
ABSTRACT

Title of dissertation: Quantum Compiling Methods for
Fault-Tolerant Gate Sets of
Dimension Greater than Two

Andrew Glaudell
Doctor of Philosophy, 2019

Dissertation directed by: Dr. Jacob M. Taylor
Department of Physics

Fault-tolerant gate sets whose generators belong to the Clifford hierarchy form

the basis of many protocols for scalable quantum computing architectures. At the

beginning of the decade, number-theoretic techniques were employed to analyze

circuits over these gate sets on single qubits, providing the basis for a number of

state-of-the-art quantum compiling algorithms. In this dissertation, I further this

program by employing number-theoretic techniques for higher-dimensional gate sets

on both qudit and multi-qubit circuits.

First, I introduce canonical forms for single qutrit Clifford+T circuits and

prove that every single-qutrit Clifford+T operator admits a unique such canonical

form. I show that these canonical forms are T -optimal and describe an algorithm

which takes as input a Clifford+T circuit and outputs the canonical form for that

operator. The algorithm runs in time linear in the number of gates of the circuit. Our

results provide a higher-dimensional generalization of prior work by Matsumoto and

Amano who introduced similar canonical forms for single-qubit Clifford+T circuits.

Finally, we show that a similar extension of these normal forms to higher dimensions

exists, but do not establish uniqueness.

Moving to multi-qubit circuits, I provide number-theoretic characterizations

for certain restricted Clifford+T circuits by considering unitary matrices over sub-

rings of Z[1/
√

2, i]. We focus on the subrings Z[1/2], Z[1/
√

2], Z[1/
√
−2], and

Z[1/2, i], and we prove that unitary matrices with entries in these rings correspond

to circuits over well-known universal gate sets. In each case, the desired gate set is

obtained by extending the set of classical reversible gates {X,CX,CCX} with an

analogue of the Hadamard gate and an optional phase gate.

I then establish the existence and uniqueness of a normal form for one of these

gate sets, the two-qubit gate set of Clifford+Controlled Phase gate CS. This normal

form is optimal in the number of CS gates, making it the first normal form that is

non-Clifford optimal for a fault tolerant universal multi-qubit gate set. We provide

a synthesis algorithm that runs in a time linear in the gate count and outputs the

equivalent normal form. In proving the existence and uniqueness of the normal form,

we likewise establish the generators and relations for the two-qubit Clifford+CS

group. Finally, we demonstrate that a lower bound of 5 log2(1/ε) + O(1) CS gates

are required to ε-approximate any 4× 4 unitary matrix.

Lastly, using the characterization of circuits over the Clifford+CS gate set and

the existence of an optimal normal form, I provide an ancilla-free inexact synthesis

algorithm for two-qubit unitaries using the Clifford+SC gate set for Pauli-rotations.

These operators require 6 log2(1/ε)+O(1) CS gates to synthesize in the typical case

and 8 log2(1/ε) +O(1) in the worst case.

Quantum Compiling Methods for Fault-Tolerant Gate Sets of
Dimension Greater than Two

by

Andrew Glaudell

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Dr. Jacob M. Taylor, Advisor
Professor Andrew Childs, Chair
Dr. Carl Miller
Professor Norbert Linke
Professor Lawrence Washington

c© Copyright by
Andrew Glaudell

2019

Acknowledgments

The work contained herein is a testament to the fantastic support I was for-

tunate to receive before and during graduate school. This space is not large enough

to thank the countless individuals who have made an impact on my life, but rest

assured that those people not mentioned here remain in my thoughts. Among these,

I’d like to give a shout-out to the plethora of artists and musicians, especially Mike

Scalzi and The Lord Weird Slough Feg, for providing the best soundtrack to grad

school anyone could want.

First, I would like to thank my parents, Ken and Linda Glaudell, for providing

such a sturdy bedrock for me and going above and beyond to support my interests.

You two made many sacrifices to give your kids their best shot in life. My sister

Allie has likewise been there with a laugh and a gentle smile any time that I needed

one.

My interest in learning owes a great debt to a number of former educators.

I’d like to single-out Mr. Kroening, Mme. Kosmider, Mr. Rose, and Ms. Frank

for being phenomenal teachers for whom I will forever be grateful. From my under-

graduate studies, I would not be where I am now without the valuable guidance of

my former advisors Prof. Wendy Crone and Prof. Maxim Vavilov. I’d also like to

give special thanks to Dave Grierson for being such a funny and insightful resource

in lab.

My current advisor, Prof. Jacob Taylor, has been such a great asset in pushing

ii

my scientific capabilities, writing efforts, and professional development. I am also

indebted to the Taylor group post-docs Michael Gullans, Vanita Srinavasa, Shelby

Kimmel, Jianxin Chen, Justyna Zwolak, Xingyao Wu, and Dan Carney and graduate

students Dvir Kafri, Xunnong Xu, Steve Ragole, Chiao-Hsuan Wang, Shangjie Guo,

Minh Tran, Brittany Richman, and Jonathon Kunjummen. I would especially like

to stress how much my colleague and friend Neil Julien Ross, formerly a post-doc

at UMD, has shaped my research interest.

To all my friends from previous stops along my life including Cameron Gonring,

Jon Gill, Eric Bowron, Adam Reinicke, the entire “Manventure” crew, and all my

former roommates: thank you for being the best group of people imaginable with

whom to laugh along. To the friends I met in grad school including Joe Hart, Chris

Eckberg, Clayton Crocker, Jaime David Campos-Wong, the Seven Seas conglomer-

ate, the UMD Physics intramural squads, the Physics 131 teaching crew and friends,

and my office mates: you have made what could’ve been one of the most trying times

in my life a great deal more fun than it had any right to be.

Finally, to Mary (and Miska)- you have helped me grow so much in our time

together and pushed me to be both a better graduate student and person. Thank

you for making every single day worth it.

iii

Table of Contents

Acknowledgements ii

Table of Contents iv

List of Tables vii

List of Figures viii

List of Abbreviations x

1 Introduction 1

1.1 Quantum Computing and Quantum Compiling 1

1.2 Applications of Quantum Computing 3

1.2.1 Hidden Subgroup Problem . 3

1.2.2 Unsorted Search of a Database 4

1.2.3 Hamiltonian Simulation . 5

1.2.4 Linear Equation Solving . 5

1.3 Approach to a Scalable Quantum Computer 6

1.4 Notation and Preliminaries . 9

1.4.1 Sequences, Groups and Rings 9

1.4.2 Quantum Circuits . 15

2 Quantum Circuit Synthesis 24

2.1 Problem Statement . 24

2.2 Early Methods – Solovay-Kitaev . 26

2.3 Single Qubit Exact Synthesis – Matsumo-Amano Normal Forms . . . 28

2.4 Multi-Qubit Exact Synthesis – Giles Selinger Algorithm 30

2.5 Approximate Synthesis in Single- and Multi-Qubit Circuits 31

iv

2.6 New Directions and Thesis Outline 33

3 Matsumoto-Amano Normal Forms of Dimension Three 36

3.1 Introduction . 36

3.2 Canonical forms . 38

3.3 Uniqueness of canonical forms . 43

3.3.1 Algebraic preliminaries . 44

3.3.2 The adjoint representation . 47

3.3.3 Uniqueness . 55

3.4 Higher Prime Dimensions . 72

3.5 Conclusion . 77

4 Restricted Clifford + T Circuit Synthesis 79

4.1 Introduction . 79

4.2 Overview . 83

4.3 Rings and Matrices . 85

4.3.1 Rings . 85

4.3.2 Matrices . 88

4.4 Circuits . 89

4.5 Number-Theoretic Characterizations 95

4.5.1 The D case . 95

4.5.2 The D
[√

2
]

case . 101

4.5.3 The D
[√

-2
]

case . 103

4.5.4 The D[i] case . 106

4.6 Conclusion . 109

5 Clifford + Controlled Phase Exact Synthesis 111

5.1 Introduction . 111

5.2 Generators . 112

5.3 Exact Synthesis . 118

5.4 Structure of Optimal Normal Forms 133

5.5 Conclusion . 153

6 Clifford + Controlled Phase Inexact Synthesis 155

v

6.1 Introduction . 155

6.2 Overview of Approximation Scheme 155

6.3 Unitary Templates and Lagrange Four-Squares 158

6.4 Finding Approximations with Small Least Denominator Exponent . . 159

6.4.1 Alternate Algorithm for Finding Approximations 162

6.5 Pauli-Rotation Approximations . 172

6.6 Conclusion . 175

7 Conclusion 177

A Software Package for the Clifford + Controlled-Phase Gate Set 179

Bibliography 211

vi

List of Tables

5.1 Every generator and the explicit row pairings they will be used to
reduce under earliest generator ordering. 131

vii

List of Figures

4.1 Some subgroups of U2n(D [ζ]). To the left of the cube, in yellow,
the symmetric group S2n corresponds to circuits over the gate set
{X,CX,CCX}. On the bottom face of the cube, in blue, are gen-
eralized symmetric groups, and on the top face of the cube, in red,
are universal subgroups of U2n(D [ζ]). The edges of the lattice denote
inclusion. The gates labeling the edges are sufficient to extend the
expressive power of a gate set from one subgroup to the next (and no
further). For example, the edge labeled Z going from S2n to U2n(Z)
indicates that adding the Z gate to {X,CX,CCX} produces a gate
set expressive enough to represent every matrix in U2n(Z) (but not
every matrix in U2n(Z [i])). 82

5.1 Proof diagram for the “only if” direction of Lemma 5.4.8. In pane
(a), we observe that the first pair s1 ∈ Vk cannot be ∈ Vk−1. In pane
(b), we note that a pair s2 ∈ Vk must send exactly one element to s′1
and one elsewhere. Finally, in pane (c) we see that s3 ∈ Vk cannot
be paired in Vk−1, restricting the final outcome to a 2× 2× 2 pairing
with Vk ∩ Vk−1 = ∅ and Wk ∩Wk−1 = ∅. 139

5.2 Proof diagram for the “if” direction of Lemma 5.4.8. In pane (a),
we observe that the first pair s′1 ∈ Vk+1 cannot be ∈ Vk and likewise
cannot be the 2-pairing in a 2 × 4 pairing. In pane (b), we apply
the same logic to s′2 ∈ Vk+1, noting it may be part of a 4-pairing.
Finally, in pane (c) we see that s′3 ∈ Vk+1 has the same restrictions,
forcing the final outcome to be a 2 × 2 × 2 pairing with V∩Vk+1 = ∅
and Wk ∩Wk+1 = ∅. 140

viii

5.3 Proof diagram for the “only if” direction of Lemma 5.4.9. In pane
(a), we observe that the pair s1 ∈ Vk cannot be ∈ Vk−1. In pane (b),
we note that the pair s3 ∈ Vk must be paired in Vk−1 and cannot be
a 2-pair in a 2 × 4 pairing. In pane (c1), we see that if Vk−1 is a
2×2×2 pairing, the resulting sets in Vk−1 = Wk−1 must be such that
Wk−1 ⊂ E . In pane (c2), if Vk−1 is a 2 × 4 pairing then we see that
the 2-pair s′1 ∈ E . Under EGO, the remaining pairs of Wk−1 must
then belong to the sets A and B. 143

5.4 Proof diagram for the induction hypothesis of the “if” direction of
Lemma 5.4.9. In pane (a), we observe that s′1 ∈ E which must form
the 2-pair in the 2 × 4 pairing Vk+1 must come from the 4-pairing
∈ Vk. In panes (b) and (c), we form the 4-pairing of Vk+1 from the
remaining elements. Under EGO, s′2 ∈ A and s′3 ∈ B. 144

5.5 Proof diagram for the base case of the “if” direction of Lemma 5.4.9.
In pane (a), we observe that s1 ∈ E must form the 2-pair s′1 in the
2 × 4 pairing Vk+1. In panes (b) and (c), we form the 4-pairing of
Vk+1 from the remaining elements. Under EGO, s′2 ∈ A and s′3 ∈ B. . 144

5.6 Proof diagram for the “only if” direction of Lemma 5.4.10. In pane
(a), we observe that s1 ∈ B|A must not be paired in Vk−1. In pane
(b), we see that s3 ∈ A|B must remain paired in Vk−1. Pane (c1)
establishes that in the case where Vk−1 is a 2×2×2 pairing, then Wk−1

must correspond to one of {S4, · · · ,S9}. In pane (c2), we see that
there can be instances where Vk−1 is a 2× 4 pairing such that Wk−1

must likewise correspond to one of {S4, · · · ,S9}. Finally, in pane
(c2), we show that there can likewise be instances where Vk−1 is a
2× 4 pairing such that Wk−1 must correspond to one of {S1,S2,S3}
with Wk ∩Wk−1 = ∅. 148

5.7 Proof diagram for the induction hypothesis of the “if” direction of
Lemma 5.4.10. In pane (a), we observe that s′1 ∈ B|A which must
form the 2-pair in the 2×4 pairing Vk+1 must come from the 4-pairing
∈ Vk. In panes (b) and (c), we form the 4-pairing of Vk+1 from the
remaining elements. Under EGO, s′2 ∈ E3 and s′3 ∈ A|B. 149

5.8 Proof diagram for the base case of the “if” direction of Lemma 5.4.10.
In pane (a), we observe that s1 ∈ A|B must form the 2-pair s′1 in the
2 × 4 pairing Vk+1. In panes (b) and (c), we form the 4-pairing of
Vk+1 from the remaining elements. Under EGO, s′2 ∈ B|A and s′3 ∈ E3.149

6.1 The acceptable values of α fall in the green region which is a seg-
ment of the unit disk. This region can be contained within a rotated
rectangle which has a width of ε2

8
and a height of approximately ε. . . 160

ix

List of Abbreviations

1 The Identity operator, dimension and type inferred
1n The n× n 1 matrix

(A)
The sequence defined under lexicographic ordering
of set A whose jth element is Aj

C The qudit Clifford group (dimension and
qudit number inferred)

Cn The n qudit Clifford group (dimension inferred)
C + CCX The Clifford and CCX gate set
C + CS The Clifford and CS gate set
C + T The Clifford and T gate set
CS The (non-Clifford) controlled Phase operator

CCX
The (non-Clifford) Toffoli gate for qubits
or the CCSUM gate for dimension p > 3 qudits

CCXa,b:c CCX with explicit controls a and b and target c

CX
The CNOT gate for qubits or the
CSUM gate for dimension p > 3 qudits

CXa:b CX with explicit control a and target b

D Ring of Dyadic Rationals

H The Hadamard gate, a Clifford operator

i The primitive 4th root of unity and imaginary unit

lde Least Denominator Exponent (inferred)
ldeφ Least Denominator Exponent with denominator φ
LLL Lenstra-Lenstra-Lovász (lattice basis reduction algorithm)

Mm×n The set of all m× n matrices
Mm×n(R) Mm×n whose entries belong to the ring R
M [s1; s2] The submatrix of M for rows s1 and columns s2

MA Matsumoto-Amano (normal form)

N Natural numbers (zero inclusive)

P The qudit Pauli group (dimension and
qudit number inferred)

Pn The n qudit Pauli group (dimension inferred)
[[p..q]] The set {p, p+ 1, · · · , q} for integral p, q

Q Ring of Rational numbers

x

R[φ] Ring extension of ring R by φ

S The Phase gate, a Clifford operator

T The qudit (non-Clifford) T gate

Un The group of n× n unitary matrices over C
Un(R) The group of n× n unitary matrices over ring R

ω A primitive pth root of unity (p inferred from context)

X The Pauli X operator

Z The Pauli Z operator
Z Ring of Integers
ζ A primitive pkth root of unity, (p and k inferred from context)

xi

Chapter 1: Introduction

1.1 Quantum Computing and Quantum Compiling

Quantum computing [1,2] is a computing paradigm in which the quantum me-

chanical principles of superposition and entanglement are leveraged in conjunction

with standard computational techniques in an attempt to improve our computing ca-

pabilities [3]. Based on a slew of novel algorithms for quantum computers [4–7], early

attempts at quantifying the computational power of quantum computers seemed to

suggest that these devices could in principle provide an exponential speedup in some

important computational tasks. Further results have only strengthened these hopes

for establishing “quantum supremacy” in practice [8–10]. Indeed, if recent results

hold under scrutiny [11], we may have already crossed that threshold.

Fundamentally, a quantum computation consists of four major subroutines:

(1) fiducial state preparation, (2) unitary evolution with sufficiently noiseless gates,

(3) measurement, and (4) classical post-processing [12]. Complex algorithms [13]

may involve many rounds of these operations and the use of quantum error correction

[14, 15] can increase their intricacy; nonetheless, these four ingredients remain the

sole building blocks of quantum algorithms for any architecture [16–20]. Each poses

major challenges both theoretically and experimentally due to the fickle nature of

1

quantum systems. In this dissertation, we focus on the second of these hurdles –

how we apply the appropriate unitary evolution of a quantum computer when we

are given a gate set G, some target unitary U , and some acceptable tolerance for

error ε.

In classical computing, a compiler is a computer program that takes as input

some “high-level” instructions (a move in a game of Minesweeper, for example)

and outputs an equivalent sequence of instructions which can be carried out on the

physical hardware of the computer [21]. We say that a compiler forms some portion

of the computing stack. For a “full-stack” quantum computer [22], we must develop a

quantum compiler that translates some high-level unitary operation into a sequence

of instructions which are executable by the native architecture [23]. We emphasize

that without a quantum compiler to translate unitaries into a sequence of native

gates for a given architecture, we simply would not know how to perform any of the

quantum algorithms on a real device. Crucially, we want the quantum compiler to

efficiently (say, polylogarithmically in 1/ε) output as short a sequence as possible

that approximately or exactly implements U . We also would like the quantum

compiler to know whether the output is exactly or approximately equivalent to U .

Our work advances all of these capabilities; before we delve headlong into these

problems, we first describe the types of unitary operations we are interested in

implementing, as well as the restrictions placed on the available instruction set for

some hypothetical full-stack quantum computer.

2

1.2 Applications of Quantum Computing

There is an ever-expanding zoo of quantum algorithms which outperform their

classical counterparts [24]. However, boiling down this vast list of algorithms to those

that are both most important historically and most flexible to usage in a wide array

of contexts, we arrive at four major applications: identifying hidden subgroups [25]

(a subclass of which is factoring numbers [5]), unsorted search of a database [26,27],

Hamiltonian simulation [7, 28–34], and linear equation solving [35–37]. We briefly

discuss the importance of these algorithms and the quantum subroutines used in

their implementation according to state-of-the-art algorithms.

1.2.1 Hidden Subgroup Problem

Shor’s Factoring algorithm [5] was one of the foundational linchpins in ce-

menting interest in quantum computing. Though it is perhaps merely a historical

curiosity that quantum computers can efficiently solve the problem underlying one

of the most popular encryption schemes [38], this algorithm along with its gen-

eralized counterpart, the hidden subgroup problem [25], have proven to be vital

cornerstones in our understanding of these devices capabilities. The routine pro-

vides sub-exponential (but super-polynomial) speedup over the best known classical

algorithm [39,40].

At its core, the most basic implementation of Shor’s algorithm uses phase

estimation [41, 42], consisting of two quantum subroutines, to factor some integer

N . The first portion of the routine involves applying a singly-controlled unitary (a

3

gadget for modular exponentiation) which can act on any number of qubits. These

circuits can be constructed efficiently from O(log3N) gates consisting of quantum

versions of the Classical reversible gates NOT, CNOT, and Toffoli. The second

portion involves applying the inverse quantum Fourier transform. This operation is

common among quantum algorithms, and can be implemented approximately using

O(logN log logN) singly-controlled Z-rotations of a qubit and the basis-changing

Hadamard gate.

1.2.2 Unsorted Search of a Database

Grover’s search algorithm [26,27] finds a particular element in some unsorted

set, providing a quadratic speedup over the best possible classical algorithm. While

the improvement is not wholly overwhelming, the underlying principles of a Grover

search have proven to be a vital backbone to many other quantum algorithms.

Implementation of the algorithm involves applying Hausholder reflections about

some target state |x〉 within the search space. Finding a unitary that implements

such a reflection effectively amounts to finding a unitary that can transform |0〉 →

|x〉 and implementation of the fully-controlled n qubit Z operation. The latter

problem can be done using O(n) Toffoli, CNOT, and NOT operations, whereas the

former problem is essentially that of general state-preparation, dependent on the

quantum representation of the state one is searching for.

4

1.2.3 Hamiltonian Simulation

While the two aformentioned problems provide a lot of the machinery for de-

veloping new quantum algorithms, perhaps no quantum algorithm will prove as

useful in the coming years as Hamiltonian simulation. The vast applications in

physics, chemistry, and biology will play a major factor in driving commercial inter-

est in quantum computing. There are essentially four major methods for performing

Hamiltonian simulation – product formulas [7, 28, 29], Taylor series truncation [30],

quantum walks [31], and quantum signal processing [33, 34]. Describing these algo-

rithms in detail is beyond the scope of this dissertation. However, the first three

techniques essentially rely on breaking the simulation unitary into significantly sim-

pler unitaries which act on only a few qubits at a time. Quantum walks and quantum

signal processing use phase estimation as in Section 1.2.1. In both cases, the types

of circuits that need to be implemented are unitaries with support on only a few

qubits.

1.2.4 Linear Equation Solving

Linear equations are so ubiquitous that any improvement to algorithms for

linear systems would be significant. The HHL algorithm [35] manages to do just

this by mapping the problem of linear system solving onto Hamiltonian simulation.

It works by constructing a Hermitian matrix from any invertible matrix and then

using Hamiltonian simulation as a sub-routine in phase estimation to solve any

invertible linear system [35–37]. Moreover, the algorithm requires preparation of a

5

few special input states. Having effective methods to approximate unitaries of the

various forms in Sections 1.2.1 to 1.2.3 therefore suffices to ensure that we can find

approximations to the unitaries used in the linear system problem as well.

1.3 Approach to a Scalable Quantum Computer

The algorithms of Section 1.2 provide instruction sets that tell quantum com-

puters how to solve important problems assuming the quantum computer operates

without error. In reality, quantum computers are inherently noisy devices [43, 44]

– there is simply no way to build a physical qubit that retains its quantum infor-

mation for long enough to perform an arbitrarily long computation. The path to-

wards scalable quantum computing then relies on some level of fault-tolerance [45],

or the ability to mitigate error to arbitrary precision. A long-standing paradigm

exists where fault-tolerance is achieved through two ingredients [46–51]: quantum

error correction and transversality. These are mutually beneficial concepts, with the

caveat that some extra effort [52,53] is required to enable their simultaneous use.

Quantum error correction [15] works by using “extra” Hilbert space to of-

fload any unwanted evolution while protecting the relevant quantum information.

Effectively, some larger-than-necessary Hilbert space on your physical qubits is di-

vided into two subspaces - one encoding the “logical” qubits on which you are

performing your calculations, and one into your “error” subspace. Using quantum

non-demolition measurements, we intermittently project the state of the qubit back

into one of these two subspace completely. Based off of the measurement results, we

6

are able to either (1) conclude that the logical qubit has been projected back into

the logical subspace completely or (2) decide whether and what kind of error has

occurred. We can then apply any necessary corrective operations on the physical

qubits to always land back in the logical qubit subspace. This scheme is remarkably

robust, in principle only sensitive to errors that affect more than some specified

threshold of physical qubits. Using a quantum error correction scheme such as con-

catenated [50, 54] or surface codes [55, 56] ensures that given a physical qubit error

rate below some fixed threshold (estimates show this could be as high as 1%), one

may carry out a successful computation with very high probability.

One issue with the stabilizer formalism of quantum error correction is that it

does not specify how errors tend to propagate within a computation. Consider the

scenario of a classical computer which uses a single control bit for a large computa-

tion. Because this single bit is used to influence the states of all the other bits, any

bit-flip error here would drastically alter the result of the computation. A similar

scenario can occur in a quantum computation. Say we wished to perform some

relatively straightforward operation on a logical qubit (a bit-flip, perhaps). While

this looks like a simple computation in the logical qubit basis, it could in fact be a

complex operation on the physical qubits due to the nontrivial nature of quantum

error correcting code logical states. An error on one of the physical qubits could

easily propagate to a sufficiently large collection of qubits so as to put the number

of errors beyond what the quantum error correcting code is capable of correcting.

To combat this propagation of errors between code blocks, we rely on the

transversality [47,57,58] of gates within special families of quantum error correcting

7

codes (including those mentioned above). Transversality can be summed up by the

following idea: simple single qubit operations at the logical level correspond to simple

single qubit operations at the physical level. Likewise, simple two-qubit operations

at the logical level correspond to simple two-qubit operations at the physical level

such that physical qubit n of logical qubit one only interacts with physical qubit n

of logical qubit two. Using only operations of this form ensures that we can keep

errors “quarantined” from one another by design.

Unfortunately, it has been proven [52] that if a gate set is universal, then that

gate set cannot be implemented fully transversally for a quantum error correcting

code. Oftentimes, some large subset of the fundamental gates indeed can be so-

implemented [59, 60]; generally speaking, for most basic error correction protocols,

these are the Clifford operators, which will be defined in Section 1.4. To complete

the realization of a fault-tolerant quantum computer, we then need a method to

institute some sufficiently error-resistant non-Clifford gate. Fortunately, we can

implement these operators through a scheme called Magic State distillation [49,53].

Magic State distillation is the procedure of producing sufficiently noiseless

special quantum states which can be used as a resource to implement certain non-

Clifford gates fault-tolerantly. The gates which states in this scheme can implement

belong to a family of gates called the Clifford Hierarchy [61–64], which will be

discussed briefly in Section 1.4. Magic State distillation is an iterative procedure

which uses state preparation, Clifford circuits, and measurement. To produce states

below the required error tolerance can take many iterations, in turn incurring a

significant computational cost. In practice, when studying circuit cost for realistic

8

quantum computation models using quantum error correction, transversal Cliffords,

and magic state distillation, virtually the entire cost comes from the number of

magic states required for the computation. As the number of magic states needed

is effectively the number of non-Clifford gates from the Clifford Heirarchy used in

the implementation of a unitary, this metric is often used for the complexity of said

unitary [65–67]. For our purposes we will assume to be constructing unitaries under

this paradigm.

1.4 Notation and Preliminaries

Before advancing further, we will develop notation and introduce a few defi-

nitions upon which the remainder of this dissertation will rely heavily.

1.4.1 Sequences, Groups and Rings

Here we provide basic definitions of some mathematical terms for completeness.

We assume familiarity with sets and set builder notation. In all that follows, Z

denotes the set of integers, N the set of nonnegative integers, Q is the set of rational

numbers, Zn the set of integers modulo n, and [[p..q]] ⊂ N is the set {p, p+ 1, · · · , q}.

We denote the set of m × n matrices by Mm×n. For the curious reader, these

definitions and more can be found in various mathematics texts [68,69].

A sequence, like a set, is a collection of mathematical objects; however, se-

quences have a fixed ordering and repetitions are allowed. We denote a length n

sequence as (x1, x2, · · ·xn), where the jth element of the sequence is xj. Sometimes,

9

we refer to the xj as syllables and the entire sequence as a word over these sylla-

bles. In an abuse of notation, when we would like to build a sequence from a set A

equipped with some explicit lexicographic ordering, we write (A) and interpret Aj

as the jth element of that sequence according to the specified ordering.

A group is a set G equipped with a binary associative operation (·), formally

denoted (G, ·). Two objects a, b ∈ G if a ·b ∈ G. A group must always have a unique

element called the identity 1 such that for all a ∈ G, 1 · a = a · 1 = a. Finally, every

a ∈ G has a unique inverse a−1 ∈ G such that a ·a−1 = a−1 ·a = 1. When the group

operation is some type of multiplication, we will commonly drop the (·) in a · b and

instead write ab. In the case where the group operation is commutative, we call the

group Abelian. Some common examples of groups are (Z,+), (Zn,+), ([[1..p− 1]], ·)

for p prime, or the group of n× n unitary matrices under matrix multiplication Un,

the first three being Abelian and the last non-Abelian.

To concisely define a group, rather than specify every element of that group

we will usually supply the generators of that group. Under action of the group

operation, every element of the group is then some explicit sequence, or word, over

these generators. We have a presentation of a group when along with these genera-

tors, we supply a full set of relations for the group. These relations usually dictate

how the generators “commute” with one another, as well as the order (how many

applications of the group operation with itself take an element to the identity) of

individual generators. In the case where these relations are sufficiently simple to uti-

lize in “rewriting” elements of a group, we can produce a normal form for a group.

Normal forms, also sometimes called canonical forms, try to present a group by

10

explicitly constructing a standard expression for any element of the group. Finding

normal forms generally consists of establishing two things: existence and uniqueness.

A normal form for a group exists if every element of that group can be put into that

explicit form, and it is unique if two different instances of a normal form are always

different elements of the group. In the language of sequences, we usually say that

a normal form consists of words over some set of syllables, where the syllables may

just be the original generators themselves or some composition of them under the

group operation.

A group G always contains subgroups, which are subsets of G that are them-

selves groups. We write H 6 G if H is a subgroup of G. Given H 6 G, the left and

right cosets ofH containing a ∈ G are aH = {a · b | b ∈ H} andHa = {b · a | b ∈ H}

respectively. The union of all left/right cosets of H are then equal to G. The normal-

izer of a subset S of group G is defined as the set NG(S) = {g | g ∈ G, gS = Sg}.

Finally we note the definition of a group homomorphism: given some function

φ : G → G′ where G and G′ are groups with binary operations (·) and (?) re-

spectively, φ is a group homomorphism if for all a, b ∈ G, φ(a) ? φ(b) = φ(a · b).

A ring R is a group under the “additive” binary operation (+) that is also

equipped with a “multiplicative” operation (·). The operation (·) must be associa-

tive, distributive with respect to (+), and R must contain a multiplicative identity

element 1(·) such that for all r ∈ R, r · 1(·) = 1(·) · r = r. When the ring operations

are commutative, we again call the ring Abelian. Some common examples of Abelian

rings include Z, Q, and Zn, and one non-Abelian ring isMn×n(R), the ring of square

n× n matrices whose entries belong to the ring R.

11

Much like groups, we have the notion of subrings of a ring, i.e. a ring contained

within another ring. We can also extend the group homomorphism to make it

compatible with rings: given φ : R → R′ where R and R′ are rings with binary

operations (+, ·) and (‡, ?) respectively, φ is a ring homomorphism if for all a, b ∈ R,

φ(a) ‡ φ(b) = φ(a + b), φ(a) ? φ(b) = φ(a · b), and φ(1(·)) = 1(?). Any element of a

ring with a multiplicative inverse is called a unit, and if a ring is Abelian and every

element is a unit, we call it a field.

There are special subsets of a ring called ideals. For a ring R with additive

operation (+) and multiplicative operation (·), the set I is a left ideal if I ⊆ R forms

a group under (+) and for every r ∈ R and a ∈ I, r · a ∈ I. Right ideals are defined

similarly, with a · r ∈ I. When a set is both a left and right ideal, we simply refer

to it as an ideal. A classic example of an ideal is the even integers 2Z; every integer

times an even integer yields another even integer, and 2Z is a group under addition.

We also briefly describe the residue of a ring. If R is a ring and r ∈ R we

write R/(r) for the quotient of the ring R by the ideal generated by the element

r. Two elements s and s′ of R are congruent modulo r if s − s′ ∈ R/(r), in which

case we write s ≡ s′ (mod r). We sometimes refer to the elements of the ring R/(r)

as residues. Some quotient rings are well-known. For example, Z/(2) = {0, 1} and

Z/(4) = {0, 1, 2, 3}.

Oftentimes when we define rings, we start with some ring R (generally, the

integers or some other common ring) and supply it with a new element ψ called an

extension, denoting the new extension ring of R as R[ψ]. This new extension ring

12

is precisely defined as

R[ψ] = {P (ψ) | P a polynomial with coefficents in R}

Sometimes, there exists an integer n for which a non-trivial monic polynomial of

degree n with coefficients in R is equal to zero. In this case, the polynomial P can

always be reduced to one of degree 6 n− 1. Other times no such polynomial exists,

and all powers of ψ must be included when defining R[ψ]. We can also supply R with

more than one extension, where it is understood thatR[ψ, ξ] = (R[ψ])[ξ] = (R[ξ])[ψ].

Because we shall use them so frequently, we define a few special rings here.

First, consider a primitive pth root of unity ω for p ∈ N. By calling ω a primitive

pth root of unity, we mean that ωp = 1 and every β that satisfies βp = 1 must be

expressible as ωn for some integer n. Then we define the ring of cyclotomic integers

of degree p as

Z[ω] =

φ(p)∑
j=0

ajω
j

∣∣∣∣∣∣ aj ∈ Z

where φ is Euler’s totient function, i.e. the number of positive integers 6 p that are

coprime to p. We also note that the following elements always appear in cyclotomic

fields:

• 8 | p =⇒
√

2 ∈ Z[ω]

• p ≡ 1 (mod 4) =⇒ √
p ∈ Z[ω]

• p ≡ 3 (mod 4) =⇒ i
√
p ∈ Z[ω]

One important instance of a field of cyclotomic integers is that of degree 4, i.e. Z[i]

13

which we call the Gaussian integers. We also define a subring of Q, which is called

the dyadic rationals D:

D = Z

[
1

2

]
=
{ a

2k
| a ∈ Z, k ∈ N

}
.

In defining D, we see that we can extend some ring R with an extension 1
ψ

where

ψ ∈ R. In these cases, we can always write

R

[
1

ψ

]
=

{
a

ψk
| a ∈ R, k ∈ N

}
.

In such cases, we call k a denominator exponent. As ψ ∈ R,

r =
a

ψk
=

ψa

ψk+1

would imply there are an infinite number of denominator exponents for this element

r ∈ R
[

1
ψ

]
. To avoid such ambiguity, we will generally refer to the least denominator

exponent (lde) of r, which is the smallest k′ for which

rψk
′ ∈ R.

We can extend the notion of least denominator exponent to any tensor T whose

entries belong to such a ring R
[

1
ψ

]
: k is the lde of T if it is the smallest integer

for which ψkT only has entries in the ring R. Any other rings referred to in this

dissertation will be explicitly defined in their relevant chapters.

14

1.4.2 Quantum Circuits

For basics in Quantum circuits, we refer the reader to standard quantum

computing texts [70, 71]. A quantum circuit is a sequence of quantum logic gates

(often shortened to simply gates), which themselves are reversible transformations on

a quantum register (essentially, physical objects which may exist a quantum state).

