the two peaks in the 

TRF (Figure 12C). Note that while model comparison was carried out with a -100 to 

500 ms kernel, for visualization purposes only we extend the TRF to 600 ms.  

 

 

Figure 12. TRF results for phoneme surprisal. (A) TRF for each source point for the 
left and right hemisphere. Latency of left hemisphere peaks is marked with yellow 
dashed lines. (B) Difference in correlation between estimated and actual response at 
each source point when the model does or doesn’t include surprisal, for left and right 
hemisphere. (C) Current estimate at each source point for the early and late peak, for 
left and right hemisphere.  
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4.2.3 Discussion 

4.2.3.1 Summary 

 Experiment 2 was intended to establish baseline expectations for entropy and 

surprisal effects in single words, using the TRF analysis method. As have many 

previous studies, we found that phoneme surprisal is a significant predictor of neural 

activity. The spatial distribution of the effect, along posterior superior and middle 

temporal gyrus, appears largely the same as that observed by Brodbeck, Hong, and 

Simon (2018) (see Figure 10 for comparison) as well as previous single-word studies 

that did not use the TRF method.  

We see that the TRF for surprisal appears to peak twice, first at 70 ms after 

phoneme onset and then again at 290 ms. This pattern differs from Brodbeck, Hong, 

and Simon, who observed only an early peak for the surprisal response (at 114 ms) in 

continuous speech, but is more in line with Gaston and Marantz (2018) and 

Gwilliams and Marantz (2015), both of which report early and late surprisal effects. 

Nevertheless, the effect is still earlier than in any of the previous studies. Even in 

comparing the early peaks from the two TRF results (this study and Brodbeck, Hong, 

and Simon (2018)), we cannot say whether the timing difference (70 vs. 114 ms) is 

due to the use of single words versus continuous speech, or for example due to 

specific properties of the speaker, biases of the forced aligners, or the presence or 

absence of co-articulation from the previous word. Modulation of the timing of 

surprisal effects will need to be explored in future work.     

Like both Brodbeck, Hong, and Simon (2018) and Gaston and Marantz 

(2018), the surprisal effect we found was only for phonemes that are not the first 
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phoneme in the word. Because surprisal is driven by the conditional probability of a 

phoneme given the preceding input, a surprisal effect at the first phoneme would have 

reflected probability conditioned on silence, or prediction of a specific phoneme as 

the first phoneme in an upcoming word that is expected to occur.  

 Replicating prior surprisal findings is extremely useful for us in both 

proceeding to Experiment 3 and establishing this measure as a reliable index of 

lexical processing. It appears that surprisal effects ~100 ms post-phoneme-onset are 

particularly robust. The later-stage surprisal effect observed in the single-word studies 

deserves more investigation in future work.  

Unlike Brodbeck, Hong, and Simon (2018), we did not find effects of cohort 

entropy. In the Introduction of this chapter, we pointed out that all of the studies in 

which entropy effects are weak or non-existent use single words or phrases rather 

than naturalistic speech as stimuli. Our null effect, with single-word stimuli, fits this 

pattern. Prior to this result, one explanation for the entropy pattern could have been 

that the TRF analysis method is more sensitive to entropy effects because it accounts 

for more variation in the speech signal. However, we use nearly the same TRF 

analysis method as Brodbeck, Hong, and Simon, so this explanation now seems 

unlikely.  

4.2.3.2 Task or stimulus effects on involvement of the cohort 

Another explanation we suggested was that entropy effects are driven by 

probabilities tracked at the level of wordform representations, while phoneme 

surprisal effects are driven by probabilities tracked only at the phoneme level. If this 

is the case, the data could be indicating that in single-word paradigms, word 
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recognition does not involve incremental, phoneme-by-phoneme modulation of 

wordform probabilities. Specifically, we mean designs in which single words are 

recorded separately and then presented sequentially with intervening pauses. This 

definition therefore includes the Gaston and Marantz (2018) study in which short 

phrases are constructed out of separate audio files. Recognition of single words 

presented in this way could in theory occur without initial involvement of a cohort of 

possible candidates. Instead, listeners could wait until some or all of the word has 

been perceived before retrieving lexical information that matches the wordform. We 

believe the tasks employed in the single world paradigms we have reviewed could all 

be completed with such a strategy.  

Gagnepain et al. (2012) use a pause-detection task with an inter-stimulus 

interval of 1850-2150 ms between words. It is unclear whether lexical access would 

be necessary at all to complete this task. In the studies using lexical decision or 

nonword detection tasks, the non-words were pronounceable (Brennan et al., 2014), 

phonotactically legal (Kocagoncu et al., 2017), contained only legal bigrams (Lewis 

& Poeppel, 2014), or were actually very low frequency real words (Ettinger et al., 

2014). In all cases, then, verification of the wordform would be necessary on every 

trial to perform the task, as the presence of legal phonotactics alone would not be 

sufficient. However, it does seem that this could be done once the entire wordform 

has been perceived. Gaston and Marantz (2018) use a phrase acceptability task, which 

would require lexical access, but again this could occur once the target wordform is 

known. Finally, our Experiment 2 used random semantic relatedness probes for the 

experimental task, and we expected that this would encourage lexical access. 



 

 134 

However, as in all of the previously described studies, this task could be completed 

with lexical access delayed until the full wordform has been perceived.   

By contrast, the speed of naturalistic speech and the imperative to recognize 

words quickly for the sake of sentence-level interpretation could be what drives the 

cohort process (and therefore leads to entropy effects) in continuous speech 

paradigms. Under this explanation for the lack of entropy effects in single-word 

paradigms, we would have to postulate that sensitivity to phoneme probabilities is 

preserved even when wordform access is postponed. We might expect that entropy 

effects would be observed for single words if a task were designed such that earlier 

identification of the word is encouraged and the cohort process becomes more 

advantageous.  

 This explanation extends in an interesting way to another generalization in the 

literature: that the presence of multimorphemic words in a study also seems to be 

relevant for whether or not entropy effects occur. The words appearing in the 

Brodbeck, Hong, and Simon (2018) stimuli are a mix of multi- and mono-morphemic, 

as occurs naturally. We have previously dismissed the few entropy effects that have 

been reported for single-word paradigms as constituting weak evidence, for various 

reasons. However, the two that stand (Ettinger et al., 2014; Kocagoncu et al., 2017) 

both included multimorphemic words, while all of the studies that did not find 

entropy effects (Brennan et al., 2014; Gagnepain et al., 2012; Gaston & Marantz, 

2018; Lewis & Poeppel, 2014) used only monomorphemic words. Our study joins 

this list, using monomorphemic words and failing to find an entropy effect.  
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We suggest that the relevant difference between monomorphemic and 

multimorphemic words is that multimorphemic words are a form of continuous 

speech. We have suggested that the reason for the lack of entropy effects in single-

word studies could be that the pauses between words make it unnecessary to engage 

in phoneme-by-phoneme access to candidate wordform representations, and 

participants instead wait until the word has ended to make contact with the mental 

lexicon. Multimorphemic words are two separate lexical units without an intervening 

pause, and so even in single-word designs this could motivate incremental updating 

of the cohort so that the first morpheme can be recognized in time to begin processing 

the second.  

Note that this explanation does not apply to the processing of mono- versus 

multimorphemic words in general, or even to the processing of single words in 

general, but instead to studies in which only monomorphemic words are presented. 

What we are describing is a strategy in which participants delay lexical access until 

there are fewer or there is just a single lexical candidate remaining, because it is very 

clear in the experiment that there is always time to do so. This could be tested with 

manipulations of the inter-stimulus interval in single-word paradigms. If this is a 

pervasive strategy in single-word studies, it would have important implications for 

our understanding of existing neural and behavioral data, and would motivate 

increased use of more naturalistic designs (or, at least, multimorphemic words). We 

acknowledge that, given pervasive assumptions about auditory word recognition, it 

would be surprising if cohort competition turned out to be task-modulable rather than 

automatic. However, it is a possibility that we cannot rule out.  
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4.2.3.3 Task or stimulus effects on wordform versus lexical involvement 

 An alternative explanation to that described in the previous section for an 

entropy/surprisal distinction would be that competition between candidate wordforms 

does occur phoneme by phoneme even in single-word recognition, but that the tasks 

employed do not require lexical access (i.e., involvement of the level of the abstract 

lexical representation rather than just the wordform) or they allow it to be delayed 

until only a single or very few candidates remain. If entropy effects are driven by 

abstract lexical representations for all cohort competitors, this would explain why 

they do not occur in the single-word paradigms. Again, the idea is that continuous 

speech (and multimorphemic words) do require lexical access to occur for cohort 

competitors. This explanation allows for the possibility that surprisal arises via 

competition purely at the phoneme level, but it also allows for surprisal reflecting 

competition at the wordform level. Surprisal reflecting competition at the wordform 

level would seem to fit better with the syntactically conditioned phoneme surprisal 

effects reported by Gaston and Marantz (2018), unless strictly phoneme-level 

predictions can also be rapidly influenced by context. 

If both of these explanations are incorrect and surprisal effects do reflect 

lexical-level access for cohort competitors, we would have to postulate some other 

process, engaged by continuous speech and not otherwise, on which cohort entropy 

effects are contingent. For example, if correlations between neural activity and cohort 

entropy are not driven by entropy per se but by a process that is sensitive to entropy, 

an effect of single words versus continuous speech on that process would make it 
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appear that entropy effects were also modulated. Within-study manipulations of task 

and stimulus type will likely be necessary for further clarity. 

4.2.3.3 Moving forward 

Our goal in this study was to establish a better understanding of basic, 

unconstrained cohort effects when the stimulus is modeled as thoroughly as current 

methods allow. Our replication of previous surprisal effects allows us to proceed in 

using this variable to study syntactic constraints on the cohort in Experiment 3. Our 

failure to find an effect of cohort entropy is in line with previous failures to do so in 

single-word paradigms.  

In the previous section, we have discussed what the asymmetry in surprisal 

and entropy effects might reflect about the levels of representation that are driving 

these effects. We raised the possibility that surprisal effects do not reflect wordform-

level processing. This would make it less likely that surprisal could then show the 

effects of a syntactic constraint, though syntactically conditioned phoneme 

probability effects are not impossible.  

Though we did not find entropy effects in Experiment 2, we will still test for 

them in Experiment 3. The most convincing evidence for entropy effects comes from 

a study using continuous speech rather than single words. Experiment 3, presenting 

sentences rather than single words, is a form of continuous speech. We cannot be sure 

that we will observe entropy effects, as it is of course possible that the previously 

observed entropy effect was a false positive, or that disconnected sentences are not 

similar enough to continuous speech in whatever property it is that is relevant for 

entropy effects. Testing for entropy effects in Experiment 3, even if not informative 
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for the question of the syntactic constraint, will aid in advancing our understanding of 

what drives entropy effects.  

Experiment 2 has also helped validate the TRF approach as a promising 

option for future work in single-word paradigms. We have reported the results of a 

very constrained analysis here, but this dataset does have the potential to inform many 

other questions. For example, we are beginning to explore effects of uniqueness point 

and whether the effects of common lexical predictors like word frequency are in fact 

better understood as being time-locked from the uniqueness point rather than word 

onset. Incorporating effects of syllable structure in our models would be another 

useful direction for development.  

4.3 Experiment 3 

 Having established baseline expectations for entropy and surprisal effects in a 

single-word paradigm with the TRF analysis method, we now propose a study 

intended to follow up on both Gaston and Marantz (2018) and on Experiment 1 in 

Chapter 3. Data for this new study could not be collected due to the pandemic, so we 

report only the design. Table 5 provides the concept for the stimuli. 

 Gaston and Marantz (2018) calculated two syntactically constrained versions 

of entropy and surprisal in which (1) wordforms that could not appear in the syntactic 

context were removed from the hypothesized cohort or (2) all wordforms in the 

cohort had their frequencies updated to reflect only their frequency of occurrence in 

the syntactic context. For example, a wordform with a frequency of 10, occurring 

60% of the time as a noun and 40% of the time as a verb, would compete with a 

frequency of 4 in a verb-constraining context. Both of these implementations of the 
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constraint assumed that it was inhibitory, such that incompatible wordforms could not 

compete, or competed less. Gaston and Marantz found effects of both constrained and 

unconstrainted surprisal, interpreted to mean that perhaps sensitivity to the original 

cohort was somehow maintained despite the constraint. 

 In Experiment 1 of this dissertation, I reported data from the visual world 

paradigm that is consistent only with a facilitatory constraint or no constraint at all. If 

there is a facilitatory syntactic constraint, this could explain why Gaston and Marantz 

(2018) observed correlation with both unconstrained and (inhibitorily) constrained 

surprisal: each is capturing a different aspect of the facilitated distribution, since it is 

true both that contextually inconsistent wordforms are competing, and that 

contextually consistent wordforms are competing more than contextually inconsistent 

ones. Therefore, in this proposed study, we explicitly compare cohort measures 

calculated under the assumption of no syntactic constraint, a facilitatory constraint, 

and an inhibitory constraint, attempting to resolve questions raised by Experiment 1 

as well as by Gaston and Marantz (2018), and provide the necessary evidence for or 

against a facilitatory constraint.  

 

Table 5. Concept for sentence stimuli for Experiment 3. For nouns and verbs, at each 
phoneme, we will compare surprisal and entropy values that either do not reflect the 
syntactic context or reflect a facilitatory or inhibitory syntactic constraint. 

Example sentences 

The birds planned the candles. 

The remarks hid the bystanders. 

The cakes described the kangaroos. 
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This study incorporates a variety of improvements over previous designs. One 

serious issue for Gaston and Marantz (2018) was the high degree of correlation 

between constrained and unconstrained variables. Experiment 3 will therefore use a 

set of target stimuli selected specifically such that constrained and unconstrained 

variables are as de-correlated as possible. Stimuli will be simple sentences with a 

repetitive structure (The Noun Verb the Noun) to maximize both syntactic 

expectedness and analyzable data per trial, and to allow analysis of both nouns and 

verbs. Rather than natural sentences, we use random pairings of noun-verb-noun so 

that lexical predictability is absent in the experiment and we avoid the influence of 

lexical prediction on the cohort to the extent possible. However, we will still record 

these sentences as continuous speech, so the results of this study should aid in our 

understanding of the variation in entropy effects discussed in the previous sections. 

Finally, we use a TRF analysis to appropriately model overlapping phoneme 

responses and acoustic variables.   

4.3.1 Design features 

4.3.1.1 Structurally predictable sentences  

Gaston and Marantz (2018) studied syntactic context by presenting minimal 

phrases: “the clash persisted,” “to gleam brightly.” In this study, we scale up to 

sentences rather than phrases, with a fixed template: Determiner Noun Verb 

Determiner Noun. This makes our stimuli and the syntactic contexts somewhat more 

naturalistic, and allows us to present and analyze both nouns and verbs in the same 

trial type. In the Gaston and Marantz design, target words were noun/verb 

homonyms, and interpretation of the phrase rested on correct comprehension of the 
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context word as either “to” or “the.” Similarly, in Experiment 1 of this dissertation, 

the syntactic category of the target word was cued in advance only by the 

immediately preceding “to”/ “the”. In this design, the syntactic category of each word 

is fixed and predictable on every trial. This intentionally maximizes the potential 

strength of the constraint, allowing for more certainty about each word’s syntactic 

category than would typically be possible. Any context effects that we observe should 

of course be followed up on in a design whose sentences do not have a fixed 

structure, to better understand in what circumstances the constraint applies. Our 

study, however, is focused on how the constraint is implemented when it does apply. 

By not using category cues that occur only immediately before the target word, we 

also address the concern from Experiment 1 that there was not sufficient time for the 

identity of the context cue word to be processed and for the category expectation to 

be generated before the onset of the target word.  

The deterministic syntactic category expectations allowed by this design also 

justify the simplified manner in which we construct our hypothesized cohorts for the 

calculation of constrained entropy and surprisal. For nouns, we boost the frequencies 

of items that can be nouns or inhibit those that can’t. For verbs we boost the 

frequencies of items that can be verbs, or inhibit those that can’t. We do so because 

we do not yet know to what extent category expectations in normal, un-predictable 

contexts are non-deterministic (i.e., to what extent both nouns and adjectives are 

expected after “the”), or how this might be implemented. A design in which the 

occurrence of nouns after “the” is perfectly predictable makes these simplifications 

more justified, and should allow, subsequently, for incremental exploration of the full 
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hypothesis space for the constrained cohort, ideally using a parsing model that 

provides a distribution over syntactic categories at each position in the sentence.  

Using predictable syntactic structures will also allow us to address the 

unexpected interactions reported by Gaston and Marantz (2018), in which surprisal 

effects were generally stronger for items presented in noun context than verb context. 

We can then ask whether nouns and verbs in our design are similarly differentiated 

despite more comparable category cues. We also have the opportunity to examine 

nouns in subject vs. object position. The subject noun is particularly interesting 

because there is no possible influence of the lexical content of previous words in the 

sentence.  

Finally, the use of simple sentences in which all content words are analyzable 

targets allows us to maximize the proportion of MEG recording time that contributes 

to our dataset. Adding sentence frames for our target words solely to provide context, 

in such a way that they cannot also be analyzed for cohort effects, would be a waste 

of statistical power.  

We will use a memory probe task to ensure attention. 

4.3.1.2 Avoidance of lexical predictability 

 Our design will avoid lexical predictability by constructing sentences with 

random noun-verb-noun combinations, such that the identity of each word does not 

constrain which words are likely to occur next in any way other than syntactic 
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category6. We do this because in natural sentences both lexical association and 

compositional lexical predictions are likely to change the probabilities of words that 

are competing for recognition, but not in ways that we can straightforwardly model. 

As we try to isolate the contributions of syntactic category, any unaccounted-for 

changes to the probability distribution of competitors will add noise to our measures 

and make it more difficult to identify category effects. Eventually, we hope that fully 

specified models of lexical prediction can be incorporated into analyses of more 

naturalistic stimuli.  

4.3.1.3 De-correlation of stimulus variables 

 A major feature of the design for this study is the selection of target words 

such that constrained and unconstrained versions of our cohort variables are far less 

correlated than typically occurs.   

To do this, we took all words that occur both in SUBTLEX (Brysbaert & 

New, 2009) with a part of speech tag (Brysbaert et al., 2012b) and in the CMU 

                                                 

6 We note that it is not guaranteed that presenting stimuli that are not lexically 
predictable leads comprehenders to stop engaging in lexical prediction, and that 
different aspects of prediction might be susceptible to this manipulation in different 
ways. For example, compositional predictions for the object based on the subject and 
verb may no longer be possible when the subject and verb are a very unlikely 
combination, whereas word-to-word lexical association effects could continue. 
However, we believe the largest risk is simply that the noise we were seeking to avoid 
is in fact still present, which would make this design no worse off than if we did not 
try to eliminate lexical prediction. In Chapter 5, we discuss this issue extensively for 
a similar but visually presented design, including the possibility that lexical and 
syntactic prediction are interrelated in such a way that the syntactic prediction cannot 
occur without lexical prediction. If syntactic effects on the cohort are indeed 
modulated by semantic coherence or predictability, this would be unexpected but 
open up many interesting questions.   
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pronunciation dictionary (Weide, 1994). SUBTLEX provides overall lexical 

frequencies as well as frequency in each part of speech. The CMU pronunciation 

dictionary provides phoneme parses. This information would ordinarily constitute the 

lexicon which would be the basis for calculation of phoneme and word probabilities 

and therefore entropy or surprisal. Such calculations require only the set of words 

whose phoneme sequence is consistent with the input, and their frequencies. For this 

study, we created four alternative lexicons in which frequency and therefore 

probability values were altered to reflect the hypothesized effects of a syntactic 

constraint: one in which the context has led to an expectation for a noun and the 

constraint operates via facilitation, one in which the context has led to an expectation 

for a verb and the constraint operates via facilitation, one in which the context has led 

to an expectation for a noun and the constraint operates via inhibition, and one in 

which the context has led to an expectation for a verb and the constraint operates via 

inhibition.  

To approximate probability distributions that have been affected by such 

constraints, we take the following steps. For the noun/facilitation lexicon, items that 

do not have a noun tag retain their normal lexical frequency. Items that do have a 

noun tag have their noun-specific frequency doubled, i.e., their noun-specific 

frequency is added to their normal lexical frequency. We follow the same procedure 

for the verb/facilitation lexicon. For the noun/inhibition lexicon, items that do not 

have a noun tag have their frequency set to zero. Items that do have a noun tag have 

their normal lexical frequency replaced with their noun-specific frequency. We 

follow the same procedure for the verb/inhibition lexicon. Any item with a zero 
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frequency in the relevant lexicon is removed from that lexicon. We then use these 

lexicons to compute entropy and surprisal at each phoneme. We compute 

unconstrained entropy and surprisal using the default frequencies from SUBTLEX, 

and compute entropy and surprisal under inhibition and under facilitation for nouns 

and for verbs, using the four different constrained lexicons. Our implementation of 

facilitation, in particular, is arbitrary. There is no prior data indicating the magnitude 

of probability increase that could be expected. This parameter will have to be fine-

tuned in future work if the facilitation-constrained variables are supported in our 

dataset. 

Having calculated these values, in order to select our stimulus set, we 

restricted the set of possible words to those with five or more phonemes. We did this 

so that we can analyze up through the fifth phoneme for all words and not have a loss 

of power at later phonemes in some words. We do not make any restrictions on the 

number of morphemes. Following Gaston and Marantz (2018), Brodbeck, Hong, and 

Simon (2018), and Experiment 2 in this chapter, we do not expect effects of entropy 

and surprisal at the first phoneme. Therefore, we do not attempt to reduce correlation 

between our constrained and unconstrained variables at the first phoneme. In Table 6 

below, we report the correlations between our constrained and unconstrained surprisal 

variables for nouns. We use this case for illustration purposes, but the situation is very 

similar for verbs and for entropy. The unconstrained and facilitation-constrained 

variables exhibit the most problematic degree of correlation. Our goal is to reduce 

correlation to 0.7 or below. 0.7 is an arbitrary, generally accepted standard, but it has 
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also been shown to perform reasonably well as a threshold for avoiding severe 

distortion due to collinearity (Dormann et al., 2013).  

 

Table 6. Correlations between unconstrained, facilitation-constrained, and 
inhibition-constrained surprisal variables for nouns at each phoneme position 

 Unconstrained & 
facilitation-constrained 
surprisal 

Unconstrained & 
inhibition-constrained 
surprisal 

Facilitation- & 
inhibition-
constrained 
surprisal 

Phoneme 2 0.951 0.666 0.746 
Phoneme 3 0.977 0.773 0.833 
Phoneme 4 0.990 0.828 0.874 
Phoneme 5 0.992 0.841 0.885 

    

This is a difficult problem and there is no obvious best solution. One perspective is 

that de-correlation (i.e., selecting subsets of words that show lower correlations) will 

lead to a strange, un-representative set of words. Because of this, any positive result 

from this study will ideally be paired with a similar finding in a randomly sampled 

stimulus set with the default correlation levels. The problem is that with the randomly 

sampled set alone we cannot with any certainty distinguish variables with correlation 

as high as 0.99.  

 Any approach to de-correlation will have flaws. Here, we describe three 

possibilities, still using as our example the correlation (for nouns, at the second 

phoneme) between unconstrained and facilitation-constrained surprisal because this is 

the most severe case. In Figure 13, we plot the two variables at this phoneme before 

any attempted de-correlation.  
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Figure 13. Scatter plot for unconstrained and facilitation-constrained surprisal at 
phoneme 2, for nouns, before attempted de-correlation. 

 

One way to obtain a de-correlated set would be random sampling within a 

severely restricted range for both variables (in effect, “zooming in” on the correlation 

line). This is not feasible in our case both because there would not be enough target 

words within such a restricted range, and because this restricted range would make it 

more difficult to observe correlation with the neural data.  

Another approach is to calculate the difference between the unconstrained and 

facilitation-constrained surprisal for each item, and restrict to items with some 

arbitrarily sufficient distance. For example, in the set of nouns, if we restrict to items 

with a difference greater than 0.8 between unconstrained and facilitation-constrained 

surprisal at the second phoneme, we reduce correlation to 0.710. By increasing the 
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cutoff to 1.0, we can further reduce the correlation to 0.570. In Figure 14 below, we 

plot correlation for the set with the 1.0 cutoff. 

 

Figure 14. Scatter plot for unconstrained and facilitation-constrained surprisal at 
phoneme 2, for nouns, after attempted de-correlation via a cut-off for how close the 
two values can be for any given item. 

 

This approach, however, produces too small a set of target candidates. The de-

correlation step has to be applied iteratively for each phoneme and for both entropy 

and surprisal and still yield 2000 nouns or 1000 verbs, as we intend to present 1000 

sentences (the maximum accommodated in a MEG session with reasonable length). It 

does have the advantage, though, of preserving the full range for each variable.  

 For our final attempted approach to de-correlation, we look for an arbitrary 

cutoff value for surprisal such that this value is to the right of the peak of the 

distribution of unconstrained surprisal values, and to the left of the peak of the 



 

 149 

distribution of facilitation-constrained surprisal values. We then restrict to the set of 

words for which it is true both that their unconstrained surprisal is below the 

arbitrarily selected upper bound and that their facilitation-constrained surprisal is 

above the arbitrarily selected lower bound. We then reverse this (choosing a lower 

bound for unconstrained surprisal and an upper bound for facilitation-constrained 

surprisal) and additionally take the set of words for which these reversed constraints 

are true. This leaves us with a somewhat, but not severely restricted range for both 

variables, retaining most of the original outliers from the correlation line as well as 

one middle section. It also selects a large enough stimulus set that further iterations 

for subsequent phonemes and for entropy are still possible. With this process, for 

nouns at the second phoneme, we reduce the unconstrained/facilitation-constrained 

correlation from 0.951 to 0.599, the unconstrained/inhibition-constrained correlation 

from 0.666 to 0.170, and the facilitation-constrained/inhibition-constrained 

correlation from 0.746 to 0.551. In Figure 15 below, we plot correlation for the set of 

words constrained in this way. 

