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State estimation and subsequent controller design for a general nonlinear system is an

important problem that have been studied over the past decades. Many applications,

e.g., atmospheric and oceanic sampling or lift control of an airfoil, display strongly non-

linear dynamics with very high dimensionality. Some of these applications use smaller

underwater or aerial sensing platforms with insufficient on-board computation power to

use a Monte-Carlo approach of particle filters. Hence, they need a computationally effi-

cient filtering method for state-estimation without a severe penalty on the performance.

On the other hand, the difficulty of obtaining a reliable model of the underlying sys-

tem, e.g., a high-dimensional fluid dynamical environment or vehicle flow in a complex

traffic network, calls for the design of a data-driven estimation and controller when abun-

dant measurements are present from a variety of sensors. This dissertation places these



problems in two broad categories: model-based and model-free estimation and output

feedback.

In the first part of the dissertation, a semi-parametric method with Gaussian mixture

model (GMM) is used to approximate the unknown density of states. Then a Kalman

filter and its nonlinear variants are employed to propagate and update each Gaussian

mode with a Bayesian update rule. The linear observation model permits a Kalman

filter covariance update for each Gaussian mode. The estimation error is shown to be

stochastically bounded and this is illustrated numerically. The estimate is used in an

observer-based feedback control to stabilize a general closed-loop system. A transfer-

operator-based approach is then proposed for the motion update for Bayesian filtering

of a nonlinear system. A finite-dimensional approximation of the Perron-Frobenius (PF)

operator yields a method called constrained Ulam dynamic mode decomposition (CU-

DMD). This algorithm is applied for output feedback of a pitching airfoil in unsteady

flow.

For the second part, an echo-state network (ESN) based approach equipped with an

ensemble Kalman filter is proposed for data-driven estimation of a nonlinear system from

a time series. A random reservoir of recurrent neural connections with the echo-state

property (ESP) is trained from a time-series data. It is then used as a model-predictor for

an ensemble Kalman filter for sparse estimation. The proposed data-driven estimation

method is applied to predict the traffic flow from a set of mobility data of the UMD

campus. A data-driven model-identification and controller design is also developed for

control-affine nonlinear systems that are ubiquitous in several aerospace applications. We



seek to find an approximate linear/bilinear representation of these nonlinear systems from

data using the extended dynamic mode decomposition algorithm (EDMD) and apply Lie-

algebraic methods to analyze the controllability and design a controller. The proposed

method utilizes the Koopman canonical transform (KCT) to approximate the dynamics

into a bilinear system (Koopman bilinear form) under certain assumptions. The accu-

racy of this approximation is then analytically justified with the universal approximation

property of the Koopman eigenfunctions. The resulting bilinear system is then subjected

to controllability analysis using the Myhill semigroup and Lie algebraic structures, and a

fixed endpoint optimal controller is designed using the Pontryagin’s principle.
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∇ Gradient operator

Lowercase Greek letters

α Angle of attack (Chapter 3), leakage rate (Chapter 4)
λ Eigenvalue of a matrix or a linear operator
ρ(·) Probability density function (Chapter 3)
τ1, τ2 Flow settling times (Chapter 3)
ϕ(·) Koopman/PF eigenfunctions (Chapters 3, 5)
ψ(·) Activation function for the neural network (Chapter 4)
χB Characteristic (Indicator) function of set B (Chapter 3)

Uppercase Roman letters

CL Coefficient of lift Chapter 3)
G(n, p) Erdös-Rényi graph with n vertices and edge-probability p (Chapter 4)
GL(n,R) General linear group (group of all n× n invertible real-valued matrices)
H(t, ·, ·, ·) Pre-Hamiltonian (Chapter 5)
H(x) Set of dictionary functions (Chapter 5)
I Identity matrix
K Kalman gain
Lf Lie-derivative with respect to the vector-field f
Lp Space of pth-integrable functions, p ∈ [1,∞)
Linf Space of essentially bounded measurable functions
M Mixture complexity (Chapter 2)
P Covariance matrix
Pτ Markov approximation of Pτ (Chapter 3)
S1 Circle group
V Measurement noise (Chapter 2)
W Process noise (Chapter 2)
W Reservoir weight matrix (Chapter 4)
Win Input weight matrix to an ESN (Chapter 4)
Wout Readout matrix from an ESN (Chapter 4)

xvi



Lowercase Roman letters

det(·) Determinant of a square matrix
dwt Wiener increment (Chapter 3)
Im(·) Imaginary component operator
k1, k2 Control gains (Chapter 3)
ker(A) Null-space (kernel) of matrix A
m Lebesgue measure
Re(·) Real component operator
r Reference signal (Chapter 2), reservoir states (Chapter 4)
T Koopman canonical transform (KCT) operator (Chapter 5)
tr(·) Trace of a square matrix
u(·), u(·) Control input
wj Weight of jth mixture component (Chapter 2)
x, x State variable
x Mean of the stochastic states/ensemble of the state vectors
y, y Output/measurement variable
z Transformed state variable (Chapter 5)

Calligraphic, blackboard, and decorative letters

B(X) Borel sigma algebra over X
C Set of complex numbers
E(X) Expectation of random variable X
H(t, ·, ·) Control Hamiltonian
Kτ Koopman operator semigroup for time τ
N (x; x, P ) Probability of obtaining state x from a Gaussian distribution

with mean x and covariance P (Chapter 2)
P Probability measure
Pτ Perron-Frobenius operator semigroup for time τ (Chapter 3)
R Set of real numbers
X State-space/manifold

List of abbreviations

BIC Bayesian information criterion
CU-DMD Constrained Ulam dynamic mode decomposition
DMD Dynamic mode decomposition
DMZ Duncan-Mortensen-Zakai (equation)

xvii



EDMD Extended dynamic mode decomposition
EKF Extended Kalman filter
EM Expectation maximization
EnKF/S Ensemble Kalman filter/smoother
ESN Echo-state network
ESP Echo-state property
GK Goman-Khrabrov (model)
GMM Gaussian mixture model
GMM-EKF Gaussian mixture model-extended Kalman filter
GMM-KF Gaussian mixture model-Kalman filter
GMM-UKF Gaussian mixture model-unscented Kalman filter
i.i.d. Independent and identically distributed
KCT Koopman canonical transform
KF Kalman filter
MAV Micro-air vehicle
ODE Ordinary differential equation
PDE Partial differential equation
PDF Probability density function
PF Perron-Frobenius (operator)
PMF Probability mass function
RC Reservoir computing
RNN Recurrent neural network
SDE Stochastic differential equation
UKF Unscented Kalman filter
UT Unscented transform

xviii



Chapter 1

Introduction

Estimation and control of high-dimensional nonlinear systems is of paramount impor-

tance in many control systems application. In many of the aerospace applications in-

cluding atmospheric and oceanic sampling, nonlinear filtering, even with non-Gaussian

driving noise, has become more important in recent days. And most of them use smaller

aerial or underwater vehicles that have serious restrictions regarding to on-board com-

putational power. Hence the need for approximate nonlinear filtering without extensive

use of Monte-Carlo simulations on-board arises. Furthermore, it is sometimes difficult to

obtain a reliable model of the underlying system, e.g., a high-dimensional fluid dynamical

environment or vehicle flow in a complex traffic network. But with the abundant avail-

ability of cheap sensors, it is easier to obtain a lot of spatiotemporal sampling data for

these cases, thereby requiring a model training using the available data, and its use in the

subsequent estimation and controller design.

For a linear system with Gaussian process and sensor noise and with Gaussian initial

density, the optimal estimator is given by the celebrated Kalman filter [3], whereas for a
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nonlinear system with non-Gaussian process noise, optimal filtering is infinite dimensional.

The optimal estimator for the nonlinear system involves solving Duncan-Mortensen-Zakai

(DMZ) [4] stochastic Partial Differential Equation (PDE) for continuous measurement

or recursive Bayesian filtering by solving Fokker Planck PDE for discrete measurement

case. However both the approaches require solution of the PDEs and hence no finite-

dimensional filtering is possible in general. Although there are certain cases where finite

dimensional solutions for this problem have been discovered [5], [6], nonlinear filtering is

mostly facilitated by several approximate techniques like extended Kalman filter (EKF),

unscented Kalman filter (UKF), projection filtering [7, 8, 9], and particle filters [10]. The

EKF and UKF aim to make the filtering problem finite dimensional using a finite number

of parameters and relying on a fully parametric and, in most cases, Gaussian process

noise model, which does not guarantee convergence for the nonlinear system. The latter

techniques use Monte-Carlo simulations of particles in the state space and update their

weights to approximate the probability density function of the states. But they require

large amount of computing power and suffer from the issue of degeneracy. The latter

issue can be mitigated by resampling, but that, in turn, increase computational burden

even more.

In many aerospace applications, nonlinear filtering, even with non-Gaussian driving

noise, has become more important in recent days. And most of them use smaller aerial

or underwater vehicles that have serious restrictions regarding to on-board computational

power. Hence the need of approximate nonlinear filtering without extensive use of Monte-

Carlo simulations on-board arises. Furthermore, the necessity to design observer-based
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feedback controller using the estimate poses a real challenge. On the other hand, with

the evolution of cheap sensors providing abundant data and an unprecedented increase in

offline computational power, we have moved forward with the great hope of controlling

more complicated systems where a reliable model is often hard to find. Sometimes those

models are very high-dimensional and hence difficult to tame.

This dissertation aims to solve the aforementioned problems in two successive steps:

1. The first part proposes two new techniques for model-based estimation and out-

put feedback for nonlinear systems. Both of them are designed to deal with non-

Gaussian prior and process noise profiles.

• First, the Gaussian mixture model (GMM) as a semi-parametric approach to

approximate the probability density and Kalman filter based motion and mea-

surement updates are used for nonlinear filtering with non-Gaussian process

noise. The stochastic error bounds of such filters are analytically proved and

numerically illustrated. The ultimate stochastic boundedness of the output

feedback control using such filter is also analyzed.

• Next, the Perron-Frobenius (PF) operator, a linear transfer operator that de-

scribes the evolution of probability density in a dynamical system, is recalled.

A finite-dimensional approximation of the Perron-Frobenius operator is em-

ployed with a Bayesian measurement assimilation technique for nonlinear es-

timation. The proposed method is applied for the output feedback control of

a pitching airfoil in order to maximize lift.
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2. In the second part, we shift our focus to the estimation and control of unmodeled

or partially modeled systems. Here we rely on the richness of available data for

prediction and control of a system.

• A framework for data-driven estimation of complex systems from time-series

data is developed using an echo-state network (ESN), a special type of recurrent

neural network (RNN) and it is applied to estimate the daily cycles of traffic

congestion from a real set of mobility data.

• Lastly, a data-driven control framework for a control-affine nonlinear system is

developed using the spectra of Koopman operator , the dual of the PF operator,

when the drift vector field is unknown.

1.1 Survey of the relevant literature

Due to the wide breadth of topics covered in this dissertation, this survey only focuses

on the most pertinent works known to the author at the time of writing. Additional

references appear elsewhere in the text of the dissertation as appropriate.

1.1.1 Nonlinear estimation and feedback control using system models

1.1.1.1 Gaussian mixture model based estimation

For a nonlinear system with non-Gaussian process noise, the optimal estimator is repre-

sented by a recursive Bayesian filter that converts the prior probability density function
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(PDF) into a posterior PDF using a likelihood function of the observation. However, in

many cases, the prior PDF is not explicitly known, and has to be approximated from

an ensemble realization. The most common approach is to use a particle filter [11] with

an effective method of re-sampling to tackle highly non-Gaussian distributions. But sam-

pling and re-sampling become computationally intractable for a high-dimensional system.

Hence, a semi-parametric approach may be necessary.

Alspach and Sorenson [12] proved that any sufficiently smooth probability density

function is approximated arbitrarily closely by an ensemble realization of a weighted sum

of Gaussian PDFs. This technique, called the Gaussian Mixture Model (GMM), gives an

approximate way to explicitly calculate the posteriori density of the states of a stochastic

nonlinear system, even in the presence of non-Gaussian process noise.

There are several approaches for time and measurement updates using GMM. The

GMM-DO filter of Sondergaard and Lermusiaux [13] uses GMM equipped with Monte-

Carlo data-fitting based on the Expectation Maximization (EM) algorithm [14] and the

Bayesian information criterion (BIC) [15]. GMM represents the PDF using a weighted

sum of Gaussian PDFs, each of which is updated using individual Kalman filters if the

measurement model is linear and the measurement noise profile is Gaussian. However, [13]

requires re-sampling at each time instant at which an update is produced, thus increasing

the computational burden.

For high dimensional systems, [16], [17] have developed an implicit formulation of

ensemble Kalman filters and smoothers (EnKF/S). This approach operates directly on

the ensemble members. Reference [18] provides an approach of clustering the forecast
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ensembles around centroids obtained using a clustering algorithm, e.g., K-means. The

Kalman gain for each cluster is defined locally using an empirical covariance matrix.

Reference [19] uses EM and BIC to approximate the forecast distribution using GMM;

the update takes place by projecting it on a posterior Gaussian distribution. Reference

[16] removes the constraint of a Gaussian posterior and [17] introduces balanced sampling

to determine the ensemble member for update. Reference [20] develops a mixture-model

EnKF that uses an exact update equation without requiring explicit knowledge of the

mixture moments.

Many sensors used in atmospheric and oceanic sampling have a linear (or linearized)

observation model and an additive Gaussian measurement noise profile [13]. Taking these

assumptions into account, GMM along with Kalman filter updates proves to be an effi-

cient estimator, even for non-Gaussian process noise. For nonlinear systems, the Kalman

update can be replaced by the extended Kalman filter, which gives the prediction up

to first-order precision [21]. The unscented Kalman filter [22], [23] uses the unscented

transform (UT) to transport the Gaussian covariance up to third-order precision with

significantly less computational effort compared to Monte-Carlo covariance propagation

in each step.

1.1.1.2 Estimation using operator approximation

The operator-theoretic approach to dynamical systems deals with the evolution of mea-

surable maps under the system dynamics. The two main candidates of this approach are

the Koopman operator and its dual, the Perron-Frobenius operator. While the Koopman
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operator is useful in studying observables, the Perron-Frobenius (PF) operator acts on

the space of densities. Hence the PF operator is important when dealing with uncertain-

ties in the system, especially when the likelihood of the state is given in the form of a

probability density function under a suitable absolutely continuous probability measure.

Formally, the PF operator is an infinite-dimensional operator operating on the space of

L1 functions.

The PF operator is used extensively to analyze the global behavior of dynamical

systems, especially for fluid dynamics [24], and to estimate almost-invariant sets with

efficient toolboxes like GAIO [25]. The PF operator, being able to transport density in a

dynamical system, is important in recursive estimation problems. The approximated PF

operator can be used to transport density with less computational effort than solving a

partial differential equation. Hence an accurate and efficient approximation technique of

the PF operator is needed. As the PF operator operates on infinite-dimensional spaces,

it is customary to project it onto the span of suitable basis functions to approximate

their dominant actions in finite dimensions. This projection is usually accomplished by

Galerkin methods using a weak approximation of the operand functions [26], [27].

One technique to approximate the PF operator is Ulam’s method [28], where the

chosen basis functions are the characteristic functions of grids spanning the state space.

The PF operator is reduced to a Markov state transition matrix and approximated by

one-pass Monte Carlo simulation of a large number of initial conditions. However, this

method requires the time step of the simulation to be sufficiently long [28] to avoid

degeneracy. This limitation poses a difficulty when using the approximated PF operator
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for the estimation, because precise density transport over small time intervals is necessary

to accommodate frequent observations. To enable PF approximation for a short time step,

a multi-pass approach is necessary.

Multi-pass data-driven approaches, e.g., dynamic mode decomposition (DMD), are

ubiquitous for the approximation of the Koopman operator, the adjoint of the PF op-

erator. Rowley et al. [29] describes the relationship between DMD and the Koopman

operator; Schmid et al. [30] demonstrates the use of DMD on experimental fluid flow

data; and Mohr et al. [31] extends mean ergodic theorem using Laplace averages to con-

struct Koopman eigenfunctions. The extended DMD (EDMD) [32, 33] uses a time series

of the observable data to approximate the eigenvalues of the Koopman operator on a

finite-dimensional basis set chosen from a dictionary of appropriate functions.

EDMD solves an unconstrained least-squares problem to approximate the Koopman

operator in the form of a matrix. Huang et al. [34] proposes a structured version of

EDMD that takes the positivity of the Koopman operator into account to generate a

more accurate estimate of the Koopman eigenfunctions. To replicate this approach for

the PF operator, two challenges need to be addressed. Unlike Koopman, the PF operator

is Markov, and hence preserves the measure. Moreover, the PF operator operates on

densities, which implies it is not directly observable, so it must be approximated from a

time series of Monte Carlo simulations.
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1.1.2 Data-driven estimation of nonlinear system without a system model

With the availability of cheap sensors and high computational power, prediction and esti-

mation techniques are being developed for systems when a reliable model is not available.

1.1.2.1 Prediction using an echo-state network

Recently developed machine learning techniques have been useful for solving a wide variety

of problems, e.g., classification, speech recognition [35], and board games [36]. Recurrent

neural networks (RNN) have been particularly useful for model-free prediction of dynam-

ical systems. For example, an echo-state network (ESN) [37] can model chaotic systems

with great effect [2, 38]. The ESN adopts an input-output neural network with a randomly

generated recurrent reservoir. Linear regression determines the output weights. It has

been shown that an ESN with fading memory can universally model nonlinear dynamics

[39, 40]. However, these prediction techniques assume no measurements are available after

training and rely instead on a free-running neural network to predict the dynamical sys-

tem. But in many practical cases, a stream of sensor measurements, even if sparse and/or

noisy, may be available. Such applications include fluid flow over an airfoil, atmospheric

dynamics, and traffic network data. After training the neural network, estimates of the

quantities of interest may be obtained with or without subsequent measurements.

Neural-network predictors do not use a dynamic model. Instead, they utilize the

measurement and state data for training, and then run freely from an initial condition

to predict future states. This prediction requires a reasonably accurate initial condition
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and does not incorporate any subsequent measurements. Some ESN-based methods [2]

have been developed to utilize measurements for predicting unmeasured variables in the

testing phase when all of the states are used during the training phase. These methods,

however, feed the measurements directly into the ESN and rely on the ESN’s structure

to assimilate them for prediction of the unmeasured states. These methods also rely only

on the current measurement, rather than the history of measurements, and do not take

measurement noise into account.

1.1.2.2 Koopman operator based approach

The Koopman operator’s action on an observable function is to describe its evolution

along the trajectory of the original system. Being a linear operator, it can be used for

spectral analysis. Koopman eigenfunctions are directly related to the geometry of the

system dynamics, e.g., periodic partitions in an ergodic system [41]. A nonlinear flow can

be characterized by its dominant Koopman modes [29]. The Koopman operator can be

approximated from data, without knowledge of the system, by algorithms like extended

dynamic mode decomposition [42] and Krylov-subspace methods [29]. An operator the-

oretic approach helps to transform a nonlinear system into a linear or bilinear one and

enables the design of a controller that exploits the structure of the transformed system.

Operator-theoretic methods embed finite-dimensional dynamics in an infinite-dimensional

function space in which functions evolve under a linear operator. Spectral properties of

the Koopman operator are well analyzed, see, e.g., [41]. The Koopman operator offers

effective methods to characterize a nonlinear system in terms of stability [43] and lin-
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earization [44]. The global stability properties of fixed points and limit cycles can also

be characterized by Koopman eigenfunctions [43]. Furthermore, the Koopman operator

underlies numerical algorithms like dynamic Mode decomposition [29, 30].

The application of Koopman methods to actuated systems has proven to be difficult,

because the Koopman operator changes its spectral properties with the actuation signals.

Proctor et al. [45] introduces a method to incorporate the control input in a Koopman

framework by re-defining the Koopman operator with two arguments. Williams et al.

[42] bridge the gap between the analysis and simulation by providing a method to deter-

mine the spectral properties of the Koopman operator of the underlying unforced system

from the data of the actuated dynamics. Surana et al. [46] propose an observer design

for a discrete-time nonlinear system using Koopman eigenfunctions. This framework is

extended in [47] with the introduction of the Koopman canonical transform (KCT) for

a continuous-time control-affine nonlinear system. This approach deals only with the

Koopman operator related to the unactuated part of the dynamics and relies on Lipschitz

continuity of the control vector fields to design a high-gain observer.

1.2 Contributions to the state-of-the-art

This dissertation provides research contributions in the general areas of model-based and

model-free estimation and control of nonlinear systems. The main results of this disserta-

tion have been published or submitted for publication in archival journals [48, 49, 50, 51].

Earlier research results related to this dissertation appeared in conference proceedings
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[52, 53]. Some additional discussion and results appear in this dissertation that have not

appeared elsewhere. Unless otherwise stated, the following claims of contribution were

performed together with colleagues in the aforementioned publications.

We formulate a Gaussian mixture model based Kalman filter (extended/unscented

Kalman filter for nonlinear systems) with a stochastic boundedness guarantee and an

output feedback control design using the estimate. We derive an improved approximation

technique for the Perron-Frobenius (PF) operator to use it for the motion update for

nonlinear estimation. This method is applied in output feedback of a pitching airfoil to

maximize its lift performance.

We also derive a framework for data-driven estimation of complex systems using an

echo-state network (ESN), a special kind of recurrent neural network equipped with an

ensemble Kalman filter. This method is used to improve the estimation accuracy over

time for a chaotic nonlinear system and to predict daily cycles of traffic congestion from

a real set of mobility data. The model-free estimation algorithm developed here has wide

applications for estimation of complex dynamics when a reliable model is not available.

Finally, a control framework for a control-affine nonlinear system is designed from

data using the Koopman canonical transform (KCT) [47]. The nonlinear system is ap-

proximated as a bilinear one and the convergence of such approximation is proved. An

optimal control framework is then developed using Pontryagin’s principle.
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1.3 Outline of the dissertation

The organization of the dissertation is as follows. Part I includes chapters 2 and 3 that

discuss the model-based estimation and output feedback strategies. Chapter 2 describes

the Gaussian mixture models (GMM) as a semi-parametric approach to approximate the

probability density and Kalman filter based motion and measurement updates are used

to propagate each of the Gaussian modes. Alspach and Sorenson [12] proved that any

sufficiently smooth probability density function is approximated arbitrarily closely by

an ensemble realization of a weighted sum of Gaussian PDFs, thereby providing an ap-

proximate way to explicitly calculate the posteriori density of the states of a stochastic

nonlinear system, even in the presence of non-Gaussian process noise. Stochastic bound-

edness of the estimation-errors from GMM-based filters and the corresponding output

feedback control are analyzed and numerically illustrated.