In this dissertation, we concern ourselves with quantum circuits which correspond

to unitary evolution of the register, leaving the other three aspects of quantum

computing aside. We will use two different representations for a quantum circuit –

quantum circuit notation and operator notation. We emphasize now that though

these representations are equivalent, they are read in opposite directions: quantum

circuit diagrams have their gates applied to the register “left-to-right” (consistent

with the classical circuit model), whereas operator formalism demands the operators

be applied “right-to-left” (consistent with matrix multiplication).

Let p be a prime number, and ω = exp
(

2πi
p

)
a primitive pth root of unity.

We consider gates on qudits which individually live in a Hilbert space of dimension

pk for some k ∈ N. When p = 2 or 3, we call these qudits qubits or qutrits,

respectively. The first basic building block of fault-tolerant gate sets is the Pauli

15

group [15, 70,72–74]. The single-qudit Pauli group is generated by

X :=

p−1∑
j=0

|j + 1〉 〈j| =

 0 1

1p−1 0

 and Z :=

p−1∑
j=0

ωj |j〉 〈j| =

1 0 · · · 0

0 ω · · · 0

...
...

. . .
...

0 0 · · · ωp−1

.

We note that the phase ω = ZXZ†X† is explicitly a member of the Pauli group.

For qubits, we also supply the additional generator

Y :=

0 −i

i 0

 .

which is equivalent to saying that the phase i is present in the qubit Pauli group.

We construct the multi-qudit Pauli group via tensor product. Then every member

of the n-qudit Pauli group Pn can be written as

Pn = {ωw(Xx1Zz1 ⊗Xx2Zz2 ⊗ · · · ⊗XxnZzn) | xj, zj, w ∈ Zp}

for prime dimension p > 3, and as

Pn = {iw(P1 ⊗ P2 ⊗ · · · ⊗ Pn) | Pj ∈ {1, X, Y, Z} , w ∈ Z4}

for qubits. For n qubits, |Pn| = 4n+1, and for n qudits |Pn| = p2n+1. Often, we will

drop the n subscript from Pn and make no explicit reference to which dimension p

16

we are working in when it is clear from context.

The Clifford group Cn on n qudits is the normalizer of Pn (which therefore is

a subgroup of Cn). The single qudit version of this group is generated in dimension

p = 2 by [70]

H :=
1√
2

1 1

1 −1

 , S :=

1 0

0 i

and dimensions p > 3 [72–74] by the operators

H :=
1

λp
√
p

p−1∑
j,k=0

ωj·k |j〉 〈k| = 1

λp
√
p

1 1 1 · · · 1

1 ω ω2 · · · ωp−1

1 ω2 ω4 · · · ω2(p−1)

...
...

...
. . .

...

1 ωp−1 ω2(p−1) · · · ω(p−1)2

,

S :=

p−1∑
j=0

ω
j(j−1)

2 |j〉 〈j| =

1 0 0 · · · 0

0 1 0 · · · 0

0 0 ω · · · 0

...
...

...
. . .

...

0 0 0 · · · ω
(p−1)(p−2)

2

,

where we call H the Hadamard operator and S the Phase operator (captial P here

to distinguish from generic phase operators). For the qubit case, we note that

the primitive eighth root of unity e
πi
4 can be constructed from H and S. In the

p > 3 case, we have used λp to denote a multiplicative phase on H relative to

17

the “standard” definitions to enforce detH = 1 for these dimensions [75]. The

appropriate λp to achieve this is

λp =

1 p ≡ 1 (mod 8)

−i p ≡ 3 (mod 8)

−1 p ≡ 5 (mod 8)

i p ≡ 7 (mod 8)

We shall also define λ2 = 1. S has determinant ω in dimension p = 3 and determi-

nant 1 in higher dimensions.

To generate the full n qudit version of the Clifford group, we must also add

the entangling CX gate (sometimes called CSUM in the qudit dimension p > 3 case

and CNOT in the qubit case). This gate acts on two qudits and is defined as

CX =

p−1∑
j,k=0

|j, j + k〉 〈j, k| = 1p ⊕X ⊕X2 ⊕ · · · ⊕Xp−1 =

1p 0 · · · 0

0 X · · · 0

...
...

. . .
...

0 0 · · · Xp−1

.

CX has determinant -1 in the qubit case and 1 otherwise. Thus, for dimension

p = 2, C1 operators have a determinant of some power of i, C2 a determinant of ±1,

and Cn for n > 3 a determinant of 1. For dimension p = 3, C1 operators have a

determinant of some power of ω and a determinant of 1 for multi-qudit Cliffords.

18

For dimension p > 4, every Clifford operator has a determinant of 1. The cardinality

of |Cn| under these definitions up to a phase is [76, 77]

|Cn| = pn
2+2n

n∏
j=1

(p2j − 1). (1.1)

With phases included, |Cn| gains a factor of 8 for qubits and p for qudits of dimension

p > 3.

We would also like to highlight that there is an extremely convenient repre-

sentation for the n-qudit Clifford group using the group SL(2n,Zp) [77–79]. Every

operator in SL(2n,Zp) corresponds to an n-qudit Clifford. In this representation,

for single qudits

H =

0 −1

1 0

 and S =

1 0

1 1

 . (1.2)

Effectively, these 2 × 2 matrices can be interpreted as a mapping of the Paulis

to themselves in the following way. For Ĉ ∈ SL(2n,Zp) corresponding to Clifford

operator C, we have

Ĉ ·

x
z

 =

x′
z′

 ⇐⇒ CXxZzC† = ωwXx′Zz′

for w, x, z ∈ Zp. By construction, this group is only able to describe Clifford oper-

ators up to a rightmost Pauli operator, i.e. it can describe uniquely the operators

of C/P . Nonetheless, they can make calculations for large dimensional qubits very

19

simple.

The groups P and C form the first and second levels of the Clifford Hierarchy

[61–64]. A gate G belongs to the nth level of the hierarchy if it maps every element of

the Pauli group to the (n−1)th level of the hierarchy under conjugation. This family

of operators forms the basis of operations that can be implemented fault-tolerantly,

as described in Section 1.3.

As the Clifford group is finite, it cannot be a universal gate set [79, 80]. In

order to “promote” our gate set up to a universal one, we merely need to add any

non-Clifford operator [81]. Common choices generally come from the third level of

the Clifford Hierarchy, as these gates are essentially the simplest gates constructable

in a fault-tolerant manner through Magic States [49, 53]. Some common examples

are the single qudit T gate [82,83], the two-qudit Controlled Phase gate CS, and the

three qudit CCX gate (usually known as Toffoli for qubits or CCSUM for qudits).

20

These are

T =

p−1∑
j=0

ζj
3

p |j〉 〈j| =

1 0 0 · · · 0

0 ζp 0 · · · 0

0 0 ζ8
p · · · 0

...
...

...
. . .

...

0 0 0 · · · ζ
(p−1)3

p

CS =

p−1∑
j=0

|j〉 〈j| ⊗ Sj = 1p ⊕ S ⊕ S2 ⊕ · · · ⊕ Sp−1 =

1p 0 · · · 0

0 S · · · 0

...
...

. . .
...

0 0 · · · Sp−1

CCX =

p−1∑
j,k=0

|j, k〉 〈j, k| ⊗Xj·k = 1p2 ⊕ CX ⊕ CX2 ⊕ · · · ⊕ CXp−1

=

1p2 0 · · · 0

0 CX · · · 0

...
...

. . .
...

0 0 · · · CXp−1

where we have defined

ζp =

e
πi
4 p = 2

e
2πi
9 p = 3

ω = e
2πi
p p > 3

.

When we refer to universal gate sets constructed using the Clifford group, we will

21

generally refer to them as Clifford + (non-Clifford Gate). For example, here we have

specified gates to construct the universal gate sets C + T , C + CS, and C + CCX.

Per our discussion of fault-tolerance in Section 1.3, we know that minimizing the

number of these non-Cliffords is an effective strategy to ensure the smallest circuits

in practice. To that end, we define the T -count, CS-count, CCX-count, and in

general non-Clifford count as the number of occurrences of the requisite gate in the

sequence corresponding to a quantum circuit.

When we specify a gate set, we merely specify a short set of families of gates.

Say we had a gate set {A,B,C}, where A and B are single-qudit gates and C is an

(asymmetric) two-qudit gate. What this actually means is that an n qudit quan-

tum computer has at its disposal the gates {A1, A2, · · ·An}, {B1, B2, · · ·Bn}, and

{C1:2, C2:1, C1:3, C3:1, · · · , Cn−1:n, Cn:n−1}. Sometimes, quantum architectures pre-

clude the use of multi-qudit gates between qudits that are sufficiently physically

separated. In these cases, we can use the swap operation (a completely “local” Clif-

ford) to bring the qudits adequately close before performing the intended operation

and swapping them back to their original location.

We note that every reversible classical operation, up to the addition of a single

ancilla, is implementable over the gate set {X,CX,CCX} [84]. In their quantum

forms, these gates constitute every 2n × 2n permutation matrix for qubits [85].

For dimension p > 3 qudits, this no longer holds, but the same statement can be

recouped upon addition of further permutations which live in the Clifford group and

which shall be described in Section 3.4. We also see the following statement holds

22

based on our construction here:

C + T ⊆ Upn×pn ∩Mpn×pn(Z[
1

λp
√
p
, ζp]) (1.3)

C + CS and C + CCX ⊆ U2n×2n ∩M2n×2n(Z[
1√
2
, i]) for qubits (1.4)

C + CS and C + CCX ⊆ Upn×pn ∩M2n×2n(Z[
1

λp
√
p
, ω]) for qudits (1.5)

for λp and ζp as defined earlier.

23

Chapter 2: Quantum Circuit Synthesis

With an understanding of the types of unitaries we commonly need to imple-

ment laid out in Section 1.2 and a paradigm of fault-tolerant quantum computation

laid out in Section 1.3, we can now forge onward in understanding how best to build

a quantum compiler.

2.1 Problem Statement

We begin by describing in precise terms the quantum compiling, or qauntum

circuit synthesis, problem [23,70,86,87]:

Definition 2.1.1 (Quantum Compiling Problem). Let U be a target unitary on n

p-level qudits and ε be an error tolerance acceptable under some matrix norm N .

Let G = {G1, · · · , Gm} be a universal gate set on n′ > n p-level qudits. Let c be a

sensible cost function that takes as input any length k > 0 sequence of gates from

G and outputs a non-negative real number which measures the complexity of that

sequence as a circuit. Then we solve the inexact or approximate quantum compiling

problem by finding some unitary

Ũ = GjlGjl−1
· · ·Gj1

24

with associated circuit sequence
(
Ũ
)

= (Gj1 , Gj2 , · · · , Gjl) such that

N (U ⊗ 1pn′−n − Ũ) 6 ε.

We are only interested in those Ũ which can be found efficiently – say polylogarith-

mically in 1
ε
. Moreover, we would like c

((
Ũ
))

to be as close to minimal as possible.

In the case where U is exactly expressible over G, we further demand that we have

a method to find
(
Ũ
)

such that Ũ = U , which we call the exact quantum compiling

problem.

We have left some details nebulous in Definition 2.1.1: for example, we have

not specified how exactly the unitary U is supplied, nor have we given any bound

on just how low we would like the output of c to be for a given candidate solution

before we stop trying to find others. For practical purposes, the number of qudits

on which U acts can be taken to be small – as detailed in Section 1.2, the vast

majority of quantum subroutines reduce to the product of many relatively small

unitary operators. This ultimately means that how we specify U is not a major

concern for our compiler. As for the second question, we can use a simple volume-

counting argument to determine a lower bound on gate count. The volume of the

special unitary group [88,89] on n p-dimensional qudits is

vol(SU(pn)) =

√
n · 2pn−1π

(pn−1)(pn+2)
2∏pn−1

k=1 k!
. (2.1)

25

and the volume of a small ε-ball in the p2n − 1 dimensional space of SU(pn) is

vol(ε-ball) =
π
p2n−1

2

Γ
(
p2n−1

2
+ 1
)εp2n−1. (2.2)

The total number of possible circuits with a non-Clifford count of exactly k for a

gate set consisting of special unitary versions of C and a single non-Clifford gate

is certainly no more than |Cn|k+1, as this would constitute every possible circuit

consisting of alternating Clifford and non-Clifford operators. Then the total number

of circuits up to a non-Clifford count of k is no more than αk+1|Cn|k+2 for some

constant 0 6 α 6 1. If each of these operators were surrounded by an ε-ball, their

volume must exceed the total volume of SU(pn). This means we must have

vol(SU(pn)) . αk+1|Cn|k+2 · vol(ε-ball)

=⇒ k ∼ O
(

(p2n − 1) logα|Cn|

(
1

ε

))
(2.3)

As a rough first estimate, the best we can hope to do is find circuits of length linear

in the logarithm of 1/ε. Any gate set that can achieve this bound is efficiently

universal [23]. Moreover, any algorithm that achieves this bound up to a constant

multiplicative value for small values of ε is called asymptotically optimal.

2.2 Early Methods – Solovay-Kitaev

One of the foundational results in quantum information, the Solovay-Kitaev

algorithm [86] was the first solution to the quantum compiling problem. In precise

26

terms, the Solovay-Kitaev algorithm is a classical algorithm which solves the inex-

act quantum compiling problem, runs in a time O
(
log2.71

(
1
ε

))
and produces gate

counts of O
(
log3.97

(
1
ε

))
for single qubit gate approximations. This construction

can likewise be extended to multi-qubit and qudit circuits, ensuring that we have a

solution to the inexact quantum compiling problem in the general case. Informally,

this algorithm states that regardless of your choice of universal gate set, that gate

set will fill operator space sufficiently densely to approximate any operator with

relatively short circuits.

The algorithm works roughly as follows. First, a sufficiently dense subset of

circuits are generated from the gate set (say, all circuits up to gate count 10). The

closest candidate among these, U0, is used as a zeroth order approximation for the

target unitary U . The operator UU †0 is then decomposed into a balanced group

commutator between two operators V and W as UU †0 = VWV †W †. Zeroth order

approximations V0 and W0 are found for these operators, and the resulting first

order approximation U1 = V0W0V
†

0 W
†
0U0 is returned. Higher order approximations

may be found using recursive calls of the algorithm. Given a starting set that is

sufficiently dense, the algorithm is guaranteed to succeed.

That Solovay-Kitaev is agnostic to its choice of universal gate set is both its

strength and its weakness. Use of the group commutator provides better-than-

expected approximations that culminate in the gate count being polylogarithmic in

1/ε. However, little information about the structure of the generating gate set is

used – a fact that would belie the discovery of improved algorithms. In particular,

the best scaling that any Solovay-Kitaev-like algorithm could hope to achieve is

27

O(log2(1/ε)) [23].

2.3 Single Qubit Exact Synthesis – Matsumo-Amano Normal Forms

While it was known that some gate sets were efficiently universal [23, 23], it

was not known how to exactly compile some target unitary known to be expressible

over these gate sets. By harnessing the internal structure of the group relations for

C + T , Matsumoto and Amano were able to construct a normal form [90], dubbed

a Matsumoto-Amano (MA) normal form, in the single qubit case. Remarkably, the

MA normal form is T -count optimal – for an operator U with cicruit (U) in MA

normal form, no equivalent C+T circuit can be found for U that uses fewer T gates

than (U).

MA normal form for single qubit C+T circuits can be expressed using regular

expressions as [91]

(ε|T)(HT |SHT)∗C. (2.4)

In the language of regular expressions, (a|b) denotes a choice of a or b, and (·)∗

denotes any sequence of length n ∈ N chosen from the enclosing parentheses. The

symbol ε denotes the “empty” sequence of gates and C denotes any choice from the

Clifford operators. That any sequence of single qubit C+T gates can be put in this

28

form is provable using the single-qubit Clifford group relations and

T 2 = S

ζT = Tζ

TS = ST

XT = TXSζ†

where ζ = e
πi
4 is a primitive eighth root of unity in the Clifford group.

The full impact of MA normal forms was not realized until they were rediscov-

ered years later. In a series of subsequent work [91,92], it was shown constructively

that

C + T = U2×2 ∩M2×2

(
Z

[
1√
2
, ζ

])
(2.5)

AdC+T = SO(3) ∩M3×3

(
Z

[
1√
2

])
(2.6)

where AdC+T is the adjoint representation of U2×2 restricted to the C+T operators.

These two results gave a complete number-theoretic characterization of the single

qubit C + T operators. Notice that
√

2 belongs to the subrings Z[ζ] and Z[
√

2],

and so we can associate with every such matrix in either form a least denominator

exponent k.

Proof of these results relied on, for lack of a better term, constrained Gaussian

elimination. Notice that the gate H performs something akin to row-addition /

subtraction when left-multiplied to a unitary U (albeit up to a factor of 1√
2
). Like-

29

wise, in the adjoint representation, AdT serves a similar role. In both forms, the

remaining generators are generalized permutation matrices. By alternating these

permutations with either H or AdT , the lde of the matrix can be reduced one-

by-one until the identity operator is achieved. The gate sequence used to do this

reduction can then be inverted, yielding a circuit which is equivalent to the initial

operator. The lde in both representations encodes the final T -count (exactly so in

the adjoint representation case), and the resulting circuits are always in MA normal

form.

This technique of using constrained Gaussian elimination based on the underly-

ing ring of matrices to which the circuits over a gate set belong proved very powerful.

A variety of other single-qubit gate sets were shown to have normal forms [93–95],

and in every case a constructive exact synthesis algorithm was produced which

provides the shortest gate sequence over these gate sets. These exact synthesis al-

gorithms form the basis of many of the state-of-the-art compiling programs in use

today. Unfortunately, extending these techniques to find optimal normal forms for

fault-tolerant qudit or multi-qubit gate sets proved difficult.

2.4 Multi-Qubit Exact Synthesis – Giles Selinger Algorithm

One of the key factors in building a quantum compiler is establishing whether

a circuit is exactly expressible over a gate set. The reason for this is two-fold: we

would like to know when it is possible to run an exact synthesis algorithm on a

circuit and also in which family of unitaries to look for an ε approximation when we

30

cannot. In Section 2.3, we described such a characterization for single-qubit C + T .

Shortly after this work, it was established [96] that

C + T = U2n×2n ∩M2n×2n

(
Z

[
1√
2
, ζ

])
(2.7)

for multi qubit circuits as well, demonstrating equality in Eq. (1.3) for qubits.

The so-called Giles-Selinger algorithm gives a constructive proof of this fact.

In principle, it also constitutes a multi-qubit exact synthesis algorithm, though the

gate count scaling is doubly-exponential in the lde of the original matrix and is

therefore not close to optimal. The algorithm is remarkably simple, and consists

of three observations, the first of which is Eq. (1.3). Secondly, it can be observed

that given fully-controlled versions of H and T along with permutation matrices

(generated by {X,CX,CCX} ∈ C + T), column-by-column denominator exponent

reduction can be performed in the same manner as the single qubit case. Finally,

explicit constructions are given for fully-controlled H and T operators using the

C + T gate set, completing the proof.

2.5 Approximate Synthesis in Single- and Multi-Qubit Circuits

Finally, given solutions to both the exact synthesis problem and a gate set char-

acterization, researchers began to search for algorithms to meet theoretical bounds

on efficiently universal gate sets. A series of papers established asymptotically op-

timal synthesis algorithms, at first via the use of ancilla [97,98]. Subsequent results

showed how to do this without the use of ancilla in the case of Pauli-rotations [99].

31

Finally, a result by Ross and Selinger [100] established the optimal approximate syn-

thesis solution for Z-rotations in the presence of a factoring oracle. Without such

an oracle, the second-to-optimal solution can be found efficiently. These rotations

can then be used to construct any operator through the use of Euler angles.

The Ross-Selinger algorithm works roughly as follows. Given some target

special unitary operator of the form

U =

e
iφ
2 0

0 e−
iφ
2

 ,

the goal is to find an approximation

Ũ =

u −t∗
t u∗

within ε of U by Frobenius norm. The first step is to search for candidate solutions

for u. To find the optimal solution, we need to enumerate the

u =
u′
√

2
k

by increasing lde k with u′ ∈ Z[ζ] such that u ≈ e
iφ
2 (roughly speaking, this equates

to searching for lattice points in a long and skinny rectangle oriented at an angle).

While a scheme to perform this enumeration efficiently was devised in their work, the

authors later realized that earlier work by Lenstra, Lenstra, and Lovász, dubbed the

LLL lattice basis reduction algorithm, could be used in place of their scheme [101].

32

Once such a set has been enumerated, one can check if there exists some t ∈ Z
[

1√
2
, ζ
]

such that |u|2 + |t|2 = 1. Though this in general requires factoring, it can be shown

that even without a fast factoring algorithm, solutions can be found efficiently that

are close to optimal.

That there exists such an optimal algorithm in the case of single-qubit Eu-

ler angle rotations is remarkable – it is known that solving a related problem for

general single-qubit unitaries over finite fields is hard enough to form the basis of a

cryptographic protocol [102]. As a generalized Euler angle decomposition of SU(n)

exists [103], this approximation scheme can be used in conjunction with permuta-

tions generated by {X,CX,CCX} to produce any unitary approximation. Other

schemes for approximating multi-qubit operators requiring ancillas were developed

using Hausholder reflections expressible as C + T circuits [104]. In this case, the

output circuits have

O
(

4nn

(
log

(
1

ε

)
+ n

))
(2.8)

gates, which is asymptotically optimal for fixed qubit number.

2.6 New Directions and Thesis Outline

This briefly outlined work has been foundational in kicking off a new revolution

in quantum compiling. The influx of number-theoretic ideas and techniques have

been a boon to the field. However, many open question remain.

A wealth of research suggests that fault-tolerant qudit qauntum computing

33

schemes could handily reduce gate-counts when compared to their qubit counter-

parts [83,105]. However, no basic exact compiling algorithms for fault tolerant qudit

schemes previously existed, let alone approximation schemes. In Chapter 3, we ad-

dress this issue by introducing a unique MA normal form analogue for qutrits while

also highlighting the existence of such normal forms in higher dimensions.

Many recent efforts in quantum compiling have involved trying to tackle mutli-

qubit exact synthesis [96,104]. Due to the complexity of this problem, much atten-

tion has been paid to restricted C + T circuits [67,106–111]. While work with these

simpler gate sets has proven fruitful, their restriction often comes at the cost of a

loss of universality. In Chapter 4 we attempt to rectify this problem by completely

characterizing four universal subsets of C + T . We find gate sets that exactly cor-

respond to the appropriately-sized unitaries over the rings D, D
[√

2
]
, D
[√

-2
]
, and

D[i] and show that a single ancilla is always sufficient to exactly synthesize such

operators.

Building off this work in Chapter 5, we develop the first non-Clifford optimal

multi-qubit exact synthesis algorithm using the C + CS gate set on two qubits.

Rather than relying on the adjoint represenation as in past work [91], we instead

use the accidental isomorphism of SU(4) ∼= Spin(6) to find a convenient algorithm

for synthesizing these circuits. Afterwards, we show that the form these circuits take

is relatively more complex than that of MA normal forms due to group relations that

require circuit optimizations over syllables which are otherwise not locally-separated.

Finally, in Chapter 6 we describe an approximation scheme for Pauli rotations

in the two-qubit case using the C + CS gate set, in analogue with past work [100].

34

In addition, we provide some basic software to perform both exact and inexact

synthesis for two-qubit circuits using this gate set.

35

Chapter 3: Matsumoto-Amano Normal Forms of Dimension Three
1

3.1 Introduction

Over the past five years, the aforementioned algebraic and number-theoretic

methods [93–95, 97–100, 113, 114] have rejuvenated the field of quantum compiling.

Until very recently and despite the existence of these successful methods in qubit

quantum compiling, the Solovay-Kitaev algorithm [86, 115] remained the standard

method in higher dimensions. However, advances in anyonic quantum computa-

tion [116], the discovery of protocols for higher-dimensional magic state distilla-

tion [83], and the emergence of novel means of error correction using higher dimen-

sional Hilbert spaces [117–120] have drawn the attention of the community to qutrit

quantum compiling [116,121–123].

The single-qutrit Clifford+T gate set, sometimes also referred to as the super-

metaplectic gate set [122], consists of the single-qutrit Clifford gates together with

a three-dimensional analogue of the single-qubit T gate which are defined in Sec-

tion 1.4.2. The qutrit version of the T gate was independently introduced in [82]

and [83] and shares many properties with its qubit counterpart. Most importantly,

1This work is a slightly modified version of [112] with an additional section on normal forms in
prime dimensions > 5.

36

it can be fault-tolerantly implemented via magic state distillation [83]. For the

duration of Chapter 3, we let ω = e
2πi
3 and ζ = e

2πi
9 . Echoing Section 1.4.2, the

generators of C + T are then

S =

1 0 0

0 1 0

0 0 ω

 , H = − 1

i
√

3

1 1 1

1 ω ω2

1 ω2 ω

 , and T =

1 0 0

0 ζ 0

0 0 ζ8

 .

The Clifford group likewise contains the Pauli group generators

X =

0 0 1

1 0 0

0 1 0

 , and Z =

1 0 0

0 ω 0

0 0 ω2

 .

In this chapter, we introduce canonical forms for single-qutrit Clifford+T cir-

cuits inspired by prior work on single-qubit Clifford+T circuits [90–92, 124]. We

prove that every single-qutrit Clifford+T operator admits a canonical form and give

a linear-time algorithm to convert an arbitrary Clifford+T circuit to canonical form.

Finally, we show that distinct canonical forms represent distinct operators. We es-

tablish the uniqueness of canonical form representation by giving an algorithm which

inputs the matrix of a Clifford+T operator and deterministically constructs a canon-

ical form circuit for it. This uniqueness property implies that our canonical forms

are T -optimal: among all the single-qutrit Clifford+T circuits implementing a given

operator our canonical form uses the least number of T gates. This T -optimality is

37

desirable in light of the high cost associated with fault-tolerantly implementing T

gates.

The organization of Chapter 3 is as follows. First, we define canonical forms

and prove that every Clifford+T operator admits a canonical form in Section 3.2.

Next, we prove the uniqueness of canonical form representations in Section 3.3.

Finally, we show in Section 3.4 that a similar normal form can be established in

higher prime dimension, though proof of uniqueness is not shown. We then conclude

in Section 3.5.

3.2 Canonical forms

We define a three-dimensional analogue of the MA normal forms introduced

in [90] for single qubit Clifford+T circuits and we prove that every single-qutrit

Clifford+T operator can be represented by such a canonical form. Our presentation

follows [91].

Definition 3.2.1. A canonical form is a Clifford+T circuit of the form

(ε |T |H2T)(HT |H3T |SHT |SH3T |S2HT |S2H3T)∗C. (3.1)

Here, following [91], we again use the language of regular expressions to define

canonical forms. In Eq. (3.1), ε denotes the empty word and C denotes any of one

of the 648 Clifford operators. Eq. (3.1) therefore states that a canonical form (read

from left to right) consists of an optional occurence of T or H2T , any number of

38

syllables chosen from the set {HT,H3T, SHT, SH3T, S2HT, S2H3T}, and a final

Clifford operator.

Definition 3.2.2. Let S be the 81-element subgroup of C group generated by S

and X, M be the two element subgroup of C generated by H2, and L and L ′ be

the following sets of Clifford operators:

L = {1, H, SH, S2H} and L ′ = {H,SH, S2H}.

Note that ω ∈ S and that MS = S M is the 162-element subgroup of C

which consists of generalized permutation matrices. Note moreover that the syllables

used in Definition 3.2.1 are the elements of L MT .

Lemma 3.2.3. The following relations hold.

C = L MS (3.2)

S T = TS (3.3)

TT = H2TH2Z ⊆MTMS (3.4)

TH2T = H2 ⊆M . (3.5)

Proof. Eq. (3.2) follows from the fact that the Clifford operators are a disjoint union

of the cosets of S which are S , H2S , HS , H3S , SHS , SH3S , S2HS , and

S2H3S . Eq. (3.3) follows from the three commutation relations ST = TS, XT =

TSX, and ωT = Tω. Finally, Eqs. (3.4) and (3.5) follow from direct computation.

39

Lemma 3.2.4. An integer power of T is either a Pauli operator or is Clifford

equivalent to T . That is, for a ∈ Z we have

T a =

Z
a
3 a = 0 (mod 3)

TZ
a−1
3 a = 1 (mod 3)

H2TH2Z
a+1
3 a = 2 (mod 3)

Proof. This is a consequence of Eqs. (3.4) and (3.5) and the relations T 9 = 1 and

TZ = ZT .

Definition 3.2.5. The Clifford-prefix of a syllable M = M ′T ∈ L MT is the

Clifford operator M ′ ∈ L M that precedes T .

Proposition 3.2.6. Every Clifford+T operator can be represented by a circuit in

canonical form.

Proof. We first show that if U is a canonical form and A is one of the generators of

the Clifford+T group then UA admits a canonical form. In the case where A is a

Clifford operator there is nothing to show so we can assume that A is a T gate. We

now proceed by induction on the T -count of U .

• If U has T -count 0 then by Eqs. (3.1) to (3.3) we have UT ∈ L MS T =

L MTS ⊆ L MTC so that UA has a canonical form of T -count 1.

• If U has T -count 1 then by Eqs. (3.1) and (3.2) we know U ∈ L MTL MS .

40

Using Eqs. (3.3) to (3.5) we get

UT ∈ L MTL MS T

= L MTL MTS

= L MTL ′MTS ∪L MTMTS

= L MTL ′MTS ∪L MTTS ∪L MTH2TS

= L MTL ′MTS ∪L MH2TH2ZS ∪L MH2S

= L MTL ′MTS ∪L MTH2S ∪L MS

⊆ L MTL ′MTC ∪L MTC ∪ C.

It follows that UA has a canonical form of T -count 0, 1, or 2.

• If U has T -count ` > 1 then we can use Eqs. (3.1) and (3.2) again to write U

as an element of L MT (L ′MT)`−2L ′MTL MS . We can now reason as in

the previous case to show that

UT ∈ L MT (L ′MT)`C ∪L MT (L ′MT)`−1C ∪L MT (L ′MT)`−2C.

And it follows that UA has a canonical form of T -count `− 1, `, or `+ 1.

Now let U be a canonical form and A be either a Clifford operator or a power of T .

Assume moreover that the T -count of U is ` and the T -count of A is k. Then the

above argument, together with Lemma 3.2.4, imply that UA has a canonical form

of T -count at most 1 + `.

41

To complete the proof, let V be a Clifford+T operator. Then V = A1 . . . An

where every Ai either a Clifford operator or a power of T . Starting with the identity

operator, one may then proceed by rightward induction on n to put V in canonical

form.

Corollary 3.2.7. There exists an algorithm to rewrite any Clifford+T circuit into

canonical form. The algorithm runs in time linear in the gate-count of the input

circuit.

Proof. This is a consequence of the constructive proof of Proposition 3.2.6. Indeed,

a constant number of operations are needed to update at most six of the rightmost

operators of a canonical form upon right-multiplication by a Clifford+T operator.

Any Clifford+T operator of length n can therefore be put in canonical form in O(n)

steps. To see this algorithm in action, consider visiting Xiaoning Bian’s homepage

[126].

Remark 3.2.8. Suppose that V is a Clifford+T circuit for some operator U and

that V ′ is the canonical form for U obtained by applying Corollary 3.2.7 to V . If `

is the T -count of V and `′ is the T -count of V ′ then `′ 6 `. This follows from the

fact that the algorithm of Corollary 3.2.7 never increases the T -count of a circuit.

We close this section by discussing an alternative canonical form for single-

qutrit Clifford+T circuits. The canonical form of Definition 3.2.1 is inspired by

the one introduced by Matsumoto and Amano in [90] for single-qubit Clifford+T

circuits. In [124], Forest and others introduced a channel representation for single

qubit Clifford-cyclotomic circuits. When restricted to single Clifford+T circuits

42

their channel representation can be interpreted as a sequence of π/4 rotations about

the x-, y-, or z-axes of the Bloch Sphere (followed by a single Clifford operator).

This sequence is subject to the condition that consecutive rotations revolve around

different axes. Below, we define an analogue for single-qutrit Clifford+T circuits.

Definition 3.2.9. Let P be a Pauli operator and let λ0, λ1, and λ2 be the following

real numbers:

λ0 :=
1 + ζ + ζ8

3
, λ1 :=

1 + ζ2 + ζ7

3
, and λ2 :=

1 + ζ4 + ζ5

3
.

Then the P -axis T gate TP is defined as TP := λ0I + λ1P + λ2P
2.

Definition 3.2.10. A channel form is a single-qutrit Clifford+T circuit of the form

TPn11
TPn22

. . . TPn``
C (3.6)

where ` ∈ N, Pi ∈ {Z,X,XZ,XZ2}, ni ∈ Z3\{1}, Pi 6= Pi+1 and C ∈ C.

It can be shown that channel forms are in bijective correspondence with the

canonical forms of Definition 3.2.1 so that every Clifford+T operator admits a chan-

nel form. Moreover, this correspondence preserves the T -count.

3.3 Uniqueness of canonical forms

Proposition 3.2.6 showed that every Clifford+T operator can be represented

by a circuit in canonical form. In this section, we show that this representation is

43

unique in the sense that if M and N are different canonical forms that M and N

represent different Clifford+T operators.

3.3.1 Algebraic preliminaries

Definition 3.3.1. Let α = sin(2π/9) and γ = 1− ζ. We will employ six extensions

of Z in our analysis.

• Z[ω] = {a+ bω | a, b ∈ Z}

• Z[ζ] = {a+ bζ + cζ2 + dζ3 + eζ4 + fζ5 | a, b, c, d, e, f ∈ Z}

• Z[1
γ
] =

{
A
γk

∣∣∣ A ∈ Z[ζ], k ∈ N
}

• D = Z[1
2
] =

{
a
2k

∣∣ a ∈ Z, k ∈ N
}

• Z[α] = {A+Bα + Cα2 +Dα3 + Eα4 + Fα5 | A,B,C,D,E, F ∈ D}

• D[1
α

] = Z[1
2
, 1
α

] =
{
A
αk

∣∣ A ∈ Z[α], k ∈ N
}

Per our discussion of rings in Section 1.4.1, the ring Z[ω] is known as the ring of

cyclotomic integers of degree 3 while the ring Z[ζ] is known as the ring of cyclotomic

integers of degree 9. The ring D is the ring of dyadic fractions.

Remark 3.3.2. We record here some important relations involving α which will be

useful in what follows.

•
√

3
2

= 3α− 4α3

•
√

3 = 6α− 8α3

44

• 3 = 36α2 − 96α4 + 64α6

• α6 = 3
26
− 9

24
α2 + 3

2
α4

• α =
3
26

α5 −
9
24

α3 +
3
2

α

• 1
2

= −1 + 18α2 − 48α4 + 32α6

In particular, the fifth relation implies that Z[α] is a subring of D
[

1
α

]
.