4.3.2 TRF analysis method 

 This dataset will be analyzed with the TRF method described for Experiment 

2. Starting with a simple model including only acoustic variables, we will test the 

addition of unconstrained surprisal and entropy, facilitation-constrained surprisal and 

entropy, and inhibition-constrained surprisal and entropy, collapsing over phonemes 

2-5. For any significant improvement, we will test whether separately modeling 

entropy and surprisal, the different phoneme positions, syntactic categories, or word 

positions improves model fit. If multiple versions of a specific variable improve 



 

 150 

model fit (e.g., both unconstrained and facilitation-constrained surprisal), we can use 

spatiotemporal tests to ask whether the strength of the correlation with the observed 

data differs between the two variables.  

 

 

Figure 15. Scatter plot for unconstrained and facilitation-constrained surprisal at 
phoneme 2, for nouns, after attempted de-correlation by restricting the ranges of both 
variables. 

 

4.3.3 Discussion 

4.3.3.1 Contributions of Experiment 3 

 Our primary goal for the design that we will employ in Experiment 3 is that 

we gain more definitive evidence for the nature of the syntactic constraint on word 

recognition. Experiment 1 (in Chapter 3) was unable to distinguish a facilitatory 
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constraint and a lack of constraint. Our design for Experiment 3 is also intended to 

provide timing information. If, e.g., a constrained version of surprisal better predicts 

neural activity than an unconstrained version of surprisal, is this the case immediately 

and throughout the word, or is there a delay for the constraint? 

Beyond the question of the syntactic constraint, Experiments 2 and 3 together 

should constitute considerable progress in refining the use of entropy and surprisal to 

probe word recognition and lexical access. In prior literature there has been variation 

in the manifestation of these effects across designs and analysis methods. With the 

addition of Experiment 3, we will have data for entropy and surprisal effects in 

continuous speech (Brodbeck, Hong, et al., 2018), single words (Experiment 2), and 

lexically unpredictable sentences (Experiment 3), all analyzed with the same method, 

which will allow more serious comparison between the stimulus types. Entropy 

effects are reported for continuous speech but not for single words, so the sentences 

in Experiment 3 are an important intermediate as we try to further our understanding 

of what aspects of the stimulus modulate the appearance of entropy effects.  

4.3.3.2 Directions for future work 

 If Experiment 3 yields definitive evidence for one of the mechanisms for the 

syntactic constraint, we intend to move toward more complex hypotheses about both 

the constraint mechanism and the syntactic parses feeding the constraint. Evidence for 

the faciliatory constraint, for example, would invite fine-tuning of the parameters for 

the increase in probability. We would also need to consider how a constraint could be 

implemented when, for example, the context allows both adjectives and nouns.  
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 One issue to keep in mind is to what extent the degree of correlation between 

different variants on entropy or surprisal will hold us back from pursuing finer-

grained distinctions. This is very likely to be a problem, and we suspect that a 

combination of more deliberate manipulations (as in Experiment 3) and naturalistic 

stimuli will be necessary.  
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Chapter 5: Syntactic prediction in posterior temporal lobe7 

 

 

5.1. Introduction 

5.1.1 Overview 

 In the previous chapters, I have been largely concerned with the impact on 

auditory word recognition when the syntactic category of the word being recognized 

is known. In studying this issue, we ignore the full complexity of how it is that the 

syntactic category of an incoming word could be known or expected in advance, 

when that knowledge becomes available, and what exactly it consists of. We don’t 

know if syntactic category expectations arise from hierarchical syntactic structure-

building, and if so, via what parsing algorithm, or if they arise from simpler bigram 

co-occurrence probabilities. We don’t know whether they are deterministic or not. 

We also don’t know if syntactic predictions occur automatically for each upcoming 

word, or only in specific circumstances. We don’t know to what extent they can be 

modulated by the reliability (at whatever level) of the input. Thus, when we assume in 

designing an experiment that comprehenders expect a noun after hearing “the,” and 

then try to study the impact of expecting a noun, there are myriad ways in which we 

might be misrepresenting the process whose impact we are studying. A full and 

accurate accounting of the interaction between top-down and bottom-up information 

                                                 

7 Macie McKitrick, Fen Ingram, and Aura Cruz Heredia assisted with some of the 
MEG data collection for Experiment 4 and its localizer. Macie McKitrick also 
assisted with creating stimuli for Experiment 4. 
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in word recognition will require a far more detailed understanding of the top-down 

contribution than is currently available. The work described in this chapter is an 

attempt in that direction, building on an extensive neuroimaging literature that 

investigates where (in the brain) and when (during sentence processing) effects of 

syntactic structure can be isolated in neural data.   

Our goal was to identify neural effects that reflect the prediction of syntactic 

structure. A neural signature of syntactic prediction, regardless of modality, would be 

instrumental for investigating top-down effects of syntactic category. We used MEG 

to examine the response to a determiner phrase when readers expected that it would 

be the subject of a sentence (“the toasty tractors entered the scenic cathedrals”) or the 

first item in a list (“the toasty tractors       the scenic cathedrals”). A promising recent 

report of a syntactic prediction effect in MEG (Matchin et al., 2019) used natural 

sentences in which both syntactic and lexical prediction are possible. Using nonsense 

stimuli to discourage lexical prediction, we did not find evidence for a neural effect of 

syntactic prediction.  

As we will discuss in the following sections, there are a variety of possible 

explanations for our null result, but one very clear new understanding we have gained 

is that “subtracting” lexical prediction from syntactic prediction is a far more 

complicated prospect than we had assumed, and that this issue may affect a large 

number of findings that are purportedly syntactic in nature. We speculate that the 

occurrence of syntactic prediction may actually depend on the occurrence of lexical 

prediction. The idea that lexical and syntactic processing could be more entwined 
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than we had previously imagined also opens up new and interesting questions 

surrounding top-down/bottom-up interactions during word recognition.  

5.1.2 Background: Matchin et al. (2019) 

Matchin et al. (2017, 2019) report fMRI and MEG data from a classic 

manipulation of structure (sentence/phrase/list) and content (natural/jabberwocky). 

Figure 16 illustrates their design. 

 

 

Figure 16. Matchin et al. (2017)'s Figure 1, illustrating the stimuli for their structure 
by content manipulation. Reprinted from Cortex, Vol. 88, Matchin, Hammerly, and 
Lau, The role of the IFG and pSTS in syntactic prediction: Evidence from a 
parametric study of hierarchical structure in fMRI, pages 106-123, Copyright (2016) 
Elsevier Ltd, with permission from Elsevier.  

 

The motivation for Matchin et al. (2019) was that most paradigms comparing 

structured and unstructured stimuli (often, sentences and lists) in order to ask about 

combinatory processing use fMRI. These studies reliably report effects of structure in 

a language network (see Figure 17) including angular gyrus (AG, also referred to as 

https://www.journals.elsevier.com/cortex
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the temporo-parietal junction (TPJ)), anterior temporal lobe (ATL), posterior 

temporal lobe (PTL), and inferior frontal gyrus (IFG). However, they do not provide 

information about the timing of effects of structure. This makes it difficult to 

understand the specific contribution that each of these regions is making to online 

sentence processing, because the implication of an effect of structure varies according 

to how much bottom-up input has already been processed, and at what word positions 

in the sentence the effect occurs. Matchin et al. (2019) instead use MEG time course 

data, which provides novel evidence for the latencies of different effects of structure. 

 

 

Figure 17. Reproduction of Matchin et al. (2019)'s Figure 3, showing the anatomical 
search regions used in their study for typical language network areas showing 
structure effects: inferior frontal gyrus (IFG), anterior temporal lobe (ATL, posterior 
temporal lobe (PTL), and temporo-parietal junction (TPJ, also referred to as angular 
gyrus (AG)). Reprinted from Human Brain Mapping, Vol. 40, Issue 2, Matchin, 
Brodbeck, Hammerly, and Lau, The temporal dynamics of structure and content in 
sentence comprehension: Evidence from fMRI-constrained MEG, pages 663-678, 
Copyright (2018) Wiley Periodicals, Inc., with permission from John Wiley and Sons. 
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When structure manipulations are crossed with content manipulations that 

compare natural and jabberwocky stimuli, it has often been suggested that 

combinatoric effects can be diagnosed as syntactic or semantic in nature (e.g., Pallier 

et al. (2011)). Matchin et al. (2017), using fMRI, replicated Pallier et al. (2011) in 

demonstrating an increased response for natural sentences relative to phrases and lists 

in inferior frontal gyrus (IFG), posterior temporal lobe (PTL), anterior temporal lobe 

(ATL), and angular gyrus (AG), and for jabberwocky sentences, in contrast, effects of 

structure in IFG and PTL only. This was taken by both groups to indicate that the role 

of AG and ATL is confined to semantic/conceptual or thematic processing. IFG and 

PTL are generally associated with lexical retrieval and storage as well as syntax, and 

because some degree of syntactic structure is assumed to be stored with lexical items, 

Matchin et al. propose that IFG and PTL are involved in lexical-syntactic processing.  

Crucially, in this fMRI data, IFG and PTL did not show an increased response 

for phrases relative to lists, despite the fact that phrases involve more structure than 

lists. This suggests that the sentence > phrase response in those areas does not reflect 

basic syntactic structure building, but might instead reflect sentence-level syntactic 

prediction of the sort that for unconnected phrases would not be necessary or would 

not have to be maintained over any distance.  

Matchin et al. (2019), using the MEG data for this same paradigm, report 

further evidence for a predictive structure-building role for posterior temporal lobe in 

syntactic processing. Experiment 4, reported in this chapter, is in direct response to 
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this finding. Therefore, we now describe Matchin et al. (2019)’s design and findings 

in greater detail.  

5.1.2.1 Design 

Matchin et al. (2019) fully cross structure (sentence, unconnected phrase, and 

list conditions) and content (“jabberwocky” and natural stimulus conditions), as in the 

fMRI version of the study.  In the MEG data, however, they focus on the sentence vs. 

phrase comparison rather than the sentence vs. list comparison. They do this because 

open-class and closed-class words appear in the same positions in the sentence and 

phrase conditions. The contrast between open and closed-class words is known to 

elicit large electrophysiological differences, which might dominate any structure 

effects in the sentence vs. list comparison. This is a problem only for the MEG 

analysis because the MEG analysis examines each position in the sentence separately.  

Sentences always had the same simple structure (Determiner-Noun-Modal-

Verb-Determiner-Noun). Jabberwocky conditions substituted pronounceable 

nonwords for the content words, scrambled across sentences with function words 

fixed in place. Phrase trials consisted of a sequence of three Determiner-Noun or 

Modal-Verb phrases taken from the sentences. Repetition of lexical items was 

counter-balanced across subjects, so that the same word was not seen multiple times 

by the same person.  

A critical element of the design was that stimuli were presented in blocks of 

the same condition, with a warning before each block telling participants what 

condition they were about to be presented with. The instructed task was to respond to 

a memory probe word, which was presented pseudo-randomly after 2 of every 6 
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trials. Participants had to indicate whether or not they had seen the probe word in the 

preceding sequence. 

5.1.2.2 Results 

Functional regions of interest within each of the four anatomical areas 

(inferior frontal gyrus (IFG), posterior temporal lobe (PTL), anterior temporal lobe 

(ATL), angular gyrus (AG)) for each participant were chosen from the fMRI data for 

use in the MEG analysis. Average time courses of activity within each ROI for each 

participant were then extracted for use in temporal cluster tests. Because the focus of 

this chapter is syntactic prediction, we will only discuss their reported MEG effects of 

structure in PTL and IFG. 

Prediction effect  

Matchin et al. (2019) find an effect of structure in PTL 272-484 ms after the 

onset of the second word (the subject noun). We reproduce their findings in Figure 

18. PTL, in this study, is defined as “the superior temporal sulcus (STS) or MTG, 

posterior to primary auditory cortex and anterior to the end of the sylvian fissure.” 

This finding seems to support the proposal that PTL supports syntactic prediction, 

because it occurs during the first phrase of the sentence.  At this point, the bottom-up 

input in the sentence and phrase conditions is identical, and the only difference is that 

participants know what block type they are in, and therefore that sentence-level 

structure is upcoming in the sentence condition. This is consistent with what would be 

expected under a left-corner parsing model, in which input consisting of a subject 

determiner or noun phrase would lead to the projection of structure for a verb.  
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Figure 18. Matchin et al. (2019)'s Figure 4, showing the results of their structure 
manipulation. Reprinted from Human Brain Mapping, Vol. 40, Issue 2, Matchin, 
Brodbeck, Hammerly, and Lau, The temporal dynamics of structure and content in 
sentence comprehension: Evidence from fMRI-constrained MEG, pages 663-678, 
Copyright (2018) Wiley Periodicals, Inc., with permission from John Wiley and Sons. 

 

Non-predictive structure effects 

Matchin et al. also observe a main effect of structure for all open-class words 

at 284-332 ms and all closed-class words at 92-148 ms. This is proposed to reflect 

increased costs of attention and maintenance for the syntactic structure associated 

with each lexical item, which would presumably increase in a sentence context where 

that syntactic structure requires integration. Matchin et al. suggest post-hoc that the 

latency difference between open and closed-class words is because closed-class 

words can be recognized more quickly.  
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In this dataset, PTL also shows content effects from the contrast between 

natural and jabberwocky sentences. This supports the idea that activity in this area 

reflects both lexical and syntactic processes. Interestingly, for open-class words the 

structure and content effects occur at roughly the same time. Content effects for open-

class words should reflect the difference between real words and nonwords, as the 

latter cannot be successfully retrieved. In contrast, for closed-class words the content 

effect lags the structure effect by roughly 100 ms. These closed-class words are the 

same in jabberwocky and natural sentences, so this cannot reflect an issue in lexical 

retrieval. Instead, one difference between conditions is that in natural sentences these 

closed-class/function words are followed by real words, which can be predicted or 

constrained by selectional restrictions, while in jabberwocky sentences this type of 

prediction would not be possible.  

Finally, Matchin et al. observe an effect of structure in PTL 180-284 ms after 

the fifth word (the second determiner), which also occurs in AG and is likely related 

to the processing of event semantics due to the verb in the sentence condition. 

Lack of IFG effects 

IFG, surprisingly, showed no effects of structure in the MEG data despite 

robust structure effects in the fMRI data. Matchin et al. offer several potential 

explanations. One is the possibility of reduced signal in frontal regions, but this is 

difficult to reconcile with the finding of content effects in IFG, unless the signal 

generated by content versus structure effects is qualitatively different. Another is the 

possibility that structure effects in IFG are occurring at different points in different 

trials, which would still sum to an effect in an fMRI analysis but would not in MEG, 
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where we analyze timepoint-by-timepoint. However, variation in effect latencies 

would be difficult to explain given that every sentence had an identical structure. 

Finally, they raise the possibility that the IFG effects observed in fMRI are sentence 

wrap up effects, which are not observed in MEG because the window of analysis ends 

500 ms after the last word. In pursuit of this explanation, follow-up work would 

ideally include a later analysis window to look for wrap up effects.  

Summary & questions 

To summarize, Matchin et al. (2019) found that in a contrast between blocks 

whose trials consist of simple sentences and blocks whose trials consist of 

unconnected two-word phrases, there is an increased response to the first noun in the 

trial in sentence blocks relative to phrase blocks. This occurs in left posterior 

temporal lobe, 272-484 ms after the onset of the first noun. In the sentence blocks, 

this first noun is the subject of the sentence. The primary claim in this study is that the 

MEG data provides novel support for a critical role of PTL in syntactic structure-

building, and in particular for predictive syntactic structure building. In following up 

on this claim, there are two uncertainties that we will address. 

The first is that this design does not distinguish whether the projection of 

sentence-level structure is triggered by the head noun of the subject or by the first 

content word in the sentence. This is relevant in order for this data to help 

characterize top-down syntactic parsing. Second, it is possible that this result actually 

reflects lexical rather than syntactic prediction. In this design, presentation of the 

subject noun allows specific lexical items to be predicted, in addition to the syntactic 

structure necessary for an upcoming verb phrase to be integrated. Prediction of the 
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upcoming word is not possible in phrase blocks because there is no semantic 

relationship between the first and subsequent determiner phrases in a trial, whereas 

there necessarily is such a relationship between the subject and verb/object of a 

natural sentence. For example, “recite” and “verse” are far more related to and 

predictable from the subject “poet” than “baby” and “bill” are from “fencer.” We 

address both of these issues in Experiment 4.  

5.1.3 Experiment 4 

In the following sections, we present a study that builds on Matchin et al. 

(2019)’s evidence for predictive structure building in simple sentences. A 

straightforward interpretation of their effect is that comprehenders project sentence-

level syntactic structure when they encounter the subject noun in the sentence blocks, 

whereas this structure is not necessary and therefore not generated in phrase blocks. 

This is just a single data point, but would seem to be evidence for a predictive 

structure-building function for posterior temporal lobe (PTL), in line with previous 

evidence for effects of syntactic structure specifically in posterior superior temporal 

sulcus (pSTS).  

5.1.3.1 Primary questions addressed 

Our follow-up study addresses several important questions raised by this 

finding, in pursuit of a better understanding of the role of PTL in syntactic prediction 

and the nature of the observed prediction effect.  First, does the prediction effect 

reflect structural prediction or lexical prediction? Second, why was the prediction 

effect observed in response to the subject noun specifically? Matchin et al. (2019) 

used a complex manipulation of both structure (sentence, phrase, and list blocks) and 
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content (natural and Jabberwocky). Addressing our questions required only the sub-

part of the design that is crucial for the prediction effect (natural sentences and 

phrases). 

Our first priority was addressing the possibility that the prediction effect 

observed in Matchin et al. (2019) is actually a lexical rather than a structural 

prediction effect. Therefore, instead of using natural sentences in which the verb is at 

least somewhat predictable given the subject, we use sentences in which the subject 

determiner phrase and verb are randomly paired, so that they have the same (lack of) 

relationship as the first and second phrase in phrase trials. For example, for Matchin 

et al. (2019), since all sentences are natural sentences, participants reading “the poet” 

can expect that the upcoming lexical items will be semantically related to “poet.” The 

set of possible verbs that are likely to follow is thus predictable, and indeed the 

sentence is completed as “the poet will recite a verse.” The sentences in our 

experiment are instead along the lines of “the toasty tractors entered the scenic 

cathedrals.” With sentences like this, reading “the toasty tractors” does not allow 

participants to expect any specific set of potential verbs or objects. This allows us to 

ensure that any apparent prediction effects we observe in response to the first 

determiner phrase are due to structural and not lexical prediction.  

To discourage lexical prediction to the full extent possible while still using 

real words, we also use random pairing of adjectives and nouns within the determiner 

phrases (removing only the most severe violations), and use adjectives that are not in 

general predictive of any single noun. We also randomly pair the verbs and object 

determiner phrases. Assuming that neither lexical nor syntactic prediction are 
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occurring in the phrase condition for Matchin et al. (2019), our intention was that in 

our study this would again be true in the phrase condition, but in the sentence 

condition lexical prediction would not be possible. If lexical prediction had made no 

contribution or was only partially responsible for the prediction effect, that effect 

should still occur in our study. Of course, it is possible that lexical prediction still 

occurs automatically even in unpredictable sentences, and so our removal of lexical 

predictability does not guarantee that a prediction effect occurring in our design is 

purely syntactic. 

Second, we address whether the prediction effect in Matchin et al. (2019) is in 

response to the subject noun per se, or is triggered by some other property of that 

stimulus item in the design (e.g., that it is the first content/open-class word, or second 

word in the sentence). All determiner phrases in Matchin et al. (2019) consisted of 

Determiner + Noun, but we add an intervening adjective. This allows us to ask 

whether the prediction effect moves from the second to the third word, indicating that 

it is indeed associated with the subject noun, or continues to occur in response to the 

second word, indicating one of the other possibilities mentioned above (first 

content/open-class word, or second word in the sentence). 

5.1.3.2 Other changes from Matchin et al. (2019) 

We made several other modifications to the Matchin et al. design. 

For Matchin et al. (2019), the subject and object of the sentence were always 

determiner phrases, but the phrase trials were sometimes made up of verb phrases. 

We altered the set of stimuli such that (between subjects) we are comparing the 

response to the same phrases in a sentence trial (e.g., “the verbose wizards trampled 
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the opulent baths”) or a phrase trial (e.g., “the verbose wizards the opulent baths”). 

This way, the block context is truly the only difference between conditions.  

We also included a condition that was more distantly related to the syntactic 

prediction question. Following Lau and Liao (2018), we added coordination blocks in 

which trials consist of two coordinated determiner phrases (e.g., “the verbose wizards 

and the opulent baths”). This allows us to try to replicate the sustained effect of 

coordination that Lau and Liao observe during their second noun phrase, as well as to 

explore the difference between effects of sentence-level structure and structure for 

coordination (both predictive and otherwise).  

For Matchin et al. (2019) analysis of MEG data for each specific participant 

could be spatially constrained to regions that had been activated (for that same 

participant) in fMRI data from the same paradigm. We did not collect fMRI data to 

complement the MEG data for Experiment 4. Instead, we attempted to narrow down 

our region of interest for syntactic structure effects by running a localizer task (in 

MEG) with the same participants, and in the same session, as Experiment 4. The 

localizer compared responses to natural sentences, scrambled natural sentences, and 

consonant strings. This was intended to restrict our region for analysis within PTL 

and potentially IFG.  

Finally, we also collected EEG data for the same paradigm to allow for cross-

method comparison, but the EEG analyses are not reported in this dissertation. 
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5.2 Materials & Methods 

 Our stimuli, informally pre-registered analysis plan, deviations from the 

analysis plan, and analysis scripts for both Experiment 4 and the localizer are 

available for viewing and download on OSF. 

5.2.1 Participants 

35 participants (16 women) completed this study (mean age: 21.2, range: 18-

30). All participants were right-handed, native speakers of English, and 12 were also 

native speakers of additional languages. None reported history of neurological or 

linguistic impairment, brain injury, or hearing loss. All reported normal or corrected-

to-normal vision. The procedure was approved by the University of Maryland 

Institutional Review Board and all participants provided written informed consent. 

Participants were compensated with their choice of $15 or 1 course credit per hour of 

participation. The full session (this experiment, the localizer, and Experiment 2 

reported in Chapter 4) lasted 2 hours. 

For both this experiment and the localizer, three of the 35 participants’ 

datasets were excluded from analysis, because of (1) the participant expressing lack 

of attention due to claustrophobia, (2) the participant repeatedly falling asleep, and (3) 

extreme noise observed in the data. For this experiment, we made one additional 

exclusion because of excessive alpha activity. 

5.2.2 Stimuli 

All stimuli are reproduced in Appendix A. Our main objective in creating 

stimuli was to ensure that prediction of upcoming lexical items from the first 

https://osf.io/9mdx7/?view_only=d5fcd26a2cf344b3a3fbf1dd66e90d89
https://osf.io/9mdx7/?view_only=d5fcd26a2cf344b3a3fbf1dd66e90d89
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determiner phrase was equally not possible in all conditions, such that any apparent 

prediction effects could not be due to prediction of specific lexical items, and could 

more likely be attributed to syntactic structural prediction.   

Our stimuli were sequences of words in which lexical predictability between 

words was minimized and our conditions varied in syntactic structure: sentences (“the 

toasty tractors entered the scenic cathedrals”) or lists of phrases (“the violent novels 

[blank] the crinkly cheeses”). Trials were presented one word at a time, in blocks in 

which the participant knew they were only being presented with sentences or only 

being presented with phrases. We used the same structure for all stimuli. Sentences 

had the following pattern: the adjective noun verb the adjective noun. Phrase list trials 

consisted of: the adjective noun [blank] the adjective noun.  

As mentioned above, we included a third, parallel condition of coordinated 

phrases (“the fleshy soldiers and the pale bikes”). Coordinated phrase trials always 

consisted of: the adjective noun and the adjective noun. As with the sentence and 

phrase conditions, participants were instructed at the beginning of the block that in 

that block they were only being presented with coordinated phrases. 

In total, each participant was presented with 70 items from each of the three 

conditions, but only 66 from each condition were analyzed.  

Nouns were always plural and verbs were always in the past tense. The set of 

nouns and verbs came from the nouns and verbs used by Lau and Liao (2018) and 

Matchin et al. (2017, 2019). Adjectives were selected from a list of all adjectives 

appearing in the Corpus of Contemporary American English (Davies, M., 2008) for 

which there are no single nouns with greater than 15% probability of following that 
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adjective. We did this to ensure that our adjectives did not lead to strong expectation 

of any specific noun.  

We removed all low frequency adjectives, prefixed adjectives, adjectival 

participles, nouns used as adjectives, hyphenated adjectives, and adjectives that 

would need to be capitalized. We then randomly paired our adjectives and nouns, and 

removed any resulting phrases that were especially emotionally evocative or that 

violated selectional restrictions between the adjective and noun. This is likely to have 

increased predictability within the determiner phrase (from adjective to noun), but we 

considered this unproblematic because we were comparing the response to the same 

determiner phrases between conditions.  

We then assembled random pairings of our determiner phrases to create three 

sets of 70 determiner phrase pairs. Any given participant would see one set of these 

determiner phrase pairs in the sentence condition (with a verb in between each of the 

two determiner phrases), the second set in the coordination condition (with “and” in 

between each of the two determiner phrases), and the third set in the phrase condition 

(with just a blank screen in between each of the two determiner phrases).  

For the sentence condition, we randomly chose 70 verbs to insert between the 

determiner phrases. We removed any resulting combinations in which the 

combination of the verb and second determiner phrase resulted in a selectional 

restriction. We crucially did not alter the random pairings between the first 

determiner phrase and the verb except for a handful of highly emotionally evocative 

cases. This meant that upon encountering the first determiner phrase in the trial in any 

condition, upcoming lexical material, whether verb or second determiner phrase, was 
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not any more predictable in the sentence condition than the coordination or phrase 

conditions. 

Impressionistically, sentences constructed from truly random word and phrase 

pairings made processing extremely difficult, and we suspected that it might lead 

participants to stop processing meaning altogether. Therefore, in cases where we used 

non-random combinations, our goal was to make the sentences as easy as possible to 

parse while still maintaining low lexical predictability.  

