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Recent advances in computer vision tasks have been driven by high-capacity

deep neural networks, particularly Convolutional Neural Networks (CNNs) with

hundreds of layers trained in a supervised manner. However, this poses two signifi-

cant challenges: (1) the increased depth in CNNs that leads to significant improve-

ments over competitive benchmarks at the same time, limits their deployment in

real-world scenarios due to high computational cost, (2) the need to collect millions

of human labeled samples for training prevents such approaches to scale, especially

for fine-grained image understanding like semantic segmentation, where dense an-

notations are extremely expensive to obtain. To mitigate these issues, we focus on

image and video understanding with constrained resources, in the forms of compu-

tational resources and annotation resources. In particular, we present approaches

that (1) investigate dynamic computation frameworks which adaptively allocate

computing resources on-the-fly given a novel image/video to manage the trade-off

between accuracy and computational complexity; (2) derive robust representations



with minimal human supervision through exploring context relationships or using

shared information across domains.

With this in mind, we first introduce BlockDrop, a conditional computation

approach that learns to dynamically choose which layers of a deep network to execute

during inference so as to best reduce total computation without degrading prediction

accuracy. Next, we generalize the idea of conditional computation of images to

videos by presenting AdaFrame, a framework that adaptively selects relevant frames

on a per-input basis for fast video recognition. AdaFrame assumes access to all

frames in videos, and hence can be only used in offline settings. To mitigate this

issue, we introduce LiteEval, a simple yet effective coarse-to-fine framework for

resource efficient video recognition, suitable for both online and offline scenarios.

To derive robust feature representations with limited annotation resources,

we first explore the power of spatial context as a supervisory signal for learning

visual representations. In addition, we also propose to learn from synthetic data

rendered by modern computer graphics tools, where ground-truth labels are readily

available. We propose Dual Channel-wise Alignment Networks (DCAN), a simple

yet effective approach to reduce domain shift at both pixel-level and feature-level,

for unsupervised scene adaptation.
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Chapter 1: Introduction

The exponential growth of visual media, in the forms of images and videos,

is astounding: hundreds of millions of new images are being indexed by TinEye

every month 1 and a million minutes of video content will cross the network by 2021

estimated by Cisco 2. Such growth demands systems that can perform automated

understanding of visual data both effectively and efficiently. For example, online

shopping websites need to automatically organize product images in order to pro-

vide recommendation services; automatic analysis of high-level semantics in videos

like actions and events can facilitate web video search and management; real-time

recognition of objects in complicated environments like pedestrians and obstacles

is crucial in delay-sensitive applications such as autonomous driving and robotic

navigation. Although significant progress has been made in recent years, algorithms

developed so far still fail to generalize to real-world applications.

Recent advances in computer vision tasks like image recognition and object

detection have been driven by high-capacity deep neural networks, particularly Con-

volutional Neural Networks (CNNs) with hundreds of layers, trained in a supervised

manner requiring clean and massive human annotations. This poses two significant

1https://www.tineye.com/faq#count
2https://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/complete-white-paper-c11-481360.html

1

https://www.tineye.com/faq#count
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html


challenges: The increased depth in CNNs that leads to significant improvements over

competitive benchmarks at the same time, limits their deployment in real-world sce-

narios due to high computational cost, especially for applications on mobile devices

and delay-sensitive systems, where inputs need to be processed in real-time as they

arrive. In addition, the need to collect millions of human labeled samples for training

prevents such approaches to scale, especially for fine-grained image understanding

tasks. For example, consider semantic segmentation—the task of assigning a class

label to each pixel in an image—a critical component in autonomous driving for

pedestrian, road and car detection. Existing approaches require samples with vari-

ations in lighting, seasons and camera poses, and their corresponding pixel-level

annotations as labels to train a robust model. This becomes extremely expensive

and unwieldy at scale when generalizing to a new application.

To address these issues, we present approaches for image and video under-

standing with constrained resources, in the forms of computational resources and

annotation resources. In particular, we introduce methods that focus on: (1) in-

vestigating dynamic computation frameworks that manage the trade-off between

accuracy and computational complexity; (2) deriving robust representations with

minimal human supervision through exploring context relationships and reusing

shared information across environments.

More specifically, deep neural networks have become ubiquitous in computer

vision, and the ability to do faster inference has emerged as a highly desirable char-

acteristic, particularly in real-time scenarios, such as applications on mobile devices,

robotic navigation, etc. The rising need has motivated a plethora of work to study

2



the acceleration of CNN models. Most methods focus on reducing the parameters

of pre-trained models with model compression. However, these approaches though

effective will result in a set of fixed parameters (pruned or binarized) for all images.

It is worth noting that human perception system is capable of adaptively allocating

time for visual recognition. For example, a single glimpse is usually sufficient to

recognize most objects and scenes while more time and attention will be used to

clearly understand objects with occlusion or complicated scenes. Therefore, it makes

intuitive sense that computational resources should adaptively vary with inputs.

In the first part, we introduce BlockDrop, an approach for faster inference

in residual networks (ResNet) by selectively choosing residual blocks to evaluate in

a learned and optimized manner conditioned on input images. In particular, we

trained a policy network to predict blocks to drop in a pretrained ResNet while

trying to retain the prediction accuracy. The ResNet is further jointly finetuned to

produce smooth feature representations tailored for block dropping behavior. Built

upon a ResNet-101 model, our method achieves a speedup of 20% on average, going

as high as 36% for some images, while maintaining the same 76.4% top-1 accuracy on

ImageNet. Further, learned BlockDrop policies for easy images with clearly visible

objects utilize fewer residual blocks compared to the difficult images that contain

other occluding or background objects.

We then generalize the idea of computational computation from images to

videos by presenting AdaFrame, which adaptively observes relevant frames on a

per-input basis for fast video recognition. It leverages a global memory to assist

a Long Short-Term Memory network to provide context information to determine

3



relevant frames. AdaFrame is optmized with policy gradient methods, and at each

time step it produces a prediction, jumps to a frame it considers informative to ob-

serve, and generates the utility, i.e., expected future rewards, of seeing more frames.

During testing, AdaFrame uses predicted utilities to achieve adaptive lookahead in-

ference such that the overall computational costs are reduced without incurring a

decrease in accuracy. Extensive experiments are conducted on two large-scale video

benchmarks, FCVID and AvtivityNet. AdaFrame matches the performance of using

all frames with only 8.21 and 8.65 frames on FCVID and AvtivityNet, respectively.

We further qualitatively demonstrate learned frame usage can indicate the difficulty

of making classification decisions; easier samples need fewer frames while harder

ones require more, both at instance-level within the same class and at class-level

among different categories.

Since AdaFrame searches through the entire video, it assumes access to the

whole video beforehand, preventing the method to be used in online settings. To ad-

dress this issue, we present LiteEval, a coarse-to-fine framework for both online and

offline scenarios, with an aim to achieve resource efficient video recognition. More

specifically, LiteEval operates on decent yet computationally efficient features by

default, and it dynamically determines whether to compute better yet computation-

ally expensive features for incoming video frames with a fully differentiable gating

module. Extensive experiments are conducted on two large-scale video benchmarks,

FCVID and ActivityNet, and the results demonstrate LiteEval requires substantially

less computation while offering excellent classification accuracy for both online and

offline predictions.

4



It worth noting that one of main limitation of current fully supervised training

mechanism, although widely adopted, for deep neural networks is its dependence

on manually labeled ground truth annotations. Thus, the ability to scale such

approaches up to thousands if not tens of thousands of categories, containing millions

or billions of samples, is limited due to insurmountable annotation efforts. We

tackle this problem from two aspects: learning feature representations with weak

supervision; unsupervised domain adaptation using synthetic data.

To reduce the need of using manual annotation, we use spatial context in

images as a supervisory signal to learn visual representations. In particular, we

introduce a spatial context network by training it to predict a feature representation

of one image patch from another image patch, within the same image, conditioned on

their real-valued relative spatial offset. In other words, given the same input patch

and different spatial offsets it learns to predict different contextual representations

(e.g., given a patch depicting a side-view of a car and a horizontal offset, the network

may output a patch representation of another car; however, the same input patch

with a vertical offset may result in a patch representation of a plane). Once the

SCN is optimized, we plug them as backbone networks for different tasks. We build

our spatial context networks on top of standard pre-trained deep architectures and,

among other things, show that we can achieve improvements (with no additional

explicit supervision) over the original models in object categorization and detection

on VOC2007.

Furthermore, another alternative to mitigating the need for manual annota-

tions is to learn from synthetic data rendered by modern computer graphics tools
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(e.g., video game engines), where ground-truth labels are readily available. How-

ever, models trained on synthetic data usually suffer from poor generalization when

exposed to novel realistic samples. Learning a discriminative model that reduces

the disparity between training and testing distributions is typically known as do-

main adaptation; a more challenging setting is unsupervised domain adaptation

that aims to bridge the gap without accessing labels of the testing domain during

training. Much recent and concurrent work relies on adversarial training to align

feature distributions, which is known to be difficult for optimization. We propose

Dual Channel-wise Alignment Networks (DCAN), a lightweight framework to reduce

domain shift for unsupervised scene adaptation. DCAN performs channel-wise fea-

ture alignment in both the image generator for synthesizing photo-realistic samples,

appearing as if drawn from the target set, and the segmentation network, which

simultaneously normalizes feature maps of source images. We conduct extensive

experiments by transferring models learned on synthetic segmentation datasets to

real urban scenes, and demonstrate the effectiveness of DCAN over state-of-the-art

methods and its compatibility with modern segmentation networks.

Finally, we discuss several future directions as the continuation of thesis re-

search.
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Chapter 2: BlockDrop: Dynamic Inference Paths in Residual

Networks

2.1 Introduction

Deep neural networks are now ubiquitous in computer vision owing to their

recent successes in several important tasks. However, great strides in accuracy have

been accompanied by increasingly complex and deep network architectures. This

presents a problem for domains where fast inference is essential, particularly in delay-

sensitive and real-time scenarios such as autonomous driving, robotic navigation, or

user-interactive applications on mobile devices.

Most existing work pursues model compression techniques to speed up a deep

network [5, 6, 7, 8, 9, 10, 11, 12, 13]. While significant speed-ups are possible,

the approach yields a one-size-fits-all network that requires the same fixed set of

features to be extracted for all novel images, no matter their complexity. In contrast,

an important feature of the human perception system is its ability to adaptively

allocate time and scrutiny for visual recognition [14]. For example, a single glimpse

is sufficient to recognize some objects and scenes, whereas more time and attention

is required to clearly understand occluded or complicated ones [15].
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Figure 2.1: A conceptual overview of BlockDrop. Rather than execute all
blocks of a ResNet, our approach learns a policy to select the minimal configuration
of blocks that is needed to correctly classify a given input image. The resulting
instance-specific paths in the network not only reflect the image’s difficulty (easier
samples use fewer blocks) but also encode meaningful visual information (patterns
of blocks correspond to clusters of visual features).

In this spirit, we explore the problem of dynamically allocating computation

across a deep network. In particular, we consider Residual Networks (ResNet) [16]

both due to their strong track record for recognition tasks [16, 17, 18] as well as

their tolerance to removal of layers [19]. ResNets are composed of residual blocks,

consisting of two or more convolutional layers and skip-connections, which enable

direct paths between any two residual blocks.

These skip-connections make ResNets behave like ensembles of relatively shal-

low networks, and hence the removal of a certain residual block generally has only

a modest impact on performance [19]. However, the preliminary study of block

dropping in ResNets [19] applies a global, manually defined dropping scheme (the
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same blocks for all images), which leads to increased errors when more blocks are

dropped.

We propose to learn optimal block dropping strategies that simultaneously

preserve both prediction accuracy and minimal block usage based on image-specific

decisions. When a novel input is presented to the network trained for recognition,

a dynamic inference path is followed, selectively choosing which blocks to compute

for that instance. See Figure 2.1. The approach not only improves computational

efficiency during inference (i.e., for a similar prediction accuracy, being able to

drop more residual blocks than a static global scheme), but also facilitates further

insights into ResNets, e.g., whether different blocks encode information about ob-

jects, whether the computation needed to classify depends on the difficulty level of

the example.

To this end, we introduce BlockDrop, a reinforcement learning approach to de-

rive instance-specific inference paths in ResNets. The main idea is to learn a model

(referred to as the policy network) that, given a novel input image, outputs the

posterior probabilities of all the binary decisions for dropping or keeping each block

in a pretrained ResNet. The policy network is trained using curriculum learning to

maximize a reward that incentivizes the use of as few blocks as possible while pre-

serving the prediction accuracy. In addition, the pretrained ResNet is further jointly

finetuned with the policy network to produce feature transformations tailored for

block dropping behavior. Our approach can be seen as an instantiation of associa-

tive reinforcement learning [20] where all the decisions are taken in a single step
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given the context (i.e., the input instance)1; this makes policy execution lightweight

and scalable to very deep networks.

We conduct extensive experiments on CIFAR [22] and ImageNet [23]. Block-

Drop achieves 93.6% and 73.7% accuracy using just 33% and 55% of blocks in a

pretrained ResNet-110 on CIFAR-10 and CIFAR-100, respectively, outperforming

state-of-the-art methods [10, 24, 25, 26] by clear margins. Furthermore, BlockDrop

speeds up a ResNet-101 model on ImageNet by 20% while maintaining the same

76.4% top-1 accuracy 2. Qualitatively, we observe that the dropping policies learned

with BlockDrop are correlated with the visual patterns in the images, e.g., within

the “orange” class, images containing a pile of oranges take an inference path that

is different from that taken by the close-up images of oranges. Furthermore, Block-

Drop policies for easy images with clearly visible objects utilize fewer residual blocks

compared to the difficult images that contain other occluding or background objects.

Note that although our analysis in this chapter is focused on vanilla ResNets, our

approach could also be applied to other recently proposed ResNet variants such as

ResNeXt [27] or Multi-Residual Networks [28], as well as other tasks beyond image

classification.

2.2 Related Work

Layer Dropping in Residual Networks. Dropping layers in residual networks

has been used as a regularization mechanism, similar to Dropout [29] or DropCon-

1It can also be seen as contextual bandits [21] although we do not operate in an online setting
which has an objective of minimizing the regret.

2https://goo.gl/EwHQcq
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nect [30], for training very deep networks (e.g.., over 1000 layers) with stochastic

depth [31]. Unlike our method, residual layer dropping in stochastic depth net-

works happens only during the training stage, but at test time the layers remain

fixed. Veit et al. [19] show that ResNets are resilient to layer dropping at test time,

which motivates our approach; however, they do not provide a way to dynamically

choose which layers could be removed from a network without sacrificing accuracy.

More recently, Huang and Wang [32] propose a method for selecting a subset of

residual blocks to be executed based on a sparsity constraint. In contrast to these

approaches, we propose an instance-specific residual block removal scheme to speed

up ResNets during inference.

Model Compression. The need to deploy top-performing deep neural network

models on mobile devices motivates techniques that can effectively reduce the storage

and computational costs of such networks, including knowledge distillation [5, 6,

33], low-rank factorization [7, 8, 34], filter pruning [9, 10, 35, 36], quantization

[11, 12, 13], compression with structured matrices [37, 38], network binarization

[39, 40, 41], and hashing [42]. Efficient network architectures such as SqueezeNet [43]

and MobileNet [44] have also been explored for training compact deep nets. In

contrast to this line of work where the same amount of computation is applied to all

images, we focus on efficient inference by dynamically choosing a subset of blocks

to be executed conditioned on the input image. More importantly, our method is

complementary to these model compression techniques: the residual blocks that are

kept for evaluation can be further pruned for even greater speed up.
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Conditional Computation. Several conditional computation methods have been

proposed to dynamically execute different modules of a network model on a per-

example basis [45, 46]. Sparse activations in combination with gating functions are

usually adopted to selectively turn on and off a subset of modules based on the input.

These gating functions can be learned with reinforcement learning [46, 47, 48]. These

models typically associate a reward with a series of decisions computed after each

layer/path; the resulting policy execution overhead makes it expensive to scale them

up to very deep models with hundreds or thousands of layers. In contrast, our policy

network makes all routing decisions in a single step, resulting in lower overhead

cost for the routing itself and thus larger computational savings. Reinforcement

learning has also been applied for dynamic feature prioritization in images [49] and

video [1, 50], actively deciding which frames or image regions to visit next. These

techniques could be used in tandem with our approach.

Early Prediction. Early prediction models, are a class of conditional computation

models that exit once a criterion (e.g., sufficient confidence for classification) is sat-

isfied at early layers. Cascade detectors [51, 52] are among the earliest methods that

exploit this idea in computer vision, often relying on handcrafted control decisions

learned separately from visual features. More recently, joint learning of features

and early decisions has been studied for deep neural networks. Teerapittayanon et

al. [53] propose BranchyNet, a network composed of branches at each layer to make

early classification decisions. Similarly, Adaptive Computation Time (ACT) [25]

augments an RNN with a halting unit whose activation determines the probability

that computation should continue.
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Figurnov et al. [24] further extend this idea to the spatial domain in ResNets

by applying ACT to each spatial position of multiple image blocks. Like our work,

their formulation identifies instance-specific ResNet configurations, but it only allows

configurations that use early, contiguous blocks in each predefined segment of the

ResNet. These early blocks usually encode low-level features in high-dimensional

feature maps, and may lack the discriminative power required for the task. This

issue can be mitigated by using images at different scales [54, 55], but at a higher

computational cost. Instead, we allow any block to contribute to our network,

allowing for a much higher variability in potential ResNet configurations and policies.

2.3 Approach

Given a test image, our goal is to find the best configuration of computational

blocks in a pretrained ResNet model, such that a minimum number of blocks is

used, without incurring a decrease in classification accuracy. Treating the task

of finding this configuration as a search problem quickly becomes intractable for

deeper models as the number of potential configurations grows exponentially with

the number of blocks. Learning a soft-attention mask over the blocks also presents

problems, namely the difficulty of converting this mask into binary decisions which

would require carefully handcrafted thresholds. In addition, such a thresholding

operation is non-differentiable, making it non-trivial to directly adopt a supervised

learning framework.
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We therefore leverage policy search methods from reinforcement learning to

derive the optimal block dropping schemes that encourage correct predictions with

minimal block usage. To this end, we first revisit the architecture of ResNet in

Sec. 2.3.1, and discuss why it is a good fit for block dropping. Then we introduce

our policy network in Sec. 2.3.2, which learns to dynamically select inference paths

conditioned on the input image. Finally, we present the training algorithm of our

model in Sec. 2.3.3.

2.3.1 Pretrained Residual Networks

ResNets consist of multiple stacked residual blocks which are essentially regular

convolutional layers that are bypassed by identity skip-connections. If we denote

the input to the i-th residual block as yi, and the function represented by its residual

block as Fi, the output of this residual block is given by: yi+1 = Fi(yi) + yi, which

is directly fed as input to the next residual block.

The presence of identity skip-connections induces direct paths between any two

residual blocks, and hence top layers in the network are able to access information

from bottom layers during a forward pass while gradients can be directly passed

from higher layers to lower layers in the back-propagation phase. Veit et al. [19]

demonstrated that removing (or dropping) a residual block at test time (i.e., having

yi+1 = yi) does not lead to a significant accuracy drop. This behavior is due to

the fact that ResNets can be viewed as an ensemble of many paths—as opposed to
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single-path models like AlexNet [56] and VGGNet [57]—and so information can be

preserved even with the deletion of paths.

The results in [19] suggest that different blocks do not share strong depen-

dencies. However, the study also shows classification errors do increase when more

blocks are removed from the model during inference. We contend this is the result of

their adopting a global dropping strategy for all images. We posit the best dropping

schemes, which lead to correct predictions with the minimal number of blocks, must

be instance-specific.

2.3.2 Policy Network for Dynamic Inference Paths

The configurations in the context of ResNets represent decisions to keep/drop

each block, where each decision to drop a block corresponds to removing a subset

of paths from the network. We refer to these decisions as our dropping strategy. To

derive the optimal dropping strategy given an input instance, we develop a policy

network to output a binary policy vector, representing the actions to keep or drop a

block in a pretrained ResNet. During training, a reward is given considering both

block usage and prediction accuracy, which is generated by running the ResNet with

only active blocks in the policy vector. See Figure 6.2 for an overview.

Unlike standard reinforcement learning, we train the policy to predict all ac-

tions at once. This is essentially a single-step Markov Decision Process (MDP) given

the input state and can also be viewed as contextual bandit [21] or associative re-
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inforcement learning [20]. We examine the positive impact of this design choice on

scalability in Sec. 2.4.2.