Chapter 3 proposes a novel finite dimensional approximation technique for the Perron-

Frobenius (PF) operator for motion update in a Bayesian nonlinear filter. Application

of the proposed method for the ouput feedback control of a pitching airfoil shows its

potential for nonlinear estimation and control.

In part II, we explore data-driven methods for estimation and output feedback for

nonlinear systems. Part II includes chapters 4 and 5. Chapter 4 derives an echo-state

network (ESN) based estimation framework for data-driven estimation of nonlinear sys-

tems. A case-study with a real set of mobility data for the traffic flow prediction is also

presented.
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Chapter 5 provides a data-driven control framework for partially modeled control-

affine nonlinear systems with unknown drift vector field. A control-affine system is ap-

proximated as a bilinear one through its Koopman spectra and the convergence of such

approximation is proved. This chapter also includes controllability results and an optimal-

control design for the approximated bilinear system using the Pontryagin’s principle.

Chapter 6 summarizes the primary contributions of of this dissertation and and dis-

cusses directions for future research.
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Part I

Model-based estimation and control of nonlinear systems
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Chapter 2

Non-Gaussian estimation and dynamic out-

put feedback using the Gaussian mixture model

Kalman filter

For a nonlinear system with non-Gaussian process noise, the optimal estimator is repre-

sented by a recursive Bayesian filter that converts the prior probability density function

(PDF) into a posterior PDF using a likelihood function of the observation. However, in

many cases, the prior PDF is not explicitly known, and has to be approximated from an

ensemble realization. The most common approach is to use a particle filter [11] with an

effective method of re-sampling to tackle highly non-Gaussian distributions. But sampling

and re-sampling become computationally intractable for a high-dimensional system. In

this chapter we look into the Gaussian Mixture Model (GMM) as a semi-parametric ap-

proach to facilitate the density propagation for the recursive Bayesian estimation process.

Alspach and Sorenson [12] proved that any sufficiently smooth PDF can be approxi-
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mated arbitrarily closely by an ensemble realization of a weighted sum of Gaussian PDFs.

This technique, called the Gaussian mixture model (GMM), gives an approximate way to

explicitly calculate the posteriori density of the states of a stochastic nonlinear system,

even in the presence of non-Gaussian process noise.

GMM represents the PDF using a weighted sum of Gaussian PDFs, each of which

is updated using individual Kalman filters if the measurement model is linear and the

measurement noise profile is Gaussian. This chapter utilizes the Expectation Maximiza-

tion (EM) algorithm, and Bayesian Information Criteria (BIC) to determine the Gaussian

mode parameters and the total number of such modes. Since many sensors used in atmo-

spheric and oceanic sampling have a linear (or linearized) observation model and additive

Gaussian measurement noise profile [13], we have assumed a linear observation profile

in the rest of the chapter. Taking these assumptions into account, GMM along with

Kalman filter updates proves to be an efficient estimator, even for non-Gaussian process

noise. For nonlinear systems, the Kalman update can be replaced by the extended Kalman

filter (EKF), which gives the prediction up to first-order precision [21]. The unscented

Kalman filter (UKF) [22], [23] uses the unscented Transform to transport the Gaussian co-

variance up to third-order precision with significantly less computational effort compared

to Monte-Carlo covariance propagation in each step.

This chapter uses the GMM framework to capture the non-Gaussian noise profile, and

uses the Kalman filter and its variants (EKF and UKF) to propagate the parameters

of the GMM forward in time. This approach does not require re-sampling whenever

an observation is obtained, thus saving computational cost. This chapter also proposes
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the notion of bounded with probability to provide an analytical justification of GMM-KF,

GMM-EKF, and GMM-UKF.

The goal of this chapter is to provide a theoretical guarantee of stochastic boundedness

of the estimation error while using GMM-KF/GMM-EKF/GMM-UKF and a proof of the

ultimate boundedness of the state in a nonlinear system using Lyapunov’s method for

observer-based feedback.

2.1 The Gaussian mixture model

The Gaussian mixture model (GMM) provides a semi-parametric approach to quantify

the prior distribution from a set of ensemble realizations [54]. It uses a weighted sum of

Gaussian distributions to approximate a non-Gaussian prior. The primary advantage is

that each of the Gaussian modes is updated using the Kalman filter equations, augmented

with a weight analysis.

The Gaussian mixture model Kalman filter (GMM-KF) has three principal compo-

nents [13]: the Gaussian mixture model, the expectation maximization (EM) algorithm

and the Bayesian information criterion . Let wj, j=1, . . . ,M , be scalar weights such that∑M
j=1wj = 1. Let xj and Pj be the mean vector and covariance matrix respectively for a

multivariate Gaussian N
(
X;Xj, Pj

)
, j=1, . . . ,M . The weighted sum of the M Gaussian

densities [13]

pX
(
x; {(wj, xj, P j)}Mj=1

)
=

M∑
j=1

wjN
(
x; xj, P j

)
(2.1)
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is a valid PDF known as a Gaussian mixture that integrates to unity and has an analytical

representation. Through the selection of the weights, means, covariances, and number of

mixture components, (2.1) can represent highly non-Gaussian distributions with vanishing

error [12].

The EM algorithm [14] is an iterative procedure for estimating the parameters of a

target distribution that maximize the probability of obtaining a given set of realizations

x = {x1, · · · , xN}. This procedure involves the maximization of a log-likelihood function

given by the log of the product of the parametric distribution with the likelihoods of

each of the ensemble members: i.e., maximizing the logarithm of the likelihood function

pX(x; θ) =
∏N

i=1 pXi
(xi; θ) with respect to θ, where θ is the parameter vector and N is the

number of ensemble members. Given the set of ensemble realizations, x = {x1, · · · , xn},

and initial parameter estimates, θ(0) = {w1
(0), · · · , wn

(0), x1
(0), · · · , xn

(0), P
1
(0), · · · , P n

(0)}, The

EM algorithm for a GMM [13] is given in Algorithm 1.

Step (2.2) of the EM algorithm calculates the probability of mixture component j

having generated realization xi based on the present parameter estimates, across all pos-

sible pairs of realizations and components. Step (2.3) updates the parameter values in

accordance with their weighted averages across all realizations. The convergence of EM

algorithm is proved by first showing that the likelihood function increases in each iteration

and is bounded above, and then using the monotone-convergence theorem [55].

To choose the optimal mixture complexity, we maximize

pX|Θ(x|θ;M) =
N∏
i=1

pXi|Θ(xi|θ;M),
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Algorithm 1: Expectation Maximization for GMM
input : Ensemble x = {x1, · · · , xn}
output: θ = {w1, · · · , wn, x1, · · · , xn, P 1, · · · , P n}
Initialize: θ(0) = {w1

(0), · · · , wn
(0), x1

(0), · · · , xn
(0), P

1
(0), · · · , P n

(0)}
repeat

for i ∈ {1, · · · , N} and for j ∈ {1, · · · ,M} do

τ jk(xi) =
wj

(k)N
(

xi; xj
(k), P

j
(k)

)
∑M

m=1w
mN (xi; xm

(k), P
m
(k))

. (2.2)

end
for j ∈ {1, · · · ,M} and N j

k =
∑N

i=1 τ
j
k(xi) do

wj
k+1 =

N j
k

N

xj
k+1 =

1

N j

N∑
i=1

τ jk(xi)xi

P j
k+1 =

1

N j
k

N∑
i=1

τ jk(xi)(xi − xj
k+1)(xi − xj

k+1)
T . (2.3)

end
until convergence

where pX|Θ(x|θ,M) is the distribution of the ensemble conditioned on the parameters θ.

The Bayesian information criterion (BIC) is [13]

BIC = min
M

[
−2

N∑
i=1

log pXi|Θ(xi|θML;M) +K logN
]
, (2.4)

where K is the number of parameters in the model, θML is the maximum likelihood set of

parameters (e.g., produced by the EM algorithm). For a multivariate Gaussian mixture,

K=M (2d+(d(d− 1)) /2+1) is the number of free parameters, where d is the dimension

of the state vector. Note that BIC has two components: the first component evaluates
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the goodness-of-fit for the model of complexity M and the second component is a penalty

on the overall model complexity [13].

For many data-assimilation applications [13], the observation-operator C linearly ex-

tracts the measurement from the state vector, i.e.,

y = Cx + V,where V ∼ N (0, KV ), (2.5)

where V is a zero-mean Gaussian measurement noise with covariance KV . For a (single)

Gaussian forecast PDF, Gaussian measurement noise, and a linear observation operator,

the Kalman filter analysis equations represent the optimal approach to Bayesian assim-

ilation of a measurement. In the case of a mixture of Gaussians, the Kalman analysis

equations may be augmented as follows with a weight analysis equation to yield the proper

application of Bayes’ rule for each component in the mixture [13].

The Bayesian update of a Gaussian mixture prior with a Gaussian observation model

yields a Gaussian mixture posterior [13]. For prior GMM

pX (x) =
M∑
j=1

wjN
(
x; xj, P j

)
,

and a Gaussian observation model pY|X(y|x) = N (y;Cx, R), the posterior PDF is [13]

pX|Y (x|y) =
M∑
j=1

ŵjN
(

x; x̂j, P̂ j
)
, (2.6)
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−
un = u(en)

xn+1 = f(xn,un) + Wn,
yn = Cxn + Vn

un

x̂n = OGMM(yn)

r en yn

yn

x̂n

Figure 2.1: Block diagram of a discrete time closed-loop dynamic output feedback control
system with a Gaussian mixture model filter OGMM

where

x̂j = xj +Kj(y − Cxj)

Kj = P jCT (CP jCT +KV )
−1

P̂ j = (I −KjC)P j

ŵj =
wjN (y;Cxj, CP jCT +KV )∑M

m=1w
mN (y;Cxm, CPmCT +KV )

.

(2.7)

Combining the weighted Gaussians produces the posterior-mean estimate.

The state estimate thus obtained may be used for feedback stabilization as shown in

Fig. 2.1. In this model, xn and yn are the state and observation vectors, respectively,

at the nth time step. The process is inherently noisy with an additive process noise Wn

and the observation is corrupted by the measurement noise Vn. The state-estimate x̂n is

obtained using a GMM-based filter (denoted OGMM) and this estimate is used to derive

the output feedback control signal un = K(r− x̂n). The objective of the output feedback

is to effectively stabilize the system so that the output follows the desired value r.
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2.2 Linear system with non-Gaussian noise

To analytically investigate the performance of the GMM-KF for non-Gaussian process

noise, we start with a linear system. For theoretical tractability, we calculate the initial

Gaussian modes and their parameters with a sufficiently large mixture complexity M ,

and then propagate forward in time including updates with observations. In the sequel,

all norms used in this chapter will be 2-norms or induced 2-norms on Euclidean space.

The eigenvalue of the matrix A with largest absolute value is denoted by |λmax(A)|. The

absolute value sign is dropped for symmetric matrices, and the argument is dropped when

the context is clear.

Consider a linear system

xn+1 = Axn + Wn and yn = Cxn + Vn, n ≥ 1, (2.8)

where xn ∈ Rd, yn ∈ Rq and Wn,Vn, n ≥ 1, are zero mean i.i.d. Gaussian random vectors

with cov(Vn) = KV and cov(Wn) = KW . The best estimate of the state is provided by
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the Kalman filter: i.e.,

xn = Ax̂n−1

x̂n = xn +Kn(yn − Cxn)

Kn = SnC
T (CSnC

T +KV )
−1

Sn = AΣn−1A
T +KW

Σn = (I −KnC)Sn,

(2.9)

where Sn = cov(xn−xn) and Σn = cov(xn−x̂n). The error x̃n for the Kalman filter is given

by x̃n = (I −KnC) (Ax̃n−1+Wn−1)−KnVn. The convergence of the error covariance for

the Gaussian process noise is given by the following well-known result.

Lemma 2.1. [56]: Let KW = QQT . Suppose that (A,Q) is reachable and (A,C) is

observable. Then Σn → Σ, Kn → K,Sn → S as n → ∞. The limiting matrices are

the only solutions of the equations Σ = (I − KC)S, K = SCT (CSCT + KV )
−1, and

S = AΣAT +KW .

To include non-Gaussian process noise, consider the system in Eq. (2.8) with Wn being

non-Gaussian with zero mean and having finite second moment and Vn is i.i.d. We model

the prior using GMM and propagate using Kalman-like updates. The GMM-KF is, for
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j = 1,· · ·,M ,

xj
n = Ax̂j

n−1

x̂j
n = xj

n +Kj
n(yn − Cxj

n)

Kj
n = Sj

nC
T (CSj

nC
T +KV )

−1

Sj
n = AΣj

n−1A
T +KW

Σj
n = (I −Kj

nC)S
j
n

wj
n =

wj
n−1N (yn;Cxj

n, CS
j
nC

T +KV )∑M
m=1w

m
n−1N (yn;Cxm

n , CS
m
n C

T +KV )

(2.10)

x̂n =
M∑
j=1

wj
nx̂j

n, (2.11)

where
M∑
j=1

wj
n=1 ∀n, Sj

n = cov(xn − xj
n) and Σj

n = cov(xn − x̂j
n). Assume that the initial

values of the parameters have been set by the EM algorithm and BIC.

Usually covariance analysis is the best technique to describe a filter’s performance. But

due to analytical intractability created by several random variables involved in GMM-KF,

we introduce the notion of bounded with probability.

Definition 2.1. A random vector X is said to be bounded by b with probability P if

P[‖X‖ ≤ b] = P . Furthermore X is said to be bounded by b with probability at least P if

P[‖X‖ ≤ b] ≥ P .

Remark 2.1. This definition of a stochastic bound gives a practical way to quantify

the performance of a nonlinear filter dealing with non-Gaussian noise when moments are

difficult to be computed. Higher probability usually means a more relaxed bound. A

similar notion of practical stability is discussed in [57].
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To show that ‖xn − x̂n‖ is bounded with a specified probability, we proceed to the

error analysis of the estimator, where the error x̃n ≜ xn − x̂n is

x̃n =
M∑
j=1

wj
nx̃j

n =
M∑
j=1

wj
n(xn − x̂j

n) . (2.12)

The following two lemmas describe linear algebraic results related to the concept of

bounded with probability.

Lemma 2.2. For a given Q = QT > 0,
∥∥x exp(−xTQx)

∥∥, a function of x ∈ Rd, is

bounded.

Proof.

∥∥x exp(−xTQx)
∥∥ ≤ ‖x‖ |exp(−xTQx)|

≤ ‖x‖ |exp(−λmin(Q) ‖x‖2)|,

since Q > 0, λmin(Q) > 0,

≤ 1√
2eλmin(Q)

, (2.13)

from single-variable calculus, where e is the base of the natural logarithm. The last step

in the inequality is verified by calculating the maximum value of r exp(−λmin(Q)r
2) with

r ≥ 0 by setting the first derivative to zero.

Lemma 2.3. For all x ∈ Rd and for a random vector R ∈ Rd,
∥∥(x + R) exp(−xTQx)

∥∥
with Q > 0 and symmetric is bounded by 1√

2eλmin(Q)
+ b with probability at least P if

R is bounded by b with probability P .
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Proof. From Lemma 2.2,

∥∥(x + R) exp(−xTQx)
∥∥ ≤ 1√

2eλmin(Q)
+ ‖R‖ , (2.14)

since |exp(−xTQx)| ≤ |exp(−λmin(Q) ‖x‖2)| ≤ 1. Therefore, P[‖R‖ ≤ b] = P , which

implies

P

[
1√

2eλmin(Q)
+ ‖R‖ ≤ 1√

2eλmin(Q)
+ b

]
= P,

and, hence, from Eq. (2.14),

P

[∥∥(x + R) exp(−xTQx)
∥∥ ≤ 1√

2eλmin(Q)
+ b

]
≥ P.

Lemmas 2.2 and 2.3 are useful in establishing error bounds of the GMM-KF for a

linear non-Gaussian system. The primary error bound result is given next.

Theorem 2.1. Consider the system (2.8) with possibly non-Gaussian noise Wn. Let

KW = QQT where (A,Q) is reachable and (A,C) is observable. If C has full column

rank and Vn is bounded by bV with probability P , then ‖x̃n‖ = ‖xn − x̂n‖, where x̂n

is obtained from GMM-KF (2.10), is bounded by b with probability P , where b is an

increasing function of bV .

Proof. From Lemma 2.1, Σj = (I − KC)Sj, Kj = SjCT (CSjCT + KV )
−1, and Sj =

AΣjAT +KW , ∀ j = 1, · · · ,M , are the bounded limits of Σj
n, K

j
n, and Sj

n as n → ∞. Let
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Rj
n = CSj

nC
T +KV , d be the dimensionality of xn, and

βn =
M∑

m=1

wm
n−1N (yn;Cxm

n , CS
m
n C

T +KV )

be a finite normalization factor. From the Kalman update equation (2.10), x̃j
n = (I −Kj

nC) r̃
j
n−

Kj
nVn, where r̃jn ≜ Ax̃j

n−1 + Wn−1. Using this result along with Eq. (2.10), Eq. (2.12)

can be expanded as

x̃n =
M∑
j=1

wj
nx̃j

n

=
1

βn

M∑
j=1

wj
n−1N (yn;Cxj

n, CS
j
nC

T +KV )x̃j
n

=
1

βn

M∑
j=1

wj
n−1N (C(Axn−1 + Wn−1) + Vn;CAx̂j

n−1, R
j
n)x̃j

n

=
1

βn

M∑
j=1

wj
n−1

1√
det(2πRj

n)
e
−
1

2
(Cr̃jn+Vn)

T
(Rj

n)
−1(Cr̃jn+Vn) ((

I −Kj
nC
)
r̃jn −Kj

nVn

)
.

=

[
1

βn

M∑
j=1

wj
n−1

1√
det(2πRj

n)
e
−
1

2
(Cr̃jn+Vn)

T
(Rj

n)
−1(Cr̃jn+Vn)

r̃jn

]

−

[
1

βn

M∑
j=1

wj
n−1

1√
det(2πRj

n)
× e

−
1

2
(Cr̃jn+Vn)

T
(Rj

n)
−1(Cr̃jn+Vn)

×Kj
n

(
Cr̃jn + Vn

) ]
. (2.15)

From Lemma 2.1, Kj
n → Kj and Rj

n → Rj as n → ∞ with finite-norm limit and (Rj
n)

−1

is positive definite. By Lemma 2.2, each term in the second summation of the Eq. (2.15)
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is upper bounded by

bj =
‖Kj‖

βn
√

det(2πRj)λmin((Rj)−1)e
. (2.16)

To deal with the first term in (2.15), let qjn = Cr̃jn + Vn, which in turn yields r̃jn =

(CTC)−1CT (qjn − Vn), since C has full column rank. Replacing r̃jn by qjn in the first term

of Eq. (2.15) yields

1

βn

M∑
j=1

wj
n−1

1√
det(2πRj

n)
× e

−
1

2
(qjn)

T (Rj
n)

−1qjn
(CTC)−1CT (qjn − Vn).

Each term of the summation is bounded by b̃j with probability at least P if Vn is bounded

by bV with probability P by Lemma 2.3. The bound b̃j is

b̃j =
1√

det(2πRj)βn ‖C‖

(
1√

eλmin((Rj)−1)
+ bV

)
, (2.17)

as n → ∞. Since
∑M

j=1w
j
n−1 = 1, the error x̃n is bounded by b with probability at least

P , where b = max
j

(bj + b̃j).

Remark 2.2. The condition of C having full column rank is restrictive, but it ensures

an analytical bound in the presence of non-Gaussian process noise. In practice, the filter

has been seen to work well as long as (A,C) is observable.

Remark 2.3. The bound presented in Theorem 2.1 analytically justifies the use of the

GMM-KF framework for non-Gaussian estimation. Although this bound may be calcu-

lated for a linear system, it can be quite conservative with respect to the actual error.

When this framework is extended to nonlinear systems in the next section, it might not
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be possible to always calculate the bound explicitly.

Remark 2.4. There might be a possibility of imbalance in weights wj if the GMM-KF

runs for a long time. That scenario can possibly be avoided by recalculating the GMM-KF

parameters from an ensemble realization with the help of EM and BIC when some weights

get too low. Theorem 2.1 is valid in each time span between such re-computations.

Next, we utilize the GMM-KF estimate inside the feedback loop depicted in Fig. 2.1.

Theorem 2.2. Consider the system

xn+1 = Axn +Bun + Wn,

yn = Cxn + Vn, n ≥ 1

where Wn is a zero mean i.i.d. possibly non-Gaussian process with finite second moment,

and Vn is i.i.d. Gaussian measurement noise. The dynamic output feedback control signal

un = −Kx̂n is chosen such that the eigenvalue with the maximum magnitude satisfies

|λmax(A − BK)| < 1, where x̂n is from GMM-KF. Then the state remains bounded at

every time instant with probability P if Vn and Wn are bounded with probability P for

all n ≥ 0.
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Proof. By algebraic expansion we get

xn+1 = Axn −BKx̂n + Wn

= (A−BK)xn +BK(xn − x̂n) + Wn

= (A−BK)nx0

+(A−BK)n−1(BK(x1 − x̂1) + W0)

+ · · ·+BK(xn − x̂n) + Wn

(2.18)

Hence,

‖xn+1‖ ≤ ‖(A−BK)n‖ ‖x0‖

+ ‖(A−BK)n−1‖ ‖BK‖ (‖x1 − x̂1‖

+ ‖W0‖) + · · ·+ ‖BK‖ ‖xn − x̂n‖+ ‖Wn‖ .

(2.19)

Now it can be shown [58] that if |λmax(A−BK)| < 1, then
∞∑
k=1

∥∥(A−BK)k
∥∥ ≤ β for

some finite β. Hence the right-hand side converges with probability P if the process noise

is bounded with probability P , because ‖x − x̂n‖ is bounded with probability at least P

from Theorem 2.1.

Remark 2.5. The assumptions that Wn and Vn are bounded with certain probability

is valid in most cases, because the probability that the noise reaches a very high value is

vanishingly small.