Because this design was counter-balanced, the condition in which each set of 

70 determiner phrases appeared was rotated across participants. Therefore, the same 

set of 70 verbs appeared with each of the three different sets of determiner phrases, 

and we applied the above criteria in each case.  

There was no repetition of any single word across the set of stimuli presented 

to a single participant. Across participants, the same pair of determiner phrases 

occurred in the sentence condition, the coordination condition, and the phrase 

condition, so that we could compare responses to identical determiner phrase stimuli 

when expectation for the syntactic structure of what was upcoming was the only thing 

that varied.  

We used three basic lists, where each list contained all three conditions, and 

each set was in a different condition in each list. With three conditions, presented in 

blocks, each list had 6 possible block orders. We therefore used 18 different stimulus 

lists. However, within each list, instead of presenting 70 trials from the same 

condition in a single block, we broke each condition into two blocks of 35 trials, and 

repeated the fundamental block order twice (i.e., if the fundamental order for List 1a 
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was sentence, phrase, coordination, we presented six 35-trial blocks in the following 

order: sentence, phrase, coordination, sentence, phrase, coordination). Though 

participants did not know this, the first two trials in each block of 35 were triggered 

as practice items and not analyzed.   

10 additional trials from each condition (no overlap with experimental items) 

were used for a short, three-block practice run of the experiment completed before the 

MEG recording, outside of the magnetically shielded room.  

5.2.3 Task 

We included single-word memory probes at the end of each block to 

encourage attention. Participants were instructed that they would be reading 

sequences of words, in six short blocks with breaks in between. They were warned 

that at the end of each block, there would be test trials in which they would be 

presented with single probe words and asked whether they had seen the word or not. 

They were given two button boxes and instructed to press the button in their left hand 

for “No” and the button in their right hand for “Yes.” Before each block, a prompt 

appeared indicating whether that block would present sentences, pairs of items, or 

lists of items. Each block contained 35 trials, with an option to rest after the 10th, 20th, 

and 30th trials. Then, 12 probe words were presented, one at a time, with a question 

mark. Half of the probes had appeared in the block and were supposed to elicit a 

“yes” answer, and half had not appeared in that block or previously in the experiment. 

“Yes” probes were chosen semi-randomly from words that had appeared in the block, 

with the restrictions that they were split evenly in coming from the first determiner 

phrase or the second determiner phrase, split evenly in being nouns or adjectives, and 
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were roughly evenly distributed in where in the block they had occurred. “No” probes 

were chosen from the list of candidate nouns and adjectives originally used to create 

the stimuli, and had the same noun/adjective split. Participants were not told about 

any of these restrictions on the probes.  

“Yes” and “No” probes were presented in a random order. There was no time 

limit on the response to the probes, but participants were instructed to answer 

according to their first reaction. After they pressed either button with their answer, the 

next probe word appeared. Breaks within and between blocks were also un-timed, and 

participants could press a button to continue whenever they were ready. The entire 

task lasted roughly 25 minutes, depending on how much rest time the participant 

chose to take. 

This task was very similar to the task used by Matchin et al. (2019), except 

that in that study probes were distributed randomly during the block, rather than all 

being presented at the end of the block. We made this change to discourage 

participants from trying to explicitly remember each specific stimulus in preparation 

for an upcoming probe, which could lead to phonological rehearsal.  

5.2.4 Procedure 

Before beginning the experiment, participants completed a short practice run 

of three blocks. This mimicked the real experiment in structure but had only 10 trials 

and three probes per block, and answers to the memory probes were provided by 

keyboard rather than button box. 

Once set up for recording inside the magnetically shielded room, participants 

lay supine and viewed the stimuli projected on a screen above their heads, holding 
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one button box in each hand. Stimuli were presented in white font on a black 

background. The study began with an instruction slide, and participants could press a 

button to begin when they were ready. At the beginning of each of the six blocks, 

there was a prompt screen indicating which type of block it would be and reiterating 

the instructions. Then, participants could press either button when they were ready to 

begin. Within each block, there were 35 trials. After the 10th, 20th, and 30th trials, a 

REST! prompt appeared, and then instructions to press either button to move on when 

ready. After the third block, participants were alerted that they were halfway done 

with the task. 

Each trial began with a 1500 ms fixation cross, a 300 ms blank, and then each 

of the seven words appeared on the screen, one at a time, for 300 ms, with a 200 ms 

blank between words. A 300 ms blank followed the final word, before the fixation 

cross for the next trial began. On phrase trials, the fourth word position was instead a 

blank screen. This trial timing was identical to the localizer except that there were 

seven rather than nine words per trial. 

After the 35th trial, 12 probes were presented. Each presentation of a probe 

began with a 1500 ms fixation cross, a 300 ms blank, and then the word “TEST” 

appeared for 300 ms. After a 300 ms blank, the probe word appeared on screen with a 

question mark, and disappeared only when a button was pressed to answer.  

5.2.5 MEG data collection & preprocessing 

 All MEG data collection and preprocessing details were the same as described 

in Chapter 4, except for the following details. 
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 We computed and selected ICA components for rejection using a high-pass 

filter of 1 Hz and a low-pass filter of 40 Hz. For ICA component selection, we 

visualized the entire 1500 ms epoch (for the localizer) or the 3500 ms epoch (for 

Experiment 4). We then proceeded with the 40 Hz low-pass filter, down-sampling the 

data to 500 Hz. To select epochs for rejection, we applied an absolute threshold of 2 

pT, and removed any additional extraneous artifacts identified by visual inspection. 

Baseline correction is specified for each specific analysis in the upcoming sections. 

For source estimation, we used a depth weighting parameter of 0.8 and dSPM noise 

normalization with a signal to noise ratio of 3. 

5.2.6 Sentence localizer 

 We included a localizer so that we could generate functional regions of 

interest in addition to the region of interest indicated by Matchin et al. (2019). 

Following a very common localizer approach for sentence processing studies (e.g. 

Fedorenko et al. (2010) and others) we compared natural sentences, scrambled 

sentences, and lists of nonwords. The sentence/scrambled contrast was intended to 

isolate syntactic structure-building effects, while comparison with the nonword lists 

would elicit effects reflecting both syntactic and lexical processes. We intended to use 

any clusters arising in IFG or PTL for the sentence/scrambled contrast as regions of 

interest in Experiment 4, and if no such clusters arose, we intended to use clusters 

from the sentence/consonant contrast. The sentence/consonant contrast would 

otherwise be used purely for exploratory analysis. While our analyses identify 

candidate regions in both time and space, we intended to use only the spatial 

information in constructing group-level ROIs for Experiment 4. The timing 
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information, however, is helpful in interpreting the nature of the effects. Including 

both a syntactic and a lexical contrast also unexpectedly allowed us to make some 

interesting (speculative) inferences about the nature of Matchin et al. (2019)’s 

findings.  

To maximize statistical power with a short recording time, we collapsed over 

all word positions in the sentence. This means that any observable structure effects 

are those that occur in response to each or most words of the sentence at roughly the 

same time. A different approach would be needed to look for structure effects specific 

to any specific position in the sentence.  

We conducted spatiotemporal cluster tests on the localizer data in the left 

temporal lobe and left IFG. This analysis was conducted before any data from 

Experiment 4 had been visualized or analyzed in any way, so as not to bias our 

decisions. Within the left temporal lobe, we were looking for clusters in PTL, but we 

allowed a larger search space because MEG does not have extremely high spatial 

precision and we did not want to cut off a cluster extending outside of PTL.  

We note that because we used a fixed orientation of the dipole for source 

localization and threshold-based cluster tests for our analysis, sources within any 

given cluster will have the same polarity. Thus, we avoid the issue of activity 

cancellation that can occur in ROIs that include sources of different polarity. See 

Gwilliams and Marantz (2016) for further discussion of this problem and the merits 

of functional ROIs for fixed orientation analyses. 
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5.2.6.1 Stimuli 

The stimuli were borrowed from the localizer used by Lau and Namyst 

(2019). The localizer consisted of three conditions: natural sentences, lists of real 

words (scrambled sentences), and lists of nonwords. Each sentence or list was a 

sequence of nine words or nonwords. The sentences were themselves adapted from 

Rogalsky and Hickok’s (2009) localizer, with some additions. The scrambled word 

lists were created by scrambling the set of words across all sentences and 

recombining in sets of nine. We used two different lists for presenting the stimuli, 

such that content words that appeared in a natural sentence trial in List A appeared in 

a scrambled sentence trial in List B, and so a single participant would not see the 

same content word in more than one condition. The nonwords were unpronounceable 

consonant strings that were matched with the real words for length.  

5.2.6.2 Task 

The localizer always occurred between Experiment 4 and Experiment 2, both 

of which involved very demanding tasks. Participants were instructed that this was a 

brief interlude and they should simply read what appeared on the screen. 

5.2.6.3 Procedure 

Stimuli were presented in white text at the center of a black screen, one word 

at a time. Each trial consisted of a 1500 ms fixation cross, a 300 ms blank screen, and 

then each word was presented for 300 ms, with a 200 ms blank screen between 

words. The final word was followed by a 300 ms blank screen, before the fixation 

cross for the next trial appeared. 
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Each participant was presented with 60 trials (20 from each condition) in a 

random order. Different from Experiment 4, but consistent with most of the prior 

fMRI literature using this kind of localizer design, there was no pre-trial cue 

indicating what the nature of the stimulus would be for that trial. The entire task 

lasted 6.5 minutes. 

5.2.6.4 Analysis 

The epoch for analysis for the localizer was -100 to 500 ms from the onset of 

each word/nonword. 

We did not analyze the first word in each trial because it could not be evident 

to participants whether they were reading a natural sentence or a scrambled sentence 

until the second word at the earliest. Therefore, condition averages for each 

participant included all words in all trials, except for the first word in each trial, with 

a maximum of 160 data points contributing to each condition average. When trials 

were missing due to artifact rejection, we equalized the number of trials included 

from each condition.  

We did not apply baseline correction because, given the short 500 ms SOA, 

the typical -100 to 0 ms baseline period would have been the final 100 ms of the 

previous epoch, when condition-specific differences are still likely.  

We conducted spatiotemporal cluster tests (see Nichols and Holmes (2002)) 

for our two contrasts of interest: sentence vs. scrambled and sentence vs. consonant. 

These tests were conducted over the entire 500 ms epoch but within a constrained 

search space of brain regions defined in the Desikan-Killiany cortical atlas in 

Freesurfer. From the left temporal lobe, we included: the superior, middle, inferior, 
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and transverse temporal gyri, banks of the superior temporal sulcus, fusiform gyrus, 

temporal pole. From the left frontal lobe, we included: pars opercularis, pars 

triangularis, pars orbitalis.  

For each contrast, a two-tailed repeated-measures t-test was conducted at each 

source and time point within the search space. For each cluster of adjacent t-values 

exceeding a threshold equivalent to p < 0.05 (with a minimum of 10 contiguous 

sources and 25 ms duration), we summed the t-values in the cluster. We then 

compared this sum to a distribution of the largest such cluster sum values generated in 

each of 10,000 random permutations of the data (shuffling condition labels within 

each subject). The p-value for each of the clusters found in the real dataset was 

therefore the proportion of the 10,000 random permutations on which the largest 

cluster sum value was larger than that of the currently observed cluster. 

We expected our sentence/scrambled contrast to yield effects related to the 

presence of syntactic structure, and we were interested in any such effects localizing 

to inferior frontal gyrus or the posterior (superior or middle) temporal lobe. For this 

localizer analysis we report any clusters with p < .2, because the goal was to find 

regions of interest for the analysis of Experiment 4, rather than confirmatory 

hypothesis testing that would warrant stricter Type I error control. 

5.2.6.5 Results 

 For spatiotemporal cluster test results for both the localizer and Experiment 4, 

we plot both the spatial extent of the cluster and the time course of activity within the 

cluster. For the spatial plots, the color at each source point reflects the maximum t-

value within the time window of the cluster; not all source points are necessarily 
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significant at every time point. The time course plot shows, at each time point, the 

averaged neural activity for all sources that are part of the cluster.  

Sentence vs. Scrambled 

Our spatiotemporal cluster test yielded no clusters for the sentence/scrambled 

contrast in the left frontal lobe region that we analyzed (pars opercularis, pars 

triangularis, pars orbitalis). In the left temporal lobe, we found three clusters, which 

we report in Table 7. 

 

Table 7. Spatiotemporal clusters with p < .2 for sentence vs. scrambled contrast. 

Cluster Time Location p-value 
1 116-242 ms anterior inferior temporal gyrus p = .005 
2 124-232 ms anterior superior temporal sulcus p = .125 
3 212-312 ms posterior superior temporal sulcus (dorsal 

bank) 
p = .172 

 

Clusters 1 and 2, along anterior inferior temporal gyrus and anterior superior 

temporal sulcus, display time courses of activity almost exactly inverse of each other, 

with a peak at roughly 130 ms (negative-going for the inferior temporal cluster, 

positive-going for the superior temporal cluster) displaying a scrambled > sentence 

effect, followed by a polarity reversal and a more sustained sentence > scrambled 

effect. Given their almost identical time windows of significance, we strongly suspect 

that these two clusters reflect the same effect measured on either side of the middle 

temporal gyrus. The latency (shortly after 100 ms) and directionality (scrambled > 

sentence) of the first peak in the significance window may reflect the (lack of) 

predictability of the visual wordform in the scrambled condition. Another possibility, 

given the early time window, is that this is a “wrap-around” effect owing to the short 
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SOA, and actually reflects processes occurring ~500-600 ms after the onset of the 

previous word. In either case, these clusters are not relevant as regions of interest for 

Experiment 4 because they are in anterior rather than posterior temporal lobe. 

Cluster 3 (see Figure 19), on the dorsal bank of posterior superior temporal 

sulcus, displays a clear negative-going peak at 250 ms with a stronger response for 

sentence > scrambled, and then a positive-going peak at 400 ms displaying no 

apparent difference between the conditions. This time window and location are very 

consistent with the effects of syntactic structure found by Matchin et al. (2019), 

making this cluster suitable as a region of interest for the analysis of Experiment 4. 

 

 

Figure 19. Sentence vs. scrambled cluster in pSTS for localizer, plotting time course 
and location of neural activity. Color bar shows maximum t-value at a source point.   
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Sentence vs. Consonant strings 

The sentence/scrambled contrast yielded a PTL cluster suitable as a region of 

interest for the analysis of Experiment 4. However, we still engaged in exploratory 

analysis of the sentence/consonant contrast because it is a frequently employed 

contrast in the fMRI literature, and time course information is of potential interest. 

Because this was a secondary contrast for us and it yielded many more clusters, we 

used a stricter significance threshold of p < .05 for serious consideration. 

We did not find any clusters in the frontal region of interest that met this 

threshold. Clusters with p < .05 in the temporal region of interest are reported in 

Table 8. Cluster 4, which appears strongest along posterior inferior temporal gyrus, is 

outside of our primary area of consideration for lexical and/or syntactic effects and 

probably reflects differences in conceptual access; therefore, we do not discuss it 

further here.   

 

Table 8. Spatiotemporal clusters with p < .05 for sentence vs. consonant contrast. 

Cluster Time Location p-value 
4 188-384 ms posterior inferior temporal gyrus p = .0404 
5 206-334 ms superior temporal sulcus (dorsal bank and 

posterior ventral bank) 
p = .0338 

6 302-486 ms anterior superior temporal gyrus p = .0275 
7 326-474 ms transverse temporal sulcus p = .0331 

 

On visual inspection, we see that Clusters 5-7 (see Figure 20 and Figure 21) 

are all in the area of superior temporal gyrus/sulcus and transverse temporal 

gyrus/sulcus, and all have a time course of activity extremely similar to the PTL 

cluster from the sentence/scrambled contrast (Cluster 3), though sometimes flipped in 

polarity. This time course is characterized by peaks in activity at 250 and then (in the 
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opposite direction) at 400 ms. Cluster 3 showed a sentence > scrambled effect in a 

window containing the 250 ms peak, and these superior temporal clusters (Clusters 5-

7) elicited by the sentence/consonant contrast similarly appear to show an increase for 

the sentence condition at this peak. Cluster 5 (see Figure 20) is significant in a nearly 

identical time window to Cluster 3, but with a somewhat more diffuse localization, 

extending more anteriorly along the dorsal bank of STS, and, at the posterior end of 

the cluster, extending to the ventral bank of STS. 

 

 

Figure 20. Sentence vs. consonant cluster along STS for localizer, plotting time 
course and location of neural activity. Color bar shows maximum t-value at a source 
point. 

 

This set of clusters also shows a decreased response to the consonant 

condition relative to the sentence condition at the 400 ms peak; this did not occur for 

the scrambled condition in Cluster 3. Clusters 6 (along STG) and 7 (in TTS) are 
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significant in the window of the 400 ms peak, showing increased activity for 

sentences relative to consonant strings (see Figure 21). 

5.2.6.6 Discussion 

Our sentence/scrambled contrast yielded an effect of structure (sentence > 

scrambled) along the dorsal bank of the posterior superior temporal sulcus, in a 100 

ms window roughly centered around a negative-going peak at 250 ms. This cluster 

will serve as a functional ROI for structure effects in Experiment 4.  

Since the analysis collapses over all word positions, we expect that any effects 

we are able to detect are not specific to any single position in the sentence. Matchin et 

al. (2019) found effects of structure in posterior temporal lobe from 92-148 ms in 

closed-class words and 284-332 ms in open-class words. Our analysis does not 

distinguish between open and closed-class words, and so it is possible that our 

averaged time course is reflecting a mix of exactly this earlier effect of structure for 

closed-class words and later effect of structure for open-class words.  

Our sentence vs. consonant string contrast yielded the same STS effect at 250 

ms, but also a later difference along STG and TTS at 400 ms. Though this later effect 

is elicited only by the contrast between lexical (sentence) and non-lexical (consonant 

string) stimuli, we cannot be sure that it is not also driven in some way by the 

difference in structure between sentences and consonant strings. 

The biphasic response also suggests the possibility that Matchin et al. (2019)’s 

syntactic prediction effect could have been driven by a combination of distinct early 

and late responses. Matchin et al.’s effect, on the second word, extended across these 

early and late windows (272-484 ms). Crucially, Matchin et al.’s source modeling  
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Figure 21. Sentence vs. consonant clusters along STG (top) and TTS (bottom) for 
localizer, plotting time course and location of neural activity. Color bar shows 
maximum t-value at a source point. 
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approach assumed loose orientation of the dipoles, such that activity had to manifest 

as positive, whereas our analysis of the localizer used fixed orientation, distinguishing 

positive and negative current estimates. Therefore, we speculate that the sustained 

prediction effect observed by Matchin et al. (2019) could actually have been driven 

by the two peaks that we observe with opposite polarities at 250 and 400 ms along 

STG and STS, which would, in a loose orientation analysis, manifest as a single, 

sustained, positive effect over that time window. Because of this speculative 

relationship to the prediction effect observed by Matchin et al. (2019), we use the 

STG and TTS clusters as functional ROIs in Experiment 4, in addition to the pSTS 

ROI from the sentence/scrambled contrast. 

5.2.7 Data analysis 

5.2.7.1 Behavioral data 

 Participants completed a memory probe task at the end of each block of 

stimuli. In planning the study, we decided we would not use accuracy on this task as a 

criterion for inclusion in the analysis of the neural data, because we expected 

participants to find it quite difficult and we expected that accuracy could be close to 

chance even for those who were paying attention. Therefore, we report mean 

accuracy in each condition for full transparency, but this information was not used or 

considered any further. 

5.2.7.2 Neural data 

For the purposes of data processing (ICA visualization and epoch rejection) 

we used a single epoch encompassing the entire trial (3500 ms). However, our 

primary epoch for analysis was 0-1500 ms from the onset of the trial, which 
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encompassed the presentation of the first determiner phrase (the adjective noun). For 

tests in this first analysis window, we used the 100 ms window prior to the onset of 

the first word for baseline correction. 

Our secondary epoch for analysis was the 1500-3500 ms window beginning 

with the onset of the intervening item between the two determiner phrases. 

Depending on the condition, this intervening item was a verb, the coordinator “and”, 

or a blank screen. These 2000 ms encompassed the intervening item as well as the 

second determiner phrase. For tests in this second analysis window, we used the 100 

ms prior to the onset of the intervening item for baseline correction, as all conditions 

were indistinguishable up to this point.  

All tests reported in this section are two-tailed, despite cases in which a one-

tailed test would have been justified by the preceding literature, due to the fact that 

we used a fixed orientation of the dipole current in source localization and would 

therefore be analyzing both positive and negative neural activity values. We used 

three different testing approaches to investigate effects of syntactic prediction in the 

first epoch.  

Matchin et al. (2019) ROI 

First, in order to ask whether we could replicate (in a more narrow sense) the 

apparent effect of syntactic prediction found by Matchin et al. (2019), we created a 

region of interest based on the PTL ROI they had used. Because Matchin et al. had 

MRI data for each participant, in each anatomical region (IFG, AG, ATL, PTL) they 

extracted peak coordinates for the averaged structure and content contrasts and 

constructed each participant’s MEG ROI so as to surround that peak. For our ROI, we 
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took the average (along each dimension) of each their individual participant peak 

fMRI coordinates for the posterior temporal lobe (PTL), which were along posterior 

superior temporal sulcus (pSTS) or middle temporal gyrus (pMTG). We then created 

a region of interest with radius 25 mm around the averaged peak coordinates. Using 

this spatial ROI (see Figure 22), we analyzed two temporal windows of interest as 

determined by Matchin et al. (2019)’s results. Their syntactic prediction effect was 

272-484 ms after presentation of the subject noun, but it is unclear in their design 

whether the structure effect is in response to the subject noun or the first content 

word. Therefore, within the spatial ROI we computed a separate average of source-

localized activity for each of our participants (for each condition) over the time 

window 272-484 ms after the first adjective and the time window 272-484 ms after 

the first noun. For each time window, we ran a repeated measures t-test on the 

participant averages, comparing the sentence and phrase list conditions. 

Functional ROIs from localizer 

Our second analysis approach was an attempted replication in a broader sense, 

intended to detect predictive structure effects even if the specific location and timing 

of Matchin et al. (2019)’s effect was not representative. For this analysis, rather than 

using an ROI derived from Matchin et al. (2019)’s fMRI data, we used an ROI 

determined by the results of our localizer task. The localizer yielded a cluster along 

pSTS for the contrast between sentences and scrambled sentences, from 212-312 ms 

after word onset (see Figure 19). Note that this was a group level cluster, and we did 

not have an individual ROI for each participant. The spatial coordinates of this cluster 

were used as the ROI for a temporal cluster test within the time window of the first 
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determiner phrase (0-1500 ms), again comparing the sentence and phrase list 

conditions. We did not restrict our test to the time window in which the cluster was 

significant in the localizer because the tasks and stimuli were quite different and we 

did not expect exact correspondence between the nature of structure effects in the 

localizer and Experiment 4. This was also a natural way to deal with the problem that 

on the basis of Matchin et al. (2019) we could not predict whether the syntactic 

prediction effect might manifest on the adjective or the noun. 

 

 

Figure 22. ROI based on Matchin et al. (2019) PTL ROI, visualized in two ways. 

 

The temporal cluster test was identical to the spatiotemporal cluster test 

described for the localizer in Section 5.2.6.4, except that we had averaged over space 

(within the ROI) for each time point, and so were computing t-values only for points 

in time and not for points in space. This ROI is a sub-region of the Matchin et al. 
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(2019) ROI described above, and its origin as a cluster of sources with unified 

directionality may make it less susceptible to the cancelling out of current estimates 

that can occur in fixed orientation analyses when estimates from positive and negative 

sources are averaged. 

Our localizer had generated two other clusters from the sentence/consonant 

string contrast (Figure 21) that we planned to use as ROIs for temporal cluster tests. 

One reason for investigating these ROIs was that the location and time window of 

their effects in the localizer (nearly contiguous along anterior superior temporal gyrus 

(STG) and the transverse temporal sulcus (TTS), roughly 300-500 ms after word 

onset) were close to Matchin et al. (2019)’s apparent syntactic prediction effect. A 

concern with Matchin et al. (2019)’s finding is that it reflects lexical rather than (or in 

addition to) syntactic prediction, which our design is intended to address. Because 

these clusters were generated by a partially lexical contrast, we considered them 

potentially useful in understanding the relationship between Matchin et al. (2019)’s 

findings and our own. However, we consider this analysis purely exploratory.  

We followed the same procedure as for the first localizer cluster, again 

comparing the sentence and phrase list conditions in the time window of the first 

determiner phrase.  

Spatiotemporal cluster tests 

All of the above analyses defined spatial ROIs and evaluated their time 

courses for differences between conditions. As a complement to these ROI tests, in 

order to ensure that we did not miss any areas demonstrating an effect of our crucial 

contrast, we also conducted a spatiotemporal cluster test, which does not assume a 
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fixed spatial ROI in advance but can be limited to broad search areas of interest (here, 

left temporal lobe and left inferior frontal gyrus). This spatiotemporal cluster test 

again evaluated the sentence/phrase list contrast, in the window of the first determiner 

phrase (0-1500 ms from trial onset, using the preceding 100 ms for baseline 

correction). We also conducted an exploratory spatiotemporal cluster test, again 

comparing the sentence and phrase list conditions, during the window of the verb and 

second determiner phrase, when there is bottom-up evidence of the need for structure. 

Analyzing the coordination condition 

Finally, our analyses of the coordination condition were also conducted with 

spatiotemporal cluster tests in the same regions. The first was a hypothesis-driven 

(confirmatory) test investigating whether the effect of coordination observed by Lau 

and Liao (2018) in EEG could also be observed in MEG. This test compared the 

response to coordinated phrases relative to phrase lists in the second epoch, spanning 

the 2000 ms from the onset of the coordinator or blank middle position. This was 

necessarily a spatiotemporal rather than a temporal test because we could not know 

from the EEG result where we could expect to observe the effect in MEG. 

