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The MYC oncogene contributes to an estimated 100,000 cancer-related deaths annually

in the United States and is associated with aggressive tumor progression and poor clin-

ical outcome. MYC is a nuclear transcription factor that regulates a myriad of cellular

activities and has direct interactions with hundreds of proteins, which has made a unified

understanding of its function historically difficult.

In recent years, several groups have put forth a new hypothesis that questions the pre-

vailing view of MYC as a gene-specific transcription factor and instead envision it as a

global amplifier of gene expression. Instead of being an on/off switch for transcription,

MYC is proposed to act as a ‘volume knob’ to amplify and sustain the active gene ex-

pression program in a cell. The scope of the amplifier model remains controversial in part

because studies of MYC largely consist of cell population-based measurements obtained

at fixed timepoints, which makes distinguishing direct from indirect consequences on gene



expression difficult. A high-temporal, high-spatial precision viewpoint of how MYC acts

in single living cells does not exist.

To evaluate the competing hypotheses of MYC function, we developed a single-cell as-

say for precisely controlling MYC and interrogating the effects on transcription in living

cells. We engineered ‘Pi-MYC,’ an optogenetic variant of MYC that is biologically active,

can be visualized under the microscope, and can be controlled with light. We combined

Pi-MYC with single-molecule imaging methods to obtain the first real-time observations

of how MYC affects RNA production and transcription factor mobility in single cells.

We show that MYC increases the duration of active periods of genes population-wide,

and globally affects the binding dynamics of core transcription factors involved in RNA

polymerase II transcription complex assembly and productive elongation. These findings

provide living, single-cell evidence of MYC as a global amplifier of gene expression, and

suggests the mechanism is by stabilizing the active period of a gene through interactions

with core transcription machinery.
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Chapter 1

Introduction

1.1 Overview of Thesis

Heterogeneous gene expression has been proposed to play a fundamental role in

cancer progression [59]. The causes and consequences of this variability remain

largely unknown however, and represent a major challenge in cell biology. Within

recent years it has become clear that gene expression heterogeneity is not static but

dynamic: expression of a gene of interest can fluctuate on timescales of minutes

to days [64]. Over the last few decades, parallel advances in fluorescence imaging

and computational modeling have made it possible to visualize and interpret the

dynamic nature of gene expression. Two experimental approaches based on direct

observation of RNA in single cells—smFISH and live-cell imaging with the MS2 stem

loop system—led to the current view that most eukaryotic genes are infrequently

transcribed in stochastic “bursts” of RNA synthesis interspersed with long periods

of inactivity [106]. These approaches of imaging transcription by directly observing

RNA is a true measure of gene regulation, uncoupled from downstream steps such

as mRNA export, translation, and degradation.
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In this thesis, I utilized single-molecule imaging techniques to elucidate the mecha-

nism of action of the oncogenic transcription factor c-MYC (MYC), which is over-

expressed in the majority of cancers. For the last 30 years, MYC was believed to

execute a gene specific program which propelled cells away from apoptosis and to-

wards growth, cell cycle progression, and de-differentiation— eventually resulting

in oncogenic transformation. Recently, several models have emerged that question

the prevailing view of MYC as a ‘gene-specific’ transcription factor and instead en-

vision it as a ‘global amplifier’ of the existing gene expression program in the cell.

Studies on the effects of MYC on gene expression largely consist of cell population

measurements at fixed timepoints, or “snapshot views of the average”—A real-time

view of MYC activity in living cells does not exist. We sought to critically evaluate

these paradigms of MYC function—the gene-specific and global amplifier models—

using single-molecule imaging techniques in human cell lines. This project had the

following specific aims:

1. Control the onset of MYC overexpression in living cells with high spatio-
temporal precision.

2. Visualize and measure the effects of MYC on transcription kinetics with single-
molecule imaging methods.

To achieve these aims, we engineered an optogenetic variant of MYC (‘Pi-MYC’)

that could be controlled with blue-green wavelengths of light and visualized with

a fluorescence microscope. We combined Pi-MYC with single-molecule imaging of

RNA and protein to obtain the first real-time observations of how MYC affects gene

expression events and transcription factor binding dynamics in living human cells.

In Chapter 1, I provide an introduction to MYC biology and present the motivating

perspective of my dissertation with a recent literature review on single-cell gene

expression methods. In Chapter 2, I provide detailed protocols on smFISH and the

MS2 system, the RNA imaging methods that are used in this thesis for single-cell

gene expression analysis. In Chapter 3, I describe the engineering and validation of

Pi-MYC. In Chapter 4, I present the results of my work using single-cell imaging to
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probe the effects of the MYC oncogene on gene expression and transcription factor

binding dynamics. Chapter 5 concludes with a discussion of the major findings and

future outlook.

1.2 MYC Biology

c-MYC (MYC) belongs to a class of oncogenic transcription factors that are over-

expressed in the majority of malignancies [135]. MYC is associated with aggressive

tumor progression and poor patient survival [124]. MYC is widely present in normal

proliferating somatic cells and responds to mitogens and growth factors to regulate

growth and general cell proliferation. MYC expression is deregulated and elevated

in cancer cells and has been shown to be a driver of cancer in mouse models [1].

MYC deregulation occurs through various means such as retroviral transduction,

chromosomal translocation, gene amplification, and alterations in signaling path-

ways that converge on MYC expression.

The primary mode of MYC deregulation in cancer is overexpression of the nor-

mal protein product (Figure 1.1), and multiple reports indicate that high MYC

levels cause a global increase in total RNA levels [43, 52, 71, 92]. As such, MYC

has direct interactions with hundreds of proteins involved in a diverse range of

functional classes such as RNA processing, ribosome biogenesis, transcription reg-

ulation, mitosis, DNA damage and replication, histone modification, and mRNA

post-transcriptional modifications [56].

Given its myriad activities, a unified understanding of MYC function has been elu-

sive. In recent years several groups have put forth a new hypothesis that describes

MYC as a global amplifier of gene expression. Genome-wide ChIP-seq analysis

from two groups suggests that MYC is capable of binding all promoters but does

so according to their expression output [71, 92]. Instead of being an on/off switch

for transcription, MYC is proposed to act as a volume knob to amplify and sus-

tain the active gene expression program in a cell. The main findings of the Lin
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Figure 1.1: TCGA plot depicting the frequency and type of MYC alterations in
cancer. Accession date: April 11th, 2020 from cbioportal.org.

study have since been replicated [70]. A further study on MYC occupancy at genes

found the effects were limited according to the basal expression level of the gene:

that is, promoters already saturated with MYC did not increase expression even

if there was greater availability of MYC protein when it was induced to express

at higher levels [75]. A recent study points to the promotion of RNAPII pause

release through direct interactions with SPT5 as the mechanism of MYC amplifica-

tion. [8]. A contrasting view is that MYC functions as a gene-specific transcription

factor, with ubiquitous binding due to indirect effects of MYC binding enhancer

regions of non-target genes when it is expressed at high levels [60, 115]. Thus, the

scope of the amplifier model remains controversial in part because of direct and

indirect consequences on gene expression. Moreover, most studies of MYC consist

of cell population measurements obtained at single timepoints. A high-temporal,

high-spatial precision viewpoint of how MYC acts in single living cells does not exist.

Here, we developed a single-cell assay for precisely controlling MYC and interro-

gating the effects on transcription in living cells. We engineered ‘Pi-MYC’, an

optogenetic variant of MYC that is biologically active, can be visualized under

4



the microscope, and can be controlled with light. We used Pi-MYC along with

RNA visualization in fixed and living cells to undertake a broad survey of genes

that differed with respect to function, DNA features, basal expression level, and

cellular context. All the genes we labeled showed transcriptional bursting, a consis-

tent feature of human gene expression [111]. We found that MYC overexpression

consistently increased the duration of active periods of genes population-wide and

exerted its greatest effects on genes that did not already have high basal expres-

sion. These findings provide living, single-cell evidence of MYC as an amplifier of

gene expression. Based on the measured import and export kinetics of Pi-MYC in

non-transformed cells, we hypothesized that the mechanism of amplification could

be through modulation of transcription factor kinetics. Using single-molecule track-

ing (SMT) experiments to measure the kinetics of glucocorticoid receptor (GR),

TATA-box binding protein (TBP), a subunit of the Mediator complex (MED1), and

a component of the DSIF complex (SPT5), we found that MYC globally affects the

binding dynamics of core transcription factors involved in RNAPII complex assem-

bly and productive elongation. Our data suggests that MYC increases the period

over which productive initiation occurs through multi-faceted interactions with the

core transcription machinery. In summary, our single-cell, real-time approach re-

veals that MYC amplifies gene expression across genes and cell types through direct

modulation of the transcriptional active period.

1.3 Review on Single-Cell Gene Expression

Adapted from Simona Patange, Michelle Girvan, Daniel R. Larson.
“Single-Cell Systems Biology: Probing the Basic Unit of Information
Flow.” Current Opinion in Systems Biology (2018);8:7-15.

1.3.1 Introduction

Gene expression is the link that connects environmental stimuli to the phenotypic

responses of an organism. Early experiments aimed at identifying the key cellular
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factors and genetic elements that regulated expression were in vitro and population

based. Recent advances in sequencing and fluorescence microscopy now allow scien-

tists to probe gene expression at the basic unit of information flow — the single cell.

From a systems biology viewpoint, the methods of single-cell imaging and single-cell

RNA sequencing (scRNA-seq) hold tremendous promise for providing an essential

link between stimulus and response with the ability to directly visualize and quan-

tify the production of RNA transcripts.

However, gene expression at the single-cell level is heterogeneous and stochastic

— it varies across cells in a population and within a given cell over time. This phe-

nomenon adds a perplexing challenge not only in being able to predict the expression

behavior of a gene given known environmental inputs, but also the converse: to infer

the state of the environment from a given gene’s behavior. The field of single-cell

gene expression is not a straightforward survey of how information gets transmitted

from environment to gene product but rather grapples with a fundamentally philo-

sophical question that often goes unappreciated: how do we get from randomness

to order? At this point in time, the field appears directed towards the following

questions: 1) How does an organism coordinate a response within its body when

the expression behavior of its individual cells is inherently stochastic? 2) How

much of gene expression heterogeneity is stable and represents a true biological sub-

population with different phenotypic properties? 3) How does nuclear architecture

contribute to gene regulation and variability? 4) How do we generate a quantitative

understanding of transcription and gene networks with computational modeling?

In this chapter, I highlight recent literature which is at the forefront of addressing

these questions.

1.3.2 Current developments in single-cell imaging and sequencing

The first methods to probe single-cell gene expression at the mRNA level were

based on imaging, by labeling RNA transcripts in fixed cells via single-molecule
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Figure 1.2: An evaluation of current features and limitations of single cell gene
expression methods, with recent advances noted.

RNA FISH [35] (smFISH) and in living cells using the MS2-PP7 system [12,55,64].

Within a decade, imaging was followed by RNA sequencing (scRNA-seq), which

allowed for in-depth gene expression profiling of individual cells [127, 138]. For the

sake of brevity we refer readers to recent reviews [58,133] for an up-to-date history of

the methodologies. In this section we outline the current advantages and limitations

of live-cell imaging, smFISH, and scRNA-seq, and the recent work done to extend

the capabilities of each technique (Figure 1.2).

Live-cell imaging with the MS2-PP7 stem loop system remains the most direct

method for truly capturing the history of a gene’s expression behavior, as it follows

transcription activity of a living cell in real time. One primary limitation of the

system is that it is low-throughput: of the three techniques, it is the most labo-

rious and takes months to design and integrate constructs into the desired model

system [21]. This time-intensive aspect has hindered the ability to make an exten-

sive survey and classification of real-time transcription across genes. Our group has

recently succeeded in the achievement of being able to visualize the transcription

activity of thousands of individual genes across a cell population using a ’gene trap’

method [136]. The development of this cell line is described in Chapter 2.

7



An inherent limitation of live-cell imaging is the existence of only two reliable orthog-

onal stem loop sequences (PP7 and MS2), which allows for at most two elements to

be labeled within a single cell. Recent studies have used dual color labeling to their

advantage to explore different phenomenon, such as splicing kinetics [20, 82], sense

and antisense transcription from a single promoter on a yeast gene [67], two genes

regulated by a common enhancer [40], and translation of individual RNAs [45]. Due

to the difficulty of genetic manipulation in higher order eukaryotes, most studies on

transcription kinetics are conducted with exogenous genes. However, homologous

recombination has been successfully used to integrate stem loops into the endoge-

nous loci of bacteria and yeast, and was recently used to integrate MS2 loops in

mouse embryonic stem cells [72], and to visualize endogenous transcription dynam-

ics of the pluripotency factors Nanog and Oct4 [95]. Within the next few years we

expect advances in CRISPR/Cas9 gene editing to greatly aid in making endogenous

integrations possible.

The second imaging-based technique, smFISH, has advantages to complement the

limitations of live-cell imaging. The fluorescent oligo probes can be designed and

commercially synthesized for virtually any endogenous gene. Because the sample is

fixed, high throughput imaging can be used to routinely collect data on tens of thou-

sands of cells for a given time point. Initially, smFISH was limited by the number of

spectrally separable colors that could be used within a single cell. Earlier methods

were able to visualize 10-30 RNA within a single cell through spectral separation [77],

sequential labeling [78] or combinatorial labeling [69]. A recent technique (MER-

FISH) that uses sequential labeling increased the number of mRNA to 100-1000 [16],

and a high-throughput version has also been recently published [88]. Progress has

also been made in detecting small variations in nucleic acid sequence [68, 87]. Al-

though smFISH is only a single time point measurement, advances in labeling and

imaging are making the method increasingly high-throughput, allowing a significant

number of genes and cells to be analyzed in a single experiment.
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The main advantage of the final technique, scRNA-seq, is its breadth and depth: it

produces extensive gene expression profiles that quantify the variation in abundance

and sequence of all the transcripts in a cell. scRNA-seq has historically dealt with

problems of bias in the type and quantity of transcripts it identifies, and several

recent protocols (CEL-Seq [49], MARS-Seq [54], Cyto-Seq [34], and Drop-Seq [80]),

have sought to overcome these issues. Solutions include in vitro transcription, which

uses linear instead of exponential amplification, the use of barcodes to relate each

transcript sequence to a unique molecular identifier, and spike-in RNA to normalize

the output signal to the relative transcript abundance in each cell, to reduce tech-

nical variation. The advantage is that one can quantify the transcriptome in depth,

and quantify the variation or heterogeneity of all the expressed genes of a given cell.

The primary limitation of traditional scRNA-seq is that it does not inherently con-

tain spatial information, nor does it allow one to follow the transcriptome over time

in a single cell. Recently, the protocol ‘FISSEQ’ [65] combined spatial information of

transcripts from smFISH with sequencing of the individual transcriptomes of those

cells. Sequencing methods that incorporate spatial information of the transcript,

or imaging methods that incorporate sequencing, will be essential contributions to

ultimately achieving a “4D” transcriptome atlas of gene regulation.

1.3.3 Single-cell heterogeneity in gene expression

Variation can be due to genetic or non-genetic causes. It can be fixed or time-

dependent, programmed or random. A significant component of non-genetic hetero-

geneity is due to the discontinuous nature of transcription. Genes are transcribed in

“bursts” and this phenomenon has recently been observed in mouse liver tissue with

smFISH [6], Drosophila with live-cell imaging [30], mouse embryonic stem cells with

scRNA-seq [81], zebrafish embryos with smFISH [96], and human brain tumors [81]
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and melanoma [32] with single-cell qPCR.