The covariance of the process noise might be computed a priori in GMM-KF if the

statistics of the process noise is known, or by Monte-Carlo simulation. Otherwise it might

be used as a tuning parameter to tune the performance of the filter.
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2.3 Extension to a nonlinear system

The extension of the GMM-KF framework to a nonlinear system without re-sampling

at each observation step requires a method to propagate the Gaussian modes forward in

time. To propagate GMM parameters in the nonlinear setting, we employ two widely

used extensions of the Kalman filter for nonlinear systems: the extended Kalman filter

(EKF) [21] and the unscented Kalman filter [23]. We retain the linear observation model

with Gaussian measurement noise. The system looks like

xn+1 = f(xn) + Wn and yn = Cxn + Vn, n ≥ 1, (2.20)

where Wn is zero mean possibly non-Gaussian additive noise with finite second moment

and Vn ∼ N (0, KV ).

2.3.1 Gaussian mixture model extended Kalman filter

Using EKF for propagation of means and covariances, the GMM framework becomes, for

j = 1,· · ·,M,

xj
n = f(x̂j

n−1)

x̂j
n = xj

n +Kj
n(yn − Cxj

n)

Kj
n = Sj

nC
T (CSj

nC
T +KV )

−1 (2.21)

Sj
n = A(x̂n−1)Σ

j
n−1A(x̂n−1)

T +KW
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Σj
n = (I −Kj

nC)S
j
n

wj
n =

wj
n−1N (yn;Cxj

n, CS
j
nC

T +KV )∑M
m=1w

m
n−1N (yn;Cxm

n , CS
m
n C

T +KV )

x̂n =
M∑
j=1

wj
nx̂j

n, (2.22)

where
M∑
j=1

wj
n = 1 ∀n, Sj

n = cov(xn − xj
n), Σj

n = cov(xn − x̂j
n) and A(x) = Jf (x) is the

Jacobian of f evaluated at x. The initial values of the parameters have been set by the

EM algorithm and BIC as in the linear case. The error dynamics are

x̃n =
M∑
j=1

wj
nx̃j

n

=
1

βn

M∑
j=1

wj
n−1

1√
det(2πRj

n)
e
−
1

2
(C f̃jn+Vn)T (Rj

n)
−1(C f̃jn+Vn)

×
(
(I −Kj

nC )̃fjn −Kj
nVn

)
,

(2.23)

where f̃jn = f(xn−1) − f(x̂j
n−1) + Wn−1 and Rj

n = CSj
nC

T +KV . To have ‖x̃n‖ bounded

in the nonlinear case, we need stricter assumptions than before, because Rj
n and Sj

n no

longer converge to finite-norm matrices when n→ ∞.

Assumption 2.1. αjI ≤ Σj
n < βjI, where αj, βj ≥ 0, for all n ≥ 0 and j = 1, · · ·,M .

Remark 2.6. Assumption 2.1 dictates that the covariances of each Gaussian mode re-

mains bounded through the time span over which the filter runs. In a general nonlinear

system this might not be satisfied, but it can be enforced by resampling from the ensem-

ble and recalculating the GMM parameters if any covariance violates a pre-determined

threshold, i.e., if Σj
n > βjI for a pre-determined βj for any j ∈ 1, . . . ,M .
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Theorem 2.3. Consider the system (2.20) with possibly non-Gaussian noise Wn. If

Assumption 2.1 is satisfied, C has full column rank, and Vn is bounded by bV with

probability P , then ‖x̃n‖ = ‖xn − x̂n‖ is bounded by bx̃(P ) with probability P , where

bx̃(P ) is an increasing function of bV .

Proof. Under Assumption 2.1, Sj
n and Rj

n, being the positive-definiteness-preserving bilin-

ear transformations of Σj
n−1 and Sj

n (from Eq. (2.21)), respectively, are always bounded

above and below by positive-definite matrices. Hence Kj
nC = Sj

nC
T (Rj

n)
−1C is also pos-

itive definite and bounded above and below. Now, if C has full column rank and Vn

is bounded by bV with probability P , proceeding in exactly same way as in the proof

of Theorem 2.1 (with r̃jn replaced by f̃jn), x̃n is also bounded by some bound bx̃(P ) with

probability P if C has full column rank and Vn is bounded with probability P .

2.3.2 Gaussian mixture model unscented Kalman filter

Despite being a state-of-the-art nonlinear filter, EKF is plagued with a truncation problem

due to its first-order approximation, which might lead to large errors in the posterior. An

alternate method is to use the Unscented Transform (UT) with a set of sigma points such

that their empirical mean and covariances are the same as that of the initial Gaussian

PDF [23]. We use the unscented Kalman filter to propagate each Gaussian mode of the
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GMM for the same system (2.20). Define

x̂ja
0 =

[
(x̂j

0)
T 0 0

]T
,

P ja
0 =


Σj

0 0 0

0 KW 0

0 0 KV


L×L

, L = 2d+ q,

(2.24)

for j = 1, . . . ,M and n = 1, . . .∞, and sigma points

χja
n−1 =

[
x̂ja
n−1 x̂ja

n−1 ±
√
(L+ λ)P ja

N−1

]
, (2.25)

for j = 1, . . . ,M and n = 1, . . .∞, where λ = α2(L+ κ)− L is a scaling parameter. The

superscript a is used to signify the state appended with process and measurement noise.

α determines the spread of the sigma points around the mean and is usually set to a small

positive value, e.g., 0.001 [59]. κ is a secondary parameter usually set to 0. β is used

to incorporate prior knowledge about the distribution; β = 2 is optimal for a Gaussian

distribution [59]. Define

W
(m)
0 =

λ

L+ λ
,

W
(c)
0 =

λ

L+ λ
+ 1− α2 + β,

W
(m)
i = W

(c)
i =

1

2(L+ λ)
.

(2.26)
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χja
n−1 has three parts: χjx

n−1 is the first d rows; χjw
n−1 is the next d rows; and χjv

n−1 is the

last q rows. wj
0, x̂j

0 and Σj
0 are defined by EM and BIC. The GMM-UKF is as follows, for

j = 1, . . . ,M and n = 1, . . . ,∞:

χjx
n|n−1 = f(χjx

n−1) + χjw
n−1 calculated columnwise,

xj
n =

2L∑
i−0

W
(m)
i χjx

i,n|n−1,

where i represents the ith column,

Sj
n =

2L∑
i−0

W
(c)
i

[
χjx
i,n|n−1 − xj

n

] [
χjx
i,n|n−1 − xj

n

]T
,

Yj
n|n−1 = Cχjx

n|n−1 + χjv
n−1,

yj
n =

2L∑
i−0

W
(m)
i Yj

i,n|n−1,

P j
ỹnỹn

=
2L∑
i−0

W
(c)
i

[
Yj

i,n|n−1 − yj
n

] [
Yj

i,n|n−1 − yj
n

]T
,

P j
xnyn =

2L∑
i−0

W
(c)
i

[
χjx
i,n|n−1 − xj

n

] [
Yj

i,n|n−1 − yj
n

]T
,

Kj
n = P j

xnyn(P
j
ỹnỹn

)−1,

x̂j
n = xj

n +Kj
n(yn − yj

n),

Σj
n = Sj

n −Kj
nP

j
ỹnỹn

(Kj
n)

T ,

wj
n =

wj
n−1N (yn; yj

n, P
j
ỹnỹn

)∑M
m=1w

m
n−1N (yn; ym

n , P
m
ỹnỹn

)
(2.27)

The estimate is again given by x̂n =
M∑
j=1

wj
nx̂j

n.

Since UKF uses heuristics for choosing the sigma points, the following assumption is

required for the error bound analysis.
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Assumption 2.2. δjI ≤ P j
xnyn , P

j
ỹnỹn

< γjI, where δj, γj ≥ 0, for all n ≥ 0 and j =

1, · · ·,M

Remark 2.7. Assumption 2.2 essentially requires that the sample covariances of state

and observation sigma points for each Gaussian mode remain bounded.

Theorem 2.4. Consider the system (2.20) with possibly non-Gaussian noise Wn. If

Assumption 2.2 is satisfied, C has full column rank, and Vn is bounded by bV with

probability P , then ‖x̃n‖ = ‖xn − x̂n‖ is bounded by bx̃(P ) with probability P , where

bx̃(P ) is an increasing function of bV and x̂ is obtained from the GMM-UKF algorithm

(2.27).

Proof. Define

f̃jn =
2L∑
i=0

W
(m)
i

[
f(xn1)− f(χjx

i,n|n−1) + Wn − χjw
n−1

]
,

Ṽj
n =

2L∑
i=0

W
(m)
i

[
Vn − χjv

n−1

]
.

Therefore,

x̃n =
M∑
j=1

wj
nx̃j

n

=
1

βn

M∑
j=1

wj
n−1

1√
det(2πP j

ỹnỹn
)

×e
−
1

2
(C f̃jn+Ṽj

n)
T (P j

ỹnỹn
)−1(C f̃jn+Ṽj

n)

×
(
(I −Kj

nC )̃fjn −Kj
nṼj

n

)
, (2.28)
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where βn =
∑M

m=1w
m
n−1N (yn;Cxm

n , CS
m
n C

T + KV ). Since P j
ỹnỹn

is bounded, C has full

column rank, and Vn (hence Ṽj
n as well) is bounded with probability P , proceeding in the

same way as the proof of Theorem 2.3, x̃n will also be bounded for GMM-UKF by some

bound bx̃(P ).

Remark 2.8. Both GMM-EKF and GMM-UKF are suggested as an alternative to parti-

cle filtering for nonlinear estimation. However, since both EKF and UKF are approximate

methods for propagation of each Gaussian mode and accumulate some error over time,

particle filters, when applied with suitable resampling method and well-chosen heuristics,

may perform better. But particle filters are computationally intensive and there is no

stochastic bound for estimation error. The GMM-EKF and GMM-UKF provide a com-

putationally cheap way to perform nonlinear filtering with non-Gaussian noise with some

guarantee on error boundedness, which is utilized in the analysis of the output feedback

control.

2.3.3 Dynamic output feedback control

To control the nonlinear system (2.20), suppose we design a state-feedback controller u(x),

and drive it with the estimated state derived by the filter. The closed-loop system takes

the form,

xn+1 = f(xn) + u(x̂n) + Wn

= F (xn) + u(x̂n)− u(xn) + Wn

yn = Cxn + Vn, n ≥ 1,

(2.29)
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where Wn is non-Gaussian additive noise and F (xn) = f(xn) + u(xn).

To obtain practical stability [57], i.e., the ultimate-boundedness of the state under a

suitable feedback law, we need some additional assumptions as follows.

Assumption 2.3. The nominal system xn+1 = F (xn) is uniformly asymptotically stable

on an open ball Br of radius r centered at 0 and ∃ a C1 (i.e., differentiable) Lyapunov

function [57] V : Z+ × Br → R that satisfies

α1(‖xn‖) ≤ V (n, xn) ≤ α2(‖xn‖), (2.30)

∆VN(n, xn) ≤ −α3(‖xn‖), (2.31)

where αi, i = 1, 2, 3 are class K functions and ∆VN(n, xn) = V (n + 1, xn+1) − V (n, xn)

under the nominal system [60]

Remark 2.9. Under Assumption 2.3, the chosen feedback law stabilizes the original

noise-free system with proper state feedback, which is valid, since choosing a stabilizing

feedback law is essential in any output feedback.

Assumption 2.4. There exists, p ∈ R+ and M > 0 such that
∥∥∥∥∂u∂x

∥∥∥∥ ≤ M ‖x‖p−1 and,

with the application of the mean value inequality, we get ‖u(x̂n)− u(xn)‖ ≤Mbx̃(P ) from

Assumption 2.1

Assumption 2.5. ‖Wn‖ < bW (P ) with probability P .

Assumption 2.5 characterizes the process noise and bW (P ) can be readily obtained
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from the PDF or cumulative distribution of the process noise (only the latter if Wn is

not absolutely continuous). With these assumptions, Theorem 2.5 presents the state-

boundedness result for a nonlinear non-Gaussian system with GMM-EKF or GMM-UKF

output feedback.

Theorem 2.5. Consider the nonlinear feedback control system (2.29) with non-Gaussian

process noise and GMM-EKF (resp. GMM-UKF) state estimate x̂n. If Assumptions 2.1

and 2.3-2.5 (resp. 2.2 and 2.3-2.5) are satisfied, then ‖xn‖ is bounded with an ultimate

bound bx with probability P , where bx is a function of M , bx̃(P ), and bW (P ) as defined

above.

Proof. We use V (n, xn) from Assumption 2.2 for the perturbed system. Thus,

∆Vπ(n, xn) = ∆VN(n, xn) + δVπ(n, xn),

where δVπ(n, xn) = V (n+1, F (xn)+u(x̂n)−u(xn)+Wn)−V (n+1, F (xn)), and subscript

π stands for the perturbed system. Since V ∈ C1, ∃ l > 0 such that

|δVπ(n, xn)| ≤ l ‖u(x̂n)− u(xn) + Wn‖

≤ l(‖u(x̂n)− u(xn)‖+ ‖Wn‖).

Now, from Assumptions 2.1 and 2.3-2.5 (resp. 2.2 and 2.3-2.5 for GMM-UKF),
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∆Vπ(n, xn) = ∆VN(n, xn) + δVπ(n, xn)

≤ −α3(‖xn‖) + lM(bx̃(P ) + bW (P )), wp P

= −(1− θ)α3(‖xn‖)− θα3(‖xn‖)

+lM(bx̃(P )+bW (P )),wp P and θ ∈ (0, 1)

≤ −(1− θ)α3(‖xn‖),

∀ ‖xn‖ ≥ α−1
3

(
lM(bx̃(P ) + bW (P ))

θ

)
,

wp P . Hence ‖xn‖ for the system (2.29) is uniformly ultimately bounded by probability

P , with ultimate bound

bx(P ) = α−1
1 ◦ α2 ◦ α−1

3

(
lM(bx̃(P ) + bW (P ))

θ

)
, wpP.

2.4 Numerical simulations

The performance of GMM-KF and its nonlinear variants is illustrated here numerically

with various discrete-time stochastic dynamical systems. the performance of the corre-

sponding output feedback stabilization is also demonstrated.
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Figure 2.2: The PDF of the process-noise Wn

2.4.1 GMM-KF Filtering and Output Feedback for Linear Systems

The effectiveness of the GMM-KF is shown for the system

xn+1 =

 1.0 0.9

−0.5 1.2

 xn +

1.0 0

0 1.0

un + Wn, (2.32)

where the process noise Wn are zero mean and i.i.d. The noise is realized by inde-

pendently sampling from a Gaussian mixture distribution with three modes centered at

µ1 = [−0.3,−0.3]T , µ2 = [0, 0]T and µ3 = [0.3, 0.3]T . The covariance matrices of these

modes are Σi = 0.02I, with i = 1, 2, 3 and I is the 2× 2 identity matrix. The weights are

given by w = [0.4, 0.3, 0.3]. The PDF of Wn is presented in Fig. 2.2. The system (2.32)

is unstable and ‖xn‖ increases exponentially with un = 0 with n. The linear observation
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Figure 2.3: L2 error of GMM-KF estimate with and without feedback

model is

yn = Cxn + Vn,

where C is an identity matrix and Vn is a zero mean Gaussian measurement noise with

covariance matrix diag(0.1, 0.1). For feedback control, we use un = −

0.5 0

0 0.7

 x̂n, so

that the eigenvalues of A − BK lie within the unit circle. Time-averaged L2 error of

the GMM-KF filter from 50 independent Monte-Carlo run is presented in Fig. 2.3. The

observer-based control effectively stabilizes the system as shown in Fig. 2.4(a). Since

|λmax(A − BK)| < 1, E ‖xn+1‖ remains bounded as n → ∞ if E ‖xn − x̂n‖ is bounded,

which is indeed true by Theorem 2 with probability P depending on the measurement

noise.
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Figure 2.4: Stability of GMM-KF output feedback for linear system (2.32)

2.4.2 GMM-EKF/UKF Filtering and Output Feedback for Nonlinear Sys-

tems

The GMM-EKF and GMM-UKF have been tested on three different nonlinear systems.

First, we use a 2D nonlinear chaotic map attributed to the discrete-time version of the

Duffing Oscillator [61]. The map is

x1n+1 = x2n + w1
n

x2n+1 = −a2x1n + a1x
2
n − (x2n)

3 + w2
n

yn = Cxn + Vn.

(2.33)

The map (2.33) depends on the two constants a1 and a2, usually set to a1 = 2.75 and

a2 = 0.2 to produce chaotic behaviour [61].
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Then we use a stable nonlinear power map given by

x1n+1 = x2n + w1
n

x2n+1 = 0.7x1nx
2
n + w2

n

yn = Cxn + Vn,

(2.34)

where the process measurement noise and the observation model stays the same.

Lastly, we use a sinusoidal map, i.e.,

x1n+1 = x1n sin(x1n) + x2n cos(x2n) + w1
n

x2n+1 = x1n sin(x2n) + x2n cos(x1n) + w2
n

yn = Cxn + Vn.

(2.35)

In (2.33)-(2.35),the process noise Wn = [w1
n w

2
n]

T are i.i.d. random vectors drawn from

the same non-Gaussian distribution as in the system (2.32). The superscripts here denote

the components of the vector. The observation model is the same one used for linear

system (2.32) and C is an identity matrix.

GMM-EKF and GMM-UKF are compared against the EKF, UKF, EnKF, and a par-

ticle filter (PF) with systematic resampling [62] method and 1000 particles. For the

comparison, we applied all six filters from the same initial conditions and initial uncer-

tainties as used. In the GMM-UKF framework, the parameters values are α = 0.001 and

β = 2 as in [59]. The result is given in Fig. 2.5 in the form of time-averaged L2 error

for 50 independent Monte-Carlo runs. Average run-time for each iteration of these five
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((a)) ((b)) ((c))

Figure 2.5: Time-averaged L2 error for 50 independent Monte-Carlo runs: (a) System
(2.33), (b) System (2.34), (c) System (2.35)

((a)) ((b)) ((c))

Figure 2.6: Average run-time per iteration for 50 independent Monte-Carlo runs: (a)
System (2.33), (b) System (2.34), (c) System (2.35)

filters is demonstrated in Fig. 2.6. GMM-based filters performs significantly better than

EKF, UKF, and EnKF in terms of L2 error, and similar or slightly better than the more

computationally intensive particle filter. GMM-based filter also consumes less CPU-time

as depicted in Fig. 2.6 than a particle filter. Fig. 2.7 and 2.8 show the actual estimated

trajectories for systems (2.33) and (2.35).

The effectiveness of GMM-EKF in feedback control is illustrated in Fig. 2.9 with the
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Figure 2.7: Actual and estimated trajectories for noisy Duffing system (2.33)

system

x1n+1 = x2n + w1
n

x2n+1 = −1.1x1nx
2
n + w2

n + un

yn = Cxn + Vn, (2.36)

where Wn is a non-Gaussian i.i.d. process noise with the distribution as described in the

system (2.32) along with the same observation model. The dynamic output feedback law

un = 0.3x̂1nx̂
2
n effectively stabilizes the system (2.36) as shown in Fig. 2.9. (The feedback

using GMM-UKF has the same trend, though is not shown here.)

The L2 errors shown in Figures 2.3 and 2.5 do not blow up, as predicted by the

probabilistic bounds derived in Theorems 2.1, 2.3, and 2.4. As the analytical bound bx̃(P )

is qualitative and probability-dependent, it is not illustrative to quantitatively compare
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Figure 2.8: Actual and estimated trajectories for system (2.35)

this bound with the numerical L2 error.
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Figure 2.9: GMM-EKF observer-based feedback effectively stabilizes the nonlinear, non-
Gaussian system (2.36)
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Chapter 3

Density transport in dynamical systems: Per-

ron Frobenius operator and its approxima-

tion

In the last chapter we have used the Gaussian mixture model in conjunction with Kalman

filter variants to propagate and update the density of states. In this chapter, however,

we transfered our attention to a different tool, namely the operator theoretic approach,

for the same task. The two main candidates for this approach are the Perron-Frobenius

and Koopman operators. While the Koopman operator is useful in studying observables,

its dual, the Perron-Frobenius (PF) operator, acts on the space of densities. Hence the

latter is important when dealing with uncertainties in the system, especially when the

likelihood of the state is given in the form of a probability density function under a suitable

absolutely continuous probability measure. PF operator, being able to transport density

in a dynamical system, is important in Bayesian estimation problems. The approximated
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PF operator can be used to transport density with lesser computational effort than solving

a partial differential equation. Hence an accurate and efficient approximation technique

of the PF operator has become necessary.

In this chapter, we combine Ulam’s method and constrained EDMD [32] to remove the

problem of long time steps in Ulam’s method [28] and incorporate the accuracy of EDMD.

The basis functions are chosen as the characteristic functions of the grids over the state-

space. It is shown analytically that the PF operator projected onto this basis constructs

a Markov chain, and its eigenfunctions can be approximated from the eigenvectors of

the resultant stochastic matrix. The results are derived for both deterministic and time-

homogeneous stochastic systems.

The proposed method is used for motion update for nonlinear estimation in a Bayesian

framework. An application of the estimation using approximate PF operator for output

feedback control of a pitching airfoil that maximizes lift using only the lift-coefficient

measurements from the embedded pressure sensors is also presented.

3.1 Perron-Frobenius operator

Historically, transfer operators like the Perron-Frobenius (PF) operator are used in ergodic

theory to study measure-theoretic characterization. The PF operator is described below

in the context of both deterministic and stochastic systems.
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3.1.1 Deterministic systems

Let X ⊂ Rd be a compact manifold and f : X → X be a smooth time-invariant vector

field. Consider the autonomous time-invariant ODE

ẋ = f(x). (3.1)

Let Φf : R× X → X be the flow map of the ODE (3.1), i.e., Φf (t, x0) is a solution of the

ODE (3.1) with the initial condition x(0) = x0.

Definition 3.1. A semigroup of operator Pτ : τ ≥ 0 is said to be the Perron Frobenius

(PF) operator if Pτ : L1(X) → L1(X) is defined by [28]

Pτρ(·) = ρ ◦ Φf (−τ, ·)|det(DxΦf (−τ, ·))|, (3.2)

where Dx denotes the Jacobian with respect to the space variable x.

If ρ(·) is a probability density function (PDF) with respect to an absolutely continuous

probability measure ν, then Pτρ is another PDF with respect to the absolutely continuous

probability measure ν ◦ Φf (−τ, ·). Specifically,

∫
B

Pτρdν =

∫
Φf (−τ,B)

ρdν, (3.3)

for any ν-measurable set B [63]. The PF operator translates a probability density function

with time according to the flow of the dynamics. It can be shown that the generator of
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this semigroup Pτρ is given by −∇ · (ρf) [28].