We also conducted an exploratory spatiotemporal cluster test exploring the 

possibility of effects of predicting coordination during the first determiner phrase. 

This test compared the coordination and phrase list conditions in the first epoch.  

5.3 Results 

Results and discussion for all tests in the second analysis window (1500-3500 

ms) are reported in Appendix B. 
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5.3.1 Behavioral data 

 The mean proportion of accurately answered memory probes was 0.630 (SD 

0.0974) in the sentence condition, 0.653 (SD 0.106) in the phrase condition, and 

0.647 (SD 0.112) in the coordination condition. There was no significant difference 

between accuracy in the sentence and phrase conditions (t(30) = -1.0, p = .327) or in 

the coordination and phrase conditions (t(30) = -0.3, p = .763).  

5.3.2 Neural data 

5.3.2.1 Matchin et al. (2019) ROI 

In the region of interest created from the averaged PTL ROIs in Matchin et al. 

(2019), we averaged source-localized activity over all source points in the time 

window 272-484 ms after the first adjective and the time window 272-484 ms after 

the first noun. From Matchin et al. (2019), we expected an effect of sentence > phrase 

in one of those windows. However, the results of our repeated measures t-test on the 

participant averages, comparing the sentence and phrase list conditions, were not 

significant in the window following the adjective (t(30) = 0.53, p = .603) or the 

window following the noun (t(30) = 0.10, p = .922). Our data therefore does not 

allow us to reject the null hypothesis that there was no difference in neural activity for 

the sentence and phrase conditions in this ROI in either time window. In Figure 23, 

we plot the time course of activity for these two conditions in this ROI, during the 

1500 ms window of the first determiner phrase. Though it appears that activity is 

numerically greater for the sentence condition than the phrase condition at some 

points in the epoch, this difference does not exceed the variation we expect due to 

noise.  
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Figure 23. Time course of neural activity in the PTL ROI based on Matchin et al. 
(2019), in 0-1500 ms window. Example item shows onset of each word. 

 

5.3.2.2 Functional ROIs from localizer 

Our second analysis for the sentence/phrase contrast used functional ROIs 

created from the localizer. We conducted temporal cluster tests over the 0-1500 ms 

window within a pSTS ROI derived from the localizer’s sentence/scrambled contrast, 

and within STG and TTS ROIs derived from the localizer’s sentence/consonant 

contrast. Although the conditions were numerically different at the onset of the epoch, 

these temporal cluster tests yielded no significant clusters. In Figure 24, we plot the 

time course of activity in the 0-1500 ms window within each of these ROIs. The 

pSTS and TTS ROIs appear to have inverse time course patterns because they are on 

either side of the same gyrus. We note that current estimate values in the pSTS ROI  
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Figure 24. Time course of neural activity in ROIs from localizer, in 0-1500 ms 
window. Example item shows onset of each word. 
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are far higher than for the Matchin et al. (2019) ROI, suggesting that in that analysis 

sources with opposing directions may have been averaged together, cancelling out. 

5.3.2.3 Spatiotemporal cluster tests 

 Our final step in testing for the apparent effect of predictive syntactic 

structure-building in Matchin et al. (2019) was a spatiotemporal cluster test in the 0-

1500 ms window of the first determiner phrase, over the left temporal lobe and left 

inferior frontal gyrus. This was the same search area used for the localizer. We found 

no significant clusters for this contrast. 

 Our planned but exploratory spatiotemporal test, examining the contrast of 

coordination vs. phrase in the 0-1500 ms window of the first determiner phrase, 

yielded no significant clusters.  

5.4 Discussion 

5.4.1 Outline 

Experiment 4 compared the neural response to a determiner phrase when 

participants expected that it would be the subject of a sentence or the first item in a 

list. Our design avoided lexical predictability so as to try to isolate syntactic 

prediction. In this Discussion section, we first summarize the results of our analyses 

in the window of the first determiner phrase. We failed to observe the syntactic 

prediction effect expected on the basis of Matchin et al. (2019)’s result, and it is fully 

possible that this null effect is simply a false negative. Our lack of significant effect is 

not evidence that there is no true effect of structural prediction. However, we will 

discuss implications that would hold if the difference between our dataset and 

Matchin et al. (2019)’s reflects a true difference between the cognitive computations 
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elicited by these paradigms, as there are a variety of possible scenarios in which it is 

simultaneously the case that Matchin et al. (2019) observed a true positive and we 

observed a true negative. We first walk through the possibility that the apparent effect 

of syntactic prediction actually reflects lexical prediction, which does not occur in a 

design lacking lexical predictability. We consider how this explanation relates to 

N400 effects, jabberwocky effects, and how it can be framed alternatively as a shift in 

probability across the lexicon rather than specific lexical prediction. We also consider 

what kind of design would be necessary to truly disentangle effects of structure and 

lexical predictability, and to what extent they are correlated in previous fMRI designs. 

We finish with a brief review of a number of other possible explanations for the 

discrepancy. Note, again, that the results and discussion for analyses in the window 

after the first determiner phrase are in Appendix B.  

5.4.2 Summary of results  

In this experiment, we first looked for evidence of a structural prediction 

effect analogous to the one observed by Matchin et al. (2019). Any effects in the 

window of the first determiner phrase would have to be predictive in nature, because 

the stimulus is identical between conditions. We created an anatomical ROI based on 

the ROI used by Matchin et al., and in the same time window as the original effect, 

during the response to the first determiner phrase’s adjective and noun, we tested for 

a difference between the sentence and phrase conditions. We observed no significant 

differences.  

In addition to the anatomical ROI based on Matchin et al. (2019)’s ROI, we 

tested for the sentence > phrase syntactic prediction effect in functional ROIs from 
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the results of a localizer task also completed by our participants. We used a cluster in 

pSTS from the sentence/scrambled localizer contrast, and two clusters along STG and 

TTS from the sentence/consonant localizer contrast. In these ROIs, we ran temporal 

cluster tests rather than restricting our window of analysis to the window in which 

Matchin et al. (2019) had observed their effect. In that window of the first determiner 

phrase, we found no clusters for the sentence/phrase contrast, in any of the three 

ROIs. This is interesting, as it shows that the processes driving the sentence > 

scrambled structure effect across all words in our localizer sentences are not in play 

during the first phrase in our sentence > phrase structure manipulation.  

Finally, we conducted a spatiotemporal cluster test over the left temporal lobe 

and IFG, in the window of the first determiner phrase. This test relaxed all 

assumptions about where and when a predictive structure effect might occur. Again, 

we found no effects for the sentence/phrase contrast. We similarly found no effects 

for the coordination/phrase contrast with this test. There is therefore no evidence in 

this dataset for increased neural activity during the processing of a determiner phrase 

when sentence-level or coordinating structure can be expected next.   

While this was surprising, we do not consider our result a failure to replicate. 

Our study was by no means an exact replication of Matchin et al. (2019)’s design. We 

eliminated lexical predictability both within and between phrases, we added an 

adjective to the determiner phrases, we added a coordination condition, and we 

compared the response to the same phrases in each of the different conditions. Our 

question was therefore whether the effect observed by Matchin et al. (2019) was 
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robust enough to persist despite these changes, and we did not find evidence that it 

was.  

5.4.3 The role of lexical prediction 

How should we interpret Matchin et al. (2019)’s evidence for neural activity 

that appears to reflect anticipation for upcoming sentence-level structure, together 

with our null effect? We first consider the possibility that the original effect occurred 

due to the lexical predictability that is present in the sentence condition but not the 

phrase condition. This would not necessarily mean that the original effect was driven 

solely by lexical predictability, but that it was not completely syntactic. We discuss 

this lexical prediction account in great detail relative to the alternative accounts that 

will follow. In doing so, we do not intend to imply that it is necessarily more 

plausible. We believe it warrants such extensive discussion simply because it would 

have many interesting implications if it were true.  

Additionally, in proposing a lexical account of the syntactic prediction effect, 

we are not intending to cast doubts on the existence of neural effects of syntactic 

structure. All of our discussion is restricted to structure effects in posterior temporal 

lobe (PTL), which has also been extensively implicated in lexical processing. The 

deep association between lexical predictability and syntactic structure in natural 

language must therefore be thoroughly accounted for before we can confidently 

isolate syntactic structure effects in PTL. 

5.4.3.1 Accounting for Matchin et al. (2019)’s prediction effect 

Matchin et al. (2019) used natural sentences, such that processing of the 

subject determiner phrase allowed for prediction of the verb on both a lexical and a 
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syntactic level, and in general it was the case that content words in the sentence trials 

were far more related to each other than content words in the phrase trials. Our study 

was specifically designed to eliminate lexical predictability in the sentence condition, 

using random combinations of subject, verb, and object so that upcoming words in 

the sentence were not any more predictable on the basis of previously occurring 

words than they would be in a random list of words or phrases with no relationship 

between them. We wanted to minimize the possibility that any ‘predictive’ effects we 

observed were due to lexical prediction differences between sentences and phrases, 

rather than the syntactic prediction differences argued for by Matchin et al. Instead, as 

Matchin et al. (2019)’s prediction effect no longer occurs in the absence of lexical 

predictability, it is possible that it instead reflected specific prediction for the verb.  

We also note that the null effect for the phrase/list contrast in the Matchin et 

al. (2017) fMRI data is just as consistent with a lexical prediction account as a 

syntactic prediction account. If the sentence/phrase contrast is due to prediction of 

higher-level syntactic structure, then we expect no difference between phrases that 

require only low-level (i.e., not sentence-level) structure and lists that require no 

structure. But if the sentence/phrase contrast is due to lexical prediction, it is also the 

case that neither the phrase condition nor the list condition allows prediction of 

content words. 

 Specific prediction of the verb would entail that a specific candidate or family 

of candidates for the next content word position are facilitated due to their relatedness 

and likelihood of co-occurring with the subject noun, and the rest of the lexicon is 

unaffected. These lexical predictions may be partially syntactic in nature, to the extent 
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that syntactic category information is one of several types of information used in the 

process of predicting the next word. However, repeated violations of lexical 

predictions in nonsense stimuli might cause the comprehender to cease generating 

those lexical predictions altogether. Then it would both be the case that the originally 

observed effect was (partially) syntactic in nature, and that removing lexical 

predictability prevented it from occurring. This wouldn’t necessarily mean that 

syntactic predictions had stopped, but that we had been observing them via their 

impact on another process, which itself had stopped. A stronger version of this would 

be that syntactic and lexical predictions are so intertwined that the former cannot 

occur without the latter. 

For this to explain the variability in the presence or absence of syntactic 

prediction effects, of course, generation of these lexical predictions has to be subject 

to modulation based on their utility in the broader context, rather than being fully 

automatic. It also has to be very clear in the experimental context that specific verbs 

or upcoming words are not predictable from the first few words in the trial and 

therefore shouldn’t be predicted. In a ‘nonsense’ design like ours this is trivial 

because lexical predictability is never present. For Matchin et al. (2019), the block 

design makes clear when upcoming trials will include lexical predictability (when the 

upcoming block is cued as a natural sentence block) or not (all other block types). For 

this explanation to extend to a design with randomly ordered trial types, a cue would 

have to be present at the beginning of each trial indicating whether lexical 

predictability will hold within the trial or not.  
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Before continuing, we note that in discussion of the lexical prediction 

possibility so far, we frame the process as if it occurs by default and the presence of 

violations causes comprehenders to stop making predictions. However, it is also 

possible to frame this such that predictions are initiated only when there is positive 

evidence for predictability. This latter view might be more straight-forward in that it 

does not require hypotheses about how many prediction violations are necessary 

before predictions stop. Instead, any evidence for predictability could be the trigger to 

start. This is consistent with evidence from Lau et al. (2013) that in a two-word 

semantic priming paradigm, facilitation in related pairs occurs even when only 10% 

of pairs are related, and facilitation appears to be heightened when a higher 

percentage of pairs are related. We could then explain this as predictions being 

initiated to the extent that they seem helpful (with a very low initial bar). Of course, 

this question should be answerable with an order analysis examining when facilitation 

changes in response to the predictability context, perhaps along the lines of the 

approach used by Delaney-Busch et al. (2019). 

5.4.3.2 Relation to the N400 

How does this account relate to the extensive ERP literature on contextual 

prediction and N400 effects? Reduced amplitude of the N400 in supportive contexts 

is thought to be a reflection (by some views) of the facilitative impact of lexical 

prediction at the point at which the predicted (or unpredicted) word is encountered 

(Lau et al., 2008, 2009, 2013).  Here, in contrast, we are primarily concerned with 

effects reflecting the generation of the prediction. Dikker and Pylkkänen (2013) 

report MEG evidence for apparent lexical preactivation processes occurring in left 
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mid-temporal cortex (among other locations) at the timepoint at which the prediction 

is generated, when a specific word can be predicted from a preceding picture. 

However, findings from these two perspectives (the generation of the prediction, and 

its later impact) would ideally constrain each other. Could the effect observed by 

Matchin et al. (2019) be consistent with generating specific predictions for the verb in 

particular? Could these be the same predictions that lead to N400 reductions for 

predicted words? We will focus here on one salient consideration in assessing the 

potential correspondence between the Matchin et al. effect and the N400, which is 

whether N400 evidence is consistent with strong top-down modulation of prediction. 

This would be necessary under a unified account because the Matchin et al. prediction 

effect appears to cease in list and nonsense conditions when it isn’t warranted. 

There is evidence that the degree of facilitation that occurs on the N400 is 

influenced by the broader context. Lau et al. (2013) show that for words presented 

with a single preceding word for context, there is a larger reduction of the N400 

amplitude for the contextually supported item when word pairs are presented among a 

high vs. low proportion of other related word pairs. A higher proportion of related 

pairs appears to encourage prediction, which leads to greater facilitation of the related 

item. Brothers et al. (2019) also show that in a manipulation in which one (“reliable”) 

speaker produces sentences with predictable endings and a second (“unreliable”) 

speaker produces sentences with endings that are plausible but not predictable, 

facilitation as measured on the N400 is enhanced in the reliable, more predictable 

context.  
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Can the predictions driving N400 reductions can be “turned off” completely, 

as seems to be occur in our study due to the use of nonsense stimuli? One piece of 

supporting evidence comes from Van Petten (1993), who manipulates whether 

associated word pairs (e.g. moon and stars) occur within congruent or anomalous 

sentences, and finds the N400 reduction on the second word to be mitigated in the 

anomalous sentences. Another relevant data point comes from Payne et al. (2015), 

who examine the N400 amplitude at each word position in natural sentences, 

nonsense sentences, and word lists created by scrambling within the nonsense 

sentences. For open-class words, they find that facilitation increases with word 

position only in the natural sentence condition. Both results suggest that the necessary 

predictions are either not occurring in the nonsense sentences, or that they are 

occurring but not, of course, facilitating the items that end up being presented.  

Stronger evidence that these predictions are actually stopped would be if the 

N400 reduction for a contextually supported item within a natural sentence ceases to 

occur when that natural sentence occurs in an experimental context that strongly 

discourages prediction, i.e., if most of the other sentences are nonsense. This would 

be a challenging experimental design because the presence of natural target trials in 

which lexical prediction would not be futile would itself undermine the goal of 

having the experimental context discourage prediction. The proportion of target trials 

would therefore have to be extremely low. For Lau et al. (2013), for example, the 

proportion of related pairs in the low-relatedness condition was 10%, and the typical 

N400 reduction was still observed in those related target trials.  



 

 203 

A final consideration in asking whether the Matchin et al. (2019) effect could 

be reflecting the kinds of predictions that lead to N400 reduction is that, in that study, 

no facilitation was seen on the verb in the sentence condition, relative to the noun or 

verb in that position in the phrase condition. This might seem surprising on an 

account in which prediction of the verb in the sentence condition is what drives the 

sentence > phrase effect. However, Matchin et al. did not aim to use strongly 

predictable verbs, nor did they fully match lexical items across conditions in specific 

sentence positions, which could have been a separate source of N400 variability. It’s 

also worth noting that according to the lexical prediction account, prediction for the 

object should be occurring on the verb in the sentence condition, but not in the phrase 

condition. This could induce a prediction effect in the opposite direction of the 

facilitation we would be looking for. In fact, something like this kind of ‘canceling 

out’ of lexical prediction generation and lexical facilitation must be happening on this 

account, or else we would expect to see prediction generation effects on every content 

word of the sentence.  

We note that Matchin et al. (2019) did find several additional effects of 

structure (sentence > phrase) at other points in the sentence besides the first DP, and 

we did not observe any such effects in our study. Could these have been lexical 

prediction effects as well? We think this is unlikely, because the timing details of the 

other reported effects of structure do not obviously follow from the lexical prediction 

account spelled out above. It therefore seems more likely that they reflect other 

computations. For more detailed discussion, see Appendix B.2.3. 
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5.4.3.3 Alternative framing: lexical probability shifts 

Another way to conceive of a lexical prediction effect is that each new word 

that is comprehended leads to a probability shift over the entire lexicon, rather than a 

specific prediction for some small subset of items. In many respects this account is 

very similar to, or possibly a description at a different level, of the specific prediction 

account. One important difference, though, is that such a probability update could 

reflect probability of occurring as the next content word, or general probability of co-

occurring in the context, and in either case the observable effect would be modulated 

by the degree of probability shift. Another difference, and potential advantage, is that 

we don’t necessarily have to consider prediction to be “on” or “off.” This account 

allows for two alternative explanations for the prediction effect occurring only on the 

subject noun.  

First, in experiments like ours, using unconnected sentences, the 

comprehender has no information before the onset of a trial about what words are 

likely to occur other than the frequency distribution over all words in the lexicon. A 

new trial is a new context, and comprehension of the first word should allow for a 

dramatic shift in what other words are likely to co-occur in the trial. Additional words 

may not lead to additional appreciable shifts in general co-occurrence probability, 

unless the first word was a homophone whose meaning is disambiguated by the next 

content word. To use an example from Matchin et al. (2019), the probability of the 

word “verse” occurring in a trial with “poet” may not be very different from its 

probability of occurring in a trial with both “poet” and “recite.” This is testable with 

corpus data.  
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If the probability shift is for probability of occurring as the next content word, 

then each new word should lead to a more appreciable shift, just as, in the specific 

prediction account, each new word should lead to a new prediction. However, the 

difference is that if the effect is due to the cost of making predictions vs. not making 

predictions, it should be constant on each word when it can occur. But if the effect 

reflects the degree of probability shift for the upcoming word, given the word just 

encountered, the size of the effect may vary and in some cases it may not be 

observable. The effect from Matchin et al. (2019) occurring only on the subject 

presents an interesting possibility, that in fact subsequent words in the sentence after 

the first word do not yield any appreciable probability shift over the lexicon. This 

would be an implication then that the shift in probability for what can occur next after 

accessing “the poet” (when previously there was no way to know what could come 

next) is far larger than the shift in probability for what can occur next after accessing 

“recite” when already having processed “poet.”  

For the specific prediction account, we considered whether the effects 

observed by Matchin et al. (2019) on all open and closed-class words could also 

constitute effects of lexical prediction rather than syntactic structure. We concluded 

that this was unlikely, and it remains unlikely under the probability shift account, in 

part because the processing of each determiner, for example, should not lead to a 

larger probability shift in the sentence than the phrase condition. However, there is 

one sense in which the probability shift account is more compatible with effects 

occurring on every word. Rather than reflecting the probability shift itself, these 

effects could reflect some property of the probability distribution (e.g., entropy) that 
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continues to be different on the determiners due to changes caused by the content 

words in the sentence condition.  

 Finally, we consider to what extent the lexical probability shift proposed 

under this account plausibly incorporates syntactic information as well, reflecting an 

influence of the presence of higher-level syntactic structure. It is easy to see how 

probability shifts due to syntactic category information (i.e., shifts toward nouns and 

adjectives after a determiner) could occur in parallel or via shared mechanisms with 

probability shifts driven by lexical content. In the extreme, syntactic prediction could 

reduce to a probability update over lexical items, according to their syntactic 

categories, and would then be inherently a lexical process. If the probability updating 

process is in fact a single mechanism with multiple informational inputs, it could be 

that severe expectation violations with respect to just one of the inputs affect the 

entire mechanism. Syntactic predictions might also stop, or we might simply cease 

being able to observe them because we had only seen their impacts via the lexical 

effects. Stopping the lexical probability update in list and nonsense conditions would 

rely on it becoming clear in the experimental context that co-occurrence probability 

from word to word or generally within a trial is not in line with normal statistics for 

the language (besides it being necessary for this probability update to be stop-able in 

the first place). This is largely the same as for the specific prediction account, and is a 

cue that will likely be confounded with the presence of syntactic structure in most 

designs.  
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5.4.3.4 Relation to jabberwocky effects 

We argue in the previous sections that at least some apparent effects of 

structural prediction may actually reflect differences in whether lexical prediction is 

occurring. This raises interesting questions about the neuroimaging literature on 

jabberwocky sentences, which do not contain lexical content (and thus, like our 

nonsense stimuli, should not allow for lexical prediction) but which do still exhibit 

effects of structure. Jabberwocky manipulations are in fact predicated on the very 

idea that it is possible for syntactic processing to occur (whether predictive or not) 

when lexical content is not only nonsense but absent. In what follows, we argue that 

the structure effects observed in jabberwocky paradigms are likely to arise from an 

altered parsing algorithm, and thus should not be expected to correspond with 

structure effects observed for natural sentences. We also argue that jabberwocky 

parsing might have much more temporal variability from subject-to-subject or trial-

to-trial than the parsing of natural sentences. This could explain why jabberwocky 

effects of structure occur in fMRI but are rare in MEG. Our reasoning is as follows. 

There are (at least) three sources of syntactic category information that are 

likely used in syntactic structure building for normal stimuli: stored representations 

for function words, for content word roots, and for inflection on content words. 

Jabberwocky stimuli have two of these, as they retain function words and inflectional 

markings on content words, but not known content word roots. Any structure-

building therefore has to be accomplished from function words and inflection alone. 

We know that these two sources apparently do not allow full approximation of 

normal syntactic structure-building, since jabberwocky structure effects in fMRI tend 
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to be smaller and less robust than natural structure effects (as in, for example, Goucha 

& Friederici (2015)), affirming that there is a role for syntactic category information 

gleaned from content word roots. We also see specifically for Matchin et al. (2017) 

that jabberwocky structure effects are elicited by the sentence/list but not the 

sentence/phrase contrast (while structure effects for the natural stimuli are elicited by 

both contrasts). The essential difference between the sentence/phrase contrast for 

jabberwocky stimuli and the sentence/phrase contrast for natural stimuli, in this 

design, is the availability of the identity of the main verb. It may be, then, that the 

structure effects elicited by a sentence/phrase contrast rely on information from the 

identity of that content word. 

We note that this raises an interesting possibility that the magnitude of 

jabberwocky structure effects might vary across languages according to the 

distribution of syntactic cues in that language. For languages whose structure-

building relies largely on function words, syntactic processing of jabberwocky might 

not diverge significantly from the processing of natural stimuli. For a language that 

does rely on syntactic category information from the identity of content words, the 

loss of a primary information source might have more of an impact.  

However, we do not think it is simply the case that the processing of 

jabberwocky proceeds as usual and just with fewer cues to syntactic category, or that 

jabberwocky structure effects are a pure reflection of the contributions of function 

words and inflection. Instead, loss of a primary cue is liable to change the way in 

which syntactic processing is carried out with the remaining cues. In the extreme, 

consider the possibility that, for syntactic processing of normal stimuli, 
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comprehenders rely exclusively on syntactic category information from content word 

roots. Jabberwocky structure effects would not then reflect “what is left” of structure 

effects from normal stimuli, without the aspects that are accomplished with lexical 

information. They would reflect an entirely new processing mode driven by whatever 

information can newly be recruited.  

This is why we believe that whatever drives jabberwocky structure effects is 

not something that we should assume is also occurring in manipulations of normal 

stimuli. Comprehenders might, for example, be pushed away from a top-down 

parsing mode because of the number of words for which syntactic category cannot be 

discerned until the next word provides more information (this would be any nonword 

without obvious inflection). Comprehenders might also vary amongst themselves in 

how they respond to the loss of a primary cue. Some might cease structure-building 

altogether. To our knowledge, there is no detailed theory of jabberwocky syntactic 

processing and its temporal properties, or to what extent it is subject to individual 

differences. ERP work on whether the detection of syntactic violations in 

jabberwocky differs from in natural stimuli seems to show mixed results (Hahne & 

Jescheniak, 2001; Yamada & Neville, 2007).  

Importantly, temporal variation in syntactic processing of jabberwocky stimuli 

between participants could explain why jabberwocky structure effects from 

sentence/list contrasts are so far attested only in fMRI, and not in methods with 

temporal resolution: ECoG (Fedorenko et al., 2016), MEG (Matchin et al., 2019), or a 

related EEG design (Lau & Liao, 2018). This is particularly evident for Matchin et al. 

(2017, 2019) using essentially the same paradigm in fMRI and MEG. In fMRI, if all 
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participants engage in structure-building at some point in the processing of a 

sentence, the block design should manifest a structure effect. In MEG, however, 

where activity is compared at each millisecond, there will not be a structure effect in 

the group average if structure differences are temporally jittered across participants. 

This could also be a problem with between trial variation, if a study does not use the 

same syntactic structure for all trials, because different structures might vary in the 

extent to which the different syntactic cues are necessary.  

In Section 5.4.4.1, we discuss the possibility that our nonsense stimuli were 

actually processed as if they were jabberwocky, and that the resulting temporal 

variability explains the lack of structure effects.  

5.4.3.5 Disentangling the lexical and syntactic accounts in a new design 

Fully crossing structure and lexical predictability 

In the previous sections, we have considered how the syntactic prediction 

effect reported by Matchin et al. (2019) could be explained instead by a lexical 

prediction account, and what implications this would have. The fundamental problem 

we are faced with is that a lexical prediction account, a syntactic prediction account, 

and a syntactic-via-lexical prediction account all predict the difference between 

natural sentences and unpredictable lists that Matchin et al. (2019) observed.  