Formally, given an image x and a pretrained ResNet with K residual blocks, we

define a policy of block-dropping behavior as a K-dimensional Bernoulli distribution:

πW(u|x) =
K∏
k=1

suk
k (1− sk)

1−uk (2.1)

s = fpn(x; W), (2.2)

where fpn denotes the policy network parameterized by weights W and s is the

output of the network after the σ(x)= 1
1+e−x function. We choose the architecture of

fpn (details below in Sec. 2.4) such that the cost of running it is negligible compared

to ResNet, i.e., so that policy execution overhead remains low. The k-th entry of

the vector, sk ∈ [0, 1], represents the likelihood of its corresponding residual block

in the original ResNet being dropped. An action u ∈ {0, 1}K is selected based on

s. Here, uk = 0 and uk = 1 indicate dropping and keeping the k-th residual block,

respectively.

Only the blocks that are not dropped according to u will be evaluated in the

forward pass. To encourage both correct predictions as well as minimal block usage,

we associate the actions taken with the following reward function:
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R(u) =


1− ( |u|0

K
)2 if correct

−γ otherwise.

(2.3)

Here, ( |u|0
K

)2 measures the percentage of blocks utilized; when a correct prediction

is produced, we incentivize block dropping by giving a larger reward to a policy

that uses fewer blocks. We penalize incorrect predictions with γ, which controls the

trade-off between efficiency (block usage) and accuracy (i.e., a larger value leads to

more correct, but less efficient policies). We use this parameter to vary the operating

point of our model, allowing different models to be trained depending on the target

budget constraint. Finally, to learn the optimal parameters of the policy network,

we maximize the following expected reward:

J = Eu∼πW [R(u)]. (2.4)

In summary, our model works as follows: fpn is used to decide which blocks

of the ResNet to keep conditioned on the input image, a prediction is generated by

running a forward pass with the ResNet using only these blocks, and a reward is

observed based on correctness and efficiency.
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2.3.3 Training the BlockDrop Policy

Expected gradient. To maximize Eqn. 2.4, we utilize policy gradient [20], one of

the seminal policy search methods [58], to compute the gradients of J . In contrast

to typical reinforcement learning methods where policies are sampled from a multi-

nomial distribution [20], our policies are generated from a K-dimensional Bernoulli

distribution. With uk ∈ {0, 1}, the gradients can be derived similarly as:

∇WJ = E[R(u)∇Wlog πW(u|x)]

= E[R(u)∇Wlog
K∏
k=1

suk
k (1− sk)

1−uk ]

= E[R(u)∇W

K∑
k=1

log[skuk + (1− sk)(1− uk)]], (2.5)

where again W denotes the parameters of the policy network. We approximate the

expected gradient in Eqn. 2.5 with Monte-Carlo sampling using all samples in a

mini-batch. These gradient estimates are unbiased, but exhibit high variance [20].

To reduce variance, we utilize a self-critical baseline R(ũ) as in [59] , and rewrite

Eqn. 2.5 as:

∇WJ = E[A∇W

K∑
k=1

log[skuk + (1− sk)(1− uk)]], (2.6)

where A = R(u) − R(ũ) and ũ is defined as the maximally probable configuration

under the current policy, s: i.e., ui = 1 if si > 0.5, and ui = 0 otherwise [59].
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We further encourage exploration by introducing a parameter α to bound the

distribution s and prevent it from saturating, by creating a modified distribution s′:

s′ = α · s + (1− α) · (1− s).

This bounds the distribution in the range 1 − α ≤ s′ ≤ α, from which we then

sample the policy vector.

Curriculum learning. Policy gradient methods are typically extremely sensitive

to their initialization. Indeed, we found that starting from a randomly initialized

policy and optimizing for both accuracy and block usage is not effective, due the

extremely large dimension of the search space, which scales exponentially with the

total number of blocks (there are 2K possible on/off configurations of the blocks).

Note that in contrast with applications such as image captioning where ground-truth

action sequences (captions) can be used to train an initial policy [59], here no such

“expert examples” are available, other than the standard single execution path that

executes all blocks.

Therefore, to efficiently search for good action sequences, we take inspiration

from the idea of curriculum learning [45]. During epoch t, for 1 ≤ t < K, we keep

the first K− t blocks on, and learn a policy only for the last t blocks. As t increases,

the activity of more blocks are optimized, until finally all blocks are included (i.e.,

when t ≥ K). Using this approach, the activation of each block is first optimized

according to unmodified input features in order to assess the utility of the block, and

then is gradually exposed to increasingly different feature inputs as t increases and
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the policy for the last t blocks is jointly trained. This procedure is efficient, and it

is effective at identifying and removing blocks that are redundant for the input data

instance being considered. It is similar in spirit to [59, 60] that gradually exposes

sequences when training with REINFORCE for text generation.

Joint finetuning. After curriculum learning, our policy network is able to identify

which residual blocks in the original ResNet to drop for a given input image. Though

the policy network is trained to preserve accuracy as much as possible, removing

blocks from the pre-trained ResNet will inevitably result in a mismatch between

training and testing conditions. We therefore jointly finetune the ResNet with the

policy network, so that it can adapt itself to the learned block dropping behavior.

The principle of our joint training procedure is similar to that of stochastic depth

[31], with the exception that the drop rates are not fixed, but are instead controlled

by the policy network. Alg. 1 presents the complete training procedure for our

framework.

2.4 Experiments

2.4.1 Experimental Setup

Datasets and evaluation metrics. We evaluate our method on three benchmarks:

CIFAR-10, CIFAR-100 [22], and ImageNet (ILSVRC2012) [23]. The CIFAR

datasets consist of 60,000 32×32 colored images, with 50,000 images for training and

10,000 for testing. They are labeled for 10 and 100 classes for CIFAR-10 and CIFAR-

100, respectively. Performance is measured by classification accuracy. ImageNet
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Algorithm 1 The pseudo-code for training our network.
Input: An input image x and its label
1: Initialize the weights of policy network W randomly
2: Set epochs for curriculum learning and joint finetuning to M cl and Mft, respectively;

and set α
3: for t← 1 to M cl do
4: s ← fpn(x;W)
5: s ← α · s + (1− α) · (1− s)
6: if t < K then
7: set s [1:K − t] = 1 . curriculum training
8: end if
9: u ∼ Bernoulli(s)

10: Execute the ResNet according to u
11: Evaluate reward R(u) with Eqn. 3.3
12: Back-propagate gradients computed with Eqn. 2.6
13: end for
14: for t← 1 to Mft do
15: Jointly finetune ResNet and policy network
16: end for

CIFAR-10 CIFAR-100

Acc K Acc (ft) K (ft) Acc K Acc (ft) K (ft)

R
es

N
et

-3
2

FirstK 16.6 10 84.3 7 23.3 13 66.5 14
RandomK 20.5 10 88.9 7 38.3 13 67.6 14

DistributeK 23.4 10 90.2 7 31.9 13 66.7 14
Ours 88.6 9.4 91.3 6.9 58.3 12.4 68.7 13.1

Full ResNet 92.3 15 92.3 15 69.3 15 69.3 15

R
es

N
et

-1
10

FirstK 13.3 21 71.3 17 63.5 50 57.9 31
RandomK 14.5 21 90.1 17 66.3 50 68.4 31

DistributeK 13.0 21 92.7 17 49.6 50 69.9 31
Ours 75.4 20.1 93.6 16.9 72.1 49.1 73.7 30.2

Full ResNet 93.2 54 93.2 54 72.2 54 72.2 54

Table 2.1: Accuracy and block usage with our policies vs. heuristic base-
lines, with and without jointly finetuning (ft) for all methods. For fair comparisons,
K is selected based on the average block usage of our method, and this can be dif-
ferent before and after finetuning. Note that the average value of K for our method
is reported here for brevity. It is determined dynamically per image, and can be as
low as 3 (out of 54) in ResNet-110 on CIFAR-10.

contains 1.2M training images labeled for 1,000 categories. We test on the validation

set of 50,000 images and report top-1 accuracy.
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Pretrained ResNet. For CIFAR-10 and CIFAR-100, we experiment with two

ResNet models that achieve promising results. In particular, ResNet-32 and ResNet-

110 start with a convolutional layer followed by 15 and 54 residual blocks, respec-

tively. These residual blocks, each of which contains two convolutional layers, are

evenly distributed into 3 segments with down-sampling layers in between. Finally,

a fully-connected layer with 10/100 neurons is applied. See [16] for details. For Im-

ageNet, we adopt ResNet-101 with a total of 33 residual blocks, organized into four

segments (i.e., [3, 4, 20, 3]). Here, each residual block contains three convolutional

layers based on the bottleneck design [16] for computational efficiency. These models

are pretrained to match state-of-the-art performance on the corresponding datasets

when run without our policy network.

Policy network architecture. For our policy network, we use ResNets with a

fraction of the depth of the base model. For CIFAR, we use a ResNet with 3 blocks

(equivalently ResNet-8), while for ImageNet, we use a ResNet with 4 blocks (equiv-

alently ResNet-10). In addition, we downsample images to 112×112 as the input

of the policy network for ImageNet experiments. The computation required for the

policy network is 4.8% and 3.0% of the total ResNet computation for the CIFAR

(ResNet-110) and ImageNet (ResNet-101) models respectively, making policy com-

putations negligible (it takes about 0.5 ms per image on average for ImageNet).

While a recurrent model (e.g., LSTM) could also serve as the policy network, we

found a CNN to be more efficient with similar performance.
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Implementations details. We adopt PyTorch for implementation and utilize

ADAM as the optimizer. We set α to 0.8, learning rate to 1e− 4, and use a batch

size of 2048 during curriculum learning. For joint finetuning, we adjust the batch

size to 256 and 320 on CIFAR and ImageNet, respectively, and adjust the learning

rate to 1e− 5 for ImageNet. Our code is available at https://goo.gl/NqyNeN.

2.4.2 Quantitative Results

Learned policies v.s. heuristics. We compare our block dropping strategy to the

following alternative methods: (1) FirstK, which keeps only the first K residual

blocks active; (2) RandomK, which keeps K randomly selected residual blocks ac-

tive; (3) DistributeK, which evenly distributes K blocks across all segments. For

all baselines, we choose K to match the average number of blocks used by Block-

Drop, rounding up as needed. DistributeK allows us to see if feature combinations

of different blocks learned by BlockDrop are better than features learned from the

restricted set of early blocks of each segment. This setting resembles the allowable

feature combinations from early stopping models applied to ResNets.

The results in Table 2.1 highlight the advantage of our instance-specific policy.

On CIFAR-10, the learned policies give an accuracy of 88.6% and 75.4% using an av-

erage of 9.4 and 20.1 blocks from the original ResNet-32 and ResNet-110 respectively,

outperforming the baselines by a large margin. Furthermore, the instance-specific

nature of our method allows us to capture the inherent variance in the computa-

tional requirements of our dataset. We notice a wide distribution in block usage
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depending on the image. With ResNet-110, nearly 15% of the images use fewer

than 10 blocks, with some images using as few as 3 blocks. This variance cannot be

captured by any static policies. Similar trends are observed on CIFAR-100. This

confirms that dropping residual blocks with policies computed in a learned man-

ner is indeed significantly better than heuristic dropping behaviors. The fact that

RandomK performs better than FirstK is interesting, suggesting the value of hav-

ing residual blocks at different segments to learn feature representations at different

scales.

Impact of joint finetuning. Next we analyze the impact of joint finetuning

(cf. Sec. 2.3.3) for both our approach and the baselines, denoted ft in Table 2.1.

Joint finetuning further significantly improves classification accuracy using

fewer (or almost the same) number of blocks. In particular, on CIFAR-10, it of-

fers absolute performance gains of 2.7% and 18.2% using 2.5 and 3.2 fewer blocks

with ResNet-32 and ResNet-110 respectively compared with curriculum training

alone. Similarly, on CIFAR-100, joint finetuning improves accuracies and brings

down block usage with ResNet-110. For ResNet-32, we observe 0.7 more blocks

on average are used after finetuning, which might be due to the challenging na-

ture of CIFAR-100 requiring more blocks to make correct predictions. Comparing

ResNet-110 with ResNet-32, we observe that the computational speed-ups are more

dramatic for deeper ResNets owing to the fact that there are more blocks with po-

tentially diverse features to select from. When built upon ResNet-110, our method

outperforms the pretrained model by 0.4% and 1.5% (absolute) using 31% and 55.9%
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of the original blocks on CIFAR-10 and CIFAR-100, respectively. Additionally, we

observe that some images use as few as 5 blocks for inference. These results con-

firm that joint finetuning can indeed assist the ResNet to adapt to the removal

of blocks by refining its feature representations while maintaining its capacity for

instance-specific variation.

BlockDrop v.s. state-of-the-art methods. We next compare BlockDrop to

several techniques from the literature. We vary γ, which controls our algorithm’s

trade-off between block usage and accuracy, to get a range of models with varying

computational requirements. We compute the average FLOPs utilized to classify

each image in the test set; FLOPs are a hardware independent metric, allowing for

fair comparisons across models. 3

We compare to the following state-of-the-art methods 4: (1) ACT and (2)

SACT [24], (3) PFEC [10], (4) LCCL [26]. ACT and SACT learn a halting score

at the end of each block, and exit the model when a high-confidence is obtained.

PFEC and LCCL reduce the parameters of convolutional layers by either pruning

or sparsity constraints, which is complementary to our method. Other model com-

pression methods cited earlier do not report results on larger ResNet models, and

hence are not available to compare here.

Figure 3.3 (a) presents the results on CIFAR. We observe that our best model

offers 0.4% performance gain in accuracy (93.6% v.s. 93.2%) using 65% fewer FLOPs

3Note that we consider the multiply-accumulate operation as a two step process yielding two
floating point operations and we only compute FLOPs for convolutional layers and linear layers as
they account for most of the computation for inference.

4For ACT and SACT on CIFAR, we train models with the authors’ code. For the rest, we
compare to numbers in the respective papers.
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(a) CIFAR-10 (b) ImageNet

Figure 2.2: FLOPs v.s. accuracy on CIFAR-10 and ImageNet. Results com-
pared to several state-of-the art methods. Error bars denote the standard deviation
across images.

on average (1.73 × 108 v.s. 5.08 × 108) over the original ResNet-110 model. The

performance gains might result from the regularization effect of dropping blocks

when finetuning the network as in [31]. Compared to ACT and SACT, our method

only requires 50% of the FLOPs to achieve the same level of precision (>93.0%).

BlockDrop also exhibits a much higher variance in its FLOPs over other methods.

Compared to SACT, this variance is 3 times larger, allowing some samples to achieve

a speedup as high as 85% with correct predictions. Further, BlockDrop also outper-

forms PFEC [10] and LCCL [26], which are complementary compression techniques

and can be utilized together with our framework to speed up convolution operations.

Figure 3.3 (b) presents the results for ImageNet. Compared with the origi-

nal ResNet-101 model, BlockDrop again achieves slightly better results (76.8% v.s.

76.4%) with 6% speed up (1.47×1010 v.s. 1.56×1010 FLOPs). BlockDrop performs

on par with the full ResNet with a 20% speed up (1.25×1010 v.s. 1.56×1010 FLOPs)

when we relax γ slightly. This 20% acceleration without degradation in accuracy
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Time (ms) Speed-up

R
es

N
et

-3
2 Full ResNet 7.71 –

Ours-single 6.56 14.9%

Ours-seq 9.92 -28.7%

R
es

N
et

-1
1
0 Full ResNet 24.1 –

Ours-single 10.9 52.3%

Ours-seq 29.1 -20.7%

Table 2.2: Impact of our single-step policy inference on efficiency for
CIFAR-10. See text for details.

is quite promising. For example, in a high-precision image recognition service ac-

cepting 1 billion daily API calls, such a speedup would save around 1000 hours of

computation on a single P6000 GPU (0.024 seconds/image).

Policy 1

Policy 2

Policy 3

Orange Castle Volcano Hamster

Figure 2.3: Policies learned for four ImageNet classes, volcano, orange,
hamster and castle . These policies correspond to a set of active paths in the
ResNet, which seem to cater to different “states” of images of the particular class.
For volcano, these include features like smoke, lava, e.t.c., while for orange they
include whether it is sliced/whole, quantity.

Efficiency advantage of single-step policy. The single-step design of our policy

network—where the full dynamic inference path is computed without revisiting in-

termediate outputs of the network—has important efficiency advantages. In short,

it permits lower policy execution overhead. To examine the impact empirically, we

devised a variant of BlockDrop that uses traditional RL policy learning to instead
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make sequential decisions. In particular, the decision ai ∈ {0, 1} to drop or keep

the i-th block is conditioned on the activations of its previous block, yi−1. Unlike

BlockDrop, where all the actions are predicted in one shot, this model predicts one

action at a time, which is a typical reinforcement learning setting. We follow the

procedure to generate the halting scores in [24], and arrive at an equivalent per-block

skipping score according to:

pi = softmax(W̃ ipool(yi−1) + bi),

where pool is a global average pooling operation. For fair comparisons, Ours-seq is

compared to a BlockDrop model, which attains equivalent accuracy, with the same

number of blocks. We select models of both variants that attain equivalent accuracy,

with the same number of blocks. To ensure fair comparison, we run all three models

on the same single NVIDIA P6000 GPU while disabling other processes.

Table 2.2 shows the results for CIFAR-10. We report the time per test image

and the speed-up over the original ResNet run in entirety with no block dropping.

This result confirms the efficiency advantage of our single-step design: to reach the

same accuracy, we need much less overhead (e.g., less than 60% of the time required

by the sequential variant). In fact, the sequential variant takes even longer to run

than the original full ResNet models, yielding a negative speed-up. These results

reaffirm our choice to compute all actions in one shot rather than compute them

sequentially. They also stress the importance of accounting for any overhead a deep

net speed-up scheme incurs to make its speed-up decisions.

28



2.4.3 Detailed Results on CIFAR-10 and ImageNet

We present detailed results of our method on CIFAR-10 (Table 2.3) and Ima-

geNet (Table 2.4). We highlight the accuracy, block usage and speed up for variants

of our model compared to full ResNets.

Network FLOPs Block Usage Accuracy Speed-up

ResNet-32 1.38E+08 ± 0.00E+00 15.0 ± 0.0 92.3 –
ResNet-110 5.06E+08 ± 0.00E+00 54.0 ± 0.0 93.2 –

DCAN-32 (γ = 5) 8.66E+07 ± 1.40E+07 6.9 ± 1.6 91.3 37.2%
DCAN-110 (γ = 2) 1.18E+08 ± 2.46E+07 10.3 ± 2.7 91.9 76.7%
DCAN-110 (γ = 5) 1.51E+08 ± 3.24E+07 13.8 ± 3.5 93.0 70.1%
DCAN-110 (γ = 10) 1.81E+08 ± 3.43E+07 16.9 ± 3.7 93.6 64.3%

Table 2.3: Results of different architectures on CIFAR-10. Depending on
the base ResNet architecture, speedups ranging from 37% to 76% are observed with
little to no degradation in performance.

Network FLOPs Block Usage Accuracy Speed-up

ResNet-72 1.17E+10 ± 0.00E+00 24.0 ± 0.0 75.8 –
ResNet-75 1.21E+10 ± 0.00E+00 25.0 ± 0.0 75.9 –
ResNet-84 1.34E+10 ± 0.00E+00 28.0 ± 0.0 76.1 –

ResNet-101 1.56E+10 ± 0.00E+00 33.0 ± 0.0 76.4 –

DCAN (γ = 2) 9.85E+09 ± 3.34E+08 18.8 ± 0.8 75.2 36.9%
DCAN (γ = 5) 1.25E+10 ± 4.26E+08 24.8 ± 1.0 76.4 19.9%
DCAN (γ = 10) 1.47E+10 ± 4.02E+08 29.7 ± 0.9 76.8 5.7%

Table 2.4: Results of different architectures on ImageNet. DCAN is built
upon ResNet-101, and can achieve around 20% speedup on average with γ = 5.

29



2.4.4 Qualitative Results

Finally, we provide qualitative results based on our learned policies. We in-

vestigate the visual patterns encoded in these learned policies and then analyze the

relation between block usage and instance difficulty.

Visual patterns in policies. Intuitively, related images can be recognized by their

similar characteristics (e.g., low-level clues like texture and color). Here, we analyze

similarity in terms of the policies they utilize by sampling dominant policies for each

class and visualizing samples from them. Figure 2.3 shows samples utilizing three

different policies for four classes. It can be clearly seen that images under the same

policy are similar, and different policies encode different styles, although they all

correspond to the same semantic concept. For example, the first inference path for

the “orange” class caters to images containing a pile of oranges, and close up views of

oranges activate the second inference path, while images containing slices of oranges

are routed through the third inference path. These results indicate that different

paths encode meaningful semantic visual patterns, based on the input images. While

this happens in standard ResNets as well, all images necessarily utilize all the paths,

and disentangling this information is not possible.