The prevailing view of considering heterogeneity as ‘extrinsic’ or ‘intrinsic’, was first

developed from experimental data using two-color reporter assays in bacteria [30],

and later in yeast [108]. Extrinsic factors are those that influence many genes, for

example the concentration of RNA polymerase in a cell. Intrinsic noise arises from

stochastic fluctuations inherent in biochemical reactions between molecules at low

copy number. This dichotomy of heterogeneity continues to be examined. Recently,

Fu and Pachter [39] revisited previous data from Elowitz and colleagues [30] high-

lighted the importance of experimentally determining whether the two fluorescent

reporters have the same distribution of mean and variance in fluorescence inten-

sity, and to normalize them if not, as this is a major assumption of the model. Also

recently, Sherman and colleagues [121] proposed that extrinsic and intrinsic variabil-

ity are not exclusively orthogonal to each other. The authors examined extrinsic

variability with the yeast heat shock protein SSA1, and with modeling showed how

intrinsic variability can be dependent on external factors. The terms ‘extrinsic’ and

‘intrinsic’ are subjectively defined. Considering that upstream extrinsic factors may

also have a timescale of fluctuation (for example due to bursting), one person’s

extrinsic noise could be another person’s intrinsic noise.

How stable is heterogeneity, and what are its functional consequences?

Whether the ‘noisiness’ of gene expression has a functional purpose or evolutionary

advantage is still an open question. Examinations of ‘bet-hedging’ have largely been

confined to bacteria (for a recent review see [27]), but could such transient hetero-

geneity confer any advantages in eukaryotes? A recent paper by Shaffer and col-

leagues [119] provides a compelling single-cell viewpoint of how transient switching

of phenotype profiles of patient-derived melanoma cells leads to stable populations

resistant to the drug vemurafenib. Using a variation on the classic Luria-Delbruck

experiment [79], they observed that before application of the drug, cells transition

between ‘non-resistant’ and ‘pre-resistant states’, as observed by their transient ex-
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pression of resistance markers. The pre-resistant state was not heritable, and it was

only with addition of vemurafenib that cellular reprogramming and a stable resis-

tance phenotype emerged.

This intriguing example of transient heterogeneity in mammalian cells may be seen

as a manifestation of “dynamical instability” [102], a model from the field of net-

work theory based on Boolean logic to explain the mechanisms underlying gene

expression variability observed in some cancer types. Supporting evidence for the

dynamical instability hypothesis has been observed at the population level in ’anti-

profile’ studies, which shows that many cancer subtypes exhibit a high degree of

gene expression variability across individuals [14, 24]. Hypervariability of gene ex-

pression is a reproducible signature of cancer tissue types. It would be interesting to

determine whether at the single cell level, transient gene expression heterogeneity is

an illustration of dynamical instability of gene networks, and whether this is related

to hypervariability in cancer or observed more generally.

Another open question about gene expression heterogeneity is whether stochas-

tic transcription ultimately gets transmitted through the nucleus and affects the

level of translated protein product. A few recent studies propose that stochastic

expression is in fact buffered, and limits the variation in cytoplasmic mRNA that is

ultimately available for translation. One study attributes this buffering to microR-

NAs [117], and two other studies provide examples of buffering by the nuclear pore

complex [5, 10]. Halpern and colleagues used whole genome RNA-seq and smFISH

in various mouse cell types and found that mRNA was retained in the nuclear pore.

The authors found a difference in retention times: immediate early genes tended to

have the shortest retention time, and protein coding genes the longest. Their in-

terpretation was that mature processed RNA was retained in the nuclear pore and

that fast induction time was due to their release from the pore, not the mRNA syn-

thesis rate itself. The transient nature of heterogeneity and its potential buffering

are interesting observations, and it remains to be seen whether they are observed
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more generally in higher eukaryotes.

1.3.4 Nuclear architecture and the role of cis elements in gene
regulation

Our understanding of nuclear architecture and the role of enhancers has increased

profoundly over the past few years. We refer readers to recent reviews on promoter-

enhancer interaction [134] and the role of nuclear architecture on gene expres-

sion [42], and here focus on new research examining the role of nuclear topology

in gene regulation. Hi-C, a population based assay to determine long range chro-

mosome interactions, led to the identification of topologically associated domains

(TADs) [25,94] and associations with the proteins CTCF and cohesin to act as insu-

lators of chromosome ‘neighborhoods’, where enhancers interact with the promoters

of genes within a neighborhood.

Within TADs, transcriptionally active genes are shown to share spatial co-regulation

[118], and disruption of these topological boundaries have consequences for disease.

For example, recent studies looking at the role of nuclear topology and cancer show

that gene duplication (a common feature of cancer) is mis-regulated if it occurs at

the boundary of a neighborhood rather than within it. A model of ‘enhancer hi-

jacking’ has been proposed [140], which occurs when a boundary is disrupted and

an enhancer is able to interact with the promoters of oncogenes and promote their

expression. Manipulation of TAD boundaries with CRISPR was recently shown to

cause oncogene activation of gliomas [50] and leukemia [36].

Recently, Bartman and colleagues [9] manipulated enhancer-promoter contacts at

the locus control region in mouse erythrocytes and human primary erythroid cells.

Their observations used smFISH to evaluate how transcription burst features of the

beta- and gamma- globin genes were affected when they minimized contacts (via
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deletion) or increased contacts with forced looping. They saw that enhancer contacts

increase burst frequency, supporting the idea that enhancers increase the probability

of transcription, similar to what was shown for reporter genes [63]. Importantly, they

also found that active transcription of one allele lowered the probability of activity

of the other allele, giving evidence to support a model of promoter-enhancer inter-

action where the enhancer alternates between contacts of the promoters it regulates.

Enhancer manipulation has also been carried out with live-cell imaging in Drosophila

[40]. In this study, enhancers and insulators were placed between two reporter genes

in developing embryos, resulting in modulations of burst frequency. Here, the au-

thors concluded that one enhancer could activate two genes at once, in contrast to

the model from the globin locus. More generally, disruption of boundary elements

or mutation of CTCF results in increases in gene expression noise [109]. Thus, the

interaction between enhancer and promoter as reflected in chromosome topology is

a prime determinant of metazoan expression heterogeneity. Single-cell imaging cou-

pled with manipulation of nuclear architecture will continue to provide rich insight

into the physical factors governing gene regulation.

1.3.5 Modeling the transcription process and gene networks

Finally, one of the goals of studying single-cell gene expression is to reconcile the

complexity of biology with the desire to find universal principles that govern living

behavior. In pursuit of that understanding, researchers have drawn upon method-

ology from information theory [120,130]— the study of how information is received,

processed, and transmitted within a system. In gene regulation, it is increasingly

clear that the gene receives information not just in trans (i.e. chemical modifica-

tions, binding of activating and inhibitory transcription factors) but in cis (DNA

elements in the promoter and enhancer), as noted in the previous section. Thus,

the question we now ask from a theoretical standpoint is, how can a cell decode the

complex collection of incoming signals to produce an effective response?
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The earliest ‘Telegraph’ model for describing how information is processed through

gene expression dynamics [100] was based on a single active and inactive state. The

model proved to fit expression data in some instances [105, 108, 122], but there are

increasing examples which illustrate that two states are insufficient to represent the

data [13, 48, 116, 125]. Recently, Rieckh and colleagues [110] identified instances in

which a multi-state promoter model performs better than a simple two-state model;

however, they advocate the two-state model as the simplest theoretical baseline to

start from, as it is possible to overfit the data with too many states. In Figure 1.3

we illustrate how various cis and trans factors have the potential to affect promoter

states on different timescales . Factors affecting the OFF time could include chem-

ical modifications of the promoter and enhancer, or the displacement of the +1

nucleosome from the transcription start site. Transcription factors may prolong the

ON time of a gene by stabilizing basal transcription machinery at the promoter, or

enhancer-promoter contacts, for more successful re-initiation. On the other hand,

a repressive transcription factor might recruit factors such as chromatin remodelers

that could result in a shortening of the active period of the gene. We foresee the-

oretical models coupled with experimental data to continue elucidating these key

factors.

Information theory has also recently been used in studies that manipulate trans

factors of gene regulation. Hansen and O’Shea [46] controlled the frequency and du-

ration of the nuclear localization of the yeast transcription factor Msn. The authors

observed the effect of modulating Msn2 nuclear localization on the burst frequency

and amplitude of two target genes and determined that transcriptional bursts from

natural Msn2 target promoters encode 1.0-1.3 bits of information about the sig-

nal identity and intensity. Another group recently used opto-genetic stimulation

to manipulate Ras in NIH3T3 cells and determined its effect on the transcriptome

profile of immediate early genes [141]. Along with manipulating cis elements in the

nucleus, as described in the previous section, experimental systems that allow re-
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Figure 1.3: Possible factors contributing to multiple promoter states. Abbrevia-
tions: PIC, pre-initiation complex; TFIID, general transcription factor II-D; TBP,
TATA binding protein; HDAC, histone deacetylase.

searchers to directly control and manipulate the localization of trans elements, such

as transcription factors, will be important for achieving a systems biology viewpoint

of precisely how information is transmitted to a gene.

A new development in scRNA-seq methodology is the use of principal component

analysis (PCA) for stem cell lineage tracing. Several groups [22,37,132] use scRNA-

seq expression data from a population of stem cells that have been induced to differ-

entiate, and use PCA for ‘pseudo-temporal ordering’- a timeline of gene expression

changes gathered from the single-timepoint gene expression profiles of many cells.

In sequencing, an assumption of pseudo-temporal ordering is that every cell repre-

sents a timepoint along the same continuum of differentiation. We can see a similar

assumption in imaging, where it is assumed that the observed distribution of burst-

ing comes from the same underlying kinetics present in every cell. Both methods

assume that modeling will obtain parameters that are reflective of a ‘mean’ process.

But what if it is not? Llamosi and colleagues [74] propose that the idea of fitting

parameters to a ‘mean cell’ is faulty, and instead suggest that the goal should be

to arrive at a distribution of models. This study highlights a major assumption of

all three single-cell methods that is gene expression is ergodic— observing a single
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cell over many timepoints yields the same information as measuring the population

of cells at a single timepoint. Recent work has shown the fallacies of the ergodic

assumption for dynamical models in which time averages are commonly replaced by

population averages [101]. As a result, we believe the assumption of ergodicity in

gene expression should be studied carefully.

Another aspect of gene expression to which mathematical modeling has begun

to contribute is the elucidation of gene networks from single-cell expression data.

Datasets that obtain measurements of gene expression profiles from single cells are

becoming increasingly prevalent, and there is potentially much information to be

gained from pairwise correlations of genes. But what can co-expression tell us

about connectivity? Simply looking for correlation in mRNA as a sign of connec-

tivity proves challenging at the single-cell level because transcription is stochastic

and dynamic— timescales of the birth and decay rates of mRNA affects how much

will be present at any given point in time. In Figure 1.4 we illustrate this problem

with a hypothetical gene regulatory interaction Gene A has a causal relationship

with Gene B, where the protein product of Gene A promotes the expression of Gene

B (i.e. the interaction between a transcription factor and its gene target). This

interaction may be present in every cell of a population; however, each cell may be

at different stages of the regulatory process at any given point in time. As such,

fixing the population at a single time point (as is done for smFISH and scRNA-seq)

may yield different combinations of Gene A and Gene B mRNA with no apparent

correlation at the single cell level. As illustrated in the figure, the half-lives of both

mRNA species may affect the degree to which they overlap in time (highlighted in

yellow) within a single cell.

The difficulty in interpreting temporal directionality in a gene network has been

observed both with single-cell imaging and scRNA-seq, where a clear functional re-

sponse at the population level yields poor or no correlation when examining the

RNA of pairs of involved genes within single cells [19, 51]. These observations ne-
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Figure 1.4: Capturing dynamic transcription regulation at a single timepoint.

cessitate the following questions for the field: Under what conditions can we expect

to see correlations in expression between two interacting genes? And when is co-

expression more reflective of a direct interaction rather than an indirect one?

These questions have previously been examined using principles from information

theory. Ku and colleagues [61] used microarray datasets to determine whether co-

expression of gene pairs was indicative of transcriptional regulatory interactions

(TRIs, when Gene A codes for a transcription factor that regulates Gene B) or co-

regulation (when two genes A and B are regulated by a common upstream factor).

They found that co-expression was indicative of co-regulation in the bacteria E. coli,

but more indicative of TRIs in S. cerevisiae. Additional such studies would be useful

to the field of single-cell gene expression, as they provide a framework for us to ask

what co-expression indicates in higher eukaryotes, and whether these conclusions

are observable in single cells. Will population-based network models need to be

modified to describe the observed stochastic nature of expression at the single-cell

17



level? Do gene networks change with transient heterogeneity, or when cis nuclear

architecture is altered? Development of single cell assays and their applications have

outpaced theoretical work to examine the data for its underlying principles. We see

a need for more studies to be done in this area in the future.

1.3.6 Conclusions

The field of single-cell gene expression has the potential to generate a comprehensive

and quantitative view of gene regulation. Developments in gene editing, advances in

high-throughput and multiplexed assays for single cells, and increased understand-

ing of nuclear architecture, are making significant contributions towards our ability

to manipulate and understand the dynamic aspects of gene regulation. In this re-

view, we have highlighted recent literature that advances the capabilities of three

frequently-used techniques: scRNA-seq, smFISH, and live-cell imaging. Heterogene-

ity is still a phenomenon to grapple with – both experimentally and theoretically –

but as it continues to be identified in more systems, observations of its dynamic prop-

erties are leading to hypotheses about its functionality and consequences. Models of

heterogeneity continue to be revisited, and studies that manipulate nuclear architec-

ture reveal the magnitude of its role in regulating gene expression. Population-based

assays hold great utility for elucidating gene networks, and we hope single-cell data

will begin to provide useful insight in this area as well. Current work and future

developments in the field will contribute to a more thorough temporal and spatial

understanding of gene regulation at the single-cell level, and ultimately to our ability

to relate an environmental stimulus to the response of an organism.
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Chapter 2

Methods in Single-Cell Gene
Expression Analysis

2.1 Single-Molecule FISH

2.1.1 Method overview

Single-molecule fluorescence in-situ hybridization (smFISH) is a method to visualize

RNA abundance levels in a population of fixed cells. This experimental technique

is based on hybridizing a series of fluorescently-labeled short DNA oligo probes to

an RNA transcript of interest. When visualized with a widefield fluorescence micro-

scope, the tiled probes appear as a single diffraction-limited spot that corresponds

to the location of the labeled RNA (Figure 2.1). The smFISH probes can be de-

signed to label various features of an RNA transcript, such as the introns, exons,

and UTR regions.

Figure 2.1: Schematic of smFISH protocol.
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Figure 2.2: Spectral properties of Cy3- and Cy5- equivalent Quasar dyes.

2.1.2 smFISH probe design

Probe sets are ordered from Biosearch Technologies, and each oligo sequence is

conjugated to a single Cy3 derivative (Quasar570) or Cy5 derivative (Quasar670)

with spectral properties outlined in Figure 2.2. Probes sets are designed with the

Stellaris Probe Designer (biosearchtech.com) using the following parameters:

� Masking level = 5

� Max number of probes = 48

� Oligo length = 20

� Minimum spacing = 2

In order to minimize off-target labeling, probe sequences are screened by BLAT

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) to confirm they are unique to the target

gene. Any sequences that have homology to other sites in the genome are removed

from the final probe set.

2.1.3 Reagents

1. Stellaris Probe Reconstitution

Dissolve in 1x TE to 25µM stock concentration and store at -20C. Working

aliquots can be made of the stock concentration or a 1:10 dilution to 2.5µM.