To disentangle them, we would need, to start with, a study that fully crosses 

structure (sentences vs. lists) and lexical predictability (natural vs. nonsense), so that 

we can examine the conditions for which the different accounts do make different 

predictions. This could be done by essentially combining the design of our current 

experiment with the design of Matchin et al. (2019) (see Table 9 below). Sentence 
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blocks would contain either natural or nonsense sentences, and phrase blocks would 

consist of the same stimuli without the verbs. The two determiner phrases occurring 

within each trial would, as in our current study, be matched between conditions. 

 

Table 9. Example stimuli for study crossing structure (sentence vs. list) and lexical 
predictability (natural vs. nonsense). 

 Sentence List 

Natural the spacecrafts reached the stars. the spacecrafts    the stars 

Nonsense the spacecrafts measured the wolves. the spacecrafts    the wolves 

 

In Figure 25, we provide a schematic of observed PTL activity in the two 

conditions in the Matchin et al. design (top left), as well as predicted PTL activity in 

the four conditions of the 2x2 manipulation under the syntactic account (bottom left), 

the lexical account (top right), and the syntactic-via-lexical account (bottom right). 

The observed difference between natural (lexically predictable) sentences and 

nonsense (not lexically predictable) lists occurs, as we have noted, for all three 

accounts, but there are other pairwise comparisons that can distinguish them.  

For example, one difference predicted only by the syntactic account is 

between unpredictable sentences and unpredictable lists. Our study fails to find this 

difference. What difference would distinguish the lexical (top right) and syntactic-

via-lexical (bottom right) accounts? Under the lexical account, there is no simple 

effect of structure when there is lexical predictability. There is, however, a simple 

effect of lexical predictability when there is no structure.  
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Figure 25. Schematic of observed PTL activity (top left) and expected PTL activity 
under syntactic (bottom left), lexical (top right), or interaction (bottom right) 
accounts of the Matchin et al. (2019) prediction effect. 

 

Under the lexical-via-syntactic account, we expect a simple effect of structure 

when there is lexical predictability. As we have presented it in Figure 25 there is no 

simple effect of lexical predictability when there is no structure, but whether or not 

this is true would depend on the specifics of the interaction. What is important for this 

account is that there is some structure effect in the lexically predictable conditions. 

The data point we most need then is the test for a structure effect when lexical 

predictability is present in both sentences and lists.  

The importance of cues for engaging prediction 

Beyond including these two conditions, there is one additional consideration 

that is crucial to a study being able to distinguish the different prediction accounts: 

comprehenders must know at the beginning of a trial whether prediction is warranted. 
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In all three of our theories under consideration, the assumption is that the reason for 

the contrast between a condition with and without structure or with and without 

lexical predictability is that prediction (whatever its nature) does not occur when it is 

not warranted. If comprehenders don’t know whether prediction is warranted, they 

could not possibly modulate whether or not they engage in prediction, and then our 

expectations about what should or shouldn’t happen in each condition have no basis.  

In a block design, this is trivial, as participants are explicitly told what type of 

stimulus they will encounter in the block. In an event-related design, however, trials 

from different conditions are presented in a random order, and participants are not 

told at the onset of a trial what they are about to process. For prediction to be 

modulated, there must then be an early cue as to what type of trial it is. This is 

relatively simple for syntactic prediction, because whether or not the trial has 

syntactic structure is generally apparent in the first two to three words. In contrast, 

whether or not content words within the trial are lexically related and therefore 

predictable is not evident, we suspect, until most of the trial has been comprehended. 

Modulation of lexical prediction in an event-related design, then, has to rely on 

alternative cues as to whether it will be warranted.  

What might participants use as a heuristic for whether lexical prediction is 

warranted? In a design that presents only natural sentences and unpredictable lists, the 

presence or absence of structure is in fact a perfect cue for the necessity of lexical 

prediction (even if the prediction is not syntactic in any way). In designs for which 

there are, for example, lexically predictable trials both with and without structure, or 

structured trials both with and without lexical predictability, structure is no longer a 
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perfect cue. However, we can expect from e.g. the finding of Lau et al. (2013) that 

lexical prediction occurs even when warranted on only a small percentage of trials. 

Therefore, if there are any trials with structure in which there is also lexical 

predictability, we expect lexical prediction to occur on all trials with structure. In 

effect, this means that in event-related designs, because structure is the only reliable 

cue to trial type, there are only two “conditions” from the perspective of the 

participant, and the condition will trigger prediction if predictability is ever observed 

for that condition.  

If the predictions are purely syntactic, this collapsing of conditions doesn’t 

matter. But if predictions are lexical, fully or in part, then within each structure 

condition, lexically predictable and unpredictable trials will be collapsed and both 

treated as lexically predictable. This means it is not in fact possible to have a 

condition in which lexical prediction does occur and a condition in which it does not 

occur, within the same experiment, unless structure is a perfect cue for lexical 

predictability. In other words, because there is only one cue to trial type for the 

participants (is there structure or not, and has structure been associated with lexical 

relatedness such that prediction is warranted?) we cannot modulate lexical 

predictability in a single event-related design without confounding it with structure. 

De-confounding the two would seem to require a block design, or an additional way 

to cue for trial type other than presence of structure. It is possible, however, to 

examine structure effects when in both conditions lexical predictability is present. 
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Other approaches 

A variant on this design we have been describing, if conducted in EEG, would 

relate to our discussion of relevant work on the N400 (Section 5.4.3.2). In the design 

proposed here, one could present an unexpected sentence trial during or at the end of 

a phrase block; if prediction is indeed not occurring in the phrase block, the response 

to the verb in this sentence trial should be less facilitated than the response to a verb 

in sentence trials that occur in a sentence block. If this is manifesting on the N400, 

then we would take this to be evidence that lexical prediction for the verb is normally 

occurring. 

 Though completely unrelated to this design, a final useful data point in asking 

about lexical influences on apparent effects of structure would be a variant of 

naturalistic paradigms in which neural signal in response to reading or listening to a 

story is correlated with complexity metrics for a hypothesized syntactic parser (e.g., 

Brennan & Hale (2019)). It would be informative to know whether the same 

correlations are obtained for nonsense stimuli. 

5.4.3.6 Disentangling the lexical and syntactic accounts in previous designs 

In the following sub-sections, we describe several existing structure 

manipulations in fMRI and the extent to which they are able to distinguish the 

syntactic and lexical accounts, per the considerations we have outlined above. It is not 

within the scope of this chapter to survey the entire literature on this topic; the studies 

we cover are simply examples. Note that many of these studies include a parallel 

jabberwocky manipulation as their intended method for dissociating syntactic and 
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lexical effects, while what we are discussing is simply the extent to which this 

dissociation can occur or not within the manipulation of real-word conditions.  

Fedorenko et al. (2012) 

In the design used by Fedorenko et al. (2012) (more details about the stimuli 

are reported in Fedorenko et al. (2010)) lexical and syntactic predictability are 

perfectly correlated in exactly the way they are for Matchin et al. (2019). The study 

uses a block design, but sentences always have lexical predictability and lists never 

do, because lists are created by scrambling words across sentences rather than within 

them. Their activation maps for the pairwise comparison between the sentence and 

scrambled conditions indicates that there is a structure effect in PTL. However, a 

difference in activity in PTL for this contrast does not distinguish lexical and 

syntactic explanations. 

 The localizer task that we used in our study, though event-related, in fact has 

the same problem, as this is a very common design. In discussing the localizer results 

we raised the point that the structure effects observed in that dataset were a good fit 

with Matchin et al. (2019)’s structure effects, suggesting that those manipulations had 

something in common that is not shared with Experiment 4. The localizer, too, uses 

only natural sentences and random, unpredictable word lists, and the structure effect 

we found could just as well have been a lexical predictability effect. Our analysis of 

the localizer data collapsed over word position, so we do not know when that effect 

occurs in the sentence (i.e., whether it is predictive).  
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Humphries et al. (2006)  

Humphries et al. (2006) is a very promising comparison point in fMRI 

because that design fully crosses syntactic structure (sentence or list) with semantic 

content. The three levels of their semantic manipulation are congruent stimuli, 

random stimuli, or pseudowords (jabberwocky). The sentence conditions are either 

natural sentences, nonsense sentences very similar to the current study in that they are 

created by randomly swapping in different content words of the same syntactic 

category at each position (“the freeway on a pie watched a house and a window”), or 

typical jabberwocky sentences in which content words are replaced with pseudowords 

but function words are retained in their original positions. List conditions are created 

by scrambling the words within the sentence. Therefore, a congruent list trial would 

contain words with the same degree of lexical association as in a congruent sentence 

trial, but without syntactic structure. A random list trial would contain words with the 

same lack of lexical association as in a random sentence trial. This is different from 

typical list conditions, which do not usually contain the same words in a given trial as 

a natural sentence because they scramble across the full set of sentences. Structure 

and lexical predictability are therefore not correlated in this design from the 

standpoint of the experimenter.  

However, Humphries et al. (2006) use an event-related rather than a block 

design, so participants do not know on any given trial whether it will be semantically 

congruent or random. The onset of a trial makes clear only whether it involves 

pseudowords or real words, and whether there is syntactic structure or not. Lexical 

predictability is possible when structure is present and also when it is not, so from the 
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perspective of the participant this design collapses to a comparison of potentially 

lexically predictable sentences and potentially lexically predictable lists. Fortunately, 

as we identified earlier, this is the crucial comparison in distinguishing the lexical and 

syntactic-via-lexical accounts, as the lexical account predicts no difference in PTL 

between the sentence and list conditions, while the interaction predicts less activity in 

the lexically predictable list than the lexically predictable sentence. Though their 

design technically includes the comparison that we would like to see in fMRI to 

corroborate the null effect we observe in the current MEG study (sentence vs. list, 

when neither has lexical predictability), we have to assume that lexical prediction is 

occurring in those conditions since they are indistinguishable from the predictable 

stimuli at the onset of the trial. 

Humphries et al. (2006) report no differences between their conditions in 

PTL, but whole brain contrast maps show activation in PTL in all conditions. They 

did find a main effect of syntactic structure in ATL, which likely reflects the semantic 

composition that can occur in sentence but not list conditions. The lack of a structure 

effect in PTL when lexical predictability is matched seems to support the possibility 

that in a typical sentence/list contrast, the reason for effects observed in PTL is 

actually not the presence of structure.  

Goucha and Friederici (2015)  

Goucha and Friederici (2015) use an event-related design with a predictable 

sentence condition, an unpredictable (nonsense) sentence condition, and a random list 

condition (as well as several jabberwocky conditions). Their random list condition 

has the advantage of being lexically matched with the nonsense sentence condition. 
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However, because participants can’t know at the onset of a sentence whether it will 

be lexically predictable or not, this design, from the participant perspective, collapses 

to the same conditions as Matchin et al. (2017) and Fedorenko et al. (2012). Goucha 

and Friederici find a structure effect in PTL for the contrast between unpredictable 

sentences and unpredictable lists, but across the experiment, lexical prediction is 

warranted when there is structure, but not when there is not structure. This contrast 

would otherwise have been quite useful if the natural sentences were not included in 

the experiment. 

Mollica et al. (2020)  

 A recent study by Mollica et al. (2020) is an interesting example because 

degree of structure is explicitly manipulated, in a way that would seem to be quite 

informative for our question. In an event-related design, they present natural 

sentences as well as several conditions of natural sentences in which an increasing 

number of word position swaps have been introduced, such that with more swaps, the 

trial becomes more like an unstructured list. They also include a random word list 

condition. A second experiment includes a swap condition specifically designed to 

break up local dependencies. In Experiment 1, they find no difference (in PTL, or any 

of the language areas they examine) between natural sentences and sentences with 

word position swaps, but all of these condition that have lexical predictability show 

more activity than the random word list condition. In Experiment 2, they find that the 

more extreme swap condition patterns with the random word list rather than the 

natural sentence and more mild swap conditions.  
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 The problem with interpreting these results with respect to their implications 

for syntactic versus lexical prediction, however, is that we cannot know whether from 

the participant perspective the mild swap conditions presented as sentences or lists, or 

to what extent participants differentiated among conditions in any more detailed way 

than having structure or not having structure. The take-aways from this study vary 

widely according to the assumptions that we make about how participants classified 

the trials, and so we refrain from interpreting further here.  

5.4.4 Other possible accounts 

 Moving beyond lexical predictability, in the following sub-sections we discuss 

four possible alternative explanations for the difference between our finding and 

Matchin et al. (2019): (1) nonsense stimuli are parsed differently from natural 

sentences, (2) syntactic structure was ignored due to the lack of semantic coherence, 

(3) the difference is due to MEG analysis differences, and (4) Matchin et al. (2019) 

observed a false positive. There are two additional possibilities that we will not 

consider in depth but that we do acknowledge. The first is that the prediction process 

is strategic rather than automatic, and largely governed by task demands. The effect 

would therefore be subject to variation across experimental settings, participants, and 

stimulus sets, such that we only happened to not observe it. The second is that our 

addition of an adjective within the determiner phrases was the crucial change, and the 

prediction effect observed by Matchin et al. (2019) only occurs in maximally simple 

sentence structures.  
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5.4.4.1 Syntactic parsing is different for nonsense stimuli 

In designing this study, one of our motivations for using nonsense rather than 

jabberwocky stimuli was that all of the syntactic cues available in natural stimuli 

would still be available. We expected to be targeting syntactic processes, and so we 

hoped that our design would leave syntactic processing intact, as we could not expect 

would be fully the case in jabberwocky. And yet, we do not see structure effects for 

our nonsense stimuli in MEG. As we have described in previous sections, this 

suggests the possibility that the Matchin et al. (2019) effect instead reflects a process 

related to lexical predictability. However, we also consider the possibility that our 

nonsense stimuli are actually being processed as if they are jabberwocky, and the 

identity of content words is not available.  

Some support for nonsense stimuli being processed like jabberwocky comes 

from the Payne et al. (2015) study showing that facilitation on the N400 for closed-

class words increases with word position in a sentence for nonsense but not natural 

stimuli. This suggests that nonsense stimuli lead to increased attention on function 

words, which is exactly in line with what we understand comprehenders to be doing 

in syntactic processing of jabberwocky, where function words are the main source of 

syntactic information.  

As we discuss in Section 5.4.3.5, above, jabberwocky manipulations tend not 

to show structure effects in methods with good temporal resolution, and we argue that 

this could be because jabberwocky parsing is subject to increased temporal 

variability. Thus, if the nonsense stimuli in our MEG study are parsed as 

jabberwocky, this could explain why we do not observe structure effects, even if the 
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Matchin et al. structure effects are in fact due to syntactic structure. If this account is 

right, our stimuli might yield structure effects in fMRI (though the stimuli would have 

to be altered slightly to match the number of words per trial in each condition). If our 

stimuli do not produce structure effects in fMRI, this would be stronger evidence that 

the presentation of nonsense stimuli leads comprehenders to process the input as if it 

is not structured at all, or to stop paying attention entirely.  

 A variant on the nonsense-as-jabberwocky explanation for the lack of 

structure effects in our study is that participants were uniformly pushed from a top-

down to a bottom-up processing mode because of the constant lexical violations. As 

we discuss in Appendix B, we do see differences between the sentence and phrase 

conditions in our study, but only in response to the verb. There, it is impossible to say 

which effects are lexical only (i.e., they reflect the difference between seeing a verb 

and seeing nothing) and which might actually be effects of structure-building. If one 

of those effects is a structure-building effect, it could be that structure-building 

happens predictively in the Matchin et al. (2019) design but only in response to the 

bottom-up input that requires it in our design.  

Both of these explanations (nonsense as jabberwocky, and nonsense being 

bottom-up) assume that the original Matchin et al. (2019) effect was in fact syntactic, 

but nonsense leads to changes in syntactic processing. This makes them different 

from the possibilities we described above in which the original Matchin et al. (2019) 

effect was due to a lexical or syntactic via lexical process, and the lack of lexical 

predictability led that process to stop. What they all converge on, however, is the 



 

 223 

importance of lexical predictability in normal syntactic processing, and the 

difficulties in isolating a syntactic process from a lexical one. 

5.4.4.2 Syntactic structure of nonsense stimuli is ignored 

We also acknowledge the possibility that the syntactically licit but 

semantically nonsense sentences that we used were so strange, difficult to 

comprehend, and ill-suited to semantic composition that participants stopped 

processing them as structured input. This would neutralize the structural 

manipulation.  

The fact that we observed structure effects in the localizer, which did not have 

a task, but not in this experiment, which used a memory probe task, suggests that the 

problem is not overall failure to attend in the experimental session. Accuracy in the 

memory probe task was also above chance. However, we would ideally have an 

independent indicator that composition or structure-building were occurring (such as, 

for example, an effect of the bigram probability of the noun given the adjective), or 

that the more structured input was processed differently in any way. 

5.4.4.3 Analysis differences 

Another possible concern about our failure to observe the syntactic prediction 

effect reported by Matchin et al. (2019) was that our MEG analyses differed slightly, 

as we chose to use baseline correction and a fixed orientation of the dipole during 

source localization. To address the possibility that our null result was due solely to 

this difference, we made a post-hoc decision to re-run our targeted ROI test using 

loose (rather than fixed) orientation of the dipole and no baseline correction, to align 

the analysis as closely as possible with Matchin et al. (2019). Repeating the t-tests we 
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had run on the participant averages in the Matchin et al. ROI, comparing the sentence 

and phrase list conditions during the adjective and noun time windows, we again 

failed to find effects of sentence > phrase. In fact, we found a significant effect in the 

opposite direction (phrase > sentence) in the adjective time window (t(30) = -2.13, p 

= .041), with no significant difference between the two conditions in the noun 

window (t(30) = -1.71, p = .098).  

In Figure 26, we plot the time course of activity for these two conditions in 

this ROI, during the 1500 ms window of the first determiner phrase, using loose 

orientation and no baseline correction. The profile of activity appears roughly 

comparable to what is observed in Matchin et al. (2019), reproduced in Figure 27, 

except for the reversal of the sentence/phrase effect. Note that the comparison is 

between “the adjective noun” (sentence condition) and “the adjective noun” (phrase 

condition) in our data vs. “the noun modal” (sentence condition) and “the noun the” 

(phrase condition) in the Matchin et al. (2019) data.  

5.4.4.4 Matchin et al. (2019) observed a false positive 

Finally, if the prediction effect observed by Matchin et al. (2019) was a false 

positive, then a true negative in our study would indicate either that prediction of 

sentence-level syntactic structure does not occur in response to initial determiner 

phrases, or that it always occurs but is not modulated by our block design. In other 

words, it is automatic in such a way that the knowledge that the entire block of input 

will be unstructured does not allow participants to avoid generating structural 

predictions in response to what seems to be a subject determiner phrase. 
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Figure 26. Time course of neural activity in the PTL ROI based on Matchin et al. 
(2019), in 0-1500 ms window, using loose orientation. Example item shows onset of 
each word. 

 

Figure 27. PTL ROI and time course of neural activity from Matchin et al. (2019)’s 
Figure 4. 
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5.5 Conclusion 

Our study was intended to dissociate syntactic structural prediction from 

effects of simple lexical prediction in MEG. We compared the response to determiner 

phrases that were expected, by comprehenders, to be the subject of a sentence or the 

first item in a list. The stimuli lacked lexical predictability so that the only difference 

between our conditions would be whether or not syntactic structure could be 

predicted. A previous study using natural sentences had reported an effect that 

appeared to reflect syntactic prediction in a very similar design. We analyzed MEG 

data in the region of interest reported by that previous study, in regions of interest 

identified by a sentence localizer task in the same experimental session as our study, 

and using spatiotemporal cluster tests. However, in the absence of lexical 

predictability, we did not find evidence of a syntactic prediction effect.  

This experiment was primarily concerned with differences between structured 

and unstructured stimuli in the time window of the first DP, when effects could only 

reflect prediction. However, this design also had the potential to demonstrate effects 

of syntactic structure later in the trial, once there is bottom-up support for it. As we 

report in Appendix B, we did observe many differences between the neural response 

to the verb, the “and” in the coordination condition, and the blank between DPs in the 

list condition. In this way, our dataset presents an unexpected opportunity to anchor 

potential structure-building effects within the well-documented temporal landscape of 

visual word recognition in MEG. 

We have discussed several possible explanations for our lack of syntactic 

prediction effect, including the possibility that participants stop processing syntactic 
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structure when presented with semantically nonsensical stimuli, or that the lack of 

lexical predictability causes a shift from top-down to bottom-up parsing. We also 

consider that syntactic prediction may occur in natural sentences but is tightly 

connected with the process of lexical prediction. When lexical prediction is no longer 

warranted, syntactic prediction could then cease as well. This complicates our work 

toward a neural index of syntactic prediction. However, there is also a sense in which 

it bolsters the idea, fundamental to this dissertation, that syntactic information could 

influence word recognition in the first place. During listening, the activation of lexical 

candidates in response to initial phonemes is a form of prediction for what the 

incoming word will turn out to be, and in Chapters 2-4 I have been concerned with 

how this interacts with syntactic prediction. In the current study, what we have 

observed is that during reading, the prediction of upcoming words might be 

importantly linked to the prediction of syntactic structure. This raises many 

interesting questions about the relationships between predictions that occurs on the 

basis of auditory, lexical, or syntactic information, as well as any influence of the 

incrementality of the input on the timing of these interactions.    
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Chapter 6: General discussion 

6.1 Summary of this dissertation 

The focus of this dissertation has been a mechanistic account of how syntactic 

context influences auditory word recognition. In Chapter 1, I described a conflict in 

the past findings arising from different experimental methods. Some studies show that 

lexical candidates that do not fit with the syntactic context are still activated in 

response to auditory input, and some studies show that this kind of activation is 

prevented. I argued that investigating the potential syntactic constraint on word 

recognition requires an understanding of the mechanism for the constraint: does it 

function by facilitating good contextual fits or inhibiting bad ones? Studies in this 

area are generally not designed to be able to detect a constraint that operates by 

facilitating good contextual fits, and instead seek evidence that the activation of bad 

contextual fits has been prevented. 

In Chapter 2, we explored one factor potentially contributing to the conflict 

observed in the literature, using an existing computational model of auditory word 

recognition. We could not examine contextual constraints directly, but as a starting 

point we simulated how quickly a change in lexical activation due to perceiving a 

new phoneme would lead to observable changes in a behavioral measure, when that 

behavioral measure allowed only a small set of response options (as in the visual 

world paradigm) or a large set of response options (as in gating). We theorized that if 

the size of the set of response options mattered for observing activation changes in 

response to a new phoneme, it might also matter for observing activation changes in 

response to syntactic category information. We found that the nature of the set of 
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response options can indeed have a large influence in simulations, not because of its 

size per se, but because smaller sets tend to have a skewed composition. These 

simulations illustrated the importance of accounting for the composition of the set of 

response options when making inferences about lexical activation from behavioral 

measures, and demonstrated how small-set measures can show earlier effects. 

In Chapter 3, we presented a study on syntactic context in the visual world 

paradigm. Experiment 1 was designed to yield different predicted outcomes under 

facilitatory and inhibitory syntactic constraints on word recognition. We used insights 

from the simulations in Chapter 2 to make sure that if wrong-category lexical 

competition were occurring, it would be detectable in fixation proportions, unlike in 

some previous studies in which we suspected that the activation of wrong-category 

lexical candidates had been obscured. Our study provided evidence that wordforms 

that can only be used as nouns are still activated when they are consistent with the 

auditory input in a verb-constraining context, a finding that is inconsistent with an 

inhibitory constraint. We did not, however, find positive evidence in favor of the 

facilitatory constraint.  

 In Chapter 4, we described an alternative approach to investigating the 

activation of lexical candidates, using neural effects of cohort entropy and phoneme 

surprisal. These are information-theoretic quantities that reflect, at each phoneme in a 

word, properties of the probability distribution of lexical candidates competing in 

response to auditory input. In Experiment 2, we established their effects in a MEG 

study of auditorily presented single words analyzed with temporal response functions. 

This type of analysis more accurately models the speech input than have previous 
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methods, and prior to our study had only been applied to continuous speech. We 

found effects of surprisal but not entropy, for non-word-initial phonemes, consistent 

with the small previous literature. Our findings bolster progress toward phoneme 

surprisal and cohort entropy as stable neural measures of lexical processing. Also in 

this chapter, we presented the design for Experiment 3, for which data could not be 

collected due to the COVID-19 pandemic. The goal for this study is to disambiguate 

the outcome of Experiment 1 and provide evidence for or against the facilitatory 

syntactic constraint. We intend to present structurally predictable sentences in which 

the syntactic category of upcoming words is always known, but content words are 

lexically unpredictable. We have calculated variants of entropy and surprisal that 

reflect a lexicon under the influence of a facilitatory or inhibitory syntactic constraint. 

Target nouns and verbs will be selected such that the facilitatory, inhibitory, and 

unconstrained variables are substantially de-correlated. We can then test which of 

these variables best predicts the neural response, and when. 

Understanding top-down effects of syntactic category expectations on 

auditory word recognition will also require more precise knowledge of the nature of 

syntactic prediction. Therefore, in Chapter 5, we sought a reliable neural index of 

syntactic prediction, aiming eventually to examine both the cost of prediction and its 

impact on word recognition in the same sentence. In Experiment 4, we used MEG to 

test for differences in the neural response to visually presented determiner phrases 

(DPs) when participants knew that these DPs were the subject of a sentence or the 

first item in a list. We avoided lexical predictability in our stimuli so that any 

differences could more likely be attributed to syntactic prediction. However, we did 
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not observe the syntactic prediction effect that we expected on the basis of prior 

work. Our data suggest instead the possibility that syntactic prediction co-occurs with 

or is related to lexical prediction in such a way that it is no longer observable when 

lexical predictability is removed.  