Remark 3.3.3. The entries of any Clifford+T operator belong to the ring Z[1
γ
]. To

see this, note that it holds for the generators S, H, and T , since

− 1

i
√

3
=

1

γ3
(1− ζ + ζ2 + ζ3 + 2ζ4 − 2ζ5) ∈ Z[

1

γ
].

Definition 3.3.4 (Residue). The residue map ρ is the ring homomorphism ρ :

Z[α]→ Z3 defined by ρ(q) = q (mod α).

It follows from Remark 3.3.2 that ρ(
√

3) = 0, ρ(3) = 0, and ρ(1
2
) = 2. These

equalities give an intuition of how one might compute ρ(q) given q ∈ Z[α]. First

write q as a sum q = c0α
0 + . . . + c5α

5 with each cj ∈ D such that cj =
aj

2bj
where

aj ∈ Z and bj ∈ N. Then ρ(q) = ρ(c0) = ρ(a0/2
b0) = (2b0a0) (mod 3).

Definition 3.3.5 (Denominator Exponent). For every q ∈ D[1
α

], there exists some

k > 0 such that αkq ∈ Z[α]. Then we identify k as a denominator exponent, with

the least such k the lde. This notion extends to vectors and matrices as defined in

Section 1.4.1.

45

Definition 3.3.6 (k-Residue). Let q ∈ D[1
α

] and let k be a denominator exponent

of q. Then the k-residue of q, ρk(q) and is defined as ρk(q) = ρ(αkq) ∈ Z3. The

k-residue of a vector or matrix is defined component-wise.

Lemma 3.3.7. Let q ∈ D[1
α

] and let k ∈ N be a denominator exponent of q. Then

k is the lde of q if and only if ρk(q) 6= 0 (mod 3) or k = 0.

Proof. If k = 0 then k is a denominator exponent of q if and only if it is the lde of

q. Suppose some k > 0 is not the lde of q but is a denominator exponent. Since k

is a denominator exponent of q we can write q as

q =
1

αk

5∑
j=0

cjα
j

with each cj ∈ D. Note that ρk(q) = ρ(c0). Since k is not the lde of q, we can rewrite

q as

q =
1

αk−1

[
α−1c0 +

4∑
j=0

cj+1α
j

]

where it must be the case that α−1c0 ∈ Z[α]. If ρ(c0) = 0 (mod 3), then we can

write c0 = 3c′0 for some c′0 ∈ D and have

α−1c0 = c′0
3

α
= c′0

(
36α− 96α3 + 64α5

)
∈ Z[α]

where the term 3
α

is simplified using Remark 3.3.2. This proves the “only if” direc-

tion. On the other hand, if ρ(c0) = r 6= 0 (mod 3), then we have c0 = r + 3c′′0 for

46

some c′′0 ∈ D and r ∈ {1, 2} and can write

α−1c0 =
r

α
+ c′′0

3

α
=
r

α
+ c′0

(
36α− 96α3 + 64α5

)
.

The second term is in Z[α], and so α−1c0 ∈ Z[α] would only hold in this case if r
α

is in Z[α] as well. For r ∈ {1, 2} this is not the case, leading to a contradiction and

proving the “if” direction.

Remark 3.3.8. Let A and B be two matrices over D[1
α

] with lde kA and kB respec-

tively. Then if k > kA and k > kB we have ρk(A + B) = ρk(A) + ρk(B). Similarly,

if k1 > kA, k2 > kB, and k′ = k1 + k2, then ρk′(AB) = ρk1(A) · ρk2(B). Furthermore,

if A has the property that kA = 0 and that 1
α
A has entries in Z[α], then

ρk′(AB) = ρ0

(
1

α
A

)
· ρk′+1(B)

for any k′ > kB. Likewise, if kB = 0 and (1/α)B has entries in Z[α], then ρk′(AB) =

ρk′+1(A) · ρ0((1/α)B). Finally, if ` > kA then ρ`(A) = 0m×n by Lemma 3.3.7.

3.3.2 The adjoint representation

We will use an alternative representation for Clifford+T operators in analogue

with past work. Let P be a Pauli operator and define the operators P+ and P− as

P+ :=
1√

Tr
[
(P + P †)2

](P + P †) and P− :=
i√

−Tr
[
(P − P †)2

](P − P †).

47

Now consider the sets Q = { 1√
3
, Z+, X+, (XZ)+, (XZ

2)+, Z−, X−, (XZ)−, (XZ
2)−}

and Q′ = Q\
{

1√
3

}
where 1√

3
= 1√

3
1. These sets have a number of properties:

• The set Q is a complete orthonormal basis for the setM3(C) of 3×3 complex

matrices with respect to the inner product 〈A,B〉 = 〈B,A〉∗ = Tr(AB†). That

is, if Qi, Qj ∈ Q then 〈Qi, Qj〉 = δi,j.

• Every Q ∈ Q is Hermitian

• Every Q ∈ Q′ is traceless.

• Every Q ∈ Q′ is of one of two forms: either the matrix Q is of the type P+

and is such that P is a Pauli matrix with P+ = 1√
6
(P +P 2) or it is of the type

P− and is such that P is a Pauli matrix with P− = i√
6
(P − P 2).

Note that the set Q, much like the set of Gell-Mann matrices, does not form a group

under multiplication.

Because every element ofQ is Hermitian, any unit trace 3×3 Hermitian matrix

ρ may be written as

ρ =
1

3
1 +

1√
3

∑
Qi∈Q′

ciQi (3.7)

with ci ∈ R. Conjugation by a unitary operator U preserves the trace of ρ. The

action of U will therefore send each ci to some c′i ∈ R, since ρ′ = UρU † is still Her-

mitian. This encourages us to define an adjoint representation for unitary operators

using Q′.

48

Definition 3.3.9. Let ρ̂ and ρ̂′ be the eight-component vectors composed of the

real ci and c′i as in Eq. (3.7) for the 3 × 3 Hermitian matrices ρ and ρ′. Then the

adjoint representation of a unitary operator U , denoted Û , is defined by

Û ρ̂ = ρ̂′ ⇐⇒ UρU † = ρ′.

Remark 3.3.10. Composition of operators in the adjoint basis is equivalent to

matrix multiplication, which can be seen as follows. If

Û1ρ̂ = ρ̂′ ⇐⇒ U1ρU
†
1 = ρ′,

then we have

Û2ρ̂
′ = (Û2Û1)ρ̂ ⇐⇒ U2ρ

′U †2 = U2U1ρU
†
1U
†
2 = (U2U1)ρ(U2U1)†

To maintain consistency, we impose an ordering for the ci consistent the or-

dering of the sequence

(Q′) =
(
Z+, X+, (XZ)+, (XZ

2)+, Z−, X−, (XZ)−, (XZ
2)−
)
.

This ordering allows us to write an explicit definition for Û using our inner product.

Lemma 3.3.11. Let Qi ∈ Q′ with Qi the ith element of (Q′). The adjoint repre-

49

sentation Û of a Unitary operator U may be calculated

Ûi,j = 〈Qi, UQjU
†〉 = Tr

[
QiUQjU

†]

Proof. This follows directly from the orthonormality and Hermiticity of the Qi.

Lemma 3.3.12. Every adjoint representation Û of a unitary operator U is a real,

special orthogonal matrix.

Proof. Every element of Ûi,j is real due to the properties of our inner product and

the cyclic properties of the trace:

Û∗i,j = 〈Qi, UQjU
†〉∗ = 〈UQjU

†, Qi〉 = Tr
[
UQjU

†Qi

]
= Tr

[
QiUQjU

†] = 〈Qi, UQjU
†〉 = Ûi,j

To show that every Û is orthogonal, consider the inverse of U . As U is unitary, the

inverse of U is U † and thus the inverse of Û must be ˆ(U †). This gives

Û−1
i,j = ˆ(U †)i,j = 〈Qi, U

†QjU〉 = Tr
[
QiU

†QjU
]

= Tr
[
QjUQiU

†] = 〈Qj, UQiU
†〉 = Ûj,i = ÛT

i,j

It just remains to show that det Û = 1. Nominally, this is true because the group

should be connected. For a simple proof, consider again the matrix U . As it is

unitary, we know there is a Hermitian operator A such that U = exp(−iA). We

50

begin by examining the Trotter decomposition of U :

U = lim
N→∞

[
exp

(
−i
N
A

)]N
.

This in turn implies that we have

Û = lim
N→∞

[
V̂

(
A

N

)]N

where we have defined V̂ (M) as the adjoint representation for the exp(−iM). From

this form, we calculate det Û :

det Û = lim
N→∞

[
det

(
V̂

(
A

N

))]N
= lim

N→∞
exp

[
N Tr

[
log

(
V̂

(
A

N

))]]

To lowest orders in 1
N

, we compute V̂
(
A
N

)
using the Hadamard lemma:

(
V̂

(
A

N

))
j,k

= Tr

[
Qj exp

(
−i
N
A

)
Qk exp

(
i

N
A

)]
= Tr [QjQk]−

i

N
Tr [Qj [A,Qk]] +O

((
1

N

)2
)

The first term here is simply the elemental form of the identity δj,k and the second

term makes use of the standard definition of an algebra commutator, [A,B] =

51

AB −BA. Upon calculating the trace of the matrix logarithm of V̂
(
A
N

)
we have

Tr

[
log

(
V̂

(
A

N

))]
=
−i
N

∑
j

Tr [Qj [A,Qj]] +O

((
1

N

)2
)

= O

((
1

N

)2
)

with the leading term disappearing due to the cyclic properties of the trace. Finally,

this yields the desired result:

det Û = lim
N→∞

exp

[
N · O

((
1

N

)2
)]

= lim
N→∞

1 +O
(

1

N

)
= 1

Definition 3.3.13 (Quadrants). Let Û be the adjoint representation of a unitary op-

erator U . Let Q′+ = {Z+, X+, (XZ)+, (XZ
2)+}, Q′− = {Z−, X−, (XZ)−, (XZ

2)−}

be two sets with associated sequences
(
Q′+
)

and
(
Q′−
)

with orderings as specified.

Let Qi,+ ∈ Q′+ be the ith element of
(
Q′+
)

and Qi,− ∈ Q′− be the ith element of(
Q′−
)
. Then we define the four 4 × 4 quadrants of Û (starting from the upper-left

quadrant and going counter-clockwise) as follows:

(
Û++

)
i,j

= 〈Qi,+, UQj,+U
†〉(

Û−+

)
i,j

= 〈Qi,−, UQj,+U
†〉(

Û−−

)
i,j

= 〈Qi,−, UQj,−U
†〉(

Û+−

)
i,j

= 〈Qi,+, UQj,−U
†〉

Lemma 3.3.14. Every adjoint representation D̂ of a diagonal unitary operator D

52

is symplectic.

Proof. As D is diagonal and unitary, we may write it as

D =

eiβ1 0 0

0 eiβ2 0

0 0 eiβ3

Direct computation of D̂ yields

D̂ =

1 0 0 0 0 0 0 0

0 d1 d2 d3 0 d4 d5 d6

0 d3 d1 d2 0 d6 d4 d5

0 d2 d3 d1 0 d5 d6 d4

0 0 0 0 1 0 0 0

0 −d4 −d5 −d6 0 d1 d2 d3

0 −d6 −d4 −d5 0 d3 d1 d2

0 −d5 −d6 −d4 0 d2 d3 d1

53

where we have defined

d1 =
1

3
[cos(β1 − β2) + cos(β2 − β3) + cos(β3 − β1)]

d2 =
1

6
[2 cos(β1 − β2)− cos(β2 − β3)− cos(β3 − β1)

+
√

3 (sin(β2 − β3)− sin(β3 − β1))
]

d3 =
1

6
[2 cos(β1 − β2)− cos(β2 − β3)− cos(β3 − β1)

−
√

3 (sin(β2 − β3)− sin(β3 − β1))
]

d4 =
1

3
[sin(β1 − β2) + sin(β2 − β3) + sin(β3 − β1)]

d5 =
1

6
[2 sin(β1 − β2)− sin(β2 − β3)− sin(β3 − β1)

−
√

3 (cos(β2 − β3)− cos(β3 − β1))
]

d6 =
1

6
[2 sin(β1 − β2)− sin(β2 − β3)− sin(β3 − β1)

+
√

3 (cos(β2 − β3)− cos(β3 − β1))
]

This means we have D̂++ = D̂−− = A and D̂−+ = −D̂+− = −B, subject to the

conditions that AAT + BBT = ATA + BTB = 1, ABT = BAT, and ATB = BTA

due to D̂ being special orthogonal. To see that these conditions suffice to show D̂

is symplectic, we must show D̂TΩD̂ = Ω with

Ω =

 0 14×4

−14×4 0

 .

54

Using our properties for A and B, we see

 AT −BT

BT AT

 0 1

−1 0

 A B

−B A

 =

 BTA− ATB BTB + ATA

−ATA−BTB −ATB +BTA

=

 0 1

−1 0

and so D̂ is symplectic.

3.3.3 Uniqueness

Remark 3.3.15. The entries of every adjoint representation Ĉ of a Clifford operator

C belong to the set {0,±1,±1
2
,±
√

3
2
}. Moreover, Ĉ++ and Ĉ−− are both 4 × 4

generalized permutation matrices with the same underlying nonzero pattern and

with entries in the set {0,±1,±1
2
}. On the other hand, Ĉ+− and Ĉ−+ are less-than-

full rank 4 × 4 matrices with the same nonzero pattern and at most one nonzero

entry per row and column, with the entries belonging to the set {0,±
√

3
2
}. These

properties may be verified by enumeration of the 216 distinct adjoint representations

of the Clifford operators, the full set of which we denote Ĉ. Referencing Remark 3.3.2

we can also immediately see that the entries of every Ĉ ∈ Ĉ belong to the ring Z[α].

55

Writing the generators of C + T in our adjoint representation, we have

Ŝ =

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

, Ĥ =

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 −1
2

0 0 0 −
√

3
2

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0
√

3
2

0 0 0 −1
2

0 0 0 0 0 0 −1 0

,

T̂ =

1 0 0 0 0 0 0 0

0 t1 t1 t2 0 t3 t3 t4

0 t2 t1 t1 0 t4 t3 t3

0 t1 t2 t1 0 t3 t4 t3

0 0 0 0 1 0 0 0

0 −t3 −t3 −t4 0 t1 t1 t2

0 −t4 −t3 −t3 0 t2 t1 t1

0 −t3 −t4 −t3 0 t1 t2 t1

56

where we have defined

t1 = 1
α2

(
− 1

22
+ 2α2 − 2α4

)
, t2 = 1

α2

(
1
23
− 3

2
α2 + 2α4

)
,

t3 = 1
α3

(
− 1

24
+ 1

2
α2 − α4

)
, t4 = 1

α3

(
1
23
− α2 + α4

)
,

Note that the entries of any C + T operator belong to the ring Z[1
γ
]. This is true

due to the fact that it holds for the generators S, R, and T by using Remark 3.3.3.

Furthermore, the adjoint representation of any C + T operator has entries in the

ring D[1
α

], which follows from Remark 3.3.15 and the fact that the statement holds

for the remaining generator, T̂ .

Remark 3.3.16. Consider ρ0(Ŝ) and ρ0(Ĥ). Under the residue map, these Cliffords

become the following:

ρ0(Ŝ) =

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

and ρ0(Ĥ) =

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 2 0

Thus, any adjoint representation Ĉ of a Clifford operator is such that the following

hold:

57

• The lde of Ĉ is zero

• ρ0(Ĉ) is a generalized permutation matrix with entries in Z3

• ρ0(Ĉ++) is a true permutation matrix

• ρ0(Ĉ−−) is a generalized permutation matrix with entries in Z3

• ρ0(Ĉ+−) = ρ0(Ĉ−+) = 04×4

• By Remarks 3.3.2 and 3.3.15 we have ρ0

(
1
α
Ĉ+−

)
= ρ0

(
1
α
Ĉ−+

)
= 04×4

In particular, we explicitly write out the nonzero quadrants of every Clifford in the

set L M :

ρ0(1̂++) = ρ0(Ĥ2
++) =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ρ0(Ĥ++) = ρ0(Ĥ3
++) =

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

ρ0(ŜĤ++) = ρ0(ŜĤ3
++) =

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

58

ρ0(Ŝ2Ĥ++) = ρ0(Ŝ2Ĥ3
++) =

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

ρ0(1̂−−) = −ρ0(Ĥ2
−−) =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ρ0(Ĥ−−) = −ρ0(Ĥ3
−−) =

0 1 0 0

2 0 0 0

0 0 0 1

0 0 2 0

ρ0(ŜĤ−−) = −ρ0(ŜĤ3
−−) =

0 1 0 0

0 0 2 0

2 0 0 0

0 0 0 1

ρ0(Ŝ2Ĥ−−) = −ρ0(Ŝ2Ĥ3
−−) =

0 1 0 0

0 0 0 1

0 0 2 0

2 0 0 0

Definition 3.3.17 (k-Adjoint Residue). Let Û be an 8 × 8 matrix with entries

59

in D[1
α

]. Furthermore, let Û++ permit the denominator exponent k, Û−+ and Û+−

permit the denominator exponent k+1, and Û−− permit the denominator exponent

k + 2. The we define the k-adjoint residue of Û , in symbols ρ̂k(Û) and with ρ̂k :

M8

(
Z[1

2
, 1
α

]
)
→M8 (Z3), as follows:

ρ̂k(Û) =

 ρk(Û++) ρk+1(Û+−)

ρk+1(Û−+) ρk+2(Û−−)

 .

When we write ρ̂k(Û±±), it is to be understood we want the array associated with

function ρ̂k as it applies to the (±±) quadrant. This means that when we write e.g.

ρ̂k(Û+−), we really mean ρk+1(Û+−)

Remark 3.3.18. Let us briefly examine the consequences of left- or right-

multiplication by a Clifford when considering only the k-adjoint residue of a matrix.

In particular, let Û be some adjoint representation of an operator where Û has en-

tries in Z[1
2
, 1
α

] and is such that ρ̂k(Û) is well defined. Right multiplication of Û by

an adjoint representation Ĉ of a Clifford would yield

Û · Ĉ =

 Û++Ĉ++ + Û+−Ĉ−+ Û++Ĉ+− + Û+−Ĉ−−

Û−+Ĉ++ + Û−−Ĉ−+ Û−+Ĉ+− + Û−−Ĉ−−

 .

Calculating the relevant k-residues of the resulting matrix, we have the following

60

relations:

ρk((Û · Ĉ)++) = ρk(Û++) · ρ0(Ĉ++) + ρk+1(Û+−) · ρ0

(
1

α
Ĉ−+

)
= ρk(Û++) · ρ0(Ĉ++)

ρk+1((Û · Ĉ)−+) = ρk+1(Û−+) · ρ0(Ĉ++) + ρk+2(Û−−) · ρ0

(
1

α
Ĉ−+

)
= ρk+1(Û−+) · ρ0(Ĉ++)

ρk+1((Û · Ĉ)+−) = ρk+1(Û++) · ρ0(Ĉ+−) + ρk+1(Û+−) · ρ0

(
Ĉ−−

)
= ρk+1(Û+−) · ρ0(Ĉ−−)

ρk+2((Û · Ĉ)+−) = ρk+1(Û−+) · ρ1

(
Ĉ+−

)
+ ρk+2(Û−−) · ρ0

(
Ĉ−−

)
= ρk+2(Û−−) · ρ0(Ĉ−−)

Left multiplication by a Clifford yields a similar set of relations:

ρk((Ĉ · Û)++) = ρ0(Ĉ++) · ρk(Û++) + ρ0

(
1

α
Ĉ+−

)
· ρk+1(Û−+)

= ρ0(Ĉ++) · ρk(Û++)

ρk+1((Ĉ · Û)−+) = ρ0(Ĉ−+) · ρk+1(Û++) + ρ0(Ĉ−−) · ρk+1(Û−+)

= ρ0(Ĉ−−) · ρk+1(Û−+)

ρk+1((Ĉ · Û)+−) = ρ0(Ĉ++) · ρk+1(Û+−) + ρ0

(
1

α
Ĉ+−

)
· ρk+2(Û−−)

= ρ0(Ĉ++) · ρk+1(Û+−)

ρk+2((Ĉ · Û)−−) = ρ1

(
Ĉ−+

)
· ρk+1(Û+−) + ρ0(Ĉ−−) · ρk+2(Û−−)

= ρ0(Ĉ−−) · ρk+2(Û−−)

61

By these equations we immediately have for any adjoint representation Ĉ of a Clif-

ford the following multiplicative rules for ρ̂k:

ρ̂k(Û · Ĉ) = ρ̂k(Û) · ρ0(Ĉ) and ρ̂k(Ĉ · Û) = ρ0(Ĉ) · ρ̂k(Û)

By Remark 3.3.16, we know ρ0(Ĉ) is simply a generalized permutation matrix with

ρ0(Ĉ++) a true permutation matrix and ρ0(Ĉ−−) a generalized permutation ma-

trix with the same nonzero pattern as ρ0(Ĉ++). This means that (left-) right-

multiplication by a Clifford simply corresponds to a permutation of (rows) columns,

with the first 4 undergoing a true permutation and the last 4 receiving the same

underlying permutation with potential (row-) column-wide multiplicative factors

applied.

Definition 3.3.19 (Clifford Equivalence). Let Û and V̂ be adjoint representations

of C + T operators U and V such that there exists a Clifford operator C with

adjoint representation Ĉ where Û · Ĉ = V̂ . If ρ̂k(Û) is well defined, then we know

that ρ̂k(V̂) is also well defined and call these k-adjoint residues Clifford equivalent,

in symbols ρ̂k(Û) ∼C ρ̂k(V̂), by which we mean ρ̂k(Û) · ρ0(Ĉ) = ρ̂k(V̂). We also

extend this notion to quadrants, meaning that ρ̂k(Û±±) ∼C ρ̂k(V̂±±) if and only if

ρ̂k(Û) ∼C ρ̂k(V̂) for the particular Clifford Ĉ.

Proposition 3.3.20. Let U ∈ C + T be a canonical form, and Û be the adjoint

representation of U . Let n be the T -count of U . Then the least denominator exponent

of Û++ is k = 2n and one of the following holds:

62

• n = 0 and U is a Clifford operator.

• n > 0 and one of 8 distinguishable cases holds for ρ̂2n(Û):

ρ̂2n(Û++) ∼C ρ0(M̂++) ·

0 0 0 0

0 2 2 2

0 2 2 2

0 2 2 2

,

ρ̂2n(Û−+) ∼C ρ0(M̂−−) ·

0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1

,

and the leftmost syllable is MT with Clifford prefix M ∈ L M

Proof. By direct computation, these statements hold for all canonical forms up to

T -count three. In particular, enumerating these canonical forms gives the further

condition that

ρ̂2n(Û+−) = ρ̂2n(Û++) and ρ̂2n(Û−−) = ρ̂2n(Û−+)

for all canonical forms of T -count n = 2 and n = 3 without a rightmost Clifford.

Let Ûn,Mn be an adjoint representation of a canonical form with T -count n > 2 and

leftmost syllable Mn with Clifford prefix M ′
n ∈ L ′M . Let Ûn−1,Mn−1 = M̂T

n Ûn,Mn

such that it is also an adjoint representation of a canonical form with T -count

63

n− 1 > 1 and leftmost syllable Mn−1 with Clifford prefix M ′
n−1 ∈ L ′M . Consider

left-multiplication of Ûn,Mn by T̂ :

T̂ Ûn,Mn =

 T̂++ T̂+−

−T̂+− T̂++

 (Ûn,Mn)++ (Ûn,Mn)+−

(Ûn,Mn)−+ (Ûn,Mn)−−

 .

As M1 is the leftmost syllable of Ûn,Mn , we can also rewrite some of its quadrants as

(Ûn,Mn)−+ = (M̂n)−+(Ûn−1,Mn−1)++ + (M̂n)−−(Ûn−1,Mn−1)−+

(Ûn,Mn)−− = (M̂n)−+(Ûn−1,Mn−1)+− + (M̂n)−−(Ûn−1,Mn−1)−−

Using these substitutions, we may write the following equations for the resulting

quadrant matrices of T̂ Ûn,Mn :

(T̂ Ûn,Mn)++ = T̂++(Ûn,Mn)++ + T̂+−(M̂n)−+(Ûn−1,Mn−1)++

+ T̂+−(M̂n)−−(Ûn−1,Mn−1)−+

(T̂ Ûn,Mn)−+ = −T̂+−(Ûn,Mn)++ + T̂++(Ûn,Mn)−+

(T̂ Ûn,Mn)+− = T̂++(Ûn,Mn)+− + T̂+−(M̂n)−+(Ûn−1,Mn−1)+−

+ T̂+−(M̂n)−−(Ûn−1,Mn−1)−−

(T̂ Ûn,Mn)−− = −T̂+−(Ûn,Mn)+− + T̂++(Ûn,Mn)−−.

Assume that Ûn,Mn,Mn−1 and Ûn−1,Mn−1 have the following 2n- and 2(n− 1)-adjoint

64

residues, respectively:

ρ̂2n(Ûn,Mn) ∼C ρ0(M̂ ′
n) ·

0 0 0 0 0 0 0 0

0 2 2 2 0 2 2 2

0 2 2 2 0 2 2 2

0 2 2 2 0 2 2 2

0 0 0 0 0 0 0 0

0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1

ρ̂2(n−1)(Ûn−1,Mn−1) ∼C ρ0(M̂ ′
n−1) ·

0 0 0 0 0 0 0 0

0 2 2 2 0 2 2 2

0 2 2 2 0 2 2 2

0 2 2 2 0 2 2 2

0 0 0 0 0 0 0 0

0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1

Now, consider ρ̂2(n+1)(T̂ Ûn,Mn). Using Remarks 3.3.8 and 3.3.18 and our equations

65

for (T̂ Ûn,Mn)±±, we have

ρ̂2(n+1)((T̂ Ûn,Mn)++) =ρ2(T̂++) · ρ2n((Ûn,Mn)++)

+ ρ4(T̂+−(M̂n)−+) · ρ2(n−1)((Ûn−1,Mn−1)++)

+ ρ3(T̂+−(M̂n)−−) · ρ2n−1((Ûn−1,Mn−1)−+)

ρ̂2(n+1)((T̂ Ûn,Mn)−+) =− ρ3(T̂+−) · ρ2n((Ûn,Mn)++)

+ ρ2(T̂++) · ρ2n+1((Ûn,Mn)−+)

ρ̂2(n+1)((T̂ Ûn,Mn)+−) =ρ2(T̂++) · ρ2n+1((Ûn,Mn)+−)

+ ρ4(T̂+−(M̂n)−+) · ρ2n−1((Ûn−1,Mn−1)+−)

+ ρ3(T̂+−(M̂n)−−) · ρ2n((Ûn−1,Mn−1)−−)

ρ̂2(n+1)((T̂ Ûn,Mn)−−) =− ρ3(T̂+−) · ρ2n+1((Ûn,Mn)+−)

+ ρ2(T̂++) · ρ2n+2((Ûn,Mn)−−)

Enumerating the 6 possibilities for ρ4(T̂+−(M̂n)−+) yields ρ4(T̂+−(M̂n)−+) = 04×4.

Similarly, evaluation of the 36 distinct cases for the terms containing ρ3(T̂+−(M̂n)−−)

yields

ρ3(T̂+−(M̂n)−−) · ρ2n−1((Ûn−1,Mn−1)−+)

= ρ3(T̂+−(M̂n)−−) · ρ2n((Ûn−1,Mn−1)−−) = 04×4.

Finally, the expressions ρ2(T̂++) · ρ2n+1((Ûn,Mn)−+) and ρ2(T̂++) · ρ2n+2((Ûn,Mn)−−),

66

with 6 cases each, may be enumerated to yield

ρ2(T̂++) · ρ2n+1((Ûn,Mn)−+) = ρ2(T̂++) · ρ2n+2((Ûn,Mn)−−) = 04×4.

This leaves us a simplified set of equations

ρ̂2(n+1)((T̂ Ûn,Mn)++) = ρ2(T̂++) · ρ2n((Ûn,Mn)++)

ρ̂2(n+1)((T̂ Ûn,Mn)−+) = −ρ3(T̂+−) · ρ2n((Ûn,Mn)++)

ρ̂2(n+1)((T̂ Ûn,Mn)+−) = ρ2(T̂++) · ρ2n+1((Ûn,Mn)+−)

ρ̂2(n+1)((T̂ Ûn,Mn)−−) = −ρ3(T̂+−) · ρ2n+2((Ûn,Mn)+−)

Direct evaluation of the 6 options for each term yield only one possible resulting

adjoint representation, summarized as follows ρ2(T̂++) · ρ2n((Ûn,Mn,Mn−1)++). giving

only one possible result:

ρ̂2(n+1)(T̂ Ûn,Mn) ∼C

0 0 0 0 0 0 0 0

0 2 2 2 0 2 2 2

0 2 2 2 0 2 2 2

0 2 2 2 0 2 2 2

0 0 0 0 0 0 0 0

0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1

.

67

As T̂ Ûn,Mn,Mn−1 is itself an adjoint representation of a canonical form with T -count

n + 1 and leftmost syllable T , left-multiplication by any element M̂ ′
n+1 from the

adjoint representation for the set L M is also an adjoint representation of a canon-

ical form with T -count n+ 1 and leftmost syllable Mn+1 with Clifford Prefix M ′
n+1.

Calling this new operator Ûn+1,Mn+1 , we have

ρ̂2(n+1)(Ûn+1,Mn+1) ∼C ρ0(M̂ ′
n+1) ·

0 0 0 0 0 0 0 0

0 2 2 2 0 2 2 2

0 2 2 2 0 2 2 2

0 2 2 2 0 2 2 2

0 0 0 0 0 0 0 0

0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1

.

This particular pattern is then persistent under an inductive argument, given two

consecutive T -counts possess the stated properties. Because all T -count 2 and 3

canonical forms obey the requisite requirements, we thus have that any canonical

form Ûn,Mn of T -count n > 2 and leftmost syllable Mn with Clifford prefix M ′
n ∈

68

L M will obey the relations

ρ̂2n(Û++) ∼C ρ0(ˆ(M ′
n)++) ·

0 0 0 0

0 2 2 2

0 2 2 2

0 2 2 2

,

ρ̂2n(Û−+) ∼C ρ0(ˆ(M ′
n)−−) ·

0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1

.

Enumeration of canonical forms of T -count one shows that they likewise have this

property, and so coupled with the fact that the lde of any Clifford operator is zero

we have shown Proposition 3.3.20 to be true.

Proposition 3.3.21. If M and N are different canonical forms then they represent

different operators.

Proof. Let U and V be different canonical forms with T -counts n and m respectively.

If n 6= m, then by Proposition 3.3.20 the lde’s of Û++ and V̂++ differ and so must

U and V . This leaves the case when n = m. Let U and V differ such that their

first mismatched syllable starting from the left is the pth syllable counting from

the right, with Up,0 the associated canonical form of U truncated at this syllable

as starting from the right such that U = Un,p+1Up,0. Then ÛT
n,p+1 · Û 6= ÛT

n,p+1 · V̂

by Proposition 3.3.20, and thus U and V are different. Now, let U and V be such

69

that every syllable is identical, but their rightmost Cliffords are different. Then

U †V ∈ C\{1} and therefore U 6= V . This enumerates all possible cases.

Corollary 3.3.22. Let U ∈ C + T have adjoint representation Û with lde k of

Û++. Then the canonical form M associated with U has T -count n = k
2

and can be

efficiently computed in O(n) arithmetic operations.

Proof. From U , we compute the adjoint representation Û using a constant number

of operations, in the process determining the lde k of Û++. By Proposition 3.3.20,

we have two cases depending on the value of k. If k = 0, U is equivalent to a

Clifford operator C and M can be found via lookup table. If k > 0, k is even by

Proposition 3.3.20 and so let n = k
2
. Then we can find the leftmost syllable Mn in a

constant number of operations by evaluating ρ̂2n(Û++) and ρ̂2n(Û−+). Now, calculate

Û ′ = M̂T
n Û - by Proposition 3.3.20, we know Û ′ is the adjoint representation of a

canonical form with lde k− 2 of Û ′++ such that the T -count of Û ′ is n− 1. Carrying

out this procedure recursively, we are left with the U equivalent canonical form

M = MnMn−1 . . .M1C

where it took a constant number of operations to calculate each Mi and C, thus

requiring an overall runtime of O(n).

We conclude with two important consequences of the uniqueness of canonical

forms.

Proposition 3.3.23. Canonical forms are T -optimal: for any canonical form with

70

T -count n there are no equivalent C+T operators with a number of power of T gates

less than n.

Proof. By Proposition 3.2.6 we know that every C + T operator admits a canonical

form, and by Proposition 3.3.21, we will have that these canonical forms are both

unique. Furthermore, by Remark 3.2.8, we know that in putting any C+T operator

into either canonical form by the algorithms laid out in Corollary 3.2.7, the T -count

may only decrease compared to the number of power of T gates. In combination,

these statements suffice to show T -optimality.

Proposition 3.3.24. Let ε > 0. There exists U ∈ SU(3) whose ε-approximation by

a Clifford+T circuit requires a number n of T gates where n & 8 log6

(
1
ε

)
− K for

K ≈ 0.543.

Proof. This follows from the volume-counting argument described in Eq. (2.2). In-

deed, there are 216/5(8 · 6n − 3) canonical forms of T -count at most n. Moreover,

each ε-ball occupies a volume of (π4/24)ε8 as ε asymptotes towards zero (by which

the 8-dimensional manifold SU(3) becomes locally Euclidean). We need to cover the

full volume
√

3π5 of SU(3) to guarantee that every operator can be approximated

up to ε. Therefore n needs to satisfy

216

5
(8 · 6n − 3)

π4

24
ε8 &

√
3π5,

from which the result follows.

71

3.4 Higher Prime Dimensions

Given that unique T -optimal MA normal forms exist for both qubits and

qutrits, it is extremely natural to try and extend this result for higher prime dimen-

sions. In fact, MA normal forms do generalize to higher dimensions. This fact has

not been published to my knowledge, but has been demonstrated independently by

(at a minimum) myself, Earl Campbell, and the pair of Akalank Jain and Shiro-

man Prakash, who had been co-authors on another paper considering qutrit C + T

compiling which was published simultaneously and independently of our own [125].

Unfortunately, while existence has been established, proving uniqueness of these

normal forms has been elusive. Nonetheless, for completeness we now present our

proof of existence.