The final concentration of probe solution should be 100nM without diluting

the hybridization buffer excessively.

2. Fixation Solution (4% PFA/PBS)

For 12mL:
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� 1.5mL 32% Paraformaldehyde

� 10.5mL 1x PBS

3. Permeabilization Solution (70% ethanol/H20)

For 24mL:

� 16.8mL 100% ethanol

� 7.2mL H2O

4. Wash Buffer (10% formamide/2x SSC/H20)

For 50mL:

� 5.0mL 20x SSC

� 5.0mL Formamide

� 40.0mL H20

5. Hybridization Buffer (make 1mL aliquots stored at -20C)

For 10mL:

� 1g dextran sulfate

� 7.0mL RNAse-free Water

Dissolve dextran sulfate until clear. This may take up to 1 hour. Then add:

� 1.0mL 20x SSC

� 1.0mL Formamide

� Add water up to 10mL final volume.

Aliquot into Eppendorf tubes and store at -20C.

6. smFISH Probe Solution (50µL per coverslip, calculate for 55µL)

� 2µL of 2.5µL diluted probe OR 0.2µL of 25µM stock

� 48-50µL Hybridization Buffer
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7. Mounting Medium

� ProLong�Gold Antifade Mountant with DAPI (ThermoFisherSci P36935)

8. Coverslips

� 18mm diameter #1.5 thickness (Electron Microscopy Sciences 72222-01)

2.1.4 Labeling protocol

All volumes are 1mL unless noted.

Step 1: Fix and Permeabilization

1. Wash cells 3x with HBSS.

2. Fix cells with 4% PFA in PBS for 10 minutes.

3. Wash cells 2x 10 minutes with PBS.

4. To permeabilize, store in 2mL 70% ethanol 1-2 days at 4C.

Step 2: Prep for smFISH

1. Prepare Wash and Hybridization Buffers.

Note: Allow formamide stored at 4C to reach room temperature

before opening in a chemical fume hood.

2. Remove 70% ethanol from wells OR transfer coverslips to a new 12-well plate.

3. Incubate coverslips >5 minutes with Wash Buffer.

4. Set out smFISH probe working stocks stored at -20C to thaw in dark.

5. Prepare incubation chamber: With a lab marker, number coverslip positions

on the bottom of a 10cm plate (usually 4-6 coverslips per plate).

6. Cut a piece of parafilm to size and place inside plate, wrapper side up. Press

down firmly so the parafilm sits flat before peeling the wrapper off. Marked

numbers will be visible underneath.
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7. Fold a Kimwipe 5-6 times and tape to underside of the lid. Moisten with 1mL

H20; this provides humidity for the chamber.

Step 3: smFISH Probe Hybridization

1. Prepare smFISH probe in Hybridization Buffer for 55µL per coverslip (to com-

pensate for pipetting error). Vortex gently to mix. Store probe solution in

dark while coverslips are being dried in the next step.

2. Pick up coverslips with forceps and wick off excess liquid with a Kimwipe.

Rest against an Eppendorf tray on a paper towel to air dry. Set out all 4-6

coverslips for a given plate.

3. Pipette 50µl probe solution onto parafilm at numbered locations.

4. Place coverslips cell-side down onto probe solution. It helps to place the cov-

erslip down onto the probe solution at an angle to prevent air bubbles. If

needed, use forceps to tap the top of the coverslip gently to make the probe

solution spread across the whole area.

5. Close the plate with the wet Kimwipe taped to the lid, making sure it does

not touch the coverslips. Seal the plate with parafilm and incubate at 37C

for a duration of 4 hours to overnight. Note: Keep light exposure to the

samples minimal after this point.

Step 4: Wash and mount coverslips

1. Replace the Wash Buffer in the 12-well plate. Unseal incubation plate and

place coverslips into the Wash Buffer cell-side up. Discard the parafilm and

probe solution; the numbered plates can be washed and reused.

2. Incubate coverslips 2x 30 minutes in Wash Buffer at 37C. Thaw Prolong Gold

mounting media after first wash. Subsequent washes are at room temperature.

3. Bring Wash 1x with 2x SSC/H20.

4. Wash 1x for 5 minutes with PBS.
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5. Set out glass slides and label. 1-2 coverslips will be mounted per slide.

6. Wick coverslips and air dry as before in Step 3.2.

7. Add a small drop of mounting media to the glass slide. Gently place coverslip

cell-side down onto the mounting media, making sure not to introduce bubbles.

8. Let the glass slides dry overnight in dark at room temperature.

9. Before imaging, gently wipe the coverslip surface with a moist kimwipe to

remove any residue (i.e. salts from PBS) before placing on the microscope.

Store slides at -20C after imaging.

2.1.5 Microscope instrumentation

We image smFISH samples on a custom-built widefield fluorescence microscope with

the following components:

� Chassis: Rapid Automated Modular Microscope (RAMM, ASI Imaging, OR,

USA)

� Light source: SpectraX Light Engine (Lumencor, OR, USA). The light engine

contains seven color bands (max λ/FWHM, power): Violet (395/25, 295mW),

Blue (440/20, 256mW), Cyan (470/24, 196mW), Teal (510/25, 62mW), Green

(550/15, 260mW), Yellow (575/25, 310mW), Red (640/30, 231 mW)

� Filter set: Quad-bandpass filter for imaging DAPI/GFP/Cy3/Cy5 (VCGR-

SPX-P01-PC, Chroma Technology Corp., VT, USA)

� Additional emission filters: 605/70 (Cy3) and 700/75 (Cy5) controlled by a

FW-1000 High Speed Emission Filter Wheel (ASI Imaging) and TG-1000 Tiger

serial controller (ASI Imaging)

� Camera: ORCA-Flash4 V2 CMOS camera (Hamamatsu Photonics K.K., Japan)

� Stage: MS-2000 motorized XY stage (ASI Imaging)

� Objective lens: 40x/1.4 N.A. oil immersion objective (Carl Zeiss, Germany)
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Figure 2.3: SlideExplorer view in MicroManager.

� Software: MicroManager (Version 1.4.18, https://micro-manager.org) [28]

2.1.6 Acquisition parameters

To select the regions of a coverslip to image, a large-scale tiled view of the coverslip

is first obtained using the MicroManager plugin ‘Slide Explorer’ (Figure 2.3).

Areas of the coverslip with noticeable debris, air bubbles, or irregular cell densities

(i.e. <10% or >90%, will depend on the normal culture conditions for a given cell

type) are generally to be avoided, as these can affect the biology being measured and

yield inaccurate cell segmentation and spot identification. A custom MicroManager

script performs batch acquisition in the subsequent steps. Acquisition grids are

created around chosen areas (usually 5x5 to 10x10 grids, 2-3 grids per coverslip).

The focus across the z-plane of the grid is set by manually correcting the focus on

the central frames in the upper, lower, right, and left edges of the grid. The following

Lumencor excitation light and camera exposures are used for each fluorophore:

� DAPI: Violet, 25ms, no emission filter

� Cy3: Green, 500ms, 605/70 emission filter

� Cy5: Red, 500ms, 700/75 emission filter

Z-stacks with a 0.5µm step size are used to image the whole volume of the cell
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Figure 2.4: smFISH image processing pipeline.

(U2-OS and HBEC cells = approx. 11 slices, MCF7 cells= approx. 14 slices). The

number of slices should be chosen such that the entire volume of the cells, across all

areas of the grid, are fully captured in the stack.

2.1.7 Image processing

There are five main steps for smFISH image processing: 1) Maximum intensity

projection and 2) Illumination correction with MicroManager, 3) Segmentation of

cell and nucleus masks with CellProfiler (version r.11710, https://cellprofiler.org),

4) RNA spot identification with a custom IDL program ‘Localize’ [129, 143], and

5) Merging of image, mask, and RNA spot information with a second custom IDL

program ‘FISHAuxiliary.’ The steps are illustrated in Figure 2.4 and described

below:

1. Maximum Projection: Z-stacks are converted into a 2-D maximum inten-

sity projection to produce a single image containing the entire volume infor-

mation for a given field of view. The resulting fi

le is a multi-channel, multi-position TIF hyperstack.

2. Illumination Correction: Flat-field correction is performed on images to
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correct for the uneven illumination by the excitation light upon a field of view.

If not compensated for, this heterogeneous illumination will produce errors

in the fluorescence intensity readout of the RNA. Within the MicroManager

batch acquisition script, we consider a maximum-projection image as a 2D

matrix of pixel intensities and apply the following equation:

C =
R−D
F −D

(2.1)

Where

� C = Illumination corrected image

� R = Raw image

� F = Flat-field image

� D = Dark image

The flat-field image is generated from an out-of-focus frame of a solution of free

dye (DAPI, Cy3, or Cy5) in water excited with the appropriate wavelength.

The dark image is a frame acquired without a sample or excitation light.

3. Nucleus and Cell Segmentation: Nucleus masks are segmented as ‘pri-

mary objects’ by applying the Otsu method of thresholding with two-classes

to the DAPI channel (Figure 2.5). Cell masks are similarly generated from

the smFISH channel, seeded from the nucleus primary objects.

4. Spot Detection: Intensity and area thresholds are applied to the smFISH

channel to identify spots. The IDL program ‘Localize’ fits a 2D Gaussian

mask to each spot and the integrated intensity of the Gaussian fit is recorded

as the spot intensity. A single channel TIF stack is given as the input, and the

output file contains the frame number, x-y coordinates, and integrated pixel

intensity of each spot.

5. Merge of Segmentation and Spot Identification Data: The image,

mask, and RNA spot data is merged in the IDL program ‘FISHAuxiliary’ to

identify RNA spots specifically within the nucleus and cytosol of cells. The

output file is a table with each row containing the nucleus and cytosol RNA
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Figure 2.5: Nucleus segmentation in CellProfiler.

counts for a given cell ID. The two RNA counts can then be summed to yield

the total RNA abundance for a given cell. A threshold can be further applied

to identify spots of brighter intensity within a nucleus mask as transcription

sites (TS). The number and intensity of these spots is recorded in a separate

file.

2.1.8 Data analysis

The basic forms of output data are:

� Number of cytosolic, nuclear, and total RNA per cell.

� Number of TS per cell.

� The fluorescence intensity of each identified spot. In the case where we used

an exon probe to obtain TS intensities, we can divide the TS intensities by

the median intensity of a single RNA (the majority being single mRNA) to
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yield the discrete number of nascent RNA (or transcribing RNAPII) at the TS.

The statistics calculated from the data are: 1) Mean with standard error for TS

per cell, and 2) Two-sample Kolmogorov-Smirnov test on RNA distributions and

TS intensity to determine whether two conditions (i.e. low MYC and high MYC)

significantly differ from each other. The Kolmogorov-Smirnov test statistic D is

calculated from the largest vertical difference between two distributions with the

equation given by:

D = max
x
|F1,n(x)− F2,m(x)| (2.2)

Where F1 and F2 are the empirical distribution functions of the first and second

samples, and n and m are the respective sample sizes.

2.2 Live-Cell Imaging with MS2

2.2.1 Method overview

The MS2 live-cell imaging method allows for the real-time visualization of tran-

scription events in single cells with fluorescence microscopy. This method is based

on integrating a MS2 bacteriophage sequence into a gene of interest within a cell

line or organism. This sequence forms secondary structures (stem loops) when the

gene is transcribed into RNA. These stem loops are bound by cognate MS2 bacte-

riophage coat protein fused to GFP, the sequence of which is also integrated into

the cells of interest and constitutively expressed. The result is fluorescently labeled

RNA, where the fluctuating fluorescence signal over time is a readout of the RNA

production events of a given gene (Figure 2.6).

2.2.2 Engineering of MS2-labeled cell lines

� TFF1 endogenous gene in the MCF7 cell line: The TFF1-MS2 cell

line was created with CRISPR targeting the TFF1 3’UTR in MCF7 cells
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Figure 2.6: Schematic of MS2 integration and fluorescent labeling of RNA.

Figure 2.7: TFF1 MS2-GFP construct. Figure reproduced with permission from
Rodriguez et al., 2019.

(Figure 2.7, developed in [112]). The CRISPR reagents consist of two plas-

mids: 1) a pX330 plasmid containing Cas9-mCherry with guide RNA sequence,

and 2) a donor plasmid containing left and right homology arms to the TFF1

locus flanking the target site with a 24x MS2 stem loop array and puromycin

resistance cassette. The pX330 and donor plasmids were transfected into low

passage MCF7 cells. After 7 days, antibiotic selection was started to enrich

for positive cells. Surviving single clones were screened by PCR to check for

on target integration. The MCF7 cell line is polyploid and three of the five

TFF1 alleles received the MS2 integration.

� Endogenous gene panel in the HBEC cell line: This HBEC cell line

was engineered to introduce the 24x MS2 array globally into introns of genes

(Figure 2.8, developed in [136]). A lentiviral ‘gene trap’ vector was en-

gineered for this purpose. The vector consists of lentiviral backbone with
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Figure 2.8: MS2 gene trap construct. Figure reproduced with permission from
Wan et al., 2019.

FRT sequences flanking a splicing acceptor sequence, polyA (polyadenyla-

tion sequence), and a selection cassette consisting of blasticidin resistance and

iRFP far-red fluorescent protein. The vector was introduced to HBEC cells by

lentivirus transduction. Positive cells containing the integration were enriched

by applying blasticidin antibiotic selection. MS2-GFP coat protein was then

introduced with lentivirus transduction and cells were FACS sorted to enrich

for GFP+/iRFP+ cells. The blasticidin-iRFP selection cassette was removed

with FLP recombinase so that only the 24x MS2 array remained. Cells with

GFP+ /iRFP- fluorescence were single-cell sorted with FACS and individual

clones were imaged and sequenced for further analysis.

2.2.3 Aquisition parameters

MCF7 cells were imaged on a Zeiss LSM780 confocal microscope with a 37C, 5%

CO2/humidity environment. Imaging was performed with 488nm and 594nm exci-

tation at 2% power, 63x/1.4 N.A. oil immersion objective, 2.5µm pinhole size, 1.5x

zoom, and 1024x1024 frame size acquired at 16-bit depth. Z-stacks were acquired

at 14 slices/0.5µm step size. The imaging duration was 512 frames/100 sec intervals

(approx. 14.2 hours), allowing for 1 well with 4 FOV per well to be imaged per

acquisition.
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For high-throughput imaging, HBEC cells were cultured in 96-well plates (Brooks

Life Science Systems MGB096-1-2-LG-L) and microscopy was performed on an au-

tomated Yokogawa Cell Voyager 7000S dual spinning disk microscope with a 37C,

5% CO2 and 80% humidity environment. The microscope was equipped with a

quad-bandpass filter (405/488/561/604 nm) and an additional GFP emission fil-

ter (525/50). Imaging was performed with 488nm excitation at 30% power and a

60x/1.2 N.A. water immersion objective. Fluorescence was detected with an Andor

Neo 5.5 sCMOS camera with 250ms exposure time, 1278x1078 frame size, and 2x2

binning acquired at 16-bit depth. Z-stacks were acquired with 14 slices/0.5µm step

size. The imaging duration was 6 or 15 hours with 100-second frame intervals, al-

lowing for 8 wells with 5 FOV per well to be imaged during a single time course.

Flat-field correction and maximum intensity projections were processed on the fly

by Yokogawa acquisition software.