6.2 Conclusions 

 We do not yet have a full mechanistic account of how syntactic context 

influences auditory word recognition. In fact, I believe one of the important outcomes 

of the research undertaken in this dissertation is a better understanding of the true 

complexity of constructing such an account, and of what is still unknown. However, 

this dissertation has taken several steps toward the intended model. I have argued that 

the body of available evidence now points away from an inhibitory syntactic 

constraint that can prevent the activation of lexical candidates. We have further 

developed a promising approach to studying the phoneme-by-phoneme dynamics of 

lexical activation with neural data. We have also observed a new correspondence 

between lexical and syntactic prediction that underscores the richness of the problem 

initially posed. Along the way, I have argued for the importance of more detailed 

linking hypotheses between what we aim to measure and the data we have access to, 

including the influence of the experimental task and context. I have also prioritized 

the thorough accounting of patterns in previous literature. These two endeavors are 

closely linked, and are central to the contributions of this dissertation. 

6.3 Additional questions raised 

In each of the previous chapters, we have discussed connections to related 

questions and problems, and ideas for future work. In this section, I briefly raise 
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considerations that go beyond the concerns of any single preceding chapter. These 

considerations are related to (1) integration of other kinds of top-down information 

within the sentence, (2) context effects that go beyond the level of the sentence, or (3) 

uncertainties about the top-down or bottom-up information sources themselves.  

First, the idea that a listener processing auditory input would not consider 

ungrammatical options is familiar from other areas of linguistics. In parsing, we don’t 

generally assume that comprehenders are considering ungrammatical syntactic 

continuations. Why, then, in word recognition do we entertain the possibility that 

auditory input might activate lexical candidates that are incompatible with available 

syntactic information about the sentence being heard? One reason is that the 

determination of what an appropriate candidate is comes from two different systems. 

It might not be possible to integrate the two information sources quickly enough, or at 

all. Another reason is that syntactic category may not be represented on lexical items 

in the way that would be necessary to enable the kind of restriction we have been 

considering. As described in the Introduction, syntactic category, under Distributed 

Morphology, is not a stored feature but arises from the combination of category-less 

roots and categorizing affixes. It is not necessarily surprising, under this view, if 

category restrictions cannot be used to block consideration of candidates, as on some 

level these candidates are not inherently in conflict with the context. These kinds of 

issues are present for the narrow problem of syntax and then become amplified with 

every additional source of information within a sentence.  

For example, the semantic context of the sentence should lead to specific 

wordform predictions that may or may not be compatible with the set of wordforms 
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compatible with the auditory input and the set of wordforms compatible with the 

syntactic context. How and when is this information integrated? What if the semantic 

context not only makes it likely that words related to, e.g., cats, will appear in the 

sentence but yields a very strong expectation for just a single word? This is both a 

syntactic and a semantic constraint. We did not see evidence in this dissertation that 

the activation of a contextually incompatible lexical candidate can be prevented. 

However, we should consider whether such prevention can occur in the types of 

sentences with high cloze probability completions used in many N400 studies. 

Experiment 4, in Chapter 5, has suggested a possible dependency between lexical-

semantic prediction and prediction of syntactic structure  

Second, there are potentially higher-level modulators of the way top-down 

and bottom-up information are used. The relative weight of each constraint could 

shift according to the reliability of different information sources, e.g., when speech 

input is noisy. Many have wondered whether the visual context of the visual world 

paradigm changes the normal course of lexical activation; the MEG measures of 

cohort competition described in Chapter 4, in combination with a visual world 

design, could potentially help us answer that question.  

 Finally, many questions remain about the information sources that feed top-

down/bottom-up integration. Does the interaction of auditory and syntactic input 

occur when auditory input has been processed to the level of the phoneme, or earlier? 

In Chapter 5, we pursued a neural index of structural prediction to eventually enable 

more targeted questions about what exactly these predictions consist of. Are structural 

predictions and ensuing category expectations non-deterministic? Could category 
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expectations actually be captured by word-to-word co-occurrence statistics rather 

than abstract structure predictions? We can study these issues from the vantage of 

both the generation of the expectation and its impact, and the answers to these 

questions will jointly inform both syntactic parsing models and our understanding of 

word recognition.  
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Appendix A: Stimuli 

A.1 Experiment 1 

Condition List 1 
sentence 

List 2 
sentence 

Critical 
Picture 

Distractor 1 Distractor 2 Distractor 3 

Critical: 
noun-only 
competitor 

He chose the 
battleship for 
his birthday. 

He chose to 
bask in the 
sun. 

balcony moustache curtain wheelbarrow 

Critical: 
noun-only 
competitor 

He demanded 
the reptile as 
a birthday 
gift. 

He demanded 
to represent 
his brother in 
court. 

rectangle suspenders cactus elbow 

Critical: 
noun-only 
competitor 

He loved the 
drummer of 
the band. 

He loved to 
dramatize his 
stories. 

drawer grapes pineapple mitten 

Critical: 
noun-only 
competitor 

He preferred 
the macaroni 
from the blue 
box. 

He preferred 
to maximize 
his profits. 

mattress scarf accordion needle 

Critical: 
noun-only 
competitor 

He wanted 
the baggage 
for his 
upcoming 
trip. 

He wanted to 
baptize the 
child at the 
same church. 

basket cabin sword gorilla 

Critical: 
noun-only 
competitor 

She hated the 
cobras at the 
zoo. 

She hated to 
coerce the 
witness. 

coconut lips guitar magnet 

Critical: 
noun-only 
competitor 

She needed 
the glaciers in 
the 
background 
of the photo. 

She needed to 
glean more 
information 
from her 
sources. 

glove calendar shrimp apron 

Critical: 
noun-only 
competitor 

She offered 
the bricks for 
their project. 

She offered to 
browse a 
section of the 
bookstore. 

bracelet fruit kitchen notebook 

Critical: 
noun-only 
competitor 

She preferred 
the sweetener 
from natural 
sources. 

She preferred 
to swaddle the 
baby. 

sweater ballerina camel ankle 

Critical: 
noun-only 
competitor 

She wanted 
the cafeteria 
to be open. 

She wanted to 
captivate the 
audience. 

calculator greenhouse microscope fingerprint 

Critical: 
noun-only 
competitor 

They hated 
the jesters 
because of 
their hats. 

They hated to 
jeopardize 
their chances. 

jellyfish slippers tractor compass 

Critical: 
noun-only 
competitor 

They offered 
the scrapbook 
as an 
apology. 

They offered 
to sculpt a 
new statue. 

scorpion balloon dolphin kiwi 



 

 236 

Critical: 
noun-only 
competitor 

They 
remembered 
the 
salamander 
that was 
hiding behind 
the rock. 

They 
remembered 
to satisfy the 
program 
requirements. 

saxophone desk acorn island 

Critical: 
noun-only 
competitor 

They tried the 
helmets 
before 
returning 
them. 

They tried to 
hesitate before 
speaking up. 

hedgehog lipstick wagon cube 

Critical: 
noun-only 
competitor 

They tried the 
machines at 
the gym. 

They tried to 
muffle the 
noise from the 
radio. 

mosquito pliers coffin vulture 

Critical: 
noun-only 
competitor 

He expected 
to calculate 
what he had 
spent. 

He expected 
the cashier to 
arrive early. 

cabin bracelet pomegranate eyebrow 

Critical: 
noun-only 
competitor 

He forgot to 
submit the 
assignment. 

He forgot the 
celebrity from 
the movie. 

suspenders mattress umbrella triangle 

Critical: 
noun-only 
competitor 

He prepared 
to categorize 
the new 
inventory. 

He prepared 
the casserole 
for his 
neighbor. 

calendar balcony scissors lighthouse 

Critical: 
noun-only 
competitor 

He prepared 
to gratify his 
mother’s 
wishes. 

He prepared 
the gravestone 
for the new 
plot. 

greenhouse drawer violin medal 

Critical: 
noun-only 
competitor 

He refused to 
budge from 
his seat. 

He refused the 
buckets of 
candy. 

balloon sweater lamp rhino 

Critical: 
noun-only 
competitor 

He 
remembered 
to decorate 
the office for 
Mary’s 
birthday. 

He 
remembered 
the deaths of 
his 
grandparents. 

desk basket funnel cigar 

Critical: 
noun-only 
competitor 

She chose to 
plagiarize 
rather than 
write the 
essay. 

She chose the 
plates for the 
banquet. 

pliers scorpion dominoes ruler 

Critical: 
noun-only 
competitor 

She liked to 
baffle her 
parents with 
trivia. 

She liked the 
backyard at 
the new 
house. 

ballerina calculator earring dragonfly 

Critical: 
noun-only 
competitor 

She wanted to 
liberate the 
animals at the 
zoo. 

She wanted 
the liquor at 
the back of 
the cabinet. 

lipstick jellyfish trophy fireplace 

Critical: 
noun-only 
competitor 

They hated to 
greet rude 
visitors. 

They hated 
the gremlin in 
the haunted 
house. 

grapes coconut stool megaphone 
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Critical: 
noun-only 
competitor 

They knew to 
scour the old 
pan. 

They knew 
the skydiver 
who was in 
the accident. 

scarf rectangle ambulance clarinet 

Critical: 
noun-only 
competitor 

They liked to 
freshen the 
flowers. 

They liked the 
frogs in the 
pond. 

fruit glove helicopter controller 

Critical: 
noun-only 
competitor 

They 
prepared to 
liquefy the 
helium gas. 

They prepared 
the liver for 
transplant. 

lips hedgehog salad glasses 

Critical: 
noun-only 
competitor 

They 
remembered 
to slacken the 
rope. 

They 
remembered 
the slogan 
from the 
commercial. 

slippers mosquito toothbrush chameleon 

Critical: 
noun-only 
competitor 

They wanted 
to matriculate 
in the spring 
semester. 

They wanted 
the molasses 
for 
gingerbread 
cookies. 

moustache saxophone keyhole globe 

Critical: 
noun-verb 
ambiguous 
competitor 

He expected 
the throat to 
be inflamed. 

He expected 
to thrive in the 
new 
environment. 

thread bracelet cactus fireplace 

Critical: 
noun-verb 
ambiguous 
competitor 

He neglected 
the sofa in the 
playroom. 

He neglected 
to socialize 
the puppies 
when they 
were young. 

soap drawer camel triangle 

Critical: 
noun-verb 
ambiguous 
competitor 

He preferred 
the witches 
rather than 
the ghosts. 

He preferred 
to wilt the 
spinach. 

whistle balcony dolphin clarinet 

Critical: 
noun-verb 
ambiguous 
competitor 

He prepared 
the blender 
for shipping. 

He prepared 
to bless the 
worshippers. 

blanket sweater guitar chameleon 

Critical: 
noun-verb 
ambiguous 
competitor 

He tried the 
mackerel but 
it wasn’t very 
fresh. 

He tried to 
madden the 
teacher with 
his antics. 

mask basket tractor rhino 

Critical: 
noun-verb 
ambiguous 
competitor 

She chose the 
brownie for 
her snack. 

She chose to 
brighten the 
room with 
fresh paint. 

bread scorpion kitchen dragonfly 

Critical: 
noun-verb 
ambiguous 
competitor 

She chose the 
platypus as 
her essay 
topic. 

She chose to 
placate the 
students with 
extra recess. 

plant mattress acorn globe 

Critical: 
noun-verb 
ambiguous 
competitor 

She declined 
the textile in 
favor of 
exposed 
brick. 

She declined 
to testify in 
the trial. 

telephone saxophone microscope ruler 
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Critical: 
noun-verb 
ambiguous 
competitor 

She liked the 
myths that 
she was 
reading for 
Latin class. 

She liked to 
mystify her 
students. 

milk hedgehog curtain cigar 

Critical: 
noun-verb 
ambiguous 
competitor 

She tried the 
fridge in the 
lunch room. 

She tried to 
frighten her 
brother. 

frame rectangle coffin eyebrow 

Critical: 
noun-verb 
ambiguous 
competitor 

They liked 
the puddle 
that formed 
every time it 
rained. 

They liked to 
publish new 
blog posts on 
Mondays. 

puzzle coconut sword glasses 

Critical: 
noun-verb 
ambiguous 
competitor 

They offered 
the palette 
that most 
clients 
preferred. 

They offered 
to pacify the 
child with a 
walk. 

package mosquito shrimp lighthouse 

Critical: 
noun-verb 
ambiguous 
competitor 

They 
preferred the 
rodent to the 
insect. 

They 
preferred to 
rove the 
hallways 
without a 
nurse. 

rope glove pineapple megaphone 

Critical: 
noun-verb 
ambiguous 
competitor 

They 
prepared the 
dresser for 
the move. 

They prepared 
to drown out 
the noise. 

drop jellyfish accordion controller 

Critical: 
noun-verb 
ambiguous 
competitor 

They tried the 
sheet that fit 
the bed more 
tightly. 

They tried to 
sheathe the 
sword before 
taking it 
onstage. 

shield calculator wagon medal 

Critical: 
noun-verb 
ambiguous 
competitor 

He chose to 
dedicate a 
song to his 
daughter. 

He chose the 
decks of the 
ship that were 
less crowded. 

desert suspenders keyhole fingerprint 

Critical: 
noun-verb 
ambiguous 
competitor 

He chose to 
squander his 
allowance on 
candy. 

He chose the 
schoolhouse 
as the 
backdrop for 
the photos. 

skateboard fruit violin gorilla 

Critical: 
noun-verb 
ambiguous 
competitor 

He refused to 
swelter in the 
heat. 

He refused the 
suede for the 
costume. 

swing desk pomegranate vulture 

Critical: 
noun-verb 
ambiguous 
competitor 

He tried to 
scamper 
away before 
being noticed. 

He tried the 
skunks but 
they didn’t 
like the new 
enclosure 
either. 

screw calendar trophy needle 

Critical: 
noun-verb 
ambiguous 
competitor 

He tried to 
tether the ball 
to the pole. 

He tried the 
textbook from 
the famous 
professor. 

telescope cabin dominoes wheelbarrow 
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Critical: 
noun-verb 
ambiguous 
competitor 

He wanted to 
notify the 
parents 
quickly. 

He wanted the 
notebook with 
the blue 
cover. 

nose lipstick toothbrush island 

Critical: 
noun-verb 
ambiguous 
competitor 

She liked to 
cling to her 
mother. 

She liked the 
clinic at the 
new hospital. 

clock moustache scissors notebook 

Critical: 
noun-verb 
ambiguous 
competitor 

She loved to 
translate 
poems in her 
spare time. 

She loved the 
tracksuit that 
they found in 
the closet. 

trumpet ballerina salad kiwi 

Critical: 
noun-verb 
ambiguous 
competitor 

She preferred 
to flout the 
rules. 

She preferred 
the florists at 
the old shop. 

flag pliers earring mitten 

Critical: 
noun-verb 
ambiguous 
competitor 

She wanted to 
popularize 
her views on 
immigration. 

She wanted 
the pottery 
that she saw 
on the shelf. 

pocket greenhouse ambulance magnet 

Critical: 
noun-verb 
ambiguous 
competitor 

They 
expected to 
boggle the 
listeners. 

They expected 
the bobbin to 
break. 

bottle slippers lamp cube 

Critical: 
noun-verb 
ambiguous 
competitor 

They 
preferred to 
transform the 
extra 
bedroom into 
an office. 

They 
preferred the 
trapezoid for 
the company 
logo. 

truck balloon umbrella compass 

Critical: 
noun-verb 
ambiguous 
competitor 

They refused 
to plod along 
the path. 

They refused 
the player 
from the 
opposing 
team. 

plug grapes funnel ankle 

Critical: 
noun-verb 
ambiguous 
competitor 

They tried to 
mobilize 
older voters. 

They tried the 
molars but 
they were also 
very sensitive. 

motorcycle lips stool apron 

Critical: 
noun-verb 
ambiguous 
competitor 

They wanted 
to magnetize 
the sheet of 
metal. 

They wanted 
the mast from 
the 
disassembled 
sailboat. 

map scarf helicopter elbow 

Filler: 
noun-only 
target 

He chose the 
balcony with 
a view of the 
ocean. 

He chose the 
balcony with a 
view of the 
ocean. 

balcony sword tractor clock 

Filler: 
noun-only 
target 

He expected 
the cabin to 
be much 
bigger. 

He expected 
the cabin to be 
much bigger. 

cabin notebook trophy soap 
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Filler: 
noun-only 
target 

He forgot the 
suspenders 
that he was 
supposed to 
wear. 

He forgot the 
suspenders 
that he was 
supposed to 
wear. 

suspenders dragonfly rope glasses 

Filler: 
noun-only 
target 

He loved the 
balcony at the 
old 
apartment. 

He loved the 
balcony at the 
old apartment. 

balcony gorilla microscope pocket 

Filler: 
noun-only 
target 

He preferred 
the mattress 
with the foam 
top. 

He preferred 
the mattress 
with the foam 
top. 

mattress coffin ambulance soap 

Filler: 
noun-only 
target 

He preferred 
the 
suspenders to 
a belt. 

He preferred 
the suspenders 
to a belt. 

suspenders cube package ruler 

Filler: 
noun-only 
target 

He prepared 
the calendar 
before 
meeting with 
his boss. 

He prepared 
the calendar 
before 
meeting with 
his boss. 

calendar island elbow telephone 

Filler: 
noun-only 
target 

He 
remembered 
the calendar 
on the wall in 
his office. 

He 
remembered 
the calendar 
on the wall in 
his office. 

calendar wagon vulture bottle 

Filler: 
noun-only 
target 

He requested 
the mattress 
that he had 
tried at the 
hotel. 

He requested 
the mattress 
that he had 
tried at the 
hotel. 

mattress helicopter toothbrush package 

Filler: 
noun-only 
target 

He wanted 
the cabin with 
two 
bedrooms. 

He wanted the 
cabin with 
two 
bedrooms. 

cabin mitten ankle bottle 

Filler: 
noun-only 
target 

She chose the 
calculator 
that would 
work for both 
classes. 

She chose the 
calculator that 
would work 
for both 
classes. 

calculator notebook lighthouse swing 

Filler: 
noun-only 
target 

She chose the 
lipstick on 
display in the 
window. 

She chose the 
lipstick on 
display in the 
window. 

lipstick stool milk keyhole 

Filler: 
noun-only 
target 

She chose the 
pliers from 
the tool box. 

She chose the 
pliers from the 
tool box. 

pliers wagon swing lamp 

Filler: 
noun-only 
target 

She hated the 
coconut but 
didn’t mind 
the pineapple. 

She hated the 
coconut but 
didn’t mind 
the pineapple. 

coconut dominoes shrimp bread 

Filler: 
noun-only 
target 

She knew the 
ballerina 
from last 
night’s 
performance. 

She knew the 
ballerina from 
last night’s 
performance. 

ballerina coffin globe truck 
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Filler: 
noun-only 
target 

She liked the 
ballerina in 
the first row. 

She liked the 
ballerina in 
the first row. 

ballerina pineapple kitchen milk 

Filler: 
noun-only 
target 

She needed 
the coconut 
for the curry 
she was 
making. 

She needed 
the coconut 
for the curry 
she was 
making. 

coconut mitten rhino truck 

Filler: 
noun-only 
target 

She needed 
the pliers for 
her next 
project. 

She needed 
the pliers for 
her next 
project. 

pliers megaphone skateboard chameleon 

Filler: 
noun-only 
target 

She offered 
the bracelet to 
her friend. 

She offered 
the bracelet to 
her friend. 

bracelet guitar wheelbarrow motorcycle 

Filler: 
noun-only 
target 

She offered 
the sweater to 
the shivering 
child. 

She offered 
the sweater to 
the shivering 
child. 

sweater medal cactus bread 

Filler: 
noun-only 
target 

She preferred 
the sweater 
that her sister 
had 
borrowed. 

She preferred 
the sweater 
that her sister 
had borrowed. 

sweater cube trophy frame 

Filler: 
noun-only 
target 

She requested 
the bracelet 
that matched 
her sister’s. 

She requested 
the bracelet 
that matched 
her sister’s. 

bracelet island violin map 

Filler: 
noun-only 
target 

She wanted 
the calculator 
for her exam. 

She wanted 
the calculator 
for her exam. 

calculator triangle rhino skateboard 

Filler: 
noun-only 
target 

She wanted 
the lipstick 
but was not 
allowed to 
buy it. 

She wanted 
the lipstick 
but was not 
allowed to 
buy it. 

lipstick funnel pocket scissors 

Filler: 
noun-only 
target 

They hated 
the grapes 
grown at the 
new vineyard. 

They hated 
the grapes 
grown at the 
new vineyard. 

grapes controller pomegranate telephone 

Filler: 
noun-only 
target 

They hated 
the jellyfish 
that were 
floating in the 
water. 

They hated 
the jellyfish 
that were 
floating in the 
water. 

jellyfish sword clarinet map 

Filler: 
noun-only 
target 

They liked 
the grapes on 
the cheese 
plate. 

They liked the 
grapes on the 
cheese plate. 

grapes earring frame cigar 

Filler: 
noun-only 
target 

They 
remembered 
the jellyfish 
that often 

They 
remembered 
the jellyfish 
that often 

jellyfish pineapple eyebrow motorcycle 
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appeared in 
the summer.  

appeared in 
the summer.  

Filler: 
noun-only 
target 

They 
remembered 
the 
saxophone 
that had been 
stolen last 
year. 

They 
remembered 
the saxophone 
that had been 
stolen last 
year. 

saxophone guitar toothbrush rope 

Filler: 
noun-only 
target 

They 
requested the 
saxophone 
but received a 
clarinet. 

They 
requested the 
saxophone but 
received a 
clarinet. 

saxophone gorilla pomegranate clock 

Filler: 
noun-verb 
ambiguous 
target 

He chose to 
skateboard to 
school. 

He chose to 
skateboard to 
school. 

skateboard dragonfly compass magnet 

Filler: 
noun-verb 
ambiguous 
target 

He liked to 
swing for 
hours at the 
playground. 

He liked to 
swing for 
hours at the 
playground. 

swing gorilla clarinet acorn 

Filler: 
noun-verb 
ambiguous 
target 

He loved to 
skateboard 
along the 
sidewalks.  

He loved to 
skateboard 
along the 
sidewalks.  

skateboard mitten globe dolphin 

Filler: 
noun-verb 
ambiguous 
target 

He neglected 
to soap his 
hands 
thoroughly. 

He neglected 
to soap his 
hands 
thoroughly. 

soap pineapple tractor fireplace 

Filler: 
noun-verb 
ambiguous 
target 

He refused to 
swing 
without 
someone to 
push him. 

He refused to 
swing without 
someone to 
push him. 

swing island rhino camel 

Filler: 
noun-verb 
ambiguous 
target 

He tried to 
soap the 
baby’s arms 
and legs. 

He tried to 
soap the 
baby’s arms 
and legs. 

soap helicopter microscope glasses 

Filler: 
noun-verb 
ambiguous 
target 

She chose to 
bread the 
chicken 
before frying 
it. 

She chose to 
bread the 
chicken 
before frying 
it. 

bread megaphone vulture curtain 

Filler: 
noun-verb 
ambiguous 
target 

She chose to 
frame her 
diploma. 

She chose to 
frame her 
diploma. 

frame stool compass dolphin 

Filler: 
noun-verb 
ambiguous 
target 

She declined 
to telephone 
the anxious 
client. 

She declined 
to telephone 
the anxious 
client. 

telephone funnel shrimp magnet 

Filler: 
noun-verb 
ambiguous 
target 

She forgot to 
milk the 
goats. 

She forgot to 
milk the 
goats. 

milk triangle shrimp chameleon 
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Filler: 
noun-verb 
ambiguous 
target 

She liked to 
clock how 
long it took to 
walk to the 
office. 

She liked to 
clock how 
long it took to 
walk to the 
office. 

clock helicopter ambulance ruler 

Filler: 
noun-verb 
ambiguous 
target 

She liked to 
milk the cows 
before 
breakfast. 

She liked to 
milk the cows 
before 
breakfast. 

milk dragonfly cactus acorn 

Filler: 
noun-verb 
ambiguous 
target 

She neglected 
to clock her 
overtime 
hours. 

She neglected 
to clock her 
overtime 
hours. 

clock medal vulture umbrella 

Filler: 
noun-verb 
ambiguous 
target 

She offered to 
telephone the 
patient’s 
wife. 

She offered to 
telephone the 
patient’s wife. 

telephone stool kitchen needle 

Filler: 
noun-verb 
ambiguous 
target 

She tried to 
bread the 
cauliflower 
for the new 
recipe. 

She tried to 
bread the 
cauliflower 
for the new 
recipe. 

bread triangle wheelbarrow kiwi 

Filler: 
noun-verb 
ambiguous 
target 

She tried to 
frame the 
photo for her 
uncle. 

She tried to 
frame the 
photo for her 
uncle. 

frame wagon elbow camel 

Filler: 
noun-verb 
ambiguous 
target 

She tried to 
pocket three 
cookies from 
the bake sale. 

She tried to 
pocket three 
cookies from 
the bake sale. 

pocket coffin ankle needle 

Filler: 
noun-verb 
ambiguous 
target 

She wanted to 
pocket the 
change from 
the 
transaction. 

She wanted to 
pocket the 
change from 
the 
transaction. 

pocket earring violin fingerprint 

Filler: 
noun-verb 
ambiguous 
target 

They 
expected to 
bottle the 
beer as soon 
as it was 
ready. 

They expected 
to bottle the 
beer as soon 
as it was 
ready. 

bottle notebook eyebrow cigar 

Filler: 
noun-verb 
ambiguous 
target 

They 
expected to 
bottle the 
milk all at 
once. 

They expected 
to bottle the 
milk all at 
once. 

bottle funnel elbow keyhole 

Filler: 
noun-verb 
ambiguous 
target 

They hated to 
rope the 
cattle. 

They hated to 
rope the 
cattle. 

rope earring microscope accordion 

Filler: 
noun-verb 
ambiguous 
target 

They needed 
to map the 
city’s transit 
system. 

They needed 
to map the 
city’s transit 
system. 

map dominoes trophy apron 

Filler: 
noun-verb 
ambiguous 
target 

They offered 
to package 
the shoes for 
shipment. 

They offered 
to package the 
shoes for 
shipment. 

package megaphone cactus lamp 
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Filler: 
noun-verb 
ambiguous 
target 

They offered 
to truck the 
furniture at 
no cost. 