Instance difficulty. Instance difficulty is well understood in the context of predic-

tion confidence, where easy and difficult examples are classified with high and low

probabilities, respectively. Inspired by the above analysis that revealed interesting

correlations between the inference policies and the visual patterns in the images, we

try to characterize instance difficulty in terms of block usage. We hypothesize that
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simple examples (e.g. images with clear objects, without occlusions) require fewer

computations to be correctly recognized. To qualitatively analyze the correlations

between instance difficulty and block usage, we utilize learned policies that lead to

high-confidence predictions for each class.

easy

hard

easy

hard

Goldfish - easy (23 blocks) vs. hard (29 blocks) Artichoke - easy (18 blocks) vs. hard (28 blocks)

  Spacecraft - easy (23 blocks) vs. hard (29 blocks) Bridge - easy (24 blocks) vs. hard (29 blocks) 

Figure 2.4: Samples from ImageNet classes. Easy and hard samples from
goldfish, artichoke, spacecraft and bridge to illustrate how block usage translates to
instance difficulty.

Figure 4.4 illustrates samples from ImageNet. The top row contains images

that are correctly classified with the least number of blocks, while samples in the

bottom row utilize the most blocks. We see that samples using fewer blocks are

indeed easier to identify since they contain single frontal-view objects positioned

in the center, while several objects, occlusion, or cluttered background occur in

samples that require more blocks. This confirms our hypothesis that block usage

is a function of instance difficulty. We stress that this “sorting” into easy or hard

cases falls out automatically; it is learned by BlockDrop.
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2.5 Conclusion

We presented BlockDrop, an approach for faster inference in ResNets by se-

lectively choosing residual blocks to evaluate in a learned and optimized manner

conditioned on inputs. In particular, we trained a policy network to predict blocks

to drop in a pretrained ResNet while trying to retain the prediction accuracy. The

ResNet is further jointly finetuned to produce smooth feature representations tai-

lored for block dropping behavior. We conducted extensive experiments on CIFAR

and ImageNet, observing considerable gains over existing methods in terms of the

efficiency-accuracy trade-off. Further, we also observe that the policies learned en-

code semantic information in the images.
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Chapter 3: AdaFrame: Adaptive Frame Selection for Fast

Video Recognition

3.1 Introduction

The explosive increase of Internet videos, driven by the ubiquity of mobile

devices and sharing activities on social networks, is phenomenal: around 300 hours

of video are uploaded to YouTube every minute of every day! Such growth demands

effective and scalable approaches that can recognize actions and events in videos

automatically for tasks like indexing, summarization, recommendation, etc. Most

existing work focuses on learning robust video representations to boost accuracy [61,

62, 63, 64], while limited effort has been devoted to improving efficiency [65, 66].

State-of-the-art video recognition frameworks rely on the aggregation of pre-

diction scores from uniformly sampled frames 1, if not every single frame [67], during

inference. While uniform sampling has been shown to be effective [62, 63, 64], the

analysis of even a single frame is still computationally expensive due to the use

of high-capacity backbone networks such as ResNet [16], ResNext [27], Inception-

Net [68], etc. On the other hand, uniform sampling assumes information is evenly

1Here, we use frame as a general term, and it can be in the forms of a single RGB image,
stacked RGB images (snippets), and stacked optical flow images.
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Figure 3.1: A conceptual overview of AdaFrame. AdaFrame aims to select a
small number of frames to make correct predictions conditioned on different input
videos so as to reduce the overall computational cost.

distributed over time, which could therefore incorporate noisy background frames

that are not relevant to the class of interest.

It is also worth noting that the difficulty of making recognition decisions re-

lates to the category to be classified—one frame might be sufficient to recognize

most static objects (e.g., “dogs” and “cats”) or scenes (e.g., “forests” or “sea”)

while more frames are required to differentiate subtle actions like “drinking coffee”

and “drinking beer”. This also holds for samples even within the same category

due to large intra-class variations. For example, a “playing basketball” event can

be captured from multiple view points (e.g., different locations of a gymnasium),

occur at different locations (e.g., indoor or outdoor), with different players (e.g.,

professionals or amateurs). As a result, the number of frames required to recognize

the same event are different.

With this in mind, to achieve efficient video recognition, we explore how to

automatically adjust computation within a network on a per-video basis such that—
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conditioned on different input videos, a small number of informative frames are

selected to produce correct predictions (See Figure 3.1). However, this is a particu-

larly challenging problem, since videos are generally weakly-labeled for classification

tasks, one annotation for a whole sequence, and there is no supervision informing

which frames are important. Therefore, it is unclear how to effectively explore

temporal information over time to choose which frames to use, and how to encode

temporal dynamics in these selected frames.

In this chapter, we propose AdaFrame, a Long Short-Term Memory (LSTM)

network augmented with a global memory, to learn how to adaptively select frames

conditioned on inputs for fast video recognition. In particular, a global memory

derived from representations computed with spatially and temporally downsampled

video frames is introduced to guide the exploration over time for learning frame usage

policies. The memory-augmented LSTM serves as an agent interacting with video

sequences; at a time step, it examines the current frame, and with the assistance

of global context information derived by querying the global memory, generates a

prediction, decides which frame to look at next and calculates the utility of seeing

more frames in the future. During training, AdaFrame is optimized using policy

gradient methods with a fixed number of steps to maximize a reward function that

encourages predictions to be more confident when observing one more frame. At

testing time, AdaFrame is able to achieve adaptive inference conditioned on input

videos by exploiting the predicted future utilities that indicate the advantages of

going forward.
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We conduct extensive experiments on two large-scale and challenging video

benchmarks for generic video categorization (FCVID [69]) and activity recogni-

tion (ActivityNet [70]). AdaFrame offers similar or better accuracies measured

in mean average precision over the widely adopted uniform sampling strategy, a

simple yet strong baseline, on FCVID and ActivityNet respectively, while re-

quiring 58.9% and 63.3% fewer computations on average, going as high as savings

of 90.6%. AdaFrame also outperforms by clear margins alternative methods [1, 2]

that learn to select frames. We further show that, among other things, frame usage

is correlated with the difficulty of making predictions—different categories produce

different frame usage patterns and instance-level frame usage within the same class

also differs. These results corroborate that AdaFrame can effectively learn to gen-

erate frame usage policies that adaptively select a small number of relevant frames

for classification for each input video.

3.2 Related Work

Video Analysis. Extensive studies have been conducted on video recognition [71].

Most existing work focuses on extending 2D convolution to the video domain and

modeling motion information in videos [61, 62, 63, 64, 72]. Only a few methods

consider efficient video classification [50, 65, 66, 73, 74]. However, these approaches

perform mean-pooling of scores/features from multiple frames, either uniformly sam-

pled or decided by an agent, to classify a video clip. In contrast, we focus on se-

lecting a small number of relevant frames, whose temporal relations are modeled by
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an LSTM, on a per-video basis for efficient recognition. Note that our framework is

also applicable to 3D CNNs; the inputs to our framework can be easily replaced with

features from stacked frames. A few recent approaches attempt to reduce compu-

tation cost in videos by exploring similarities among adjacent frames [75, 76], while

our goal is to selectively choose relevant frames based on inputs.

Our work is more related to [1] and [2] that choose frames with policy search

methods [58]. Yeung et al. introduce an agent to predict whether to stop and

where to look next through sampling from the whole video for action detection [1].

For detection, ground-truth temporal boundaries are available, providing strong

feedback about whether viewed frames are relevant. In the context of classification,

there is no such supervision, and thus directly sampling from the entire sequence

is difficult. To overcome this issue, Fan et al. propose to sample from a predefined

action set deciding how many steps to jump [2], which reduces the search space

but sacrifices flexibility. In contrast, we introduce a global memory module that

provides context information to guide the frame selection process. We also decouple

the learning of frame selection and when to stop, exploiting predicted future returns

as stop signals.

Adaptive Computation. Our work also relates to adaptive computation to

achieve efficiency by deciding whether to stop inference based on the confidence

of classifiers. The idea dates back to cascaded classifiers [52] that quickly reject easy

negative sub-windows for fast face detection. Several recent approaches propose

to add decision branches to different layers of CNNs to learn whether to exit the
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Figure 3.2: An overview of the proposed AdaFrame framework. A memory-
agumented LSTM serves as an agent, interacting with a video sequence. At each
time step, it takes features from the current frame, previous states, and a global
context vector derived from a global memory to generate the current hidden states.
The hidden states are used to produce a prediction, decides where to look next and
calculates the utility of seeing more frames in the future. See texts for more details.

model [24, 53, 54, 55]. Graves introduce a halting unit to RNNs to decide whether

computation should continue [25]. Related are also [77, 78, 79, 80, 81] that learn

to drop layers in residual networks or learn where to look in images conditioned on

inputs. In this chapter, we focus on adaptive computation for videos to adaptively

select frames rather than layers/units in neural networks for fast inference.

3.3 Approach

Our goal is, given a testing video, to derive an effective frame selection strategy

that produces a correct prediction while using as few frames as possible. To this end,

we introduce AdaFrame, a memory-augmented LSTM (Section 3.3.1), to explore

the temporal space of videos effectively with the guidance of context information
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from a global memory. AdaFrame is optimized to choose which frames to use on

a per-video basis, and to capture the temporal dynamics of these selected frames.

Given the learned model, we perform adaptive lookahead inference (Section 3.3.2) to

accommodate different computational needs through exploring the utility of seeing

more frames in the future.

3.3.1 Memory-augmented LSTM

The memory-augmented LSTM can be seen as an agent that recurrently in-

teracts with a video sequence of T frames, whose representations are denoted as

{v1,v2, . . . ,vT}. More formally, the LSTM, at the t-th time step, takes features

of the current frame vt, previous hidden states ht−1 and cell outputs ct−1, as well

as a global context vector ut derived from a global memory M as its inputs, and

produces the current hidden states ht and cell contents ct:

ht, ct = LSTM([vt,ut], ht−1, ct−1), (3.1)

where vt and ut are concatenated. The hidden states ht are further input into a

prediction network fp for classification, and the probabilities are used to generate

a reward rt measuring whether the transition from the last time step brings infor-

mation gain. Furthermore, conditioned on the hidden states, a selection network

fs decides where to look next, and a utility network fu calculates the advantage of

seeing more frames in the future. Figure 6.2 gives an overview of the framework. In

the following, we elaborate detailed components in the memory-augmented LSTM.
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Global memory. The LSTM is expected to make reliable predictions and explore

the temporal space to select frames guided by rewards received. However, learning

where to look next is difficult due to the huge search space and limited capacity

of hidden states [82, 83] to remember input history. Therefore, for each video, we

introduce a global memory to provide context information, which consists of repre-

sentations of spatially and temporally downsampled frames, M = [vs1,v
s
2, . . . ,v

s
Td

].

Here, Td denotes the number of frames (Td < T ), and the representations are com-

puted with a lightweight network using spatially downsampled inputs (more details

in Sec. 4.3.1). This is to ensure the computational overhead of the global memory

is small. As these representations are computed frame by frame without explicit

order information, we further utilize positional encoding [84] to encode positions in

the downsampled representations. To obtain global context information, we query

the global memory with the hidden states of the LSTM to get an attention weight

for each element in the memory:

zt,j = (Whht−1)>PE(vsj ), βt =Softmax(zt),

where Wh maps hidden states to the same dimension as the j-th downsampled

feature vsj in the memory, PE denotes the operation of adding positional encoding to

features, and βt is the normalized attention vector over the memory. We can further

derive the global context vector as the weighted average of the global memory:

ut = β>t M. The intuition of computing a global context vector with soft-attention

as inputs to the LSTM is to derive a rough estimate of the current progress based
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on features in the memory block, serving as global context to assist the learning of

which frame in the future to examine.

Prediction network. The prediction network fp(ht;Wp) parameterized by weights

Wp maps the hidden states ht to outputs st ∈ RC with one fully-connected layer,

where C is the number of classes. In addition, st is further normalized with Softmax

to produce probability scores for each class. The network is trained with cross-

entropy loss using predictions from the last time step Te:

Lcls(Wp) = −
C∑
c=1

yc log(scTe), (3.2)

where y is a one-hot vector encoding the label of the corresponding sample. In

addition, we constrain Te � T , since we wish to use as few frames as possible.

Reward function. Given the classification scores st of the t-th time step, a reward

is given to evaluate whether the transition from the previous time step is useful—

observing one more frame is expected to produce more accurate predictions. Inspired

by [85], we introduce a reward function that forces the classifier to be more confident

when seeing additional frames, taking the following form (when t > 1):

rt = max{0, mt − max
t′∈[0,t−1]

mt′}. (3.3)

Here, mt = sgtt − max{sc′t |c′ 6= gt} is the margin between the probability of the

ground-truth class (indexed by gt) and the largest probabilities from other classes,

pushing the score of the ground-truth class to be higher than other classes by a mar-
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gin. And the reward function in Eqn. 3.3 encourages the current margin to be larger

than historical ones to receive a positive reward, which demands that the confidence

of the classifier increases when seeing more frames. Such a constraint acts as a proxy

to measure if the transition from the last time step brings additional information

for recognizing target classes, as there is no supervision providing feedback about

whether a single frame is informative.

Selection network. The selection network fs defines a policy with a Gaussian

distribution using fixed variance, to decide which frame to observe next, using hid-

den states ht that contain information of current inputs and historical context.

In particular, the network, parameterized by Ws, transforms the hidden states

to a 1-dimensional output fs(ht;Ws) = at = sigmoid(W>
s ht), as the mean of

the location policy. Following [86], during training, we sample from the policy

`t+1 ∼ π(·|ht) = N (at, 0.12), and at testing time, we directly use the output as

the location. We also clamp `t+1 to be in the interval of [0, 1], so that it can be

further transfered to a frame index multiplying by the total number of frames. It is

worth noting that at the current time step, the policy searches through the entire

time horizon and there is no constraint; it can not only jump forward to seek future

informative frames but also go back to re-examine past information. We train the

selection network to maximize the expected future reward:

Jsel(Ws) = E`t∼π(·|ht;Ws)

[
Te∑
t=0

rt

]
. (3.4)
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Utility network. The utility network, parameterized by Wu, produces an output

fu(ht;Wu) = V̂t = W>
u ht using one fully-connected layer. It serves as a critic to

provide an approximation of expected future rewards from the current state, which

is also known as the value function [20]:

Vt = Eht+1:Te ,
at:Te

[
Te−t∑
i=0

γirt+i

]
, (3.5)

where γ is the discount factor fixed to 0.9. The intuition is to estimate the value

function Vt derived from empirical rollouts with the network output V̂t to update

policy parameters in the direction of performance improvement. More importantly,

by estimating future returns, it provides the agent with the ability to look ahead,

measuring the utility of subsequently observing more frames. The utility network

is trained with the following regression loss:

Lutl(Wu) =
1

2
‖V̂t − Vt‖2. (3.6)

Optimization. Combining Eqn. 3.2, Eqn. 3.4 and Eqn. 3.6, the final objective

function can be written as:

minimize
Θ

Lcls + λLutl − λJsel,

where λ controls the trade off between classification and temporal exploration and

Θ denotes all trainable parameters. Note that the first two terms are differentiable,
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and we can directly use back propagation with stochastic gradient descent to learn

the optimal weights. Thus, we only discuss how to maximize the expected reward

Jsel in Eqn. 3.4. Following [20], we derive the expected gradient of Jsel as:

∇ΘJsel = E

[
Te∑
t=0

(Rt − V̂t)∇Θ log πθ(· | ht)

]
, (3.7)

where Rt denotes the expected future reward, and V̂t serves as a baseline func-

tion to reduce variance during training [20]. Eqn. 3.7 can be approximated with

Monte-Carlo sampling using samples in a mini-batch, and further back-propagated

downstream for training.

3.3.2 Adaptive Lookahead Inference

While we optimize the memory-augmented LSTM for a fixed number of steps

during training, we aim to achieve adaptive inference at testing time such that a

small number of informative frames are selected conditioned on input videos without

incurring any degradation in classification performance. Recall that the utility net-

work is trained to predict expected future rewards, indicating the utility/advantage

of seeing more frames in the future. Therefore, we explore the outputs of the utility

network to determine whether to stop inference through looking ahead. A straight-

forward way is to calculate the utility V̂t at each time step, and exit the model once

it is less than a threshold. However, it is difficult to find an optimal value that

works well for all samples. Instead, we maintain a running max of utility V̂ max
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over time for each sample, and at each time step, we compare the current utility

V̂t with the max value V̂ max
t ; if V̂ max

t is larger than V̂t by a margin µ more than

p times, predictions from the current time step will be used as the final score and

inference will be stopped. Here, µ controls the trade-off between computational

cost and accuracy; a small µ constrains the model to make early predictions once

the predicted utility begins to decrease while a large µ tolerates a drop in utility,

allowing more considerations before classification. Further, we also introduce p as

a patience metric, which permits the current utility to deviate from the max value

for a few iterations. This is similar in spirit to reducing learning rates on plateaus,

which instead of intermediately decays learning rate waits for a few more epochs

when the loss does not further decrease.

Note that although the same threshold µ is used for all samples, comparisons

made to decide whether to stop or not is based on the utility distribution of each

sample independently, which is softer than comparing V̂t with µ directly. One can

add another network to predict whether to stop inference using the hidden states

as in [1, 2], however coupling the training of frame selection with learning a binary

policy to stop makes optimization challenging, particularly with reinforcement learn-

ing, as will be shown in experiments. In contrast, we leverage the utility network to

achieve adaptive lookahead inference.
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3.4 Experiments

3.4.1 Experimental Setup

Datasets and evaluation metrics. We experiment with two challenging large-

scale video datasets, Fudan-Columbia Video Datasets (FCVID) [69] and Activi-

tyNet [70], to evaluate the proposed approach. FCVID consists of 91, 223 videos

from YouTube with an average duration of 167 seconds, manually annotated into

239 classes. These categories cover a wide range of topics, including scenes (e.g.,

“river”), objects (e.g., “dog”), activities (e.g., “fencing”), and complicated events

(e.g., “making pizza”). The dataset is split evenly for training (45, 611 videos)

and testing (45, 612 videos). ActivityNet is an activity-focused large-scale video

dataset, containing YouTube videos with an average duration of 117 seconds. Here

we adopt the latest release (version 1.3), which consists of around 20K videos be-

longing to 200 classes. We use the official split with a training set of 10, 024 videos,

a validation set of 4, 926 videos and a testing set of 5, 044 videos. Since the test-

ing labels are not publicly available, we report performance on the validation set.

We compute average precision (AP) for each class and use mean average precision

(mAP) to measure the overall performance on both datasets. It is also worth not-

ing that videos in both datasets are untrimmed, for which efficient recognition is

extremely critical given the redundant nature of video frames.

Implementation details. We use a one-layer LSTM with 2, 048 and 1, 024 hidden

units for FCVID and ActivityNet respectively. To extract inputs for the LSTM,
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we decode videos at 1fps and compute features from the penultimate layer of a

ResNet-101 model [16]. The ResNet model is pretrained on ImageNet with a top-1

accuracy of 77.4% and further finetuned on target datasets. To generate the global

memory that provides context information, we compute features using spatially and

temporally downsampled video frames with a lightweight CNN to reduce overhead.

In particular, we lower the resolution of video frames to 112 × 112, and sample 16

frames uniformly. We use a pretrained MobileNetv2 [87] as the lightweight CNN,

which achieves a top-1 accuracy of 52.3% on ImageNet with downsampled inputs.

We adopt PyTorch for implementation and leverage SGD for optimization with a

momentum of 0.9, a weight decay of 1e − 4 and a λ of 1. We train the network

for 100 epochs with a batch size of 128 and 64 for FCVID and ActivityNet,

respectively. The initial learning rate is set to 1e− 3 and decayed by a factor of 10

every 40 epochs. For the patience p during inference, it is set to 2 when µ < 0.7,

and K/2 + 1 when µ = 0.7, where K is number of time steps the model is trained

for.