First, we wish to establish a subgroup of the Cliffords analogous to M as

defined in Section 3.2. In prime dimension p > 5, these are operators of the form

∆a =

p−1∑
j=0

|aj〉 〈j|

for a ∈ [[1..p− 1]]. These operators can be explicitly represented as

HSaHS
1
aHSaP.

where 1
a

is the multiplicative inverse of a modulo p and P ∈ P (precisely which

P that is will be irrelevant for this discussion). This can be established by direct

72

computation, but it is more straightforward to consider the presentation of the

Clifford group using SL(2,Zp). Using our definitions from Eq. (1.2), we compute

this product as

0 −1

1 0

1 0

a 1

0 −1

1 0

1 0

1
a

1

0 −1

1 0

1 0

a 1

1 0

0 1

 =

a 0

0 a−1

Checking the action of ∆a on X and Z then confirms that the circuit is of the correct

form. These operators form a group M as 1 = ∆1, ∆−1
a = ∆ 1

a
, and ∆a∆b = ∆ab.

Consider conjugation of the T -gate raised to some power t by ∆a:

∆aT
t∆†a =

p−1∑
j=0

ωtj
3 |aj〉 〈aj|

=

p−1∑
j=0

ω
t
a3
j3 |j〉 〈j|

= T
t
a3 (3.8)

By conjugation with ∆a, we can thus change the power of T . We now consider two

families of primes. For primes p = 2 (mod 3), cubing is a bijection from [[1..p− 1]]

to [[1..p − 1]] for all a ∈ [[1..p − 1]]. This means that if a T gate is raised to any

power, we can always find a Clifford that upon conjugation transforms that power to

a single T gate, as we can choose the a which upon cubing becomes the inverse of t.

In the case where p = 1 (mod 3), however, cubing is a non-surjective function from

[[1..p− 1]] to [[1..p− 1]] – cubing only maps to a third of the elements of [[1..p− 1]].

This means that we can always map a power of T into one of three operators: T ,

73

T g, or T g
2

where g is a generator of the group ([[1..p− 1]], ·). In combination with

Eq. (3.8), we can thus conclude for prime dimension p > 5 qudits that

MT a ⊆

MTM p = 2 (mod 3)

⋃
b∈Z3

M ′T g
b
M ′ p = 1 (mod 3)

(3.9)

for any a ∈ [[1..p − 1]], g a generator of ([[1..p − 1]], ·), and M ′ ⊂M a cardinality

p−1
3

subset of M such that there is one representative ∆a ∈M ′ for each value of a3

(mod p). Finally, we note that M has no phases and a cardinality p− 1.

We can likewise define an analogue to S for general prime qudit dimension.

Taking again X and S as generators, we define this group as S = 〈X,S〉. Both of

these generators commute with T :

XT = Tω−1XZ−6S−6

ST = TS

As Z and ω are elements of S , we can conclude S T = TS . The group can be

factored as SsP for P ∈ P and s ∈ Zp, and so it has a cardinality of p4 (p3 up to a

phase). Finally, it is straightforward to show

∆aS ∆a = S .

for any a. This means that the subgroup which we shall call R generated by ∆g, X,

74

and S for g a generator of the group ([[1..p− 1]], ·) can conveniently be expressed as

R = MS .

This subgroup has p4(p− 1) elements, and p3(p− 1) up to a phase.

We now construct the full Clifford group using the cosets with respect to R.

By Eq. (1.1), the order of the single qudit Clifford group up to a phase is p3(p2−1),

and so we know there should be p+ 1 cosets in total. The set of cosets with respect

to R are

{R} ∪ {SsHR | s ∈ Zp}

which can be verified by checking that every element of SL(2,Zp) is contained in

this set of sets. The lack of a representation for Pauli group elements is rectified

by the presence of this group in the construction of R, and so we merely need to

compute the representations using R/P . We calculate

R/P =

a 0

0 1
a

1 0

b 1

∣∣∣∣∣∣∣∣ a ∈ [[1..p− 1]], b ∈ Zp

=

a 0

b
a

1
a

∣∣∣∣∣∣∣∣ a ∈ [[1..p− 1]], b ∈ Zp

 (3.10)

which is precisely every element of SL(2,Zp) with an entry of zero in the upper-right

75

corner. Using Eq. (3.10), we can then compute for s ∈ Zp

SsHR/P =

0 −1

1 s

a 0

b
a

1
a

∣∣∣∣∣∣∣∣ a ∈ [[1..p− 1]], b ∈ Zp

=

 − b

a
− 1
a

a+ sb
a

s
a

∣∣∣∣∣∣∣∣ a ∈ [[1..p− 1]], b ∈ Zp

 (3.11)

which is precisely every element of SL(2,Zp) with a non-zero entry of − 1
a

in the

upper-right corner and an entry of s
a

in the lower-right corner. The union of the

set in Eq. (3.10) and the sets for every value of s ∈ Zp in Eq. (3.11) is then equal

to C/P in this representation. Defining the set L = {1} ∪ {SsH | s ∈ Zp}, we can

then conclude that

C = L MS (3.12)

for all prime dimensions p > 5 as in the qutrit case. We also define the set L ′ =

L / {1}

The existence of prime dimension p > 5 Qudit normal forms then follows from

considering some general circuit

U = CnT
anCn−1T

an−1 · · ·C1T
a1C0

with n power-of-T gates. Using Eqs. (3.9) and (3.12) and S T = TS , we can then

76

immediately conclude under the same line of reasoning as in Proposition 3.2.6 that

U ⊆

L MT (L ′MT)m C p = 2 (mod 3)

L MT
(⋃

b∈Z3
L ′M ′T g

b
)m
C p = 1 (mod 3)

for m+ 1 6 n and g a generator of ([[1..p− 1]], ·). We call this a qudit Matsumoto-

Amano normal form, and note that rewriting some operator in this form can only

reduce the power-of-T gate count and takes a time linear in the size of the circuit.

3.5 Conclusion

Significant advances in our understanding of the Clifford+T group for both

single- and mutli-qubit circuits have been made in the past decade. Analogous re-

sults for qudits of higher dimension, however, remained elusive. In this chapter we

contribute to the theory of single-qutrit Clifford+T circuits by providing a canon-

ical form for fault-tolerant single-qutrit Clifford+T circuits. We show that every

Clifford+T operator admits a unique canonical representation and that this rep-

resentation is T -optimal. We provide a linear-time algorithm for computing this

algorithm which we note has been implemented online at Xiaoning Bian’s home-

page [126]. Finally, we demonstrate the existence of a similar normal form in higher

prime dimension. Unfortunately, there is no characterization of these circuits as

there is for C + T qubits as described in Section 2.4. This is a necessary ingredient

to develop efficient inexact synthesis algorithms for qudit C+T circuits. The failure

to establish such a characterization leaves this as an avenue for future work – in the

77

interim, we turn our attention to multi-qubit circuits.

78

Chapter 4: Restricted Clifford + T Circuit Synthesis
1

4.1 Introduction

Before attempting to develop normal forms for multi-qubit circuits, we focus

on characterizing circuits over universal gate sets which are simpler than the C + T

gate set. This shall provide motivation for the gate sets in which to search for such

normal forms. Kliuchnikov, Maslov, and Mosca showed in [92] that a 2-dimensional

unitary matrix V can be exactly represented by a single-qubit Clifford+T circuit if

and only if the entries of V belong to the ring D[ζ] for ζ = e
iπ
4 a primitive eighth

root of unity. This result gives a number-theoretic characterization of single-qubit

Clifford+T circuits. In [96], Giles and Selinger extended the characterization of Kli-

uchnikov et al. to multi-qubit Clifford+T circuits by proving that a 2n-dimensional

unitary matrix can be exactly represented by an n-qubit Clifford+T circuit if and

only if its entries belong to D[ζ].

These number-theoretic characterizations provide great insight into the struc-

ture of Clifford+T circuits. As a result, single-qubit Clifford+T circuits are now

very well understood [90, 91, 97, 100, 128]. In contrast, our understanding of multi-

qubit Clifford+T circuits remains more limited, despite interesting results [129–132].

1This work is a slightly modified version of [127].

79

One of the reasons for this limitation is that large unitary matrices over D[ζ] are

hard to analyze. In order to circumvent the difficulties associated with multi-qubit

Clifford+T circuits, restricted gate sets have been considered in the literature. This

led to important developments in the study of multi-qubit Clifford, CNOT+T , and

CNOT-dihedral circuits [67,106–111]. Unfortunately, the simpler structure of these

restricted gate sets comes at a cost: they are not universal for quantum computing.

In this chapter, our goal is to address both of these limitations by considering

universal restrictions of the Clifford+T gate set. To this end, we study circuits

corresponding to unitary matrices over proper subrings of D[ζ], focusing on D, D[
√

2],

D[
√

-2], and D[i]. For each subring, we find a set of quantum gates G with the

property that circuits over G correspond to unitary matrices over the given ring.

Writing U2n(R) for the group of 2n × 2n unitary matrices over a ring R, our main

results can then be summarized in the following theorem.

Theorem. A 2n × 2n unitary matrix V can be exactly represented by an n-qubit

circuit over

(i) {X,CX,CCX,H ⊗H} if and only if V ∈ U2n(D),

(ii) {X,CX,CCX,H,CH} if and only if V ∈ U2n(D[
√

2]),

(iii) {X,CX,CCX,F} if and only if V ∈ U2n(D[
√

-2]), and

(iv) {X,CX,CCX, ζH, S} if and only if V ∈ U2n(D[i]),

where ζ = eiπ/4 and F ∝
√
H. Moreover, in (i)-(iv), a single ancilla is sufficient.

80

The gate sets in items (i)-(iv) of the above theorem are all universal for quan-

tum computing [133,134], and we sometimes refer to circuits over these gate sets as

integral, real, imaginary, and Gaussian Clifford+T circuits, respectively. As a corol-

lary to the above theorem, we obtain two additional characterizations of universal

gate sets.

Corollary. A 2n × 2n unitary matrix V can be exactly represented by an n-qubit

circuit over

(i) {X,CX,CCX,H} if and only if V = W/
√

2
q

for some matrix W over Z and

some q ∈ N, and

(ii) {X,CX,CCX,H, S} if and only if V = W/
√

2
q

for some matrix W over Z [i]

and some q ∈ N.

Moreover, in (i) and (ii), a single ancilla is sufficient.

Restrictions similar to the ones considered here were previously studied in

the context of foundations [135], randomized benchmarking [136], and graphical

languages for quantum computing [137–139]. Furthermore, our study fits within

a larger program, initiated by Aaronson, Grier, and Schaeffer, which aims at clas-

sifying quantum operations. Such classifications exist for classical reversible op-

erations [85] and stabilizer operations [140], but no classification is known for a

universal family of quantum operations. In this context, our work can be seen as

a partial classification of the universal extensions of the set of classical reversible

gates {X,CX,CCX}. This perspective is illustrated in Figure 4.1, which depicts a

fragment of the lattice of subgroups of D[ζ].

81

U2n(D)

U2n(D
[√

-2
]
)

U2n(D[i])

U2n(D
[√

2
]
)

U2n(D [ζ])

U2n(Z)

U2n(Z [i])

U2n(Z [ζ])

S2n

F
S

CH

CH

T

F

S

TH ⊗H

H ⊗H

H ⊗H

H ⊗H

Z

Figure 4.1: Some subgroups of U2n(D [ζ]). To the left of the cube, in yellow, the
symmetric group S2n corresponds to circuits over the gate set {X,CX,CCX}. On
the bottom face of the cube, in blue, are generalized symmetric groups, and on the
top face of the cube, in red, are universal subgroups of U2n(D [ζ]). The edges of the
lattice denote inclusion. The gates labeling the edges are sufficient to extend the
expressive power of a gate set from one subgroup to the next (and no further). For
example, the edge labeled Z going from S2n to U2n(Z) indicates that adding the Z
gate to {X,CX,CCX} produces a gate set expressive enough to represent every
matrix in U2n(Z) (but not every matrix in U2n(Z [i])).

The rest of the paper is organized as follows. In Section 4.2, we give an

overview of our methods. In Section 4.3, we introduce the rings and matrices which

will be used throughout the paper. In Section 4.4, we show that certain useful

matrices can be exactly represented by restricted Clifford+T circuits. Section 4.5

contains the proofs of our various number-theoretic characterizations. We conclude

in Section 4.6.

82

4.2 Overview

Unrestricted Clifford+T circuits are generated byH, CX, and T . By Eq. (1.3),

we know the generators and thus all circuits over this gate set have entries in the ring

Z[1/
√

2, ζ] = Z[1/
√

2, i] = D [ζ]. Hence, if a matrix V can be represented exactly

by an n-qubit Clifford+T circuit, then V ∈ U2n(D [ζ]), the group of 2n × 2n unitary

matrices with entries in D [ζ]. Showing that the ring D [ζ] characterizes Clifford+T

circuits thus amounts to proving the converse implication.

The original insight of Kliuchnikov, Maslov and Mosca in the single-qubit

Clifford+T case was to reduce the problem of exact synthesis to the problem of

state preparation. The latter problem is to find, given a target vector v ∈ D [ζ]n, a

sequence G1, . . . , G` of Clifford+T gates such that G` · · ·G1e1 = u or, equivalently,

such that G†1 · · ·G
†
`u = e1. Kliuchnikov et al. realized that this sequence of gates

can be found by first writing v as v = u/
√

2
q

for some u ∈ Z [ζ] and then iteratively

reducing the exponent q.

This basic premise was extended by Giles and Selinger to the multi-qubit

context by adding an outer induction over the columns of an n-qubit unitary, as

described breifly in Section 2.4. This method amounts to performing a constrained

Gaussian elimination where the row operations are restricted to a few basic moves.

The Giles-Selinger algorithm proceeds by reducing the leftmost column of an n× n

unitary matrix to the first standard basis vector by applying a sequence of one- and

two-level matrices, which act non-trivially on at most two components of a vector,

before recursively dealing with the remaining submatrix. If the target unitary is

83

V =

[
v V ′

]
, then the Giles-Selinger algorithm first constructs a sequence of

matrices G1, . . . , G` such that G1 · · ·G`v = e1. Left-multiplying V by this sequence

of matrices then yields

G1 · · ·G`

 v V ′

 =

1 0 · · · 0

0

... V ′′

0

where V ′′ is unitary. The fact that the matrices used in this reduction act non-

trivially on no more than two rows of the matrix ensures that when the algorithm

recursively reduces the columns of V ′′ it does so without perturbing the previously

fixed columns. The Giles-Selinger algorithm thus relies on the following two facts.

1. A unit vector in D [ζ]n can be reduced to a standard basis vector by using one-

and two-level matrices and

2. The required one- and two-level matrices can be exactly represented by

Clifford+T circuits.

While each of our characterizations presents specificities, our method in character-

izing restricted Clifford+T circuits follows this general structure.

84

4.3 Rings and Matrices

In this section, we discuss the rings and matrices that will be used throughout

the paper. For further details, the reader is encouraged to consult [141].

4.3.1 Rings

We will use the extensions of Z defined below.

Definition 4.3.1. Let

• Z
[√

2
]

=
{
x0 + x1

√
2 | x0, x1 ∈ Z

}
,

• Z
[√

-2
]

=
{
x0 + x1

√
-2 | x0, x1 ∈ Z

}
,

• Z [i] = {x0 + x1i | x0, x1 ∈ Z}, and

• Z [ζ] = {x0 + x1ζ + x2ζ
2 + x3ζ

3 | x0, x1, x2, x3 ∈ Z}.

The rings Z
[√

2
]
, Z
[√

-2
]
, Z [i], and Z [ζ] are known as the ring of quadratic

integers with radicand 2, the ring of quadratic integers with radicand -2, the ring of

Gaussian integers, and the ring of cyclotomic integers of degree 8, respectively. All

of these rings are distinct subrings of Z [ζ] and we have the inclusions depicted in

the lattice of subrings below.

Z

Z
[√

-2
]

Z [i] Z
[√

2
]Z [ζ]

85

Further to the rings introduced in Definition 4.3.1, we will consider extensions

of D.

Definition 4.3.2. Let

• D
[√

2
]

=
{
x0 + x1

√
2 | x0, x1 ∈ D

}
,

• D
[√

-2
]

=
{
x0 + x1

√
-2 | x0, x1 ∈ D

}
,

• D[i] = {x0 + x1i | x0, x1 ∈ D}, and

• D [ζ] = {x0 + x1ζ + x2ζ
2 + x3ζ

3 | x0, x1, x2, x3 ∈ D}.

If v ∈ D
[√

2
]
, then v can be written as v = u/2q for some q ∈ N and some

u ∈ Z
[√

2
]
. A similar property holds for elements of D

[√
-2
]
, D[i], and D [ζ]. The

following proposition gives an explicit description of certain lesser-known rings of

residues which will be useful in what follows.

Proposition 4.3.3. We have

• Z
[√

2
]
/(2) =

{
0, 1,
√

2, 1 +
√

2
}

,

• Z
[√

-2
]
/(2) =

{
0, 1,
√

-2, 1 +
√

-2
}

,

• Z
[√

-2
]
/(2
√

-2) =
{

0, 1, 2, 3,
√

-2, 1 +
√

-2, 2 +
√

-2, 3 +
√

-2
}

, and

• Z [i] /(2) = {0, 1, i, 1 + i}.

Proof. To see, for example, that Z
[√

2
]
/(2) =

{
0, 1,
√

2, 1 +
√

2
}

, note that u =

x0 + x1

√
2 and u′ = x′0 + x′1

√
2 are congruent modulo 2 if there exists an element

t = y0 + y1

√
2 such that u − u′ = 2t. This is the case if and only if (x0 − x′0) +

86

(x1 − x′1)
√

2 = 2y0 + 2y1

√
2 which in turn holds if and only if x0 ≡ x′0 (mod 2) and

x1 ≡ x′1 (mod 2).

We will often take advantage of properties of residues. Some of the properties

are generic. For example, if u and v are two elements of a ring R and u ≡ v (mod 2),

then u ± v ≡ 0 (mod 2). Other properties of residues are specific to the ambient

ring. For example, an integer u ∈ Z is odd if and only if u2 ≡ 1 (mod 4). Similarly,

for an integer u ∈ Z, we have u ≡ 3 (mod 4) if and only if −u ≡ 1 (mod 4). We

now state important properties of residues in Z
[√

-2
]

and Z [i] for future reference.

They can be established by reasoning using residue tables in the relevant quotient

rings.

Proposition 4.3.4. The following statements hold.

• In Z
[√

-2
]
/(2), u†u ≡ 0 or 1.

• If we have u†u ≡ 1 in Z
[√

-2
]
/(2), then u ≡ 1, 3, 1 +

√
-2, or 3 +

√
-2 in

Z
[√

-2
]
/(2
√

-2).

• In Z
[√

-2
]
/(2
√

-2), u ≡ 3 if and only if −u ≡ 1 and u ≡ 3 +
√

-2 if and only

if −u ≡ 1 +
√

-2.

Proposition 4.3.5. The following statements hold.

• In Z [i] /(2), if u2 ≡ 1, then u ≡ 1 or i.

• In Z [i] /(2), u ≡ i if and only if iu ≡ 1.

87

4.3.2 Matrices

We write ej for the j-th standard basis vector. If R is a ring, we write

Mn×n′(R) for the collection of n × n′ matrices over R. We will use one-, two-,

and four-level matrices which act non-trivially on only one, two, or four of the com-

ponents of their input. These matrices will be defined using basic matrices. The

construction is best explained with an example. If

V =

v1,1 v1,2

v2,1 v2,2

is a 2-dimensional unitary matrix, then in 3 dimensions the two-level operator of

type V , which is denoted by V[1,3], is the matrix given below.

V[1,3] =

v1,1 0 v1,2

0 1 0

v2,1 0 v2,2

Definition 4.3.6. Let W be an n×n unitary matrix, let n 6 n′, and let a1, . . . , an ∈

[[1..n′]]. The n-level matrix of type W is the n′×n′ unitary matrix W[a1,...,an] defined

by

W[a1,...,an]j,k
=

Wj′,k′ if j = aj′ and k = ak′

Ij,k otherwise.

We finally note that we have valid notions for denominator exponents of any

88

tensor with entries in the ring D and its extensions.

4.4 Circuits

In this section, we review basic circuit constructions which will be useful below.

A more detailed discussion of quantum circuits can be found in Chapter 4 of [70].

Let η be a primitive m-th root of unity. We sometimes call η a global phase of

order m. We think of these global phases as gates acting on 0 qubits and in what

follows we will be especially interested in the global phases of order 2, 4, and 8,

which we denote −1, i, and ζ, respectively. The single-qubit phase gate of order m

is defined as

Pη =

1 0

0 η

 .
We will be particularly interested in phase gates of order 2, 4, and 8 which are the

Z, S, and T gates previously defined in Section 1.4.2, respectively. In addition to

phase gates, we will also use the single-qubit Hadamard gate H and NOT gate X,

likewise described in Section 1.4.2. The last single-qubit gate we will use is the F

gate defined below.

F =
1

2

1 +
√

-2 1

1 −1 +
√

-2

 .
The F gate is not as common as the other single-qubit gates introduced above. We

note that F 2 = iH and that F can be expressed as a product of better known gates

since

F = SHTSHTSHSζ−1

89

We will also make use of the two-qubit H⊗H gate as well as the controlled classical

gates CX and CCX as defined in Section 1.4.2. Finally we define the controlled-H

gate

CH = 12 ⊕H

In general, if G is a gate, then we write CnG for the n-control -G gate.

As usual, circuits are built from gates through composition and tensor product.

An ancilla is a qubit used locally within a circuit but on which the global action

of the circuit is trivial. In particular, we say that a unitary matrix W is exactly

represented by a circuit D using n ancillas if for any input state |ψ〉 and ancilla

state |φ〉 we have

D |ψ〉 |φ〉 = (W |ψ〉) |φ〉 .

If |φ〉 = |0〉⊗n, then the ancillary qubits are said to be clean. Without this require-

ment, the ancillary qubits are said to be dirty. Unless otherwise stated, ancillas are

assumed to be clean.

In order to characterize restricted Clifford+T circuits, it is helpful to establish

some basic facts about the construction of multi-level matrices over gate sets includ-

ing the Toffoli gate. It is known (see, e.g., [70, Sec. 4.5.2]) that an n-qubit, 2m-level

matrix of type W can be implemented using the CX gate and the fully-controlled-

W gate Cn−mW . Moreover, if the fully-controlled-X gate can be implemented with

one dirty ancilla and the singly-controlled-W gate can be implemented with one

dirty ancilla, then the fully-controlled-W gate can be implemented using one clean

ancilla.

90

Lemma 4.4.1. Let G be a gate set such that CnX is representable by a circuit with

a single dirty ancilla for any n, and let W be a 2m × 2m unitary matrix. If CW is

representable over G with at most one dirty ancilla, then CnW is also representable

over G for any n > 1. Moreover, a single ancilla suffices.

Proof. Follows from standard techniques, e.g. [142]. In particular, if n = 1, then

CW is implementable with a single dirty, and hence also clean ancilla. If n > 1,

then CnW gate can be implemented with the following construction, where each

gate on the right has at least one (dirty) ancilla available for use:

•
...

...

•

/ W /

=

• •
...

...

• •

|0〉 X • X |0〉

/ W /

We can now use Lemma 4.4.1 to give constructions of multi-level matrices of

different types over their uncontrolled versions in the presence of the Toffoli gate.

Recall that the multiply-controlled X gate can be implemented with CCX gates

and a single dirty ancilla [142].

Proposition 4.4.2. The operators

{
(−1)[a], X[a,b], (H ⊗H)[a,b,c,d]

}

91

where a, b, c, and d are distinct elements of [n] can be exactly represented by quantum

circuits over the gate set {X,CX,CCX,H ⊗H} using at most one ancilla.

Proof. By Lemma 4.4.1 it suffices to give constructions for the singly-controlled Z

and H ⊗H gates. Clearly

•

Z =

•

H ⊗H
X

H ⊗H

and it can be verified that

•

H ⊗H =

• •
X • X X • X

H ⊗H
• X •

H ⊗H
• X •

Corollary 4.4.3. The operators

{
(−1)[a], X[a,b], (H ⊗H)[a,b,c,d], I2n−1 ⊗H

}

where a, b, c, and d are distinct elements of [[1..n]] can be exactly represented by

quantum circuits over the gate set {X,CX,CCX,H} using at most one ancilla.

Proposition 4.4.4. The operators

{
i[a], X[a,b], ζH[a,b]

}
92

where a and b are distinct elements of [n] can be exactly represented by quantum

circuits over the gate set {X,CX,CCX, ζH, S} using at most one ancilla.

Proof. Again it suffices to give constructions for the singly-controlled S and ζH

gates. In this case it can be verified that

•

S =

• • •

• • •

S† X ζH X (ζH)† S X

Likewise, we have

•

ζH =

• • •

S ζH S (ζH)† S

Corollary 4.4.5. The operators

{
i[a], X[a,b], ζH[a,b], ζI

}

where a and b are distinct elements of [[1..n]] can be exactly represented by quantum

circuits over the gate set {X,CX,CCX,H, S} using at most one ancilla.

Proof. Follows from Proposition 4.4.4 and the fact that ζ = SHSHSH.

93

Proposition 4.4.6. The operators

{
(−1)[a], X[a,b], H[a,b]

}

where a and b are distinct elements of [[1..n]] can be exactly represented by quantum

circuits over the gate set {X,CX,CCX,H,CH} using at most one ancilla.

Proof. By Proposition 4.4.2, (−1)[a] can be represented by a quantum circuit over

{X,CX,CCX,H ⊗H} and hence also {X,CX,CCX,H,CH}. Since CH is al-

ready in the generating set the proof is complete.

Proposition 4.4.7. The operators

{
(−1)[a], X[a,b], F[a,b]

}

where a and b are distinct elements of [[1..n]] can be exactly represented by quantum

circuits over the gate set {X,CX,CCX,F} using at most one ancilla.

Proof. To show that CZ is representable over the gate set, it can be observed that

since F 2 = iH and F 6 = −iH, it follows that

•

Z
=

•

F 2 X F 6

.

The construction of CF is somewhat more involved, but can be obtained from

94

standard constructions (e.g., [142]) by noting that

(ZXF)2 = I, and

X(ZXF)X(ZXF)X = ZXF.

In particular, the controlled ZXF gate can be constructed by adding a control to

the middle X gate above and cancelling the controlled Z and X factors:

•

F
=

• • •

X F X Z X F X Z X Z X

4.5 Number-Theoretic Characterizations

4.5.1 The D case

We start by studying the group of n×n unitary matrices over D. Since X, CX,

CCX, and H ⊗H have entries in D, any circuit over {X,CX,CCX,H ⊗H} must

represent a unitary matrix over D. Here, we show the converse: any unitary matrix

over D can be represented by a circuit over {X,CX,CCX,H ⊗H}. To prove this,

it is sufficient to establish that every unitary over D can be expressed as a product

of the following generators

{
(−1)[a], X[a,b], (H ⊗H)[a,b,c,d]

}
, (4.1)

95

where a, b, c, and d are distinct elements of [n]. Indeed, by Proposition 4.4.2, all of

the above generators can be exactly represented by quantum circuits over the gate

set {X,CX,CCX,H ⊗H}.

If V is a matrix over D, then V can be written as

V =
1

2q
W (4.2)

where q ∈ N and W is a matrix over Z. We will consider 2 denominator exponents

of such matrices.

The following four lemmas are devoted to proving the analogue of Giles and

Selinger’s Column Lemma (Lemma 5 in [96]). Here, the goal is to establish that any

unit vector over D can be reduced to a standard basis vector by multiplying it on

the left by an appropriately chosen sequence of generators. We consider the case of

vectors of dimension n < 4 first, before moving on to higher dimensions.

Lemma 4.5.1. Let n < 4 and let j ∈ [[1..n]]. If v is an n-dimensional unit vector

over D, then there exists generators G1, . . . , G` from (4.1) such that G1 · · ·G`v = ej.

Proof. Write v as v = u/2q with u ∈ Zn and q = lde2(v). Since v is a unit vector,

we have v†v = 1 and thus 4q =
∑
u†kuk =

∑
u2
k. The square of any odd number

is congruent to 1 modulo 4. Thus when n < 4, we have
∑
u2
k ≡ 0 (mod 4) only

if every uk is even. This implies that lde2(v) = 0 when n < 4 and therefore that

v = ±ej′ for some j′ ∈ [[1..n]]. Hence one of

v = ej, (−1)[j]v = ej, X[j,j′]v = ej, or X[j,j′](−1)[j′]v = ej

96

must hold, which completes the proof.

Because (H⊗H)[a,b,c,d] is a four-level matrix, we consider its action on certain 4-

dimensional vectors in the lemma below. This is in contrast with Giles and Selinger’s

algorithm, for which only one- and two-level matrices are needed.

Lemma 4.5.2. If u1, . . . , u4 ∈ Z are such that u2
1 ≡ . . . ≡ u2

4 ≡ 1 (mod 4), then

there exists m1, . . . ,m4 such that

(H ⊗H)(−1)m1

[1] (−1)m2

[2] (−1)m3

[3] (−1)m4

[4]

u1

u2

u3

u4

=

u′1

u′2

u′3

u′4

for some u′1, . . . , u

′
4 ∈ Z such that u′1 ≡ . . . ≡ u′4 ≡ 0 (mod 2).

Proof. If u ∈ Z is such that u2 ≡ 1 (mod 4), then u ≡ 1 (mod 4) or u ≡ 3

(mod 4). Furthermore, if u ≡ 3 (mod 4), then −u ≡ 1 (mod 4). Hence, given

u1, . . . , u4 ∈ Z such that u2
1 ≡ . . . ≡ u2

4 ≡ 1 (mod 4), we can find m1, . . . ,m4 such

that (−1)m1u1 ≡ . . . ≡ (−1)m4u4 ≡ 1 (mod 4). It can then be verified that

(H ⊗H)

(−1)m1u1

(−1)m2u2

(−1)m3u3

(−1)m4u4

=

u′1

u′2

u′3

u′4

for some u′1 ≡ . . . ≡ u′4 ≡ 0 (mod 2).

97

Lemma 4.5.3. Let n > 4. If v is an n-dimensional unit vector over D and lde2(v) >

0, then there exists generators G1, . . . , G` from (4.1) such that G1 · · ·G`v = v′ and

lde2(v′) < lde2(v).

Proof. Write v as v = u/2q where u ∈ Zn and q > 1. Since v is a unit vector we

have v†v = 1 and thus 4q =
∑
u†kuk =

∑
u2
k since u is real. The number of uk such

that u2
k ≡ 1 (mod 4) is therefore congruent to 0 modulo 4. Hence, we can group

these entries in sets of size 4 and apply Lemma 4.5.2 to each such set in order to

reduce the 2 denominator exponent of the vector.

Lemma 4.5.4. Let j ∈ [[1..n]]. If v is an n-dimensional unit vector over D, then

there exists generators G1, . . . , G` from (4.1) such that G1 · · ·G`v = ej.

Proof. The case of vectors of dimension n < 4 was treated in Lemma 4.5.1 so we

assume that n > 4 and we proceed by induction on the least 2 denominator exponent

of v.

• If lde2(v) = 0, then v is a unit vector in Zn. Hence v = ±ej′ for some

j′ ∈ [[1..n]] and one of

v = ej, (−1)[j]v = ej, X[j,j′]v = ej, or X[j,j′](−1)[j′]v = ej

must hold.

• If lde2(v) > 0, apply Lemma 4.5.3 to reduce the 2 denominator exponent of

v.

98

We can now use Lemma 4.5.4 to prove that every unitary matrix with entries

in D can be written as a product of generators. This, together with Proposition 4.4.2

establishes our characterization of circuits over the gate set {X,CX,CCX,H ⊗H}.

Theorem 4.5.5. If V is an n-dimensional unitary matrix with entries in D, then

there exists generators G1, . . . , G` from (4.1) such that G1 · · ·G`V = I.

Proof. By iteratively applying Lemma 4.5.4 to the columns of V .

Corollary 4.5.6. A matrix V can be exactly represented by an n-qubit circuit over

{X,CX,CCX,H ⊗H} if and only if V ∈ U2n(D). Moreover, a single ancilla always

suffices to construct a circuit for V .

To conclude this case, we leverage Theorem 4.5.5 and Corollary 4.4.3 to char-

acterize circuits over the gate set {X,CX,CCX,H}. To this end, we consider

matrices of the form

V =
1√
2
qW (4.3)

where q ∈ N and W is a matrix over Z. For these matrices, we use
√

2 denominator

exponents. We extend the set of generators from (4.1) with a matrix of the form

I ⊗H. Thus the relevant generators are now

{
(−1)[a], X[a,b], (H ⊗H)[a,b,c,d], I2n−1 ⊗H

}
(4.4)

where a, b, c, and d are distinct elements of [[1..n]].

Lemma 4.5.7. If V 6= 0 is as in (4.3), then all the
√

2 denominator exponents of

V are congruent modulo 2.

99

Proof. Suppose that q < q′ are two
√

2 denominator exponents of V . Then V =

W/
√

2
q

= W ′/
√

2
q′

for some integer matrices W and W ′. Assume without loss of

generality that q < q′. Then

W ′ =
√

2
q′

V =
√

2
q′−q

W

so that
√

2
q′−q

W is an integer matrix. Hence q ≡ q′ (mod 2), since V 6= 0 and

√
2 /∈ Z.

Theorem 4.5.8. Let n be even. If V = W/
√

2
q

is an n-dimensional unitary matrix

such that W is an integer matrix, then there exists generators G1, . . . , G` from (4.4)

such that G1 · · ·G`V = I.

Proof. If q is even, the result follows from Theorem 4.5.5. If q is odd, then

(I2n−1 ⊗H)V = W ′/
√

2
q′

for some even q′ and some integer matrix W ′. Hence the result follows by applying

Theorem 4.5.5 to (I2n−1 ⊗H)V .

Remark 4.5.9. The restriction to even dimensions in Theorem 4.5.8 is not a conse-

quence of the choice of generators. Indeed, it can be shown that there are no unitary

matrices of the form (4.3) whose dimension and least
√

2 denominator exponent are

both odd [143].

Corollary 4.5.10. A matrix V can be exactly represented by an n-qubit circuit

over {X,CX,CCX,H} if and only if V is a 2n-dimensional unitary matrix such

100

V = W/
√

2
q

for some integer matrix W and some q ∈ N. Moreover, a single ancilla

always suffices to construct a circuit for V .