They offered 
to truck the 
furniture at no 
cost. 

truck guitar ankle curtain 

Filler: 
noun-verb 
ambiguous 
target 

They 
preferred to 
motorcycle 
rather than 
walk. 

They 
preferred to 
motorcycle 
rather than 
walk. 

motorcycle dominoes toothbrush scissors 

Filler: 
noun-verb 
ambiguous 
target 

They 
preferred to 
rope the 
chairs 
together 
overnight. 

They 
preferred to 
rope the chairs 
together 
overnight. 

rope medal kitchen apron 

Filler: 
noun-verb 
ambiguous 
target 

They 
preferred to 
truck the 
material 
across town. 

They 
preferred to 
truck the 
material 
across town. 

truck cube lighthouse accordion 

Filler: 
noun-verb 
ambiguous 
target 

They 
remembered 
to package 
the delicate 
items 
separately. 

They 
remembered 
to package the 
delicate items 
separately. 

package controller tractor fingerprint 

Filler: 
noun-verb 
ambiguous 
target 

They tried to 
motorcycle 
across the 
country. 

They tried to 
motorcycle 
across the 
country. 

motorcycle sword pomegranate kiwi 

Filler: 
noun-verb 
ambiguous 
target 

They wanted 
to map the 
route before 
the hike. 

They wanted 
to map the 
route before 
the hike. 

map controller wheelbarrow salad 
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A.2 Experiment 2  

A.2.1 Targets

abroad 
absolve 
abstain 
abstract 
absurd 
accelerate 
accent 
achieve 
actual 
adept 
admit 
advance 
affair 
affiliate 
affinity 
affirm 
afraid 
agitate 
aisle 
alarm 
alcohol 
ale 
algorithm 
aloof 
altar 
alumni 
ambiguous 
analog 
annoy 
annual 
antique 
anvil 
apathy 
appeal 
appreciate 
approximate 

arbitrary 
are 
aroma 
arrange 
arrive 
asphalt 
aspire 
aspirin 
associate 
assume 
athlete 
atom 
attack 
autumn 
avail 
avalanche 
average 
awe 
awkward 
baboon 
bait 
bake 
balcony 
banquet 
bare 
bark 
barnacle 
barren 
basket 
batch 
bawl 
beep 
behave 
bend 
bent 
berserk 

beta 
beverage 
bias 
bid 
binge 
bite 
bitter 
blatant 
bleach 
bless 
blight 
blip 
blitz 
blizzard 
blubber 
bluff 
bolster 
bore 
born 
botch 
bother 
bounty 
bovine 
braid 
bran 
brave 
breach 
break 
brim 
brittle 
broke 
brow 
bruise 
bump 
bundle 
burst 

bust 
cab 
cadet 
caliber 
calorie 
cancel 
canoe 
capacity 
cardiac 
care 
caribou 
caricature 
carnival 
carton 
cartoon 
casket 
casual 
catapult 
catastrophe 
catch 
cater 
cauldron 
cavalry 
ceiling 
celebrate 
celery 
cemetery 
census 
ceremony 
chagrin 
challenge 
chameleon 
chant 
character 
charity 
charm 

chart 
chest 
chic 
chime 
chimney 
choir 
chomp 
chore 
circa 
circle 
circus 
citadel 
claim 
clean 
clear 
clever 
clock 
clone 
clove 
coarse 
collapse 
come 
commit 
commute 
compete 
compound 
conceal 
concern 
condition 
confess 

congratulate 
congress 
conjure 
connect 
consensus 
conserve 

consist 
consolidate 
construct 
consume 
contain 
contrast 
convey 
convince 
cough 
cower 
crank 
crate 
crop 
crowd 
crumb 
crusade 
crux 
culinary 
culprit 
cup 
curd 
curse 
cushion 
custody 
custom 
cycle 
cylinder 
dab 
date 
daughter 
decent 
decree 
dedicate 
defer 
defy 
deity 
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democrat 
denounce 
deny 
desert 
desk 
destroy 
detain 
develop 
device 
devise 
diagram 
dialogue 
diaphragm 
dice 
dictate 
did 
digest 
digress 
diligent 
dimple 
din 
dingy 
diploma 
direct 
dish 
disrupt 
distant 
distinct 
document 
dolt 
domain 
door 
dozen 
drab 
drastic 
dribble 
drift 
droop 
drug 
duet 

duration 
eager 
ease 
easel 
eclectic 
eight 
elastic 
electric 
element 
elevate 
eliminate 
eloquent 
else 
eminent 
emphasis 
empty 
enamel 
entertain 
enzyme 
equal 
equity 
eradicate 
erase 
errand 
escort 
essay 
essence 
eternal 
evade 
evolve 
exam 
example 
exceed 
excel 
exempt 
exert 
expanse 
expect 
expense 
expire 

explicit 
explode 
exquisite 
extinct 
exuberant 
exude 
fable 
fail 
farce 
fare 
fast 
fathom 
fax 
feat 
fed 
fee 
feed 
femur 
ferocious 
fervor 
fest 
feud 
fiction 
fierce 
fig 
file 
fill 
finale 
finger 
firm 
fissure 
five 
flank 
flog 
fluid 
flurry 
flush 
focal 
fog 
font 

foray 
forget 
fortuitous 
four 
frantic 
fraught 
fray 
fringe 
fritter 
fuel 
fungus 
furtive 
fuse 
fuss 
gain 
gallon 
galore 
garage 
gargle 
garment 
gas 
gear 
geese 
generous 
gentle 
genuine 
giddy 
gift 
gimmick 
gist 
glaze 
glimmer 
glimpse 
glitter 
gloom 
glue 
gone 
gorge 
gossip 
gouge 

gown 
grab 
graduate 
grail 
gram 
grammar 
grape 
grass 
grate 
grease 
grew 
grim 
grip 
grit 
groove 
ground 
group 
gruff 
gurgle 
gust 
halibut 
happy 
hard 
harp 
harsh 
hash 
haunt 
helium 
hemp 
hence 
heron 
hid 
hideous 
hit 
hoarse 
hog 
hold 
hole 
horrid 
horror 

hostile 
how 
huddle 
huge 
human 
humid 
humility 
hunch 
hurricane 
igloo 
ignore 
illuminate 
image 
imitate 
immense 
imperial 
implement 
imply 
incessant 
incinerate 
include 
incumbent 
indict 
indignant 
induce 
industry 
inept 
inferior 
inflict 
initial 
inject 
injury 
ink 
inning 
instinct 
interest 
interfere 
interlude 
intricate 
introduce 
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invite 
iodine 
iota 
jacket 
jade 
jam 
jargon 
jaw 
jest 
join 
jubilee 
juncture 
kennel 
kernel 
knee 
knife 
lab 
language 
lapse 
lark 
laser 
late 
latitude 
laugh 
launch 
lavish 
lawn 
lax 
leaf 
leap 
learn 
lease 
length 
lesion 
level 
license 
lid 
lift 
lilac 
linoleum 

lit 
live 
locate 
loose 
lose 
loud 
loyal 
lumbar 
mahogany 
maintain 
male 
mammoth 
manifest 
map 
marine 
mast 
mat 
match 
mayhem 
meager 
measure 
meat 
mellow 
melt 
menu 
merry 
mesh 
message 
metal 
methane 
microbe 
middle 
mile 
milk 
million 
minimum 
mint 
mirth 
mist 
moat 

modern 
mogul 
moist 
molecule 
monarch 
mountain 
mug 
mule 
multiple 
mumble 
mundane 
muster 
myriad 
nail 
naked 
nap 
neat 
needle 
nephew 
net 
nickel 
nine 
node 
nominate 
null 
nun 
nutrient 
oasis 
observe 
obtain 
obvious 
occupy 
octave 
odd 
offend 
offer 
onion 
operate 
opportune 
optimum 

orchid 
ordeal 
organize 
ornery 
orthodox 
ounce 
ovation 
owl 
pact 
pad 
paddle 
paint 
pair 
palate 
pale 
paltry 
pamper 
pamphlet 
panic 
parade 
paradigm 
parakeet 
parasol 
parent 
paste 
pattern 
pecan 
pedestrian 
pencil 
perform 
peril 
perk 
persist 
petal 
petty 
phantom 
pheasant 
phosphorus 
phrase 
picket 

pie 
piece 
pile 
pinch 
pioneer 
pistol 
piston 
pitch 
pity 
plain 
plant 
platform 
platter 
please 
pledge 
plethora 
plight 
plot 
plough 
plunge 
polymer 
poor 
portion 
posse 
posture 
poultry 
precinct 
precious 
predicament 
premise 
prerogative 
present 
pretend 
pretty 
pristine 
problem 
prod 
produce 
progress 
prom 

property 
prophet 
protect 
proud 
province 
proxy 
prune 
pry 
publish 
pulp 
pulse 
pungent 
punish 
purchase 
purge 
putt 
puzzle 
quaint 
quarantine 
quarrel 
quarry 
quartet 
quick 
quilt 
quote 
race 
radius 
rag 
rage 
rain 
raise 
rally 
ran 
rang 
rapt 
rash 
rate 
rattle 
raw 
razor 
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reap 
rear 
reduce 
reef 
reflex 
register 
relax 
relic 
relieve 
remedy 
renaissance 
report 
reserve 
reside 
resilient 
resplendent 
rest 
result 
ride 
rigid 
rind 
rinse 
riot 
ripe 
ripple 
risk 
rival 
roar 
roast 
rocket 
rodent 
role 
roost 
rope 
roster 
rotate 
rove 
rubble 
ruin 
rummage 

run 
rupture 
salad 
salary 
sane 
satin 
sausage 
scale 
scalpel 
scan 
scare 
scene 
scoff 
scrape 
scrawny 
screen 
screw 
scrounge 
scuffle 
sculpt 
secret 
sect 
sediment 
seek 
seem 
segment 
seldom 
self 
seminar 
sermon 
serve 
settle 
severe 
shabby 
shake 
shall 
shame 
shard 
share 
shawl 

shear 
shed 
shift 
shine 
shirt 
shoddy 
should 
shove 
shrewd 
shrimp 
shroud 
shudder 
shuttle 
shy 
sigh 
sign 
similar 
simmer 
sinus 
sit 
site 
sleek 
sleeve 
slender 
slide 
slight 
slim 
sling 
slip 
slit 
sliver 
slogan 
sloth 
slug 
slurp 
slush 
sly 
smack 
smash 
smear 

smooth 
smuggle 
snack 
snarl 
snip 
soak 
soap 
soft 
solid 
soliloquy 
somber 
soup 
soy 
span 
spare 
sparse 
spectacle 
spend 
spigot 
spin 
splice 
sprain 
sprinkle 
spur 
spurt 
squash 
stab 
staff 
stake 
stale 
stalk 
stamp 
staple 
starve 
stash 
staunch 
steal 
stellar 
stink 
stomach 

stooge 
store 
straddle 
strain 
stress 
strict 
stroll 
stub 
stubborn 
study 
stuff 
stutter 
substance 
succulent 
sulk 
sullen 
summer 
supplement 
supply 
suppress 
surge 
suspect 
suspend 
swamp 
swear 
sweat 
sweep 
swim 
swing 
switch 
tactic 
tail 
taint 
talent 
tame 
tangle 
tar 
taut 
tax 
tease 

temperature 
ten 
tend 
tense 
tent 
tenuous 
terrain 
theory 
thigh 
three 
thrive 
throttle 
thrust 
thyroid 
tick 
tile 
timid 
tire 
tissue 
toffee 
token 
ton 
torment 
torrent 
tradition 
traipse 
trait 
tram 
trance 
trap 
treason 
trespass 
tribe 
trick 
trickle 
trim 
troop 
trophy 
trot 
trough 
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truck 
tunic 
turbine 
turmoil 
turpentine 
turquoise 
twelve 
twig 
twill 
ugly 
umbrella 

umpire 
understand 
vain 
valet 
valid 
vanilla 
vanish 
vary 
vast 
vector 
vegetable 

vein 
velocity 
venture 
venue 
veranda 
verdict 
vertical 
vet 
vigor 
vile 
villain 

vintage 
violin 
vow 
wad 
waltz 
wand 
wander 
want 
wary 
wave 
wax 

weary 
wedge 
weep 
weigh 
wet 
whine 
whisk 
whisper 
wide 
wilt 
win 

worship 
wrap 
wrath 
wreak 
wreath 
wrinkle 
wrist 
yield 
zest 
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A.2.2 Probes 

Item Probe number in 
list 

distance to next 
probe 

match 

organize coordinate 21 19 1 
foray exterior 41 20 0 
beverage conceive 47 6 0 
rally threat 59 12 0 
posture position 78 19 1 
coarse rough 97 19 1 
mile rhinoceros 105 8 0 
chime bell 121 16 1 
care aid 133 12 1 
proxy lug 134 1 0 
lilac lavender 146 12 1 
brittle ambient 152 6 0 
athlete hut 162 10 0 
opportune concoct 169 7 0 
offer volunteer 183 14 1 
sloth tardy 191 8 0 
construct build 202 11 1 
stooge gallery 221 19 0 
clear open 241 20 1 
live survive 246 5 1 
valet elegant 250 4 0 
palate accept 264 14 0 
charity love 278 14 1 
publish print 281 3 1 
crank grouch 282 1 1 
mint pursue 289 7 0 
pitch throw 290 1 1 
thrust sad 299 9 0 
pamper cyst 306 7 0 
blatant worry 320 14 0 
bust raid 324 4 1 
absolve varmint 339 15 0 
humid weather 345 6 1 
conjure evoke 356 11 1 
garment clothe 374 18 1 



 

 251 

latitude debacle 394 20 0 
eminent people 395 1 1 
rest aunt 414 19 0 
wilt limp 426 12 1 
afraid fear 438 12 1 
inning recess 446 8 0 
soap rub 449 3 1 
gas note 461 12 0 
asphalt pave 480 19 1 
choir saloon 489 9 0 
vet farm 500 11 1 
melt pedestal 515 15 0 
harsh dunce 525 10 0 
drug medicine 538 13 1 
cancel grave 540 2 0 
essay literary 543 3 1 
avail cause 552 9 0 
cushion vague 566 14 0 
turmoil chamber 581 15 0 
blubber fat 586 5 1 
rash red 604 18 1 
vintage stubble 608 4 0 
ran away 628 20 1 
affirm lay 630 2 0 
parasol shade 639 9 1 
tissue cuss 659 20 0 
stalk affect 664 5 0 
moist damp 674 10 1 
scan read 677 3 1 
vein blood 689 12 1 
lid tartar 699 10 0 
trick joke 709 10 1 
alumni quota 722 13 0 
consist slate 732 10 0 
smuggle import 745 13 1 
linoleum figure 753 8 0 
stellar star 759 6 1 
pie petition 779 20 0 
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diagram explain 784 5 1 
lab science 785 1 1 
annual slump 801 16 0 
collapse cheap 814 13 0 
affair muzzle 815 1 0 
ounce pound 821 6 1 
hoarse cry 824 3 1 
element product 832 8 0 
shake tremble 837 5 1 
enzyme protein 853 16 1 
lark podium 857 4 0 
pretty delicate 871 14 1 
scuffle brake 879 8 0 
ton magnet 884 5 0 
huge check 897 13 0 
equal peer 909 12 1 
wreak fugitive 918 9 0 
digest truce 926 8 0 
cavalry horse 929 3 1 
din lame 936 7 0 
intricate elaborate 945 9 1 
onion flavor 957 12 1 
eradicate kill 972 15 1 
distinct discrete 989 17 1 

 

 



 

 253 

A.3 Experiment 4  

Note: Each pair of DP's was presented once for each participant, and whether it 

occurred as a sentence, a coordinated phrase, or a list of DP's was counter-balanced 

across participants. Here we show the sentence version for each pair. The verb was 

replaced with "and" in the coordination condition or a blank screen in the DP list 

condition. 

 

the ADJ N   the ADJ N 

Set 1 

the analytic companies planned the satirical funerals 

the icy spacecrafts measured the silky wolves 

the wicked prisons buried the green officials 

the deadly  parasites scavenged the atrocious pizzas 

the controversial lamps delivered the nimble servants 

the belligerent vendors described the pungent cardigans 

the bubbly merchants visited the ferocious brides 

the artful balloons eliminated the decent technicians 

the merciful boys orbited the forlorn employees 

the apathetic prisoners tested the honest patients 

the scrappy workers searched the skittery couriers 

the mysterious tornados conquered the frank missionaries 

the verbose wizards trampled the opulent baths 

the merciless repairmen deciphered the mediocre squares 

the silly giants negotiated the jubilant weddings 

the sick zombies espoused the communal robots 

the powerful sentries baffled the kind journalists 

the warm disciples defeated the hospitable operators 

the chipper pilots carried the steady tables 

the adept sailors perused the blurry journals 
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the juvenile dictators selected the coherent anthropologists 

the soggy lawyers sent the woodsy midwives 

the fatal leggings dismantled the octogonal bridges 

the pure pencils captivated the corporate bakers 

the stereotypical rectangles cleared the moldy couches 

the fanatical players fought the plush penguins 

the ceramic tails requested the sparkly hooligans 

the fleshy soldiers corrupted the pale bikes 

the eclectic sunsets appreciated the shrunken politicians 

the masterful entrances bought the malicious mosquitos 

the excitable managers feared the useless tycoons 

the superb robes detected the pliable butchers 

the algebraic games approved the formal criminals 

the strong sages oppressed the transient clerks 

the ornate ladders knitted the powdery manifestos 

the fierce colors imprisoned the angry blacksmiths 

the devilish artists defused the persistent dilemmas 

the appropriate lies brushed the fiendish bishops 

the wealthy insurgents stung the lovable ambassadors 

the barbaric puzzles bypassed the quiet tourists 

the prime goalies protected the gradual discoveries 

the stylish chocolates understood the lacy buildings 

the blunt attackers brought the sassy villains 

the exquisite kegs ate the risky crackers 

the bitter orators hated the foundational computers 

the magic rivers felt the printable rulers 

the nasal witches sang the squeamish answers 

the dingy demons watched the alert wardens 

the buff heroes remembered the tranquil acrobats 

the herbal winds fetched the prominent horses 

the quirky referees recited the cultish catastrophes 
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the springy bees plastered the convenient volcanoes 

the smooth billboards forged the continuous boulders 

the fastest biologists called the meddlesome babies 

the familiar beaches improved the remorseful dwarves 

the splashiest medics broke the squeezable cups 

the negotiable magicians released the ornery officers 

the thrifty trainers dried the grateful novices 

the worthy spiders repaired the natural titans 

the major towns imagined the pricey kidnappers 

the toasty tractors entered the scenic cathedrals 

the empty hotels changed the sterile businesses 

the ticklish architects organized the rude families 

the seasonal kings answered the accidental sergeants 

the feminist otters resisted the wordy inmates 

the malevolent goats crushed the poetic athletes 

the public pans defended the frugal clerics 

the fanciful beetles hid the comedic seamstresses 

the violent novels tasted the crinkly cheeses 

the demonic chefs covered the academic fencers 

the lawyerly questions served the benign sculptors 

the readable bubbles destroyed the structural diamonds 

the egregious feet revealed the flirtatious nuns 

the slanderous armies hoarded the informational smiles 

the mindful books confused the sincere editors 

the wily scissors trapped the artistic stylists 

the preppy priests fixed the rough newspapers 

the additional bones melted the billowy boxers 

the wet floors taught the tropical brats 

the respectful chiefs solved the atmospheric earthquakes 

 Set 2 
  
the angsty birds planned the lavish candles 
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the breathless buzzards measured the synthetic guns 

the simple nurses buried the charitable moms 

the questionable enemies scavenged the glittery fishermen 

the spotty recessions delivered the abrasive sandals 

the pointless barbers described the mature attornies 

the pricey calculators visited the huge murderers 

the forceful headaches eliminated the malleable governors 

the clumpy beets orbited the negligible presidents 

the ghastly words tested the euphoric doctors 

the decrepit sandwiches searched the new agencies 

the critical conductors conquered the regal bushes 

the blind monks trampled the extendable tulips 

the terrific hoses deciphered the promotional sketches 

the photogenic nerds negotiated the blatant strategies 

the moist engines espoused the buttery mittens 

the impactful hosts baffled the stout mothers 

the groovy students defeated the colorful hamsters 

the squirrelly witnesses carried the tolerable geniuses 

the idiotic ostriches perused the changeable campaigns 

the groggy mobs selected the inflatable whales 

the reptilian frames sent the admirable professors 

the drab gifts dismantled the architectural cans 

the blubbery minotaurs captivated the symmetrical trainees 

the tiny events cleared the mousy gardeners 

the incredible trains fought the stretchable castles 

the ambivalent butterflies requested the fortuitous journeys 

the giggly maids corrupted the optical daggers 

the exhaustive dinners appreciated the defunct tigers 

the humble elephants bought the fun oracles 

the purposeful ninjas feared the fancy machines 

the puffy experts detected the finicky buyers 
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the slothful villagers approved the interactive warriors 

the vile interrogators oppressed the shameless spectacles 

the interpretive astrologers knitted the autonomous cigarettes 

the melancholic militias imprisoned the innate spirits 

the lockable shingles defused the greedy prophets 

the visual messengers brushed the democratic bears 

the competitive dragons stung the economical cowgirls 

the flimsy napkins bypassed the rare guests 

the caustic blowtorches protected the perceptive cops 

the residential investors understood the temporary toddlers 

the agile vandals brought the diminutive mirrors 

the commendable translators ate the spidery camels 

the primal lights hated the fruitful idiots 

the gallant comedians felt the significant boxes 

the stellar choirs sang the tangential poems 

the sullen dads watched the slimy consumers 

the dense odors remembered the ropy mutants 

the collapsible busboys fetched the creamy mushrooms 

the administrative factories recited the respectable therapies 

the desirous planets plastered the moody mice 

the tiresome apologies forged the splendid planes 

the weak scribes called the sickly therapists 

the monthly commanders improved the catastrophic bracelets 

the spineless treasuries broke the extreme ponds 

the proverbial actors released the perceivable teachers 

the basic citizens dried the inferior aliens 

the abhorrent daughters repaired the exultant androids 

the quaint committees imagined the serpentine explorers 

the tidy nephews entered the horrible fights 

the intentional samurai changed the smart traitors 

the oceanic umpires organized the shaky buckles 



 

 258 

the fervent tyrants answered the vehement musicians 

the auspicious churches resisted the chronic photographers 

the deepest arguments crushed the maniacal monsters 

the stiff warehouses defended the tame casinos 

the jumpy bartenders hid the diabetic princes 

the feathery monuments tasted the gigantic potatoes 

the loose raccoons covered the contemplative cooks 

the complacent beginnings served the delicious flowers 

the full experiments destroyed the mindless memories 

the paternal barons revealed the worthless movies 

the adjustable websites hoarded the indulgent jackets 

the inspirational ghosts confused the bouncy assassins 

the pensive deputies trapped the feeble spoons 

the dry keyboards fixed the resolute vampires 

the generous boats melted the pushy generals 

the portable breads taught the manageable bells 

the talkative clowns solved the ubiquitous governments 

 Set 3  

the outrageous upstarts planned the hybrid yards 

the hazy airports measured the weary pirates 

the timid pioneers buried the smelly heretics 

the motherly philosophers scavenged the eligible diseases 

the regular zebras delivered the gracious princesses 

the luxurious cakes described the whiny kangaroos 

the austere scholars visited the sweet photographs 

the extensive messages eliminated the bogus stews 

the velvety lions orbited the difficult visitors 

the decisive representatives tested the shapeless businessmen 

the lawful mermaids searched the evil songs 

the packable instructors conquered the noisy plumbers 

the extra surgeons trampled the spherical pictures 



 

 259 

the bridal choices deciphered the crispy threads 

the distraught poets negotiated the secular customers 

the harmonious debts espoused the attractive desks 

the wobbly frogs baffled the crazy ministers 

the environmental laborers defeated the salient contestants 

the grand purses carried the perceptible mayors 

the tolerant celebrities perused the haughty institutions 

the brassy canyons selected the conservative sheriffs 

the sulfurous umbrellas sent the weird windows 

the molecular stoves dismantled the dangerous mistakes 

the horizontal eagles captivated the formulaic curators 

the weighty pickles cleared the nasty tunnels 

the skillful models fought the computational astronauts 

the periodic agents requested the bulky knights 

the snuggly requests corrupted the invincible veterans 

the selective dealers appreciated the fragile expeditions 

the ghoulish bosses bought the rickety turtles 

the streaky sweaters feared the lamentable jesters 

the putrid carpets detected the easy fries 

the amnesiac victims approved the temperamental girls 

the freakish ideas oppressed the dumb drivers 

the adamant performers knitted the gangly robins 

the prim knees imprisoned the pragmatic hikers 

the mythical rooms defused the poignant wars 

the mystical travelers brushed the ergonomic shirts 

the managerial systems stung the crabby waiters 

the slovenly days bypassed the royal sofas 

the genuine victories protected the pliant brains 

the intermediate kids understood the solar gnomes 

the realist gluttons brought the blobby diplomats 

the typical janitors ate the bucolic steaks 
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the provocative curtains hated the coastal doors 

the tentative dogs felt the gooey chairs 

the flashy thieves sang the expendable directions 

the methodical rabbits watched the shameful movements 

the jealous fairies remembered the absurd reporters 

the classy hordes fetched the compliant dukes 

the thankful cities recited the rebellious members 

the dynamic leaders plastered the selfless renegades 

the awkward houses forged the worrisome panels 

the perpendicular rugs called the domestic heirs 

the pinkish cabins improved the gratuitous bachelors 

the profound pandas broke the ripe pincers 

the ironic directors released the hopeful stains 

the solid hyenas dried the rowdy apartments 

the delectable problems repaired the splintery squirrels 

the primitive husbands imagined the furious stories 

the meek pharmacies entered the godless parties 

the juicy sounds changed the optimistic guards 

the accurate cashiers organized the wrinkly programmers 

the stray parents answered the scary secretaries 

the enormous cleaners resisted the paranoid banks 

the ambiguous hunters crushed the expressive lovers 

the carcinogenic farmers defended the clear scientists 

the rhythmic remarks hid the gaudy bystanders 

the measurable goblins tasted the active eggs 

the exotic maps covered the abusive assistants 

the joyous deans served the diligent judges 

the mellow teams destroyed the workable trees 

the convertible ogres revealed the bothersome accordions 

the hysterical mattresses hoarded the esoteric tailors 

the careless queens confused the rosy tribes 
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the confident owners trapped the presumptuous specialists 

the salty fires fixed the deficient friends 

the coppery asteroids melted the proud advisors 

the hip misers taught the amateur sisters 

the bloody detectives solved the bountiful mysteries 

 

 

  



 

 262 

Appendix B: Second time window in Experiment 4 

 

 In this Appendix, we report and discuss the results of Experiment 4 for tests 

conducted in the second time window of interest. This was the 1500-3500 ms window 

in the trial, time-locked to the onset of the item intervening between the two noun 

phrases (the verb, “and”, or a blank) and encompassing both this item and the second 

noun phrase. We do not discuss these results in Chapter 5 because our primary 

question is about prediction effects, during the time window when the only difference 

between conditions is what can be predicted to occur next. In the analyses that we 

report here, either the stimulus itself is different (verb vs. “and” vs. blank) or the 

response is to identical noun phrases that we would expect to be processed differently 

because of the preceding item.  