3.4.2 Main Results

Effectiveness of learned frame usage. We first optimize AdaFrame with K steps

during training and then at testing time we perform adaptive lookahead inference

with µ = 0.7, allowing each video to see K ′ frames on average while maintaining the

same accuracy as viewing all K frames. We compare AdaFrame with the following

alternative methods to produce final predictions during testing: (1) AvgPooling,
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FCVID ActivityNet

Method R8 U8 R10 U10 R25 U25 All R8 U8 R10 U10 R25 U25 All

AvgPooling 78.3 78.4 79.0 78.9 79.7 80.0 80.2 67.5 67.8 68.9 68.6 69.8 70.0 70.2
LSTM 77.8 77.9 78.7 78.1 78.0 79.8 80.0 68.7 68.8 69.8 70.4 69.9 70.8 71.0

AdaFrame
78.6 79.2 80.2 69.5 70.4 71.5

5 → 4.92 8 → 6.15 10 → 8.21 5 → 3.8 8 → 5.82 10 → 8.65

Table 3.1: Performance of different frame selection strategies on FCVID
and ActivityNet. R and U denote random and uniform sampling, respectively.
We use K →K ′ to denote the frame usage for AdaFrame, which uses K frames
during training and K ′ frames on average when performing adaptive inference. See
texts for more details.

which simply computes a prediction for each sampled frame and then performs a

mean pooling over frames as the video-level classification score; (2) LSTM, which

generates predictions using hidden states from the last time step of an LSTM. We

also experiment with different number of frames (K + ∆) used as inputs for Avg-

Pooling and LSTM, which are sampled either uniformly (U) or randomly (R).

Here, we use K for AdaFrame while K + ∆ for other methods to offset the addi-

tional computation cost incurred, which will be discussed later. Table 3.1 presents

the results. We observe AdaFrame achieves better results than AvgPooling and

LSTM whiling using fewer frames under all settings on both datasets. In particu-

lar, AdaFrame achieves an mAP of 78.6%, and 69.5% using an average of 4.92 and

3.8 frames on FCVID and ActivityNet respectively. These results, requiring

3.08 and 4.2 fewer frames, are better than AvgPooling and LSTM with 8 frames

and comparable with their results with 10 frames. It is also promising to see that

AdaFrame can match the performance of using all frames with only 8.21 and 8.65

frames on FCVID and ActivityNet. This verifies that AdaFrame can indeed

learn to derive frame selection policies while maintaining the same accuracies.
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In addition, the performance of random sampling and uniform sampling for

AvgPooling and LSTM are similar and LSTM is worse than AvgPooling on

FCVID, possibly due to the diverse set of categories incur significant intra-class

variations. Note that although AvgPooling is simple and straightforward, it is

a very strong baseline and has been widely adopted during testing for almost all

CNN-based approaches due to its strong performance.

Computational savings with adaptive inference. We now discuss compu-

tational savings of AdaFrame with adaptive inference and compare with state-of-

the-art-methods. We use average GFLOPs, a hardware independent metric, to

measure the computation needed to classify all the videos in the testing set. We

train AdaFrame with fixed K time steps to obtain different models, denoted as

AdaFrame-K to accommodate different computational requirements during testing;

and for each model we vary µ such that adaptive inference can be achieved within

the same model.

In addition to selecting frames based on heuristics, we also compare AdaFrame

with FrameGlimpse [1] and FastForward [2]. FrameGlimpse is developed for action

detection with a location network to select frames and a stop network to decide

whether to stop; ground-truth boundaries of actions are used as feedback to estimate

the quality of selected frames. For classification, there is no such ground-truth and

thus we preserve the architecture of FrameGlimpse but use our reward function.

FastForward [2] samples from a predefined action set, determining how many steps

to go forward. It also consists of a stop branch to decide whether to stop. In
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(a) FCVID (b) ActivityNet

Figure 3.3: Mean average precision v.s. computational cost. Comparisons of
AdaFrame with FrameGlimpse [1], FastForward [2], and alternative frame selection
methods based on heuristics.

addition, we also attach the global memory to these frameworks for fair comparisons,

denoted as FrameGlimpse-G and FastForward-G, respectively. Figure 3.3 presents

the results. For AvgPooling and LSTM, accuracies gradually increase when

more computation (frames) is used and then become saturated. Note that the

computational cost for video classification grows linearly with the number of frames

used, as the most expensive operation is extracting features with CNNs. For ResNet-

101 it needs 7.82 GFLOPs to compute features and for AdaFrame, it takes an extra

1.32 GFLOPs due to the computation in global memory. Therefore, we expect more

savings from AdaFrame when more frames are used.

Compared with AvgPooling and LSTM using 25 frames, AdaFrame-10

achieves better results while requiring 58.9% and 63.3% less computation on av-
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1 2 3 4 5 6 7 8 9 10

Figure 3.4: Dataflow through AdaFrame over time. Each circle represents,
by size, the percentage of samples that are classified at the corresponding time step.

erage on FCVID (80.2 v.s. ∼195 GFLOPs 2) and ActivityNet (71.5 v.s. ∼195

GFLOPs), respectively. Similar trends can also be found for AdaFrame-5 and

AdaFrame-3 on both datasets. While the computational saving of AdaFrame over

AvgPooling and LSTM reduces when fewer frames are used, accuracies of AdaFrame

are still clearly better, i.e., 66.1% v.s. 64.2% on FCVID, and 56.3% v.s. 53.0% on

ActivityNet. Further, AdaFrame also outperforms FrameGlimpse [1] and Fast-

Forward [2] that aim to learn frame usage by clear margins, demonstrating that

coupling the training of frame selection and learning to stop with reinforcement

learning on large-scale datasets without sufficient background videos is difficult. In

addition, the use of a global memory, providing context information improves accu-

racies of the original model in both frameworks.

We can also see that changing the threshold µ within the same model can

also adjust computation needed; the performance and average frame usage declines

2195.5 GFLOPS for AvgPooling and 195.8 GFLOPs for LSTM.
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simultaneously as the threshold becomes smaller, forcing the model to make predic-

tions as early as possible. But the resulting policies with different thresholds still

outperform alternative counterparts in both accuracy and computation required.

Comparing across different models of AdaFrame, we observe that the best

model of AdaFrame trained with a smaller K achieves better or comparable results

over AdaFrame optimized with a large K using a smaller threshold. For exam-

ple, AdaFrame-3 with µ = 0.7 achieves an mAP of 76.5% using 25.1 GFLOPs on

FCVID, which is better than AdaFrame-5 with µ = 0.5 that produces an mAP of

76.6% with 31.6 GFLOPs on average. This possibly results from the discrepancies

between training and testing—during training a large K allows the model to “pon-

der” before emitting predictions. While computation can be adjusted with varying

thresholds at test time, AdaFrame-10 is not fully optimized for classification with

extremely limited information as is AdaFrame-3. This highlights the need to use

different models based on computational requirements.

Analyses of learned policies. To gain a better understanding of what is learned

in AdaFrame, we take the trained AdaFrame-10 model and vary the threshold to

accommodate different computational needs. And we visualize in Figure 3.4, at

each time step, how many samples are classified, and the prediction accuracies of

these samples. We can see high prediction accuracies tend to appear in early time

steps, pushing difficult decisions that require more scrutiny downstream. And more

samples emit predictions at later time steps when computational budget increases

(larger µ).
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Figure 3.5: Learned inference policies for different classes over time. Each
square, by density, indicates the fraction of samples that are classified at the corre-
sponding time step from a certain class in FCVID.

MakingCookiesEasy: 1 frame Medium: 3 frames Hard: 4 frames

MarriageProposal Very Hard: 8 frames

HikingEasy: 1 frame Medium: 3 frames Hard: 4 frames

Figure 3.6: Validation videos from FCVID using different number of frames
for inference. Frame usage differs not only among different categories but also
within the same class (e.g., “making cookies” and “hiking”).

We further investigate whether computations vary for different categories. To

this end, we show the fraction of samples from a subset of classes in FCVID that

are classified at each time step in Figure 3.5. We observe that, for simple classes like

objects (e.g., “gorilla” and “elephants”) and scenes (“Eiffel tower” and “cathedral

exterior”), AdaFrame makes predictions for most of the samples in the first three
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steps; while for some complicated DIY categories (e.g., “making ice cream” and

“making egg tarts”), it tends to classify in the middle of the entire time horizon.

In addition, AdaFrame takes additional time steps to differentiate very confusing

classes like “dining at restaurant” and “dining at home”. Figure 4.4 further illus-

trates samples using different numbers of frames for inference. We can see that

frame usage varies not only across different classes but also within the same cate-

gory (see the top two rows of Figure 4.4) due to large intra-class variations. For

example, for the “making cookies” category, it takes AdaFrame four steps to make

correct predictions when the video contains severe camera motions and cluttered

backgrounds.

In addition, we also examine where the model jumps at each step; for AdaFrame-

10 with µ = 0.7, we found that it goes backward at least once for 42.8% of videos on

FCVID to re-examine past information instead of always going forward, confirming

the flexibility AdaFrame enjoys when searching over time.

3.4.3 Discussions

In this section, we conduct a set of experiments to justify our design choices

of AdaFrame.

Global memory. We perform an ablation study to see how many frames are

needed in the global memory. Table 3.2 presents the results. The use of a global

memory module improves the non-memory model with clear margins. In addition,
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Global Memory Inference

# Frames Overhead mAP # Frames

0 0 77.9 8.40
12 0.98 79.2 8.53
32 2.61 80.2 8.24

16 1.32 80.2 8.21

Table 3.2: Results of using different global memories on FCVID. Different
number of frames are used to generate different global memories. The overhead is
measured for each frame compared to a standard ResNet-101.

we observe using 16 frames offers the best trade-off between computational overheads

and accuracies.

Reward function. Our reward function forces the model to increase its confidence

when seeing more frames, to measure the transition from the last time step. We

further compare with two reward functions: (1) Prediction Reward, that uses

the prediction confidence of the ground-truth class pgtt as reward; (2) Prediction

Transition Reward, that uses pgtt − p
gt
t−1 as reward. The results are summarized

in Table 3.3. We can see that our reward function and Prediction Transition

Reward, both modeling prediction differences over time, outperform Prediction

Reward that is simply based on predictions from the current step. This verifies

that forcing the model to increase its confidence when viewing more frames can

provide feedback about the quality of selected frames. Our result is also better

than Prediction Transition Reward by further introducing a margin between

predictions from the ground-truth class and other classes.

Stop criterion. In our framework, we use the predicted utility, measuring future

rewards of seeing more frames, to decide whether to continue inference or not. An
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Reward function mAP # Frames

Prediction Reward 78.7 8.34
Prediction Transition Reward 78.9 8.31

Ours 80.2 8.21

Table 3.3: Comparisons of different reward functions on FCVID. Frames
used on average and the resulting mAP.

alternative is to simply rely on the entropy of predictions, as a proxy to measure the

confidence of classifiers. We also experimented with entropy to stop inference, how-

ever we found that it cannot enable adaptive inference based on different thresholds.

We observed that predictions over time are not as smooth as predicted utilities, i.e.,

high entropies in early steps and extremely low entropies in the last few steps. In

contrast, utilities are computed to measure future rewards, explicitly considering

future information from the very first step, which leads to smooth transitions over

time.

3.5 Conclusion

In this chapter, we presented AdaFrame, an approach that derives an effective

frame usage policy so as to use a small number of frames on a per-video basis with

an aim to reduce the overall computational cost. It contains an LSTM network

augmented with a global memory to inject global context information. AdaFrame

is trained with policy gradient methods to predict which frame to use and calculate

future utilities. During testing, we leverage the predicted utility for adaptive infer-

ence. Extensive results provide strong qualitative and quantitative evidence that

AdaFrame can derive strong frame usage policies based on inputs.
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Chapter 4: LiteEval: A Coarse-to-Fine Framework for Resource Ef-

ficient Video Recognition

4.1 Introduction

Convolutional neural networks (CNNs) have demonstrated stunning progress

in several computer vision tasks like image classification [27, 88, 89], object detec-

tion [18, 90], video classification [62, 64], etc., sometimes even surpassing human-

level performance [88] when recognizing fine-grained categories. The astounding

performance of CNN models, while making them appealing for deployment in many

practical applications such as autonomous vehicles, navigation robots and image

recognition services, results from complicated model design, which in turn limits

their use in real-world scenarios that are often resource-constrained. To remedy

this, extensive studies have been conducted to compress neural networks [10, 39, 42]

and design compact architectures suitable for mobile devices [43, 44]. However, they

produce one-size-fits-all models that require the same amount of computation for

all samples.

Although computationally efficient models usually exhibit good accuracy when

recognizing the majority of samples, computationally expensive models, if not en-
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sembles of models, are needed to additionally recognize corner cases that lie in the

tail of the data distribution, offering top-notch performance on standard benchmarks

like ImageNet [23] and COCO [91]. In addition to network design, the computa-

tional cost of CNNs is directly affected by input resolution—74% of computation

can be saved (measured by floating point operations) when evaluating a ResNet-101

model on images with half of the original resolution, while still offering reasonable

accuracy. Motivated by these observations, a natural question arises: can we have a

network with components of different complexity operating on different scales and

derive policies conditioned on inputs to switch among these components to save

computation? Intuitively, during inference, lightweight modules are run by default

to recognize easy samples (e.g., images with canonical views) with coarse scale in-

puts and high-precision components will be activated to further obtain finer details

to recognize hard samples (e.g., images with occlusion). This is conceptually similar

to human perception systems where we pay more attention to complicated scenes

while a glance would suffice for most objects.

In this spirit, we explore the problem of dynamically allocating computational

resources for video recognition. We consider resource-constrained video recogni-

tion for two reasons: (1) Videos are more computationally demanding compared to

images. Thus, video recognition systems should be resource efficient, since compu-

tation is a direct indicator of energy consumption, which should be minimized to be

cost-effective and eco-friendly; additionally, power assumption directly affects bat-

tery life of embedded systems. (2) Videos exhibit large variations in computation

required to be correctly labeled. For instance, for videos that depict static scenes
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(e.g., “river” or “desert”) or centered objects (e.g., “gorilla” or “panda”), viewing

a single frame already gives high confidence, while one needs to see more frames

in order to distinguish “making latte” from “making cappuccino”. Further, frames

needed to predict the label of a video clip not only differ among different classes but

also within the same category. For example, for many sports actions like “running”

and “playing football”, professionally recorded videos with less camera motion are

more easily recognized compared to user-generated videos using hand-held devices

or wearable cameras.

We introduce LiteEval, a resource-efficient framework suitable for both online

and offline video classification, which adaptively assigns computational resources to

incoming video frames. In particular, LiteEval is a coarse-to-fine framework that

uses coarse information for economical evaluation while only requiring fine clues

when necessary. It consists of a coarse LSTM operating on features extracted from

downsampled video frames using a lightweight CNN, a fine LSTM whose inputs are

features from images of a finer scale using a more powerful CNN, as well as a gating

module to dynamically decide the granularity of features to use. Given a stream of

video frames, at each time step, LiteEval computes coarse features from the current

frame and updates the coarse LSTM to accumulate information over time. Then,

conditioned on the coarse features and historical information, the gating module

determines whether to further compute fine features to obtain more details from

the current frame. If further analysis is needed, fine features are computed and

input into the fine LSTM for temporal modeling; otherwise hidden states from the

coarse LSTM are synchronized with those of the fine LSTM such that the fine
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Figure 4.1: An overview of LiteEval. At each time step, coarse features, com-
puted with a lightweight CNN, together with historical information are used to
determine whether to examine the current frame more carefully. If further inspec-
tion is needed, fine features are derived to update the fine LSTM; otherwise the two
LSTMs are synchronized. See texts for more details.

LSTM contains all information seen so far to be readily used for prediction. Finally,

LiteEval proceeds to the next frame. Such a recurrent and efficient way of processing

video frames allows LiteEval to be used in both online and offline scenarios. See

Figure 6.2 for an overview of the framework.

We conduct extensive experiments on two large-scale video datasets for generic

video classification (FCVID [69]) and activity recognition (ActivityNet [70]) un-

der both online and offline settings. For offline predictions, we demonstrate that

LiteEval achieves accuracies that are on par with the strong and popular uniform

sampling strategy while requiring 51.8% and 51.3% less computation, and it also

outperforms efficient video recognition approaches in recent literature [1, 2]. We also

show that LiteEval can be effectively used for online video predictions to accommo-
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date different computational budgets. Furthermore, qualitative results suggest the

learned fine feature usage policies not only correspond to the difficulty to make pre-

dictions (i.e., easier samples require fewer fine features) but also can reflect salient

parts in videos when recognizing a class of interest.

4.2 Approach

LiteEval consists of a coarse LSTM and a fine LSTM that are organized hierar-

chically taking in visual information at different granularities, as well as a conditional

gating module governing the switching between different feature scales. In partic-

ular, given a stream of video frames, the goal of LiteEval is to learn a policy that

determines at each time step whether to examine the incoming video frame care-

fully with discriminative yet computationally expensive features, conditioned on a

quick glance of the frame with economical features computed at a coarse scale and

historical information. LiteEval operates on coarse information by default and is ex-

pected to take in fine details infrequently, reducing overall computational cost while

maintaining recognition accuracy. In the following, we introduce each component

in our framework in detail, and present the optimization of the model.

4.2.1 A Coarse-to-Fine Framework

Coarse LSTM. Operating on features computed at a coarse image scale using a

lightweight CNN model (see Sec. 4.3.1 for details), the coarse LSTM quickly glimpses

over video frames to get an overview of the current inputs in a computationally
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efficient manner. More formally, at the t-th time step, the coarse LSTM takes in the

coarse features vct of the current frame, previous hidden states hct−1 and cell outputs

cct−1 to compute the current hidden states hct and cell states cct :

hct , c
c
t = cLSTM(vct , h

c
t−1, c

c
t−1). (4.1)

Conditional gating module. The coarse LSTM skims video frames efficiently

without allocating too much computation; however, fast processing with coarse fea-

tures will inevitably overlook important details needed to differentiate subtle ac-

tions/events (e.g., it is much easier to separate “drinking coffee” from “drinking

beer” with larger video frames). Therefore, LiteEval incorporates a conditional gat-

ing module to decide whether to examine the incoming video frame more carefully

to obtain finer details. The gating module is a one-layer MLP that outputs the

probability (unnormalized) to compute fine features with a more powerful CNN:

bt ∈ R2 = W>
g [vct ,h

f
t−1, c

f
t−1], (4.2)

where Wg are the weights for the conditional gate, hft−1 and cft−1 are the hidden

and cell states of the fine LSTM (discussed below) from the previous time step,

and [ , ] denotes the concatenation of features. Since the gating module aims to

make a discrete decision whether to compute features at a finer scale based on

bt, a straightforward way is choose a higher value in bt, which, however, is not

differentiable. Instead, we define a random variable Bt to make the decision through
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sampling from bt. Learning such a parameterized gating function by sampling can

be achieved in different ways, as will be discussed below in Section 4.2.2.

Fine LSTM. If the gating module selects to pay more attention to the current

frame (i.e., Bt = 1), features at a finer scale will be computed with a computa-

tionally intensive CNN, and will be sent to the fine LSTM for temporal modeling.

In particular, the fine LSTM takes as inputs—fine features vft concatenated with

coarse features vct , previous hidden states hft−1 and cell states cft−1—to produce

hidden states hft and cells outputs cft of the current time step:

h̃ft , c̃
f
t = fLSTM([vct ,v

f
t ], hft−1, c

f
t−1) (4.3)

hft = (1−Bt)h
f
t−1 +Bth̃

f
t , cft = (1−Bt)c

f
t−1 +Bth̃

f
t . (4.4)

When the gating module opts out of the computation of fine features (i.e., Bt = 0),

hidden states from the previous time step are reused.

Synchronizing the cLSTM with the fLSTM. It worth noting that the coarse LSTM

contains information from all frames seen so far, while hidden states in the fine

LSTM only consist of accumulated knowledge from frames selected by the gating

module. While fine-grained details are stored in fLSTM, cLSTM provides context

information from the remaining frames that might be beneficial for recognition. To

obtain improved performance, a straightforward way is to concatenate their hidden

states before classification, yet they are asynchronous (the coarse LSTM is always

ahead of the fine LSTM, seeing more frames), making it difficult to know when to

perform fusion. Therefore, we synchronize these two LSTMs by simply copying.
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In particular, at the t-th step, if the gating module decides not to compute fine

features (i.e., Bt = 0 in Equation 4.4), instead of using hft−1 directly, we update

hft = [hct ,ht−1(Dc + 1 : Df )], where Dc and Dfdenote the dimension of hc and hf ,

respectively. Similar modifications are performed to cft . Now the hidden states in

the fine LSTM contains all information seen so far and can be readily used to derive

predictions at any time: pt = softmax(W>
p h

f
t ), where Wp denotes the weights for

the classifier.

4.2.2 Optimization

Let Θ = {ΘcLSTM,ΘfLSTM,Θg} denote the trainable parameters in the framework,

where ΘcLSTM and ΘfLSTM represent the parameters in the coarse and fine LSTMs,

respectively and Θg are weights for the gating module 1. During training, we use

predictions from the last time step T as the video-level predictions, and optimize

the following loss function:

minimize
Θ

EBt∼Bernoulli(bt;Θg)
(x,y)∼Dtrain

−y log(pT (x; Θ)) + λ(
1

T

T∑
t=1

Bt − γ)2. (4.5)

Here x and y denote a sampled video and its corresponding one-hot label vector

from the training set Dtrain and the first term is a standard cross-entropy loss. The

second term limits the usage of fine features to a predefined target γ with 1
T

∑T
t=1 Bt

being the fraction of the number of times fine features are used over the entire time

1We absorb the weights of the classifier Wp into ΘfLSTM.
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horizon. In addition, λ balances the trade-off between recognition accuracy and

computational cost.