4.5.2 The D
[√

2
]

case

We now focus on the group of n× n unitary matrices with entries in D
[√

2
]
.

The elements of this group can be written as

V =
1√
2
qW (4.5)

where q ∈ N and W is a matrix over Z
[√

2
]
. We now use

√
2 denominator exponents

and the relevant generators are

{
(−1)[a], X[a,b], H[a,b]

}
(4.6)

where a and b are distinct elements of [[1..n]]. By Proposition 4.4.6, all of the

above generators can be exactly represented by quantum circuits over the gate set

{X,CX,CCX,H,CH}. As in the previous cases, we prove our characterization by

showing that any unitary matrix of the form (4.5) can be expressed as a product of

generators from (4.6).

Lemma 4.5.11. If u1, u2 ∈ Z
[√

2
]

are such that u1 ≡ u2 (mod 2), then

H

u1

u2

 =

u′1
u′2

101

for some u′1, u
′
2 ∈ Z

[√
2
]

such that u′1 ≡ u′2 ≡ 0 (mod
√

2).

Proof. Since u1 ≡ u2 (mod 2), we have u1 + u2 ≡ u1− u2 ≡ 0 (mod 2). It can then

be verified that

H

u1

u2

 =

u′1
u′2

for some u′1 ≡ u′2 ≡ 0 (mod 2).

Lemma 4.5.12. If v is an n-dimensional unit vector over D
[√

2
]

and lde√2(v) > 0,

then there exists generators G1, . . . , G` from (4.6) such that G1 · · ·G`v = v′ and

lde√2(v′) < lde√2(v).

Proof. Write v as v = u/
√

2
q

where u ∈ Z
[√

2
]

and q > 0. Since v is a unit

vector we have v†v = 1 and thus 2q =
∑
u†juj =

∑
u2
j since u is real. Letting

uj = xj + yj
√

2, this yields the following equation

2q =
∑

x2
j + 2y2

j + xjyj2
√

2.

Thus
∑
x2
j ≡ 0 (mod 2) and

∑
xjyj = 0. It follows that uj ≡ 1 (mod 2) for evenly

many j and uj ≡ 1 +
√

2 (mod 2) for evenly many j. We can therefore group these

entries in sets of size 2 and apply Lemma 4.5.11 to each such set in order to reduce

the
√

2 denominator exponent of the vector.

The following three statements are established like the corresponding ones in

the previous section. For this reason, we omit their proofs.

102

Lemma 4.5.13. Let j ∈ [[1..n]]. If v is an n-dimensional unit vector over D
[√

2
]
,

then there exists generators G1, . . . , G` from (4.6) such that G1 · · ·G`v = ej.

Theorem 4.5.14. If V is an n-dimensional unitary matrix with entries in D
[√

2
]
,

then there exists generators G1, . . . , G` from (4.6) such that G1 · · ·G`V = I.

Corollary 4.5.15. A matrix V can be exactly represented by an n-qubit circuit over

{X,CX,CCX,H,CH} if and only if V ∈ U2n
(
D
[√

2
])

. Moreover, a single ancilla

always suffices to construct a circuit for V .

4.5.3 The D
[√

-2
]

case

We now consider the group of n× n unitary matrices with entries in D
[√

-2
]
.

Such matrices can be written as

V =
1

(
√

-2)q
W (4.7)

where q ∈ N and W is a matrix over Z
[√

-2
]
. We now use

√
-2 denominator

exponents and the relevant generators are

{
(−1)[a], X[a,b], F[a,b]

}
(4.8)

where a and b are distinct elements of [[1..n]]. By Proposition 4.4.7, all of the above

generators can be exactly represented by quantum circuits over {X,CX,CCX,F}.

As in the previous cases, we establish our characterization by showing that any

unitary matrix of the form (4.7) can be expressed as a product of generators from

103

(4.8).

Lemma 4.5.16. If u1, u2 ∈ Z
[√

-2
]

are such that u†1u1 ≡ u†2u2 ≡ 1 (mod 2), then

there exists m0, m1, m2, and m3 such that

Fm0(−1)m1

[1] (−1)m2

[2] X
m3

u1

u2

 =

u′1
u′2

for some u′1, u
′
2 ∈ Z

[√
-2
]

such that u′1 ≡ u′2 ≡ 0 (mod
√

-2).

Proof. First consider the case in which u1 ≡ u2 (mod 2). Then u1+u2 ≡ u1−u2 ≡ 0

(mod 2) and it can be verified that

F 2

u1

u2

 = iH

u1

u2

 =

u′1
u′2

for some u′1 ≡ u′2 ≡ 0 (mod
√

-2). We now consider the case in which u1 6≡ u2

(mod 2). In this case, the fact that u†1u1 ≡ u†2u2 ≡ 1 (mod 2) implies that one of u1

or u2 is congruent to 1 or 3 modulo 2
√

-2 while the other is congruent to (1 +
√

-2)

or (3 +
√

-2) modulo 2
√

-2. We can therefore find m1,m2,m3 such that

(−1)m1

[1] (−1)m2

[2] X
m3

u1

u2

 =

u′′1
u′′2

104

where u′′1 ≡ 1 +
√

-2 (mod 2
√

-2) and u′′2 ≡ 1 (mod 2
√

-2). Then

F

u′′1
u′′2

 =
1

2

 (1 +
√

-2)u′′1 + u′′2

u′′1 + (−1 +
√

-2)u′′2

 .

But u′′1 ≡ 1 +
√

-2 (mod 2
√

-2) and u′′2 ≡ 1 (mod 2
√

-2) so that

(1 +
√

-2)u′′1 + u′′2 ≡ (1 +
√

-2)2 + 1 ≡ 2
√

-2 ≡ 0 (mod 2
√

-2).

and

u′′1 + (−1 +
√

-2)u′′2 ≡ (1 +
√

-2) + (−1 +
√

-2) ≡ 2
√

-2 ≡ 0 (mod 2
√

-2).

Hence we can set u′1 = ((1 +
√

-2)u′′1 + u′′2)/2 and u′2 = (u′′1 + (−1 +
√

-2)u′′2)/2 to

complete the proof.

Lemma 4.5.17. If v is an n-dimensional unit vector over D
[√

-2
]

and lde√-2(v) >

0, then there exists generators G1, . . . , G` from (4.8) such that G1 · · ·G`v = v′ and

lde√-2(v′) < lde√-2(v).

Proof. Write v as v = u/
√

-2
q

where u ∈ Z
[√

-2
]

and q > 0. Since v is a unit

vector we have v†v = 1 and thus (-2)q =
∑
u†juj. Thus

∑
u†juj ≡ 0 (mod 2) and it

follows that u†juj ≡ 1 (mod 2) for evenly many j, since modulo 2 we have u†juj ≡ 0

or u†juj ≡ 1. We can therefore group these entries in sets of size 2 and apply

Lemma 4.5.16 to each such set in order to reduce the denominator exponent.

105

Lemma 4.5.18. Let j ∈ [[1..n]]. If v is an n-dimensional unit vector over D
[√

-2
]
,

then there exists generators G1, . . . , G` from (4.8) such that G1 · · ·G`v = ej.

Theorem 4.5.19. If V is an n-dimensional unitary matrix with entries in D
[√

-2
]
,

then there exists generators G1, . . . , G` from (4.8) such that G1 · · ·G`V = I.

Corollary 4.5.20. A matrix V can be exactly represented by an n-qubit circuit over

{X,CX,CCX,F} if and only if V ∈ U2n
(
D
[√

-2
])

. Moreover, a single ancilla

always suffices to construct a circuit for V .

4.5.4 The D[i] case

Finally, we turn our attention to the group of n × n unitary matrices with

entries in D[i]. The relevant set of generators is

{
i[a], X[a,b], ωH[a,b]

}
(4.9)

where a and b are distinct elements of [[1..n]]. We reason as in the previous cases,

noting by Proposition 4.4.4 that all of the above generators can be exactly repre-

sented by quantum circuits over {X,CX,CCX,ωH, S}.

If V is a matrix over D[i], then V can be written as V = W/2q where q ∈ N

and W is a matrix over Z [i]. For our purposes, however, it is more convenient to

express these matrices as

V =
1

(1 + i)q
W (4.10)

106

where q ∈ N and W is a matrix over Z [i]. This is equivalent since

1

2q
W =

iq

(1 + i)2q
W =

1

(1 + i)2q
W ′.

We therefore use matrices of the form (4.10) and use (1+ i) denominator exponents.

Lemma 4.5.21. If u1, u2 ∈ Z [i] are such that u2
1 ≡ u2

2 ≡ 1 (mod 2), then there

exists m1 and m2 such that

ωHim1

[1] i
m2

[2]

u1

u2

 =

u′1
u′2

for some u′1, u

′
2 ∈ Z [i] such that u′1 ≡ u′2 ≡ 0 (mod 1 + i).

Proof. If u2 ≡ 1 (mod 2), then u ≡ 1 (mod 2) or u ≡ i (mod 2). Furthermore, if

u ≡ i (mod 2), then iu ≡ 1 (mod 2). Hence, given u1, u2 ∈ Z such that u2
1 ≡ u2

2 ≡ 1

(mod 2), we can find m1 and m2 such that im1u1 ≡ im2u2 ≡ 1 (mod 2). It can then

be verified that

ωHim1im2

u1

u2

 =

u′1
u′2

for some u′1 ≡ u′2 ≡ 0 (mod 1 + i).

Lemma 4.5.22. If v is an n-dimensional unit vector over D[i] and lde(1+i)(v) > 0,

then there exists generators G1, . . . , G` from (4.9) such that G1 · · ·G`v = v′ and

lde(1+i)(v
′) < lde(1+i)(v).

Proof. Write v as v = u/(1 + i)q where u ∈ Z [i] and q > 1. Since (1 + i)†(1 + i) = 2

107

and v is a unit vector, we have 2q =
∑
u†juj. Thus 0 ≡

∑
u†juj ≡

∑
u2
j (mod 2)

and it follows that u2
j ≡ 1 (mod 2) for evenly many j. We can therefore group these

entries in sets of size 2 and apply Lemma 4.5.21 to each such set in order to reduce

the denominator exponent.

Lemma 4.5.23. Let j ∈ [[1..n]]. If v is an n-dimensional unit vector over D[i],

then there exists generators G1, . . . , G` from (4.9) such that G1 · · ·G`v = ej.

Theorem 4.5.24. If V is an n-dimensional unitary matrix with entries in D[i],

then there exists generators G1, . . . , G` from (4.9) such that G1 · · ·G`V = I.

Corollary 4.5.25. A matrix V can be exactly represented by an n-qubit circuit

over {X,CX,CCX,ωH, S} if and only if V ∈ U2n(D[i]). Moreover, a single ancilla

always suffices to construct a circuit for V .

Corollary 4.5.25 characterizes circuits over the gate set {X,CX,CCX,ωH, S}.

We now use this result, together with Corollary 4.4.5 to characterize circuits over

the gate set {X,CX,CCX,H, S}. To this end, we consider matrices of the form

V =
1√
2
qW (4.11)

where q ∈ N and W is a matrix over Z [i]. We use the
√

2 denominator exponents

of such matrices and, as in Section 4.5.1, we make use of the fact that
√

2 /∈ Z [i].

The relevant generators are now

{
i[a], X[a,b], ωH[a,b], ωIn

}
. (4.12)

108

Lemma 4.5.26. If V 6= 0 is as in (4.11), then all the denominator exponents of V

are congruent modulo 2.

Proof. Similar to the proof of Lemma 4.5.7.

Theorem 4.5.27. If V = W/
√

2
q

is an n-dimensional unitary matrix such that W

is a matrix over Z [i], then there exists generators G1, . . . , G` from (4.12) such that

G1 · · ·G`V = I.

Proof. If q is even, the result follows from Theorem 4.5.24. If q is odd, then

(ωIn)V = W ′/
√

2
q′

for some even q′ and some W ′ ∈ Z [i]n×n. Hence the result follows by applying

Theorem 4.5.24 to (I ⊗H)V .

Corollary 4.5.28. A matrix V can be exactly represented by an n-qubit circuit

over {X,CX,CCX,H, S} if and only if V is a 2n-dimensional unitary matrix such

V = W/
√

2
q

for some matrix W over Z [i] and some q ∈ N. Moreover, a single

ancilla always suffices to construct a circuit for V .

4.6 Conclusion

In this chapter, we provided number-theoretic characterizations for several

classes of restricted but universal Clifford+T circuits, focusing on integral, real,

imaginary, and Gaussian circuits. We showed that a unitary matrix can be exactly

represented by an n-qubit integral Clifford+T circuit if and only if it is an element

109

of the group U2n(D). We then established that real, imaginary, and Gaussian cir-

cuits similarly correspond to the groups U2n(D
[√

2
]
), U2n(D

[√
-2
]
), and U2n(D[i]),

respectively.

One avenue for future research is to improve the performance, in runtime

or gate count, of the algorithms introduced in the present paper. Further afield,

it would be interesting to study restricted Clifford+T circuits in the context of

fault-tolerance, randomized benchmarking, or simulation. We hope that our char-

acterizations will help deepen our understanding of Clifford+T circuits, restricted or

not. Given that we now have a complete characterization of some relatively simple

universal two-qubit gate sets, we return our attention to searching for compiling

algorithms in one of these universal multi-qubit gate sets – the C + CS gate set,

which is equivalent to C + CCX.

110

Chapter 5: Clifford + Controlled Phase Exact Synthesis
1

5.1 Introduction

In the current paradigm of fault-tolerant quantum computing [48] wherein we

use both quantum error correction and magic-state distillation, it is generally ac-

cepted that non-Clifford gate count is the best “simple” metric by which to define

the cost of a quantum computation. Using algebraic and number-theoretic methods,

provably optimal compiling algorithms which could handily outperform the Solovay-

Kitaev algorithm for this cost metric were developed first for the single qubit Clif-

ford+T gate set [90,97–100] and then for other single-qubit gate sets [93–95,113,114]

as well as some single-qutrit gate sets [112,116,121–123]. Forays into extending these

results [91,92,124] to the multi-qubit compiling problem have born fruit in the form

of heuristic algorithms [67,109] and compilers for restricted gate sets [106], but thus

far truly optimal algorithms for universal multi-qubit gate sets [145] have remained

elusive, even in the limited two-qubit circuit case [129, 146]. Such optimal small-

qubit-number compilers could be a boon to not only smaller near-term devices,

but also long term in applications such as Hamiltonian simulation [28] where many

protocols call for cascading rounds of few-qubit-number sub-circuits.

1This chapter is a slightly modified version of a forthcoming manuscript [144]

111

In Chapter 5, we introduce the first optimal compiling algorithm for a universal

multi-qubit gate set. Restricting to two-qubit circuits, we provide a normal form

for Clifford + controlled-Phase gate CS circuits, a universal gate set that is a strict

subset of the Clifford+T gate set. After introducing some notation and definitions

in Section 5.2, we then constructively prove in Section 5.3 that every distinct normal

form is unique and develop a linear-time algorithm to synthesize any 4× 4 unitary

corresponding to a Clifford+CS circuit into its equivalent normal form. Finally,

we prove optimality, give a full presentation of the Clifford + Controlled Phase

gate group, and comment on some lower bounds of the gate count for the inexact

synthesis problem in Section 5.4 before concluding in Section 5.5.

5.2 Generators

We will be considering the Pauli and Clifford groups on two qubits, P2 and

C2 respectively, defined in Section 1.4.2. The Clifford group is well-suited for fault-

tolerant quantum computation but is not universal. One may obtain a universal

group on two qubits by extending C2 with the controlled-Phase operator CS defined

as

CS =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

.

112

We also note that CS2 = CZ ∈ C2. In what follows, we focus on the group G =

C2 + CS of operators which can be represented by a two-qubit circuit over the

extended Clifford gate set {H,S,CX,CS}. Equivalently, C2 + CS is the group

generated by H ⊗ I, I ⊗ H, S ⊗ I, I ⊗ S, CX1:2, CX2:1 and CS. From our work

in Chapter 4, we know that these unitaries are equivalent to the group of 4 × 4

unitaries which can be expressed as

1
√

2
k
M

for k ∈ N and M ∈M4×4(Z [i]).

We now introduce a generalization of the CS gate which will be helpful in

describing the elements of G.

Definition 5.2.1. Let P and Q be distinct elements of P2 \ {1} such that P and

Q are Hermitian and [P,Q] = 0. Then R(P,Q) is the operator defined as

R(P,Q) = exp

(
iπ

8
(1− P −Q+ PQ)

)
= exp

(
iπ

2

(
1− P

2

)(
1−Q

2

))
.

Note that R(Z ⊗ 1, 1 ⊗ Z) = CS. The fact that C2 is the normalizer of P2

then implies that every R(P,Q) for is an element of C2 +CS. In total, there are 180

R(P,Q) operators, as there are 30 valid choices for P and 6 for Q given a fixed P .

Remark 5.2.2. We can rewrite R(P,Q) as the following sum over Paulis:

R(P,Q) = 1 + (i− 1)

(
1− P

2

)(
1−Q

2

)
.

113

This may be computed by first recognizing that two operators enclosed in paren-

theses in the exponent of Definition 5.2.1 are idempotent. Matrix exponentiation is

then straightforward.

We now introduce some basic relations that hold for R(P,Q).

Lemma 5.2.3. Let C ∈ C2 and let P , Q, and L be distinct elements of P2 \ {I}.

Assume that P , Q, and L are Hermitian, that [P,Q] = [P,L] = 0 and that QL =

−LQ. Then the following relations hold:

CR(P,Q) = R(CPC†, CQC†)C (5.1)

R(Q,P) = R(P,Q) (5.2)

R(P,−PQ) = R(P,Q) (5.3)

R(P,−Q) ∈ R(P,Q)C2 (5.4)

R(P,Q)R(P,Q) ∈ C2 (5.5)

R(P,L)R(P,Q) = R(P,Q)R(P, iQL) (5.6)

Proof. Eq. (5.1) holds as we have Clifford C such that C†C = 1 which implies

CR(P,Q) = C exp

(
iπ

2

(
1− P

2

)(
1−Q

2

))
C†C

= exp

(
iπ

2
C

(
1− P

2

)
C†C

(
1−Q

2

)
C†
)
C

= exp

(
iπ

2

(
1− CPC†

2

)(
1− CQC†

2

))
C

= R(CPC†, CQC†)C

114

where [CPC†, CQC†] = 0 and both CPC† and CQC† are non-identity Hermitian

Paulis. Eq. (5.2) holds as PQ = QP by definition. We have explicitly

R(P,−PQ) = exp

(
iπ

8
(1− P − (−PQ) + (P)(−PQ))

)
= exp

(
iπ

8
(1− P −Q+ PQ)

)
= R(P,Q)

which proves Eq. (5.3). To show Eq. (5.4), we have

R(P,−Q) = exp

(
iπ

8
(1− P − (−Q) + (P)(−Q))

)
= exp

(
iπ

8
(1− P −Q+ PQ)

)
exp

(
iπ

4
(Q− PQ)

)
(5.7)

We can always find a Clifford C that maps −Z ⊗ 1 and 1⊗ Z to Q and PQ under

conjugation, and so we have from Eq. (5.7)

R(P,−Q) = exp

(
iπ

8
(1− P −Q+ PQ)

)
C exp

(
−iπ

4
(Z ⊗ 1 + 1⊗ Z)

)
C†

= exp

(
iπ

8
(1− P −Q+ PQ)

)
C(−iS ⊗ S)C†

⊂ R(P,Q)C

Given that we can again always find some C that maps Z ⊗ 1 and 1⊗ Z to P and

115

Q, we directly compute Eq. (5.5) as

R(P,Q)2 = CR(Z ⊗ 1, 1⊗ Z)2C†

= C(CZ)C† ∈ C.

Finally, consider Eq. (5.6). We first compute using Remark 5.2.2

R(P,L)R(P,Q)

=

[
1 + (i− 1)

(
1− P

2

)(
1− L

2

)][
1 + (i− 1)

(
1− P

2

)(
1−Q

2

)]
= 1 + (i− 1)

(
1− P

2

)[
3 + i

4
1− 1 + i

4
L− 1 + i

4
Q− 1 + i

4
(−iLQ)

]
. (5.8)

Under the transformation L→ Q and Q→ iQL we have

(−iLQ)→ (−i)(Q)(iQL) = L.

Applying these to Eq. (5.8), we have

R(P,Q)R(P, iQL) = R(P,L)R(P,Q)

which completes the proof.

Using Eqs. (5.2) to (5.4) we can reduce the number of R(P,Q) operators we

116

need to consider by applying transformations of the form

R(P,Q) = R(P ′, Q′)C

for C a Clifford. Eq. (5.2) yields a factor of two reduction, Eq. (5.3) a factor of

three, and Eq. (5.4) a factor of two for a grand total of a factor of 12 reduction.

Applying these operations, we come to a set of 180/12 = 15 generators to consider:

Definition 5.2.4. The set S is defined as

S = {R(X ⊗ I, I ⊗X), R(Y ⊗ I, I ⊗ Y), R(Z ⊗ I, I ⊗ Z),

R(Y ⊗ I, I ⊗ Z), R(Z ⊗ I, I ⊗ Y), R(Z ⊗ I, I ⊗X),

R(X ⊗ I, I ⊗ Z), R(X ⊗ I, I ⊗ Y), R(Y ⊗ I, I ⊗X),

R(X ⊗X, Y ⊗ Y), R(X ⊗X,Z ⊗ Y), R(Z ⊗X, Y ⊗ Y),

R(Y ⊗X,X ⊗ Y), R(Z ⊗X,X ⊗ Y), R(Y ⊗X,Z ⊗ Y)} .

We consider this set lexicographically ordered as written.

Definition 5.2.5. The sequence (S) is the sequence of the elements of set S in

lexicographical ordering. The jth element of this sequence is Sj.

Proposition 5.2.6. Let V ∈ G. Then V = R1 · · ·RnC where C ∈ C, and Rj =

R(Pj, Qj) ∈ S for j ∈ [[1..n]].

117

Proof. Let V ∈ G. Then V can be written as a product of the form

V = C1 · CS · C2 · CS · . . . · Cn · CS · Cn+1

where Cj ∈ C for j ∈ [[1..n+ 1]]. Since CS = R(Z ⊗ I, I ⊗ Z) we have

V = C1 ·R(Z⊗ I, I⊗Z) ·C2 ·R(Z⊗ I, I⊗Z) · . . . ·Cn ·R(Z⊗ I, I⊗Z) ·Cn+1. (5.9)

The result follows from repeated iterations of a single application of Eq. (5.1) fol-

lowed by any of Eqs. (5.2) to (5.4) to ensure Rj → R′j ∈ S.

5.3 Exact Synthesis

In this section, we leverage the exceptional isomorphism SU(4) ∼= Spin(6)

(itself a double-cover of SO(6)) to find optimal decompositions for the elements of

C2 + CS. We first describe explicitly the transformation from SU(4) to SO(6).

Consider some U ∈ SU(4). U induces a transformation of a vector v ∈ C4

that preserves |v| and acts through multiplication Uv. Let {ej} be the standard

orthonormal basis of C4. From this basis, we shall construct an alternative six-

component basis through the wedge product ∧:

Definition 5.3.1 (Wedge product). Let a ∧ b be defined as the wedge product of a

and b. Wedge products have the following properties given vectors ~a,~b,~c ∈ Cn and

α, β ∈ C:

• Anticommutivity: a ∧ b = −b ∧ a

118

• Associativity: (a ∧ b) ∧ c = a ∧ (b ∧ c)

• Bilinearity: (αa+ βb) ∧ c = α(a ∧ c) + β(b ∧ c)

Note that the anticommutation of wedge products implies a ∧ a = 0. We say

v1 ∧ · · · ∧ vk ∈
∧k Cn for vj ∈ Cn. To compute the inner product of two wedge

products v1 ∧ · · · ∧ vk and w1 ∧ · · · ∧ wk, we compute

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 = det (〈vq, wr〉)

where 〈vq, wr〉 is the entry in the qth row and rth column of a k × k matrix.

Remark 5.3.2. The magnitude of a wedge product of n vectors can be thought of as

the n dimensional volume of the parallelotope (the generalization of a parallelpiped)

constructed from those vectors. The orientation of the wedge product defines the

direction of circulation around that parallelotope by those vectors.

The wedge product of two vectors in C4 can be decomposed into a six-

component basis as anticommutivity reduces the 16 potential wedge products of

vectors of {ej} to six. We choose this basis as

B = {s−,12,34, s+,12,34, s−,23,14, s+,24,13, s−,24,13, s+,23,14} (5.10)

where we have defined

s±,ij,kl =
i
1∓1
2

√
2

(ei ∧ ej ± ek ∧ el) . (5.11)

119

We note that B is an orthonormal basis, and define the sequence (B) as the entries

of B ordered as in Eq. (5.10). Finally, to compute our new representation of U we

need to define how U transforms vectors of bath bases:

Definition 5.3.3. Let U ∈ SU(4) and Û be its representation in the transformed

basis. Let v, w ∈ C4 with v ∧ w ∈
∧2 C4. Then the actions of U and Û are related

by

Û(v ∧ w) = (Uv) ∧ (Uw).

Finally, we are equipped to define the transformation from SU(4) to SO(6):

Definition 5.3.4. Let U ∈ SU(4) and j, k ∈ [[1..6]]. Then the entry in the jth row

and kth column of the SO(6) representation of U , Û is

Ûj,k = 〈Bj, ÛBk〉 (5.12)

where Bj is the jth component of the sequence defined for set B. The action of Û

on Bk is defined by Definitions 5.3.1 and 5.3.3, and the inner product is defined in

Definition 5.3.1.

Remark 5.3.5. The fact that this isomorphism yields special orthogonal operators

is ultimately due to the fact that the Dynkin diagrams for the Lie algebras of SU(4),

Spin(6), and SO(6) are equivalent. However, this fact can be easily illustrated

through the Euler decomposition [103] of SU(4). Direct calculation of Û for the

120

operator

U =

1 0 0 0

0 1 0 0

0 0 α 0

0 0 0 α∗

for |α| = 1 and α = r + ic with r, c ∈ R yields

Û =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 r 0 0 c

0 0 0 r c 0

0 0 0 −c r 0

0 0 −c 0 0 r

which is explicitly in SO(6). Computation of the other 14 Euler angle rotations

required for SU(4) parameterization yields similar matrices, likewise in SO(6). As

SO(6) forms a group under multiplication, the isomorphism applied to any U ∈

SU(4) yields Û ∈ SO(6).

Explicitly calculating our SO(6) representations for the generators of C2 +CS,

121

we have

(ζ†S)⊗ 1̂ =

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, (iH)⊗ 1̂ =

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

,

1⊗ (ζ†S)̂ =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 0 0 1

, 1⊗ (iH)̂ =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 1 0 0

,

ζ†CẐ =

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 1 0 0 0

,
√
ζ†CŜ =

1√
2

1 −1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 −1

0 0 0 1 −1 0

0 0 0 1 1 0

0 0 1 0 0 1

.

Note that we have multiplied by overall phase factors to ensure that each

operator has determinant one, and furthermore that single-qubit operators have

122

determinant one on their single-qubit subspace. We now study the SO(6) represen-

tation of C2 +CS operators, which we denote Ĉ2 + ĈS in further details. In general,

when referring to gates or their SO(6) representation, we will not explicitly write

any overall phase for readability.

Definition 5.3.6. The group D 6 SO(6) is defined as

D =
{

(1/
√

2)kM | k ∈ N,M ∈ Z6×6
}
.

Remark 5.3.7. We will commonly use denominator exponents of
√

2 throughout

Chapter 5. These are well-defined as we will always be considering tensors whose

entries belong to a ring R such that Z is a subring of R. As
√

2
2 ∈ Z, we can always

find the lde of a tensor T , which we denote lde(T).

Definition 5.3.8 (k-parity). Let V be an n×m matrix of the form V = (1/
√

2)kM

for some k ∈ N and some M ∈ Zn×m and let ` be a denominator exponent of V .

Then the matrix ρ`(V) ∈ Zn×m
2 is defined as

ρ`(V)i,j = (
√

2
`
V)i,j (mod 2).

Note that Remark 5.3.7 and Definition 5.3.8 apply to any matrix, vector, or

scalar.

Lemma 5.3.9. We have Ĉ2 + ĈS 6 D. Moreover, if V is a C2 +CS circuit with k

CS gates then lde(V̂) 6 k.

Proof. We have Ĉ + ĈS 6 D since the images of every generator belong to D.

123

Furthermore, the lde of V̂ is at most k because there are k factors of 1/
√

2 from the

k ĈS gates.

Lemma 5.3.10. We have Ĉ2 =
{
V̂ ∈ D | lde(V̂) = 0

}
= SO(6,Z). That is, the

image of the Clifford group in SO(6) is the group of signed permutation matrices.

Proof. The equality
{
V̂ ∈ D | lde(V̂) = 0

}
= SO(6,Z) follows from the fact that

the elements of D of lde 0 are precisely the special orthogonal matrices with integer

entries. To see that Ĉ2 = SO(6,Z), note that

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

= (ζ†S)⊗ 1̂,

0 0 0 0 0 −1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

= (H ⊗ Ĥ)(ζ†CẐ)(Z ⊗ Ẑ).

The fact that (ζ†S)⊗ 1̂ and (H ⊗ Ĥ)(ζ†CẐ)(Z ⊗ Ẑ) generate SO(6,Z) and are

Cliffords completes the proof.

124

Corollary 5.3.11. |Ĉ2| = 256! = 23040.

Now, let us consider Û ∈ D with and lde k = 1. Each row/column of M must

have a norm-squared of 2 while being pairwise orthogonal. The only such matrices

are, up to a signed permutation of rows/columns, equivalent to

1√
2

1 −1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 −1

0 0 0 1 −1 0

0 0 0 1 1 0

0 0 1 0 0 1

=
√
ζ†CŜ. (5.13)

Noting that we’ve just shown Cliffords are equivalent to signed permutations in

Lemma 5.3.10, we can use Proposition 5.2.6 to immediately conclude

{
Û =

1√
2
M

∣∣∣∣ Û ∈ D} ≡ Ŝ · Ĉ2.

where we have defined Ŝ as the set S multiplied by an overall phase to ensure unit

determinant and then transformed to the SO(6) basis.

Finally, we consider lde k > 1. We have the column relations

∑
l

M2
lm = 0 (mod 4) (5.14)

∑
l

MlmMln = 0 (mod 2) ∀ m 6= n (5.15)

125

as well as analogous row relations. For some x ∈ Z, x2 = 0 (mod 4) ⇐⇒ x = 0

(mod 2) and x2 = 1 (mod 4) ⇐⇒ x = 1 (mod 2), and so there must be exactly

zero or four odd entries in every column/row of M by Eq. (5.14). By Eq. (5.15),

we see that the number of instances where columns m and n modulo 2 “collide”

(i.e. both have odd entries in the same row) must be even. Up to a permutation

of rows/columns, we can then deduce that ρk(Û) = M (mod 2) can be one of two

cases:

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

or

1 1 1 1 0 0

1 1 1 1 0 0

1 1 0 0 1 1

1 1 0 0 1 1

0 0 1 1 1 1

0 0 1 1 1 1

. (5.16)

We now introduce an important definition and subsequent property of D from these

observations:

Definition 5.3.12 (row/column paired). Let M̄ ∈ M2n×2n(Z2). We say M̄ is row

paired if for every row r of M̄ , there are an even number of rows r′ in M̄ with

r′ = r (including r itself). An analogous definition holds for column pairing. When

a matrix is row paired, we specify that pairing as a set of sets

W = {s1, · · · , sp}

126

with |s1| 6 · · · 6 |sp| and sl < sm ∀ l < m. We impose the conditions sl 6= ∅,

sl ∩ sm = ∅ ∀ l 6= m, s1 ∪ · · · ∪ sp = [[1..2n]], and with each sl consisting of all row

indices of identical rows of M̄ . We call W a |s1| × · · · × |sp| pairing.

Remark 5.3.13. Note that row/column paired matrices remain row/column paired

regardless of permuted rows/columns. Moreover, if a matrix has a particular row

pairing, then permutation of columns leaves this row pairing unchanged.

Lemma 5.3.14. Let Û ∈ D with lde k > 1. Then ρk(Û) is both row and column

paired with either a 2× 2× 2 or 2× 4 pairing.

Proof. Examination of Eqs. (5.13) and (5.16) and Remark 5.3.13 immediately imply

this fact.

Definition 5.3.15. We will often refer to submatrices of a matrix M ∈ Mm×n.

Let s1 be a set of row indices s.t. s1 ⊆ [[1..m]] and s2 a set of column indices s.t.

s2 ⊆ [[1..n]]. Then the submatrix of M for row indices s1 and column indices s2 is

denoted

M [s1; s2].

We are now equipped to provide the key lemma on which optimal synthesis

hinges.

Lemma 5.3.16. Let Û ∈ D with lde k > 1. Then for (at least) one Ĝ ∈ Ŝ, we have

ĜTÛ ∈ D with an lde of k′ = k − 1.

Proof. Consider the set of generators S in SO(6) representation, Ŝ. Each of these

generators is such that for Ĝ ∈ Ŝ, ρ1(ĜT) is row/column paired with a row/column

127

pairing of

W = {{x1, x2} , {x3, x4} , {x5, x6}} .

Moreover, the submatrix formed by rows {xl, xm} ∈ W and columns {xn, xp} ∈ W

is of the form

ĜT[{xl, xm} ; {xn, xp}] =

1√
2

 1 ±1

∓1 1

 {xl, xm} = {xn, xp}

0 0

0 0

 otherwise

.

The pairing W of each generator is unique, and spans the set of all possible 2×2×2

pairings.

We know by Lemma 5.3.14 that ρk(Û) is row paired. Suppose that ρk(Û) has

the row pairing V . By Lemma 5.3.14, V must be either a 2× 2× 2 or 2× 4 pairing.