B.1 Results 

B.1.1 Planned analyses 

B.1.1.1 Coordination vs. phrase in Window 2  

 We ran a spatiotemporal cluster test over the left temporal lobe and left 

inferior frontal gyrus for the coordination vs. phrase contrast, in the 1500-3500 ms 

window starting with the presentation of either “and” or a blank screen and then 

encompassing the second noun phrase. This was motivated by the finding of a 

sustained negativity following the coordinator in Lau and Liao (2018). We found 

three significant clusters. Along ventral temporal lobe, we found a cluster (p = .035) 

showing a negative-going peak for coordination > phrase from 78-198 ms after onset 

of the coordinator (Figure 28, top). In anterior superior temporal lobe, we found a  



 

 263 

  

 

 
Figure 28. Coordination vs. phrase clusters in 1500-3500 ms window, plotting time 
course and location of neural activity. Color bar shows maximum t-value at a source 
point. Example item shows onset of each word. 
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cluster (p = .013) showing a positive-going peak and sustained effect of coordination 

> phrase from 90-582 ms after onset of the coordinator (Figure 28, middle). Finally, 

a more anterior ventral cluster (p = .024) again showed a negative-going and more 

sustained effect of coordination > phrase from 108-486 ms after onset of the 

coordinator (Figure 28, bottom). All three clusters reflected neural activity in 

response to presentation of “and” relative to presentation of a blank screen. We failed 

to observe the effect of coordination during the second noun phrase that we had 

expected on the basis of Lau and Liao (2018). 

B.1.1.2 Sentence vs. phrase in Window 2 

 We had also planned an exploratory spatiotemporal cluster test for the 

sentence vs. phrase contrast in the 1500-3500 ms window following the onset of the 

verb/blank. This yielded four significant clusters, all in response to the verb/blank. 

The first three show nearly identical patterns of activity along TTS (112-524 ms; p = 

.002) (Figure 29, top), pSTS (156-532 ms; p = .004) (Figure 29, middle) and STS 

(164-522, p = .002) (Figure 29, bottom). All three show a double peak for sentence > 

phrase, with the first peak appearing to occur from roughly 150-250 ms, and the 

second from roughly 300-500 ms, with positive polarity for the pSTS cluster and 

negative polarity for the TTS and STS clusters. The fourth cluster (p = .018) shows a 

positive-going peak for sentence > phrase, from 226-518 ms after the onset of the 

verb/blank, in anterior temporal lobe (Figure 30).  
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Figure 29. Sentence vs. phrase clusters (TTS, pSTS, STS) in 1500-3500 ms window, 
plotting time course and location of neural activity. Color bar shows maximum t-
value at a source point. Example item shows onset of each word. 
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Figure 30. Sentence vs. phrase cluster (anterior temporal lobe) in 1500-3500 ms 
window, plotting time course and location of neural activity. Color bar shows 
maximum t-value at a source point. Example item shows onset of each word. 

 

B.1.2 Data-driven exploratory analysis of sentence vs. coordination 

Once it became clear that there were no effects in our dataset plausibly related 

to syntactic prediction, we decided to more thoroughly explore the unexpected effects 

that had occurred in the second window. Specifically, the significant clusters of 

activity we observed in response to the verb or “and” occurred on peaks that, in the 

time course of the full trial, appeared to recur either for all words or for open-class 

words only. To test this more directly, we ran spatiotemporal cluster tests directly 

comparing the sentence and coordination conditions. We caution that findings from 

these exploratory analyses should be considered preliminary, and would require 

replication for more serious consideration.  
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In the 1500 ms window of the first noun phrase we found no significant 

clusters for the sentence/coordination contrast. In the 2000 ms window beginning 

with the onset of the verb or “and” we found multiple significant clusters. In plotting 

these effects, though they are elicited by the sentence/coordination contrast, we also 

plot the phrase condition for reference. 

In inferior and ventral temporal areas, we found a cluster (p = .000) from 138-

530 ms showing sustained positive-going activity for the sentence condition and 

negative-going activity for the coordination condition (Figure 31). This negative-

going activity matched a cluster we had observed from the coordination/phrase 

contrast. There was no such cluster for the sentence/phrase contrast. Plotting activity 

for this cluster for all three conditions shows the phrase condition intermediate 

between the sentence and coordination conditions.  

 

Figure 31. Sentence vs. coordination cluster (inferior and ventral temporal lobe) in 
1500-3500 ms window, plotting time course and location of neural activity. Phrase 
condition is plotted for reference. Color bar shows maximum t-value at a source 
point. Example item shows onset of each word. 
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In striping activity along TTS, STS, and ITS, we found a cluster (p = .000) 

from 146-572 ms showing the same negative-going, apparently two-peaked effect 

that we observed in the sentence/phrase contrast but not the coordination/phrase 

contrast (Figure 32, top).  

 

 
Figure 32. Sentence vs. coordination clusters (TTS, pSTS, STS, ITS) in 1500-3500 ms 
window, plotting time course and location of neural activity. Phrase condition is 
plotted for reference. Color bar shows maximum t-value at a source point. Example 
item shows onset of each word. 
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In pSTS, we found a cluster (p = .001) from 154-576 ms, mirroring the cluster 

along TTS, STS, and ITS (Figure 32, bottom). Plotting activity for these clusters for 

all 3 conditions, the coordination condition largely patterns with the phrase condition, 

with a small tendency in the direction of the sentence condition pattern. 

Finally, a cluster in IFG (p = .036), from 252-476 ms, showed a positive peak 

for the coordination condition and a mirrored negative peak for the sentence condition 

(Figure 33). Plotting activity for this cluster for all three conditions shows the 

coordination condition patterning with the phrase condition. We had not found 

significant clusters for the sentence/phrase or coordination/phrase contrasts in IFG. 

 

Figure 33. Sentence vs. coordination cluster (IFG) in 1500-3500 ms window, plotting 
time course and location of neural activity. Phrase condition is plotted for reference. 
Color bar shows maximum t-value at a source point. Example item shows onset of 
each word. 
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B.2 Discussion 

 In Chapter 5 we focused on differences in comprehension of the subject noun 

phrase that might occur because of the anticipation of an upcoming verb or 

coordinator. In this Appendix, we examine the processing of the verb or coordinator 

itself, and the noun phrase that follows it. These analyses consisted of spatiotemporal 

cluster tests in a 2000 ms window that started with the verb, coordinator, or blank, 

and then encompassed that item and the ensuing noun phrase. We looked at all three 

pairwise comparisons between the conditions, and found that all significant 

differences occurred in the roughly 500 ms window following the onset of the verb or 

coordinator. We found no differences in the processing of the noun phrase when it 

was the object of a sentence vs. the second item in a coordinated pair vs. the second 

item in a list.  

B.2.1 Lack of difference in the second noun phrase 

B.2.1.1 Coordination vs. phrase 

The lack of difference between conditions during the second noun phrase was, 

as for the first noun phrase, unexpected. For the coordination/phrase contrast, a 

difference was expected because Lau and Liao (2018) had found a sustained effect of 

coordination (in EEG) that began with the coordinator but persisted throughout the 

second noun phrase. This difference was interpreted as reflecting the maintenance of 

structure in memory, or semantic computations associated with that structure. Though 

we again acknowledge that it is difficult and problematic to reason from a null result, 

and our failure to observe the effect is quite not possibly not meaningful, we will 

enumerate some possible explanations for the manifestation of the effect in one case 
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but not the other, in the case that our effect is a true negative. Only follow-up and 

attempted replication can clarify whether either or both of the observed patterns are 

robust. 

First, of course, we acknowledge that we are comparing two different 

methods—MEG and EEG—whose data do not necessarily correspond. Analysis of 

the EEG data that we have collected for the same paradigm will help address whether 

the method is a factor in the null effect. 

 Second, as in the comparison of the current study to Matchin et al. (2019), 

there are a variety of changes we made to the design that could potentially explain our 

failure to observe any difference. Lau and Liao (2018) used bare noun phrases, while 

we used determiner phrases. Their noun phrases were constructed to be “meaningful 

and plausible” (e.g., “sunlit ponds”), in contrast to our random combinations of 

adjective and noun. This means that their stimuli allow for some degree of 

expectation of the noun given the adjective, which is not possible in our randomly 

combined phrases. However, this type of lexical prediction is not consistent with the 

temporal profile of their coordination effect (a sustained negativity during the second 

noun phrase). Furthermore, the two studies are identical with respect to the fact that 

there was no relationship between the first and second noun phrase, so the Lau and 

Liao (2018) effect cannot be related to expectation for the second phrase given the 

first phrase. 

Instead, the lack of lexical predictability in our study could have led to 

difficulty in semantic composition because of repeated nonsensical combinations, 

leading to the shutdown of such operations. If the sustained effect observed by Lau 
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and Liao (2018) reflected semantic interpretation processes, those processes would 

then be curtailed. This aligns with the fact that they did not observe the coordination 

effect in their jabberwocky condition. If this explanation is right, we might expect the 

coordination effect to be present at the start of the experiment, stopping as it becomes 

clear that the stimuli are semantically nonsense.  

B.2.1.2 Sentence vs. phrase 

 For the sentence/phrase contrast, the lack of difference during the second noun 

phrase was also surprising, although in a less specific way. Given the many syntactic 

and semantic computations that are thought to be occurring with the integration of an 

object noun phrase into a sentence, we expected large differences whose multiple and 

distinct contributing causes would not be separable. Instead, we did not find any 

difference. In comparisons between the current study and Lau and Liao (2018), it is 

true in either case that the comparison between conditions is for the same stimuli 

presented in different contexts. This is however not the case for Matchin et al. (2019), 

for which the same phrases are not always appearing in both conditions, and for 

which the phrase condition is sometimes made up of verb phrases and sometimes 

noun phrases. It seems unlikely that e.g. the structure effects that Matchin et al. 

(2019) observed at all positions are due to this lack of lexical matching, but this 

possibility cannot be ruled out. We discuss this further in Section B.2.3 below. 

B.2.2 Verb vs. “and” vs. blank 

If no difference was observable during the subject noun phrase indicating 

prediction of structure, and no difference was observable during the object noun 

phrase indicating structure-building or integration, then (again, with the caveat that 
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this only holds under the assumption of a true negative) the only potential locus of 

structure-building we can identify in our data is during the response to the verb or 

coordinator. This response also, of course, reflects the fact that very different words 

are being processed. In Table 10, we summarize the results of the three pairwise 

spatiotemporal cluster tests, including the nature of each response component with 

respect to how it applies to function vs. content words. We make this designation on 

the basis not only of differences between the response to a verb versus “and”, but 

also, in looking at the full time course of activity in the cluster, whether the peak on 

which the effect occurs is present only for content words or for all words. We also 

include a handful of clusters with p between 0.05 and 0.1, which were not reported in 

the Results section, for a more complete picture. 

This turns out to be an unusually clear dataset for examining the time course 

and response components of visual word recognition and lexical access. It is also 

unique in that our neutral comparison condition is an absence of input (the blank 

screen between phrases in the phrase condition) rather than making a comparison 

solely between different kinds of words or different kinds of visual/orthographic 

input.  

The evoked response to visually presented words in MEG is characterized by 

well-established temporal landmarks. As recently reviewed by Dikker et al. (2019), 

pre-lexical response components include the M100, reflecting early visual processing 

of the stimulus; the M130, demonstrating sensitivity to orthographic features; and the 

M170, modulated by morphological properties. These three components are generally 

localized to occipito-temporal areas and the inferior temporal and fusiform gyri.  



 

 274 

Table 10. Summary and re-grouping of pairwise spatiotemporal cluster test results. 
Grey italicized text indicates clusters with p between 0.05 and 0.1, which were not 
reported in the Results section.   

 Contrast Location Window p-value Component, 
direction 

Word type  

1 Coordination 
/phrase 

Ventral  78- 
198 ms 

0.035 M130,  
negative 

both 

 Sentence 
/phrase 

Ventral 70- 
278 ms 

0.056 

 
2 Sentence 

/phrase 
TTS 112- 

524 ms 
0.002 M170 + 

M350, 
negative 
 

open-class 

 Sentence 
/phrase 

STS/MTG 
+ITS 

164- 
522 ms 

0.002 

 Sentence 
/coordination 

TTS 
+STS/MTG 
+ITS 

146- 
572 ms 

0.000 

 Sentence 
/phrase 

pSTS 156- 
532 ms 

0.004 M170 + 
M350, 
positive 
 

 Sentence 
/coordination 

pSTS 154- 
576 ms 

0.001 

 Sentence 
/coordination 

ITS/ventral 138- 
530 ms 

0.000 

 
3 Coordination 

/phrase 
Anterior 
ventral  

208- 
486 ms 

0.024 negative closed-
class 

 Sentence 
/phrase 

Anterior 
ventral 

176- 
514 ms 

0.098 positive open-class 

 
4 Sentence 

/phrase 
IFG 222- 

500 ms 
0.058 negative open-class 

 Sentence 
/coordination 

IFG 252- 
476 ms 

0.036 

 
5 Coordination 

/phrase 
ATL 90- 

582 ms 
0.013 sustained, 

positive 
graded 
(open > 
closed)  Sentence 

/phrase 
ATL 226- 

518 ms 
0.018 

 Sentence 
/coordination 

ATL 252- 
458 ms 

0.066 

 

The 350-500 ms window in processing is understood to encompass lexical 

access and ensuing combinatorics; the M350, likely analogue to the N400 observed in 
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EEG, is likely generated in posterior middle and superior temporal areas. We now 

consider each group of clusters from the current dataset as we have summarized them 

in Table 10, and attempt to contextualize them within the above timeline, with the 

goal of identifying which could plausibly represent a structure effect and which are 

likely just due to the presentation of different words. In this section, where we 

hypothesize about the difference between the sentence/phrase and 

coordination/phrase contrasts, we need to highlight that these two comparisons are 

not independent, because the phrase condition is the same data in either case.  

B.2.2.1 M130/early visual response 

Along ventral temporal lobe (group 1 in Table 10), a cluster from the 

coordination/phrase contrast shows a large negative peak with latency ~140 ms that 

occurs in response to “and” but not in response to the blank. A marginally significant 

cluster from the sentence/phrase contrast shows the same effect for the verb relative 

to the blank. The sentence/coordination contrast did not show any differences 

between the two conditions in this spatial/temporal area. Examining the full time 

course of activity in the cluster, we see that the 140 ms peak recurs for every word in 

the trial, with no apparent difference between conditions, in either the 

coordination/phrase or sentence/phrase contrast. This is, of course, a null effect, but 

we note that we do not find support for differences in attention between the two 

conditions that modulate the early visual response.  

This effect is consistent with the M130 in timing and in the fact that different 

kinds of words appear to evoke the same response. As for polarity and location, 

Tarkiainen et al. (1999) thoroughly characterized early visual responses to 
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orthographic input in a study that presented letter and symbol strings with varying 

degrees of visual noise. One of their findings was a response at occipito-temporal 

junction in the 140-170 ms window that showed increasing neural activity with 

decreasing visual noise, as well as increased activity for letters relative to symbols. 

Gwilliams, Lewis, and Marantz (2016), following up on this work, found two 

different clusters for these two patterns of response, both of which appear to have 

peak latency ~ 150 ms. The first cluster shows a negative peak at the occipito-

temporal junction, increasing in amplitude with decreasing visual noise; when 

projected back into sensor space, this cluster has a peak latency of 149 ms. The 

second cluster shows a positive peak in the anterior fusiform area, increasing in 

amplitude for letters relative to symbols, with a peak latency of 172 ms when 

projected back into sensor space. These findings of Gwilliams et al. (2016) are 

consistent with the results of for example Solomyak and Marantz (2010), who 

examined visual word recognition with MEG, and considered their negative peak in 

the range of 140-150 ms in the posterior occipital area to be the M130 response, and a 

positive peak at 180-190 ms in the occipito-temporal area to be the M170. Cavalli et 

al. (2016) also find an orthographic effect in the M130 time window in posterior left 

ITG. Our negative peak at 140 ms, which does not appear to differ for different types 

of words, therefore corresponds well with this M130 response.  

B.2.2.2 M170 and M350 

We also see a peak in the time course data for the current study that we 

suspect corresponds to the M170 response observed in other studies. This response, as 

detailed above, is reported to be sensitive to letter strings, but has also been observed 
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in several cases to be modulated by morphological properties of the visually 

presented word (Fruchter et al., 2013; Lewis et al., 2011; Solomyak & Marantz, 2009, 

2010; Zweig & Pylkkänen, 2009). In our data, this response manifests primarily 

alongside a later, larger response that is likely the M350. Thus, we cannot make 

strong claims about their separability, but in all of the clusters from group 2 reported 

in Table 10, we see an earlier peak at roughly 170 ms and a later peak at roughly 350 

ms. These clusters are largely observed along the sulci and gyri of the lateral temporal 

lobe, though one extends more ventrally. Specifically, we observe clusters showing 

two peaks with positive polarity along pSTS, ITS and more ventrally, and clusters 

showing those same two peaks with negative polarity along TTS, STS, MTG, and 

ITS. As explained for the localizer data in Chapter 5, we consider these clusters to be 

the same effect as measured on either side of the gyri, and the data do not allow us to 

determine where the effect originates or is strongest.    

All of these clusters manifest as activity for the sentence condition relative to 

the phrase or coordination condition. There are no differences for the coordination 

relative to the phrase condition. Given the apparent morphological sensitivity of 

M170, the early difference could be due to the morphological complexity of the verb 

relative to the coordinator. For the later peak (the M350), content versus function 

word is likely the right distinction.  

Prior literature indicates that the M170 should localize to the fusiform gyrus 

and that the polarity of the peak should be positive. Prior literature on the M350 

indicates that the polarity of the peak should be negative and the effect should 

localize to middle temporal areas (Fruchter et al., 2013; Halgren et al., 2002). Why, 
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then do we only detect the M170 in clusters in which it precedes the M350 in these 

lateral temporal areas? Given the nature of spatiotemporal cluster tests, we suspect 

the M170 is a weaker effect that is picked up in these lateral areas only because of the 

strength of the M350 and their being contiguous in time. It would otherwise be 

surprising to see a distinction between different words this early along lateral 

temporal lobe. It may be that the origin of the (positive) M170 is ventral, but is 

mirrored laterally (appearing negative), while the origin of the (negative) M350 is 

lateral, but is mirrored ventrally (appearing positive). 

How would we distinguish a structure effect in pSTS from middle temporal 

M350 effects we are observing? That is of course impossible in our design, but might 

be possible with more targeted manipulation of single word versus sentence 

properties. Given the theory of lexicalized syntax described by Matchin and Hickok 

(2020), one consideration is that the M350 is inherently syntactic, in the sense that 

lexical retrieval also involves retrieval of associated structure. 

B.2.2.3 Other effects in the lexical window 

Besides this group of clusters showing the M170/M350 response to the verb 

but not the coordinator, we have several other effects in the time window of lexical 

processing, in different areas and showing different patterns with respect to the three 

conditions. If we could confidently identify which (if any) of these effects is 

associated with structure, one interesting implication would arise from whether such a 

structure effect is graded or does not occur for the coordinator.   

The Group 3 anterior ventral clusters appear to show a peak at 350 ms, but the 

peak is positive for the coordinator and negative for the verb, with the blank for the 
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phrase condition patterning in the middle. Cavalli et al. (2016) also report an effect in 

this time window along ITG and the fusiform gyrus that they attribute to form and 

meaning access, but not in such a way that we would expect effects in opposite 

directions for our two word conditions. In IFG (Group 4), with a similar 350 ms 

(negative) peak, we see a response only for the verb. Again, Cavalli et al. (2016) 

report an IFG effect in a similar window that they attribute to orthographic and 

semantic recombination; this is actually consistent with our observing a response in 

that area only for the verb. Matchin and Hickok (2020) propose that IFG effects of 

structure might occur in comprehension because of top-down preactivation of lexical 

syntax.  

In ATL (Group 5), a more sustained positive response occurs in both word 

conditions relative to the blank, but is much larger for the verb. The 

coordination/phrase difference may correspond to the coordination effect that Lau and 

Liao (2018) observed in response to the coordinator, though their effect continued for 

the rest of the noun phrase. Otherwise, we expect activity in this area to reflect some 

form of semantic composition (see Pylkkänen (2020) for review). Our effect is more 

sustained than is usually observed for simple adjective/noun composition, but it does 

sometimes appear more sustained in more complex combinatory situations (Brennan 

& Pylkkänen, 2017; Westerlund et al., 2015). Interestingly, a recent study from this 

group manipulating syntactic rather than semantic composition (Flick & Pylkkänen, 

2020) finds a difference in PTL rather than ATL, around 200 ms, but we do not 

observe any corresponding effects. 
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B.2.3 Matchin et al.’s every-word structure effects 

Finally, what do we make of the apparent effects of structure Matchin et al. 

(2019) observed on all open and closed-class words, as well as specifically on the 

determiner in the final DP? None of these effects occurred in our study with nonsense 

stimuli. In this section, we walk through several potential explanations. 

 Matchin et al. (2019) hypothesize that the effects occurring on all words arise 

because of increased attention or maintenance required for lexical-syntactic 

representations when they have to be integrated into sentence-level structure, as 

compared to when they do not. Our study would not invoke such attention or 

maintenance costs if participants did not parse the sentences as structured input.  

A variant on this logic would be that the heightened attention in the sentence 

condition for Matchin et al. (2019) is due not to the necessity of integration into 

higher-level structure but due to the fact that the specific identity of the word is 

relevant for construction of meaning in a way that it is not in the phrase condition, 

and is not when the stimuli are nonsense, as in our study. This would make the 

processing of nonsense stimuli more akin to the processing of jabberwocky, and if 

this is the case then the lack of structure effects in our study could fall under the same 

explanation that we offered above for the general lack of jabberwocky structure 

effects in MEG. That is, when lexical identity is unavailable or ignored, syntactic 

structure-building loses one of its primary sources of information. Individual 

participants might then vary in their reliance on other cues (inflection, function 

words) as well as in whether this pushes them from a top-down to a bottom-up 

parsing mode. Such temporal variability would make it much more difficult to 
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observe structure effects in MEG than fMRI; it is therefore possible that our nonsense 

paradigm might have yielded structure effects if run in fMRI. 

We acknowledge that these structure effects could also have arisen for 

Matchin et al. (2019) because the stimuli were not perfectly matched between 

conditions. Their phrase condition was sometimes a sequence of verb phrases and 

sometimes a sequence of noun phrases, and so the comparison was never between 

identical noun phrases with sentence-level structure as the only difference. However, 

we do not have any hypothesis as to why the lack of matching would have led to an 

effect specifically in this direction.  

The final explanation we can consider is that these apparent structure effects 

were due to lexical predictability, in parallel with the apparent syntactic prediction 

effect on the subject noun. However, we think these effects are a poor fit with the 

lexical prediction account. First, the effect on open-class words is poorly aligned with 

the prediction effect on the subject noun because it is far less sustained in time 

(occurring from 284-332 ms as compared to 272-484 ms). In fact, it seems plausible 

that the prediction effect is comprised of first the open-class effect and then a separate 

effect that is later and longer-lasting.  

The late effect of structure on the determiner before the object noun is also not 

at the right word position to be parallel to the subject noun effect; we would instead 

expect the prediction for the object noun to manifest on the verb.  

The same issue holds for the effect occurring on all closed-class words, which 

is far earlier than the effect on the subject noun (92-148 ms rather than 272-484 ms). 

The potential contribution of a closed-class word to prediction of the open-class word 
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that follows it is (at least in this design) largely limited to the syntactic category of 

that upcoming word, but this possibility is the same in the sentence and phrase 

condition, and therefore should not manifest in a sentence/phrase contrast. It could 

potentially manifest in the phrase/list contrast, but Matchin et al. (2019) did not find 

such an effect in fMRI, and supplementary figures for the MEG data suggest it is not 

present there either. The Payne et al. (2015) finding that open-class N400 amplitudes 

do not reduce with word position in nonsense sentences, where the only possible 

prediction about each upcoming word is its syntactic category, is consistent with the 

null effects for the phrase/list contrast.  

Prediction of at least the syntactic category of closed-class words, from the 

open-class words that precede them, is another effect that should only have 

manifested in the phrase/list contrast if occurring (but did not). Payne et al. (2015) 

showed that for closed-class words N400 amplitude does not decrease with word 

position in a natural sentence, suggesting that prediction of the sort we are concerned 

with may be occurring only for open-class words (and as triggered, apparently, also 

by only open-class words). This converges with recent claims that evidence for 

prediction of determiners before predictable nouns is weaker than previously thought 

(Kochari & Flecken, 2019; Nieuwland et al., 2018).   

In summary, we do not believe that the other structure effects observed by 

Matchin et al. (2019) are good candidates for lexical prediction effects.  
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