However, optimizing Equation 4.5 is not trivial as the decision whether to

compute fine features is binary and requires sampling from a Bernoulli distribution

parameterized by Θg. One way to solve this is to convert the optimization in Equa-

tion 4.5 to a reinforcement learning problem and then derive the optimal parameters

of the gating module with policy gradient methods [20] by associating each action

taken with a reward. However, training with policy gradient requires techniques

to reduce variance during training as well as carefully selected reward functions.

Instead, we use a Gumbel-Max trick to make the framework fully differentiable.

More specifically, given a discrete categorical variable B̂ with class probabilities

P (B̂ = k) ∝ bk, where bk ∈ (0,∞) and k ≤ K (K denotes the total number of

classes; in our framework K = 2), the Gumbel-Max [92, 93] trick indicates the

sampling from a categorical distribution can be performed in the following way:

B̂ = arg max
k

(log bk +Gk), (4.6)

where Gk = −log (−log (Uk)) denotes the Gumbel noise and Uk are i.i.d samples

drawn from Uniform (0, 1). Although the arg max operation in Equation 4.6 is not

differentiable, we can use softmax as as a continuous relaxation of arg max [93, 94]:

Bi =
exp((log bi +Gi)/τ)∑K
j=1 exp((log bj +Gj)/τ)

for i = 1, .., K (4.7)
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where τ is a temperature parameter controlling discreteness in the output vector B.

Consider the extreme case when τ → 0, Equation 4.7 produces the same samples as

Equation 4.6.

In our framework, at each time step, we are sampling from a Gumbel-Softmax

distribution parameterized by the weights of of the gating module Θg. This facil-

itates the learning of binary decisions in a fully differentiable framework. Follow-

ing [94], we anneal the temperature from a high value to encourage exploration to

a smaller positive value.

4.3 Experiments

4.3.1 Experimental Setup

Datasets and evaluation metrics. We adopt two large-scale video classification

benchmarks to evaluate the performance of LiteEval, i.e., FCVID and Activ-

ityNet. FCVID (Fudan-Columbia Video Dataset) [69] contains 91, 223 videos

collected from YouTube belonging to 239 classes that are selected to cover popular

topics in our daily lives like “graduation”, “baby shower”, “making cookies”, etc.

The average duration of videos in FCVID is 167 seconds and the dataset is split

into a training set with 45, 611 videos and a testing set with 45, 612 videos. While

FCVID contains generic video classes, ActivityNet [70] consists of videos that

are action/activity-oriented like “drinking beer”, “drinking coffee”, “fencing”, etc.

There are around 20K videos in ActivityNet with an average duration of 117

seconds, manually annotated into 200 categories. Here, we use the v1.3 split with
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a training set of 10, 024 videos, a validation set of 4, 926 videos and a testing set

of 5, 044 videos. We report performance on the validation set since labels in the

testing set are withheld by the authors. For offline prediction, we compute average

precision (AP) for each video category and use mean AP across all classes to mea-

sure the overall performance following [69, 70]. For online recognition, we compute

top-1 accuracy when evaluating the performance of LiteEval since average precision

is a ranking-based metric based on all testing videos, which is not suitable for online

prediction (we do observe similar trends with both metrics). We measure compu-

tational cost with giga floating point operations (GFLOPs), which is a hardware

independent metric.

Implementation details. We extract coarse features with a MobileNetv2 [87]

model using spatially downsampled video frames (i.e., 112×112). The MobileNetv2

is lightweight model and achieves a top-1 accuracy of 52.3% on ImageNet operating

on images with a resolution of 112 × 112. To extract features from high-resolution

images (i.e., 224×224) as inputs to the fine LSTM, we use a ResNet-101 model and

obtain features from its penultimate layer. The ResNet-101 model offers a top-1

accuracy of 77.4% on ImageNet and it is further finetuned on target datasets to give

better performance. We implement the framework using PyTorch on one NVIDIA

P6000 GPU and adopts Adam [95] as the optimizer with a fixed learning rate of

1e − 4 and set λ to 2. For ActivityNet, we train with a batch size of 128 and

the coarse LSTM and the fine LSTM respectively contain 64 and 512 hidden units,

while for FCVID, there are 512 and 2, 048 hidden units in the coarse and fine LSTM
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respectively and the batch size is 256. The computational cost for MobileNetv2

(112× 112) ResNet-101 (224× 224) is 0.08 and 7.82 GFLOPs, respectively.

4.3.2 Main Results

Offline recognition. We first report the results of LiteEval for offline prediction

and compare with the following alternatives: (1) Uniform, which computes predic-

tions from 25 uniformly sampled frames and then averages these frame-level results

as video-level classification scores; (2) LSTM, which produces predictions with hid-

den states from the last time step of an LSTM; (3) FrameGlimpse [1], which

employs an agent trained with REINFORCE [20] to select a small number of frames

for efficient recognition; (4) FastForward [2], which at each time step learns how

many steps to jump forward by training an agent to select from a predefined ac-

tion set; (5) LiteEval-RL, which is a variant of LiteEval using REINFORCE for

learning binary decisions. The first two methods are widely used baselines for video

recognition, particularly the strong uniform testing strategy which is adopted by

almost all CNN-based approaches, while the remaining approaches focus on efficient

video understanding.

Table 4.1 summarizes the results and comparisons. LiteEval offers 51.8% (94.3

v.s. 195.5) and 51.3% (95.1 v.s. 195.5) computational savings measured by GFLOPs

compared to the uniform baseline while achieving similar or better accuracies on

FCVID and ActivityNet, respectively. The confirms that LiteEval can save com-

putation by computing expensive features as infrequently as possible while operating
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Table 4.1: Results of different methods for offline video
recognition. We compare LiteEval with alternative methods on
FCVID and ActivityNet.

FCVID ActivityNet

Method mAP GFLOPs mAP GFLOPs

Uniform 80.0% 195.5 70.0% 195.5
LSTM 79.8% 196.0 70.8% 195.8

FrameGlimpse [1] 71.2% 29.9 60.2% 32.9
FastForward [2] 67.6% 66.2 54.7% 17.2

LiteEval-RL 74.2% 245.9 65.2% 269.3
LiteEval 80.0% 94.3 72.7% 95.1

on economical features by default. The reason that LiteEval requires more computa-

tion on average on ActivityNet than FCVID is that categories in ActivityNet

are action-focused whereas FCVID also contains classes that are relatively static

with fewer motion like scenes and objects. Further, compared to FrameGlimpse

and FastForward that also learn frame usage policies, LiteEval achieves signifi-

cantly better accuracy although it requires more computation. Note that the low

computation of FrameGlimpse and FastForward results from their access to

future frames (i.e., jumping to a future time step), while we simply make deci-

sions whether to compute fine features for the current frame, making the framework

suitable not only for offline prediction but also in online settings, as will be dis-

cussed below. In addition, we also compare with LiteEval-RL, which instead of

using Gumbel-Softmax leverages policy search methods, to learn binary decisions.

LiteEval is clearly better than LiteEval-RL in terms of both accuracy and com-

putational cost, and it is also easier to optimize.

Online recognition with varying computational budgets. Once trained,

LiteEval can be readily deployed in an online setting where frames arrive sequen-
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Figure 4.2: Computational cost v.s. recognition accuracy on FCVID and
ActivityNet. Results of LiteEval and comparisons with alternative methods for
online video prediction.

tially. Since computing fine features is the most expensive operation in the frame-

work, given a video clip (7.82 GFLOPs per frame), we vary the number of times fine

features are read in (denoted by K) such that different computational budgets can

be accommodated, i.e. forcing early predictions after the model has computed fine

features for the K-th time. This is similar in spirit to any time prediction [55] where

there is a budget for each testing sample. We then report the average computational

cost with respect to the achieved top-1 recognition accuracy on the testing set. We

compare with (1) Uniform-K, which, for a testing video, averages predictions from

K frames sampled uniformly from a total of K ′ frames as its final prediction scores

(K ′ is the location where LiteEval produces predictions after having seen the fine

features for the K-th time); (2) Seq-K, which performs a mean-pooling of K con-

secutive frames.

The results are summarized in Figure 4.2. We observe the LiteEval offers the

best trade-off between computational cost and recognition accuracy in the online
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setting on both FCVID and ActivityNet. It is worth noting while Uniform-K is

a powerful baseline, it is not practical in the online setting as there is no prior about

how many frames are seen so far and yet to arrive. Further, LiteEval outperforms

the straightforward frame-by-frame computation strategy Seq-K by clear margins.

This confirms the effectiveness when LiteEval is deployed online.
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Figure 4.3: The distribution of fine feature usage for sampled classes on
FCVID. In addition to quartiles and medians, mean usage, denoted as yellow dots,
is also presented.

Learned policies for fine feature usage. We now analyze the policies learned by

the gating module whether to compute fine features or not. Figure 4.3 visualizes the

distribution of fine feature usage for sampled video categories in FCVID. We can see

that the number of times fine features are computed not only varies across different

categories but also within the same class. Since fine feature usage is proportional

to the overall computation required, this verifies our hypothesis that computation
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Marriage Proposal

Making Salad

Chorus Accordion Performance

Figure 4.4: Frame selected (indicated by green borders) by LiteEval of
sampled videos to compute fine features in FCVID.

Table 4.2: The ef-
fectiveness of syncing
LSTMs on FCVID.

Method mAP

w/o. sync 65.7%

LiteEval 80.0%

Table 4.3: Results of
different γ in LiteEval
on FCVID.
γ mAP GFLOPs

0.01 78.8% 75.4
0.03 79.7% 82.1
0.10 80.1% 139.0

0.05 80.0% 94.3

Table 4.4: Results
of different sizes of
LSTMs on FCVID.
# units in cLSTM mAP

64 76.9%
128 77.3%
256 78.3%

512 80.0%

required to make correct predictions is different conditioned on input samples. We

further visualize, in Figure 4.4, selected frames by LiteEval to compute fine features

of certain videos. We observe that redundant frames without additional information

are ignored and those selected frames provide salient information for recognizing the

class of interest.

4.3.3 Ablation Studies

Fine feature usage. Table 4.3 presents the results of using γ to control fine

feature usage in LiteEval. We observe that setting γ to 0.05 offers the best trade-

off between computational cost and accuracies while using a extremely small γ
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(e.g., 0.01) achieves worse results, since it forces the model to compute fine features

as seldom as possible to save computation and could possibly overlook important

information. It is also worth mentioning that using relatively small values (i.e., less

or equal than 0.1) produces decent results, demonstrating there exists a high level

of redundancy in video frames.

The synchronization of the fine LSTM with the coarse LSTM. We also

investigate the effectiveness of synchronization of the two LSTMs. We can see in

Table 4.2 that, without updating the hidden states of the fLSTM with those of the

cLSTM, the performance degrades to 65.7%. This confirms that synchronization by

transferring information from the cLSTM to fLSTM is critical for good performance

as it makes the fine LSTM aware of all useful information seen so far.

Number of hidden units in the LSTMs. We experiment with different number

of hidden units in the coarse LSTM and present the results in Table 4.4. We can

see that using a small LSTM with fewer hidden units degrades performance due

to limited capacity. As mentioned earlier, the most expensive operation in the

framework is to compute CNN features from video frames, while LSTMs are much

more computationally efficient—only 0.06% of GFLOPs needed to extract features

with a ResNet-101 model. For the fine LSTM, we found that a size of 2, 048 offers

the best results.
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4.4 Related Work

Conditional Computation. Our work relates to conditional computation that

aims to achieve decent recognition accuracy while accommodating varying com-

putational budgets. Cascaded classifiers [52] are among the earliest work to save

computation by quickly rejecting easy negative windows for fast face detection. Re-

cently, the idea of conditional computation has also been investigated in deep neural

networks [24, 46, 47, 53, 54, 55] through learning when to exit CNNs with attached

decision branches. Graves [25] add a halting unit to RNNs to associate a ponder

cost for computation. Several recent approaches learn to choose which layers in a

large network to use [77, 78, 79] or select regions to attend to in images [80, 81],

conditioned on inputs, to achieve fast inference. In contrast, we focus on conditional

computation in videos, where we learn a fine feature usage strategy to determine

whether to use computationally expensive components in a network.

Efficient Video Analysis. While there is plethora of work focusing on designing

robust models for video classification, limited efforts have been made on efficient

video recognition [1, 2, 65, 66, 73, 96, 97, 98]. Yeung et al. use an agent trained

with policy gradient methods to select informative frames and predict when to stop

inference for action detection [1]. Fan et al. further introduce a fast forward agent

that decides how many frames to jump forward at a certain time step [2]. While

they are conceptually similar to our approach, which also aims to skip redundant

frames, our framework is fully differentiable, and thus is easier to train than policy

search methods [1, 2]. More importantly, without assuming access to future frames,
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our framework is not only suitable for offline predictions but also can be deployed

in an online setting where a stream of video frames arrive sequentially. A few recent

approaches explore lightweight 3D CNNs to save computation [73, 97], but they use

the same set of parameters for all videos regardless of their complexity. In contrast,

LiteEval is a general dynamic inference framework for resource-efficient recognition,

leveraging LSTMs to aggregate temporal information and making feature usage

decisions over time; it is complementary to 3D CNNs, as we can replace the inputs

to the fine LSTM with features from 3D CNNs, dynamically determining whether

to compute powerful features from incoming video snippets.

4.5 Conclusion

We presented LiteEval, a simple yet effective framework for resource-efficient

video prediction in both online and offline settings. LiteEval is a coarse-to-fine

framework that contains a coarse LSTM and a fine LSTM organized hierarchically,

as well as a gating module. In particular, LiteEval operates on compact features

computed at a coarse scale and dynamically decides whether to compute more pow-

erful features for incoming video frames to obtain more details with a gating module.

The two LSTMs are further synchronized such that the fine LSTM always contains

all information seen so far that can be readily used for predictions. Extensive exper-

iments are conducted on FCVID and ActivityNet and the results demonstrate

the effectiveness of the proposed approach.
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Chapter 5: Weakly-Supervised Spatial Context Networks

5.1 Introduction

Recent successful advances in object categorization, detection and segmenta-

tion have been fueled by high capacity deep learning models (e.g., CNNs) learned

from massive labeled corpora of data (e.g., ImageNet [23], COCO [91]). However,

the large-scale human supervision that makes these methods effective at the same

time, limits their use; especially for fine-grained object-level tasks such as detec-

tion or segmentation, where annotation efforts become costly and unwieldily at

scale. One popular solution is to use a pre-trained model (e.g., VGG 19 trained

on ImageNet) for other, potentially unrelated, image tasks. Such pre-trained mod-

els produce effective and highly generic feature representations [99, 100]. However,

it has also been shown that fine-tuning with task-specific labeled samples is often

necessary [101].

Unsupervised learning is one way to potentially address some of these chal-

lenges. Unfortunately, despite significant research efforts unsupervised models such

as auto-encoders [102, 103] and, more recently, context encoders [104] have not

produced representations that can rival pre-trained models (let alone beat them).

Among the biggest challenges is how to encourage a representation that captures
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   Offset(      ,         )

CNN Spatial Context
      Network

Feature Representation

Figure 5.1: Illustration of the proposed spatial context network. A CNN
used to compute feature representation of the green patch is fine-tuned to predict
feature representation of the red patch using the proposed spatial context module,
conditioned on their relative offset. Pairs of patches used to train the network are
obtained from object proposal mechanisms. Once the network is trained, the green
CNN can be used as a generic feature extractor for other tasks (dotted green line).

semantic-level (e.g., object-level) information without having access to explicit an-

notations for object extent or class labels.

In the text domain, the idea of local spatial context within a sentence, proved

to be an effective supervisory signal for learning distributed word vector represen-

tations (e.g., continuous bag-of-words (CBOW) [105] and skip-gram models [105]).

The idea is conceptually simple; given a word tokenized corpus of text, learn a rep-

resentation for a target word that allows it to predict representations of contextual

words around it; or vice versa, given contextual words to predict a representation of

the target word. Generalizing this idea to images, while appealing, is also challeng-

ing as it is not clear how to 1) tokenize the image (i.e., what is an elementary entity

between which context supervision should be applied) and 2) apply the notion of

context effectively in a 2-dimensional real-valued domain.
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Recent attempts to use spatial context as supervision in vision, resulted in

models that used (regularly sampled) image patches as tokens and either learned a

representation that is useful for classifying contextual relationships between them

[106] or attempted to learn representations that fill in an image patch based on the

larger surrounding pixels [104]. In both cases, the resulting feature representations

fail to perform at the level of the pre-trained ImageNet models. This could be

attributed to a number of reasons: 1) spatial context may indeed not be a good

supervisory signal; 2) generic and neighboring image patches may not be an effective

tokenization scheme; and/or 3) it may be difficult to train a model with a contextual

loss from scratch.

Our motivation is similar to [104, 106]; however, we posit that image tok-

enization is important and should be done at the level of objects. By working with

patches at object scale, our network can focus on more object-centric features and

potentially ignore some of the texture and color detail that are likely less impor-

tant for semantic tasks. Further, instead of looking at immediate regions around

the patch for context [104] and encoding the relationship between the contextual

and target regions implicitly, we look at potentially non-overlapping patches with

longer spatial contextual dependencies and explicitly condition the predicted repre-

sentation on the relative spatial offset between the two regions. In addition, when

training our network, we make use of a pre-trained model to extract intermediate

representations. Since lower levels of CNNs have been shown to be task independent,

this allows us to learn a better representation.
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Specifically, we propose a novel architecture – Spatial Context Network (SCN)

– which is built on top of existing CNN networks and is designed to predict a rep-

resentation of one (object-like) image patch from another (object-like) image patch,

conditioned on their relative spatial offset. As a result, the network learns a spatially

conditioned contextual representation of image patches. In other words, given the

same input patch and different spatial offsets it learns to predict different contextual

representations (e.g., given a patch depicting a side-view of a car and a horizontal

offset, the network may output a patch representation of another car; however, the

same input patch with a vertical offset may result in a patch representation of a

plane). We also make use of ImageNet pre-trained model as both an initialization

and to define intermediate representations.

Once an SCN model is trained (on pairs of patches), we can use one of its

two streams as an image representation that can be used for a variety of tasks,

including object categorization or localization (e.g., as part of Faster R-CNN [107]).

This setting allows us to definitively answer the question of whether spatial context

can be an effective supervisory signal – it can, improving on the original ImageNet

pre-trained models.

Contributions: Our main contribution is the spatial context network (SCN),

which differs from other models in that it uses two offset patches as a form of con-

textual supervision. Further, we explore a variety of tokenization schemes for mining

training patch pairs, and show that an object proposal mechanism is the most ef-

fective. This observation validates the intuition that for semantic tasks, context is
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most useful at the object scale. Finally, we conduct extensive experiments to investi-

gate the capacity of the proposed SCN for capturing context information in images,

and demonstrate its ability to improve, in an unsupervised manner, on ImageNet

pre-trained CNN models for both categorization (on VOC2007 and VOC2012) and

detection (on VOC2007), where the bottom stream of the trained SCN is used as a

generic feature extractor (see Figure 6.2 (bottom)).

5.2 Related Work

Unsupervised Learning. Auto-encoders [108] are among the earliest works in

unsupervised deep learning. Auto-encoders typically learn a representation by em-

ploying an encoder-decoder architecture; the encoder encodes the image (or patch)

into a compact hidden state representation and the decoder reconstructs it back to a

full image. As such, auto-encoders learn a representation that attempts to preserve

as much image content as possible in the compact hidden state. De-noising auto-

encoders [103] reconstruct images (or patches) subject to local corruptions. The

most extreme variant of de-noising auto-encoders are the context encoders [104],

which aim to reconstruct a large hole (patch) given its surrounding spatial context.

A number of papers proposed to learn representations by converting the gener-

ative auto-encoder-like objectives to discriminative classification counterparts, where

CNNs have been shown to learn effectively. For example, [109] proposed an idea of

surrogate classes that are formed by applying a variety of transformations to ran-

domly sampled image patches. Classification into these surrogate classes is used as a
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supervisory signal to learn image representations. Alternatively, in [106], neighbor-

ing patches are used in Siamese-like networks to predict the relative discrete (e.g.,

to the top-right, bottom-left, etc.) location of patches. Related, is also [110] that

attempts to learn a similarity function across patches using various deep learning

architectures, including center-surround (similar to [104]) and forms of Siamese net-

works. Goodfellow et al. [111] proposed Generative Adversarial Networks (GAN)

that contain a generative model and discriminative model. Pathak et al. [104] built

upon GANs to model context through inpainting missing patches.