Now suppose we define a time-varying PDF ρ̃(t, x) ≜ P tρ(x). Then it can be shown

that ρ̃(t, x) satisfies the PDE [28]

∂ρ̃

∂t
= −∇ · (ρ̃f) (3.4)

ρ̃(0, x) = ρ(x). (3.5)

3.1.2 Stochastic systems

Let X and f be defined as before. Let g : X → X be another smooth time-invariant

vector field. Let (X,B(X),P) be a probability triple with an absolutely continuous prob-

ability measure P where B(X) is the Borel sigma field of X. Consider the following

time-homogeneous Itô stochastic differential equation

dxt = f(xt)dt+ g(xt)dwt, t > 0, (3.6)

where xt ∈ X is a random process and wt, t > 0, is a standard Wiener process. The

stochastic dynamics (3.6) arise when there is process noise in the system defined by the

ODE (3.1). The process noise enters the system as the diffusion term g(xt) in the Itô SDE.

Here a flow map, being another random process, is difficult to define, but nonetheless the

probability density may still be translated with a linear operator defined in terms of the

transition density function.
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Definition 3.2. The transition density function pτ : X× X → R+ is defined as [63]

P[xt+τ ∈ B|xt = x] =

∫
B

pτ (x,m)dm, ∀B ∈ B(X). (3.7)

The transition density function is the infinite-dimensional counterpart of the transition

matrix entries for a Markov chain. Now we can define the stochastic PF operator.

Definition 3.3. Let ρ ∈ L1(X) be a probability density function. The Perron-Frobenius

semigroup of operator Pτ , τ > 0, is defined as Pτ : L1(X) → L1(X) [63], such that

Pτρ(·) =
∫
X

pτ (m, ·)ρ(m)dm. (3.8)

The PF operator Pτ as defined here is also a linear operator and Pτρ has an infinites-

imal generator −∇ · (ρf) + 1

2
∇2(g2ρ) [63].

3.2 Numerical estimation of the Perron-Frobenius operator

To obtain an explicit numerical estimate of the infinite-dimensional PF operator, we need

to project it onto a suitable finite-dimensional basis of functions. As the PF operators for

a specific dynamics also form a semigroup, we need to fix a time step size to extract one

representative of the semigroup. The latter amounts to the discretization of the dynam-

ics, generally performed using Galerkin methods employed by converting the operator

equations (3.2), (3.8) into a weakly approximated form, usually a Markov chain.
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3.2.1 Weak approximation

The weak approximation of the operator equation (3.2) or (3.8) is done by projecting it

on a suitable set of basis functions. Here, the basis functions are chosen to be a family

of characteristic functions of a partition of the state space, scaled accordingly by their

Lebesgue measure. Let D = {Bi : i = 1, . . . ,M} be a partition of the state space X,

usually a set of fine grids. The basis function ψi is taken to be ψi ≜ χBi
, where

χBi
(x) =

{
1, if x ∈ Bi

0, otherwise.

The basis functions {ψ1, . . . , ψM} are orthogonal. Now define a projection πM : L1(X) →

sp{ψi, . . . ψM} to project ρ onto the span of these basis functions by

πMρ =
M∑
i=1

 1

m(Bi)

∫
Bi

ρ dm

ψi =
M∑
i=1

pi

m(Bi)
ψi, (3.9)

where m(·) is the Lebesgue measure on Rd and pi ≜
∫
Bi

ρ dm are the weights of basis

function ψi. Since the choice of basis is done before approximation, the projected density

ρ is usually expressed as a vector p = (p1, . . . , pn). This projection in turns restricts the
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infinite-dimensional operator Pτ to a stochastic matrix Pτ given by

Pτ,ij = P[Φf (t, x) ∈ Bj|x ∈ Bi]

=
P[Φf (t, x) ∈ Bj, x ∈ Bi]

P[x ∈ Bi]

=
m(Bi ∩ Φf (−τ, Bj))

m(Bi)
,

(3.10)

for deterministic system (3.2) where Φf (−τ, Bj) ≜ {Φf (−τ, x) : x ∈ Bj}. In the last

equality, the measure is changed to a standard Lebesgue measure, assuming we sample

from a uniform distribution at t = 0 when computing Pτ,ij.

For stochastic system (3.8), since the flow map is a random process, the Pτ matrix is

given by

Pτ,ij = P[xt+τ ∈ Bj|xt ∈ Bi]

= P[xτ ∈ Bj|x0 ∈ Bi] , time homogeneity of (3.6)

=
P[xτ ∈ Bj, x0 ∈ Bi]

P[x0 ∈ Bi]

=
kP[xτ ∈ Bj, x0 ∈ Bi]

m(Bi)
, (3.11)

where k > 0 is the normalization factor such that the probability P[x0 ∈ Bi] =
m(Bi)

k

corresponding to a uniform initial distribution.

With this formulation, the approximation of the PF operator is equivalent to the ap-

proximation of Pτ . The weak approximation, in effect, turns the PDF ρ into a Probability

Mass Function (PMF) on each grid Bi, and the operator (3.2) becomes a Markov state
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transition equation [28]

pτ = p0Pτ , (3.12)

where pτ and p0 are the projection of Pτρ and ρ, respectively. Note that p0 and pτ are

valid PMF since Pτ is a stochastic matrix. To see this, consider the projection,

πMPτ (πMρ) = πMPτ

(
M∑
i=1

pi

m(Bi)
ψi

)
=

M∑
i=1

pi

m(Bi)
πM (Pτψi) .

(3.13)

Now, since {ψ1, . . . , ψM} are orthogonal,

πM (Pτψi) =
M∑
j=1

wij

m(Bj)
ψj, (3.14)

where the coefficients wij are given by

wij =

∫
X

Pτ (ψi(x))ψj(x)dx

=

∫
X

Pτ (χBi
(x))χBj

(x)dx

=

∫
Bj

Pτ (χBi
(x))dx. (3.15)

For deterministic system (3.1), the coefficients are

wij =

∫
Bj

Pτ (χBi
(x))dx
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=

∫
Φf (−τ,Bj)

χBi
(x)dx, from (3.3)

= m(Bi ∩ Φf (−τ, Bj)).

Therefore,

πMPτ (πMρ) =
M∑
i=1

pi

m(Bi)

M∑
j=1

m(Bi ∩ Φf (−τ, Bj))

m(Bj)
ψj

=
M∑
j=1

1

m(Bj)

M∑
i=1

piPτ,ijψj, (3.16)

where Pτ,ij =
m(Bi ∩ Φf (−τ, Bj))

m(Bi)
from (3.10).

For stochastic system (3.6)

wij =

∫
Bj

Pτ (χBi
(x))dx

=

∫
Bj

∫
X

pτ (y, x)χBi
(y)dydx, from (3.8)

=

∫
X

∫
Bj

pτ (y, x)dxχBi
(y)dy, by Fubini’s theorem

=

∫
X

P[xt+τ ∈ Bj|xt = y]χBi
(y)dy, from (3.7)

=

∫
X

P[xτ ∈ Bj|x0 = y]χBi
(y)dy, time-homogeneity

=

∫
Bi

P[xτ ∈ Bj|x0 = y]kdP(y)

= kP[xτ ∈ Bj, x0 ∈ Bi].
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The uniform change of measure dy = kdP(y) with normalization factor k > 0 results

from the fact that initial distribution (i.e., distribution of x0) is uniform. Hence, for the

stochastic system,

πMPτ (πMρ) =
M∑
i=1

pi

m(Bi)

M∑
j=1

kP[xτ ∈ Bj, x0 ∈ Bi]

m(Bj)
ψj

=
M∑
j=1

1

m(Bj)

M∑
i=1

piPτ,ijψj, (3.17)

which is same as (3.16) and differs only in the definition of Pτ,ij =
kP[xτ ∈ Bj, x0 ∈ Bi]

m(Bi)

from (3.11).

Now define
M∑
i=1

piPτ,ij = pjτ , and pτ = (p1τ , . . . , p
M
τ ), which implies

πMPτ (πMρ) =
M∑
j=1

pjτ
m(Bj)

ψj (3.18)

pτ = pPτ . (3.19)

This weak approximation shows that the eigenvalue-eigenvectors of the stochastic ma-

trix Pτ can be used to approximate the eigenvalues and eigenfunctions of Pτ by restricting

it on the span of the basis functions.

Theorem 3.1. If (λ,p) is an eigenvalue-(left) eigenvector pair of Pτ , then λ is also an

eigenvalue of the restricted operator πMPτ with eigenfunction φ ≜
M∑
i=1

pi

m(Bi)
ψi.
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Proof. Since (λ,p) is an eigenvalue-(left) eigenvector pair of Pτ ,

pPτ = λp. (3.20)

Now from Eq. (3.18),

πMPτφ =
M∑
j=1

pjτ
m(Bj)

ψj, since πMφ = φ here,

and

pτ = pPτ .

But since pPτ , i.e., pτ = λp, we get

πMPτφ =
M∑
j=1

λpj

m(Bj)
ψj = λ

M∑
j=1

pj

m(Bj)
ψj = λφ. (3.21)

Therefore λ is also an eigenvalue of the restricted operator πMPτ with eigenfunction

φ.

3.2.2 Contstrained Ulam dynamic mode decomposition

Ulam’s method uses a Monte Carlo approach to numerically estimate the Markov state

transition matrix Pτ . Within each Bi, a set of N test points xi,1, . . . , xi,N are defined and

numerically integrated to obtain Φf (τ, xi,k), k = 1, . . . , n, i.e., their final positions along
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the trajectories of the ODE (3.1) or the SDE (3.6). The estimated Pτ is given by [28]

Pτ,ij ≈
#{k : xi,k ∈ Bi,Φf (τ, xi,k) ∈ Bj}

N
. (3.22)

The choice of τ is important and depends on the resolution of the partition D in this

method. If the resolution is coarse, i.e., too few grid-cells (M is small), and τ is also

small, then many of the test points will not leave their original grid cell Bi, and the

estimated Pτ will be close to the identity matrix.

Extended dynamic mode decomposition (EDMD) [33] is a method to extract the modes

of a complex dynamical system by solving a least-squares problem. EDMD estimates the

eigenvalues and eigenfunctions of the Koopman operator [64], the dual of the PF operator,

which operates on the space of L∞ observables. The Koopman semigroup of operator

Kt : L∞(X) → L∞(X) is defined as

(Ktφ)(·) = φ ◦ Φf (t, ·). (3.23)

If we fix the time step t = τ , then the ODE (3.1) becomes an iterative map x((k +

1)τ) = Φf (τ, x(kτ)), and we can drop τ and define Φf (τ, x) ≜ F (x). The discrete-time

dynamics become

xk+1 = F (xk). (3.24)

The time-discretized version of Koopman operator is Kτφ(·) = φ ◦ F (·). In EDMD,

just like Ulam’s method, the infinite-dimensional operator Kτ is projected onto a finite-
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dimensional basis in L∞(X) to represent it as a matrix U . Let {ψ1, . . . , ψM} be the basis

functions and, like in Ulam’s method, we define πM : L∞(X) → sp{ψi, . . . ψM} to project

φ onto the span of these basis functions. Then

φ(x) =
M∑
i=1

aiψi(x) (3.25)

Kτφ(x) =
M∑
i=1

biψi(x) + r, (3.26)

with residue r. Now, since φ is an observable, we can observe {φ(x0), . . . φ(xn+1)} for any

n > 0, where xi are from the discretized dynamics (3.24). So we can estimate the matrix

K by the least-squares formulation

U = Ψ†
x0
Ψx1 , (3.27)

where Ψx0,ij = ψi(xj) and ΨX1,ij = ψi(xj+1), i = 1, . . . ,M , and j = 0, . . . , n.

In the same light, the weak approximation of the PF operator can be thought of as

projecting onto the basis function ψi =
1

m(Bi)
χBi

. Since the basis functions are related

to the density of states, and cannot be readily observed, we need the help of Monte Carlo

simulation.

Let p0, . . . , pn+1 be n+ 2 subsequent PMF resulting from the operation of Pτ on the

initial density ρ projected on the sp{ψ1, . . . , ψM}. We know from (3.12) that pk+1 = pkPτ .

Define

Ψ0 = [pT
0 , . . . , pT

n ]
T , Ψ1 = [pT

1 , . . . , pT
n+1]

T . (3.28)
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Therefore, from the Markov relation, Ψ1 = PτΨ0, we have

Pτ ≈ Ψ1Ψ
†
0. (3.29)

But since we cannot observe directly the values of p0, . . . , pn+1, we need to estimate them

from Monte Carlo sampling. For this, we start from a uniform distribution of N particles

in each of the M grids at t = 0. Then we successively integrate them forward for time

interval τ to get their position at t = τ . The number of particles in Bi will change from

N to some value di1, where the subscript 1 represents the first time step. Similarly we go

on integrating for n more successive time steps to get the number of particles in each grid

dij for each time step j. Let dj = (d1j , . . . , d
M
j ). Then empirically p̂j ≜ 1

MN
dj ≈ pj for

j = 0, . . . , n+ 1. Now, define empirical data matrices

Ψ̂0 = [p̂T
0 , . . . , p̂T

n ]
T , Ψ̂1 = [p̂T

1 . . . . , p̂T
n+1]

T . (3.30)

Next find Pτ that minimizes the error between Ψ̂1 and Ψ̂0Pτ , using a constrained least-

squares formulation:

minimize
Pτ

∥∥∥Ψ̂1 − Ψ̂0Pτ

∥∥∥
F

subject to Pτ,ij ≥ 0, i, j ∈ {1, . . . ,M}
M∑
j=1

Pτ,ij = 1, i ∈ {1, . . . ,M}.

(3.31)

The problem (3.31) is a convex quadratic programming problem and yields a unique
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minimum that can be solved using gradient-descent or interior point methods. Unlike

Ulam’s method, this method is a multi-pass approach, which gives more accuracy with

short time steps. It also has a distinct advantage over Ulam’s method in stochastic

systems, since there a very small increment in Wiener noise with a short time step.

By solving for Pτ and exploiting Theorem 3.1, we can approximate the eigenvalues and

eigenfunctions of the infinite-dimensional operator Pτ . Henceforth we refer to the problem

(3.31) as Constrained Ulam DMD (CU-DMD).

3.3 Numerical simulations

CU-DMD is demonstrated on three different dynamical systems. First, consider a second-

order linear system:

ẋ = Ax, (3.32)

where x ∈ R2 and A =

 0 1

−a −b

. The parameters a = 0.5 and b = 0.1 are chosen to

produce damped oscillations. We have chosen time step τ = 0.1 and a 40-by-40 grid, i.e.,

a total of 1600 grid-cells. For this system, if λ1,2 are the eigenvalues of exp(τA) with

left eigenvectors w1,2, then λ′ = kλ1 + lλ2 for k, l ∈ R is a Koopman eigenvalue with

eigenfunction ϕ(x) = (w∗
1x)

k(w∗
2x)

l [29], [43]. Moreover ϕ(x) is also a PF eigenfunction

with eigenvalue λ = −λ′ − tr(A) [65], if |λ| ≤ 1. In this case λ2 = λ1 and tr(A) = −0.1.

Choosing (k, l) = (−0.8, 0) and (k, l) = (−0.4,−0.3) so that |λ| < 1 produces two PF

eigenvalues. Table 3.1 compares the exact eigenfunctions with those computed by CU-

DMD using the error averaged over the state space. CU-DMD outperforms Ulam’s method
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Figure 3.1: Second-order linear system (3.32): (a) dominant spectra and (b) eigenfunction
corresponding to λ = 0.89 + i0.06 (red circle)

for time step τ = 0.1. Moreover, the dominant 200 eigenvalues and the approximated

eigenfunction corresponding to λ = 0.89− i0.06 are shown in Fig. 3.1.

P-F
Eigenvalue

Error from
Ulam’s method

Error from
CU-DMD

0.89±i0.06 0.45 0.11
0.79±i0.05 0.51 0.14

Table 3.1: Error comparison for linear system (3.32)

Next, consider the (scaled) Van der Pol oscillator system:

ẋ1 = x2

ẋ2 = m(c− x21)x2 − x1.

(3.33)

where m = 2 and c = 0.2. The time step is τ = 0.1 and the grid is 40-by-40. The

approximate spectra of the 100 dominant eigenvalues and the eigenfunction corresponding

to λ = 1 are shown in Fig. 3.2. The eigenfunction traces out a limit cycle, as expected.
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Figure 3.2: Van der Pol system (3.33): (a) dominant spectra with unity eigenvalue circled
and (b) the corresponding eigenfunction

Then CU-DMD is applied to a double gyre system [28]:

ẋ1 = −πa sin
(πx1
s

)
cos
(πx2
s

)
− µx1

ẋ2 = −πa cos
(πx1
s

)
sin
(πx2
s

)
− µx2,

(3.34)

where a = 0.2, s = 1, and µ = 0.1. The time step τ = 0.1 and a grid of 40-by-20 are

chosen. Fig. (3.3) shows the approximated eigenfunction corresponding to λ = 0.96.

To demonstrate CU-DMD for a stochastic system, we chose a time-homogeneous Itô

stochastic differential equation of the form

dxt = f(xt)dt+
√
2σdwt, t > 0, (3.35)

where dwt is the standard Wiener increment and σ = 0.1 is the variance parameter. The

drift field f(x) is the deterministic Van der Pol system (3.33). The dominant spectra and

the eigenfunction corresponding to the unity eigenvalue for the stochastic Van der Pol
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Figure 3.3: Approximated eigenfunction corresponding to λ = 0.96 for double-gyre system
(3.34)

system are shown in the Fig. 3.4; the eigenfunction is not entirely concentrated on the

limit-cycle due to the diffusion term.

Diffusive behavior is also demonstrated using a double gyre system [28] corrupted with

a Wiener noise. Here the drift field

f(x) =

−πa sin
(πx1
s

)
cos
(πx2
s

)
− µx1

−πa cos
(πx1
s

)
sin
(πx2
s

)
− µx2

 , (3.36)

where a = 0.2, s = 1, and µ = 0.1. For the deterministic double gyre system, the

eigenfunction corresponding to unity is singular (concentrated on the stable equilibria)

and not shown here due to space constraint. For the stochastic case, the eigenfunction

spreads out from the stable equilibria as illustrated in Fig. 3.5.

A similar result is obtained when the drift equation is set to the double-gyre system
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Figure 3.4: The stochastic Van der Pol system (3.33) with noise (3.35): (a) dominant
spectra with unity eigenvalue circled and (b) the corresponding eigenfunction

(3.34). Fig. (3.5) shows the eigenfunction corresponding to unity is not singular (i.e.,

concentrated on the fixed points), but is spread around the equilibrium points. In Fig.

(3.3), the eigenfunction corresponding to eigenvalue less than unity is shown since the

eigenfunction with eigenvalue unity will be singular and concentrated on the grid-cell

containing the equilibrium points. Clearly this is not the case for stochastic system, as

demonstrated in Fig. (3.5).
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Figure 3.5: The stochastic double-gyre system (3.36): approximated eigenfunction corre-
sponding to unity eigenvalue

3.4 Application: Output feedback control for lift maximization of a pitch-

ing airfoil

As an application of nonlinear estimation and feedback control by approximate Perron-

Frobenius (PF) operator, this chapter presents the output feedback control of a pitching

airfoil that maximizes lift using only the lift-coefficient measurements from the embedded

pressure sensors. Unsteady aerodynamics is currently driving research at the interface

of fluid dynamics and control theory for low Reynolds number aircraft such as micro air

vehicles (MAVs). The regulation and control of unsteady behavior is crucial for maintain-

ing the stability of an MAV, which necessitates accurate modeling of their flight surfaces.

When an airfoil is repeatedly pitched, unsteady flow features develop delaying the onset

of stall. Moreover, a rapidly pitching airfoil will typically stall at a higher angle of attack

than a statically pitched airfoil. While unsteady or dynamic stall has catalyzed the de-
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velopment of model characterization in fluid dynamics, an optimal control approach has

not yet emerged. Periodic pitching induces hysteresis loops in the lift coefficient, whose

amplitudes are proportional to pitching frequency and airfoil geometry. Earlier works

[1, 66, 67] have utilized linear control laws to maximize the steady-state lift, whereas here

we seek to maximize the time-averaged lift in this chapter using a nonlinear control law.

Figure 3.6: Dynamic stall characteristics of an airfoil, comparing model behavior with
experimental results. An airfoil’s pitch coefficient enters hysteresis loops near its stall
angle as separation regions expand and collapse again [1].

The Goman-Khrabrov (GK) model is a low-order, nonlinear representation of the effect

of unsteady flow features on lift based on two coupled first-order ordinary differential

equations. Fig. 3.6 demonstrates the accuracy of the GK model in characterizing both

static and dynamic pitching maneuvers for a wing, where dynamic pitching typically

involves a periodic pitch rate. The lift hysteresis loops exhibited in Fig. 3.6 are typical of

this type of pitching behavior [66, 67, 68]. Although current literature implements the GK
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model for purposes of active flow control and stabilization in unsteady flow, we examine

the opposite approach: i.e., implementing a destabilizing behavior for the purpose of lift

maximization. As [67] suggests, a time-varying control input, e.g., sinusoidal actuation,

can reduce hysteresis effects and thereby decrease lift perturbations.

This section presents a state and output feedback control law that stabilizes a limit cy-

cle in the closed-loop Goman-Khrabrov model for flow separation. The optimal unsteady

behavior compares favorably with the best-case steady-state behavior. The dynaic output

feedback is designed using a recursive Bayesian filter that assimilates noisy measurements

of lift. The filter is implemented for the nonlinear dynamics using the CU-DMD-based ap-

proximation of PF operator[48]. The output feedback control performance is comparable

to the state-feedback case when the measurement noise variance is sufficiently small.

3.4.1 Background on model-based dynamics and estimation

A data-driven approach to studying unsteady flow features is effective at reducing the

dimensionality of modeling representations [1, 66, 67, 69]. For example, the Goman-

Khrabrov model provides a mechanism for characterizing flow separation on a wing based

on static lift data. Section 3.4.1.1 introduces an analytic equation for the lift and drag

coefficients and a modified state-space form of the Goman-Khrabrov model that permits a

control input. Section 3.4.1.2 introduces the preliminaries of the recursive Bayesian filter

and the Perron-Frobenius density transport operator so that the modified GK model may

be implemented using output feedback.