2.2.4 Image processing

Automated image analysis of live-cell time series data is carried out in the KNIME

open-source workflow environment (64-bit Version 3.5.1, [11]) containing the follow-

ing image processing and scripting nodes: KNIP (Version 1.5.3.201611190650 [23]);

R (Version 3.3.1, 64-bit, https://r-project.org); and Python (Version 2.7.12, 64-bit,

https://python.org). Spot tracking in KNIME incorporates algorithms from Local-

ize. The analysis consists of five main steps: 1) Nucleus segmentation and tracking,

2) TS tracking within registered nuclei, 4) Filtering correct TS tracks. The steps

are illustrated in Figure 2.9 and described below:

1. Nucleus segmentation: This step is performed on the MS2-GFP channel

using a Random Forest Classifier. A training set with supervised learning

of a given cell type (MCF7 or HBEC) is conducted in which correctly and

incorrectly segmented nuclei are manually classified in single frames of a rep-

resentative time series movie. The RF model is tested on unseen data and
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Figure 2.9: Live-cell image processing pipeline.

then applied across all subsequent time series of a given cell type. Registra-

tion of tracked nuclei in X-Y is automatically applied after the segmentation

step. The reason we limit the movement of the nuclei by registration is that

cell movement and long transcription OFF periods that can occur over a 6-15

hour range. This makes it difficult to set an adequate search radius that would

allow bursts of the same allele to be successfully linked together.

2. Spot identification and tracking: Spot identification is performed on regis-

tered nuclei based on 2D Gaussian masking methods developed in Localize. A

square border around the detected spot is used to track bursting events across

frames with the following KNIME parameters used for MCF7 and HBEC cells:

� ‘LAP Tracker Maximum Distance’ = 15 pixels: Max distance a visible

spot can travel between frames.

� ‘LAP Tracker GAP-Closing Maximum Distance’ = 15 pixels: Max dis-

tance a spot can travel when it reappears after disappearing.

The pixel intensity values of filtered traces are then normalized to the highest

and lowest value on a per track basis.

3. Classifying gene ON and OFF periods using a 2-state Hidden Markov

Model: The batch of normalized traces for a given condition are fit to a 2-
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state HMM as a way to classify the active and inactive states of each gene

in an unsupervised manner. The model we use is based on an algorithm for

characterizing single molecule FRET transitions [66] that factors in the envi-

ronmental heterogeneity in the measurements such as variation in background

fluorescence intensity (as is the case with nuclear MS2-GFP coat protein levels

varying across cells) and variation in peak heights. The HMM is based on two

states—a gene being ‘on’ or ‘off’—and the observables being the absence or

presence of the fluorescence signal of RNA over time. In this classification,

the emission probability b of a given observable fluorescence intensity O given

a state I is defined as:

bi(O) =
1√

2πσj
exp[−(O − µj)2

2σj2
] (2.3)

2.2.5 Data analysis

The basic forms of output data for each track are:

� Raw intensity values

� Normalized intensity values

� HMM fit of each track

� List of the calculated ON and OFF periods within each track, in units of frame

number.

The distributions are plotted as normalized cumulative distribution functions and

two statistics are calculated from the data: 1) The mean for the ON and OFF

state with 95% confidence intervals calculated by bootstrap, and 2) A two-sample

Kolmogorov-Smirnov test to compare the ON and OFF time distributions between

two conditions.
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Chapter 3

Optogenetic Engineering of the
MYC Oncogene

3.1 Controlling MYC translocation with the Avena sativa
LOV2 domain

Real-time changes in the ON and OFF time of a gene’s transcription periods can be

reflected in smFISH measurements in different ways depending on downstream fac-

tors like mRNA processing and decay. The longer the window of time observed, the

more likely secondary effects come into play that affect the population-level snap-

shot of gene expression. To achieve acute control of MYC overexpression on fast

timescales in living cells, we engineered photo-inducible MYC (Pi-MYC’) whereby

nuclear translocation of MYC is controlled by light. This capability is achieved

using the light oxygen voltage 2 (LOV2) phototrophic domain from the Avena

sativa plant. The Jα helix at the C-terminus of the LOV2 domain is coiled in

the dark (Figure 3.1), but when irradiated with blue-green wavelengths of light

(450-500nm), excites a flavin cofactor to elicit a conformational change in the do-

main. This process is reversible when the activating light is removed. We sought to

use the caging mechanism of the LOV2 domain to control the nuclear translocation

of MYC.
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Figure 3.1: Crystal structure of the LOV2 domain (PDB 2V1A).

3.2 Overview of the Pi-MYC Transgene

The Pi-MYC transgene consists of MYC-mCherry fused to a nuclear export signal

(NES) followed by the LOV2 domain enclosing the c-MYC nuclear localization signal

(NLS) (Figure 3.2). This transgene is driven by the human Ubiquitin C promoter,

allowing MYC-mCherry to be constitutively expressed yet retained in the cytoplasm

due to the combination of an exposed NES and LOV2-caged NLS. Upon induction

with light, the LOV2 domain unhinges and exposes the NLS, allowing MYC to be

imported into the nucleus. We found it was necessary to inactivate the endogenous

MYC NLS located in exon 3 of the gene in order for MYC to be under control of

the LOV2-caged NLS. To do this we replaced the basic lysine and arginine residues

of the ‘PAAKRVKLD’ sequence with alanine (Figure 3.2). As a control to make

sure any effects we saw in our experiments were specifically due to MYC, we created

“Pi-mCherry”— a transgene that contains all the domains except MYC.
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Figure 3.2: Schematic of Pi-MYC. The transgene consists of the human Ubiquitin
C promoter (UbiCpro), c-myc exons 2 and 3 (MYC), alanine mutations in the
native NLS (blue inset shows changed residues), mCherry, a nuclear export signal
(NES), and the LOV2 domain followed by the wildtype c-myc NLS sequence. The
Pi-mCherry control transgene contains all domains except MYC.

3.3 Translocation Kinetics

To test the import and export kinetics, we introduced Pi-MYC via lentiviral inte-

gration into U2-OS cells. We found MYC exhibited reversible nuclear translocation

within minutes of addition and removal of activating 488nm light (Figure 3.4).

We found the translocation was reversible over repeated induction periods of 1 hour

with alternating 10-minute periods of induction light, with an entry rate of k1/2 =

0.380 ± 0.018 min-1 and an exit rate of k1/2 = 0.261 ± 0.022 min-1(Figure 3.3).

Analysis of Pi-MYC nuclear fluorescence intensity in cells before and after induction

shows a 1.6-fold increase in nuclear MYC levels under these illumination conditions.

3.4 Biological Validation

We next determined whether Pi-MYC was biologically functional using a classic

transformation assay in NIH3T3 mouse fibroblast cells [62]. In this assay, intro-

duction of two oncogenes—RAS containing a G12V mutation and MYC overex-
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Figure 3.3: Pi-MYC entry and exit rates in U2-OS cells fit to a single exponential
model. Data points are mean with 95% confidence interval of n=5 cells.

Figure 3.4: Top: Pi-MYC stable expression in U2-OS cells. Scale bar = 15µm.
In the absence of irradiating light, the NES allows Pi-MYC retention in the cy-
toplasm. Upon irradiation with blue-green wavelengths of light (450-500nm),
the LOV2 domain exposes the enclosed NLS and allows Pi-MYC to be imported
into the nucleus (indicated by blue triangles). Pi-mCherry operates via the same
mechanism. Bottom: Quantification of nuclear fluorescence intensity from four
cells numbered in (B) over a 1-hour time series. The field of view was subjected
to alternating 10-minute periods of activating light indicated by blue rectangles
on plot.
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Figure 3.5: DIC merge and fluorescence images of NIH3T3 fibroblasts stably
expressing Pi-mCherry or Pi-MYC (visualized with mCherry) in a background of
wildtype HRAS or V12 mutant. Scale bar = 50µm.

pression—causes transformation of mouse fibroblasts, resulting in several hallmark

phenotypes of oncogenesis: focus formation, faster growth in culture, and anchorage-

independent growth in soft agar. We generated NIH3T3 cell lines that expressed

either a background of wildtype RAS or mutant RASV12, combined with either

Pi-mCherry or Pi-MYC stable expression. Pi-MYC and Pi-mCherry expression is

visible by fluorescence microscopy (Figure 3.5), and both MYC and RAS protein

levels can be detected by Western blot (Figure 3.6). We found that Pi-MYC

co-expressed with mutant RAS transformed NIH3T3 cells, resulting in focus for-

mation, faster growth in culture (Figure 3.7), and anchorage independent growth

(Figure 3.8). We note that the NIH3T3 cells were sensitive enough that the trans-

formation occurred without needing to specifically incubate them with blue light.

We reason this ‘leakiness’ could be due to the LOV2 domain being activated by trace

amounts of room light, or some LOV2 domains being improperly folded and not able

to completely cage the NLS. Nevertheless, these data indicate that Pi-MYC is bio-

logically functional, allowing us to probe for transcription changes when perturbing
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Figure 3.6: Western blot of MYC and RAS expression in the NIH3T3 stable
lines.

cells on short timescales.

3.5 Stable Expression of Pi-MYC in HBEC Cells

Having confirmed that Pi-MYC is both controllable and functional, we introduced

Pi-mCherry or Pi-MYC into HBEC cells by lentiviral integration. We created a

total of 10 stable cell lines where either Pi-mCherry or Pi-MYC was expressed in

five clonal backgrounds, the MS2 polyclonal line and four single-cell clones RPAP3,

RAB7A, KPNB1, MYH9, via lentiviral transduction (Figure 3.9). The MS2 poly-

clonal cell line consists of introns of approximately 900 unique genes labeled with

MS2 and so we used an smFISH probe set to MS2 to detect the activity of nascent

RNA at transcription sites (Figure 3.10). We found that even under conditions

of no activating light, the Pi-MYC cell line exhibited brighter TS compared to

the Pi-mCherry line, indicating the production of more nascent RNA at active TS

(Figure 3.11). This result may follow from slight leakiness of the LOV2 cage, con-

sistent with what we saw in NIH3T3 cells, even though by fluorescence microscopy

MYC appears to be excluded from the nucleus. Similarly, Pi-MYC induced a growth
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Figure 3.7: Left: Growth and focus formation in monolayer culture of four
NIH3T3 lines. Right: Quantification of mean growth rates, two biological repli-
cates per cell line. Error bars are SD of three technical replicates.

Figure 3.8: Left: Colony formation in soft agar of Pi-mCherry and Pi-MYC
stable lines in the RAS mutant background. Right: Quantification of colonies
visible after 2 weeks growth in soft agar of the four stable NIH3T3 lines and the
two RASV12 lines cultured in 24 hours light before embedding in agar (+LIGHT).
Bars are mean with SD of two biological replicates.
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Figure 3.9: Diagram of HBEC cell lines generated by stably integrating Pi-
mCherry or Pi-MYC into the MS2 polyclonal cell line and four single cell clones
(10 cell lines total).

Figure 3.10: Top: MS2-Cy3 smFISH probes are localized to the linker region
between a single MS2 stem loop repeat. Bottom: smFISH images of the MS2
polyclonal line (blue=DAPI) with MS2 probes to highlight the nascent RNA (in-
trons) of genes. Scale bar = 30µm.
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Figure 3.11: Normalized CDF of MS2 probe intensity in the HBEC polyclonal
line, indicating the number of nascent RNA present globally at transcription sites
with stable expression of Pi-mCherry (n=3364 cells) or Pi-MYC (n=6670 cells).
Shown are two biological replicates combined per condition.

advantage in HBEC cells over a period of two days in culture (Figure 3.12). How-

ever, in contrast to NIH3T3 cells, this growth difference was more pronounced when

the cell line was cultured under blue light. Interestingly, the Pi-mCherry line also

displayed increased growth when cultured under blue light. It has been previously

reported that blue and/or green light may have antioxidant effects [18], have pro-

tective effects on protein subjected to UV irradiation [33], and initiate biophysical

processes in cells such as increased wound healing and cell proliferation [2, 113].

These data speak to the importance of using the Pi-mCherry control for our experi-

ments where the cell is subjected to all factors involved in the light induction except

translocation of MYC.
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Figure 3.12: Two-day growth curve of HBEC cells with Pi-mCherry or Pi-MYC
stable integration, cultured in the dark or under 455nm light (+λ).
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Chapter 4

Investigating the Effect of MYC
on Gene Expression with
Single-Molecule Imaging

4.1 MYC Increases the Active Transcription Period of
the Estrogen-Responsive Gene TFF1 in MCF7 Breast
Cancer Cells

Our strategy to dissect the direct effect of MYC on human genes was to use mul-

tiple methods for changing MYC levels (including transient transfection, induction

of stably-integrated genes, siRNA knockdown, and the photo-inducible MYC de-

scribed later) followed by multiple methods of transcriptional readout (including

RT-qPCR, nascent RNA counting by smFISH, live-cell-imaging of RNA synthesis

by MS2). The first candidate gene we chose was TFF1, an estrogen-responsive gene

that is upregulated in breast cancer [4, 123]. TFF1 has a canonical E-box motif (a

DNA response element that MYC binds) in its promoter as well as its enhancer,

TMPRSS3 (Figure 4.1). Studies with luciferase reporters show MYC interacts

with the TFF1 gene although its influence on other members of the TFF family

are stronger [3]. TFF1 RNA is transcribed in bursts, with an average ON time of

16.0 ± 0.5 minutes and an average OFF time of 66 ± 7 minutes when fully induced

with estradiol (E2) [112]. The EC50 of TFF1 when induced with E2 is 50pM [83]

and increasing E2 increases the frequency of TFF1 bursts, but has no effect on the
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Figure 4.1: Genome browser screenshot of MYC ChIP-seq peaks (gray) and the
E-box consensus motif (blue) at the loci of TFF1 and its enhancer TMPRSS3.

Figure 4.2: smFISH of TFF1 RNA abundance levels at varying E2 concentrations
over a 72-hour time course of MYC overexpression

duration of bursts.

We used a previously-created MCF7 cell line where TFF1 contains 24x repeat of

MS2 loops in the 3’UTR, thus enabling live-cell imaging of transcription (Figure 4.3)

[112]. First, we overexpressed MYC with transient transfection, and observed no de-

tectable changes in TFF1 mRNA abundance as measured by smFISH over a 72-hour

MYC overexpression time course (Figure 4.2), similar to previous results obtained

by a luciferase assay [3]. We sought to evaluate this finding by directly measuring

pre-mRNA synthesis of TFF1 at the transcription site (TS). We subjected MCF7

TFF1 -MS2 cells to either 1 week of growth in saturating E2 or hormone deple-

tion followed by induction with 50pM E2, followed by MYC plasmid overexpression

or MYC siRNA knockdown (Figure 4.4). Cells in each condition were imaged

for a timeseries of 14.2 hours and the TFF1 TS were tracked over that duration

(Figure 4.4). The TS intensity is a direct readout of the nascent RNA produced

at the TFF1 gene locus, and we fit the normalized time traces of TFF1 fluores-
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Figure 4.3: Schematic of the MS2 insertion in the TFF1 endogenous locus.