Our model is related to auto-encoders [108], and particularly context encoders

[104], however, it is conceptually somewhere between the discriminative and genera-

tive forms discussed above. We have encoder and decoder components, but instead

of decoding the hidden state all way to an image, our decoder decodes it to an inter-

mediate discriminatively trained representation. Further, unlike previous methods,

our decoder takes real-valued patch offset as input, in addition to the representation

of the patch itself.

Pre-trained Models. Pre-trained CNN models have been shown to generalize to

a large number of different tasks [99, 100]. However, their transferability, as was

noted in [112], is affected by specialization of higher layer neurons to the original task

(often ImageNet categorization). By taking a network pre-trained on the ImageNet

task and using its intermediate representation as target for our decoder, we make

use of the knowledge distilled in the network [113] while attempting to improve

it using spatial context. Works like [114] and [115] attempt to similarly re-use
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lower layers [114] of the pre-trained network and fine-tune, typically, fully-connected

layers to specific tasks (e.g., object detection). However, such models assume some

labeled data in the target domain, if not for classes of interest [114], then for related

ones [115]. In our case, we assume no supervision of this form. Instead, we just

assume that there exists a process that can generate category agnostic object-like

proposal patches. Our work is similar to [116] that also attempts to improve the

performance of pre-trained models. While they augment existing networks with

reconstructive decoding pathways for image reconstruction, our model focuses on

exploiting contextual cues in images.

Weakly-supervised and Self-supervised Learning. Recent years have wit-

nessed a growing trend in weakly-supervised and self-supervised learning, which

attempt to achieve similar performance to fully supervised models with limited use

of annotated labels. A typical setting is to, for example, use image-level annota-

tions to learn an object detection model [117, 118, 119, 120, 121, 122]. However,

such models typically rely on latent variables and appearance regularities present

within individual object class. In addition, researchers also utilized motion coher-

ence (tracked patches [123] or ego-motion from sensors [124]) in videos as super-

visory signals to train network. Zhang et al. [125] proposed to generate a color

version of a grayscale photo through a CNN model, which could further serve as an

auxiliary task for feature learning. Different from these works, we experiment with

(category-independent) object proposals as a way to tokenize an image into more
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Figure 5.2: Overview of the proposed spatial context network architecture.
See texts for complete description and discussion.

semantically meaningful parts. This can be thought of as (perhaps) a very weak

form of supervision, but unlike any that we are aware has been used before.

5.3 Approach

We now introduce the proposed spatial context network (see Figure 6.2 (top)),

which consists of a top stream and a bottom stream operating on a pair of patches

cropped from the same image. The goal is to utilize their spatial layout information

as contextual clues for feature representation learning. Once the spatial context net-

work is learned, the bottom stream can be used as a feature extractor (see Figure 6.2

(bottom)) for a variety of image recognition tasks, specifically, object categorization

and detection.
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More formally, given a patch XI
i extracted from an image I ∈ I, where I is the

training set, we denote the patch bounding box bIi as an eight-tuple consisting of

(x, y) positions of top-left, top-right, bottom-left and bottom-right corners. We can

then denote the training samples for the network as 3-tuples (XI
i , XI

j , oIij), where

oIij = bIi − bIj is the relative offset between two patches computed by subtracting

locations of their respective four corners.

Top stream. The goal of the top stream is to provide a feature representation for

patch XI
i that will be used as soft target for contextual prediction by the learned

representation of the patch XI
j . This stream consists of an ImageNet pre-trained

state-of-the-art CNN such as VGG 19, GoogleNet or ResNet (any pre-trained CNN

model can be used). More specifically, the output of the top stream is the representa-

tion from the fully-connected layer (fc7) obtained by propagating patch XI
i through

the original pre-trained ImageNet model (here we remove the softmax layer). More

formally, let g(XI
i ; WT ) denote the non-linear function approximated by the CNN

model and parameterized by weights WT . Note that one can also utilize representa-

tion of other layers; we use fc7 for simplicity and because of its superior performance

in most high-level visual tasks [100].

Bottom stream. The bottom stream consists of an identical CNN model to the

top stream which feeds into the spatial context module. The spatial context module

then accounts for spatial offset between the input pair of patches. The network first

maps the input patch to a feature representation h1 = g(XI
j ; WB) and then the

resulting h1 (fc7 representation) is used as input for the spatial context module.
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We initialize the bottom stream with the ImageNet pre-trained model as well, so

initially, WB = WT . However, while WT remains fixed, WB is optimized during

training.

Spatial Context Module. The role of the spatial context module is to take the

feature representation of the patch XI
j produced by the bottom stream and, given the

offset to patch XI
i , predict the representation of patch XI

i that would be produced by

the top stream. The spatial context module is represented by a non-linear function

f([h1,o
I
ij]; V), parameterized by weight matrix V = {V1,Vloc,V2}.

In particular, the spatial context module first takes the feature vector h1 (com-

puted from patch XI
j ) together with the offset vector oij between XI

j and XI
i to derive

an encoded representation:

h2 = σ(V1h1 + Vlocoij), (5.1)

where V1 denotes the weights for h1; Vloc is the weight matrix for the input offset,

and σ(x) = 1/(1+e−x). (Note that we absorb the bias term in the weight matrix for

convenience). Finally, h2 is mapped to h3 with a linear transformation to reconstruct

the fc7 feature vector computed by the top stream on the patch XI
i .

Loss Function. Given the output feature representations from the aforementioned

two streams, we train the network by regressing the features from the bottom stream
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to those from the top stream. We use a squared loss function:

min
V,WB

∑
I∈I;i 6=j

∥∥g(XI
i ; WT )− f([g(XI

j ; WB),oij]; V)
∥∥2
. (5.2)

The model is essentially an encoder-decoder framework with the bottom stream en-

coding the input image patch into a fixed representation and spatial context module

decoding it to representation of another, spatially offset, patch. The intuition comes

from the skip-gram model [126] that attempts to predict the context given a word,

which has been demonstrated to be effective for a number of NLP tasks. Since

objects often co-occur in images in particular relative locations, it makes intuitive

sense to explore such relations as contextual supervision.

The network can be easily trained using back-propagation with stochastic

gradient descent. Note that for the top stream, rather than predicting raw pixels

in images, we utilize the features extracted from off-the-shelf CNN architecture as

ground truth, to which the features constructed by the bottom stream regress. This

is because the pre-trained CNN model contains valuable semantic information (e.g.,

referred to as dark knowledge [113]) to differentiate objects and the extracted off-

the-shelf features have achieved great success on various tasks [127, 128].

One alternative to formulating the problem as a regression task would be to

turn it into a classification problem by appending a softmax layer on top of the two

streams and predicting whether a pair of features is likely given the spatial offset.

However, this would require a large number of negative samples (e.g., a car is not

likely to be in a lake), making training difficult. Further, our regression loss also
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builds on intuitions explored in [113], where it is shown that soft real-valued targets

are often better than discrete labels.

Implementation Details. We adopt two off-the-shelf CNN architectures, CNN M

and VGG 19 [57], to train the spatial context network. CNN M is an AlexNet [56]

style CNN with five convolutional layers topped by three fully-connected layers (the

dimension for fc6 and fc7 is 2, 048), but contains more convolutional filters. VGG 19

network consists of 16 convolutional layers followed by three fully-connected layers,

possessing stronger discriminative power.

The pipeline was implemented in Torch and we apply mini-batch stochastic

gradient descent in training with the batch size of 64. The weights for the spatial

context module are initialized randomly. We fine-tune the fully-connected layers

in the bottom stream CNN model with convolutional layers fixed, unless otherwise

specified. The input patches are resized to 224×224. We set the initial learning

rate to 1e−3, which is decreased to 1e−4 after 100 epochs; we fix weight decay to

5e−4 and the maximum number of epochs to 200. We will discuss patch selection

in Experiements.

Using SCN for Classification and Detection. Once the SCN is trained, we use

h1 from the bottom stream as a feature representation for other tasks (Figure 6.2

(bottom)). As we will show, these feature representations are better than those

obtained from the original ImageNet pre-trained model for object detection and

classification.
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Figure 5.3: Experiments with synthetic dataset. Training samples are shown
in top row. Bottom rows show predicted patches for the labeled regions on the left,
after 1–35 epochs of training. Predicted patches are obtained by treating the circle
in the middle and an appropriate spatial offset to (a), (b), or (c) as input to an SCN
and visualizing the output h3 layer.

5.4 Experiments

We first validate the ability of the proposed SCN to learn context information

on a synthetic dataset and with the real images from VOC2012. We then eval-

uate the effectiveness of features extracted from the spatial context framework in

classification and detection tasks, as compared with original pre-trained ImageNet

features, and competing state-of-the-art feature learning methods.

5.4.1 Synthetic Dataset Experiments

.

We construct a synthetic dataset containing circles, squares and triangles to

verify whether the proposed spatial context framework is able to learn correlations

in spatial layout patterns of these objects. More specifically, we create 300 (circle,

square) pairs where circles are always horizontally offset (see Figure 5.3 (top)) from

the squares (vertical difference is within 30 pixels); and 300 (circle, triangle) pairs
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Figure 5.4: Testing error on the synthetic dataset. Illustrated is the testing
error with and without offset vector in the input.

where circles are vertically offset from the triangles (horizontal difference is within

30 pixels); as well as 200 (circles, black image) pairs where the offset vector is

randomly sampled. We randomly split the dataset into 600 training and 200 testing

pairs. We assume perfect proposals and crop patches tightly around the objects

(circles, squares and triangles). Here, we adopt the CNN M model only.

The testing error loss (mean squared error) on this dataset is visualized in

Figure 5.4. As we can see from the figure, the testing error of the spatial context

network steadily decreases for the first 20 epochs and nearly reaches zero after

25 epochs. To investigate the role offset vectors play in the learning process, we

remove the offset vector from the input and retrain the network. The loss of this

network stabilizes to 30 after 10 epochs; this is significantly higher than the error of

the spatial context network. Figure 5.4 confirms that the proposed spatial context

network can make effective use of the spatial context information between objects.

To gain further insights into the learning process, we replace the target feature

representation of the top stream with raw ground truth image patches (see Fig-

ure 5.5). After each epoch, given an input bottom stream object patch (depicting
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     Module

Loss
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Figure 5.5: Reconstruction. Illustrated is the framework for reconstructing images
in the top stream.

circle) and an offset vector from the testing set, we adopt the output of the last layer

h3 in the SCN to reconstruct images for the top stream. The results are visualized

in Figure 5.3 (bottom) for three different spacial offsets (a), (b) and (c).

When circles are combined with either horizontal or vertical offsets, the net-

work is able to reconstruct square and triangle patches (respectively) after about

five epochs of training. For the first few epochs, both triangles and squares co-occur

in the constructed images, but clear square and triangle patterns emerge as the

training proceeds. It took longer for the network to learn that conditioned on an

off-axis offset vector and a circle patch it should produce an empty (black) patch

image. This experiment validates that our spatial context network is able to learn

correct spatially varying contextual representation based on (identical) input patch

(circle) and varying offsets. Without providing location offset information, the net-

work overfits and simply generates a patch containing overlapping triangles and

squares (which explains the poor convergence in Figure 5.4).
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Imagining a circle is a car, a square a tree and the triangle (which is above

circle) to be sky, this synthetic dataset provides a simplified version of spatial con-

text information in real-world scenarios. The experiments indicate that the varying

spatial contextual information among multiple objects can be learned by the SCN.

5.4.2 Modeling Context in Real Images

We now discuss context modeling in real images and validate the capability

of the network to capture such real-world contextual clues. To this end, we use

the PASCAL VOC 2012 [129] dataset, which consists of a training set with 5,717

images and a validation set with 5,823 images, totaling 20 object categories (denoted

by VOC2012-Img). We first crop objects from the original images on both subsets

using the provided annotations of bounding boxes, which leads to 15,774 objects for

training and 15,787 objects for testing (denoted by VOC2012-Obj1). Objects from

the same image are further paired and are used as inputs for the spatial context

network (SCN) together with their offset vector. In total, we obtain 34,378 training

and 34,722 testing paired samples (VOC2012-Pairs).

We first train the spatial context network using paired images. Given the

trained network, we compute the outputs of the last layer from the spatial context

module (i.e., h3) as the synthesized/predicted feature representations for a single

patch in the top stream (on both training and test set).

1The difference between VOC2012-Obj and VOC2012-Img is that in the former the objects are
cropped, where as in the latter they are not.
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Figure 5.6: SCN contextual classification. Features of the top stream (red
boxes) are predicted using patches from bottom stream (green boxes) and offset
vector as inputs to the trained SCN. A classifier is then trained to predict the label
of the red patch based on the predicted features from the training set. Performance
on testing set is 56.3% (Table 5.1).

 Top Stream

SVM TV

(a) Classification with origi-
nal VGG fc7 top stream fea-
tures.

 Bottom Stream

SVM TV

Using SCN at Test Time

(b) Classification using SCN
predicted features of the top
stream.

 Top Stream

 Bottom Stream

SVM TV

Using SCN at Test Time

(c) Classification using com-
bination of VGG fc7 top
stream features and SCN
predicted features

Figure 5.7: Models used to compare classification. Illustrated models are those
evaluated in Table 5.1; in the same respective order, where (a) is the baseline model
that uses original VGG features of the top stream; (b) is model that is using SCN
predicted features for the patches instead, and (c) combines the two.

Then we train a linear classifier with the extracted features using all training

patches in the top stream (See Figure 5.6 for illustration and Figure 5.7 (b) for model

design). To establish a baseline, for all patches in the top stream, we compute the

raw fc7 features from the original VGG 19 network and similarly train a linear SVM

classifier (See Figure 5.7 (a)). The results are summarized in Table 5.1.
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features VOC2012-Pairs (%)

VGG 19 fc7 78.3
SCN predicted (h3) features 56.3

VGG 19 fc7 + SCN predicted 79.5

Table 5.1: Performance comparisons of classification. Different feature rep-
resentations for the top patch classification are compared. SCN predicted features
are obtained by regressing top stream features from the contextual bottom stream
patch.

It is surprising to see that the predicted features achieve a 56.3% accuracy

in object classification given the fact that these features are predicted from nearby

objects within the same image (from the bottom stream) using the trained spatial

context network (SCN). In other words we are able to recognize objects at 56.3%

accuracy without ever seeing the real image features contained in the corresponding

image patches; the recognition is done purely based on the contextual predictions of

those features from other patches (note that 92.6% of patches do not or minimally

overlap (< 0.2 IoU)). This indicates very strong contextual information that our

network was able to learn.

To eliminate the possibility that accuracy comes from images containing mul-

tiple instances of the same object, we analyzed the dataset and found only 45% of

training and 42% of testing image patch pairs correspond to the same objects. Fur-

ther, using pairs that do not contain same objects produces an accuracy of 52.8%,

and 63.2% with pairs only from the same objects.

To investigate whether the synthesized features h3 contain contextual informa-

tion that might be complementary to the original fc7 features, we perform feature

fusion by concatenating the two representations into a 8,192-dimensional vector and
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training a linear SVM for classification (See Figure 5.7 (c)). We observe 1.2% per-

formance gain compared with raw VGG fc7 features, which again confirms that

context is beneficial.

5.4.3 Feature Learning with SCN for Classification

In the last two sections, to verify the effectiveness of spatial contextual learn-

ing, we assumed knowledge of object bounding boxes (but, importantly, not their

categorical identity); in other words, we assumed existence of a perfect object pro-

posal mechanism; this is clearly unrealistic. In this section, we explore the impor-

tance/significance of the quality of the object proposal mechanism on the perfor-

mance of features learned using SCN. We do so in the context of classification, where

once SCN is trained, we use SVM on top of generic SCN features (see Figure 6.2

(bottom)).

We use ground truth bounding boxes, provided by the dataset, as a baseline

(SCN-BBox). In addition, we test the following object proposal methods:

- Random Patches (SCN-Random): We randomly crop 5 patches of size of

64 × 64 in each image (consistent with [104]) to generate 10 patch pairs per

image. In total, we collect 28K cropped patches and 57K pairs.2

- Edge Box [130] (SCN-EdgeBox): EdgeBox is a generic method to generate

object bounding box proposals based on edge responses. We filter out the

2Note that in the pairing process one could simply swap the inputs of the top and bottom
stream to double the number of pairs for the network, however, empirically, we found it not to be
helpful.
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features-fc7 VOC2012-Obj VOC2012-Img

C
N

N
M

Original 75.3 68.5

SCN-BBox 78.7 70.8

SCN-YOLO 79.2 70.7

SCN-EdgeBox 79.9 72.8

SCN-Random 78.8 70.0
V

G
G

19
Original 81.4 78.1

SCN-BBox 82.6 78.8

SCN-YOLO 83.0 79.0

SCN-EdgeBox 83.6 79.5

SCN-Random 83.2 79.2

Table 5.2: Performance with various object proposals. Comparison of clas-
sification with features obtained using SCN trained with different patch selection
mechanisms is illustrated on VOC2012-Obj and VOC2012-Img, using two CNN ar-
chitectures.

bounding boxes with confidence lower than 0.1 and those with irregular aspect

ratio, leading to 43K object patches and 160K pairs for training.

- YOLO [131] (SCN-YOLO): YOLO is a recently introduced end-to-end frame-

work trained on VOC for object detection. We use YOLO as an object pro-

posal mechanism, by taking patches from detection regions but ignoring the

detected labels. We collect 13K objects forming 17K image patch pairs.

We expect the quality of object proposal methods (from least object-like to most

object-like) on VOC to roughly follow the following pattern:

Random < EdgeBox < YOLO < ground-truth BBox.

Given a trained SCN model, we utilize the bottom stream (see Fig. 6.2 (bot-

tom)) to test generalization of the learned feature representations, by performing
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Figure 5.8: Classification per class performance. Reported is average precision
obtained using original CNN M features and SCN-EdgeBox features on VOC2012-
Img.

classification with linear SVMs on VOC2012-Obj and VOC2012-Img (see footnote 1

for explanation) with the outputs from the first hidden layer (h1, i.e., fine-tuned

version of fc7) in the bottom stream of SCN. The results are measured in mAP.

We compare the different patch selection mechanisms discussed above and also to

the original ImageNet pre-trained models. The results are summarized in Table 5.2.

We observe that SCN-BBox and SCN-YOLO achieve better results compared with

the original fc7 features. It is also surprising to see that SCN-EdgeBox obtains

the best performance, even higher than models trained with ground-truth bounding

boxes. It is 4.6 and 4.3 percentage points better than the original fc7 features on

VOC2012-Obj and VOC2012-Img respectively.

We believe that better performance of the SCN-EdgeBox stems from Edge-

Box’s ability to select object-like regions that go beyond the 20 object classes la-

beled in ground truth and detected by YOLO. We also note that while Random

patch sampling also improves the performance, with respect to the original Ima-
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geNet pre-trained network, it is doing so by a much smaller margin than EdgeBox

patch sampling.

The original fc7 features are trained using labels from ImageNet; our spatial

context network is appealing in that it learns a better feature representation by

exploiting contextual cues without any additional explicit supervision. Figure 5.8

compares the per-class performance of SCN-EdgeBox and the original fc7 features

on VOC2012-Img, where we can see that SCN-EdgeBox features outperform the

original fc7 features for all classes. It is also interesting to see that, for small objects,

such as “bottle” and “potted plant”, the performance gain of SCN-EdgeBox is more

significant.

VOC2012-Obj

VGG 19 fc7 81.4

SCN-EdgeBox (fc6, fc7) 83.6
SCN-EdgeBox (fc6, fc7, conv5) 84.3

SCN-EdgeBox (all layers) 82.5

Table 5.3: Exploring SCN learning strategies. Classification performance based
on features obtained using different fine-tuning strategies. See text for more details.

Fine-tuning Convolutional Layers. In addition to only fine-tuning the fully-

connected layers of the bottom stream CNN model, we also explore whether joint

training with VGG 19 network could further improve the performance of the ex-

tracted features. More specifically, for the top stream we fix the weights since

computing features dynamically poses challenges for network convergence. Further,

this avoids trivial solutions of both streams learning, for example, to predict zero

features for all patches. In addition, this makes use of transferability of lower levels
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of pre-trained CNN models as targets for the bottom stream decoding. The re-

sults are summarized in Table 5.3. By back-propagating the error through deeper

layers we observe a significant performance gain (2.9 percentage points) over the

original features of VGG 19 network, which confirms the fact that SCN is effective

and VGG layers could be fine-tuned jointly for specific tasks in order to gain better

performance using our formulation. When fine-tuning all layers in the network, the

performance of SCN degrades slightly to 82.5%.