71



3.4.1.1 The Goman-Khrabrov model

Here we utilize an adaptation of the Goman-Khrabrov (GK) model [68] for unsteady flow

around an airfoil undergoing dynamic stall. The GK model is a two-state dynamical

system consisting of an internal representation of the flow stagnation point x ∈ [0, 1] and

the angle of attack α ∈ S1 whose time evolution is defined by the following system of

equations [68]:

τ1ẋ+ x = f0(α− τ2α̇)

α̇ = u,

(3.37)

where the time constants τ1 and τ2 are the flow settling times and u is the control input.

The stagnation function describes the state of separation as deduced from an airfoil’s

alignment to pre- and post-stall lift curves. The time rate of change for a dynamically

pitching airfoil maps predictably as a function of angle of attack, but at higher or lower

angles depending on the pitch rate.

The GK model is applicable to a wide class of airfoils. The stagnation function f0 may

be determined experimentally in order to capture airfoil geometry and flow constants,

including the Reynolds number. While there is no known mathematical framework to

derive f0 from first principles, the boundedness of f0 in the interval [0, 1] can be used to

produce an analytic approximation that captures its form and behavior. We elect to use an

arctangent function with an argument shift because of its simplicity when differentiated.
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The stagnation function used here is

f0(α− τ2α̇) =
1

2
− 1

π
arctan (Ks(α− τ2α̇− ϕ)) , (3.38)

where Ks and ϕ are additional tuning parameters set according to stall characteristics.

Fig. 3.7 compares this stagnation function to experimental data.

Figure 3.7: Comparison of stagnation function from (a) towing-tank data [1] and (b)
analytic model using the arctangent

A generalized model of the coefficient of lift CL at high angles of attack as a function

of the GK-model states x and α is [66, 67]

CL = g1(α)x+ g2(α)(1− x), (3.39)
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where the functions g1(α) and g2(α) represent attached flow and fully separated flow,

respectively. Note that Eq. (3.39) is linear in x. Goman and Khrabrov also present an

analytic approximation for the coefficient of lift, based on assumptions that the separated

flow is modeled by linear cavitation theory and Kirchhoff’s zone of constant pressure [68].

In the original GK-model, the coefficient of lift is nonlinear in x and α, i.e., [68]

CL =
π

2
(1 +

√
x)2 sinα. (3.40)

While the general representation of CL (3.39) is more readily applicable to airfoil data, we

elect to model lift behavior here using (3.40) despite the nonlinearity, since it is analytic

and can be differentiated directly.

Although thin airfoil theory fails to provide a closed-form analytic model for drag on

an airfoil [70], the following model captures the dramatic increase in drag introduced by

high angles of attack. Let CD0 represent the parasitic and form drag. The coefficient of

drag is [70]

CD = CD0 +
C2

L

πeAR . (3.41)

While the exact induced drag characteristics of the wing used in testing are not known

precisely, the behavior of the drag coefficient is enough to characterize the drag produced

at large angles of attack [70]. Small zero-lift drag is neglected to reflect the comparatively

small effect of skin friction on the airfoil. A conservative span efficiency factor of e = 0.7

is used here to represent a non-elliptical planform.

The internal variable x can be derived from existing lift curve data for pre-stall and
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post-stall curves, where x = 1 represents fully attached flow and x = 0 denotes that the

flow is fully separated. For example, a value of x = 1 returns a lift curve (3.40) identical

to an airfoil’s standard pre-stall trend. x is not a direct measurement of flow stagnation,

as no information related to free-stream velocity, static pressure, or vorticity exists in

this system. Rather, it can be thought of a representation of the flow attachment based

on prior data-driven testing of the steady-state airfoil. Intermediate values between 0

and 1 reflect transient conditions. From (3.40), the nonlinear dependence of CL on both

α and x suggests that period oscillations in these parameters may produce lift that is

higher, on average, than at constant α and x. This realization motivates a time-averaged,

lift-maximizing control design using periodic pitching.

Let z = (z1, z2) ≜ (x, α) and y ≜ CL. In state-space form, the modified GK model is

ż1 = − 1
τ1
z1 +

1
τ1

[
1
2
− 1

π
arctan (Ks(α− τ2α̇− ϕ))

]
ż2 = u

y = π
2
(1 +

√
z1)

2 sin z2.

(3.42)

In the sequel, we refer to the dynamics in (3.42) as ż = F(z, u). With regard to the input

u, it is possible to use a sinusoidal controller in the form u = A sin(2πft) to vary the pitch

rate directly [67]. However, we seek below to derive a state feedback control of the form

u = u(z). Then we seek to implement this control using measurements of the output y to

estimate z1, assuming z2 is known.
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3.4.1.2 Recursive Bayesian filtering

In order to implement an output feedback control for the system (3.42), we implement

a recursive Bayesian filter to estimate z1 = x from measurements of y = CL, assuming

z2 = α is known. This form of a filter is chosen because of the nonlinear dynamics and

nonlinear output function in (3.42). A Bayesian framework allows the unknown state x to

be inferred from the noisy measurements of the lift coefficient CL together with the prior

information accumulated in a probability density function [71]. In practice, measurements

of the coefficient of lift of an airfoil can be obtained experimentally in a towing tank via

a spring-gauge.

The first stage of a Bayesian filter, i.e., the prediction step, propagates the accumulated

density according to the system dynamics. Because of the nonlinear dynamics, prediction

is accomplished here by an offline approximation of the Perron-Frobenius (PF) transfer

operator for this system [48]. We employ the discretized version of the PF operator that

works on a discretized prior. The prior density ρ(z1) is discretized using a grid on the

state-space arranged in a vector resembling a probability mass function (PMF) p. The

discretized PF operator in form of a matrix P τ operates over the PMF p to yield the

updated prior pτ = pP τ , according to the dynamics. The time step of the motion update

is small to keep the discretization error sufficiently small. The discretized approximation

of the PF operator is computed using the CU-DMD algorithm.

The second stage of the Bayesian filter, i.e., the measurement step, involves the cal-

culation of the posterior estimate using the conditional probability density known as the
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likelihood function. Let ỹ represent the noisy measurement of y. The Bayesian filter

recursively calculates the posterior estimate p(z1|ỹ) according to Bayes’ theorem:

ρ(z1|ỹ) =
ρ(ỹ|z1) ρ(z1)

ρ(ỹ)
. (3.43)

For simplicity, assume that the lift-measurement noise is zero-mean Gaussian and the

initial (prior) distribution is uniform. Also, the instantaneous angle-of-attack z2 is known

precisely, i.e., measured with zero variance.

3.4.2 Feedback control design for the Goman-Khrabrov Model

The Goman-Khrabrov model provides a reduced-order framework to design a state-

feedback control that maximizes the time-averaged lift. This section describes a non-

linear state-feedback control law that drives the airfoil dynamics to a limit cycle whose

parameters can be optimized using average lift as a metric.

In contrast to an open-loop sinusoidal input, a state-feedback control is more robust

in the presence of disturbances and model errors. Moreover, the closed-loop system is

autonomous, which permits rigorous analysis in the phase plane.

To begin, consider the linear state-feedback controller, u = −k1z1−k2z2, which drives

the system to a static equilibrium point. However, using the GK lift coefficient (3.40), no

steady pitch angle achieves the same lift performance as periodic pitching (see Fig. 3.8),

which also avoids stall. Hence, we seek to stabilize a limit cycle by destabilizing the static

equilibrium point. To accomplish this objective, consider the nonlinear state-feedback law
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Figure 3.8: (Left) Lift coefficient in the phase plane. The open-loop flow separation
nullcline (blue) represents the set of possible steady-state equilibrium points, which do
not access the high lift regions (yellow). (Right) Color map depicting the lift-to-drag ratio
as a function of the lift coefficient

u = k1z1 − k2z
3
2 , (3.44)

where k1 and k2 are positive control gains. Note that setting k1 < 0 emulates stabilizing

the linear control, using a cubic term for z2 instead of a linear term.

The closed-loop system (3.42) with the control (3.44) stabilizes a limit cycle for certain

values of the gains k1 and k2. Fig. 3.8(left) depicts the nullclines for angle-of-attack,

i.e., ż2 = 0, for several values of the ratio k2/k1 superimposed on the heat map of the

lift coefficient over the state space. Also shown is the open-loop nullcline for the flow

separation point, i.e., ż1|u=0 = 0. Fig. 3.8(right) shows the same nullcline for the lift-to-

drag ratio.

In order to establish the existence of a stable limit cycle in the closed-loop system,

observe that the equilibrium points of the GK model satisfy ż1 = 0 and ż2 = 0, which
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implies

k2

k1
z32 = f0(z2). (3.45)

Let z∗2 represent a solution to the equilibrium condition (3.45). The Jacobian of the

closed-loop system evaluated at z∗2 is

A ≜
∂F

∂z

∣∣∣∣∣∣∣∣
z2=z∗2

=

τ
−1
1

( τ−1
2 π−1Ksk1

Ks(z∗2 − ϕ)2 + 1
− 1

) τ−1
1 τ−1

2 π−1Ks(−3k2(z
∗
2)

2 − τ2)

Ks(z∗2 − ϕ)2 + 1

k1 −3k2(z
∗
2)

2

 . (3.46)

The eigenvalues of A are

λ1,2 =
1

2

(
trA±

√
tr2A− 4 detA

)
. (3.47)

If k1 is allowed to vary while k2 is held fixed, then the real and imaginary parts of the

eigenvalue may be considered functions of the bifurcation parameter k1, i.e.,

λ1,2 = σ(k1)± ω(k1). (3.48)

Fig. 3.9 illustrates how the eigenvalues of the closed-loop system cross the imaginary

axis with nonzero velocity as the bifurcation parameter k1 is increased. This behavior is

consistent with a supercritical Hopf bifurcation [72], which gives rise to a stable limit cycle

that corresponds to the desired oscillating trajectory. Fig. 3.10(left) shows the shape of
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Figure 3.9: Poles of the linearized, closed-loop system as a function of the bifurcation
parameter k1. A Hopf bifurcation occurs when the real part of the eigenvalue crosses the
imaginary axis away from zero.

the limit cycle in phase space. Note that it contains an unstable equilibrium point, and

is thus attracting for interior points as well as the local neighborhood outside of it.

Figure 3.10(right) depicts the average-lift over all control gains k1 and k2 that stabilize

a permissible limit cycle, i.e., a limit cycle that remains in the region of model validity.

(Without loss of generality, assume an upper limit of 50◦ for the angle of attack; the

analysis can be performed for any such limit.) To determine the optimal gains, time

series simulation data of (z1, z2) were computed for a 100× 100 grid of gain values.

The optimal gain for the model parameters is (k1, k2) = (11.75, 22.8), which produces

a time-averaged lift coefficient of C̄L = 2.0. The steady-state maximum possible lift coef-

ficient is C̄L = 1.43 (see Fig. 3.8). Therefore, the nonlinear (unsteady) control performs

approximately 40% better than linear (steady) control, using lift as a metric. However,

the linear control performs better when using as metric the average ratio of lift to drag.
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Figure 3.10: (Left) The stable limit cycle (green) in the closed-loop system attracts solu-
tions that start inside or outside the limit cycle (black); (Right) Average lift performance
of the closed-loop system for gain values that stabilize a limit cycle. Black squares indi-
cate gains that fail to result in a permissible limit cycle. Red borders indicate gains that
fail to produce a limit cycle at all.

3.4.3 Output feedback control

The nonlinear control designed above is a state-feedback control that requires the precise

values of the state variables to be available. However, state feedback control of this

system is difficult or impossible to implement, because the flow-separation point z1 is

not measured directly. Here we design a filter to recursively estimate z1 from noisy

measurements of the lift coefficient y = CL. Then we implement an output-feedback

controller by replacing the state variable in the nonlinear controller with the estimated

value ẑ1.

Consider the state space equations (3.42). Let η be zero-mean uncorrelated Gaussian

measurement noise with variance σ2
M . The state and output equations have the general
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Figure 3.11: The lift-optimizing limit cycle (left) yields an average lift coefficient 40%
higher than the steady-state upper bound (right).

form

ż = F(z, u)

ỹ = y + η,

(3.49)

where ỹ denotes the measured signal plus noise. These equations form the basis of a two-

stage Bayesian filter with output feedback: the first equation describes the time evolution

of the system states and the second allows them to be estimated from measurements.

Assumed that the angle of attack α = z2 is measured precisely. With these assumptions,

the likelihood function of the measurement ỹ given the flow separation point z1 is

ρ(ỹ|z1) =
1√
2πσ2

M

exp
(
−(ỹ − y(z))2

2σ2
M

)
. (3.50)

To apply the Bayesian framework, we use motion and measurement updates periodically

over time. In the motion update, the prior ρ(z1) is propagated using the dynamics (3.42)

and the propagated prior is updated using Bayes’ rule (3.43) when the measurement ỹ
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arrives. The posterior is normalized to integrate to unity over the state space.
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Figure 3.12: Mean-squared error of flow separation point using output feedback calculated
over 100 Monte-Carlo simulations. Each simulation corresponds to 3 orbits of the limit
cycle.

Because the equations of motion are nonlinear, we use a discretized version of the

Perron-Frobenius (PF) operator [48, 26] with time step τ = 0.01 and a size 30 grid on

z1 = x for the motion update step. Constrained Ulam Dynamic Mode Decomposition

(CU-DMD) [48] calculates the PF operator for 30 different control signals corresponding

to the 30 grid points on the z1 axis. For each τ = 0.01, the discretized prior vector p is

updated using the discretized PF matrix P τ , and the mode of the prior ẑ1 = argmax
z1

ρ(z1)

is used as the estimate for the control design. After the Bayesian measurement update

(3.43), the mode of the posterior ẑ1 = argmax
z1

ρ(z1|ỹ) is used as the estimate as well. For

each time step τ , the corresponding output-feedback control u(ẑ1, z2) is used instead of

the state-feedback control. Fig. 3.12 shows the mean-square error between the output-

and the state-feedback controls for 100 Monte Carlo trials.

An important requirement of the output-feedback control is the preservation of the
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limit-cyclic behavior, which allows lift augmentation to continue indefinitely. Fig. 3.13

shows that the output-feedback control with discretized PF operator preserves the limit-

cyclic structure of the state-feedback control, thereby preserving the high average lift.

Adherence to the optimal limit cycle in each iteration is a function of the measurement

noise covariance, as depicted in Fig. 3.13. Fig. 3.14 compares the lift coefficient time series

obtained from the trajectories depicted in Fig. 3.13.
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Figure 3.13: Limit cyclic behavior is preserved with output feedback, although adherence
to the state feedback trajectory is a function of measurement noise σL: (left) σM = 0.01;
(right) σM = 0.1
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Figure 3.14: Coefficient of lift versus time for the trajectories in Fig. 3.13 (gray: state
feedback, red: low noise, blue: high noise) and the optimal steady-state coefficient of lift
(black). Time averages for each trajectory are shown with dashed lines of the same color.
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Part II

Estimation and control of unmodeled or partially modeled systems
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Chapter 4

Data-driven estimation using an echo-state

neural network equipped with an ensemble

Kalman filter

This chapter develops a data-driven sparse estimation method by combining the strength

of a neural network with an existing nonlinear filtering algorithm. An echo-state network

(ESN) is chosen as the recurrent neural engine for modeling unknown dynamics, because

it can be trained quickly with limited computational resources. The ESN adopts an input-

output neural network with a randomly generated recurrent reservoir. Linear regression

determines the output weights. It has been shown that an ESN with fading memory

can universally model nonlinear dynamics [39, 40]. During the training phase, a full

measurement of the states is typically utilized as the training data. Once the ESN is

trained to reasonably model the dynamics, it is used to generate the motion update

of the data-driven estimation. Since the ESN models a nonlinear dynamical system, a
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nonlinear data-assimilation method is required for the measurement update. While the

EKF and UKF perform well in model-based scenarios, the computation of the linearized

dynamics is challenging for an ESN. The ensemble Kalman filter [73] is thus chosen for the

measurement update for its strength in representing the posterior distribution of states

by its sample means and covariances. The incorporation of an ensemble Kalman filter

in the feedback loop of an ESN improves measurement assimilation in comparison to its

ESN-only counterpart [2], because the former accounts for the measurement noise with

the help of a traditional Bayesian framework and assimilates a series of measurements

over the testing phase, whereas the latter uses the current measurement only [2].

4.1 Echo-state networks: a universal predictor

Echo-state networks (ESNs) are a special kind of fixed recurrent neural network (RNN)

in which a large, random, and fixed RNN is driven by the input signal. The nonlinear

response signals thus induced in the neurons are then linearly combined to match a desired

output signal. The random, fixed network is called a reservoir and the technique is also

known as reservoir computing (RC) [39].

An ESN is composed of three principal components: a linear input layer u with m

input nodes, a recurrent nonlinear reservoir network r with n neurons, and a linear output

layer y with p output nodes. The reservoir network evolves with the following dynamics

[39]

r(t+∆t) = (1− α)r(t) + αψ(W r(t) +Winu(t)), (4.1)
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where W is the n × n reservoir weight matrix, Win is the n ×m input weight matrix, u

is the m-dimensional input signal, and y is the p-dimensional output signal. The time

step δt is chosen according to the sampling interval of the training data. The parameter

α ∈ (0, 1] is called the leakage rate, which forces the reservoir to evolve more slowly as

α → 0. The activation function ψ is usually a sigmoid function, e.g., tanh(·) or a logistic

function. The output is taken as a linear combination of the reservoir states [39], i.e.,

y(t) = Woutr(t), (4.2)

where Wout is the p × n output weight matrix. The weights Win and W are initially

randomly drawn and then held fixed. The weight Wout is adjusted during the training

process. The reservoir weight matrix W is usually kept sparse for computational efficiency.

During the training phase, the ESN is driven by an input sequence {u(t1), . . . , u(tN)}

that yields a sequence of reservoir states {r(t1), . . . , r(tN)}. The reservoir states are stored

in a matrix R = [r(t1), . . . , r(tN)]. The correct outputs {y(t1), . . . , y(tN)}, which are part

of the training data, are also arranged in a matrix Y = [y(t1), . . . , y(tN)]. The training is

carried out by a linear regression with Tikhonov regularization as follows [37]:

Wout = (RRT + βI)−1RY, (4.3)

where β > 0 is a regularization parameter that ensures non-singularity.

Remark 4.1. For an ESN to be an universal approximator, i.e., to realize every nonlin-
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Figure 4.1: The basic schema of an ESN with the input, reservoir, and output layers

ear operator with bounded memory arbitrarily accurately, it must satisfy the echo state

property (ESP) [37]. Intuitively, the ESP states that the reservoir will asymptotically

wash out any information from initial conditions. For the tanh(·) activation function, it

is empirically observed that the ESP is granted for any input if the spectral radius of W

is smaller than unity [37]. To ensure this condition is met, the randomly generated W

used here is normalized by its spectral radius.

Remark 4.2. An ESN is advantageous over other kinds of RNN when a cheap, fast, and

adaptive training is required since its training does not require back propagation through

time.
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Figure 4.2: A free-running ESN trained for time-series prediction

4.2 Kalman filtering with Echo-state networks: a sparse estimation tech-

nique

An ESN can be trained to predict a time series {xti ∈ Rd : i ∈ N} generated by a

dynamical system by setting u(t) and y(t) as the current and next state value (i.e., xtk

and xtk+1
) respectively. The network is trained for a certain training length N of the time

series data {xti , i = 1, . . . , N}, and then can run freely by feeding the output ytk back to

the input utk+1
of the reservoir. In this case, both u and y have the same dimension d as

that of the time series data. This setup is shown in Fig. 4.2, where a trained ESN is used

to predict the next states of a dynamical time series starting from an initial condition.

Although a sufficiently large free-running ESN trained with enough data can predict a

dynamical system reasonably well [2], [38], it has some shortcomings. The initial input to
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the ESN during the free-running phase must match the exact time series data or the initial

condition on the trajectory that is predicted. But for a data-driven estimation problem,

the state might not be fully observable. Moreover, the free-running ESN does not take into

account any change in the availability of possibly sparse observations that are available

during the testing phase. A solution to this problem is presented in [2] where an ESN is

trained with all state measurements available, and then predicts the states with only a

limited subset of them measured. However, this method, called a reservoir observer, uses

the ESN’s internal connections in the testing phase to assimilate the measurement of the

current time step only, and does not take measurement noise into consideration.

We propose an alternative method for measurement assimilation by adding an ensem-

ble Kalman filter (EnKF) [74] in the feedback loop of the ESN (Fig. 4.3). The EnKF

block takes sparse observations and uses the state forecast from the reservoir output to

generate a state estimate for feedback to the reservoir input. The ensemble Kalman filter

is realized as follows. For time-step k = 0, an ensemble Xt0 = [x(1)
t0 , . . . , x

(M)
t0 ] is chosen

from a Gaussian distribution with an ensemble covariance Rx. Then for k = 0, 1, . . . , the

following steps are computed:

Xtk = [x(1)
tk
, . . . , x(M)

tk
] (4.4)

x(i)
tk+1

= Woutψ(W rtk +Winx(i)
tk
), for i = 1, . . . ,M

Xf
tk+1

= [x(1)
tk+1

, . . . , x(M)
tk+1

]
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These steps carry out the motion update for the ensemble using the ESN. The superscript

(i) denotes the ith ensemble member. The forecast ensemble is collected in the Xf
tk+1

matrix. Next, the observations are assimilated through an ensemble Kalman filter as

follows:

Ytk+1
= h(Xf

tk+1
) (4.5)

Pxy(tk+1) = (Xf
tk+1

− Xf

tk+1
)(Ytk+1

− Y tk+1
)T

Pyy(tk+1) = (Ytk+1
− Y tk+1

)(Ytk+1
− Y tk+1

)T

Ktk+1
= Pxy(tk+1)Pyy(tk+1)

−1

ˆXtk+1
= Xf

tk+1
+Ktk+1

(Ytk+1
− Ytk+1

)

x̂tk+1
=

1

M

M∑
i=1

x(i)
tk+1

,

where Ytk+1
= [ytk+1

, . . . , ytk+1
] is a matrix constructed by stacking M copies of the true

observation. Pxy(tk+1) denotes the sample cross-covariance between the states and the ob-

servation, whereas Pyy(tk+1) denotes the sample observation covariance for the ensemble.

The sample mean is taken as the state estimate x̂tk+1
.