Figure 4.4: Schematic of live-cell experiment with MYC perturbation.
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Figure 4.5: Top: Example screenshot of a live-cell movie in a MCF7 cell with
MYC-mCherry overexpression. Frames are a maximum projection of a z-stack.
TFF1 transcription site indicated by white square. Bottom: Example trace of
TFF1 transcription site activity (green line) fit to a 2-state HMM (black line) to
categorize gene activity into ‘ON’ and ‘OFF’ periods.

cence intensity to a 2-state HMM to threshold the ON and OFF periods of the

gene (Figure 4.5). We then plotted the distributions of ON and OFF periods as

a normalized cumulative distribution function (CDF) to determine whether MYC

modulates the conditions. We found no effects on transcription ON and OFF time

at saturating E2 conditions, but we did find that MYC affected TFF1 transcription

events at 50pM E2, the EC50 for the gene (Figure 4.6). We observed a significant

increase in the ON time distribution with the mean increasing from 5.6 ± 0.4 to 7.1

± 0.7 minutes, as well as an increase in the OFF time from 44.2 ± 4.3 to 70.2 ± 7.0

minutes. In summary, despite not seeing changes in total cellular TFF1 mRNA, we
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Figure 4.6: Normalized CDF of TFF1 ON and OFF times with MYC knockdown
(KD) or overexpression (OE). Cells were cultured at saturating E2 (KD=15 cells,
OE=8 cells) or 50pM E2 (KD=22 cells, OE=13 cells).

observed that MYC increased the duration of TFF1 transcription events, but also

decreased the frequency of the events occurring. Yet, this effect was only observed

under non-saturating levels of expression.

We also tested our findings for the TFF1 gene transcribing under non-saturating

conditions (50pM E2) with an orthogonal method of MYC overexpression that has

been previously characterized [103]. In this MCF7 cell line, a stably-integrated

TetON MYC transgene induces MYC-EGFP overexpression upon induction with

doxycycline (Figure 4.7). Under the microscope, this difference in MYC level
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Figure 4.7: Left: Schematic of TetON MYC-EGFP transgene, containing a
doxycycline inducible Tet-responsive element, and a CMV promoter driving ex-
pression of MYC-EGFP. Right: MYC western blot of MCF7 TetON MYC-EGFP
expression at 0 and 48 hours of vehicle or doxycycline induction.

upon induction can be detected both at the protein level with MYC-EGFP fluores-

cence and at the RNA level with smFISH (Figure 4.8) Induction with doxycycline

leads to a 1.7-fold increase in MYC RNA levels over 48 hours, from 40.2 ± 0.4 to

67.7 ± 0.7 RNA per cell (Figure 4.9). Using an smFISH probe set to the intron

of TFF1 to identify nascent unspliced pre-mRNA at the TS, we found that TS

intensity increased slightly from 0-24 hours of a 48-hour time course, whereas the

fraction of active TS per cell peaked at 6 hours and then decreased below initial levels

(Figure 4.10). Taken together, two different methods of MYC over-expression and

two different methods of transcriptional readout indicate MYC-dependent changes

in TFF1 transcription that were not visible at the total mRNA level.

We verified these findings for another gene in a different transformed cell line. We

used a previously-created TetON beta-globin reporter gene stably integrated into

the genome of U2-OS osteosarcoma cells [20]. The expression level of the beta-

globin reporter is tunable by doxycycline and driven by a bacterial CMV promoter.

Like TFF1, this gene also contains 24x MS2 stem loops in the 3’ UTR, but unlike

TFF1, the beta-globin reporter is exogenously expressed, present as a multi-copy

array, and does not contain any cis-acting elements designed to be MYC-responsive.

Interestingly, we saw that MYC overexpression over a 24-hour period increased the

RNA abundance above the levels achieved by doxycycline and increased the mean
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Figure 4.8: Left: TetON MYC-EGFP expression induced with vehicle. The
top panel shows DIC-merged and fluorescence images of the TetON MYC-EGFP
protein expression (scale bar=50µm).The bottom panel shows smFISH images
of merged, MYC, and TFF1 intron channels (blue=DAPI, scale bar=12µm.).
RNA transcripts and transcription sites are identified with squares and circles,
respectively. Right: TetON MYC-EGFP induced with doxycycline for 24 hours.

Figure 4.9: smFISH quantification of MYC RNA per cell at 0 (n=3448 cells),
24 (n=7890 cells), and 48 hours (n=6599 cells) of TetON MYC-EGFP induction
with 10µg/mL doxycycline. Bars represent mean with SEM.
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Figure 4.10: Left: smFISH quantification of fold-change in fluorescence intensity
(dox/veh, normalized to 0h) of TFF1 TS over 48-hour time course of MYC
overexpression. Right: smFISH quantification of fold-change in TFF1 TS per
cell (dox/veh, normalized to 0h) over 48-hour time course of MYC overexpression.
Approximately 2000-6000 cells were imaged per condition.

ON time from 32.1 ± 2.0 to 41.4 ± 5.3 minutes (Figure 4.11). We observed a

slight increase in the mean OFF time by a similar magnitude (70.8 ± 5.5 to 79.3 ±

9.9 minutes), but this effect was not statistically significant. Thus, even a transgene

with no canonical E-box sequences in the promoter proximal region responds to

MYC over-expression over long timescales. In summary, single-cell imaging of two

genes (TFF1 and a beta-globin reporter) in two transformed cell lines (MCF7 and

U2-OS) show that MYC increases burst duration.

4.2 MYC Exerts Changes in Gene Expression in the
Non-Transformed HBEC Cell Line

In order to expand our single-cell, single-gene survey of MYC’s effects on transcrip-

tion to genes that exhibit a range of functions and expression levels and also to

examine MYC overexpression in a non-cancer context, i.e. an immortalized human

cell line that was not transformed), we studied the role of MYC in a human bronchial

epithelial cell line (HBEC) [107], immortalized through hTERT and Cdk4 expres-

52



Figure 4.11: (A) Schematic of the TetON beta-globin reporter gene stably
integrated in U2-OS cells, and the MYC-EGFP transgene added as a plasmid
transfection. For live-cell imaging, transcription activity was measured from the
PP7 stem loop signal in intron 2 observed by the fluorescence of the interacting
PP7-mCherry coat protein. (B) Diagram of experimental setup. (C) smFISH
quantification of MYC RNA per cell with endogenous levels of MYC (End.) and
24 hours MYC-EGFP overexpression (OE). (D) smFISH quantification of induced
beta-globin reporter expression with endogenous MYC levels or MYC overexpres-
sion. (E) Normalized CDF of beta-globin reporter ON and OFF times with en-
dogenous MYC levels or MYC overexpression. Statistical significance from the
Kolmogorov-Smirnov and Anderson-Darling tests are both reported.
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Figure 4.12: Schematic of the gene trap system to insert MS2 stem loops globally
into the introns of endogenous genes in the HBEC cell line.

sion. We previously used a ‘gene trap’ to introduce MS2 loops globally into the

introns of genes in this HBEC cell line [136]. Briefly, the gene trap works through

random insertion, followed by drug selection and sequencing to identify genes con-

taining MS2 stem loops in introns. We derived two types of cell lines from this

method: An ‘MS2 polyclonal’ cell line in which every cell in the population contains

a single unique gene tagged with MS2, and ‘single-cell clones’ that were derived from

the MS2 polyclonal line by single-cell sorting, followed by sequencing to determine

the identity of the gene that received the MS2 tag (Figure 4.12). We established

10 single-cell clones that each contain an MS2-tagged gene, and from bulk RNA

sequencing of the HBEC parental cell line [99] we determined these genes repre-

sent the upper 50-percent range of expression of the entire transcriptome, varying

from 6 to 230 RPKM (Reads Per Kilobase of transcript, per Million mapped reads)

(Figure 4.13).

We first assayed whether any of the 10 genes for which we had MS2 live-cell clones

responded to MYC perturbations. We performed 24 hours MYC overexpression

(MYC-mCherry plasmid) or 48 hours MYC siRNA knockdown and determined

the fold-change in expression compared to controls (mCherry plasmid or scram-

bled siRNA) with RT-qPCR to total mRNA (Figure 4.14).
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Figure 4.13: RNA expression profile of the HBEC transcriptome. Genes for which
MS2 single-cell clones were generated are labeled in blue.

We found that increasing MYC levels increased the expression of most genes, and

correspondingly MYC knockdown generally decreased expression. We picked four

genes— RPAP3, RAB7A, KPNB1, and MYH9 — for more detailed analysis be-

cause they represented a range of features. First, these genes encode for proteins

with diverse cellular functions: RPAP3 is an RNAPII associated protein, RAB7A

is a GTP-binding protein that is a structural component of lysosomes, KPNB1 is

a member of the Importin-beta family of nuclear chaperones, and MYH9 is a sub-

unit of the non-muscle Myosin IIA protein. Second, all these genes except KPNB1

showed a response to MYC overexpression detectable by RT-qPCR. Third, these

genes represent a range of RNA abundance levels as quantified by smFISH, from

RPAP3 with an average of 8.2 ± 0.1 RNA per cell, to MYH9 with 140 ± 0.6 RNA

per cell (Figure 4.15). Fourth, they represent a range of DNA features: All have

MYC binding detectable by MYC ChIP in various cell lines (Figure 4.16). None

of the genes have a canonical E-box sequence in their promoter-proximal regions

(within 200 bp of the transcription start site, yellow highlight), although there are

canonical E-boxes within 760bp of RAB7A and 900bp of RPAP3.
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Figure 4.14: qPCR analysis of the effects of transient MYC-mCherry overexpres-
sion (MYC OE) or siRNA knockdown (MYC KD) on a panel of genes for which
MS2 single-cell clones are available. Expression is normalized to the control per-
turbation (mCherry plasmid or scrambled siRNA).

From the unmodified HBEC parental cell line, we generated a TetON MYC-EGFP

stable cell line to look at the effects of MYC overexpression on the four genes.

MYC-EGFP overexpression is visible in the nuclei of HBEC cells after a few hours

of doxycycline induction, and stable expression in the population can be observed

by microscopy or western blot after 24 hours of induction (Figure 4.17). We con-

ducted smFISH experiments in which we overexpressed MYC for 24 hours, then

fixed and labeled the cells with smFISH probes to the 3’UTR of the four genes

RPAP3, RAB7A, KPNB1, and MYH9 (Figure 4.18). We found that MYC in-

creased the RNA abundance of the lower expressed genes, RPAP3 and RAB7A.

Curiously, KPNB1 showed a decrease in RNA abundance. The highest expressing

gene, MYH9, showed no change (Figure 4.20). For all four genes, the number of

nascent RNA measured by TS intensity did not show significant changes with MYC

overexpression: all had changes of less than 1 RNA (Figure 4.19). The two genes

that showed increased RNA abundance, RPAP3 and RAB7A, also showed a 1.3-
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Figure 4.15: Left: Representative smFISH images of RPAP3, RAB7A, KPNB1,
and MYH9 RNA (gray = DAPI). Scale bar = 20µm. Right: Violin plot of
distribution of RNA per cell of RPAP3 (n=5955 cells), RAB7A (n=4911 cells),
KPNB1 (n=3511 cells), and MYH9 (n=7999 cells). Each point represents a
cell with a given number of RNA. Black bar=median; gray bars=25th and 75th
quartiles.

Figure 4.16: Genome browser shots of the presence of E-box consensus motifs
and MYC ChIP-seq binding at four selected genes. Cell lines for which MYC
binding at promoters was detected were GM12878, H1-hESC, HeLa, HUVEC,
HepG2, K562, MCF7, MCF10A, and NB4. MS2 insertion location indicated in
green. Promoter-proximal region indicated in yellow.
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Figure 4.17: Left: Fluorescence image of TetON MYC-EGFP transgene stable
expression in HBEC cells induced with 10µg/mL doxycycline for 24 hours. Scale
bar = 70µm. Right: MYC western blot of HBEC parent line and TetON MYC-
EGFP stable line with 24 hours vehicle or doxycycline induction.

Figure 4.18: Schematic of smFISH experiment with MYC overexpression.
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and 1.8- fold increase in the number of active TS.

Taken together, these data agree with previous observations of MYC effects on gene

expression. Both population and single-cell methods show that the lower expressed

genes, RPAP3 and RAB7A, increase expression in response to MYC overexpression.

The more highly expressed genes, MYH9 and KPNB1, responded to MYC knock-

down but show discordant results with MYC overexpression between the two assays.

Previous studies indicated that highly expressed genes are MYC-saturated and fail

to respond to MYC overexpression [75]. However, these assays provide a mixed view

as to whether the effects are direct. They are performed at >24 hours of MYC over-

expression, potentially resulting in homeostatic compensation which would obscure

direct effects of MYC on transcription. We thus desired a more acute perturbation

of MYC activity.

A method to acutely perturb MYC in living cells. To address the need

for a more acute control of MYC activity in living cells, we engineered a photo-

inducible variant of MYC (Pi-MYC, described in Chapter 3) which allows us to

control the nuclear translocation (and hence nuclear overexpression) of MYC with

450-500nm wavelengths of light. To make sure any effects on gene expression we

observed were specifically due to MYC and not indirect effects of the light induction

method, we created, ‘Pi-mCherry’ which contains all the domains of the Pi-MYC

transgene except the MYC sequence (Figure 3.2).

4.3 Pi-MYC Overexpression on Short Timescales Re-
veals Genome-Wide Increases in Transcription ON
Time

We proceeded to use Pi-MYC to conduct simultaneous perturbation and real-time

imaging of RNA synthesis. These experiments were carried out with high-throughput
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Figure 4.19: Fraction of active TS and number of nascent RNA at TS from two
biological replicates per condition for each gene.
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Figure 4.21: Schematic of HBEC cells grown in 96-well plates for high-
throughput live-cell imaging of transcription site activity.

live-cell imaging immediately after Pi-MYC translocation to determine how MYC

affected the ON and OFF periods of transcriptional bursts. For a given MS2 cell line,

we cultured the Pi-mCherry and Pi-MYC variants in parallel for high-throughput

imaging (Figure 4.21). We chose an induction/imaging duration of 6 hours in order

to allow us to measure short timescales of effects while still capturing the OFF time

distribution. By RNA sequencing we found that RPAP3 is expressed 30-fold lower

than MYH9 (Figure 4.13), so we ultimately extended our perturbation/imaging

window to 15 hours in order to more fully capture the OFF time distribution for

this gene.

We induced Pi-MYC and Pi-mCherry nuclear translocation using the 488nm laser

we used to image the MS2-GFP channel; in this way we could use a single wave-

length of light to couple the induction/constitutive nuclear expression of the Pi-
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transgene with imaging of the downstream gene. We segmented nuclei and tracked

transcription site intensities of each MS2 labeled gene with an automated analysis

pipeline previously developed to characterize HBEC live-cell imaging data [136]. We

normalized the fluorescence intensity traces and fit each dataset to a 2-state HMM

(adapted from [66]) to threshold the ON and OFF times of the gene (Figure 4.22).

The final output of this analysis is a cumulative distribution of ON and OFF times

reflecting transcription dynamics immediately (within 100 seconds) after Pi-MYC

translocation.
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Figure 4.22: Left: Example raw data of RAB7A transcription site activity with 6
hours of Pi-mCherry or Pi-MYC overexpression. Right: Raw fluorescence intensity
traces are normalized and fit to a 2-state HMM to yield ‘ON’ and ‘OFF’ periods
of each gene.
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We found that three of four genes showed an increase in burst duration ranging from

2.4 to 21.6 minutes. For the single-cell clones, the extent of the ON time increase

was related to the expression level (Figure 4.23). The burst duration of the low-

est expressed gene RPAP3 increased from 11.5 ± 0.8 to 33.1 ± 2.3 minutes upon

Pi-MYC translocation. The highest expressed gene, MYH9, showed no detectable

change in burst duration (8.9 ± 1.1 to 9.5 ± 1.3 minutes). These results are in

agreement with the fixed-cell data measured earlier, in that the genes showing the

greatest increases in expression by RT-qPCR and smFISH at 24 hours were RPAP3

and RAB7A. Interestingly, although KPNB1 expression showed no change by RT-

qPCR and a decrease in expression by smFISH, we saw a statistically significant

increase in KPNB1 burst duration by the live-cell assay. With the exception of

RPAP3, we observed no change in the OFF periods (i.e. burst frequency) under

Pi-MYC translocation conditions. Thus, live-cell imaging with Pi-MYC shows that

the duration of transcription active periods is longer immediately after translocation

of Pi- MYC, but that this effect can be masked by downstream effects on the overall

abundance of the cellular mRNA.