If V is 2 × 2 × 2 paired, choose Ĝ such that W = V . If V is 2 × 4 paired, choose

Ĝ such that W ∩ V 6= ∅ (i.e. share a two-pairing). In either case, when we examine

the submatrix consisting of rows xl and xm with {xl, xm} ∈ W of ĜTÛ , we have

(ĜTÛ)[{xl, xm} ; [[1..6]]] =
∑

{xn,xp}∈W

ĜT[{xl, xm} ; {xn, xp}] · Û [{xn, xp} ; [[1..6]]]

= ĜT[{xl, xm} ; {xl, xm}] · Û [{xl, xm} ; [[1..6]]]

Rows xl and xm of ρk(Û) must be paired per our choice of Ĝ, and so their corre-

128

sponding rows in Û must be of the form

Û [{xl, xm} ; [[1..6]]] =
1
√

2
k

~r + 2~a

~r + 2~b

with ~r = (ρk(Û))[{xl, xm} ; [[1..6]]] and ~a,~b vectors of integers. Thus, we have

(ĜTÛ)[{xl, xm} ; [[1..6]]] =
1√
2

 1 ±1

∓1 1

 · 1
√

2
k

~r + 2~a

~r + 2~b

=
1

√
2
k+1

(1± 1)~r + 2(~a±~b)

(1∓ 1)~r + 2(~b∓ ~a)

=
1

√
2
k−1

(

1±1
2

)
~r + ~a±~b(

1∓1
2

)
~r +~b∓ ~a

 . (5.17)

This holds for all {xl, xm} ∈ W , and as
⋃
s∈W s = [[1..6]], we have that

ĜTÛ =
1

√
2
k−1

M ′

where M ′ ∈M6×6(Z). Finally, as both ĜT, Û ∈ D, we can conclude that ĜTÛ ∈ D

with an lde of k′ = k − 1.

Theorem 5.3.17. Û ∈ D if and only if Û is the SO(6) representation of a two-qubit

Clifford + Controlled-Phase operator.

Proof. The if direction holds by Lemma 5.3.9. Now, suppose Û has an lde 0. Then

Û = Ĉ is a Clifford operator and we are done. Now, suppose Û has lde k > 0.

129

We know there exists some Ĝk ∈ Ŝ such that ĜT
k Û ∈ D has an lde of k − 1 by

Lemma 5.3.16. Then by induction, we can find a sequence ĜT
1 · · · ĜT

k Û = Ĉ with an

lde of 0, which must again be a Clifford. Thus, Û is equivalent to

Û = Ĝk · · · Ĝ1 · Ĉ

which is the SO(6) representation of the Clifford + Controlled-Phase operator

U = Gk · · ·G1 · C.

Remark 5.3.18. In using Lemma 5.3.16 to prove Theorem 5.3.17, we actually have

freedom in our selection of some Ĝl whenever ρl(Ĝ
T
l+1 · · · ĜT

k Û) is 2× 4 row paired.

In particular, we could choose 3 different elements of Ŝ in such cases. This owes

itself to the relation of Eq. (5.6), in which we have

R(P,L)R(P,Q) = R(P,Q)R(P, iQL) = R(P, iQL)R(P,L)

where the leftmost operators are 3 explicitly different generators. As our goal is

to produce a unique normal form for Clifford + Controlled-Phase operators, this

ambiguity must be lifted. We choose to do so in the following way:

Definition 5.3.19 (Earliest Generator Ordering). We define earliest generator or-

dering, or EGO, as always using the lowest indexed member of our ordered sequence

130

Generator
Associated Row Pairings Under
Earliest Generator Ordering

R(X ⊗ 1, 1⊗X)
{{1, 4} , {2, 3} , {5, 6}} , {{1, 4} , {2, 3, 5, 6}} ,
{{2, 3} , {1, 4, 5, 6}} , {{5, 6} , {1, 2, 3, 4}}

R(Y ⊗ 1, 1⊗ Y)
{{1, 3} , {2, 5} , {4, 6}} , {{1, 3} , {2, 4, 5, 6}} ,
{{2, 5} , {1, 3, 4, 6}} , {{4, 6} , {1, 2, 3, 5}}

R(Z ⊗ 1, 1⊗ Z)
{{1, 2} , {3, 6} , {4, 5}} , {{1, 2} , {3, 4, 5, 6}} ,
{{3, 6} , {1, 2, 4, 5}} , {{4, 5} , {1, 2, 3, 6}}

R(Y1, Z2) {{1, 2} , {3, 5} , {4, 6}} , {{3, 5} , {1, 2, 4, 6}}

R(Z1, Y2) {{1, 3} , {2, 6} , {4, 5}} , {{2, 6} , {1, 3, 4, 5}}

R(Z1, X2) {{1, 2} , {3, 4} , {5, 6}} , {{3, 4} , {1, 2, 5, 6}}

R(X1, Z2) {{1, 6} , {2, 3} , {4, 5}} , {{1, 6} , {2, 3, 4, 5}}

R(X1, Y2) {{1, 5} , {2, 3} , {4, 6}} , {{1, 5} , {2, 3, 4, 6}}

R(Y1, X2) {{1, 3} , {2, 4} , {5, 6}} , {{2, 4} , {1, 3, 5, 6}}

R(X1X2, Y1Y2) {{1, 4} , {2, 5} , {3, 6}}

R(X1X2, Z1Y2) {{1, 4} , {2, 6} , {3, 5}}

R(Z1X2, Y1Y2) {{1, 6} , {2, 5} , {3, 4}}

R(Y1X2, X1Y2) {{1, 5} , {2, 4} , {3, 6}}

R(Z1X2, X1Y2) {{1, 5} , {2, 6} , {3, 4}}

R(Y1X2, Z1Y2) {{1, 6} , {2, 4} , {3, 5}}

Table 5.1: Every generator and the explicit row pairings they will be used to reduce
under earliest generator ordering.

(
Ŝ
)

that satisfies the requisite properties to reduce the denominator exponent when

invoking Lemma 5.3.16. The unique matching enforced by EGO is summarized in

Section 5.3

Theorem 5.3.20. There exists a unique Clifford + Controlled-Phase gate optimal

normal form for the Clifford + Controlled-Phase group. Moreover, if a Clifford +

Controlled-Phase operator has an SO(6) representation with an lde of k, then this

131

normal form contains k Controlled-Phase gates and we can synthesize this sequence

in O(k) operations.

Proof. Suppose U is a Clifford + Controlled-Phase gate operator with Controlled-

Phase gate count k′. Then its SO(6) representation Û ∈ D has denominator ex-

ponent k 6 k′ by Lemma 5.3.9. If k = 0, then Û is a Clifford Ĉ. If k > 0, using

Lemma 5.3.16 and Definition 5.3.19 there is a unique choice of some Ĝk ∈ Ĝ such

that ĜT
k Û has an lde of k− 1. Then by induction on the denominator exponent, we

have a deterministic synthesis algorithm to find a sequence such that

Û = Ĝk · · · Ĝ1 · Ĉ

which implies that

U = Gk · · ·G1 · C

which has a Controlled-Phase gate count of k 6 k′. This algorithm implies both

existence and uniqueness of a normal form. To show that the normal form de-

fined by the output of this synthesis algorithm is optimal in Controlled-Phase gate

count, we note that to have an lde of k, the Clifford+Controlled-Phase gate circuit

corresponding to Û ∈ D must contain at least k Controlled-Phase gates.

Definition 5.3.21 (Clifford+Controlled-Phase Gate Normal Form). We define the

normal form which is the output of the synthesis algorithm defined in Theorem 5.3.20

as the Clifford+Controlled-Phase Gate Normal Form

132

5.4 Structure of Optimal Normal Forms

While we have described the optimal Clifford+Controlled Phase gate normal

form in Theorem 5.3.20, we have not actually described the structure of the circuits

to which these normal forms correspond. The goal of this section is to establish

what the output of the synthesis algorithm in Theorem 5.3.20 actually looks like.

We shall do so with the help of some basic graph theory terminology.

Definition 5.4.1 (Fm Graph). We define the directed Fm graph with vertices V

and edges E as

V = [[1..m]]

E =
{

(x, y)
∣∣∣ (x, y) ∈ V 2 and ρ2(Ŝx · Ŝy) is 2× 2× 2 paired

}
Fm = (V,E)

where the edge (x, y) is interpreted as directed from x to y.

Remark 5.4.2. We can equivalently conclude that edge E = (x, y) is on the graph

Fm if and only if ρ1(Ŝx) and ρ1(Ŝy) with row pairings Wx and Wy respectively are

such that Wx ∩Wy = ∅.

Definition 5.4.3 (Bj,m Graph). We define the directed Bj,m graph with vertices V ′

133

and edges E ′ as

V ′ = [[0..m]]

E ′ = {(0, x) | j 6 x 6 m}

Bj,m = (V ′, E ′).

Again, edge (x, y) is interpreted as directed from x to y.

Definition 5.4.4 (Fj,m Automaton Graph). The Fj,m Automaton Graph is the

union of the graphs Fm and Bj,m. This is to say that if Fm = (V,E) and Bj,m =

(V ′, E ′), then

Fj,m = Fm ∪ Bj,m = (V ∪ V ′, E ∪ E ′).

Definition 5.4.5 (Vertex Map). We define the vertex map φ : [[0..15]] → {ε} ∪ S

by

φ(x) =

ε x = 0

Ŝx. otherwise

Thus, input of the vertex x from the graph Fj,m into φ results in the output of either

the empty sequence ε or the xth element of (S).

Definition 5.4.6 (Fj,m Automaton Walk). Draw the graph Fj,m = (V,E). Take

any length n walk W on this graph starting from the vertex 0. This walk takes the

sequence of vertices

(V0, V1, · · · , Vn)

134

where V0 = 0 and (Vj, Vj+1) ∈ E. We then define the output of a Fj,m automaton

walk as

φ(V0)φ(V1) · · ·φ(Vn).

Proposition 5.4.7. A circuit is in Clifford+Controlled-Phase gate normal form if

and only if it is of the form

(F1,3 Automaton Walk)(F4,9 Automaton Walk)(F10,15 Automaton Walk) · C.

(5.18)

Proof. We will first establish a few lemmas that in combination suffice to prove the

result. For these lemmas, let Û ∈ D with lde k such that ρk(Û) has the row pairing

Vk. Vk implies under EGO that we use the unique generator Ĝk ∈ Ŝ with associated

row pairing Wk to reduce the denominator exponent to k−1. We can then explicitly

check the possible row pairings Vk−1 of ρk−1(ĜT
k Û) to try and deduce which operator

Ĝk−1 ∈ Ŝ with associated row pairing Wk−1 must follow. We will also consider left

multiplication by some Ĝk+1 ∈ Ŝ with row pairing Wk+1 such that Ĝk+1Û has lde

k + 1 and associated row pairing Vk+1. Operators Ĝk+1, Ĝk and Ĝk−1 will have

indices x, y and z, respectively, in the sequence
(
Ŝ
)

.

With each proof, we provide a graphical diagram to assist the reader in visu-

alizing the pairing of the operators in question. Each diagram consists of panes. In

a given pane, we have two labeled columns, corresponding to a row pairing of ρk(Û)

which is mapped to ρk−1(ĜT
k Û) or ρk+1(Ĝk+1Û) as specified. Within each column

are three blue boxes – these correspond to the three sets sj = {xj1 , xj2} which belong

135

to the row pairings Wk, Wk−1, or Wk+1. Sometimes, the blue boxes specify to which

set sj belongs. These sets are A,B, E , E3, and E3 which are defined as follows:

A =
{
{x, y} | (x, y) ∈ [[1..3]]2 and x 6= y

}
B =

{
{x, y} | (x, y) ∈ [[4..6]]2 and x 6= y

}
E = {{x, y} | (x, y) ∈ ([[1..3]], [[4..6]])}

E3 = {{x, y} | (x, y) ∈ ([[1..3]], [[4..6]]) and x 6= y (mod 3)}

E3 = E/E3

Occasionally, we say that some s ∈ A or s ∈ B – we denote this as s ∈ A|B (rather

than the usual s ∈ A ∪ B) so that if we have two sets s1 ∈ A|B and s2 ∈ B|A, we

can specify if s1 ∈ A then s2 ∈ B and if s1 ∈ B then s2 ∈ A.

The larger green boxes which subsume the blue boxes represent the sets of

paired rows in Vk, Vk−1, or Vk+1. In the case where Wj = Vj, these each blue box

has an equivalent green box. If Vj is explicitly a 2×4 pairing, one of the green boxes

contains two blue boxes corresponding to four paired rows. Sometimes, we use red

boxes in place of green boxes. This is to indicate that a 4-pairing may or may not

be present. When green boxes overlap with red boxes, we mean that anything in the

green box must explicity be paired, and may or may not be paired with anything

bridged by the red box.

Each pane consists of determining to where two indices map upon ρk(Û) →

ρk−1(ĜT
k Û) or ρk(Û) → ρk+1(Ĝk+1Û). An arrow which originates on a blue box

136

signifies that one element of the set s to which that blue box corresponds is mapped

somewhere. When that arrow terminates on the perimeter of a red box, we mean

that the element in question ends up at least somewhere within the confines of the red

box. When it terminates on the perimeter of a green box, we mean that the element

must end up within the space the green box confines. Finally, when the arrow

terminates on a blue box, we mean that the row index is explicitly contained within

that set. The last pane of every diagram corresponds both to the transformation

Wj → Wj′ and Vj → Vj′ , sometimes with multiple possible resultant pairings.

Lemma 5.4.8. V is a 2× 2× 2 pairing if and only if Û is of the form

(F1,15 Automaton Walk) · C. (5.19)

Proof. Let us consider the “only if” direction first. If Vk is a 2× 2× 2 pairing, then

for s ∈ Vk, by Eq. (5.17) we have

(
ρk−1(ĜT

k Û)
)

[s; [[1..6]]] =

~r1

~r2

with ~r1 6= ~r2. We can immediately conclude s 6∈ Vk−1, and moreover as this holds

for every s ∈ Vk, no four rows of ρk−1(ĜT
k Û) match and thus Vk−1 is a 2 × 2 × 2

pairing (see Fig. 5.1). Therefore, since Wk = Vk, and Wk−1 = Vk−1 by Lemma 5.3.16

and thus Wk ∩Wk−1 = ∅, we have by Remark 5.4.2 that (y, z) is an edge on the

graph F15. By induction on the denominator exponent, we see that for any Û with

lde k and with a 2× 2× 2 row pairing of ρk(Û), synthesis under EGO must result

137

in a sequence of of operators consistent with a walk on the Graph S15 under the

vertex map until we reach a denominator exponent of zero. Noting that our initial

generator Ĝk may be any of the fifteen elements of S, we conclude that the output

must be some operator of the form in Eq. (5.19).

Now, suppose it is known that Û has the form of Eq. (5.19) and is a 2× 2× 2

pairing. Consider left multiplication of this operator by some Ĝk+1 such that (x, y)

is an edge on the graph F15. By Remark 5.4.2, we know that Wk+1 ∩Wk = ∅. Let

s ∈ Wk+1. Using these facts and similar methods to Eq. (5.17) we have

(
ρk(Û)

)
[s; [[1..6]]] =

~r1

~r2

(
ρk+1(Ĝk+1Û)

)
[s; [[1..6]]] =

~r1 + ~r2

~r1 + ~r2

with ~r1 6= ~r2. Thus, the rows of s are paired in our new operator. We can further

conclude s ∈ Vk+1 such that Vk+1 = Wk+1, as a 2× 4 pairing for Vk+1 would imply

that one s is such that ~r1 + ~r2 = 0 which is a contradiction; thus Vk+1 must be a

2 × 2 × 2 pairing (see Fig. 5.2). This implies that if Û has the form of Eq. (5.19),

is a 2 × 2 × 2 pairing, and is as a sequence the output of our synthesis algorithm,

then so is Ĝk+1Û . Note that by Lemma 5.3.9 all length one walks (i.e., operators

with lde one) on the graph F1,15 have a 2 × 2 × 2 pairing and are consistent with

the output of our synthesis algorithm. Thus, by induction, we conclude that every

such sequence must be a valid output of the synthesis algorithm, and in turn can

138

s1

s2

s3

s′1

s′2

s′3

ρk(Û) ρk−1(ĜT
k Û)

(a)

s1

s2

s3

s′1

s′2

s′3

ρk(Û) ρk−1(ĜT
k Û)

(b)

s1

s2

s3

s′1

s′2

s′3

ρk(Û) ρk−1(ĜT
k Û)

(c)

Figure 5.1: Proof diagram for the “only if” direction of Lemma 5.4.8. In pane (a),
we observe that the first pair s1 ∈ Vk cannot be ∈ Vk−1. In pane (b), we note that
a pair s2 ∈ Vk must send exactly one element to s′1 and one elsewhere. Finally, in
pane (c) we see that s3 ∈ Vk cannot be paired in Vk−1, restricting the final outcome
to a 2× 2× 2 pairing with Vk ∩ Vk−1 = ∅ and Wk ∩Wk−1 = ∅.

conclude Lemma 5.4.8 holds.

Lemma 5.4.9. V is a 2× 4 pairing with some s ∈ V where s ∈ E if and only if Û

is of the form

(F1,9 Automaton Walk)(F10,15 Automaton Walk) · C (5.20)

but not of the form in Eq. (5.19).

Proof. Beginning with the “only if” direction, if Vk is a 2 × 4 pairing with some

s3 ∈ V such that s3 ∈ E , then we have one pair s3 ∈ Wk ∩ Vk and two pairs

{s1, s2} = Wk\Vk. Under EGO, we have Gk ∈ {S1, · · · ,S9} and so s1 ∈ A and

139

s1

s2

s2

s′1

s′2

s′3

ρk(Û) ρk+1(Ĝk+1Û)
(a)

s1

s2

s3

s′1

s′2

s′3

ρk(Û) ρk+1(Ĝk+1Û)
(b)

s1

s2

s3

s′1

s′2

s′3

ρk(Û) ρk+1(Ĝk+1Û)
(c)

Figure 5.2: Proof diagram for the “if” direction of Lemma 5.4.8. In pane (a), we
observe that the first pair s′1 ∈ Vk+1 cannot be ∈ Vk and likewise cannot be the
2-pairing in a 2 × 4 pairing. In pane (b), we apply the same logic to s′2 ∈ Vk+1,
noting it may be part of a 4-pairing. Finally, in pane (c) we see that s′3 ∈ Vk+1

has the same restrictions, forcing the final outcome to be a 2 × 2 × 2 pairing with
V∩Vk+1 = ∅ and Wk ∩Wk+1 = ∅.

s2 ∈ B. By Eq. (5.17), we have

(
ρk−1(ĜT

k Û)
)

[s3; [[1..6]]] =

~r1

~r1

(
ρk−1(ĜT

k Û)
)

[sj; [[1..6]]] =

~rj1
~rj2

∀j 6= 3

with ~rj1 6= ~rj2 which implies s3 is either a pair or part of a 4-pairing in Vk−1 and

{s1, s2} ∩ Vk−1 = ∅. These constraints immediately imply that either Vk−1 is a

2 × 2 × 2 pairing such that there are three pairs s′j ∈ E , or Vk−1 is a 2 × 4 pairing

with one pair s′1 ∈ E (see Fig. 5.3). In the first case we know Vk−1 = Wk−1, and as

we have s3 ∈ Vk−1, then Wk ∩Wk−1 6= ∅. Given the graph F15 = (V,E), this implies

Gk−1 ∈ {Sz | z ∈ [[10..15]], (y, z) 6∈ E} . (5.21)

140

On the other hand, if Vk−1 is a 2× 4 pairing, we see that as s3 ∩ s′1 = ∅ with

{s1, s
′
2} ⊂ A and {s2, s

′
3} ⊂ B, the pairing of Vk−1 under EGO corresponds to using

one of the generators
{
Ŝ1, · · · , Ŝ9

}
. Restricted to this set, the only way to have

pairings Wk and Wk−1 with sj and s′j as specified is if Wk ∩Wk−1 = ∅. We can thus

conclude that (y, z) is an edge on the graph F9. By induction on the denominator

exponent, we see that for any Û with lde k and with a 2 × 4 row pairing of ρk(Û)

with some s ∈ Vk such that s ∈ E , synthesis under EGO must result in a sequence

of operators consistent with a walk on the graph F9 under the vertex map until we

reach an operator with an associated 2 × 2 × 2 row pairing which in turn must be

consistent with Eq. (5.21). As our initial generator Ĝk may be any of the first 9

elements of (S), using Lemma 5.4.8 we conclude that the output of the synthesis

algorithm must be some operator of the form in Eq. (5.20).

Now, suppose it is known that Û has the form of Eq. (5.20) and is a 2 × 4

pairing with some s3 ∈ Vk such that s3 ∈ E . Consider left multiplication of this

operator by some Ĝk+1 such that (x, y) is an edge on the graph F9. By Remark 5.4.2,

we know that Wk+1 ∩Wk = ∅. There must be two pairs {s′2, s′3} ⊂ Wk+1 that are

not paired in Vk and one pair s′1 ∈ Wk+1 that is paired in Vk. Furthermore, as

Wk+1 ∩Wk = ∅, we know that s′1 ∈ E . Using these facts and similar methods to

141

Eq. (5.17) we have

(
ρk(Û)

)
[s′j; [[1..6]]] =

~rj1
~rj2

∀j 6= 1 (5.22)

(
ρk+1(Ĝk+1Û)

)
[s′j; [[1..6]]] =

~rj1 + ~rj2

~rj1 + ~rj2

∀j 6= 1 (5.23)

(
ρk+1(Ĝk+1Û)

)
[s′1; [[1..6]]] =

~0
~0

 (5.24)

with ~rj1 6= ~rj2 . Thus, the rows of s′2 and s′3 are paired in our new operator which

must have lde k + 1. We see that s′1 ∈ Vk+1 ∩Wk+1 and that Vk+1 must be a 2× 4

pairing (see Fig. 5.4). This implies that if Û has the form of Eq. (5.20), is a 2 × 4

pairing with some s ∈ Vk where s ∈ E , and is as a sequence the output of our

synthesis algorithm, then so must be Ĝk+1Û .

Now, consider left-multiplication of Û when Vk is a 2 × 2 × 2 pairing with

Gk ∈ {S10, · · · ,S15} by a generator Ĝk+1 ∈ {S1, · · · ,S9} such that s1 ∈ Wk+1 ∩Wk

and with two pairs {s′2, s′3} ∈ Wk+1\Wk. Our set restrictions imply that s1 ∈ E .

Then we see Eqs. (5.22) to (5.24) hold in this case and so by the same reasoning

Vk+1 must be a 2× 4 pairing with s′1 = s1 ∈ Vk+1 (see Fig. 5.5). Thus, any operator

of the form Eq. (5.20) but not Eq. (5.19) where the F1,9 automaton walk is of length

one must be such that it has an associated 2 × 4 pairing Vk with s ∈ Vk where

s ∈ E . By induction, we conclude that every sequence of the form Eq. (5.20) must

be a valid output of the synthesis algorithm, and in turn can conclude Lemma 5.4.9

142

s1 ∈ A

s2 ∈ B

s3 ∈ E

s′1

s′2

s′3

ρk(Û) ρk−1(ĜT
k Û)

(a)

s1 ∈ A

s2 ∈ B

s3 ∈ E

s′1

s′2

s′3

ρk(Û) ρk−1(ĜT
k Û)

(b)

s1 ∈ A

s2 ∈ B

s3 ∈ E

s′1 ∈ E

s′2 ∈ E

s′3 ∈ E

ρk(Û) ρk−1(ĜT
k Û)

(c1)

s1 ∈ A

s2 ∈ B

s3 ∈ E

s′1 ∈ E

s′2 ∈ A

s′3 ∈ B

ρk(Û) ρk−1(ĜT
k Û)

(c2)

Figure 5.3: Proof diagram for the “only if” direction of Lemma 5.4.9. In pane (a),
we observe that the pair s1 ∈ Vk cannot be ∈ Vk−1. In pane (b), we note that the
pair s3 ∈ Vk must be paired in Vk−1 and cannot be a 2-pair in a 2 × 4 pairing. In
pane (c1), we see that if Vk−1 is a 2×2×2 pairing, the resulting sets in Vk−1 = Wk−1

must be such that Wk−1 ⊂ E . In pane (c2), if Vk−1 is a 2 × 4 pairing then we see
that the 2-pair s′1 ∈ E . Under EGO, the remaining pairs of Wk−1 must then belong
to the sets A and B.

holds.

Lemma 5.4.10. V is a 2× 4 pairing with some s ∈ V such that s ∈ A ∪ B if and

only if Û is of the form

(F1,3 Automaton Walk)(F4,9 Automaton Walk)(F10,15 Automaton Walk) · C

(5.25)

143

s1 ∈ A

s2 ∈ B

s3 ∈ E

s′1 ∈ E

s′2

s′3

ρk(Û) ρk+1(Ĝk+1Û)
(a)

s1 ∈ A

s2 ∈ B

s3 ∈ E

s′1 ∈ E

s′2

s′3

ρk(Û) ρk+1(Ĝk+1Û)
(b)

s1 ∈ A

s2 ∈ B

s3 ∈ E

s′1 ∈ E

s′2 ∈ A

s′3 ∈ B

ρk(Û) ρk+1(Ĝk+1Û)
(c)

Figure 5.4: Proof diagram for the induction hypothesis of the “if” direction of
Lemma 5.4.9. In pane (a), we observe that s′1 ∈ E which must form the 2-pair in
the 2×4 pairing Vk+1 must come from the 4-pairing ∈ Vk. In panes (b) and (c), we
form the 4-pairing of Vk+1 from the remaining elements. Under EGO, s′2 ∈ A and
s′3 ∈ B.

s1 ∈ E

s2 ∈ E

s3 ∈ E

s′1 ∈ E

s′2

s′3

ρk(Û) ρk+1(Ĝk+1Û)
(a)

s1 ∈ E

s2 ∈ E

s3 ∈ E

s′1 ∈ E

s′2

s′3

ρk(Û) ρk+1(Ĝk+1Û)
(b)

s1 ∈ E

s2 ∈ E

s3 ∈ E

s′1 ∈ E

s′2 ∈ A

s′3 ∈ B

ρk(Û) ρk+1(Ĝk+1Û)
(c)

Figure 5.5: Proof diagram for the base case of the “if” direction of Lemma 5.4.9. In
pane (a), we observe that s1 ∈ E must form the 2-pair s′1 in the 2× 4 pairing Vk+1.
In panes (b) and (c), we form the 4-pairing of Vk+1 from the remaining elements.
Under EGO, s′2 ∈ A and s′3 ∈ B.

144

but not of the form in Eq. (5.19) or Eq. (5.20).

Proof. Beginning with the “only if” direction, if Vk is a 2 × 4 pairing with some

s3 ∈ V such that s3 ∈ A ∪ B, then we have one pair s3 ∈ Wk ∩ Vk. Furthermore,

under EGO there are pairs {s1, s2} = W\V with s1 ∈ A ∪ B and s2 ∈ E3. By

Eq. (5.17), we have

(
ρk−1(ĜT

k Û)
)

[s3; [[1..6]]] =

~r1

~r1

(
ρk−1(ĜT

k Û)
)

[sj; [[1..6]]] =

~rj1
~rj2

∀j 6= 3

with ~rj1 6= ~rj2 which implies s3 is either a pair or part of a 4-pairing in Vk−1 and

{s2, s3} ∩ Vk−1 = ∅.

Suppose Vk−1 is 2× 2× 2 paired. As s3 ∈ Vk−1 and {s2, s3}∩Vk−1 = ∅, we can

conclude there must be two pairs {s′1, s′2} ⊂ Vk−1 such that s′1 ∈ E3 and s′2 ∈ A∪B.

Letting the graph F9 have edges E, we see that our new row pairing Vk−1 = Wk−1

along with Wk ∩Wk−1 6= ∅ implies

Gk−1 ∈ {Sz | z ∈ [[4..9]], (y, z) 6∈ E} . (5.26)

Suppose instead Vk−1 is 2×4 paired. There are two possibilities for s′1 ∈ Vk−1:

either s′1 ∈ E3 or s′1 ∈ A∪B with s′1 6∈ Wk. In the first case, under EGO we see that

the corresponding Wk−1 is always such that Wk ∩Wk−1 6= ∅ and so again Eq. (5.26)

145

holds. In the second case, under EGO we immediately conclude that Wk∩Wk−1 = ∅

and so Gk−1 ∈ {S1,S2,S3} such that (y, z) is an edge on the graph F3. Refer to

Fig. 5.6 for a visual aid.

By induction on the denominator exponent, we see that for any Û with lde

k and with a 2 × 4 row pairing of ρk(Û) with some s ∈ Vk such that s ∈ A ∪ B,

synthesis under EGO must result in a sequence of operators consistent with a walk

on the graph F3 under the vertex map until we either reach an operator with an

associated 2× 2× 2 row pairing or a 2× 4 row pairing. Regardless of which, there

is an s′ ∈ Vk−1 such that s′ ∈ E3 which implies consistency with Eq. (5.26). As our

initial generator Ĝk may be any of the first 3 elements of (S), using Lemmas 5.4.8

and 5.4.9 we conclude that the output of the synthesis algorithm must be some

operator of the form in Eq. (5.25) but not Eqs. (5.19) and (5.20).

Now, suppose it is known that Û has the form of Eq. (5.25) and is a 2×4 pairing

with some s3 ∈ Vk such that s3 ∈ A|B. Furthermore, let s1 ∈ B|A and s2 ∈ E3 such

that {s1, s2} ⊂ Wk and which form a 4-pairing. Consider left multiplication of this

operator by some Ĝk+1 such that (x, y) is an edge on the graph F3. By Remark 5.4.2,

we know that Wk+1∩Wk = ∅. There must be two pairs {s′2, s′3} ⊂ Wk+1 that are not

paired in Vk and one pair s′1 ∈ Wk+1 that is part of the 4-pairing in Vk. Restricted

to the set of operators {S1,S2,S3}, by inspection the only possibility is s′1 ∈ B|A.

146

Using these facts and similar methods to Eq. (5.17) we have

(
ρk(Û)

)
[s′j; [[1..6]]] =

~rj1
~rj2

∀j 6= 1 (5.27)

(
ρk+1(Ĝk+1Û)

)
[s′j; [[1..6]]] =

~rj1 + ~rj2

~rj1 + ~rj2

∀j 6= 1 (5.28)

(
ρk+1(Ĝk+1Û)

)
[s′1; [[1..6]]] =

~0
~0

 (5.29)

with ~rj1 6= ~rj2 . Thus, the rows of s′j are paired in our new operator which must have

lde k + 1. We see that s′1 ∈ Vk+1 ∩Wk+1 and that Vk+1 must be a 2 × 4 pairing

(see Fig. 5.7). This implies that if Û has the form of Eq. (5.25), is a 2 × 4 pairing

with some s ∈ Vk where s ∈ A|B, and is as a sequence the output of our synthesis

algorithm, then so must be Ĝk+1Û .

Let Û have pairing Vk such that s3 ∈ Vk with s3 ∈ E3. By Lemmas 5.4.8

and 5.4.9 we know Gk ∈ {S4, · · · ,S9}. Consider left-multiplication by a generator

Ĝk+1 ∈ {S1,S2,S3} such that s1 = s′1 ∈ Wk+1 ∩Wk and where we have two pairs

{s′2, s′3} ∈ Wk+1\Wk. Our set restrictions imply that s′1 ∈ A|B. Then we see

Eqs. (5.27) to (5.29) hold in this case and so by the same reasoning Vk+1 must be a

2×4 pairing with s′1 ∈ Vk+1 (see Fig. 5.8). Thus, any operator of the form Eq. (5.25)

but not Eq. (5.20) nor Eq. (5.19) where the F1,3 automaton walk is of length one

must be such that it has an associated 2× 4 pairing Vk with s ∈ Vk where s ∈ A|B.

By induction, we conclude that every sequence of the form Eq. (5.25) must be a

147

s1 ∈ B|A

s2 ∈ E3

s3 ∈ A|B

s′1

s′2

s′3

ρk(Û) ρk−1(ĜT
k Û)

(a)

s1 ∈ B|A

s2 ∈ E3

s3 ∈ A|B

s′1

s′2

s′3

ρk(Û) ρk−1(ĜT
k Û)

(b)

s1 ∈ B|A

s2 ∈ E3

s3 ∈ A|B

s′1 ∈ E3

s′2 ∈ B|A

s′3 ∈ A|B

ρk(Û) ρk−1(ĜT
k Û)

(c1)

s1 ∈ B|A

s2 ∈ E3

s3 ∈ A|B

s′1 ∈ E3

s′2 ∈ B|A

s′3 ∈ A|B

ρk(Û) ρk−1(ĜT
k Û)

(c2)

s1 ∈ B|A

s2 ∈ E3

s3 ∈ A|B

s′1 ∈ B|A

s′2 ∈ E3

s′3 ∈ A|B

ρk(Û) ρk−1(ĜT
k Û)

(c3)

Figure 5.6: Proof diagram for the “only if” direction of Lemma 5.4.10. In pane (a),
we observe that s1 ∈ B|A must not be paired in Vk−1. In pane (b), we see that
s3 ∈ A|B must remain paired in Vk−1. Pane (c1) establishes that in the case where
Vk−1 is a 2 × 2 × 2 pairing, then Wk−1 must correspond to one of {S4, · · · ,S9}. In
pane (c2), we see that there can be instances where Vk−1 is a 2 × 4 pairing such
that Wk−1 must likewise correspond to one of {S4, · · · ,S9}. Finally, in pane (c2),
we show that there can likewise be instances where Vk−1 is a 2× 4 pairing such that
Wk−1 must correspond to one of {S1,S2,S3} with Wk ∩Wk−1 = ∅.

valid output of the synthesis algorithm, and in turn can conclude Lemma 5.4.10

holds.

Proof of Proposition 5.4.7. We first note the following inclusions for our automaton

148

s1 ∈ B|A

s2 ∈ E3

s3 ∈ A|B

s′1 ∈ B|A

s′2

s′3

ρk(Û) ρk+1(Ĝk+1Û)
(a)

s1 ∈ B|A

s2 ∈ E3

s3 ∈ A|B

s′1 ∈ B|A

s′2

s′3

ρk(Û) ρk+1(Ĝk+1Û)
(b)

s1 ∈ B|A

s2 ∈ E3

s3 ∈ A|B

s′1 ∈ B|A

s′2 ∈ E3

s′3 ∈ A|B

ρk(Û) ρk+1(Ĝk+1Û)
(c)

Figure 5.7: Proof diagram for the induction hypothesis of the “if” direction of
Lemma 5.4.10. In pane (a), we observe that s′1 ∈ B|A which must form the 2-pair
in the 2× 4 pairing Vk+1 must come from the 4-pairing ∈ Vk. In panes (b) and (c),
we form the 4-pairing of Vk+1 from the remaining elements. Under EGO, s′2 ∈ E3
and s′3 ∈ A|B.

s1 ∈ A|B

s2 ∈ B|A

s3 ∈ E3

s′1 ∈ A|B

s′2

s′3

ρk(Û) ρk+1(Ĝk+1Û)
(a)

s1 ∈ A|B

s2 ∈ B|A

s3 ∈ E3

s′1 ∈ A|B

s′2

s′3

ρk(Û) ρk+1(Ĝk+1Û)
(b)

s1 ∈ A|B

s2 ∈ B|A

s3 ∈ E3

s′1 ∈ A|B

s′2 ∈ B|A

s3 ∈ E3

ρk(Û) ρk+1(Ĝk+1Û)
(c)

Figure 5.8: Proof diagram for the base case of the “if” direction of Lemma 5.4.10. In
pane (a), we observe that s1 ∈ A|B must form the 2-pair s′1 in the 2×4 pairing Vk+1.
In panes (b) and (c), we form the 4-pairing of Vk+1 from the remaining elements.
Under EGO, s′2 ∈ B|A and s′3 ∈ E3.