Remark 4.3. An ESN with an ensemble Kalman filter for the measurement update is

particularly useful for estimation problems where the state is fully observable during the

training phase but only partial and noisy measurements can be obtained during the testing

phase. Some of these applications include prediction of atmospheric quantities [75] and

flow estimation over an airfoil [69]. Knowledge of initial condition is not required.
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Figure 4.3: An ESN with a Kalman filter in the loop

Remark 4.4. The use of an ensemble Kalman filter enables a Bayesian framework for as-

similation of noisy measurements. It also improves the estimation accuracy by integrating

measurements over time rather than merely using the current measurement [2].

4.3 Examples

This section illustrates the ESN-based sparse estimation on three data-assimilation prob-

lems. The first two are time series generated by chaotic dynamical systems. The last

one is a real-time series of traffic flow data obtained from the Numina sensor nodes [76]

installed on the University of Maryland campus.
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4.3.1 Lorenz system

We tested the ESN with the ensemble Kalman filter to estimate a time series generated

by the Lorenz system:

ẋ1 = σ(x2 − x1) (4.6)

ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3,

where σ = 10, ρ = 28, and β = 8/3 produces chaotic behavior. The time-series of x(tk) =

[x1(tk), x2(tk), x3(tk)] is available during the training phase with ∆t = 0.1. An ESN with

1000 reservoir nodes is trained with data spanning 1000 time-steps. The reservoir weight

matrix is constructed as the adjacency matrix of an Erdös-Rényi graph G(n, p) where

n = 1000 is the number of the reservoir nodes and p = 0.01 denotes the probability

that an edge is present independent of the other edges. Being the adjacency matrix of

an undirected graph, W is symmetric. In the testing phase, only x2 is observed with

an i.i.d. additive zero mean Gaussian noise of covariance 0.01. This measurement is fed

into the ensemble Kalman filter with an ensemble size of 100. The reservoir nodes are

initialized with random initial conditions and an initial guess of the time series is chosen.

The estimated signal is compared with the true signal in Fig 4.4.

Remark 4.5. The introduction of the ensemble Kalman filter in the ESN feedback loop

enables it to accurately estimate the time-series signal even if the initial error is large,
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Figure 4.4: Estimation of the time-series using an ESN with an EnKF for the Lorenz
system

for example if the testing ohase does not start immediately after the training phase.

A free-running ESN can only predict the time series with a sufficiently accurate initial

condition.

The comparison of the L2 error between a free-running ESN predictor and the ESN-

EnKF driven by sparse measurements is depicted in Fig. 4.5. It is evident that an ESN

with sparse measurement performs significantly better than its free-running counterpart.
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Figure 4.5: Comparison of L2 error between a free-running ESN and an ESN with an
ensemble Kalman filter. Note the EnKF does not require the initial condition to be
known.

4.3.2 Lorenz-96 model

Next, the ESN-EnKF estimation algorithm is tested with the Lorenz-96 model [77], a

spatially correlated high-dimensional chaotic system developed by E. N. Lorenz in 1996

to describe the variation of an atmospheric quantity of interest, such as temperature

and vorticity, at discrete locations on a periodic lattice representing a latitude circle on

the earth. The state variables are coupled spatially and their equations of motion include

contributions relevant to fluid systems including a quadratic nonlinearity, dissipation, and

a constant external forcing. This model has been widely used as a model for atmospheric

prediction and the study of spatiotemporal chaos. Mathematically, Lorenz-96 is a linear
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Figure 4.6: The parallel ESN scheme with ensemble Kalman filter

lattice of K variables, where the the dynamics of the ith variable is

ẋi = (xi+1 − xi−2)xi−1 − xi + F, (4.7)

assuming x−1 = xK−1, x0 = xK , and xK+1 = x1. The parameter F is a forcing constant

with F = 8 being a common value causing chaotic behavior.

Let K = 40 be the total number of lattice points; which can be thought of as the

sensors on a latitude circle that measure the atmospheric quantity of interest. For a large

number of state variables the size of the ESN reservoir required to predict the system

using a single reservoir must also be large. This makes the single reservoir prediction

intractable for the large values of K. In order to mitigate the problem, the local nature of
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Figure 4.7: Lorenz-96 time series estimation for first three states, which are not measured
during the testing phase

the interactions among the state variables xi in (4.7) is utilized. From (4.7), xi depends

only on its neighbors xi−2 to xi+1 as in [38]. A parallel set of ESNs is used, each of which

predicts the state-variable xi. ESN i takes input from the states xi−2 to xi+1 and produces

the prediction for xi. This scheme is depicted in Fig. 4.6.

The ESNs are trained for N = 2000 time-steps. Each of these ESNs can be trained

in parallel, thereby reducing the computation time. We have compared the performance

of the proposed estimation algorithm with a free-running parallel ESN scheme. Here,

a random 50% of the lattice points are assumed measurable during the Kalman filter

update. The measurements are corrupted by additive i.i.d. zero mean Gaussian noise
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Figure 4.8: Lorenz-96 L2 error comparison between free-running parallel ESNs with and
without an Ensemble Kalman filter

with covariance 0.01 and assimilated by an ensemble Kalman filter with an ensemble size

of 100. A comparison between some of the estimated time-series signal and the true

data is shown in Fig. 4.7. The L2 error comparison between the free-running parallel

ESN structure and the ESN-EnKF with sparse measurements is presented in Fig. 4.8.

The ESN-EnKF algorithm is further compared with the reservoir observer, a model-free

prediction scheme for unmeasured variables [2]. In the reservoir observer, a subset of the

state variables is measured and fed into the parallel ESNs at each step, but without the

measurement update step used in the ensemble Kalman filter. The average correlation

between the true and estimated time series with 20 independent Monte-Carlo trials for

both the proposed algorithm and the reservoir observer is demonstrated in Fig. 4.9. The

proposed algorithm significantly outperforms the reservoir observer, especially when only

a moderate number of states are observable.
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Figure 4.9: Correlation between estimated data and the actual data for the Lorenz-96
model with error-bars: estimation by parallel ESNs with an ensemble Kalman filter has a
higher average correlation then the prediction with parallel ESNs by a reservoir observer
[2].

Remark 4.6. Lorenz-96 is an example where an ESN-based approach is greatly improved

by assimilating sparse measurements through an ensemble Kalman filter. This insight has

applications in atmospheric and oceanic data assimilation where the sensor measurements

are distributed sparsely in time.

4.3.3 Prediction of traffic congestion in a road network

The proposed algorithm is now applied to a data set of traffic counts obtained from

Numina sensors [76] at five different road-intersections on the University of Maryland

campus. Fig. 4.11 presents the road network along with the sensor locations. Each
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Figure 4.10: Traffic congestion pattern of five intersections over a single week, Each
revolution denotes a day of the week with times marked as angles; the number of vehicles
is denoted by the colormap. The daily pattern of peak congestion between mornings and
afternoons is evident.

sensor counts the number of vehicles, pedestrians, and bicycles at those intersections and

records them in a central server. An ESN of 1000 reservoirs are trained from hourly

traffic congestion data (total number of vehicles) in all five of these intersections for two

months. The training and testing timeline is presented in Fig. 4.12. Since the number

of vehicles is non-negative, the activation function ψ is modified to be a rectified tanh

function with the negative part set to zero. The network is then tested for a week with

only one sensor active. The ensemble Kalman filter is modified to have positive ensemble

members only. The estimates are rounded to the nearest positive integer. Fig. 4.13

shows the traffic congestion estimator’s performance. The network is able to predict the

daily variation of the traffic and the congestion peaks quite well. The algorithm is also

compared against the reservoir observer [2] with different numbers of available sensors.

The average correlation between the estimated and true traffic congestion time series is

computed for 20 independent Monte-Carlo trials and presented in Fig. 4.14 for both the

proposed predictor and the reservoir observer that uses an ESN only without the Kalman
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Figure 4.11: University of Maryland road network with Numina sensors

filter measurement update. The Kalman-filter-driven ESN has significantly higher average

correlation for partially observable cases.

Remark 4.7. The measurement noise for the traffic sensors are not Gaussian since they

can only report positive integer values, which may account for the relatively large predic-

tion error while the congestion is low.
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Figure 4.12: Schematic diagram of traffic data training and testing. Red intersections are
always observed and green intersections are conditionally observed.
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Figure 4.13: Estimation of traffic congestion in all five nodes with only the fifth one
observed (xi denotes the estimated number of vehicles at the ith intersection.)
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Figure 4.14: Correlation between estimated and actual data for traffic congestion: esti-
mation by ESN with an ensemble Kalman filter has a higher average correlation than the
prediction with an ESN by a reservoir observer [2].
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Chapter 5

Bilinearization, controllability, and optimal

control of a control affine system: a Koop-

man spectral approach

We present a data-driven modeling and control-design of a control-affine system in this

chapter to complement the data-driven estimation algorithm presented in chapter 4. A

Koopman theoretic framework is utilized for modeling and control of a control-affine

system here.

Operator-theoretic methods essentially work by embedding finite-dimensional dynam-

ics in an infinite-dimensional function space in which functions evolve under a linear

operator. While in chapter 3 we discussed the density transport by approximating the

Perron-Frobenius (PF) chapter, this chapter makes an effort to utilize its dual, tha Koop-

man operator to control a nonlinear system. The spectral property of the Koopman

operator is well analyzed, see, e.g., [41]. The Koopman operator offers effective methods
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to characterize a nonlinear system in terms of stability [43] and linearization [44].

The application of the Koopman method to actuated systems has proven to be difficult,

because the Koopman operator changes its spectral properties with the actuation signals.

Proctor et al. introduces a method [45] to incorporate the control input in Koopman

framework by redefining the Koopman operator with two arguments. Williams et al. [42]

bridges the gap of the analysis and simulation by providing a method to determine the

spectral property of the Koopman operator of the underlying unforced system from the

data of the actuated dynamics. However, neither of these methods permit the linearization

of full-scale actuated systems with Koopman spectra.

Surana et al. [46] proposed a framework for designing an observer for a discrete-time

unactuated nonlinear system. The same framework is extended into continuous time with

control-affine dynamics in [47]. Reference [47] introduces the Koopman canonical trans-

form (KCT) using Koopman eigenfunctions, which transforms the (nonlinear) dynamics

into an observer form. This chapter utilizes the KCT to transform a control-affine non-

linear system into a bilinear one and derives the sufficient conditions for such a reduction.

The bilinearization thus obtained is global and does not rely on the neighbourhood of

the operating point or trajectory. An approximate bilinearization technique is also de-

rived when the sufficient conditions do not hold. The bilinear system is then used for

controllability analysis and designing a stabilizing control based on the Myhill semigroup

theory and Lie-algebraic methods described in [78], [79]. The bilinear representation is

then used to derive an optimal control for the original system using Pontryagin’s Principle

[80]. This method does not require knowledge of the drift vector field since the KCT may
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be derived with time-series data from the open-loop system.

5.1 Koopman overview and motivation

Consider a dynamical system on a compact manifold X ⊆ Rd,

ẋ = f(x), (5.1)

where x ∈ X and f : X → X. Let Φ(t, x) be the flow map of the system (5.1). Let F be

the space of all complex-valued observables φ : X → C. The continuous time Koopman

operator is defined as Kt : F → F such that

(Ktφ)(·) = φ ◦ Φ(t, ·). (5.2)

Unlike the original system, the Koopman operator is linear over its arguments, i.e., observ-

able functions, and therefore can be characterized by its eigenvalues and eigenfunctions.

A function ϕ : X → C is an eigenfunction of Kt if

(Ktϕ)(·) = eλtϕ(·), (5.3)

with eigenvalue λ ∈ C. The infinitesimal generator of Kt, i.e., limt→0
Kt − I

t
, is f · ∇ = Lf

[43], where Lf is the Lie derivative with respect to f. The infinitesimal generator satisfies
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the eigenvalue equation

Lfϕ = λϕ. (5.4)

Hence, the time-varying observable ψ(t, x) ≜ Ktφ(x) is the solution of the Partial Differ-

ential Equation (PDE) [43]
∂ψ

∂t
= Lfψ,

ψ(0, x) = φ(x).
(5.5)

In spite of its linearity, the Koopman operator is infinite dimensional, and has an

infinite number of eigenfunctions. In fact, if ϕ1 and ϕ2 are eigenfunctions of Kt with

eigenvalues λ1 and λ2, respectively, then ϕk
1ϕ

l
2 is also an eigenfunction with eigenvalue

kλ1 + lλ2 for any k, l ∈ N. Moreover, the Koopman operator, being infinite dimensional,

may contain continuous and residual spectra with a generalized eigendistribution [31].

However, the discussions in this paper are restricted to the point spectra of the Koopman

operator.

Let g(·) ∈ Fp, p ∈ N, be a vector-valued observable. The observable g can be expressed

in terms of Koopman eigenfunctions ϕi(·) as follows:

g(·) =
∞∑
i=1

ϕi(·)vg
i , (5.6)

where vg
i ∈ Rp, i = 1, 2, . . . , are called the Koopman modes of the observable g(·). Koop-

man modes form the projection of the observable on the span of Koopman eigenfunctions

[81]. The Koopman eigenvalues and eigenfunctions are properties of the dynamics only,

whereas the Koopman modes depend on the observable.
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5.1.1 Motivation for bilinearization: The function space

Consider the control affine system

ẋ = f(x) +
m∑
i=1

gi(x)ui

y = h(x),
(5.7)

where x ∈ X ⊆ Rd, ui ∈ R, for i = 1, . . . ,m and y ∈ Rp. Here the control input enters

only through the control vector fields gi. The objective is to transform the system into

an appropriate basis in higher or possibly infinite dimension, so that the drift and control

vector fields become linear. Let ψ(t, x) be defined as in (5.5). Note that ψ(t, x) gives the

evolution of the observable quantity with time along the trajectory. Applying (5.5) to the

system (5.7), the evolution PDE is given by

∂ψ

∂t
= Lfψ +

m∑
i=1

uiLgiψ,

ψ(0, x) = φ(x),
(5.8)

where Lgi ≜ gi ·∇, i = 1, . . . ,m are the corresponding Lie derivatives and hence are linear

operators on the space of ψ. The PDE system (5.8) appears qualitatively similar to the

standard bilinear system, i.e., ẋ = Ax +
∑m

i=1Bixui. The system (5.8) differs only in the

fact that Lf and Lgi are infinite dimensional operators operating over function space. The

idea here is to choose a suitable collection of scalar observables to transform the original

system into a new state space to get a bilinear form (possibly in infinite dimensions) and
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then to project these Lie derivative operators on a finite-dimensional subspace to get a

finite-dimensional bilinear system that approximates the original system (5.7).

5.1.2 Koopman canonical transform

In order to choose a suitable collection of observables that reliably describes the original

system, we seek basis functions on which we can project a wide variety of vector-valued

observables. A natural choice is to use the eigenfunctions of the Koopman operator, since

these functions, when operated on by the Koopman infinitesimal generator, get multiplied

by a scalar only. For this transformation, we use the Koopman canonical transform (KCT)

defined in [47]. The KCT relies on the point spectra of the Koopman operator related

to the drift vector field, and it suffices because the continuous spectrum is empty for

most systems near an attractor [43]. For the system (5.7) we investigate the Koopman

eigenvalues and eigenfunctions of the unactuated dynamics, i.e.,

ẋ = f(x), (5.9)

and the flow associated with it. Let λi, ϕi(·) for i = 1, 2, . . . be the eigenvalue-eigenfunction

pairs of the Koopman operator associated with the system (5.9). Surana [47] introduced

the KCT to transform the dynamics (5.7) using the eigenfunctions ϕi in possibly a higher-

dimensional space. To enable us to use KCT, [47] mentions the following assumption.
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Assumption 5.1. ∃ ϕi, i = 1, 2, . . . , n, such that

x =
n∑

i=1

ϕi(x)vx
i , h(x) =

n∑
i=1

ϕi(x)vh
i ,

where vx
i ∈ Cd and vh

i ∈ Cp.

This assumption implies that the state vector and the output function can be de-

scribed in terms of a finite number of Koopman eigenfunctions. With sufficiently large n,

Assumption 5.1 is likely to be satisfied. Otherwise x and h(x) can be well approximated

by n eigenfunctions as in the case of a Fourier series.

The KCT is defined by the transformation T (x) [47]:

T (x) = [ϕ̃1(x), . . . , ϕ̃n(x)]T

ϕ̃i(x) = ϕi(x), if ϕi : X → R

(ϕ̃i(x), ϕ̃i+1(x))T = (2Re(ϕi(x)),−2Im(ϕi(x)))T ,

if ϕi : X → C

(5.10)

Following the transformation z = T (x), the system (5.7) in the new coordinates becomes

[47]

x = Cxz,

ż = Dz +
m∑
i=1

LgiT (x)ui|x=Cxz,

y = Chz,

(5.11)

where Cx = [ṽx
1| . . . |ṽx

n] and Ch = [ṽh
1| . . . |ṽh

n] with ṽx
i = vx

i , if ϕi is real-valued, and
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[ṽx
i , ṽx

i+1] = [Re vx
i , Im vx

i ], if ϕi is complex-valued. ṽh
i are defined similarly. D ∈ Rn×n is

a block diagonal matrix with diagonal entry Di,i = λi if ϕi is a real-valued eigenfunction,

or

 Di,i Di,i+1

Di+1,i Di+1,i+1

 = |λi|

 cos(∠λi) sin(∠λi)

− sin(∠λi) cos(∠λi)

 if ϕi is complex.

Remark 5.1. Although Assumption 5.1 is stated as a requirement in [47] to express

the state x and the observation h(x) in a closed form by the Koopman eigenfunctions, it

will be shown later that we can drop this assumption and, for most systems, can express

any continuous function of the state x arbitrarily accurately by the linear combination of

Koopman eigenfunctions.

5.2 Koopman-induced bilinearization of a control affine system

To establish the bilinearizability of the system (5.11), we need to analyze the control

vector fields of the original system. In the transformed system, the control enters through

the transformed vector field LgiT (x)|x=Cxz. Note that Lgi is the infinitesimal Koopman

operator with respect to control vector field gi.

5.2.1 Bilinearizability of the Koopman Canonical Transform

Definition 5.1. An invariant subspace of a linear mapping T : V → V from a vector

space V to itself is a subspace W ⊆ V such that T (W ) ⊆ W .

Theorem 5.1. The system (5.11) (hence the system (5.7) as well) is bilinearizable in

a countable (possibly infinite) basis if the eigenspace of Lf, i.e., the Koopman operator
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corresponding to the drift vector field is an invariant subspace of Lgi , i = 1, . . . ,m, i.e.,

the Koopman operators related to the control vector fields.

Proof. If the hypothesis is true, then we can choose eigenfunctions of Lf, {ϕj : j =

1, 2, . . .}, such that Lgiϕk ∈ span{ϕj : j = 1, 2, . . .}, ∀ i = 1, . . . ,m, k = 1, 2, . . .. This

choice is guaranteed, because span{ϕj : j = 1, 2, . . .}, i.e., the eigenspace of Lf, is invariant

under Lgi , i = 1, . . . ,m. So, ∀ k = 1, 2, . . ., we have Lgiϕk =
∞∑
j=1

vgi
j ϕj, where vgi

j ∈ R.

Now taking T (x) as in Eq. (5.10) but without imposing the finite n condition, we get

LgiT (x) =
∞∑
j=1

vgi
j ϕj(x) =

∞∑
j=1

ṽgi
j ϕ̃j(x),

where ṽgi
j ∈ Rd and ϕ̃j are defined as in Eq. (5.10). Now define B∞

i = [ṽgi
1 |ṽ

gi
2 | . . .]. Then,

with z = T (x), the system (5.11) can be expressed as

ż = Dz +
m∑
i=1

B∞
i zui, (5.12)

which completes the proof.

Although Theorem 5.1 gives the condition for the bilinearizability of the control-affine

system using KCT with a countable number of eigenfunctions, it still does not solve

the problem with infinitely many eigenfunctions. However, for an approximate result

we can truncate the number of eigenfunctions to only the dominant ones. This linear

approximation, unlike the Jacobian approach, is global, i.e., it is valid over the manifold

X on which the dynamics (5.7) is defined.
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Corollary 5.1.1. The systems (5.7) and (5.11) are bilinearizable if the drift vector field

f ≡ 0, i.e., if the system (5.7) a pure control-affine system.

Proof. The proof follows from the fact that every function ϕ(·) ∈ F is an eigenfunction

of Lf with f ≡ 0 corresponding to the zero eigenvalue. Hence the whole space F is the

eigenspace of Lf, which is of course invariant under Lgi , ∀ i = 1, . . . ,m. Therefore, from

Theorem 5.1, the system is bilinearizable.

Theorem 5.1 and Corollary 1 essentially embed the finite-dimensional nonlinear dy-

namics (5.7) in a higher, possibly infinite-dimensional linear system (5.12). There are

other embedding techniques that deal with Hermite polynomials, e.g., Carleman embed-

ding [82], but that technique works only on analytic nonlinearities. The method with

Koopman eigenfunctions works on a wide varieties of systems, and can be characterized

in terms of the range and eigenspace of the corresponding Koopman operator.

For a finite-dimensional bilinearization of the system (5.7), we need a stronger assump-

tion than invariance of the eigenspace of Lf. The invariant subspace must be spanned by

a finite number of Koopman eigenfunctions, which is the statement of Theorem 5.2.

Theorem 5.2. Suppose ∃ {ϕj : j = 1, . . . , n}, n ∈ N, n < ∞ such that ϕj, j = 1, . . . , n

are the Koopman eigenfunctions of the unactuated system (5.9) and span{ϕ1, . . . , ϕn}

forms an invariant subspace of Lgi , i = 1, . . . ,m. Then the system (5.7) and, in turn

system (5.11), are bilinearizable with an n dimensional state space.

Proof. The hypothesis dictates that Lgiϕk ∈ span{ϕj : j = 1, . . . , n} ∀ i = 1, . . . ,m, k =
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1, . . . , n. Therefore, we conclude

Lgiϕk =
n∑

j=1

vgi
j ϕj, k = 1, . . . , n,

where vgi
j ∈ R. Now consider T (x) as defined in Eq. (5.10). Its Lie derivatives with

respect to the control vector fields are

LgiT (x) =
n∑

j=1

vgi
j ϕj(x) =

n∑
j=1

ṽfi
j ϕ̃j(x),

where ṽgi
j ∈ Rd and ϕ̃j are defined as in Eq. (5.10). Now, as in Theorem 5.1, define

Bi ≜ [ṽgi
1 |ṽ

gi
2 | . . . |ṽgi

n ]. The difference from the B∞
i in the proof of Theorem 5.1 is that

Bi is not only countable but also a finite-dimensional matrix. Now with transformed

coordinate z = T (x), the transformed system looks like

ż = Dz +
m∑
i=1

Bizui, (5.13)

with z ∈ Rn, n <∞.