Initialization Supervision Pretraining time Classification Detection

Random Gaussian random N/A < 1 minute 53.3 43.4

Wang et al. [123] random motion 1 week 58.4 44.0

Doersch et al. [106] random context 4 weeks 55.3 46.6

*Doersch et al. [106] 1000 class labels context – 65.4 50.4

Pathak et al. [104] random context inpainting 14 hours 56.5 44.5

Zhang et al. [125] random color – 65.6 46.9

ImageNet [104] random 1000 class labels 3 days 78.2 56.8

*ImageNet random 1000 class labels 3 days 76.9 58.7

SCN-EdgeBox 1000 class labels context 10 hours 79.0 59.4

Table 5.4: Quantitative comparison for classification and detection on VOC
2007. Classification and Fast-RCNN detection results are on the PASCAL VOC
2007 test set. The baselines labeled with * are based on our experiments, rest taken
from original papers.

5.4.4 Feature Learning with SCN for Detection

We also explore the applicability of SCN features for object detection tasks

to verify generic feature effectiveness. To make fair comparisons with prior work,

we adopt the experimental setting of [104] and fine-tune the SCN-EdgeBox model

(based on CNN M architecture) on Pascal VOC2007, which is then applied in the

Fast R-CNN [107] framework. More precisely, we replace the ImageNet pre-trained
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CNN M model with the fine-tuned bottom stream in SCN (See Figure 6.2 (bot-

tom)). The weights for final classification and bounding box regression layers are

initialized from scratch. Following the training and testing protocol defined in [107],

we finetune layers conv2 and up and report detector performance in mAP.

The results and comparisons with existing state-of-the-art methods are sum-

marized in Table 5.4. SCN-EdgeBox model improves on the original ImageNet

pre-trained model by 0.7 percentage points. Further, compared with alternative

unsupervised learning methods, our approach achieves significantly better perfor-

mance. We also significantly outperform other feature training methods on classi-

fication (including our fine-tuned ImageNet model) and Doersch et al. [106] model

initialized with ImageNet.

Figure 5.9 visualizes some sample images where SCN-EdgeBox outperforms

the pre-trained ImageNet model. Our model is better at detecting relatively small

objects (e.g., airplane in the first row and chair in the second row).

Ours Pre-trained 
ImageNet model

Figure 5.9: Sample detection results. Illustrated are results obtained using
SCN-EdgeBox model and the original pre-trained ImageNet model, respectively, on
VOC2007.
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5.5 Conclusion

In this chapter, we presented a novel spatial context network built on top of

existing CNN architectures. The SCN network exploits implicit contextual layout

cues in images as a supervisory signal. More specifically, the network is trained

to predict the intermediate representation of one (object-like) image patch from

another (object-like) image patch, within the same image, conditioned on their

relative spatial offset. Consequently, the network learns a spatially conditioned

contextual representation of image patches. Extensive experiments are conducted

to validate the effectiveness of the proposed spatial context network in modeling

context information in images. We show that the proposed spatial context network

can achieve improvements (with no additional explicit supervision) over the original

ImageNet pre-trained models in object categorization on VOC2007 / VOC2012 and

detection on VOC2007.
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Chapter 6: DCAN: Dual Channel-wise Alignment Networks for Un-

supervised Scene Adaptation

6.1 Introduction

Deep neural networks have driven recent advances in computer vision. How-

ever, significant boosts in accuracy achieved by high-capacity deep models require

large corpora of manually labeled data such as ImageNet [23] and COCO [132]. The

need to harvest clean and massive annotations limits the ability of these approaches

to scale, especially for fine-grained understanding tasks like semantic segmentation,

where dense annotations are extremely costly and time-consuming to obtain. One

possible solution is to learn from synthetic images rendered by modern computer

graphics tools (e.g., video game engines), such that ground-truth labels are read-

ily available. While synthetic data have been exploited to train deep networks for

a multitude of tasks like depth estimation [133], object detection [134], etc., the

resulting models usually suffer from poor generalization when exposed to novel re-

alistic samples. The reasons are mainly two-folds: (1) the realism of synthesized

images is limited—inducing an inherent gap between synthetic and real image dis-
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tributions; (2) deep networks are prone to overfitting in the training stage, which

leads to limited generalization ability.

Learning a discriminative model that reduces the disparity between training

and testing distributions is typically known as domain adaptation; a more challeng-

ing setting is unsupervised domain adaptation that aims to bridge the gap without

accessing labels of the testing domain during training. Most existing work seeks to

align features in a deep network of the source domain (training sets) and the target

domain (testing sets) by either explicitly matching feature statistics [135, 136, 137] or

implicitly making features domain invariant [138, 139]. Recent work also attempts to

minimize domain shift in the pixel space to make raw images look alike [140, 141, 142]

with adversarial training. While good progress has been made for classification,

generalizing these ideas to semantic segmentation has been shown to be less ef-

fective [143], possibly due to the fact that high-dimensional feature maps are more

challenging to align compared to features used for classification from fully-connected

layers.

In this chapter, we study unsupervised domain adaptation for semantic seg-

mentation, which we refer as unsupervised scene adaptation. We posit that channel-

wise alignment of high-level feature maps is important for adapting segmentation

models, as it is able to preserve spatial structures and consider semantic information

like attributes and concepts encoded in different channels [144] independently, which

implicitly helps transfer feature distributions between the corresponding concepts

across domains. In particular, we build upon recent advances of instance normal-

ization [145] due to its effectiveness and simplicity for style transfer [145, 146, 147].
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Instance normalization is motivated by the fact that mean and standard deviation

in each channel of CNN feature maps contain the style information of an image, and

hence they are used to translate feature maps of a source image into a normalized

version based on a reference image for each channel. In addition to being able to

match feature statistics, the ability to maintain spatial structures in feature maps

with channel-wise normalization makes it appealing for tasks like segmentation.

Motivated by these observations, we propose to reduce domain differences at

both low-level and high-level through channel-wise alignment. In particular, we

normalize features of images from the source domain with those of images from the

target domain by matching their channel-wise feature statistics. Nevertheless, such

alignment is on a per image basis with each target sample serving as a reference

for calibration. When multiple images exist in the target domain, a straightforward

way is to enumerate all of them to cover all possible variations, which is compu-

tationally expensive. In contrast, we stochastically sample from the target domain

for alignment. The randomization strategy is not only efficient, but more impor-

tantly, provides a form of regularization for training in similar spirit to stochastic

depth [31], data transformation [148, 149], and dropout [29].

To this end, we present, Dual Channel-wise Alignment Networks (DCAN),

a simple yet effective framework optimized in an end-to-end manner. The main

idea is leveraging images from the target domain for channel-wise alignment, which

not only enables minimizing the low-level domain discrepancies in pixel space (e.g.,

color, texture, lighting conditions, etc.), but also, simultaneously normalizes high-

level feature maps of source images specific to those of target images for improved
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segmentation. Figure 6.2 gives an overview of the framework. In particular, we

utilize an image generator to map an image from the source domain to multiple rep-

resentations with the same content as the input but in different styles, determined

by unlabeled images randomly selected from the target set. These synthesized im-

ages, resembling samples from the target domain, together with sampled target

images, are further input into a segmentation network, in which channel-wise fea-

ture alignment is performed once more to refine features for the final segmentation

task.

Contributions: The key contributions of DCAN are summarized as follows: (1)

we present an end-to-end learning framework, guided by feature statistics of im-

ages from the target domain, to synthesize new images as well as normalize features

on-the-fly for unsupervised scene adaptation; (2) we demonstrate that channel-wise

feature alignment, preserving spatial structures and semantic concepts, is a sim-

ple yet effective way to reduce domain shift in high-level feature maps. With this,

our method departs from much recent and concurrent work, which uses adversarial

training for distribution alignment; (3) we conduct extensive experiments by trans-

ferring models trained on synthetic segmentation benchmarks, i.e., Synthia [150]

and Gta5 [151], to real urban scenes, Cityscapes [152], and demonstrate DCAN

outperforms state-of-the-art methods with clear margins and it is compatible with

several modern segmentation networks.

104



6.2 Related Work

Unsupervised Domain Adaptation. Most existing work focuses on classifica-

tion problems and falls into two categories: feature-level and pixel-level adaptation.

Feature-level adaptation seeks to align features by either explicitly minimizing the

distance measured by Maximum Mean Discrepancies (MMD) [137, 153], covari-

ances [136], etc., between source and target distributions or implicitly optimizing

adversarial loss functions in the forms of reversed gradient [154, 155], domain con-

fusion [156], or Generative Adversarial Network [138, 139, 157, 158], such that

features are domain-invariant. In contrast, pixel-level domain adaptation attempts

to remove low-level differences like color and texture by stylizing source images to

resemble target images [140, 159, 160, 161]. Compared to a large amount of work

on classification problems, limited effort has been made for semantic segmentation.

In [139], adversarial training is utilized to align features in fully convolutional net-

works for segmentation, and the idea is further extended for both pixel-level and

feature-level adaptation jointly using cycle consistency [141]. A curriculum learning

strategy is proposed in [143] by leveraging information from global label distribu-

tions and local super-pixel distributions. Our work differs from previous work in two

aspects: (1) we introduce channel-wise alignment for unsupervised scene adaption,

which preserves spatial information and semantic information of each channel when

normalizing high-level feature maps for alignment; (2) we avoid adversarial training,

which “remains remarkably difficult to train” [162], yet achieves better performance.
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Image Synthesis. GANs [111], consisting of a generator and a discriminator op-

timized to compete with each other, are one of the most popular deep generative

models for image synthesis [161, 163, 164]. Various prior information, including

labels [165], text [166], attributes [167], images [168, 169] has been explored to con-

dition the generation process. GANs have also been further extended to the problem

of image-to-image translation, which maps a given image to another one in a dif-

ferent style, using cycle consistency [3] or a shared latent space [4]. This line of

work aims to learn a joint distribution of images from two domains using images

from the marginal distributions of each domain. As previously mentioned, adver-

sarial loss functions are hard to train, and hence generating high resolution images

is still a challenging problem that could take days [170]. A different direction of

image-to-image translation is neural style transfer [147, 171, 172, 173, 174]. Though

style transfer can be seen as a special domain adaptation problem with each style

as a domain [175], our goal in this work is different: we focus on unsupervised scene

adaption, by jointly synthesizing images and performing segmentation with the help

of images from the target domain for channel-wise distribution alignment.

6.3 Approach

Given labeled images from a source domain and unlabeled samples from a

target domain, our goal is to reduce domain discrepancies at both pixel-level and

feature-level. In particular, we leverage unlabeled target images for channel-wise

alignment—synthesizing photo-realistic samples to appear as if from the target set,
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Figure 6.1: An overview of the proposed DCANs. It contains an image gen-
erator and a segmentation network, in both of which channel-wise alignment is
performed. The generator synthesizes a new image, reducing low-level appearance
differences, which is further input to the semantic segmentation network. Features
directly used for segmentation are refined before producing prediction maps. During
testing, we turn off the alignment (shaped in blue) and the segmentation network
can be readily applied.

and simultaneously normalizing feature maps of source images, upon which segmen-

tation classifiers directly rely. The resulting segmentation model can then be readily

applied to the novel target domain. To this end, we consider each image from the

target domain as a unique reference sample, whose feature representations are used

to normalize those of images from the source domain. In addition, given an image

from the source domain, instead of considering every single target image, we sample

from the target set for alignment stochastically, serving as regularization to improve

generalization. Figure 6.2 gives an overview of this framework.

More formally, let Xs = {xsi ,ysi}i∈[Ns] denote the source domain with N s

images xsi ∈ R3×H×W and the corresponding label maps ysi ∈ {0, 1}C×H×W , where

H and W represent the height and width of the image, respectively and C denotes

the number of classes. The target domain, on the other hand, has N t images Xt =
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{xtj}j∈[Nt] of the same resolution without labels. For each image xsi in the source

domain, we randomly select one sample xtj from the target domain (we use one image

here for the ease of description, but it can be a set of images as will be shown in

experiments). A synthesized image x̂si is generated with the content of xsi and style

of xtj by channel-wise alignment of feature statistics. This image is then fed into

a segmentation network, where domain shift in high-level feature maps is further

minimized for segmentation.

In the following, we first revisit channel-wise alignment (Sec 6.3.1), and then

we present DCAN (Sec 6.3.2), which contains an image generator, synthesizing new

images to minimize low-level differences like color and texture, and a segmentation

network, refining high-level feature maps that are critical in the final segmentation

task. Finally, we introduce the learning strategy (Sec. 6.3.3).

6.3.1 Channel-wise Feature Alignment

The mean and standard deviation of each channel in CNN feature maps have

been shown to capture the style information of an image [145, 146, 147], and hence

channel-wise alignment of feature maps is adopted for fast style transfer with a

simple instance normalization step. Here, due to its effectiveness and simplicity, we

use adaptive instance normalization [147], to match the mean and standard deviation

of images from two different domains. In particular, given feature maps F s
i and F t

j

of the same size RĈ×Ĥ×Ŵ (Ĉ, Ĥ, Ŵ represents the channel, height and width

respectively) from the source and target domain, adaptive instance normalization h
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produces a new representation of the source image as:

F̂ s
i =h(F s

i , F
t
j ) = σ(F t

j )

(
F s
i − µ(F s

i )

σ(F s
i )

)
+ µ(F t

j ), (6.1)

µc(F ) =
1

ĤŴ

Ĥ∑
h=1

Ŵ∑
w=1

Fchw, σ
2
c (F ) =

1

ĤŴ

Ĥ∑
h=1

Ŵ∑
w=1

(Fchw − µc(F ))2,

where µc and σc denotes mean and variance across spatial dimensions for the c-

th channel. This simple operation normalizes features of a source image to have

similar statistics with those of a target image for each channel, which is appealing

for segmentation tasks, since it is spatially invariant, i.e., relative locations of pixels

are fixed. In addition, such channel-wise alignment ensures semantic information

like attributes encoded in different channels [144] is processed independently. In

our work, we adopt channel-wise feature alignment in both our image generator for

synthesizing photo-realistic samples, and segmentation network to refine features

used for segmentation. Note that channel-wise feature alignment is generic and can

be plugged into different layers of networks.

6.3.2 Dual Channel-wise Alignment Networks

Image generator. Our image generator contains an encoder and a decoder with

channel-wise alignment in between. More specifically, the encoder, denoted as fgen,

is truncated from a pre-trained VGG19 network [57] by taking layers up till relu4.

We fix the weights of the encoder, following [147, 176], to map images xsi and xtj

into fixed representations: F s
i = fgen(xsi ) and F t

j = fgen(xtj), respectively. F s
i is
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further normalized to produce a new representation F̂ s
i according to Eqn. (6.1).

Given the aligned source representation, a decoder, represented by ggen, is applied

to synthesize a new image x̂si = ggen(F̂ s
i ), in the style of samples from the target set.

This is achieved by minimizing the following image generation loss function:

`gen = ‖fgen(x̂si )− F̂ s
i ‖2 +

4∑
l=1

||G(f lgen(x̂si ))−G(f lgen(xtj))||2. (6.2)

Here, the first term is the content loss measuring the discrepancies between features

from the stylized image x̂si and the aligned features of the source image (weights

of fgen are fixed), forcing the synthesized image to contain the same contents as

the original one. The second term matches the style information, by penalizing

the differences of Gram matrices between x̂si and the target image xtj using features

from the first four layers (with l denoting the layer index) in the encoder [171]. More

specifically, given a reshaped feature map F with its original channel, height and

width being Ĉ, Ĥ, Ŵ respectively, the gram matrix can be computed as:

G(F ) =
ĤŴ∑
k=1

FikFjk ∈ RĈ×Ĉ , F ∈ RĈ×ĤŴ .

Segmentation network. A new image x̂si synthesized with our generator, resem-

bling target samples with similar low-level details like color, texture, lighting, etc.,

is ready for semantic segmentation. Instead of sending x̂si to any off-the-shelf seg-

mentation engine for the task, we leverage the target style image xtj once more to

calibrate features of x̂si with channel-wise alignment, such that they possess similar
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statistics and its spatial information is preserved for segmentation. Here, the intu-

ition is to remove undesired mismatches in higher-level feature maps that might still

exist after minimizing low-level differences in the first stage. Therefore, DCAN ex-

plicitly performs another round of alignment in the segmentation network, refining

features tailored for pixel-level segmentation. To this end, we divide a fully convo-

lutional network (FCN) based model into an encoder fseg and a decoder gseg, with

alignment in between. In particular, the segmentation decoder produces a predic-

tion map: psi = gseg(h(fseg(x̂
s
i ), fseg(x

t
j))) and the segmentation loss `seg takes the

form:

`seg = −
H×W∑
m=1

C∑
c=1

ymci log(pmci ), (6.3)

which is essentially a multi-class cross-entropy loss summed over all pixels (super-

script s denoting the source domain is omitted here). Note that state-of-the-art

segmentation networks like DeepLab [177], FCN [178], PSPNet [179], GCN[180],

etc., are usually built upon top-performing models on ImageNet like VGG [63] or

ResNet [16]; these networks differ in depth but have similar configurations, i.e., five

groups of convolution. In this case, we utilize the first three convolution groups

from a segmentation model as our encoder and the remaining part as the decoder.

For encoder-decoder based segmentation networks like SegNet [181], the simple idea

could be directly applied.

In summary, DCAN works in the following way: given a source image, a target

image is randomly selected whose style information is used for dual channel-wise
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alignment in both image synthesis and segmentation phases. The image generator

first synthesizes a new image on-the-fly to appear similar as samples from the target

domain, reducing low-level domain discrepancies in pixel space (e.g., color, texture,

lighting conditions, etc.), which is further input into the segmentation network. In

the segmentation model, features from the synthesized image are further normalized

specific to the sampled target image while preserving spatial structures and semantic

information before producing label maps.

At test time, a novel image from the target domain is input into the segmenta-

tion network (segmentation encoder and then decoder) to predict its semantic map.

The channel-wise feature alignment in the segmentation network is turned off since

the network is already trained to match the feature statistics between two domains

and thus can be directly applied for testing as shown in Figure 6.2.

6.3.3 Optimization

One could train the framework by selecting each sample in the source domain

and normalizing it with the style information of each image in the target domain,

which leads to N t copies of the original image; the new dataset X̂s with the size of

N sN t can then be used for training by minimizing:

L =
1

N s

Ns∑
i=1

1

N t

Nt∑
j=1

(`seg(x
s
i ,x

t
j,y

s
i ; Θseg) + λ`gen(xsi ,x

t
j; Θgen)), (6.4)

where Θseg and Θgen denote the parameters for the segmentation network and the

image generator, respectively, and λ balances the two losses. However, enumerating
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all targets would be computationally expensive, as the cost grows linearly with the

number of images in the target domain. It is worth noting that when there are

infinite target images, Eqn (6.4) can be re-written as:

L =
1

N s

Ns∑
i=1

Ext
j∼Xt [`seg(x

s
i ,x

t
j,y

s
i ; Θseg) + λ`gen(xsi ,x

t
j; Θgen)]. (6.5)

Here, the expected mean can be computed by stochastic sampling during training.

The intuition is to introduce “uncertainties” to the learning processes as opposed

to summing over all target styles deterministically, making the derived model more

robust to noise and to generalize better on the target domain. It is a type of regular-

ization similar in spirit to SGD for fast convergence [182], stochastic depth [31] and

dropout [29, 183, 184]. Another way to view this is randomized data augmentation

to improve generalization ability [56, 57]. Unlike PixelDA [140] which generates new

samples conditioned on a noise vector, we augment data using feature statistics of

images randomly sampled from the target domain. It is also worth noting that the

idea of sampling is in line with stochastic gradient descent, which loops over the

training set by sampling batches of images, and hence can be easily implemented in

current deep learning frameworks.

6.4 Experiments

In this section, we first introduce the experimental setup and implementation

details. Then, extensive experimental results are presented to demonstrate the ef-
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fectiveness of our method. Finally, an ablation study is conducted to evaluate the

contribution of different components of DCAN.

6.4.1 Experimental Setup

Datasets and evaluation metrics. We train DCAN on two source datasets,

Synthia [150] and Gta5 [151] respectively, and then evaluate the models on

Cityscapes [152]. Cityscapes is a real-world dataset, capturing street scenes

of 50 different cities, totaling 5, 000 images with pixel-level labels. The dataset is

divided into a training set with 2, 975 images, a validation set with 500 images and

a testing set with 1, 525 images. Synthia is a large-scale synthetic dataset auto-

matically generated for semantic segmentation of urban scenes. As in [139, 143], we

utilize Synthia-Rand-Cityscapes, a subset that contains 9, 400 images paired

with Cityscapes, sharing 16 common classes. We randomly select 100 images for

validation and use the remaining 9, 300 images for training. Gta5 contains 24, 966

high-resolution images, automatically annotated into 19 classes. The dataset is ren-

dered from a modern computer game, Grand Theft Auto V, with labels fully com-

patible with those of Cityscapes. We randomly pick 1, 000 images for validation

and use the remaining 23, 966 images for training.