149

walks:

(F1,15 Automaton Walk)

⊂ (F1,9 Automaton Walk)(F10,15 Automaton Walk)

⊂ (F1,3 Automaton Walk)(F4,9 Automaton Walk)(F10,15 Automaton Walk)

By these inclusions, Theorems 5.3.17 and 5.3.20 and Lemmas 5.4.8 to 5.4.10 we can

conclude that a circuit is in Clifford+Controlled-Phase gate normal form if and only

if it has the form

(F1,3 Automaton Walk)(F4,9 Automaton Walk)(F10,15 Automaton Walk) · C

Lemma 5.4.11. There are

86400(3 · 8n − 2 · 4n)

Clifford+Controlled-Phase operators of Controlled-Phase gate count precisely n > 1.

Proof. We can use the internal structure of the normal form from Proposition 5.4.7

to count the number of operators for a given Controlled-Phase gate count n. Ex-

150

plicitly, this is

[
6 · 8n−1 + 6 · 4n−1 + 3 · 2n−1 +

∑
0<l<n

18 · 22n−3−l +
∑

0<l<n

18 · 23n−4−2l

+
∑

0<j<n

36 · 23n−5−j +
∑

0<l<n−j

∑
0<j<n

108 · 23n−6−j−2l

]
· |C|

These terms represent, in order, the number of length n sequences from the: purely

F10,15 walk automaton, purely F4,9 walk automaton, purely F1,3 walk automaton,

partly F1,3 and F4,9 walk automatons, partly F1,3 and F10,15 walk automatons, partly

F4,9 and F10,15 walk automatons, and partly F1,3, F4,9, and F10,15 walk automatons.

After applying the geometric series formula a few times and substituting in |C| =

92160, we arrive at the desired result.

Corollary 5.4.12. There are

46080

7
(45 · 8n − 35 · 4n + 4)

Clifford+Controlled-Phase operators of Controlled-Phase gate count 6 n.

Proof. Use the geometric series formula in conjunction with Lemma 5.4.11 and a

value of 92160 for the Controlled-Phase gate count n = 0 operators consistent with

the cardinality of the Clifford group.

Lemma 5.4.13. In order to ε-approximate any two-qubit special unitary operator,

151

there are circuits that will require at least

n & 5 log2

(
1

ε

)
− 0.67

Controlled-Phase gates.

Proof. By volume counting argument as in Eq. (2.3). Each operator must occupy

an ε-ball worth of volume in 15-dimensional SU(4) space, and the sum of all these

volumes must add to the total SU(4) volume of
√

2π9

3
. The number of circuits up to

Controlled-Phase gate count n is taken from Corollary 5.4.12 (we must divide the

result by two to account for the absence of overall phase ω in the special unitary

group) and a 15-dimensional ε-ball has a volume of π
15
2

Γ(15
2

+1)
ε15.

Remark 5.4.14. In the case of C + T circuits, it was established [96] that for

single-qubit unitaries of determinant one, the lde k in the SU(2) representation was

related to the T -count, which was one of 2k − 2 or 2k. Interestingly, this is not the

case for the SU(4) representation of determinant one C2 + CS operators. Indeed,

no such simple relationship holds between the CS-count and the lde in the SU(4)

representation in the general case. This is easy to check by generating random

C2 +CS circuits with determinant one and then checking the lde in both the SU(4)

and SO(6) representations.

That being said, we can still determine bounds for the CS count using the lde

in an operator’s SU(4) representation. Examination of Eq. (5.12) implies that the

152

lde k′ of an SO(6) representation for an lde k SU(4) operator must be such that

k′ 6 2k + 2.

Likewise, close examination of Proposition 5.4.7 shows that every CS operator must

be separated from one another by a Clifford with an lde of at most 2 in its unitary

representation. Combining with the fact that the largest lde of an operator in C2 is

3, we see that

k′ >
k − 3

2
.

Combining our inequalities, we have that the CS count k′ for a special unitary

operator with an lde k is bounded by

k − 3

2
6 k′ 6 2k + 2. (5.30)

This means that the CS count of an operator always scales linearly with the lde

of its unitary representation. For large k, most operators seem to be such that

5
4
k . k′ . 4

3
k, though there are examples of operators with k ≈ k′ or 2k ≈ k′.

5.5 Conclusion

We have described the first provably optimal compilation algorithm in terms

of non-Clifford count for a fault-tolerant multi-qubit gate set. This establishes the

existence of a unique normal form for C2 +CS circuits. We show that this synthesis

algorithm is computable in a time logarithmic in the gate-count of the original

153

circuit. Finally, we use a volume counting argument to show that ε-approximation

of two-qubit unitaries will take at least 5 log2(1/ε) CS gates in the typical case.

These results will form the basis of an inexact synthesis algorithm using this gate

set for two-qubit circuits, which shall be developed in Chapter 6.

Looking ahead, the techniques used in this work can hopefully be used to

develop optimal multi-qubit normal forms for other two-qubit gate sets such as two-

qubit C + T . Indeed, it can be shown using similar techniques to that of Chapter 4

that the SO(6) representation of C+T operators are exactly the set of SO(6) matri-

ces with entries in the ring Z[1/
√

2]. Looking further forward, there exist another

exceptional isomorphism for SU(8), which could prove useful in establishing a syn-

thesis algorithm for 3-qubit circuits. Long term, these types of algorithms may well

form the basis of quantum compilers.

154

Chapter 6: Clifford + Controlled Phase Inexact Synthesis
1

6.1 Introduction

As discussed previously, the C + CS gate set is a fault-tolerant multi-qubit

gate set. In Chapter 4, we demonstrated that any n-qubit unitary which is exactly

expressible over this gate set is in the matrix group U2n×2n(D[i]) up to a factor of

ω. In Chapter 5, we then described a Controlled-Phase-count-optimal synthesis

algorithm for the gate set. In analogue with past work [90,92,96–98,100], we would

now like to develop an algorithm for approximating any 2-qubit unitary using this

gate set. In particular, we will show that we can synthesize any approximation for

Pauli rotations, as was done in [99,100]. We shall also comment on the synthesis of

unitaries which are not Pauli-rotations.

6.2 Overview of Approximation Scheme

Initially, we restrict our attention to approximating Pauli rotations of the form

e−
iφ
2
P

1This chapter is the preliminary workings of a forthcoming manuscript [147]

155

where P is any traceless, Hermitian two-qubit Pauli Operator. Up to an irrelevant

phase of −1, this set consists of 15 operators. Every element of this set is actually

expressible as some Clifford conjugation of Z⊗1, P = C(Z⊗1)C†, for some Clifford

C, and so we can actually restrict this discussion to rotations about Z ⊗ 1. This

means we need to consider how to approximate the operator

U = e−
iφ
2
Z⊗1 =

e−
iφ
2 0 0 0

0 e−
iφ
2 0 0

0 0 e
iφ
2 0

0 0 0 e
iφ
2

. (6.1)

By our result in Chapter 4, this means looking for some

Ũ =
1
√

2
k

u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

where ujm ∈ Z [i] such that

Ũjm =
ujm
√

2
k
≈

e−
iφ
2 j = m 6 2

e
iφ
2 j = m > 2

0 otherwise

.

156

By our approximation sign here, we really mean that we need N (U − Ũ) 6 ε for

some matrix norm N and ε ∈ R+ (strictly positive Reals). For simplicity, we shall

choose N to be the Frobenius norm, and so we have

N (U − Ũ) =

√
Tr
[
(U − Ũ)(U − Ũ)†

]
=

√
8− Tr

[
ŨU † + UŨ †

]
=

√
8− 2 Re Tr

[
ŨU †

]
.

Solving for Re Tr
[
ŨU †

]
and bounding the result by the fact that εN (U − Ũ) > 0,

we have

1 >
1

4
Re Tr

[
ŨU †

]
> 1− ε2

8
. (6.2)

By virtue of choosing U as a rotation about Z⊗1, we see that the only contribution

to Eq. (6.2) ends up being from the diagonal elements of Ũ . Approximate synthesis

of U will thus consist of two aspects:

1. Find a set of Ũjj such that Eq. (6.2) is satisfied where the resulting matrix

will use as few CS gates as possible.

2. Find a set of suitable Ũjl for j 6= l to make Ũ unitary.

We begin by tackling Item 2 first, as it is the simpler of the two problems.

157

6.3 Unitary Templates and Lagrange Four-Squares

As in previous work [99,100], we will work in the special unitary representation

when looking for approximations. Unlike these schemes, the lde in our representation

is not a perfect metric for the final CS count – ultimately, this will cost our scheme

optimality. Regardless, we still produce an asymptotically optimal inexact synthesis

algorithm by using what we call a template.

Definition 6.3.1 (Template). Let |α|2 + |β|2 + |γ|2 = 1 for complex α, β, and γ.

Consider the operator

V =

α 0 −β∗ −γ∗

0 α γ −β

β −γ∗ α∗ 0

γ β∗ 0 α∗

(6.3)

which is unitary by construction. We call V a Z ⊗ 1 rotation template.

Let us consider ε-approximation using our template for a Z ⊗ 1 rotation. By

Eqs. (6.1) to (6.3), we have the constraints

1 > Re
[
αe

iφ
2

]
> 1− ε2

8
and |α|2 6 1

158

which are pictorially represented in Fig. 6.1. Suppose we can find such an α with

α =
a+ ib
√

2
k

(6.4)

for a, b ∈ Z and k ∈ N. Then finding an appropriate β and γ is easy as we can make

use of Lagrange’s four-squares theorem [148]. This theorem guarantees a solution

to the equation

w2 + x2 + y2 + z2 = n

for integral w, x, y, z for all integers n ∈ N. In our case, setting n = 2k− a2− b2 and

finding such a set of integers means we can set β = w+ix√
2
k and γ = y+iz√

2
k to ensure

|α|2 + |β|2 + |γ|2 = 1.

Solutions to this so-called Diophantine equation can be computed using a random-

ized algorithm in a time O(log2(n)) [148]. All that remains is to develop an approx-

imation scheme for α.

6.4 Finding Approximations with Small Least Denominator Expo-

nent

While it is true that the lde in the SU(4) representation does not have a

simple expression connecting it to the CS count of the respective operator, we can

still bound its CS-count. In particular, using Eq. (5.30) we know that it should

159

Figure 6.1: The acceptable values of α fall in the green region which is a segment
of the unit disk. This region can be contained within a rotated rectangle which has
a width of ε2

8
and a height of approximately ε.

160

scale linearly with the lde in the unitary representation – hence we should look for a

candidate α of the form in Eq. (6.4) that has the smallest lde possible. In particular,

we can use the Lenstra-Lenstra-Lovász (LLL) lattice basis reduction algorithm [101]

for ever-increasing k until we find some candidate for α. Given inputs φ and ε, we

search for a 2-component vector of integers ~α = [a, b] for which α = a+ib√
2
k is a valid

solution using the following algorithm:

1. Let k = −1 and ~α be unset

2. Compute the vector ~t =
[
cos
(
iφ
2

)
,− sin

(
iφ
2

)]
3. While ~α is unset:

I. Increment k

II. Define Rk
ε =

{
~u
∣∣∣ ~u · ~t > √2

k
(

1− ε2

8

)
and |~u| 6

√
2
k
}

III. Find a bounding parallelogram of integer vertex coordinates that contains

Rk
ε , call it Bkε and let the vectors which define two non-parallel sides of

Bkε be ~v1 and ~v2

IV. Run the LLL lattice basis reduction algorithm on [~v1, ~v2] and let the result

be [~v′1, ~v
′
2] which produces the invertible linear transformation M

V. Compute T kε =M(Bkε) which has the x domain x0 6 x 6 x1.

VI. For each integer a′j such that x0 6 a′j 6 x1:

i. Compute the smallest b′j which could be in T kε and define the vector

~λ′ = [a′j, b
′
j]

161

ii. Compute ~λ =M−1~λ′

iii. If ~λ ∈ Rk
ε , set ~α = ~λ

4. Return (~α, k)

The LLL lattice basis reduction algorithm effectively transforms the bounding

region Bkε , a long and skinny rotated parallelogram, to be a relatively “upright”

parallelogram. By making the region upright, the number of values aj which need

to be tested is O(1), and so the performance of the algorithm scales roughly linearly

with k. Rather than dive more into the details of this scheme, we present an alternate

interpretation that shall make studying performance a little easier.

6.4.1 Alternate Algorithm for Finding Approximations

The major difficulty in finding approximations to α lies in the fact that the

region in which acceptable solutions exist is much longer than it is wide, and is

generally oriented at an angle. For fixed lde k, the total area of this region is

O(2kε3) as there is a tightly-bounding rectangle of width
√

2
k
ε2

8
and a height of

√
2
k
ε. Consider the 2-dimensional grid of integers Z2. Naively, we expect a solution

when the area of our region is O(1) as that is the area of a unit cell of Z2; this

corresponds to an expected k ∼ 3 log2

(
1
ε

)
. However, in the worst case we may

not find a solution until the width of the rectangle is of size O(1), corresponding to

k ∼ 4 log2

(
1
ε

)
. It shall turn out that our intuition holds in both cases. Indeed, using

the same techniques as [104] would yield a valid α approximation with k ∼ 4 log2

(
1
ε

)
,

and so we know this is an upper bound on our lde.

162

Because the rectangle is skinny (at most a width of O(1) before a solution is

found), we only need to check a single y grid point for every x grid point which falls

within the x-domain of the rectangle. However, the total number of x grid points to

check is approximately
√

2
k
ε sin

(
φ
2

)
which is O

(
1
ε

)
in the worst case and O

(
1√
ε

)
in

the typical case. If we were able to re-orient our bounding rectangle such that each

side is approximately perpendicular to the coordinate axes of the grid Z2, it would be

straightforward to identify points inside the region. Ideally, we’d be able to perform

a pure rotation that orients this rectangle upright. However, this is impossible due

to the fact that the only pure rotations that preserve Z2 grid points are those for

π
2

rotations. We therefore need to consider more general transformations which do

preserve our grid.

Affine transformations are transformation which preserve colinearity and dis-

tance ratios. Any affine transformation A with integer entries maps the grid Z2 onto

itself. Furthermore, we can ensure this mapping is one-to-one if A is invertible over

the integers – this corresponds only to those affine transformations of determinant

±1. Our goal then is as follows: find an invertible integral affine transformation

that minimizes the x-domain of the bounding rectangle after the transformation.

The initial bounding rectangle can be described by two vectors which give the

orientation of its sides. From Fig. 6.1, we can use geometry to determine that these

163

are

~v1 =
√

2
k
ε

√
1− ε2

16
·
[
− sin

(
φ

2

)
, cos

(
φ

2

)]
≈
√

2
k
ε ·
[
− sin

(
φ

2

)
, cos

(
φ

2

)]
~v2 =

√
2
k
ε2

8
·
[
cos

(
φ

2

)
, sin

(
φ

2

)]

We will not consider translations of the grid Z2, and so our affine transformations

are representable as 2× 2 matrices over the integers:

A =

q r

s t

with detA = ±1. The widthW of the x-domain of our bounding parallelogram post-

transformation is the maximum x-component of D = {|A(~v1 − ~v2)|, |A(~v1 + ~v2)|}.

W is upper-bounded by the x-component of

|A~v1|+ |A~v2|

and so we can determine

W 6
√

2
k
ε

(∣∣∣∣r cos

(
φ

2

)
− q sin

(
φ

2

)∣∣∣∣+
ε

8

∣∣∣∣q cos

(
φ

2

)
+ r sin

(
φ

2

)∣∣∣∣) . (6.5)

Thus, if we are able to find q, r such that r
q
≈ tan

(
φ
2

)
with q . 8√

2
k
ε2

then we can

ensure W ∼ O(1). The following discussion shall be restricted 0 6 φ
2
6 π

4
as we can

use the π
2
-rotation affine transformation and the x↔ y reflection operation to map

164

every angle into this domain.

By Dirichlet’s approximation theorem [149], we know that for real numbers κ

and N > 1, we can find integers q and 1 6 ` 6 N such that

|κ`−m| 6 1

N
.

Observing that this roughly matches the form of Eq. (6.5), we can equate κ →

tan
(
φ
2

)
, `→ r, and m→ q to show

∣∣∣∣r cos

(
φ

2

)
− q sin

(
φ

2

)∣∣∣∣ 6 cos
(
φ
2

)
N

(6.6)

for some integral q and r 6 q with 1 6 q 6 N . Such a q and r can be found using,

for example, continued fractions or the aforementioned LLL lattice basis reduction

scheme [149]. We then must choose N such that the second term of Eq. (6.5) is not

too large. In particular, we have

∣∣∣∣q cos

(
φ

2

)
+ r sin

(
φ

2

)∣∣∣∣ 6 q cos

(
φ

2

)[
1 +

r

q
tan

(
φ

2

)]
. (6.7)

We can use Eq. (6.6) to show

r

q
6 tan

(
φ

2

)
+

1

qN

165

and so we can simplify Eq. (6.7) to

q cos

(
φ

2

)[
1 +

r

q
tan

(
φ

2

)]
6 q cos

(
φ

2

)[
1 + tan2

(
φ

2

)
+

tan
(
φ
2

)
qN

]

6 q cos

(
φ

2

)[
sec2

(
φ

2

)
+

tan
(
φ
2

)
qN

]

6 q sec

(
φ

2

)
+

sin
(
φ
2

)
N

(6.8)

We now consider two separate cases: when φ = 2 arctan v for v ∈ Q, and otherwise.

Suppose φ = 2 arctan v for v ∈ Q. Then we have r
q

= v and 1
N
→ 0. Using

Eqs. (6.6) and (6.8) with these substitutions reduces Eq. (6.5) to

W 6

√
2
k
ε2q

8
(6.9)

For a φ that does not have this property, we instead have upon rearrangement of

Eq. (6.5)

W 6

√
2
k
ε

3
2 cos

(
φ
2

)
8

[
8 + ε tan

(
φ
2

)
N
√
ε

+ q
√
ε sec2

(
φ

2

)]
. (6.10)

Using that q 6 N , we can set q → N in Eq. (6.10) and minimize with respect to

N
√
ε. This yields

W 6

√
2
k
ε

3
2

√
8 + ε tan

(
φ
2

)
4

6
3
√

2
k
ε

3
2

4
for N =

√
8

ε
+ tan

(
φ

2

)
cos

(
φ

2

)
. (6.11)

In the case where our rational approximation of tan
(
φ
2

)
produces some q such that

166

q
√
ε ∼ 1, then Eq. (6.11) is a relatively good approximation for the width. However,

if q
√
ε � 1 (alternatively, q � N), the width is much closer to the expression of

Eq. (6.9). Regardless of the scaling ofW , we know that solutions will show up when

W & 1 and A
W & 1. When Eq. (6.9) is the better approximation for the width W ,

then W is the limiting factor, with W ∼ 1 for k ∼ 4 log2

(
1
ε

)
. When Eq. (6.11) is

on the other hand, both the width and area are O(1) when k ∼ 3 log2

(
1
ε

)
.

While we have described a method for finding a suitable q, r in our affine

transformation A, we have said nothing of s, t. We know that A must have a

determinant ±1, meaning we need

qt− rs = ±1.

Selecting the positive variant of this equation, we can always find such an s, t by

using the extended Euclidean algorithm [150], which bounds |s| 6 q
2

and |t| 6 r
2
. We

can try and likewise bound the height H of the resulting bounding parallelogram.

We see that Eq. (6.5) holds under W → H, q → s, and r → t. Again, we tackle

these problems in the case when tan
(
φ
2

)
is exactly rational and when it is not.

Beginning with the rational case with tan
(
φ
2

)
= r

q
, we can exactly bound

∣∣∣∣t cos

(
φ

2

)
− s sin

(
φ

2

)∣∣∣∣ = cos

(
φ

2

) ∣∣∣∣t− rs

q

∣∣∣∣ =
cos
(
φ
2

)
q

. (6.12)

Evidently, t is an approximation of s tan
(
φ
2

)
to 1

q
. Bounding the second term of our

167

equation, we have

∣∣∣∣s cos

(
φ

2

)
+ t sin

(
φ

2

)∣∣∣∣ 6 cos
(
φ
2

)
q

|sq + tr|

6
cos
(
φ
2

)
2q

(q2 + r2)

6
cos
(
φ
2

)
2q

q2 sec2

(
φ

2

)
6
q sec

(
φ
2

)
2

. (6.13)

Combining Eqs. (6.12) and (6.13), we arrive at

H 6

√
2
k
ε

3
2

4

[
4

q
√
ε sec

(
φ
2

) +
q
√
ε sec

(
φ
2

)
4

]
. (6.14)

In the irrational case (or more generally when q
√
ε ∼ 1), we instead bound

∣∣∣∣s tan

(
φ

2

)
− t
∣∣∣∣ 6 ∣∣∣∣s(rq − 1

qN

)
−
(
sr + 1

q

)∣∣∣∣
6

1

q

∣∣∣ s
N

+ 1
∣∣∣

6
1

q

∣∣∣ q
2N

+ 1
∣∣∣

6
3

2q
, (6.15)

implying that t is an approximation to s tan
(
φ
2

)
within 3

2q
. We can use the same

analysis as the width underW → H, N → 2q
3

, and q → s 6 q
2

in Eq. (6.10) to arrive

168

at

H 6

√
2
k
ε

3
2 cos

(
φ
2

)
16

[
24 + 3ε tan

(
φ
2

)
q
√
ε

+ q
√
ε sec2

(
φ

2

)]
. (6.16)

As we have that q
√
ε ∼ 1 for this analysis, we can call q = λN for λ ∼ 1 and further

reduce this equation using our N value from Eq. (6.11) to

H 6

√
3
√

2
k
ε

3
2

√
8 + ε tan

(
φ
2

)
16

[√
3

λ
+

λ√
3

]
. (6.17)

Using Eqs. (6.9), (6.11), (6.14) and (6.17) we can bound the ratio between the area

of the transformed bounding parallelogram and the area of the smallest completely

upright rectangle that encloses it. In both instances, we let q = λN for the N value

in Eq. (6.11). For the rational case, we have

A
HW

>
1

cos
(
φ
2

)
+ λ2

(
cos(φ2)

2
+ ε2 sin

(
φ
2

)) (6.18)

and for the irrational case, we have

A
HW

>
8

8 + ε tan
(
φ
2

) λ

3 +
√

3λ2
. (6.19)

When λ � 1, corresponding to an exact (or nearly-exact) rational approximation

of tan
(
φ
2

)
, then Eq. (6.18) is close to one. Likewise when λ is not very close to 0,

Eq. (6.19) is close to one. Thus, this affine transformation should produce a trans-

formed bounding parallelogram that is not too dissimilar from an upright rectangle.

169

Now that we have a method for finding an affine transformation A that maps

long and skinny angled rectangles onto relatively upright parallelograms, we can use

it to find approximations for α. To summarize, our method for finding A given some

angle φ and error ε is as follows:

Lemma 6.4.1. There exists an algorithm to find the affine transformation A which

has been described in Section 6.4.1.

Proof. The algorithm is

1. Find a pure rotation/reflection in the integers that maps −φ
2
→ φ′

2
∈
[
0, π

4

)
,

call it AR

2. Find integers q and r such that
∣∣∣q tan

(
φ′

2

)
− r
∣∣∣ 6 √

ε sec
(
φ′
2

)
√

8+ε tan
(
φ′
2

) using, e.g.,

continued fractions

3. Solve qt− rs = 1 for integral s and t using the extended Euclidean algorithm

4. Set AV =

q r

s t

5. Return AVAR

We can use this subroutine in a slightly amended algorithm for finding ~α =

[a, b] for which α = a+ib√
2
k is a valid approximation of e

−iφ
2 for error ε:

Proposition 6.4.2. There exists an algorithm to compute an approximation α =

a+ib√
2
k to e

−iφ
2 for a, b ∈ Z and k ∈ N such that Re

[
αe
−iφ
2

]
> 1 − ε2

8
in O

(
log
(

1
ε

))
170

arithmetic operations. When tan
(
φ
2

)
∈ Q, this yields an lde of k ≈ 4 log2

(
1
ε

)
and

otherwise gives an lde of k ≈ 3 log2

(
1
ε

)
Proof. We amend our earlier algorithm using Lemma 6.4.1 to propose the following

algorithm:

1. Let k = −1 and ~α be unset

2. Compute the vector ~t =
[
cos
(
iφ
2

)
,− sin

(
iφ
2

)]
3. Compute the affine transformation A for input angle −φ

2
and error ε.

4. While ~α is unset:

I. Increment k

II. Define Rk
ε =

{
~u
∣∣∣ ~u · ~t > √2

k
(

1− ε2

8

)
and |~u| 6

√
2
k
}

III. Find the bounding rectangle of Rk
ε , call it Bkε

IV. Apply A to the vertices of Bkε , yielding the transformed parallelogram

T kε = A(Bkε) with x domain x0 6 x 6 x1

V. For each integer a′j such that x0 6 a′j 6 x1:

i. Compute the smallest b′j which could be in T kε and define the vector

~λ′ = [a′j, b
′
j]

ii. Compute ~λ = A−1~λ′

iii. If ~λ ∈ Rk
ε , set ~α = ~λ

5. Return (~α, k)

171

This algorithm is effectively the same as earlier, except with a more explicit con-

struction of the transformation used. We note that the expected run-time of the

algorithm is O
(
log
(

1
ε

))
as this is both the number of arithmetic operations required

to compute the transformation A as well as the number of iterations of k, with a

constant number of arithmetic operators required per k value.

6.5 Pauli-Rotation Approximations

We can now use our approximation algorithm in Proposition 6.4.2 along with

our Z ⊗ 1 rotation template and Lagrange four-squares algorithm covered in Sec-

tion 6.3 to provide an approximation scheme for Pauli-rotations. Consider operators

of the form Eq. (6.3) as an ε-approximation to a Z ⊗ 1 rotation of φ. We can use

the algorithm in Proposition 6.4.2 to find an approximation for α with the smallest

lde, yielding

α =
a+ ib
√

2
k

for k ≈ 3 log2

(
1
ε

)
in the typical case and k ≈ 4 log2

(
1
ε

)
when tan

(
φ
2

)
∈ Q with a

small denominator. Then we can solve the Lagrange four-squares problem to find

suitable β and γ, which likewise have an lde no more than k. We can then try and

determine the lde of the resulting operator in the SO(6) representation.

Lemma 6.5.1. Every operator that is a Z ⊗ 1 rotation template with lde k > 2 in

the SU(4) representation has an lde 2k − 2 in the SO(6) representation.

Proof. Direct calculation for the SO(6) representation of V from Eq. (6.3) using the

172

substitutions

α =
a+ ib
√

2
k
, β =

c+ id
√

2
k
, γ =

e+ if
√

2
k

yields an SO(6) representation with entries from the following set S:

S1 =

{
± xy
√

2
2k−2

∣∣∣∣∣ x 6= y and x, y,∈ {a, b, c, d, e, f}

}
,

S2 =

{
a2 − b2 − c2 − d2 − e2 − f 2

√
2

2k
,
a2 − b2 + c2 + d2 + e2 + f 2

√
2

2k
,

a2 + b2 − c2 + d2 + e2 + f 2

√
2

2k
,
a2 + b2 + c2 + d2 + e2 − f 2

√
2

2k
,

a2 + b2 + c2 + d2 − e2 + f 2

√
2

2k
,
a2 + b2 + c2 − d2 + e2 + f 2

√
2

2k

}
,

S = S1 ∪ S2.

Exactly four of {a, b, c, d, e, f} must be odd for the SU(4) to have an lde of k > 2.

This in turn implies that exactly 12 of the elements of S1 have an lde of 2k − 2.

Furthermore, the elements of set S2 can have lde at most 2k − 2, and therefore the

lde of the overall operator must be 2k − 2.

Combining Proposition 6.4.2 and Lemma 6.5.1, we arrive at the following

result.

Theorem 6.5.2. There exists an algorithm to compute an ε approximation for any

Pauli-rotation by angle φ. This algorithm uses O
(
log
(

1
ε

))
arithmetic operations

and yields approximations which use 6 log
(

1
ε

)
+ O(1) CS operators in the typical

case and 8 log
(

1
ε

)
+O(1) when tan

(
φ
2

)
∈ Q.

173

Proof. By Proposition 6.4.2 and Lemma 6.5.1 along with our exact synthesis algo-

rithm of Chapter 5. Note that these are written for the Z ⊗ 1 Pauli-rotation; this

may be extended to all possible Pauli-rotations by Clifford conjugation.

We can use this algorithm to likewise approximate any operator in SU(4) by

using the Pauli-rotation decomposition of SU(4) [151]. Such a decomposition uses

15 Pauli rotations, giving us the following decomposition algorithm.

Theorem 6.5.3. There exists an algorithm which computes an ε-approximation to

any U ∈ SU(4) that requires 90 log
(

1
ε

)
+O(1) CS operators in the typical case and

120 log
(

1
ε

)
+O(1) in the worst case. The run-time of this algorithm is O

(
log
(

1
ε

))
.

Proof. We will use Theorem 6.5.2 a total of (up to) 15 times in accordance with the

Pauli-rotation decomposition of SU(4). To explicitly construct this decomposition

and find the 15 angles for the necessary rotations, we give the following decomposi-

tion algorithm.

Direct computation of the SO(6) representation of the Z⊗1 Pauli-rotation by

angle φ yields the matrix

cosφ − sinφ 0

sinφ cosφ 0

0 0 14

 .

174

Every other Pauli-rotation is of a similar form, a two-level matrix

V[`,m](φ) =

cosφ − sinφ

sinφ cosφ

[`,m]

for rows/columns ` and m. These operators generate SO(6), with one such decom-

position being

H1,6H1,5H1,4H1,3H1,2 for H1,` = V[`−1,`](φ`,`)V[`−2,`−1](φ`−1,`) · · ·V[1,2](φ1,`),

effectively a Hausholder decomposition of U . Each angle is straightforward to com-

pute, as the inverse of this decomposition gives a prescription for how to send any

element of SO(6) back to the identity. Each application of a V should then map

the bottom-most entry of the leftmost non-unit-vector column to zero. Once our

fifteen angles are found, we can approximate each V using Theorem 6.5.2 and an

approximating error of ε
15

. Multiplying our approximations together, we can then

run the exact synthesis algorithm from Chapter 5 on our result to produce the ε-

approximation to U . The scaling of both the CS-count and the run-time then come

from both Theorem 6.5.2 and the run-time of our exact synthesis algorithm.

6.6 Conclusion

In Chapter 6, we have developed an inexact synthesis algorithm for the C+CS

gate set. In the case of Pauli-rotations, we developed an algorithm that requires

175

6 log
(

1
ε

)
+O(1) CS operators in the typical case and 8 log

(
1
ε

)
+O(1) in the worst

case. We then described a synthesis algorithm which uses these Pauli-rotations

as subroutines, achieving a CS-count of 90 log
(

1
ε

)
+ O(1) in the typical case and

120 log
(

1
ε

)
+O(1) in the worst case.

It is not clear if the algorithm outlined here is truly optimal – indeed, it is

likely not. The number-theoretic bound from Chapter 5 seems to suggest that the

constant could be 5 instead of 6 in the typical case. Moreover, as we have restricted

to Pauli-rotations, it may be possible to push this constant even lower. For example,

using the same approximation outlined here, the constant can be lower-bounded to

3, which would match the performance of the Clifford+T gate set in the single-qubit

case. Regardless, we know that this algorithm is at least asymptotically optimal.

176

Chapter 7: Conclusion

In this dissertation, we have developed improved quantum compiling tech-

niques for both qudit and multi-qubit circuits, with a particular emphasis on the

Clifford + CS gate set. In Chapter 3 we provide an algorithm which computes the

analogue of a Matsumoto-Amano normal form for single-qutrit C + T circuits, in

turn showing it is both T -count optimal and unique. We also provide as an adden-

dum that such Matsumoto-Amano normal forms exist in higher prime dimensions

as well, though we do not prove uniqueness.

In Chapter 4, we move to characterizing circuits which correspond to the ob-

vious subrings of C+T operators. We show that up to one ancilla, 2n× 2n unitaries

with entries in the rings D, D
[√

2
]
, D
[√

-2
]
, and D[i] correspond to circuits over

the gate set {X,CX,CCX} appended with analogues of the Hadamard gate and

an optional phase gate which both live in their respective rings. Encouraged by our

characterization of D[i] which up to a phase is equivalent to the C + CS gate set,

in Chapter 5 we develop a CS-count-optimal normal form and exact synthesis algo-

rithm for two-qubit circuits over this gate set, the first optimal synthesis algorithm

for a multi-qubit fault tolerant gate set. In Chapter 6, we show how this algorithm

can be used to find asymptotically optimal approximations for both Pauli-rotations

177

and generic two-qubit unitaries.

We would like to highlight that a version of our rewrite algorithm for single-

qutrit C+T operators has been implemented by Xiaoning Bian of Dalhousie Univer-

sity, which can be found on his homepage [126]. We also include in Appendix A the

text version of some Mathematica software which we have provided at our github

repository. This software provides tools for applying all of the algorithms described

in Chapters 5 and 6.

Looking forward, we hope that the work contained in this dissertation encour-

ages readers to continue pushing the limits of algorithms for quantum compiling.

Many techniques in classical compiling such as peephole optimization rely on op-

timal compiling for smaller circuits. Expanding our ability to optimally compile

circuits for few-qubit unitaries would be a boon to both near- and far-term applica-

tion. With the advent of quantum supremacy [11], we hope to see wider adoption of

these synthesis techniques to improve the circuits which our near-term devices use.

178

https://github.com/AndrewGlaudell/GaussSynth
https://github.com/AndrewGlaudell/GaussSynth

Appendix A: Software Package for the Clifford + Controlled-Phase

Gate Set

In this appendix, we supply the printed version of our software package avail-

able from our github repository. This package is suitable for performing both exact

and inexact synthesis of two-qubit Clifford+CS operators.