Though the hypothesis of Theorem 5.2 is difficult to satisfy, we can always include

more eigenfunctions ϕj in the span so that ‖Lgiϕj−
n∑

j=1

vgi
j ϕj‖ becomes sufficiently small to

satisfy the invariance condition of Theorem 5.1. Note that usually n� d, i.e., this method

of bilinearization lifts the original dynamics (5.7) to a much higher dimensional state space.

The resulting bilinear system is easier to work with in terms of controllability analysis and
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designing a stabilizing control than the original nonlinear system. The bilinear system

defined by (5.13) will be refered as the Koopman bilinear form (KBF) in the sequel.

5.2.2 Approximate bilinearization of the Koopman canonical transform

Under the condition of Theorem 5.2, we have

LgiT (x) = BiT (x), i = 1 . . . ,m, (5.14)

where Bi ∈ Rn×n. If this condition is not satisfied, we need to approximate Bi with

respect to a suitable metric. For example, either a least-squares technique based on time

series data might be used or an analytical tool can be developed, if the control vector

fields are known. In this section, the latter approach yields a closed-form approximation

of Bi that depends on the control vector fields.

Remark 5.2. Although we assume that the control vector fields are known, the technique

can be carried out without knowledge of the drift vector field. The time series data for

the unactuated system may be used to approximate the Koopman eigenfunctions ϕi that

are necessary for constructing the KCT.

To determine Bi for an approximate bilinear system, we use the L2 functional norm.

Since the control vector fields and the Koopman eigenfunctions might not belong to

L2
m(X), we truncate the state-space X into a set X of finite measure so that m(X) < ∞,

where m : X −→ R+ is the Lebesgue measure.
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Assumption 5.2. Let ϕi ∈ L∞
m (X) for i = 1, . . . , n and gi ∈ L∞

m (X) for i = 1, . . . ,m.

Under this assumption, ϕi ∈ L2
m(X) and gi ∈ L2

m(X), since we have a finite measure

space.

Remark 5.3. The L2 norm is chosen specifically because the space of L2(X) functions is

a Hilbert space that yields a inner-product of the form

〈ψ1, ψ2〉L2
m(X) ≜

∫
X

ψ1ψ2dm,

where ψ1, ψ2 ∈ L2
m(X).

We pose the approximation of Bi as the following quadratic optimization problem:

minimize
Bi

‖LgiT (x)−BiT (x)‖2L2
m(X)

for i = 1, . . . ,m.

(5.15)

The optimization problem (5.15) is an unconstrained convex quadratic program on Bi. A

solution to this problem is obtained analytically in the next theorem.

Theorem 5.3. The optimization problem (5.15) yields a minimum B∗
i characterized as

QB∗
i
T = Ri, Q ∈ Rn×n, Ri ∈ Rn×n, (5.16)

where

Qkl = 〈ϕ̃k, ϕ̃l〉L2
m(X)
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and

(Ri)kl =

〈
∂ϕ̃l

∂x gi, ϕ̃k

〉
L2
m(X)

.

Proof. Let the jth row of Bi be bj, i.e., Bi = [bT
1 , . . . , bT

n ]
T . Then the cost function

becomes

J(Bi) ≜ ‖LgiT (x)−BiT (x)‖2L2
m(X)

=

∫
X

(
∂T (x)
∂x gi −BiT (x)

)T (
∂T (x)
∂x gi −BiT (x)

)
dm

=
n∑

j=1

∫
X

(
∂ϕ̃j(x)
∂x gi − bjT (x)

)2

dm

=
n∑

j=1

Jj(bj), (5.17)

where Jj(bj) ≜
∫
X

(
∂ϕ̃j(x)
∂x gi − bjT (x)

)2
dm, j = 1, . . . , n. So it suffices to find the minima

for each Jj(bj). Now for each j, Jj is a convex quadratic function of bj that is bounded

below by zero. Hence b∗
j is a minima for Jj(bj) if and only if

∂Jj
∂(bj)k

∣∣∣∣
bj=b∗

j

= 0, (5.18)

for k = 1, . . . , n, where (bj)k denotes the kth component of the vector bj.

Solving (5.18) for every k ∈ 1, . . . , n, we get a system of equations

Qb∗
j
T = rj, (5.19)
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where Qkl =
∫
X
ϕ̃kϕ̃ldm = 〈ϕ̃k, ϕ̃l〉L2

m(X) and (rj)k =
∫
X

∂ϕ̃j

∂x giϕ̃kdm =

〈
∂ϕ̃j

∂x gi, ϕ̃k

〉
L2
m(X)

,

k, l ∈ 1, . . . , n. Note that rj is a column vector, whereas bj is a row vector. Now combining

the condition (5.19) for j = 1, . . . , n, we get

QB∗
i
T = Ri, (5.20)

where Ri = [r1| . . . |rn]. From now on, we will denote the optimal Bi without the asterisk

for the sake of convenience.

Remark 5.4. With the optimal Bi from Theorem 5.3, the bilinear representation of the

system (5.7) is

x = Cxz

ż = Dz +
m∑
i=1

Bizui

y = Chz. (5.21)

The Koopman bilinear form (5.21) formed from the Theorem 5.3 is available even if the

conditions of Theorem 5.2 is not met.

Remark 5.5. Although Bi in (5.21) gives the optimal bilinear representation of the

system (5.7) in the truncation X of the state space X with respect to the L2 norm,

the truncation impacts the degree of optimality and should be chosen depending on the

system.
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5.2.3 Convergence of the Koopman bilinear form to the original system

While describing the Koopman bilinear form (5.21), the implicit assumption so far is that

there are sufficiently many Koopman eigenfunctions to represent the state, observation

equations, and the control vector fields. But the crucial question is whether an arbitrary

continuous function of the state can be approximated by the linear combination of the

Koopman eigenfunctions. It turns out that it is possible for most cases by using the

approach of a non-recurrent surface [83].

Definition 5.2. A set Γ ∈ X is called non-recurrent with respect to the dynamical flow

map Φ(t, x) and time T > 0, if x ∈ Γ =⇒ Φ(t, x) /∈ Γ, ∀ t ∈ (0, T ].

Reference [83] shows that for any function g ∈ C(Γ) and λ ∈ C, an eigenfunction for

Koopman operator can be defined as

ϕλ,g(x) = e−λτ(x)g(Φ(τ(x), x)), ∀ x ∈ XT , (5.22)

where τ(x) = inf
t∈R

{t|�(t, x) ∈ Γ} and XT = ∪
t∈[0,T ]

Φ(t,Γ) = ∪
t∈[0,T ]

{Φ(t, x0)|x0 ∈ Γ}.

Remark 5.6. The time τ(x) defines the first instant that the trajectory Φ(t, x) hits the

non-recurrent set Γ backwards starting from x.

Remark 5.7. The functions g ∈ C(Γ) are called boundary functions [83] and can be

viewed as dictionary functions required to generate the set of eigenfunctions.

The next question is whether the set of eigenfunctions ϕλ,g are rich enough to represent
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the state x and observation function h(x) by linear combination. The next theorem

clarifies this point.

Theorem 5.4. Let Λ ⊂ C be an arbitrary nontrivial set of the complex numbers and

define L(Λ) ≜ {
N∑
k=1

αkλk|λk ∈ Λ, αk ∈ N0, N ∈ N}. Let Γ ⊂ X be a non-recurrent set

closed in Rd and G ⊂ C(Γ) denote a dense unital subalgebra (i.e., G is closed under mul-

tiplication and contains a multiplicative identity) of continuous functions on Γ. Assume

that the system state x does not blow up in t ∈ (0, T ]. Then

ΦΛ,G ≜ {ϕλ,g|λ ∈ L(Λ), g ∈ G}

is dense in C(XT ). Hence for any ϵ > 0 and ξ ∈ C(XT ), ∃ ϕ1, . . . , ϕn ∈ ΦΛ,G such that

sup
x∈XT

∣∣∣∣∣ξ(x)−
n∑

i=1

viϕi(x)
∣∣∣∣∣ < ϵ.

Proof. Since there is no finite escape time in (0, T ], XT must be bounded. Now consider

a sequence xi ∈ XT with limit x∗ ∈ Rd. Therefore ∃ a sequence (ti, x0
i ) ∈ [0, T ]× Γ such

that xi = Φ(ti, x0
i ). Since [0, T ]× Γ compact, ∃ a convergent subsequence that converges

to (t∗, x0∗). By the continuity of the flow map, we have x∗ = Φ(t, x0∗) ∈ XT . Hence XT

is closed, which implies it is compact. From (5.22)

ϕλ,g(x) = e−λτ(x)g(Φ(τ(x), x)), ∀ x ∈ XT .

Since G is a dense unital subalgebra of continuous functions over a compact set Γ, by the
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Stone-Weierstrass theorem [84] it separates points, i.e., ∀ x0, y0 ∈ Γ, x0 6= y0, ∃ g ∈ G

such that g(x0) 6= g(y0). Furthermore, since trajectories cannot cross, ∀ x, y ∈ XT , x 6= y,

Φ(τ(x), x) 6= Φ(τ(y), y), which in turn implies that g(Φ(τ(x), x)) 6= g(Φ(τ(y), y)). This

fact, together with λ = 0 ∈ L(Λ), readily shows that ΦΛ,G also separates points and

contains a constant function. It is also evident from the construction that ΦΛ,G is a unital

subalgebra of C(XT ) with XT compact. Hence ΦΛ,G is dense in C(XT ).

Remark 5.8. The unital subalgebra can be chosen in various ways. The space of poly-

nomials with the identity function is one such choice.

Remark 5.9. Whether a closed non-recurrent set or surface can be found is an interesting

question. Reference [83] shows that a (d − 1)-dimensional closed surface Γ exists if we

can find a finite set of points Γ̂ = {x1, . . . , xM} with no two points lying on the same

trajectory and the flow of (5.1) can be rectified, i.e., there exists a diffeomorphism h :

Y ′ ⊂ Rd −→ D ⊂ X through which (5.1) is conjugate to ẏ = (0, . . . , 0, 1)T . Then Γ ⊃ Γ̂.

Remark 5.10. The dynamics (5.1) are rectifiable locally in the neighbourhood of a non-

singular (i.e., the vector field does not become zero) point [85]. However, this property

breaks down when we have a singularity, i.e., a fixed point nearby.

Remark 5.11. In the region of attraction of a asymptotically stable equilibrium point,

the flow is not rectifiable. But the existence of a non-recurrent surface can readily be

demonstrated with the level curves of the Lyapunov function by the converse Lyapunov

theorem [86]. The same is true for an unstable equilibrium with no stable manifold.
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5.3 Data-Driven Construction of the Koopman Bilinear Form

Until now, analytical representations of the Koopman eigenfunctions ϕi for the drift

vector-field have been assumed. But in practical cases, the Koopman eigenfunctions and

eigenmodes may need to be calculated from data. For this purpose, consider extended

dynamic mode decomposition [32] is used here. For the autonomous system ẋ = f(x),

time-series data is generated from the experiment or simulation and arranged in snapshot

pairs with time interval ∆t as follows:

X = [x1, . . . , xN ]

Y = [y1, . . . , yN ], (5.23)

with yi = Φf (∆t, xi), where Φf : [0,∞)× X −→ X is the flow-map for ẋ = f(x).

Now a dictionary of observable functions D = [h1, . . . , hK ] is chosen such that hi ∈ F .

The span of these dictionary functions is denoted as FD ⊆ F . Define a vector-valued

function H : X −→ Cn, where

H(x) = [h1(x), . . . , hn(x)]. (5.24)

The choice of dictionary is an open question, but a discussion of some pragmatic choices

can be found in [32]. Our objective is to project a Koopman eigenfunction ϕ onto the

dictionary D. The projection is derived by a least-square optimization problem as follows
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[32]:

minimize
K

‖GK − A‖2F (5.25)

where

G =
1

N

N∑
i=1

H(xi)
∗H(xi),

A =
1

N

N∑
i=1

H(xi)
∗H(yi)

with K, G, A ∈ CK×K . The solution to this problem [32],

K ≜ G†A (5.26)

gives the finite-dimensional approximation of the Koopman operator K, where G† is the

pseudoinverse of G. As a consequence, if ξj is the jth eigenvector of K with the eigenvalue

µj, then the EDMD approximation of an eigenfunction of K is [32]

ϕj = Hξj,

corresponding to the Koopman eigenvalue λj =
lnµj

∆t
.

Using EDMD, we compute n such eigenvalues and eigenfunctions for the drift vector

field from simulations or experimental data. These eigenfunctions are used to perform

the KCT and derive the Koopman bilinear form. The Cx matrix is approximated as

Cx ≈ XT †
x ,
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where Tx ≜ [T (x1), . . . , T (xN)].

5.4 Reachability analysis of the Koopman bilinear form

This section is devoted to reachability analysis of the KBF and requires the concatenation-

semigroup structure of the control signals [78]. First, the concepts of reachability and

reachable sets are briefly described for bilinear systems.

Definition 5.3. Given a bilinear system

ż = Dz +
m∑
i=1

Bizui, z(0) = z0,

a point zd is said to be reachable in time T if ∃ an input u : t ∈ [0, T ] 7→ u(t) ∈ Rm such

that z(T ) = zd. If zd is reachable in time T for all T > 0, then zd is said to be reachable.

Moreover, the set of all reachable point of the system, i.e., {zd : zd is reachable} is called

the reachable set.

Next the semigroup is defined and explained in terms of piecewise continuous control

signal.

Definition 5.4. A semigroup is an algebraic structure consisting of a set S and a binary

operation “◦” defined as ◦ : S×S → S, i.e., x ◦ y ∈ S, ∀x, y ∈ S such that it satisfies the

associative property:

∀x, y, z ∈ S, (x ◦ y) ◦ z = x ◦ (y ◦ z).

Let ui be an m-dimensional piecewise continuous control signal. We can form a semi-
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group from the set {ui(·)|ui : R+ → Rm,ui piecewise continuous} with the concatenation

operation. The concatenation operation looks like

u1 ◦ u2 =

{ u1(t), t ∈ [0, t1)

u2(t− t1), t ∈ [t1, t2)

(5.27)

Denote this semigroup as Um. Each u ∈ Um, when applied to the dynamics (5.13),

generates a one-to-one continuous map from Rn into Rn in terms of a flow map. Let T n

be the semigroup of all such maps with the composition operation. The system (5.13)

defines a homomorphism H from Um into T n [78]. The image of Um under H is called

the Myhill semigroup [78] of the system. The maps of the Myhill semigroup are, in fact,

the flow maps of the system with a particular piecewise-continuous control signal u ∈ Um

and, therefore, provide all the information about the dynamics.

In general, for an arbitrary nonlinear system, these maps are difficult to obtain an-

alytically and yield little practical value. But for the bilinear system (5.13), the Myhill

semigroup maps are the matrices Z ∈ Rn×n, satisfying the matrix differential equation

Ż(t) = DZ(t) +
m∑
i=1

BiZ(t)ui,

Z(0) = I,

(5.28)

with z(t) = Z(t)z(0) for any z(0) ∈ Rn. Therefore, given any initial state z0, the states

reachable from z0 are given by all the points in Rn that can be generated by Z(t)z0 for

some t ≥ 0, where Z(t) satisfies (5.28). Consequently, the controllability of the system
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(5.13) can be characterized by the controllability of the matrix differential equation (5.28).

The controllability of a bilinear matrix system has been studied widely [78], [79], [87], [88],

exploiting the characteristic of matrices as operators and the corresponding Lie-algebraic

structures.

The Lie bracket of Rn×n matrices is defined as

[·, ·] : Rn×n × Rn×n → Rn×n,

[X,Y ] 7→ XY − Y X.

Any space of matrices over a field F (usually R or C) closed under the Lie bracket operation

forms a Lie algebra. The dimension l of a Lie algebra is its dimension as a vector space

over F . The matrix exponentials of all elements of a matrix Lie algebra along with usual

matrix multiplication forms a matrix Lie group associated with the algebra. For example,

all Rn×n matrices form a Lie algebra with dimension l = n2. The corresponding group

is known as the General linear group and denoted as GL(n,R), which corresponds to the

multiplicative group of invertible n × n real matrices. Let {Xi : i = 1, . . . , n}A denote

as the smallest Lie algebra containing {Xi : i = 1, . . . , n} and {exp{Xi} : i = 1, . . . , n}G

be the smallest Lie group containing {exp{Xi} : i = 1, . . . , n}. Also ∀A,B ∈ Rn×n and

k = 0, 1, . . ., define adk+1
A B ≜ [A, adk

AB] with ad0
AB ≜ B. The reachability results are

stated below using the notation of Lie groups and algebras.

The necessary and sufficient conditions for reachability in the KBF (5.13) are described

next. First, it is derived for the drift-free matrix bilinear system, then it is extended to
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the matrix systems with drift. Finally, the relationship between the reachability in matrix

bilinear system (5.28) and KBF (5.13) is explained.

5.4.1 Conditions for reachability

To describe the reachability of a drift-free matrix bilinear system, we need a factorization

lemma by Wei and Norman [89], which gives the solution of a bilinear system locally in

terms of matrix exponentials.

Lemma 5.1. Consider the drift-free matrix differential equation in Rn×n,

Ż(t) =
m∑
i=1

BiZ(t)ui(t), Z(0) = I, (5.29)

where Z ∈ Rn×n. Let l be the dimension of the Lie algebra {Bi : i = 1, . . . ,m}A . Then

there exists a neighbourhood of t = 0 in which the solution of (5.29) may be expressed in

the form

Z(t) =
l∏

i=1

exp(hi(t)Bi),

where {Bi : i = 1, . . . , l} is the extension of {Bi : i, . . . ,m} to a basis of {Bi : i =

1, . . . ,m}A.

The next two theorems are presented in [79]. For the sake of completeness, both of

the proofs are included.

Theorem 5.5. [79] Consider the drift-free matrix differential equation (5.29) from Lemma

5.1, which corresponds to the system (5.13) with f ≡ 0 and Bi as defined in Theorem

130



5.2. Z1 ∈ Rn×n is in the reachable set of (5.29) if and only if Z1 ∈ {exp{{Bi : i =

1, . . . ,m}A}}G, i.e., it lies within the smallest group generated by the matrix exponential

of the elements of the smallest algebra generated by the control matrices.

Proof. Sufficiency: Let Z1 ∈ {exp{{Bi : i = 1, . . . ,m}A}}G. Then from [79], Z1 can be

written as a finite product

Z1 =
m∏
k=1

exp(Bikak),

where Bik ∈ {Bi : i = 1, . . . ,m} and ak ∈ R∀ k = 1, . . . ,m. For a T > 0, partition [0, T ]

into m equal intervals [tk−1, tk], k = 1, . . . ,m. Define τ ≜ tk − tk−1.

Now for t ∈ [tk−1, tk), choose uim−k+1
=
am−k+1

τ
and ui ≡ 0 ∀ i 6= im−k+1. Hence, for

each interval [tk−1, tk) the system becomes

Ż(t) =
am−k+1

τ
Bim−k+1

Z(t),

with state transition matrix exp
(
t
am−k+1

τ
Bim−k+1

)
. Therefore

Z(T ) = exp (a1Bi1) · . . . · exp (amBim)Z(0)

=
m∏
k=1

exp (akBik) ,

since Z(0) = I. Hence Z1 is reachable using piecewise continuous control u(t).

Necessity: Let Z1 be reachable in time T , i.e., Z1 = Z(T ). From Lemma 5.1, we have
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a partition 0 = t0 < t1 < . . . < tp = T such that for t ∈ [tk − 1, tk), k = 1, . . . , p,

Z(t) =
l∏

i=1

exp(hi(t)Bi),

where {Bi : i = 1, . . . , l} is the extension of {Bi : i, . . . ,m} to a basis of {Bi : i =

1, . . . ,m}A. Therefore,

Z1 = Z(T )

=

p∏
k=1

l∏
i=1

exp(hi(tk − tk−1)Bi),

i.e., a product of the matrix exponentials on the Lie algebra {Bi : i = 1, . . . ,m}A. Hence

Z1 ∈ {exp{{Bi : i = 1, . . . ,m}A}}G.

The result of the Theorem 5.5 is somewhat incomplete in that the drift term is absent.

The following theorem describes one way in which this constraint can be relaxed.

Theorem 5.6. [79] Consider the matrix differential equation in Rn×n,

Ż(t) = DZ(t) +
m∑
i=1

BiZ(t)ui(t), Z(0) = I, (5.30)

where D and Bi are defined as in the proof of Theorem 5.2. Assume [adj
DkBi, Bj] = 0

for i, j = 1, . . . ,m and k = 0, 1, . . . , n2 − 1. Let L = span{adk
DBi : i = 1, . . . ,m, k =

0, 1, . . . , n2 − 1}. Then Z1 is reachable at time t1 through continuous controls if and only
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if ∃L ∈ L such that

Z1 = exp(t1D) exp(L).

Proof. Necessity: Let Z1 is reachable at time t1, i.e., Z(t1) = Z1. Using the Baker-

Hausdorff formula [79],

[exp(tD)Bi exp(−tD) , Bj]

=

[
Bi + [D,Bi]t+

1

2
[D, [D,Bi]]t

2 + . . . , Bj

]
= [Bi, Bj] + [adDBi, Bj] +

1

2
[ad2

DBi, Bj]

+
1

6
[ad3

DBi, Bj] + . . .

=
∞∑
k=0

1

k!
[adk

DBi, Bj]. (5.31)

Now we know [adk
DBi, Bj] = 0 for k = 0, . . . , n2 − 1. However, adD(·) is a linear operator

from an n2-dimensional space to itself. Hence, by the Cayley-Hamilton theorem [79],

adk
D(·) for k ≥ n2 − 1 are linear combinations of the first n2 − 1 powers. Hence, from

(5.31), [exp(tD)Bi exp(−tD) , Bj] vanishes identically.

Also we get

0 = exp(tD)Bi exp(−tD)Bj −Bj exp(tD)Bi exp(−tD)

= exp(σD)(exp(tD)Bi exp(−tD))Bj exp(−σD)

− exp(σD)Bj(exp(tD)Bi exp(−tD)) exp(−σD),
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for some arbitrary σ ∈ R. Let β ≜ t+ σ and γ = σ. Therefore, for all β and γ ∈ R,

[exp(βD)Bi exp(−βD), exp(γD)Bi exp(−γD)] = 0.