Following [139, 143], to train our model, we utilize labeled images from the

training set of either Synthia or Gta5, as well as unlabeled images from the training

set of Cityscapes serving as references for distribution alignment. Then we evalu-

ate the segmentation model on the validation set of Cityscapes, and report mean
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intersection-over-union (mIoU) to measure the performance. These two adaptation

settings are denoted as Synthia → Cityscapes and Gta5 → Cityscapes,

respectively.

Network architectures. For the image generator, its encoder is based on a VGG19

network. The architecture of the decoder is illustrated below. It takes an aligned

feature representation to synthesize a new image. The architecture gradually reduces

the number of channels while increasing the resolution of feature maps layer by layer,

i.e., the reverse process of the encoder. Therefore, the number of convolutional layers

used here is similar to that in the encoder (truncated from VGG19 till the relu4

layer).
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Figure 6.2: Architecture of the decoder in the image generator.

To verify the effectiveness of DCAN in state-of-the-art segmentation networks,

we experiment with three top-performing architectures, FCN-8s-VGG16 [178], FCN-

8s-ResNet101, and PSPNet [179]. In particular, FCN8s-VGG16 and FCN8s-ResNet101

respectively adapt a pre-trained VGG16 and a ResNet101 network into fully convo-

lutional networks and use skip connections for detailed segmentations. PSPNet is

built upon a ResNet50 model with a novel pyramid pooling module to obtain rep-
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resentations of multiple sub-regions for per-pixel prediction [179]. These networks

are pre-trained on ImageNet.

Implementation details. We adopt PyTorch for implementation and use SGD as

the optimizer with a momentum of 0.99. The learning rate is fixed to 1e − 3 for

both FCN8s-ResNet101 and PSPNet, and 1e − 5 for FCN8s-VGG16. We adopt a

batch size of three and optimize for 100, 000 iterations, and we fix λ to 0.1. Given

each sample in the training set, we randomly sample 2 images and 1 image from

the target image set for experiments on Synthia and Gta5 respectively. This is to

achieve efficient training on Gta5, for its size is three times larger than Synthia,

and we will analyze the effect of the number of sampled images below. We use a

crop of 512×1024 during training, and for evaluation we upsample the prediction

map by a factor of 2 and then evaluate mIoU.

6.4.2 Main Results

We compare DCAN to state-of-the-art methods on unsupervised domain adap-

tation for semantic segmentation, including “FCN in the wild” [139] and “Curricu-

lum Adaptation” [143]. In particular, FCN in the wild uses an adversarial loss

to align fully connected layers (adapted to convolution layers) of a VGG16 model,

and additionally leverages multiple instance learning to transfer spatial layout [139].

Curriculum Adaptation infers properties of the target domain using label distribu-

tions of images and superpixels [143]. The results of Synthia → Cityscapes and

Gta5 → Cityscapes are summarized in Table 6.1.
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Source [139] A/d 6.40 17.7 29.7 1.20 0.00 15.1 0.00 7.20 30.3 66.8 51.1 1.50 47.3 3.90 0.10 0.00 17.4
[139] A/d 11.5 19.6 30.8 4.40 0.00 20.3 0.10 11.7 42.3 68.7 51.2 3.80 54.0 3.20 0.20 0.60 20.2 2.80

Source [143] A 5.60 11.2 59.6 8.00 0.50 21.5 8.00 5.30 72.4 75.6 35.1 9.00 23.6 4.50 0.50 18.0 22.0
[143] A 65.2 26.1 74.9 0.10 0.50 10.7 3.50 3.00 76.1 70.6 47.1 8.20 43.2 20.7 0.70 13.1 29.0 7.00

Source A 10.8 11.4 66.6 1.60 0.10 16.9 5.50 14.1 74.2 76.2 46.0 11.5 45.4 15.1 6.00 13.4 25.9 -
DCAN A 79.9 30.4 70.8 1.60 0.60 22.3 6.70 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4 9.5

Source B 57.9 17.0 72.7 0.20 0.00 10.4 0.00 0.00 73.5 75.4 37.8 9.30 59.3 21.7 0.40 12.3 28.0
DCAN B 81.5 33.4 72.4 7.90 0.20 20.0 8.60 10.5 71.0 68.7 51.5 18.7 75.3 22.7 12.8 28.1 36.5 8.5

Source C 56.0 24.6 76.5 5.00 0.20 19.0 5.70 7.80 77.5 78.9 44.7 7.70 35.3 7.90 1.50 24.0 29.5
DCAN C 82.8 36.4 75.7 5.08 0.06 25.8 8.04 18.7 74.7 76.9 51.1 15.9 77.7 24.8 4.11 37.3 38.4 8.9

A 96.4 70.3 85.9 44.4 35.8 31.5 41.5 54.2 87.5 88.9 64.1 40.8 88.5 66.1 35.5 60.3 62.0 -
Oracle B 97.3 76.7 88.1 44.4 46.9 35.3 44.5 55.9 88.6 91.2 67.7 41.6 89.9 73.3 44.7 63.1 65.6 -

C 97.8 78.6 89.6 56.7 57.8 39.9 61.3 65.2 89.9 91.5 73.4 56.0 89.9 84.1 54.2 69.5 72.2 -

Gta5 →Cityscapes
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Source [139] A/d 31.9 18.9 47.7 7.40 3.10 16.0 10.4 1.00 76.5 13.0 58.9 36.0 1.00 67.1 9.50 3.70 0.00 0.00 0.00 21.2
[139] A/d 70.4 32.4 62.1 14.9 5.40 10.9 14.2 2.70 79.2 21.3 64.6 44.1 4.20 70.4 8.00 7.30 0.00 3.50 0.00 27.1 5.90

Source [143] A 18.1 6.80 64.1 7.30 8.70 21.0 14.9 16.8 45.9 2.40 64.4 41.6 17.5 55.3 8.40 5.0 6.90 4.30 13.8 22.3
[143] A 74.9 22.0 71.7 6.00 11.9 8.40 16.3 11.1 75.7 13.3 66.5 38.0 9.30 55.2 18.8 18.9 0.00 16.8 16.6 28.9 6.6

Source A 72.5 25.1 71.2 6.60 13.4 12.3 11.0 4.70 76.1 16.4 67.7 43.1 8.00 70.4 11.3 4.80 0.00 13.9 0.40 27.8
DCAN A 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.30 17.0 6.70 36.2 8.4

Source B 44.5 12.7 71.1 9.40 17.7 15.3 24.3 11.9 80.5 14.3 80.0 50.3 7.70 45.4 30.5 30.8 5.50 9.80 3.50 29.8
DCAN B 88.5 37.4 79.3 24.8 16.5 21.3 26.3 17.4 80.8 30.9 77.6 50.2 19.2 77.7 21.6 27.1 2.70 14.3 18.1 38.5 8.7

Source C 69.9 22.3 75.6 15.8 20.1 18.8 28.2 17.1 75.6 8.00 73.5 55.0 2.90 66.9 34.4 30.8 0.00 18.4 0.00 33.3
DCAN C 85.0 30.8 81.3 25.8 21.2 22.2 25.4 26.6 83.4 36.7 76.2 58.9 24.9 80.7 29.5 42.9 2.50 26.9 11.6 41.7 8.4

A 96.4 70.3 85.9 44.4 35.8 31.5 41.5 54.2 87.5 51.9 88.9 64.1 40.8 88.5 55.8 66.1 44.9 35.5 60.3 60.2 -
Oracle B 97.3 76.7 88.1 44.4 46.9 35.3 44.5 55.9 88.6 55.9 91.2 67.7 41.6 89.9 60.1 73.3 54.4 44.7 63.1 64.2 -

C 97.8 78.6 89.6 56.7 57.8 39.9 61.3 65.2 89.9 58.9 91.5 73.4 56.0 89.9 75.8 84.1 78.8 54.2 69.5 72.0 -

Table 6.1: Results and comparisons on Cityscapes when adapted from
Synthia and Gta5, respectively. Here, “Source” denotes source only methods,
“Oracle” denotes results from supervised training, and A, B, C represent FCN8s-
VGG16, FCN8s-ResNet101 and PSPNet. A/d uses dilation in VGG16 for segmen-
tation.

We observe that these domain adaptation methods, although different in de-

sign, can indeed lead to improvements over the source only method (denoted as

source), which simply trains a model on the source domain and then directly ap-

plies it to the target domain. In particular, DCAN outperforms its corresponding
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source only baseline with clear margins, around 8 and 9 absolute percentage points,

using all three different networks on both datasets. This confirms the effectiveness

of DCAN, which not only reduces domain differences for improved performance

but also is general for multiple network architectures. Furthermore, with PSPNet,

DCAN achieves 41.7% and 38.4% on Cityscapes when adapted from Gta5 and

Synthia, respectively. Compared to [139, 143], with the same backbone VGG16

architecture, DCAN offers the best mIoU value as well the largest relative mIoU

gain (9.5% and 8.4% trained from Synthia and Gta5 respectively). Note that

although the backbone network is the same, source only baselines are different due

to different experimental settings. A dilated VGG16 network is adopted in [139]

and the network is additionally pre-trained on Pascal-Context in [143]. In ad-

dition, it uses a crop size of 320× 640 during training. Our model is initialized on

ImageNet and we choose 512× 1024 for training since large resolution offers better

performance as observed in [179], which is also consistent with state-of-the-art su-

pervised methods on Cityscapes [152]. It is worth noting that DCAN improves a

stronger baseline by 36% relatively (25.9% to 35.4%). With the same image size as

in [143], DCAN improves the source only baseline from 23.6% to 33.0% (v.s., 22.0%

to 29.0% in [143]; see Table 6.2).

Among three different networks, PSPNet gives the best results on both datasets,

mainly resulting from the pyramid pooling module that considers difference scales.

Figure 6.3 illustrates sampled results of PSPNet under the Gta5 → Cityscapes

setting, and its comparison with the source only method. Comparing across datasets,

models trained on Gta5 produce better accuracies than those learned from Syn-
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Test image Source only prediction Ours Ground truth labels

Figure 6.3: Sampled prediction results of PSPNet and its corresponding source
only model under the Gta5 → Cityscapes setting using testing images from
Cityscapes. Our model effectively improves the generalization ability of the
trained segmentation network.

thia. The reasons are two-folds: (1) a large number of images from Synthia

are rendered at night, incurring significant domain differences since images from

Cityscapes are captured during day time; (2) there are more training samples in

Gta5. In addition, oracle results, which are produced with traditional supervised

training using annotations from the target domain, are also listed for reference.

We can see there is still significant performance gaps between domain adaptation

methods and oracle supervised training, highlighting the challenging nature of this

problem.
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Synthia →Cityscapes

Resolution Method mIoU gain

256×512
Source 21.2
DCAN 29.6 8.4

320×640
Source 23.6
DCAN 33.0 9.4

512×1024
Source 25.9
DCAN 35.4 9.5

Table 6.2: Results of FCN8s-
VGG16 using three different
image resolutions.

Synthia →Cityscapes

Method mIoU

CycleGAN [3] 30.4
CycleGAN w. FeatureAlignment 31.7

UNIT [176] 31.6
UNIT w. FeatureAlignment 32.7

DCAN w/o FeatureAlignment 33.8
DCAN (two stage) 33.7
DCAN (end-to-end) 35.4

Table 6.3: Training with and without fea-
ture alignment in FCN8s-VGG16 using
different image synthesis methods.

6.4.3 Discussions

In this section, we run a number of experiments to analyze DCAN in the Syn-

thia → Cityscapes setting, and provide corresponding results and discussions.

Image resolution. As previously mentioned, top performing approaches on Cityscapes

typically use a high resolution for improved performance [152]. For example, GCN

and FRRN utilize a resolution of 800× 800 [180] and 512× 1024 [185], respectively.

Here, we report the results of DCAN adapted from Synthia using FCN8s-VGG16

with three different resolutions, and compare with the corresponding source only

method in Table 6.2. DCAN offers significant performance gains for all resolutions,

and a larger resolution is indeed better for unsupervised domain adaptation.

Different image synthesis methods. We compare with two different image

synthesis methods: (1) CycleGAN [3] and (2) UNIT [4], both of which attempt to

learn a distribution mapping function between two domains. Once the mapping
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Source image (a) Source image (b) Target image (c) Target image (d)

Ours (a to c) Ours (a to d) CycleGAN UNIT

Ours (b to c) Ours (b to d) CycleGAN UNIT

Figure 6.4: Images from Synthia synthesized in the style of Cityscapes
with CycleGAN [3], UNIT [4] and DCAN.

function is learned, images from the source domain can be translated to the style

of the target domain. Therefore, we use the translated images from the source

domain to train the segmentation network. Table 6.3 presents the results. For fair

comparisons, we compare them under two settings, with and without the channel-

wise feature alignment in the segmentation network. DCAN achieves better results

than both GAN-based image synthesis methods in both scenarios. To justify the

advantage of an end-to-end framework, we also compare with a two-stage training

strategy, which simply trains a segmentation network using pre-synthesized images

without end-to-end training. In this case, image synthesis is not optimized using

gradients from the segmentation network. DCAN improves the two-stage training

by 1.7% mIOU, demonstrating the importance of guiding the synthesis process with

useful information from the final task.
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Figure 6.4 further compares images produced by different synthesis methods.

DCAN is able to generate images that conform to the style of images from the

target set, containing fewer artifacts than CycleGAN and UNIT. In addition, both

CycleGAN and UNIT seek to align distributions at a dataset level, and once the

mapping is learned, the translation from the source to the target is fixed (a fixed

output given an input image). Learning such a transformation function on high

resolution images is a non-trivial task and might not perfectly cover all possible

variations. Instead, DCAN performs image translation at an instance level, and in

the regime of stochastic sampling, it is able to cover sufficient styles from the target

set for distribution alignment. It is also worth noting that feature alignment can

improve segmentation results regardless of synthesis methods. We also experimented

with other GAN-based approaches like PixelDA [140] for image synthesis; however,

conditioning on a noise vector rather than label maps [186] fails to produce photo-

realistic images in high resolution.

Channel-wise feature alignment for segmentation. We now analyze the effect

of channel-wise alignment in the segmentation network (Table 6.4) with FCN8s-

VGG16. We compare with Adversarial Discriminative Domain Adaptation [138],

which leverages an adversarial loss to make features from two domains indistinguish-

able without considering spatial structures explicitly. DCAN outperforms ADDA by

1.4%, and also converges faster during training. We also implemented MMD [137]

and CORAL [136] loss to align features, but their results are worse than source only

methods. This is consistent with observations in [143]. We further investigate where
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to align in the segmentation network and found that alignment after the Conv3 layer

gives the best results, possibly due to it contains both sufficient number of chan-

nels and relatively large feature maps. In addition, aligning features maps with

more detailed spatial information (Conv2 and Conv4) is also better than Conv6 and

Conv7 (convolution layers adapted from fully connected layers, whose feature maps

are smaller). This confirms the importance to consider detailed spatial information

explicitly for alignment.

Synthia →Cityscapes

Alignment Method mIoU

ADDA [138] 34.0

Ours-w/o alignment 33.8

Ours–Conv2 34.0
Ours–Conv4 34.4

Ours–Conv6 33.2
Ours–Conv7 32.7

Ours–Conv3 35.4

Table 6.4: Comparisons of different feature alignment methods in the seg-
mentation network.

1 2 4 8
Number of target images sampled

31.0

32.0

33.0

34.0

35.0

36.0

37.0

38.0

m
IO

U

FCN8s-VGG16
FCN8s-ResNet101
PSPNet

Figure 6.5: Effect of using different number of target images for each train-
ing sample.
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Number of target images sampled. We also evaluate how the number of sampled

target images affects the performance. Since enumerating around 3, 000 samples for

each image in the training set is computationally prohibitive, we create a pseudo-

target set with 8 images randomly selected from 8 cities in Cityscapes. This is

to ensure there are variations among the targets and it is computationally feasible

for enumerating all targets. We then analyze the effect of the number of target

images used during training by randomly selecting 1, 2, 4 samples from Synthia.

Figure 6.5 presents the results. We observe that stochastically selecting from the

target set is better than using all of them for all three networks. This might result

from two reasons: (1) translating one image to multiple different representations

in one-shot is hard to optimize; (2) stochastic sampling acts as regularization to

improve generalization, which is similar to the case that stochastic gradient is better

than full batch gradient descent. Interestingly, for PSPNet and FCN8s-ResNet101,

sampling one image achieves competitive results, and this is very appealing when

the number of samples in the target domain is limited.

6.5 Conclusion

In this chapter, we have presented, DCAN, a simple yet effective approach

to reduce domain shift at both pixel-level and feature-level for unsupervised scene

adaptation. In particular, our framework leverages channel-wise feature alignment

in both the image generator for synthesizing photo-realistic samples, appearing as

if drawn from the target set, and the segmentation network, which simultaneously
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normalizes feature maps of source images. In contrast to recent work that makes

extensive use of adversarial training, our framework is lightweight and easy to train.

We conducted extensive experiments by transferring models learned on synthetic

segmentation datasets to real urban scenes, and demonstrated the effectiveness of

DCAN over state-of-the-art methods and its compatibility with modern segmenta-

tion networks.
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Chapter 7: Conclusions and Future Directions

We presented approaches for image and video understanding with constrained

computational resources and annotation resources, given that very deep networks

are resource intensive for real-world deployment and they require substantial amount

of annotations to train.

To achieve accurate recognition when computational budget is limited, we

draw inspiration from human perception systems, where glances of scenes and easy

objects are sufficient to get an overview and more attention will be paid to objects

with occlusion. We developed BlockDrop, AdaFrame, LiteEval, all of which are con-

ditional computation frameworks that dynamically allocate computational resources

conditioned on inputs. We believe it is therefore important to incorporate dynamic

computation as a modularized component in modern deep models such that comput-

ing resources can be adaptively allocated on a per-sample basis. With the dynamic

computation component, the trade-off between accuracy and computational cost

can be balanced, offering flexibilities in state-of-the-art frameworks conditioned on

computing resources. It is a desirable property for a variety of tasks, including

image classification, object detection, semantic segmentation, etc., when deploying

deep models to real-world applications. In addition, dynamic computation selects
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different paths (modules) conditioned on inputs for efficient inference and hence is

complementary to model compression techniques that prune parameters.

Furthermore, videos capture appearance of objects (and people) and how those

evolve over time, and are naturally multimodal. In addition to adaptively selecting

relevant frames for fast recognition, it would be interesting to study conditional

computation methods for multiple modalities. For instance, if RGB information in

static frames is not sufficient, one can also dynamically extract information from

the audio modality on-the-fly based on input videos as well as computing resources.

In addition, to mitigate the need of collecting manual annotations, we demon-

strated context information in images and shared information across domains are

powerful for deriving robust feature representations. A promising future direction

is to make use of class hierarchy as a knowledge base, whether defined or learned,

to enrich information when learning representations. For example, both “Husky”

and “Chihuahua” share not only commonalities in the “dog” class, but also generic

information with other types animals like the “cat” class. Class hierarchy is essen-

tially a graph, in which information can be propagated among related classes as a

way to reduce the number of samples needed for training, and can possibly scale

up current approaches to tens of thousands of categories in real-world. The idea of

using a graph to measure proximity can be further extended to unsupervised domain

adaptation. One can construct a graph estimating the distances of synthetic and

realistic samples at the image-level or super-pixel level, and then the graph could

be used to guide the adaptation process by dynamically selecting the near regions

or images of a target to transfer.
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In addition, we, as humans, are able to gain knowledge and perform new

tasks by watching videos. It would be intriguing for computer vision systems to

learn from the massive amounts of online videos that contain abundant multimodal

information, with an aim to derive robust and generic feature representations for

other tasks, and ultimately to acquire spatial-temporal structures and commonsense

knowledge.
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Invertible conditional gans for image editing. In NIPS Workshop, 2016.

[174] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-
time style transfer and super-resolution. In ECCV, 2016.

[175] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Demystifying neural
style transfer. In IJCAI, 2018.

[176] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan
Yang. Universal style transfer via feature transforms. In NIPS, 2017.

[177] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE TPAMI, 2018.

[178] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015.

[179] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid scene parsing network. In CVPR, 2017.

[180] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large ker-
nel matters – improve semantic segmentation by global convolutional network.
In CVPR, 2017.

[181] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation. IEEE
TPAMI, 2017.
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