Our studies on single-cell clones demonstrated the feasibility of an optogenetic real-

time approach to dissecting MYC function. We next sought to extend these ex-

periments to the MS2 polyclonal cell line which contains approximately 900 labeled

genes. Although we cannot ascertain which particular gene is being recorded in each

cell, the advantage of the polyclonal population is the ability to obtain a global-level

measurement of gene expression. When averaged together, these data represent a

unique live-cell ‘metagene’ analysis. For the polyclonal analysis, we used a 15-hour

experimental window since this cell line represents a distribution of transcription

dynamics that also includes infrequently transcribed genes. We observed a substan-

tial global increase in ON time of 20 minutes, but the OFF time was unchanged

(Figure 4.24). Thus, the average response to acute Pi-MYC translocation is an

increase in burst duration.
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Figure 4.24: Normalized CDF of transcription ON and OFF times in the MS2
polyclonal cell line (Pi-mCherry n=83 cells, Pi-MYC n=52 cells).

Finally, we summarize the live-cell imaging data of all our genes across cell type and

measurement approach as a ‘delta plot’ that indicates the change MYC overexpres-

sion had on the OFF and ON time of a gene compared to the control (Figure 4.16).

Regardless of the cell type, mode of overexpression, or the gene studied, we see that

at no point did MYC ever reduce the ON time of a gene. Intriguingly, MYC also

appears to generally increase the time between bursts (reduced burst frequency),

but this change was not statistically significant under all experimental conditions.

The relative balance of these countervailing effects – increased burst duration and

reduced burst frequency – determines the net RNA synthesis rate.

4.4 MYC Globally Affects Residence Times of Tran-
scription Factors involved in Pre-Initiation Com-
plex Formation and Pol II Pause Release

During the course of our experiments, we observed that Pi-MYC translocation ki-

netics varied across cell types. Specifically, fluorescence time-lapse imaging indi-

cated that nuclear export was slower in the non-transformed HBEC cells than ei-

ther MCF7 or U2-OS, both of which are cancer cell lines. We found that HBEC

Pi-MYC cells displayed nuclear retention even when the induction light was removed
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Figure 4.25: Summary delta plot showing the change in ON and OFF times for
all genes studied.

(Figure 4.26), unlike the U2-OS Pi-MYC cells that displayed reversible transloca-

tion (Figure 4.26). We replicated the induction experiment of Figure 3.4 with

the HBEC cell lines and found that Pi-MYC displayed different exit and entry ki-

netics compared to the Pi-mCherry control and compared to Pi-MYC expressed in

MCF7 cells (Figure 4.27). Notably, there was a decreased export rate of Pi-MYC

(0.257±0.037 min-1) compared to Pi-mCherry (0.347±0.015 min-1) in HBEC cells.

Because of the non-transformed nature of the HBEC cells and the concomitant lower

endogenous MYC levels compared to U2-OS and MCF7 cancer cells (Figure 4.28),

we hypothesized that the slower export kinetics could be due to binding of MYC to

available sites throughout the genome, possibly modulating transcription activity

across the nucleus. Consequently, if we were indeed observing Pi-MYC acting on

the genome in a global manner, this activity might be reflected in the global resi-

dence times of core transcription factors on DNA. Such a phenomenon would also

be consistent with the widespread changes we observed in burst duration in the MS2
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Figure 4.26: Example fluorescence images comparing nuclear entry and exit
between Pi-mCherry and Pi-MYC stably expressed in HBEC cells. Scale bar =
15µm.

polyclonal population (Figure 4.24).

We tested this hypothesis using single-molecule tracking of transcription factors

(TF) in the nucleus using HaloTag [76], an approach which has been previously

used to detect residence times on DNA [17, 47, 57, 98, 126]. We chose four proteins

(Figure 4.29): glucocorticoid receptor (GR), a gene-specific transcription factor;

TATA binding protein (TBP), a core component of the pre-initiation complex (PIC)

formation shown to have direct interactions with MYC [139]; mediator complex sub-

unit 1 (MED1); and elongation factor SPT5 that is recruited by MYC to initiate

RNAPII pause release and productive elongation [8].

We introduced the HaloTag constructs to the HBEC cells with electroporation

and labeled the Halo-TFs with Halo ligand conjugated to JaneliaFluor-646 dye

(Figure 4.30). We initiated quick timescale SMT measurements consisting of a 6-

minute induction period of Pi-mCherry or Pi-MYC translocation with a Halo-SMT

measurement in the last 2 minutes of the induction after translocation had visibly

occurred (GR was stimulated with dexamethasone prior to imaging (full methods
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Figure 4.27: (A) Quantification of nuclear fluorescence intensity over a one-
hour time course of HBEC Pi-mCherry or Pi-MYC cells with repeated 10-minute
periods of activating light (indicated by blue rectangles). (B) Nuclear entry and
exit rates of Pi-mCherry and Pi-MYC in the HBEC and MCF7 cell lines (3-5 cells
imaged per condition). The data is fit to a single-exponential model, with the
rate K and standard error reported in the table.
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Figure 4.28: smFISH distribution of endogenous MYC RNA per cell in HBEC
(n=125 cells), MCF7 (n=226 cells) and U2-OS (n=479 cells).

Figure 4.29: HaloTag constructs used for SMT experiments. The HaloTag is
fused to the C-terminus of GR and MED1, and the N-terminus of TBP and SPT5.
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Figure 4.30: Schematic representation of SMT experiments.

Figure 4.31: Representative images of the nuclear area of HBEC cells that stably
express Pi-mCherry or Pi-MYC (fluorescence channel not shown) and transiently
express the Halo-tag transcription factors measured with SMT. Individual proteins
are visible as puncta if they are slow diffusing/immobile, and appear as blurry
regions of the nucleus in areas where they are fast diffusing.

in section A.6). In this manner, single TFs could be observed exhibiting various

states of mobility and were tracked to determine the distribution of residence times

(Figure 4.31).

We found that Pi-MYC translocation changed the residence times of transcription

factors related to PIC assembly and pause release. We show this data as a survival

probability, which is computed from the cumulative distribution function and re-

flects the frequency of dwell time events in the time-series analysis (Figure 4.32).

We observed increased residence time of TBP and SPT5 and decreased residence

time of MED1 with Pi-MYC overexpression. We found that residence time of the

sequence-specific factor GR was not affected.
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There are multiple approaches for fitting residence time data, but we relied on two

models which have been widely used. The first is a power law model [41] which

assumes a continuous distribution of residence times, where the slope of the line in

log-log space αindicates differences in the distributions (Equation A.4). The sec-

ond method is to fit the data to a bi-exponential model [7,84,86,104], which assumes

two populations that are conventionally understood to be a non-specifically bound

population with a faster off rate k1, and a specifically-bound fraction with a slower

off rate k2 (Equation A.3, Figure 4.33). Using the Baysian Information Criterion

(BIC) calculated for each of the fits, we found that the power law model consistently

had the lowest BIC and was the better fit in all conditions (Figure 4.34).

We found that the fitting parameters reflect the statistical significance of the dif-

ferences in the raw data (Figure 4.35). Strikingly, the TBP residence time of the

specifically-bound population, interpreted as the more stable component of the bi-

exponential fit, nearly doubles after Pi-MYC translocation, increasing from 9.6 ±

1.1 to 18.6 ± 2.1s (the off rate k1 decreasing from 0.104 ± 0.011 to 0.054 ± 0.009s-1)

with only a small change in the non-specific binding. In contrast, MED1 residence

time decreases from 18.1 ± 3.3 to 6.9 ± 0.6s (k1 increasing from 0.055 ± 0.009 to

0.146 ± 0.012s-1). However, SPT5 appears to show comparable increases in the

residence times of both the specific and non-specific bound fraction after Pi-MYC

translocation. GR, which is involved in the early steps of transcription initiation

for its target genes, was not affected by Pi-MYC overexpression. Taken together,

these data suggest that MYC primarily serves to affect the mobility of transcrip-

tion factors involved later in the transcription cycle, and that global changes in the

dynamics of the core transcription machinery is observable seconds after Pi-MYC

translocation.
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Figure 4.32: Log-log plot of transcription factor residence time distribu-
tions with Pi-mCherry overexpression (GR=19 cells, TBP=28 cells, MED1=32
cells, SPT5=20 cells) or Pi-MYC overexpression (GR=13 cells, TBP=20 cells,
MED1=22 cells, SPT5=20 cells).
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Figure 4.33: Fit of residence time distributions (gray and blue scatter plots) to
the bi-exponential (orange) or power law (green) model.
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Figure 4.34: BIC values for each of the conditions fitted to a bi-exponential or
power law model.

Figure 4.35: Table of values from fitting residence time distributions to a bi-
exponential or power law model. For the bi-exponential fit, k1 corresponds to
the faster ‘non-specific’ bound fraction, and k2 corresponds to the the slower
‘specific’ bound fraction.
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Chapter 5

Conclusions

5.1 Discussion of Results

Single-cell imaging provides a window into the molecular mechanisms of gene ex-

pression. Although the MYC oncogene has been studied for many decades, an out-

standing question remains as to how MYC acts directly on transcriptional bursts —

the discrete events of gene expression — in single living cells. We view the question

of primary effects as a question of timing: that is, when MYC levels are perturbed

in the nucleus of a living cell, what happens to gene expression events immediately

afterwards?

To answer this question, we undertook a systematic survey of MYC using single-cell

imaging approaches to quantify RNA production, gene active and inactive periods,

and transcription factor residence times. Our study was based on four essential

components:

1. Live-cell imaging to obtain real-time readout of gene expression activity.

2. Optogenetic engineering to acutely control and visualize MYC overexpression

in the nucleus.

3. Surveying a broad panel of genes that represented a range of cellular function,
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basal expression level, DNA features, and cell type.

4. Measurements made with a large range of timescales (minutes to hours) to

assess the most immediate effects of MYC perturbation.

This approach allowed us to build an empirical model that relates the effects of MYC

nuclear localization to discrete quantities and rates of transcription factor binding,

gene state, and RNA production (Figure 5.1).

We find that MYC increases the active period of transcription and exerts global

changes in the dynamics of the basal transcription machinery. In breast carcinoma

cells (MCF7), MYC extended the transcriptional bursts of the estrogen responsive

gene TFF1 but only when estradiol levels were non-saturating. In immortalized

lung epithelial cells (HBEC), we again observed that MYC increased gene active

periods for a panel of genes, and that the significance of the increase corresponded

to the basal expression level of the gene: the higher the gene was expressed, the

less the active period changed. Finally, by using Pi-MYC, a photo-inducible MYC

in an MS2 polyclonal cell line, we observed that the increase in gene active period

was a global effect. This global increase in the transcription burst duration was

accompanied by an increase in the dwell time for TBP and SPT5 but a decrease in

dwell time for MED1. We thus achieved the first real-time readout of how MYC

affects the discrete events of gene expression in living human cells.
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Figure 5.1: Model of MYC mechanism of action. Rates and characteristic
timescales of transcription factor binding, gene ON/OFF state, and RNA pro-
duction are from measurements taken in the HBEC MS2 polyclonal cell line, at
low and high MYC levels.

5.1.1 Single cell perturbation and readout with Pi-MYC

We sought a form of MYC overexpression that was compatible with imaging MS2-

GFP labeled RNA, could be controlled with high spatio-temporal position, and was

potentially reversible on fast timescales. We met these design criteria with a photo-

inducible variant of MYC possessing a LOV2-caged NLS that we engineered for

acute spatial-temporal control of MYC nuclear localization. The caging mechanism

of LOV2 has previously been used to control proteins such as cyclins, kinases, and

motor proteins [90,93,137,142]. Pi-MYC exhibited nuclear translocation within min-

utes of light induction and further exhibited hallmark phenotypes of an oncogene in

growth and transformation assays. While TetON MYC-EGFP enabled stable MYC

overexpression and is visible under the microscope, the onset of overexpression with

this method takes several hours and occurs at different rates in different cells. An
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earlier form of MYC overexpression is c-MycER, where MYC is fused to the ligand

binding domain of the mouse estrogen receptor and is induced to translocate to the

nucleus with the addition of 4-hydroxytamoxifen [29, 114]. The advantage of this

method is that the MYC transgene is constitutively expressed and already present in

the cytosol. Induction stimulates MYC nuclear translocation, and it occurs within

a matter of minutes. However, c-MycER likewise relies on a chemical inducer, and

reversing MYC nuclear overexpression relies on replacement of media to washout

the chemical inducer. In contrast, Pi-MYC immediately begins to exit the nucleus

after turning off blue light. To our knowledge, our study is the first report of using

LOV2 to spatially control a human oncogenic transcription factor.

We note several caveats when working with a phototrophic domain. First, it can be

sensitive to trace amounts of light found in a normal laboratory setting. Room light

itself may cause the LOV2 domain to react and uncage the NLS, and cause trace

amounts of nuclear translocation during passaging, culture, and transport of the cell

lines. We made every effort to reduce leaky activation by covering cell culture plates,

working with the cell lines in minimal light, and keeping the samples in the dark for

1 hour prior to beginning an imaging acquisition. Second, under certain conditions

that we document here, blue light can change growth properties in tissue culture.

Although we were able to control for these effects in our biological studies, future

technical efforts will be directed toward developing tighter cages, possibly through

simultaneous caging of the NLS and re-directing to other cellular compartments as

demonstrated previously [137].

Surprisingly, we observed slower export and sustained nuclear retention of Pi-MYC

in human bronchial epithelial cells. This phenomenon was not seen for Pi-MYC in

the U2-OS and MCF7 cell lines, and mCherry export kinetics were the same across

cell lines. Given that HBEC cells express MYC at lower levels than the cancer-

derived cell lines, the nuclear retention of Pi-MYC in HBEC cells may be due to

greater avidity of MYC for chromatin: there may be more unoccupied MYC bind-
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ing sites. Thus, even though the LOV2 domain cages the NLS when the activating

light is removed, Pi-MYC may be hindered from exiting the nucleus due to multiple

interactions with DNA and nuclear proteins at sites of active transcription. This ob-

servation is reminiscent of a previous in vivo single-molecule tracking study in which

MYC exhibited non-compact ‘global’ exploration of nuclear space [53]. Regardless

of the underlying mechanism of Pi-MYC retention, these observations motivated us

to further probe MYC activity through two assays which average the behavior of

many individual genes: 1) meta-gene bursting analysis of a polyclonal population,

and 2) examination of transcription factor residence times across the nucleus.