Now in order to solve the matrix differential equation(5.30), let Y (t) ≜ exp(−tD)Z(t).

The (5.30) becomes

Ẏ (t) =

(
m∑
i=1

ui(t) exp(−tD)Bi exp(tD)

)
Y (0), (5.32)

which is of the form Ẏ (t) = B(t)Y (t) with B(t) ≜
m∑
i=1

ui(t) exp(tD)Bi exp(−tD) and

[B(t), B(σ)] = 0 for all t and σ. The solution of this system can be written [90] as

exp
∫ t

0
B(σ)dσ , i.e.,

Y (t) = exp

 m∑
i=1

t∫
0

ui(σ) exp(−σD)Bi exp(σD)dσ

Y (0)

= exp(L(t))Y (0), (5.33)

where L(t) ≜
(

m∑
i=1

t∫
0

ui(σ) exp(−σD)Bi exp(σD)dσ

)
. In (5.33), each term in the summa-

tion can be written as

t∫
0

ui(σ) exp(−σD)Bi exp(σD)dσ

=

t∫
0

(Bi − [D,Bi]σ +
1

2
[D, [D,Bi]]σ

2 − . . .)ui(σ)dσ
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=
∞∑
k=0

(−1)k

k!
adk

DBi

 t∫
0

σkui(σ)dσ

 ,

i.e., as a linear combination of adk
DBi for k = 0, 1, . . .. But, again by the Cayley-Hamilton

theorem, adk
DBi for k > n2 − 1 is the linear combination of the previous n − 1 pow-

ers. Therefore, the term within the exponential in (5.33), L(t) ∈ L = span{adk
DBi :

i = 1, . . . ,m, k = 0, 1, . . . , n2 − 1} for all t > 0. Choose t = t1 and L ≜ L(t1). Now,

Z(t1) = exp(tD)Y (t1) = exp(tD) exp(L)Y (0) = exp(tD) exp(L) since Z(0) = Y (0) = I

with L ∈ L.

Sufficiency: Notice that

dk

dtk
exp(−tD)Bi exp(tD)

∣∣∣∣
t=0

= (−1)kadk
DBi. (5.34)

[91] shows that the image space of the operator taking continuous functions ui to Rn×n

according to the rule x = L(ui) =
t1∫
0

ui(σ) exp(−σD)Bi exp(σD)dσ is spanned by the first

n2 derivatives of exp(−tD)Bi exp(tD) (including the zeroth derivative) evaluated at zero.

Using this fact with (5.33) and (5.34), we see that for each L = L = span{adk
DBi : i =

1, . . . ,m, k = 0, 1, . . . , n2 − 1} and t1 > 0, there exists a continuous u : [0, t1] → Rm

such that Y (t1) = exp(L)Y (0) = exp(L) since Y (0) = Z(0) = I. Hence Z1 ≜ Z(t1) =

exp(tD)Y (t1) = exp(tD) exp(L) is reachable at time t1.

Theorems 5.5 and 5.6 describes the reachable set for the bilinear matrix differential
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equations (5.29) and (5.28). The reachability of KBF (5.13) can be expressed with the

help of Theorems 5.5 and 5.6, and is derived in Theorem 5.7.

Theorem 5.7. 1) Given a transformed state z1, if ∃ Z1 ∈ Rn×n such that z1 = Z1z0,

then z1 is reachable from z0 in KBF (5.13) if Z1 is reachable from Z(0) = I in the

matrix differential equation (5.28).

2) Conversely if z1 is reachable from z0 in KBF (5.13), then ∃ Z1 in the reachable set

of the matrix differential equation (5.28) from Z(0) = I.

Proof. 1) We have Z1 ∈ Rn×n such that z1 = Z1z0, and Z1 is reachable at time T in the

matrix differential equation (5.28) from Z(0) = I. Hence we have Z(T ) = Z1 in (5.28).

Now define

z(t) = Z(t)z0, t ≥ 0,

where Z(t) is the trajectory of the matrix differential equation (5.28). By differentiation

we obtain

ż(t) = Ż(t)z0

= DZ(t)z0 +
m∑
i=1

BiZ(t)z0ui(t)

= Dz(t) +
m∑
i=1

Biz(t)ui(t),

which is of the same form as of KBF (5.13) with z(0) = z0 and z(T ) = Z(T )z0 = Z1z0 = z1.

Hence z1 is reachable from z0 in KBF (5.13).
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2) Now we have z1 reachable from z0 in KBF (5.13). By contradiction, assume ∄ Z1 ∈ Rn×n

reachable from Z(0) = I in the matrix differential equation (5.28) such that z1 = Z1z0.

Then at any t > 0, Z(t)z0 6= z1. Like the previous part, define

z(t) = Z(t)z0, t ≥ 0,

where Z(t) is the trajectory of the matrix differential equation (5.28). By differentiation

we obtain

ż(t) = Ż(t)z0

= DZ(t)z0 +
m∑
i=1

BiZ(t)z0ui(t)

= Dz(t) +
m∑
i=1

Biz(t)ui(t), (5.35)

which is of the same form as of KBF (5.13) with z(0) = z0. But we know z1 is reach-

able in the system (5.35) from z0, i.e., ∃ T such that z(T ) = z1, and again from (5.35)

z(T ) = Z(T )z0. Hence we have Z1 ≜ Z(T ), such that z1 = Z1z0, which establishes the

contradiction.

The controllability and reachable sets of the system (5.7) may be characterized by

the transformed bilinearized system with D, Bi, i = 1, . . . ,m, from the Koopman Bilinear

Form in Section 5.3 and 5.4. However, because the transformed KBF usually has more

dimensions, it may not achieve complete controllability even when the original system

does.
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5.5 Optimal control of the Koopman bilinear form

Next, the Koopman bilinear form (KBF) representation of the original system (5.7) is

used for optimal control. With the bilinear structure of the KBF (5.21), the complexity of

designing an optimal feedback is significantly reduced. We follow the necessary condition

given by Pontryagin’s principle [80] to design a fixed endpoint feedback control for the

KBF.

The fixed endpoint optimal control problem for the system (5.7) is given by

minimize
u(t)

1

2

tf∫
t0

(
xTQx + uTu

)
dt

subject to ẋ = f(x) +
m∑
i=1

gi(x)ui,

x(t0) = x0, x(tf ) = xf ,

u ∈ U ,

(5.36)

U being the set of the admissible control and Q = QT � 0. Now with the Koopman

bilinear form (5.21), the problem (5.36) turns into

minimize
u(t)

1

2

tf∫
t0

(
zTCxTQCxz + uTu

)
dt

subject to ż = Dz +
m∑
i=1

Bizui,

z(t0) = T (x0), C
xz(tf ) = xf ,

u ∈ U .

(5.37)
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To apply Pontryagin’s principle to problem (5.37), we construct the pre-Hamiltonian

as

H(t, z,p, v) = pT

(
Dz +

m∑
i=1

Bizvi

)
− L(z, v), (5.38)

with the Lagrangian L(z, v) ≜ 1

2
zTCxTQCxz + 1

2
vTv and the co-state equation

ṗ = −∂H
T

∂z = −

(
D +

m∑
i=1

Biui

)T

p + CxTQCxz. (5.39)

If u∗ solves the problem (5.37), then we have

u∗(t) = argmax
v

H(t, z,p, v),

from Pontryagin’s principle, and we define the Hamiltonian

H(t, z,p) ≜ max
v
H(t, z,p, v) = H(t, z,p,u∗(t)).

Hence, if an optimal control u∗ exists, then

∂H

∂vi

∣∣∣∣
v=u∗(t)

= 0, for i = 1, . . . ,m

i.e.,

u∗i (t) = pT (t)Biz(t). (5.40)
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The co-state equation (5.39) must also satisfy the transversality condition, i.e.,

p(tf ) ⊥ kerCx, (5.41)

for the endpoint constraint.

To calculate the optimal control signal in (5.40), we need to calculate both the optimal

state z(t) and co-state p(t) trajectories that satisfy the initial and final conditions with

the state-feedback control input u∗i (t) = pT (t)Biz(t) for i = 1, . . . ,m. However, this poses

a two-point boundary value problem with no prior knowledge of p(0). We solve this

problem using the single shooting method. In this method, start from an initial guess of

p(0) and solve (shoot) for z and p. The error in the terminal condition Cxz(tf ) − xf is

formulated as a function of the guessed p(0). The transversality condition (5.41) is also

checked for each such trajectory. This error function can then be solved with a nonlinear

equation solver, e.g., Newton’s method or the Levenberg-Marqardt algorithm to find the

correct p0. If the solution fails to converge, then we conclude that no optimal solution is

possible.

Remark 5.12. The cost function in problem (5.36) can be readily generalized into
1

2

tf∫
t0

(
xTQx + uTRu

)
dt with R = RT � 0. The co-state equation (5.39) remains the

same, and the optimal control u∗ becomes

u∗ = R−1B(z,p), (5.42)
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where B(x,p) ≜ [pTB1z, . . . , pTBmz]T .

5.6 Numerical simulation

To demonstrate the effectiveness of the bilinearization technique, we first choose the sys-

tem

ẋ = f(x) + g1(x)u1 + g2(x)u2, (5.43)

where the drift f is

f(x) =

 λx1

µx2 + (2λ− µ)cx21

 .

This choice of f is inspired from [29] so that the eigenfunctions may be obtained by

inspection. For the demonstration, we vary g1 and g2. For our purpose, we have used the

following four Koopman eigenvalue-eigenfunction pairs for Lf:

• ϕ1(x) = x1 with eigenvalue λ,

• ϕ2(x) = x2 − cx21 with eigenvalue µ,

• ϕ3(x) = x21 with eigenvalue 2λ, and

• ϕ4(x) = 1 with eigenvalue 0.
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The Koopman canonical transformation is

z = T (x) =



ϕ1(x)

ϕ2(x)

ϕ3(x)

ϕ4(x)


=



x1

x2 − cx21

x21

1


and the matrix D = diag(λ, µ, 2λ, 0).

5.6.1 Completely bilinearizable system

Now let us choose g1 and g2 such that the system becomes completely bilinearizable in

four dimension according to Theorem 5.2. Let

g1(x) =

 1

x21

 and g2(x) =

0

1


Then

Lg1T (x) =



1

−2cx1 + x21

2x1

0


= B1z,
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where

B1 =



0 0 0 1

−2c 0 1 0

2 0 0 0

0 0 0 0


.

Similarly Lg2T (x) = B2z with

B2 =



0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0


.

For this simulation, let λ = 0.3, µ = 0.2 and c = −0.5. Apply u1 = cos(2πt), a

sinusoidal excitation, and u2 = −x2 = −(z2 + cz21), a state feedback. Fig. 5.1 shows the

original system response and the response from the bilinearized system after transforming

back to the original coordinates. The responses are identical.

The controllability and reachable sets of the system (5.7) may be characterized by

the transformed bilinearized system with D, B1 and B2. However, because the trans-

formed KBF has more dimensions, it may not achieve complete controllability even

when the original system does. It can be shown that the bilinearized system ż(t) =

Dz(t) + B1z(t)u1(t) + B2z(t)u2(t) satisfies the hypothesis of Theorem 5.6. So we resort

to finding Z(t) ∈ Rn×n where Z(t) satisfies the matrix differential equation (5.28) with
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time

Figure 5.1: Simulation of the original and bilinearized system for (5.43) with exact bilin-
earization

m = 2 and z(t) = Z(t)z(0). According to Theorem 5.6, Z(t) must take the form

Z(t) = exp(tD) exp(L),

where L ∈ L = span{adk
DBi : i = 1, . . . ,m, k = 0, 1, . . . , n2−1}. By explicitly calculating

exp(tD) exp(L1), where L1 = c1B1+c2B2 ∈ span{adk
DBi : i = 1, . . . ,m, k = 0, 1, . . . , n2−
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1}, we see that the resultant matrix Z(t) is



eλt 0 0 c1e
λt

−c1eµt
(
2c− c1

2

)
eµt c1e

µt eµt
(
c2 − cc21 +

c31
3

)
2c1e

2λt 0 e2λt c21e
2λt

0 0 0 1


.

From any z0, we can achieve z(t) = Z(t)z(0) and, therefore, any z1(t) and z2(t) can

time

Figure 5.2: Feedback control of the system (5.43) using the bilinearization

achieved by varying the scalars c1 and c2 as z4 ≡ 1. So we have global controllability for

the original system (5.43). However, the bilinearized system is not globally controllable,

because we have no control authority over z4(t) ≡ 1. To stabilize the system we choose

u1(t) = −(λ + 0.5) z1(t) = −(λ + 0.5)x1(t) and u2(t) = −(2cz1(t) − z3(t))u1(t) − (µ +

0.5) z2(t) = (2cx1(t)− x21(t))u1(t)− (µ+0.5)(x2(t)− cx21(t)). This effectively reduces the
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time

((a))
time

((b))

Figure 5.3: Approximate bilinearization of the system (5.43)

transformed system into ż = Az, where A = diag(−0.5,−0.5,−0.5, 1). This input in turn

feedback linearizes the original system (5.43) giving a strong connection between KBF

and feedback linearizability of the system. The system response under this feedback is

shown in Fig. 5.2.

5.6.2 Approximately bilinearized system

Choice of g1(x) = [1 cosx1]T and g2 = [0 1]T [53] shows that this choice of gi and T (x)

does not yield an exact bilinearization. However, we have used the optimization scheme

(5.15) to obtain an approximate bilinearization with X = [0, 30]× [−10, 0] and simulated

the original and bilinear system for 10 seconds starting from x(0) = [1,−1.1]T . We applied

u1 = cos(2πt), a sinusoidal excitation, and u2 = −x2 = −(z2 + cz21) = −(z2 + cz3), a state

feedback. The result is presented in Fig. 5.3(a). The same simulation is presented after

changing g2(x) = [0 x22] and X = [0, 30]× [−10, 0] in Fig. 5.3(b).
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Figure 5.4: Comparison of original system and KBF response for pendulum (5.44)

5.6.3 Numerical construction of KBF and optimal control

To demonstrate the computation of the KBF numerically, consider the controlled pendu-

lum with a destabilizing term:

ẋ1 = x2

ẋ2 = 0.01x2 − sinx1 + u, (5.44)

which has an unstable equilibrium at the origin. A dictionary of monomials up to 5th

degrees (i.e., 21 monomials) are used. The truncated state-space is chosen as X = [−1, 1]×

[−1, 1]. To calculate the EDMD, time-series data for 10 seconds with 0.01s time step is

used. The original system response and the corresponding transformed system response

with the KBF are presented in Fig. 5.4. The optimal control signal u for the system (5.44)
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Closed loop

Open loop

Figure 5.5: Closed-loop optimal control of the unstable pendulum (5.44) using KBF from
different initial conditions marked with stars (⋆)

is calculated with Pontryagin’s principle and the shooting method to drive the system from

different initial conditions to xf = [0.01,−0.01] in t = 2 seconds. Q = R = I2×2 is used

in the cost function. The corresponding closed-loop trajectories as well as the open-loop

counterparts in phase space are shown in Fig 5.5.

Last, a controlled Van Der Pol system is used to derive the corresponding KBF and

optimal control design:

ẋ1 = x2

ẋ2 = (1− x21)x2 − x1 + u (5.45)
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Figure 5.6: Comparison of original system and KBF response for Van der Pol oscillator
(5.45)

Again a dictionary of monomials up to 5th degrees (i.e., 21 monomials) are used. The

truncated state-space is chosen as X = [−3, 3] × [−3, 3]. The comparison of the original

system and the transformed KBF without control are presented in Fig. 5.6. Then the

shooting method is used to compute the optimal control with Q = R = I2×2, with the

objective of driving the system from different initial conditions to xf = [0.01,−0.01] in

t = 1 second. The corresponding closed-loop and open-loop trajectories are presented in

Fig 5.7.
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Closed loop

Open loop

Figure 5.7: Closed-loop optimal control of Van der Pol oscillator (5.45) using KBF from
different initial conditions marked with stars (⋆)
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Chapter 6

Conclusion

This dissertation develops several techniques for nonlinear estimation and output feedback

in both model-based and partially modeled or model-free scenarios. The proposed meth-

ods utilize tools from Gaussian mixture model representation, transfer operator theory,

recurrent neural networks, and optimal control theories.

6.1 Summary of contributions

This dissertation addresses the problem of nonlinear estimation and output feedback in

model-based, model-free, and partially modeled scenarios. This dissertation divides the

problems in two broad classes: model-based and model free estimation and output feed-

back. In model-based problems, a reasonably accurate dynamical model of the system is

present which has to be driven by an output feedback to achieve stability. In model free

scenario, the system is represented by a stream of data available from a huge number of

sensors without a reliable model. A model-identification and subsequent controller design

needs to be carried out there. For model-based approach, Gaussian mixture model with
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Kalman filter is utilized for non-Gaussian estimation and output feedback. A Perron-

Frobenius operator based motion update in a Bayesian estimation technique is also pro-

posed for a system with a dynamical model. On the other hand, an echo-state network

approach equipped with a Kalman filter is used for data-driven estimation of a complex

systems. Finally, a Koopman spectral framework is used for the data-driven control of a

control-affine nonlinear system.

6.1.1 Dynamic output feedback using the Gaussian mixture model Kalman

filter

Chapter 2 addresses the problem of non-Gaussian estimation for linear and nonlinear

feedback systems and presents the Gaussian mixture Kalman filter (GMM-KF) as an ef-

fective tool. Past literature [12, 13, 16, 17, 92, 93] has identified the advantage of adopting

GMM in the filtering scheme in order to retain the potential non-Gaussian features of the

posterior. However, they mostly rely on a heuristic choice of parameters and resampling

at each step, thus making it analytically as well as computationally burdensome. To deal

with the analytical tractability, the re-sampling is dropped and the concept of bounded

with probability is introduced. The error-boundedness for GMM-KF, GMM-EKF, and

GMM-UKF is proved for linear and nonlinear systems, including dynamic output feed-

back, under certain assumptions. The extension of GMM-KF for nonlinear systems is

facilitated by the use of the extended Kalman filter (EKF) and the unscented Kalman

filter (UKF).
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6.1.2 Density transport in dynamical systems: Perron Frobenius operator

approximation

Chapter 3 provides a new approximation method for computing eigenvalues and eigenfunc-

tions of the Perron-Frobenius (PF) operator by combining the accuracy of extended Dy-

namic Mode decomposition (EDMD) and the Galerkin projection used in Ulam’s method.

The CU-DMD algorithm successfully approximates the PF operator and its eigenfunc-

tions for smaller time steps than Ulam’s Method. CU-DMD utilizes time-series data from

Monte-Carlo simulations and constrained quadratic programming to generate a Markov

state-transition matrix to approximate the PF operator. The analytical justifications for

the Galerkin projection and the eigenfunction approximation from the basis functions are

provided. The algorithm is demonstrated on several nonlinear systems with and without

diffusive Wiener noise, and captures the modes of the system reasonably well. Further-

more, the approximate PF operator is used for the estimation and output-feedback control

of a pitching airfoil in an unsteady flow. Since the coefficient of lift undergoes hysteresis

at or near stall, the proposed output-feedback control generates by design a stable limit

cycle. The resulting periodic pitching trajectory yields a 40% increase in time-averaged

lift, compared to the optimal steady pitch angle. However, a steady pitch angle maxi-

mizes the lift-to-drag ratio. In ongoing work, we seek to compare observer-based feedback

strategies for online estimation of the model parameters. The chosen strategy will be

used to implement an adaptive gain selection using a table of optimal gains for the model

parameters.
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6.1.3 Data-driven estimation using an echos-state neural network equipped

with an ensemble Kalman filter

Chapter 4 describes a data-driven sparse estimation technique for complex dynamical

systems and uses it to estimate the states of nonlinear systems from time-series data.

The method utilizes the echo-state network (ESN) for model identification from the time-

series training data and an ensemble Kalman filter for data assimilation in the testing

phase. The estimation is carried out in a data-driven way without a dynamic model.

The method is applied to a real data set of traffic pattern on a road network at the

University of Maryland campus to predict the traffic congestion at different intersections.

The method is also extended to the Lorenz-96 model for atmospheric data assimilation

with a parallel-reservoir ESN. In ongoing and future work, a data-driven controller design

using the ESN will be investigated.

6.1.4 Bilinearization, controllability, and optimal control of a control

affine system: a Koopman spectral approach

Chapter 5 proposes a bilinearization technique for a control-affine nonlinear system using

Koopman spectral approach. The bilinear representation relies on the Koopman canon-

ical transform (KCT) to project the system dynamics onto the Koopman eigenspace.

The approximate bilinearization is achieved by solving a L2 norm-based quadratic opti-

mization problem. It is proved that with some assumptions, any system can state can
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be approximated arbitrarily accurately by Koopman canonical transform and hence the

bilinearization will converge. The resulting Koopman Bilinear Form is used for reach-

ability analysis using Myhill semigroup structure. Finally, an optimal controller design

is proposed for control-affine systems using the Koopman bilinear form and Pontrya-

gin’s principle. The complete procedure of the bilinearization and optimal control can be

carried out with time-series data without explicit knowledge of the autonomous system

dynamics, i.e., the drift vector field. The bilinearization method and optimal control de-

sign are demonstrated on several nonlinear systems including an unstable pendulum and

the Van der Pol oscillator.

6.2 Directions for future research

6.2.1 Model-based estimation and output feedback of nonlinear systems

The GMM-based Kalman filtering requires the measurement equation to be linear with

the Gaussian measurement noise profile. To employ the same technique for a general

nonlinear measurement equation is still an open question. A general Bayesian filtering

framework can be explouted for this purpose. The convergence of the PF operator ap-

proximation in the Hilbert space can be utilized for a convergence/error-bound analysis

of the estimation and output feedback. On the application side,an online estimation of

the model parameters can be carried out to for an adaptive output feedback control.
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6.2.2 Data-driven estimation and output feedback for unmodeled or par-

tially modeled systems

Recurrent neural networks (RNN), specifically the echo-state networks (ESN) show a

great potential for data-driven optimal control of an unmodeled system and it is largely

unexplored. An optimal choice dictionary for Koopman spectral approximation using

the extended dynamic mode decomposition (EDMD) is still an open question. An RNN,

being an universal approximator, can be employed for the dictionary learning and data-

driven modeling of the control-affine nonlinear systems. The convergence rate of the

Koopman bilinear form to the original nonlinear system is needed to assess its potential

as a model-identification method.
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