5.1.2 MYC regulates transcriptional bursts and core transcription
machinery dynamics

Our findings from live-cell imaging across genes and cell lines show that MYC in-

creases the active period of a gene, making it unique among transcription factors

and providing clues to the mechanism of activity. Several experimental and com-

putational studies now show that gene regulation occurs predominantly through

burst frequency modulation [9, 15, 38, 40, 46, 112]. Thus, MYC plays an orthogonal

role, modulating burst duration rather than burst frequency. The robust increase

in the duration of transcriptional bursts suggested to us that MYC is acting on

transcription at the early steps of initiation and may be exerting effects through

multiple interactions with core transcription machinery. Our survey of the effects

of acute MYC translocation on transcription factor residence times with SMT sup-

ports this hypothesis, as we saw changes in the basal machinery such as TBP,

MED1, and SPT5, but not the sequence specific activator GR. MYC overexpression

caused increased residence times for TBP and decreased residence times for MED1,

suggesting stabilization of the PIC and recruitment of RNAPII while facilitating

dissociation of the Mediator complex to allow for promoter clearance. Increased

residence time of SPT5 may coincide with a greater proportion of productive elon-

gation events. There is evidence for physical interaction between MYC and each
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of these factors [8, 73, 85], but our assay reports on functional outcomes and does

not distinguish between direct and indirect mechanisms. Based on this evidence,

we predict that MYC increases in gene expression through factors that affect the

ON time (i.e. core transcription machinery) rather than factors that affect the OFF

time (i.e. pioneer transcription factors, chromatin remodelers)

An outstanding question to emerge from these studies is: How do changes in dwell

time on the order of seconds lead to changes in burst duration on the order of min-

utes? The average dwell time of GR (11.1 seconds) is similar to previous studies,

but the measured TBP dwell time (9.6 seconds) is different [104, 128]. Yet despite

this difference, the bursting timescale is still much longer. One possibility which is

hard to exclude is that SMT misses a population of extremely long-lived events. Our

SMT acquisition parameters introduce a bias in the sampling the full distribution of

residence times; our short measurement window of two minutes causes an underes-

timation of the dwell times of the highly stable population of transcription factors.

A second technical limitation is that the position of the stem loops in the target

gene can determine the resolution of bursting analysis [111]. One biological possibil-

ity is that cooperative effects on many transcription factors leads to assembly of a

more stable permissive environment for sustained transcription. In some cases, such

as the GAL locus in budding yeast, there is a clear relationship between activator

dwell time and burst duration [26]. However, a general model in metazoans has not

emerged.

In conclusion, we envision MYC as the mortar holding the bricks of active tran-

scription assembly together to more easily facilitate product transcription while the

gene is permissive for transcription. Although burst frequency is the dominant mode

of gene regulation, MYC exerts a minimal role in this function. One consequence

of MYC increasing the active period of a gene with little to no change in the long

inactive periods is an increase in gene expression heterogeneity. We speculate that

the resulting increase in gene expression heterogeneity could drive cells to populate
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pathological states and phenotypes that may ultimately make them susceptible to

cancer.

5.2 Future work

5.2.1 Pi-MYC

Applying the Pi-system to study other transcription factors. Photo-inducible

nuclear translocation with the LOV2 domain offers unprecedented spatio-temporal

control of a transcription factor within living cells. This system could readily be ap-

plied to other transcription factors to observe their direct and immediate effects on

downstream gene expression after nuclear import. We expect that each transcrip-

tion factor would be need to be evaluated and possibly modified on a case-by-case

basis. MYC has a strong NLS in exon 2, which we had to mutate in order for it

to be under control of the LOV2-caged NLS. Such modifications may be necessary

for other factors that contain nuclear import and export signals within their coding

region.

Determining the MYC functional domains responsible for gene amplifica-

tion. We have achieved an observable readout of how MYC effects gene expression

on short timescales, namely that it increases gene ON time. A follow-up study would

be to probe the domains in the MYC protein responsible for this function. Future

experiments would be to create Pi-MYC variants that are mutated in the various

functional domains, such as the DNA binding domain, the transactivation domain,

and the conserved sequences in Myc boxes I-IV. We would expect that the domains

responsible for gene expression amplification, when mutated, would result in a loss

of gene ON time increases as observed by live-cell imaging, and loss of mobility

changes in core transcription factors as observed by SMT.
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5.2.2 MS2-MYC

There is currently no MS2 live-cell imaging system to visualize the transcriptional

bursting of the endogenous c-myc gene directly. A current follow-up study is to

generate an ‘MS2-MYC’ live-cell imaging system in HBEC and U2-OS cells so that

we may directly observe the RNA synthesis of c-myc itself. Some possible questions

we seek to ask with this system are:

1. How does c-myc expression correlate with changes in nuclear architecture,

specifically with the compaction of its topologically associated domain and

association with the nuclear periphery?

2. How do transcriptional burst profiles of c-myc differ in a non-transformed cell

line (HBEC) vs. cancer derived cell line (U2-OS)?

3. Can we perturb the c-myc locus to induce the alterations normally seen in

cancer, such as the (8;14) chromosomal translocation to put MYC expression

under control of the Ig locus, or force a gene duplication, to see how the

transcriptional burst profile of MYC changes as a result?

To answer these questions, we are currently engineering the MS2 system to be

targeted to the 3’ end of the c-myc coding region using CRISPR. The integration is

delivered by a donor plasmid described in Figure 5.2, and consists of the following

domains:

� miRFP670nano [97]: A far-red fluorescent protein to serve as a proxy

for MYC protein expression levels; can be used as a selection marker in

fluorescence-activated cell sorting.

� Blasticidin: Antibiotic resistance marker.

� 24x MS2 loops: Visualization of RNA synthesis.
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Figure 5.2: Top: MYC locus on chromosome 8 indicated by the red rectan-
gle. Bottom: MS2-MYC integration design. The predicted integration contains
the fluorescent marker miRFP670nano and antibiotic selection marker blasticidin
(BSD) after the MYC exon 3 coding seqence. The markers are separated by T2A
sequences in order to be translated as separate peptides from MYC, so as not to
interfere with the function of the MYC protein. A stop codon follows the antibi-
otic marker, after which follows a 24x MS2 stem loop sequence at the begnning
of the 3’UTR. The total size of the integration sequence is 2.3kb.
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5.2.3 Halo-MYC

We seek to track MYC protein mobility with single-molecule imaging in living cells.

To achieve this, we engineered a ‘Halo-MYC’ plasmid that can be delivered into

cells by transient transfection or electroporation. Halo-MYC can be used to probe

our ‘mortar and brick’ hypothesis of how MYC binds both protein and DNA at

active sites of transcription to retain the open state of the gene and the nuclear fac-

tors involved. We can use Halo-MYC with the super-resolution imaging technique

PALM (photoactivated localization microscopy) to determine if multiple MYC pro-

teins assemble at a DNA locus and whether they appear in direct complex with

core transcription factors such as TBP, MED1, and SPT5 that have their mobility

affected by MYC overexpression.

In addition to PALM, we can perform SMT to observe Halo-MYC mobility in real

time, and use MYC mutants in various functional domains to assess what contri-

butions DNA binding or protein-protein interactions make to the MYC dwell time

distribution. We succesfully cloned Halo- wildtype MYC and a Halo-MYC NLS

deletion mutant and conducted preliminary observations with SMT on its mobility

in HBEC cells (Figure 5.3). Interestingly, preliminary movies show aggregates of

molecules with long-lived residence times in the wildtype MYC condition. As ex-

pected, the NLS deletion mutant appears not to enter the nucleus, and no puncta

are observed. Future study will be needed to follow up on these initial observations.

While much can be learned by delivering Halo-MYC plasmid transiently, the goal

in coming years would be ultimately to integrate the Halo-tag into the endogenous

locus of c-myc with CRISPR, similar to MS2-MYC, so that we can measure the

mobility of endogenous MYC protein with single-molecule imaging.

86



Figure 5.3: Halo-MYC expressed in HBEC cells. Shown are the nuclear area of
cells with Halo-tagged wildtype MYC (left) and an NLS deletion mutant (right).
Puncta of slow diffusing Halo-MYC protein is visible in the wildtype condition but
not in the case where the NLS is deleted and MYC is unable to be imported into
the nucleus.
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Appendix A

Additional Methods

A.1 Mammalian cell culture conditions

A.1.1 U2-OS human osteosarcoma cell line

U2-OS cells were cultured in DMEM with low glucose, GlutaMAX, and pyruvate

(Gibco 10567) supplemented with 1% Penicillin-Streptomycin (ThermoFisher) and

10% FBS (Sigma).

A.1.2 MCF7 human breast cancer cell line

MCF7 TFF1-MS2 GFP cells were cultured in MEM (Corning 15-010) supplemented

with 1% Pen-Strep, 10% FBS, and 2mM L-glutamine (HyClone SH30034). Pi-MYC

and Pi-mCherry stable lines were cultured the same media.

MCF7 TetON MYC-EGFP cells were cultured in MEM supplemented with 1%

Pen-Strep, 2mM L-glutamine, 10% Tetracycline-free FBS (Clontech) and 0.5 micro-

grams/mL Puromycin to maintain selection.

Saturating E2 imaging media is phenol-free MEM (Corning 17-305) supplemented

with 1x Pen-Strep, 2mM L-Glutamine, and 10% FBS. Hormone depletion media is

phenol-free MEM supplemented with 1% Pen-Strep, 2mM L-Glutamine, and char-
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coal/dextran treated FBS (HyClone). E2 (β-estradiol, Sigma) is added to this media

to achieve the desired concentration. This E2/hormone depletion media is also used

as imaging media.

A.1.3 HBEC human bronchial epithelial cell line

HBEC cells were cultured and imaged in Keratinocyte Serum-Free Media supple-

mented with bovine pituitary extract and EGF (Gibco 17005) and 1% Pen-Strep.

A.1.4 NIH3T3 mouse fibroblasts

NIH3T3 fibroblasts (ATCC CRL-1658) were cultured in DMEM (Gibco 10564) sup-

plemented with 1% pen-strep and 10% FBS.

A.1.5 Harvest cells for virus generation

HEK293T and Phoenix-AMPHO cells were cultured in DMEM with high glucose,

GlutaMAX and pyruvate (Gibco 10569), supplemented with 1% pen-strep and 10%

FBS.

A.1.6 Treatment vehicles

E2 (β-estradiol) was dissolved in 100% ethanol at a stock concentration of 1mM

and stored in aliquots at -20C. Doxycycline was dissolved in water and at a stock

concentration of 9µg/mL and stored in aliquots at -20C. HBEC and MCF7 TetON

MYC-EGFP stable lines were induced with 1µg/mL doxycycline to induce MYC

overexpression.

A.2 Transient MYC overexpression and knockdown in
MCF7 cells at saturating and 50pM estradiol

MCF7 TFF1-MS2 cells were plated in a 2-well #1.5 glass bottom chamber (Nunc

Lab-Tek 155379) in culture media and allowed to recover. The saturating E2 condi-

tion had a media change on Day 2 and changed into Saturating E2 imaging media
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along transfections of 1.5µg MYC-mCherry plasmid per well or 40nM MYC siRNA

(ThermoFisher) on Day 5. Cells were imaged at Day 6 (24 hours MYC overexpres-

sion) and Day 7 (48 hours MYC knockdown). For the 50pM E2 condition, cells were

hormone depleted with 2 washes and a replacement into hormone depletion media

on Day 2. On Day 5, cells were changed into hormone depletion media containing

50pM E2. On Day 7 the 50pM E2/hormone depletion media was replaced and cells

were transfected with MYC-mCherry plasmid or MYC siRNA and imaged after 24

hours (Day 8) or 48 hours (Day 9), respectively.

A.3 TetON MYC-EGFP Stable Expression in HBEC
cells

Frozen stock of purified pTRIPZ TetON MYC-EGFP virus was obtained from the

Levens lab and transduced with the Lenti-X system (Takara Bio USA, Inc.) as

per their protocol [91]. HBEC cells were plated in T-75 flasks in antibiotic free

media and grown to 80% confluency. A viral transduction mixture was prepared

with 100µL virus, 40µL Lenti-X beads, and 260µL 1x PBS. The viral mixture was

incubated for 30min at RT, tapping briefly every 5min to mix. The mixture was then

added dropwise to the flask of cells and placed on a Lenti-X magnetic plate for 5min

and a media exchange afterwards. The flask was then incubated on the magnetic

plate overnight at 37C. After 1 week, positive cells were enriched by induction

5µg/mL doxycycline for 24 hours to stimulate MYC-EGFP expression, and then

FACS sorted for fluorescence. Two rounds of induction and sorting were required

to fully enrich for the transduced cells. Although the pTRIPZ construct contains

a puromycin antibiotic resistance marker, we had to rely on fluorescence expression

of induced MYC-EGFP HBEC cells already contain puromycin resistance as part

of their immortalization process.
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A.4 Biochemistry

A.4.1 qRT-PCR

qRT-PCR was performed in HBEC cells to measure effects of MYC overexpression

and knockdown for 11 genes identified in [136]. RNA was purified from cell pellets

using a Quick-RNA Microprep kit (Zymo). cDNA was generated using Protoscript

II (NEB) with Random Hexamers (IDT). qPCR was performed with iQ SYBR

Green Supermix (BioRad) using primers for 10 genes CANX, DNAJC5, ERRFI1,

KPNB1, MYH9, PFN1, RAB7A, RHOA, RPAP3, SEC16A, SLC2A1, and primers

to beta-actin as a control.

A.4.2 Western blotting

Cells were resuspended in 20µL RIPA buffer per 350,000 cells (50mM TrisHCl pH

7.5, 150mM NaCl, 0.05% Tween-20, 1% sodium deoxycholate, 1 tablet Protease

Inhibitor Cocktail in H20). Lysates were incubated in RIPA on ice for 30min,

with a brief vortex every 10min. Lysates were spun at 14,000rpm at 4C for 10min

and supernatant was collected into new tubes. 4x LDS Sample Buffer (Invitro-

gen) was added to lysates and boiled for 10min at 70C. Samples were loaded onto

10-lane or 15-lane NuPAGE 4-12% Bis-Tris gel (Invitrogen) and run with Spectra

BR protein ladder (ThermoFisher Scientific). Samples were transferred to a PDVF

membrane using a Trans-Blot Turbo Transfer System (Bio-Rad). Transfer of pro-

tein bands were verified with Ponceau stain, and membrane was then blocked in

5% milk /TBST (19.98mM Tris, 136mM NaCl, pH 7.4) for 1 hour at RT. Mem-

brane was incubated with primary antibodies at 4C overnight at 1:1000 in milk

block. Primary antibodies used were Rabbit monoclonal anti-Myc Y69 (Abcam

ab32072), Rabbit polyclonal anti-mCherry (Abcam ab167453), Rabbit polyclonal

anti-GFP (Abcam ab290), Mouse monoclonal Pan-Ras (Sigma-Aldrich OP40), and

Mouse monoclonal anti-GAPDH (Ambion AM4300). The next day, membranes

were washed 3X in TBST and incubated with secondary antibodies 1:10,000 in milk

block using anti-rabbit HRP (GE Healthcare Life Sciences NA934) or anti-mouse
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HRP (GE Healthcare Life Sciences NA931V) for 1 hour at RT. The membranes were

then washed 3X with TBST and developed with ECL reagent (SuperSignal West

Dura Extended Duration Substrate, ThermoFisher Scientific).

A.5 Pi-MYC

A.5.1 Plasmid design and construction

The mCherry-NES-LOV2-NLS sequence from pTRIEX-mCherry-LOV2 plasmid (gift

from Klaus Hahn laboratory, UNC Chapel Hill, Addgene plasmid 81041) was PCR

amplified with NotI-5’ and AgeI-3’ ends. The fragment was cloned into a pd4-

MYC-EGFP plasmid where the GFP had been removed via restriction digest with

AgeI-NotI. The resulting plasmid (pd4-MYC-LOV2) was digested with SacII-AgeI

to remove the c-myc wildtype NLS and was replaced with a GeneBlock (IDT) in

which the lysine and arginine residues of the c-MYC NLS sequence were replaced

with alanine. The entire sequence was then PCR amplified with NotI-5’ and NdeI-3’

ends, with the 5’ primer starting at either MYC exon 2 (for Pi-MYC) or mCherry

(for Pi-mCherry), and the 3’ primer at the end of the NLS that follows the LOV2 se-

quence. The PCR fragments were ligated into lentiviral vectors containing ampicillin

and bleomycin resistance cassettes, resulting in the plenti-Pi-MYC and pLenti-Pi-

mCherry plasmids. All plasmids were purified with Qiagen maxiprep kit and verified

with Sanger sequencing.

Additional control plasmids were made without photo-inducible capability. pLenti-

wtMYC-mCherry (with the wildtype NLS sequence in c-myc exon 3) was cloned by

PCR amplifying and inserting the MYC-mCherry sequence from pd4-MYC-LOV2

into a lentiviral vector. The resulting plasmid was digested to remove the MYC

sequence and re-ligated with a short linker to create the pLenti-mCherry plasmid.
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A.5.2 Lentivirus generation

HEK 293T cells were plated at 162cm flasks and grown to 80% confluency. The cells

were exchanged into media with no antibiotics for 4.5 hours prior to transfection.

Cells were transfected with Fugene HD (Promega) containing a mixture of 1.5µg

each of Tat, Rev, Gag/Pol, and VsvG plasmids, and 30µg of the pLenti-Pi-Myc or

pLenti-Pi-mCherry plasmid. Cells were incubated overnight at 37C and moved to a

32C incubator the next day to facilitate more efficient virus production. 25mL su-

pernatant was harvested every 24 hours for two days and purified with the Virabind

Lentivirus Purification Kit (Cell BioLabs) in 100µL aliquots of glycerol and stored

at -80C.

A.5.3 NIH3T3 and HBEC stable lines

NIH3T3 cells with pBABE-HRasV12 retrovirus and Pi-mCherry or Pi-MYC lentivirus

to create the following cell lines for stable expression: 1) wtRAS/Pi-mCherry, 2)

wtRAS/Pi-MYC, 3) RASV12/Pi-mCherry, 4) RASV12/Pi-MYC. We generated the

RASV12 lines first; briefly, Phoenix-AMPHO harvest cells were plated at a density

of 5 million cells in 10cm plates. Cells were exchanged into media without serum or

antibiotics and transfected with 10µg DNA per plate. Plates were moved to a 32C

incubator to improve virus stability. The next day, the target cells (NIH3T3) were

plated at 350,000 cells/well in a 6-well plate to prepare for transduction. Phoenix-

AMPHO cell media containing viral supernatant was collected at 48 hours post

transfection and applied directly to target cells at a ratio of 1:1 with NIH3T3 me-

dia, and polybrene at a concentration of 5.4µg/mL. The target cell plate was spun

at 2900rpm for 2 hours at RT to facilitate efficient viral transduction and incubated

at 32C overnight. The next day, cells were expanded into a T-75 flasks and returned

to incubation at 37C. The following day, G418 antibiotic selection was applied for 7

days. After NIH3T3 wtRAS / RASV12 backgrounds were established, the cells were

plated in 6-well plates at 200,000 cells per well in 2mL media. The next day, cells

were transduced with virus solution containing 100µL glycerol aliquot of Pi-Myc or
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Pi-mCherry virus and 10µg polybrene in 2mL media per well. The plates were spun

at 2900rpm at 32C for 2 hours to facilitate efficient transduction, and then placed

into a 32C incubator overnight. Media was replaced the next day and the plates

were moved to a 37C incubator. After reaching confluency, cells were transferred to

T-75 flasks and subjected to antibiotic selection for 7 days with zeocin (Invivogen).

The same lentivirus transduction method was used for generating stable expression

of Pi-mCherry and Pi-MYC in HBEC cells.

A.5.4 NIH3T3 MYC/RAS growth assay

NIH3T3 stable lines and the parental line were plated at 20,000 cells per well for two

timepoints with biological replicates for. Cells were trypsinized and resuspended in

¡2mL media, and the total count per well was calculated with an automated cell

counter at Days 2 and 5.

A.5.5 Colony formation in soft agar

NIH3T3 cells were seeded in soft agar (Sigma A1296) at a concentration of 40,000

cells/well in 6-well plates, with three biological replicates per condition, and NIH3T3

culture media containing 20% FBS. Each well consisted of a bottom layer of 1.5mL

1% agar/media, a middle layer containing cells suspended in 1mL 0.35% agar/media,

and a top feeder layer of 1mL media. Media was added to the feeder layer twice

a week for two weeks. After two weeks, cells were stained with crystal violet and

imaged with Epson scanner (RBG color, 1200dpi) and scored for colonies. For the

light induction condition, cells were incubated in pulses of blue light (10s on/10s off)

with a 455nm collimated LED (Thorlabs M455L4-C1) for 24 hours prior seeding in

agar.

A.5.6 Photoinduction conditions

Nuclear translocation of Pi-mCherry and Pi-MYC was achieved with either a 488nm

laser to illuminate a field of view in the microscope or a 455nm collimated blue

LED to illuminate a 35mm area of a culture dish. Translocation of Pi-mCherry
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and Pi-MYC (Figures 3.3, 4.26, 4.27) were induced using a 488nm laser at 10%

power with a 150ms pulse at 10 second intervals. For the HBEC growth assay in

Figure 3.12, cells were seeded at 20,000 cells per well in two 12-well plates separated

by a barrier in a 37C 5% CO2 incubator. One plate was cultured under constant

455nm light at 50mW for two days (+λ condition). For the HBEC live-cell imaging

experiments, cells were induced with a 488nm laser at 30% power for approximately

15 seconds at 100 second intervals.

A.6 SMT

A.6.1 HaloTag labeling protocol

HBEC cells (MS2-polyclonal background) expressing Pi-mCherry or Pi-MYC were

electroporated with HaloTag plasmids at a ratio of 50,000 cells:500ng DNA:10µL

total volume with the Neon Transfection System (Invitrogen). The following elec-

troporation pulse settings were used: Voltage = 1400V, Width = 20ms, Pulses = 2.

After electroporation, cells were plated into 8-well #1.5 glass bottom chamber at a

density of 50,000 cells/well in HBEC media and were cultured for 2-3 days to allow

for recovery and expression of HaloTag plasmid.

On the day of imaging, cells were labeled with Halo ligand conjugated to JaneliaFluor-

646 (JF646) dye [44]. Cells were labeled and incubated for 15min then rinsed with

HBEC media with a 3x wash, 10-minute incubation, and a final 3x wash. For the

Halo-GR condition, cells were induced with 100nM dexamethasone to stimulate GR

nuclear translocation immediately prior to imaging.

A.6.2 Microscope setup

For SMT, we used a custom wide-field microscope capable of simultaneous imaging

in three channels that is based on designs previously described [31,89]. Briefly, three

solid-state excitation lasers at wavelengths 488, 561, and 647 nm (OBIS, Coherent

Inc., CA, USA) are combined, expanded to provide more even illumination at the
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sample, and focused at the back focal plane of a 100x, 1.49 N.A., oil immersion

objective (Olympus Scientific Solutions, MA, USA). To reduce background, HILO

illumination [131] is achieved by moving the radial position of the beam in the

objective back aperture with a movable mirror, and the thickness of the excitation

is adjusted by use of a manual diaphragm. Fluorescence emission is separated from

scattered laser light by use of a quad-band dichroic (ZT405/488/561/647, Chroma

Technology Corp., VT, USA), and the emission bands are separated by two long-

pass filters (T588lpxr, T660lpxr), and emission filters (525/50, 609/58 and 736/128,

Semrock, Inc., NY, USA) before being focused on separate EMCCD cameras (Evolve

512 Delta, Teledyne Photometrics, Tucson, AZ), with 200mm tube lenses. The

combination of objective lens and tube lens results in a total magnification of 111x,

corresponding to a XY pixel size of 144 nm. The sample is held on a motorized

XY translation stage with piezo Z (PZ-2000 XYZ, ASI Imaging, OR, USA), which

is mounted on a Rapid Automated Modular Microscope System (ASI Imaging).

All lasers and cameras are synchronized using a microcontroller board (Arduino

UNO), and images are collected using the open source microscope control software,

Micro-Manager [28].

A.6.3 Imaging

Time-lapse images were collected at intervals of 200ms, for a total of 2min (600

images). Prior to imaging, the field-of-view was exposed to 100µW of 488 nm

laser light for 4min to induce translocation of either Pi-mCherry or Pi-Myc into

the nucleus. The 488nm laser was left on during imaging of the JF646 to retain

Pi-mCherry or Pi-Myc in the nucleus (supplement movie). The JF646 dye at-

tached to the protein of interest was excited with 647nm with a laser power of

1 mW measured at the back aperture of the objective. Tracking was performed

automatically with the MATLAB-based Track Record software (freely available

at https://sourceforge.net/projects/single-molecule-tracking). Track Record links

molecule positions in two consecutive planes using a nearest-neighbor approach [84].

Molecules are considered bound if they move less than rmax = 530nm from one frame
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to the next (Ball et al., 2016) for at least Nmin = 8 frames. The value for rmax is

the distance that 99% of tagged histone H2B molecules moved in the same imaging

conditions. Assuming a moderate diffusion coefficient, Df, of 0.5 µm2/s, with our

frame interval, δt, of 200ms, The minimum number of frames, Nmin, is calculated

such that the probability, P, that a freely diffusing molecule will be classified as

bound is below 1% [84]:

P = [1− e
− r2

max
4Df∆t ]Nmin (A.1)

A.6.4 Analysis of Survival Curves

We used two different methods to analyze the residence times of the various target

proteins, both of which attempt to correct for photobleaching. The first method

relies on correcting for photobleaching separately in each experiment by fitting the

number of particles over time to a bi-exponential. The survival curve is then di-

vided by this photobleaching bi-exponential before being fit to both mono- and

bi-exponentials [84]. An F-test is performed to determine if the added parameters

in the bi-exponential provide a statistically significant improvement in the fit.

The second method requires a separate dataset where a very stable molecule, such

as the histone H2 is measured [41]. The survival curve for H2 is then fit with a

tri-exponential distribution:

Y = [A1e
−k1t +A2e

−k2t + (1−A1 −A2)e
−k3t]C (A.2)

Where the slowest decay rate k3 is assumed to be loss of fluorescence due to photo-

bleaching (as opposed to the molecule physically leaving the location), and is used

as the correction in the samples of interest. This latter method fits the data to

alternate models to the mono- and bi-exponential including a power law, and a

combination of a power law and an exponential. The Bayesian Information Crite-

rion (BIC) is calculated for each of the four fits, and the one with the lowest BIC is
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selected. The bi-exponential model is given as:

Y = [Ae−k1t + (1−A)e−k2t]C (A.3)

And the power-law model is given as:

Y = [At−α + (1−A)e−βt]C (A.4)
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Appendix B

Calculating confidence intervals
of distribution means with
bootstrapping

The 95% confidence intervals of the distribution means were calculated in R with

10,000 bootstrap replicates.
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Figure B.1: TFF1 transcription ON time (Related to Figure 4.6).

Figure B.2: TFF1 transcription OFF time (Related to Figure 4.6).
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Figure B.3: TS intensity in MS2 polyclonal line (Related to (Figure 3.11).

Figure B.4: HBEC gene RNA distribution (Related to Figure 4.20).
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Figure B.5: HBEC gene ON Time (Related to Figure 4.23).

Figure B.6: HBEC gene OFF time (Related to Figure 4.23).
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Tonelli, C., Fagà, G., Bianchi, V., Ronchi, A., Low, D., Müller,
H., Guccione, E., Campaner, S., and Amati, B. Selective transcriptional
regulation by Myc in cellular growth control and lymphomagenesis. Nature
511, 7510 (jul 2014), 488–492.

[116] Sanchez, A., Choubey, S., and Kondev, J. Stochastic models of tran-
scription: From single molecules to single cells. Methods 62, 1 (jul 2013),
13–25.

[117] Schmiedel, J. M., Klemm, S. L., Zheng, Y., Sahay, A., Bluthgen, N.,
Marks, D. S., and van Oudenaarden, A. MicroRNA control of protein
expression noise. Science 348, 6230 (apr 2015), 128–132.

[118] Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton,
A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dim-
itrova, D. S., Eskiw, C. H., Luo, Y., Wei, C.-L., Ruan, Y., Bieker,
J. J., and Fraser, P. Preferential associations between co-regulated genes
reveal a transcriptional interactome in erythroid cells. Nature Genetics 42, 1
(jan 2010), 53–61.

[119] Shaffer, S. M., Dunagin, M. C., Torborg, S. R., Torre, E. A.,
Emert, B., Krepler, C., Beqiri, M., Sproesser, K., Brafford, P. A.,
Xiao, M., Eggan, E., Anastopoulos, I. N., Vargas-Garcia, C. A.,
Singh, A., Nathanson, K. L., Herlyn, M., and Raj, A. Rare cell vari-
ability and drug-induced reprogramming as a mode of cancer drug resistance.
Nature 546, 7658 (jun 2017), 431–435.

114



[120] Shannon, C. E. A Mathematical Theory of Communication. Bell System
Technical Journal 27, 3 (jul 1948), 379–423.

[121] Sherman, M. S., Lorenz, K., Lanier, M. H., and Cohen, B. A. Cell-to-
cell variability in the propensity to transcribe explains correlated fluctuations
in gene expression. Cell systems 1, 5 (nov 2015), 315–325.

[122] So, L.-H., Ghosh, A., Zong, C., Sepúlveda, L. A., Segev, R., and
Golding, I. General properties of transcriptional time series in Escherichia
coli. Nature genetics 43, 6 (jun 2011), 554–60.

[123] Soutto, M., Peng, D. F., Katsha, A., Chen, Z., Piazuelo, M. B.,
Washington, M. K., Belkhiri, A., Correa, P., and El-Rifai, W. Ac-
tivation of β-catenin signalling by TFF1 loss promotes cell proliferation and
gastric tumorigenesis. Gut 64, 7 (jul 2015), 1028–1039.

[124] Spencer, C. A., and Groudine, M. Control of c-myc regulation in normal
and neoplastic cells. Advances in Cancer Research 56 (jan 1991), 1–48.

[125] Suter, D. M., Molina, N., Gatfield, D., Schneider, K., Schibler,
U., and Naef, F. Mammalian Genes Are Transcribed with Widely Different
Bursting Kinetics. Science 332, 6028 (apr 2011), 472–474.

[126] Swinstead, E. E., Miranda, T. B., Paakinaho, V., Baek, S., Gold-
stein, I., Hawkins, M., Karpova, T. S., Ball, D., Mazza, D., Lavis,
L. D., Grimm, J. B., Morisaki, T., Grøntved, L., Presman, D. M.,
and Hager, G. L. Steroid Receptors Reprogram FoxA1 Occupancy through
Dynamic Chromatin Transitions. Cell 165, 3 (apr 2016), 593–605.

[127] Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu,
N., Wang, X., Bodeau, J., Tuch, B. B., Siddiqui, A., Lao, K., and
Surani, M. A. mRNA-Seq whole-transcriptome analysis of a single cell.
Nature Methods 6, 5 (may 2009), 377–382.

[128] Teves, S. S., An, L., Bhargava-Shah, A., Xie, L., Darzacq, X., and
Tjian, R. A stable mode of bookmarking by TBP recruits RNA polymerase
II to mitotic chromosomes. eLife 7 (jun 2018).

[129] Thompson, R. E., Larson, D. R., and Webb, W. W. Precise nanometer
localization analysis for individual fluorescent probes. Biophysical Journal 82,
5 (2002), 2775–2783.
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