179

https://github.com/AndrewGlaudell/GaussSynth

GuassSynth.m -- The Two-Qubit
Clifford + CS Circuit Synthesis
Package
Written and Maintained by Andrew Glaudell

The GaussSynth.m package is a package for quantum compiling on
two qubits using the Clifford group and the Controlled-Phase gate
CS. The circuits which are exactly expressible over this gate set
constitute every 4x4 unitary matrix which can be written as a matrix
of Gaussian integers divided by some non-negative integer power of
2^(1/2) -- hence the package name. In this package, we supply a
number of functions for performing quantum circuit synthesis on
this gate set, both in the exact and approximate case. The
algorithms in this package are based off of the work of Andrew
Glaudell, Julien Ross, Matthew Amy, and Jake Taylor, and for details
related to how these algorithms were developed, I suggest reading
the articles [1-3] in the sources section below.

Package Details
Copyright © 2019 Andrew Glaudell

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

Printed by Wolfram Mathematica Student Edition

180

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Package Version: 1.0

Written for Mathematica Version: 12.0

History:
1.0 - Initial version, completed 11/4/2019

Keywords: Quantum Compiling, Quantum Circuit Synthesis, Clifford Group, Controlled Phase Gate,
Normal Forms, Exact Synthesis, Approximate Synthesis

Sources:
[1] Matt Amy, Andrew Glaudell, and Neil J. Ross. Number-theoretic characterizations of some restricted
clifford+t circuits. Upcoming publication, preprint available from arXiv:1908.06076, 2019.
[2] Andrew Glaudell, Neil J. Ross, and Jacob M. Taylor. Optimal two-qubit circuits for universal fault-
tolerant quantum computation. Upcoming publication, 2019.
[3] Andrew Glaudell. Inexact synthesis of pauli-rotations with the fault-tolerant clifford + controlled-
phase gate set. Upcoming publication, in preparation, 2019.

Warnings:
I have used a fair amount of input checking so that functions only accept inputs of the appropriate
form. This comes at the cost of some speed -- that being said, these checks cause constant overhead,
and so their performance impact is worth it to prevent some erroneous calculation from being carried
out. If you don't care about this input checking, one could relatively easily define their own functions
from my own internal ones to slightly speed up their performance.

Limitations:
This package is only intended for usage on two-qubit circuits. To perform circuit synthesis on larger
circuits, I suggest loading this package and using these functions as subroutines.

2 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

181

Discussion:
Rather than describe these algorithms in detail here, I differ to the sources [1-3] listed above or the
function descriptions.

Requirements:
None

BeginPackage["GaussSynth`"];

Function Usage
GaussSynth::usage = "GaussSynth is a package for quantum compiling for two-qubit circuits

Id::usage = "Id is the 4x4 Identity Matrix.";

X1::usage = "X1 is the unitary representation of the X⊗I gate.";

X2::usage = "X2 is the unitary representation of the I⊗X gate.";

Z1::usage = "Z1 is the unitary representation of the Z⊗I gate.";

Z2::usage = "Z2 is the unitary representation of the I⊗Z gate.";

W::usage = "W is the unitary representation of the primite 8th root of unity ω.";

H1::usage = "H1 is the unitary representation of the H⊗I gate.";

H2::usage = "H2 is the unitary representation of the I⊗H gate.";

S1::usage = "S1 is the unitary representation of the S⊗I gate.";

S2::usage = "S2 is the unitary representation of the I⊗S gate.";

CZ::usage = "CZ is the unitary representation of the CZ gate.";

CNOT12::usage = "CNOT12 is the unitary representation of the CNOT gate with control qubit

CNOT21::usage = "CNOT21 is the unitary representation of the CNOT gate with control qubit

EX::usage = "EX is the unitary representation of the SWAP (Exchange) gate.";

CS::usage = "CS is the unitary representation of the CS gate.";

U4ToSO6::usage = "U4ToSO6[U] maps the 4x4 unitary U to the equivalent SO(6) representation

IdSO6::usage = "Id is the 6x6 Identity Matrix.";

X1SO6::usage = "X1SO6 is the SO(6) representation of the X⊗I gate.";

X2SO6::usage = "X2SO6 is the SO(6) representation of the I⊗X gate.";

Z1SO6::usage = "Z1SO6 is the SO(6) representation of the Z⊗I gate.";

Z2SO6::usage = "Z2SO6 is the SO(6) representation of the I⊗Z gate.";

ΙSO6::usage = "ΙSO6 is the SO(6) representation of the complex phase I. As SU(4) is a double

we have \!\(*SuperscriptBox[\(ΙSO6\), \(2\)]\) = IdSO6.";

H1SO6::usage = "H1SO6 is the SO(6) representation of the H⊗I gate.";

H2SO6::usage = "H2SO6 is the SO(6) representation of the I⊗H gate.";

S1SO6::usage = "S1SO6 is the SO(6) representation of the S⊗I gate.";

S2SO6::usage = "S2SO6 is the SO(6) representation of the I⊗S gate.";

CZSO6::usage = "CZSO6 is the SO(6) representation of the CZ gate. Note that this gate is

by a primitive 8th root of unity \!\(*SuperscriptBox[\(ω\), \(†\)]\) before performing

CNOT12SO6::usage = "CNOT12SO6 is the SO(6) representation of the CNOT gate with control qubit

Note that this gate is not special unitary, and so we multiply by a primitive 8th root

before performing the transformation.";

CNOT21SO6::usage = "CNOT21SO6 is the SO(6) representation of the CNOT gate with control qubit

GaussSynth.m 3

Printed by Wolfram Mathematica Student Edition

182

Note that this gate is not special unitary, and so we multiply by aa primitive 8th root

before performing the transformation.";

EXSO6::usage = "EXSO6 is the SO(6) representation of the SWAP (Exchange) gate. Note that

and so we multiply by a primitive 8th root of unity \!\(*SuperscriptBox[\(ω\), \(†\

CSSO6::usage = "CSSO6 is the SO(6) representation of the CS gate. Note that this gate is

a primitive 16th root of unity \!\(*SuperscriptBox[\(ω\), \(\(-1\)/2\)]\) before performing

FromSequence::usage = "FromSequnce[str] reads in the string str and interprets that string

FromHexDec::usage = "FromHexDec[str] attempts to read in a string of a signed hexadecimal

The sign indicates whether the operator corresponds to using symmetric or asymmetric

the fifteen unique syllables. After the syllables comes the marker 00000 which is followed

CliffordQ::usage = "CliffordQ[U] returns True if U is a Clifford and False otherwise.";

CliffordSynth::usage = "CliffordSynth[U] gives the index number (in Hexidecimal) and string

which constitute the Clifford which can be input as a string, an element of U(4), an

RightCliffordSimilar::usage = "CliffordSimilarRight[U,V] Returns True if there is a Clifford

LeftCliffordSimilar::usage = "CliffordSimilarLeft[U,V] Returns True if there is a Clifford

GaussianQ::usage = "GaussianQ[U] is a Boolean function which checks if U corresponds to a

SyllableList::usage = "A list of 15 syllables of CS-count one which are not right-Clifford

Clifford C which conjugates CS as C.CS.\!\(*SuperscriptBox[\(C\), \(†\)]\). For each

4x4 Unitary representation, the operator's 6x6 SO(6) representation, and its name according

SyllableListAsymmetric::usage = "An alternative list of 15 syllables of CS-count one which

Each syllable is equivalent to C.CS for C a Clifford. For each syllable, we supply the

the operator's 6x6 SO(6) representation, and its name according to the generators in

NormIt::usage = "NormIt[U,options] takes as input a Gaussian Clifford + T operator U and

This normal form is output as a string of generators using the standard syllable list

The options for the \"OutputType\" are \"String\" or \"HexDec\", the options for the

and the options for \"UpToPhase\" are the booleans True and False. When either reading

following characters: \"W\", \"S1\", \"S2\", \"H1\", \"H2\", \"CZ\", \"EX\", \"X1\",

\"S1\" is the gate S1, and so on.";

FrobeniusDistance::usage = "FrobeniusDistance[U,V] computes the distance between U and V

PauliRotation::usage = "PauliRotation[φ,ϵ,Pauli] finds a unitary Gaussian Clifford + T operator

of the Pauli rotation \!\(*SuperscriptBox[\(e\), \(\(-iφ\)/2\\\ P\)]\) for the pauli

The Pauli can be one of the fifteen strings \"XI\", \"YI\", \"ZI\", \"IX\", \"IY\", \"

\"XZ\", \"YZ\", or \"ZZ\".";

PauliRotationSequence::usage = "PauliRotationSequence[φ,ϵ,Pauli,options] finds a unitary

of the Pauli rotation \!\(*SuperscriptBox[\(e\), \(\(-iφ\)/2\\\ P\)]\) for the pauli

The Pauli can be one of the fifteen strings \"XI\", \"YI\", \"ZI\", \"IX\", \"IY\", \"

\"XZ\", \"YZ\", or \"ZZ\". It then outputs a normalized sequence of Clifford + CS operators

\"String\" or \"HexDec\" and the options for the \"SyllableType\" are \"Normal\" or \"

PauliDecomposition::usage = "PauliDecomp[U] finds a list of 15 angle parameters \!\(*SubscriptBox

decomposition of the form \!\(*SubscriptBox[\(∏\), \(1 ≤ j ≤ 15\)]\)\!\(*SuperscriptBox

\(\(-*SubscriptBox[\(iφ\), \(j\)]\)/2\\\ *SubscriptBox[\(P\), \(j\)]\)]\) for the

Paulis \!\(*SubscriptBox[\(P\), \(J\)]\) is (ZI,XI,ZI,IZ,IX,IZ,XX,YY,ZZ,ZI,XI,ZI,IZ

ApproximateOp::usage = "Approximate[U,ϵ] finds an approximation within Frobenius Distance

4 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

183

If U is an element of U(4), the result is a U(4) representation of a Clifford + CS circuit

representation of a Clifford + CS circuit. Note that the Frobenius distance between U

ApproximateSequence::usage = "ApproximateSequence[U,ϵ,options] finds a normalized sequence

(in the Unitary representation and up to an irrelevant phase) for the input U. U may

string unless otherwise specified in the options. The options for the \"OutputType\"

\"SyllableType\" are \"Normal\" or \"Asymmetric\", and the options for \"IfGaussianDoExact

Possible Errors
General::invldopt = "Option `2` for function `1` received invalid value `3`";

U4ToSO6::notunitary = "The argument must be a 4x4 unitary matrix.";

FromSequence::notstring = "You have not entered a string.";

FromList::notagate = "The string `1` is not one of \"W\", \"S1\", \"S2\", \"H1\", \"H2\",

You may have forgotten a space between gate names or used a name for a gate which is

FromHexDec::invalidnumber = "The string `1` is not a valid hexadecimal representation. Make

seperating the syllables from the Clifford. Otherwise, ensure the Clifford has an index

before being written in hexadecimal representation, and that your syllables only take

CliffordQ::notacircuit = "You have not entered a string of operators, a valid hexadecimal

CliffordSynth::notaclifford = "Your input is not a Clifford operator in string form, a valid

GaussianQ::notacircuit = "You have not entered a string of operators, a valid hexadecimal

NormIt::badopt = "The option `1` is not valid for `2`.";

NormIt::notacircuit = "You have not entered a string of operators, a valid hexadecimal, an

FrobeniusDistance::notequidimensionalmatrices = "Your inputs are not two matrices of equal

CandidateFinder::notreals = "Your inputs are not two real numbers";

PauliRotation::notreals = "Your input does not include two real numbers";

PauliRotation::invldstring = "Your input does not include one string from the set of \"XI

\"YX\", \"ZX\", \"XY\", \"YY\", \"ZY\", \"XZ\", \"YZ\", or \"ZZ\".";

PauliDecomposition::notanoperator = "Your input is neither an element of U(4) or SO(6) and

ApproximateOp::notreal = "Your error tolerance is not a real number.";

ApproximateOp::notanoperator = "Your input is neither an element of U(4) or SO(6) and so

Begin["`Private`"];

Function Definitions

Functions for option checking

These functions will be used to check options for functions which accept them. For each such function,
we must define a test[f,op] function for a particular option type op of function f. Credit for this code
snippet goes to Mr. Wizard in the Stack Overflow post https://mathematica.stackexchange.com/ques-
tions/116623.

GaussSynth.m 5

Printed by Wolfram Mathematica Student Edition

184

optsMsg[f_][op_, val_] :=

test[f, op][val] || Message[General::invldopt, f, op, val];

Attributes[optsCheck] = {HoldFirst};

optsCheck @ head_[___, opts : OptionsPattern[]] :=

And @@ optsMsg[head] @@@ FilterRules[{opts}, Options @ head];

Constants and Single-Qubit operators

For internal use only.

ω = 1+ISqrt[2];

ζ = ExpI*Pi8;

s = DiagonalMatrix[{1,I}];

h = 1Sqrt[2]*{{1,1},{1,-1}};

x = PauliMatrix[1];

z = PauliMatrix[3];

Unitary Representations of Two-qubit Clifford + CS operators

These operators are exported to the user as 4x4 matrices in the standard Mathematica format.

6 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

185

Id = IdentityMatrix[4];

W = ω*Id;

S1 = KroneckerProduct[s,IdentityMatrix[2]];

S2 = KroneckerProduct[IdentityMatrix[2],s];

H1 = KroneckerProduct[h,IdentityMatrix[2]];

H2 = KroneckerProduct[IdentityMatrix[2],h];

CZ = DiagonalMatrix[{1,1,1,-1}];

CNOT12 = {

{1,0,0,0},

{0,1,0,0},

{0,0,0,1},

{0,0,1,0}

};

CNOT21 = {

{1,0,0,0},

{0,0,0,1},

{0,0,1,0},

{0,1,0,0}

};

EX = {

{1,0,0,0},

{0,0,1,0},

{0,1,0,0},

{0,0,0,1}

};

CS = DiagonalMatrix[{1,1,1,I}];

X1 = KroneckerProduct[x,IdentityMatrix[2]];

X2 = KroneckerProduct[IdentityMatrix[2],x];

Z1 = KroneckerProduct[z,IdentityMatrix[2]];

Z2 = KroneckerProduct[IdentityMatrix[2],z];

Checks For U(4) and SO(6)

These Boolean functions determine whether an operator is an element of U(4) or SO(6), respectively.

U4Q[U_]:= UnitaryMatrixQ[U] && Dimensions[U] == {4,4};

SO6Q[O_] := OrthogonalMatrixQ[O] && Dimensions[O] == {6,6} && Det[O] == 1;

The SU(4)≅SO(6) Isomorphism

These definitions and functions allow one to compute the SO(6) representation of an element of U(4)
(up to a phase).

Rules for Inner Products of Wedge Products

Defined using the unassigned Mathematica symbols of ⋀, 〈, and 〉.

GaussSynth.m 7

Printed by Wolfram Mathematica Student Edition

186

〈a_,O_,b_*c_〉:=b*〈a,O,c〉;

〈a_*b_,O_,c_〉 := Conjugate[a]*〈b,O,c〉;

〈a_+b_,O_,c_〉:=〈a,O,c〉+〈b,O,c〉;

〈a_,O_,b_+c_〉:=〈a,O,b〉+〈a,O,c〉;

〈x_⋀y_,O_,u_⋀v_〉 := Conjugate[x].O.u*Conjugate[y].O.v - Conjugate[x].O.v*Conjugate

Orthonormal Basis for Subscript[ℂ, 6]

This basis is such that computing the above inner products for an element of U(4,ℂ) will produce an
element of SO(6,ℝ). Moreover, the representations for Clifford + CS operators are easy to work with in
this basis.

Basis6 =

ISqrt[2]*UnitVector[4,1]⋀UnitVector[4,2] - UnitVector[4,3]⋀UnitVector[4,4],

1Sqrt[2]*UnitVector[4,1]⋀UnitVector[4,2] + UnitVector[4,3]⋀UnitVector[4,4],

ISqrt[2]*UnitVector[4,2]⋀UnitVector[4,3] - UnitVector[4,1]⋀UnitVector[4,4],

1Sqrt[2]*UnitVector[4,2]⋀UnitVector[4,4] + UnitVector[4,3]⋀UnitVector[4,1],

ISqrt[2]*UnitVector[4,2]⋀UnitVector[4,4] - UnitVector[4,3]⋀UnitVector[4,1],

1Sqrt[2]*UnitVector[4,2]⋀UnitVector[4,3] + UnitVector[4,1]⋀UnitVector[4,4]

;

Calculating the SO(6) Representation for an element of SU(4) (and from U(4) up to
a phase)

Functions for mapping elements of SU(4) to SO(6) and U(4) to SO(6) (by converting that element of U(4)
to an element of SU(4)).

SU4ToSO6[U_] := Table[Simplify[〈Basis6[[i]],U,Basis6[[j]]〉],{i,1,6},{j,1,6}];

U4ToSO6[U_/;U4Q[U]] := SU4ToSO61Det[U]^14*U;

U4ToSO6[U_] :=

Message[U4ToSO6::notunitary];

$Failed

;

SO(6) Representations of Two-qubit Clifford + CS operators

Calculated using our transformations. These operators are exported to the user as 6x6 matrices in the
standard Mathematica format. Note that we have to multiply by overall phases to ensure that the
transformation uses an element of SU(4).

8 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

187

IdSO6 = SU4ToSO6[Id];

ΙSO6 = SU4ToSO6[W.W];

H1SO6 = SU4ToSO6[H1];

H2SO6 = SU4ToSO6[H2];

S1SO6 = SU4ToSO6ω^-1*S1;

S2SO6 = SU4ToSO6ω^-1*S2;

CZSO6 = SU4ToSO6ω^-1*CZ;

CNOT12SO6 = SU4ToSO6ω^-1*CNOT12;

CNOT21SO6 = SU4ToSO6ω^-1*CNOT21;

EXSO6 = SU4ToSO6ω^-3*EX;

CSSO6 = SU4ToSO6ζ^-1*CS;

X1SO6 = SU4ToSO6[X1];

X2SO6 = SU4ToSO6[X2];

Z1SO6 = SU4ToSO6[Z1];

Z2SO6 = SU4ToSO6[Z2];

Custom Representations of SO(6) Clifford + CS operators

Our synthesis algorithms will use a custom data type for the SO(6) representation of a Clifford + CS
operator. The basic data structure of this special representation is as follows:

{k,M} := 2^(-k/2) · M

This allows easy tracking of the lde. They are packed in SparseArrays to help make things even a little
faster, as every Clifford is just a permutation matrix. These representations are for internal use only.

Switching between the standard representation for a 6x6 matrix and a
representation specifically for Clifford + CS operators.

Functions for converting to and from the special representation.

SO6ToSpecialRep[M_] := Module{LDE,IntegerMat},

LDE = Max[Map[Simplify[Log[Sqrt[2],Denominator[#]]]&,Flatten[Simplify[M]]]];

IntegerMat = SimplifySqrt[2]^LDE*M;

{LDE,SparseArray[IntegerMat]}

;

SpecialRepToSO6[{k_,M_}] := Simplify1Sqrt[2]^k*Normal[M];

GaussSynth.m 9

Printed by Wolfram Mathematica Student Edition

188

Special Representations for SO(6) Clifford + CS operators

IdSp = SO6ToSpecialRep[IdSO6];

ΙSp = SO6ToSpecialRep[ΙSO6];

H1Sp = SO6ToSpecialRep[H1SO6];

H2Sp = SO6ToSpecialRep[H2SO6];

S1Sp = SO6ToSpecialRep[S1SO6];

S2Sp = SO6ToSpecialRep[S2SO6];

CZSp = SO6ToSpecialRep[CZSO6];

CNOT12Sp = SO6ToSpecialRep[CNOT12SO6];

CNOT21Sp = SO6ToSpecialRep[CNOT21SO6];

EXSp = SO6ToSpecialRep[EXSO6];

CSSp = SO6ToSpecialRep[CSSO6];

X1Sp = SO6ToSpecialRep[X1SO6];

X2Sp = SO6ToSpecialRep[X2SO6];

Z1Sp = SO6ToSpecialRep[Z1SO6];

Z2Sp = SO6ToSpecialRep[Z2SO6];

Basic Matrix Operations for the Special Representation

These internal functions are used to reduce the denominator exponent to the lde, multiply operators in
the special representation, and invert the special representation.

KReduceOnce[{k_,a_}]:=IfAllTrue[a,EvenQ,2] && k>1,k - 2,a2,{k,a};

KReduce[o_]:=FixedPoint[KReduceOnce,o];

Dot2Sp[{k1_,a1_},{k2_,a2_}]:= KReduce[{k1 + k2,a1.a2}];

DotSp[x__]:=Fold[Dot2Sp,IdSp,{x}];

InvSp[{k_,a_}]:={k,Transpose[a]};

Functions for Residues Modulo 2 and Finding Paired Matrix Rows

These functions are used for finding paired rows in operators in the special representation.

PatternMats[{k_,a_}] := Mod[a,2];

MatrixRowPairs[list_] := GatherBy[

Range@Length[Normal[list]],

Normal[list][[#]]&

];

RowPairs[x_] := Sort@MatrixRowPairs@PatternMats@x

String Reading

Functions for reading in a string of operators. The string is always read in as an element of U(4).

10 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

189

FromSequence[str_String] := Module[{strlist},

strlist = StringSplit[str];

FromList[strlist]

];

FromSequence[x_] :=

Message[FromSequence::notstring];

$Failed

;

FromList[{}] = Id;

FromList[{"W"}] = W;

FromList[{"S1"}] = S1;

FromList[{"S2"}] = S2;

FromList[{"H1"}] = H1;

FromList[{"H2"}] = H2;

FromList[{"CZ"}] = CZ;

FromList[{"CS"}] = CS;

FromList[{"EX"}] = EX;

FromList[{"X1"}] = X1;

FromList[{"X2"}] = X2;

FromList[{"Z1"}] = Z1;

FromList[{"Z2"}] = Z2;

FromList[{str_}]:=

Message[FromList::notagate,str];

$Failed

;

FromList[{h_,t__}] := FromList[{h}] . FromList[{t}];

Hexadecimal Representations

We shall use strings of signed hexadecimal integers to represent Clifford + CS operators. This form is
much more compact than, for example, the string form of an operator. The string must be of the follow-
ing form:

\"(ϵ | -)(1-9 | a-f)* 00000 C\"

where C is the hexadecimal representation of an integer from 1 to 92160.

ValidHexDecQ[num_String] := Module{seperator,typenum,syllabletype,syllablescliffordok,split

seperator = StringCount[num,"00000"] == 1;

typenum = StringCount[num,"-"];

syllabletype = typenum == 0 || typenum == 1 && StringStartsQ[num,"-"];

syllablescliffordok = If

seperator && syllabletype,

split = StringSplit[num,{"00000","-"}];

{syllables,clifford} = If[Length[split] > 1,split,{"",split[[1]]}];

syllablescharacterlist = Union[Characters[syllables]];

syllablesok = SubsetQ[{"1","2","3","4","5","6","7","8","9","a","b","c","d","e

GaussSynth.m 11

Printed by Wolfram Mathematica Student Edition

190

cliffordcharacterlist = Union[Characters[clifford]];

cliffordpossible = StringLength[clifford] <= 5 && SubsetQ[{"0","1","2","3"

cliffordok = If[

cliffordpossible,

1 <= FromDigits[clifford,16] <= 92160,

False

];

syllablesok && cliffordok,

False

;

syllablescliffordok

;

ValidHexDecQ[U_] := False

PhaseSet = {Id,MatrixPower[W,4],W,MatrixPower[W,5]};

L1Set = {Id,H1,S1.H1.MatrixPower[W,7]};

L2Set = {Id,H2,S2.H2.MatrixPower[W,7]};

CZSet = {Id,CZ.MatrixPower[W,7]};

S1Set = {Id,S1.MatrixPower[W,7]};

P1Set = {Id,X1,X1.Z1,Z1};

S2Set = {Id,S2.MatrixPower[W,7]};

P2Set = {Id,X2,X2.Z2,Z2};

SWAPSet = {Id,EX.MatrixPower[W,5]};

ΙSet = {Id,MatrixPower[W,2]};

CliffordFromNumber[cliffnum_] := Module{digits,cz,l1,l2,index},

digits = PadLeft[IntegerDigits[cliffnum-1,MixedRadix[{4,10,3,3,2,4,2,4,2,2}]],10];

cz = Unitize[digits[[2]]];

l2 = Mod[digits[[2]]-cz,3];

l1 = digits[[2]]-l2-cz3;

index = Join[{digits[[1]],l1,l2,cz},digits[[3;;-1]]] + 1;

PhaseSet[[index[[1]]]] . L1Set[[index[[2]]]] . L2Set[[index[[3]]]] . CZSet[[index[

L1Set[[index[[5]]]] . L2Set[[index[[6]]]] . S1Set[[index[[7]]]] . P1Set[[index

S2Set[[index[[9]]]] . P2Set[[index[[10]]]] . SWAPSet[[index[[11]]]] . ΙSet[[index

;

FromHexDec[str_String/;ValidHexDecQ[str]] := Module{syllablelist,split,syllablestr,cliffstr

syllablelist = If[StringStartsQ[str,"-"],SyllableListAsymmetric[[All,1]],SyllableList

split = StringSplit[str,{"00000","-"}];

{syllablestr,cliffstr} = If[Length[split] > 1,split,{"",split[[1]]}];

cliffnum = FromDigits[cliffstr,16];

cliff = CliffordFromNumber[cliffnum];

syllables = Map[syllablelist[[FromDigits[#,16]]]&,Characters[syllablestr]];

SimplifyDot @@ Append[syllables,cliff]

;

FromHexDec[str_] :=

Message[FromHexDec::invalidnumber,str];

$Failed

;

12 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

191

The Two-Qubit Clifford Group

Here we develop some basic functions for the two-qubit Clifford group.

Identifying if an operator is a Clifford and if two operators are Clifford-similar

Boolean functions for checking if an operator is a Clifford or if two operators are Clifford-similar.

CliffordQ[U_/;U4Q[U]] := Det[U]^2 == 1 && AllTrue[Flatten[U4ToSO6[U]],IntegerQ];

CliffordQ[U_/;SO6Q[U]] := AllTrue[Flatten[U],IntegerQ];

CliffordQ[U_String/;ValidHexDecQ[U]] := CliffordQ[FromHexDec[U]];

CliffordQ[U_String] := CliffordQ[FromSequence[U]];

CliffordQ[U_] :=

Message[CliffordQ::notacircuit];

$Failed

;

RightCliffordSimilar[U_String/;ValidHexDecQ[U],V_String/;ValidHexDecQ[V]] := RightCliffordSimilar

RightCliffordSimilar[U_String,V_String] := RightCliffordSimilar[FromSequence[U],FromSequence

RightCliffordSimilar[U_,V_] := CliffordQ[ConjugateTranspose[U].V];

LeftCliffordSimilar[U_String/;ValidHexDecQ[U],V_String/;ValidHexDecQ[V]] := LeftCliffordSimilar

LeftCliffordSimilar[U_String,V_String] := LeftCliffordSimilar[FromSequence[U],FromSequence

LeftCliffordSimilar[U_,V_] := CliffordQ[V.ConjugateTranspose[U]];

Synthesis of Clifford Circuits (with at most 1 CZ gate and 1 SWAP gate)

Rather than carry around an explicit lookup table with 92160 elements in the U(4) case and 23040
elements in the SO(6) case, we instead will use a synthesis algorithm based on the special representa-
tion; this takes advantage of the sparsity of Cliffords in this representation. We implicitly define our
regular Clifford synthesis algorithm, CliffordSynth, in terms of this other algorithm, to be defined below.

GaussSynth.m 13

Printed by Wolfram Mathematica Student Edition

192

PhaseFixU4[{str_,power_,SUcliffnum_},U_] := Module{unitary,phase,Wpower,diff,Wcosetnumber

unitary = FromSequence[str];

phase = SimplifyU. ConjugateTranspose[unitary][[1,1]];

Wpower = ModLog1+ISqrt[2],phase,8;

diff = Mod[Wpower - power,8];

Wcosetnumber = Which

diff == 0 || diff == 2,0,

diff == 4 || diff == 6,1,

diff == 1 || diff == 3,2,

True,3

;

{IntegerString[23040*Wcosetnumber + FromDigits[SUcliffnum,16],16],str<>StringRepeat[

;

PhaseFixSO6[{str_,power_,SUcliffnum_}] := {SUcliffnum,str<>StringRepeat[" W",power]};

CliffordSynth[U_String/;ValidHexDecQ[U]] := Module[{unitary},

unitary = FromSequence[U];

CliffordSynth[unitary]

];

CliffordSynth[U_String] := Module[{unitary},

unitary = FromSequence[U];

CliffordSynth[unitary]

];

CliffordSynthU_/;U4Q[U] && CliffordQ[U] := Module[{orthogonal,synth},

orthogonal = U4ToSO6[U];

synth = CliffordSynthSp[{0,SparseArray[orthogonal]}];

PhaseFixU4[synth,U]

];

CliffordSynth[U_/;CliffordQ[U]] := PhaseFixSO6[CliffordSynthSp[{0,SparseArray[U]}]];

CliffordSynth[U_] :=

Message[CliffordSynth::notaclifford];

$Failed

;

Clifford Group in the Special representation

Explicit CliffordSynthSp algorithm. We perform the synthesis by decomposing an element of the signed
permutation group in terms of a generating set which is constructed from basic Clifford operators in
the SO(6) representation.

L1Cosets = {

{IdSp,"",0,0},

{H1Sp,"H1 ",0,1},

{DotSp[S1Sp,H1Sp],"S1 H1 ",7,2}

};

L2Cosets = {

{IdSp,"",0,0},

{H2Sp,"H2 ",0,1},

{DotSp[S2Sp,H2Sp],"S2 H2 ",7,2}

14 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

193

};

CZSets = {

{IdSp,"",0,0},

{CZSp,"CZ ",7,1}

};

S1Sets = {

{IdSp,"",0,0},

{S1Sp,"S1 ",7,1},

};

Pauli1Sets = {

{IdSp,"",0,0},

{X1Sp,"X1 ",0,1},

{DotSp[X1Sp,Z1Sp],"X1 Z1 ",0,2},

{Z1Sp,"Z1 ",0,3}

};

S2Sets = {

{IdSp,"",0,0},

{S2Sp,"S2 ",7,1},

};

Pauli2Sets = {

{IdSp,"",0,0},

{X2Sp,"X2 ",0,1},

{DotSp[X2Sp,Z2Sp],"X2 Z2 ",0,2},

{Z2Sp,"Z2 ",0,3}

};

SwapSets = {

{IdSp,"",0,0},

{EXSp,"EX ",5,1}

};

ΙSets = {

{IdSp,"",0,0},

{ΙSp,"",2,1}

};

CliffordQSp[U_] := Module{k,M},

{k,M} = KReduce[U];

k == 0 && OrthogonalMatrixQ[M] && Det[M] == 1

;

CliffordSynthSp[{_,M_}] := Module

{

CliffordList,SwapTest,MUnSwapped,UpperLeft,LowerRight,RemovedLeftCosets,CZRows,RemovedCZSet

UpperLeftCol,LowerRightCol,RemovedLeftCosetsNew,S1Test,S2Test,RemovedSSets,d1,d2,

RemovedPauli1Sets,d3new,d4,d5,d6,RemovedPauli2Sets,ΙTest,str,phase,list,firstdigit

},

CliffordList = ConstantArray[0,11];

SwapTest = Total[Abs[M[[1;;3,1;;3]]],2];

CliffordList[[10]] = If[SwapTest > 1,SwapSets[[1]],SwapSets[[2]]];

MUnSwapped = M.Transpose[CliffordList[[10,1,2]]];

GaussSynth.m 15

Printed by Wolfram Mathematica Student Edition

194

UpperLeft = Total[Abs[MUnSwapped[[1;;3,1;;3]]],{2}];

LowerRight = Total[Abs[MUnSwapped[[4;;6,4;;6]]],{2}];

CliffordList[[1]] = Which[

UpperLeft == {0,1,1},L1Cosets[[2]],

UpperLeft == {1,0,1},L1Cosets[[3]],

True,L1Cosets[[1]]

];

CliffordList[[2]] = Which[

LowerRight == {0,1,1},L2Cosets[[2]],

LowerRight == {1,0,1},L2Cosets[[3]],

True,L2Cosets[[1]]

];

RemovedLeftCosets = Transpose[CliffordList[[1,1,2]].CliffordList[[2,1,2]]].MUnSwapped

CZRows = Total[Abs[RemovedLeftCosets[[3,1;;3]]],2];

CliffordList[[3]] = If[CZRows == 1,CZSets[[1]],CZSets[[2]]];

RemovedCZSet = Transpose[CliffordList[[3,1,2]]].RemovedLeftCosets;

UpperLeftCol = Abs[RemovedCZSet[[1;;3,3]]];

LowerRightCol = Abs[RemovedCZSet[[4;;6,6]]];

CliffordList[[4]] = Which[

UpperLeftCol == {0,0,1},L1Cosets[[1]],

UpperLeftCol == {0,1,0},L1Cosets[[3]],

True,L1Cosets[[2]]

];

CliffordList[[5]] = Which[

LowerRightCol == {0,0,1},L2Cosets[[1]],

LowerRightCol == {0,1,0},L2Cosets[[3]],

True,L2Cosets[[2]]

];

RemovedLeftCosetsNew = Transpose[CliffordList[[4,1,2]].CliffordList[[5,1,2]]].RemovedCZSet

S1Test = Abs[RemovedLeftCosetsNew[[1,1]]];

S2Test = Abs[RemovedLeftCosetsNew[[4,4]]];

CliffordList[[6]] = If[S1Test == 1,S1Sets[[1]],S1Sets[[2]]];

CliffordList[[8]] = If[S2Test == 1,S2Sets[[1]],S2Sets[[2]]];

RemovedSSets = Transpose[CliffordList[[6,1,2]].CliffordList[[8,1,2]]].RemovedLeftCosetsNew

{d1,d2,d3} = Diagonal[RemovedSSets[[1;;3,1;;3]]];

CliffordList[[7]] = Which

d1 == d2 && d2 == d3,Pauli1Sets[[1]],

d1 != d2 && d2 == d3,Pauli1Sets[[2]],

d1 != d2 && d2 != d3,Pauli1Sets[[3]],

True,Pauli1Sets[[4]]

;

RemovedPauli1Sets = Transpose[CliffordList[[7,1,2]]].RemovedSSets;

{d3new,d4,d5,d6} = Diagonal[RemovedPauli1Sets[[3;;6,3;;6]]];

CliffordList[[9]] = Which

d4 == d5 && d5 == d6 && d3new*d4 == 1,Pauli2Sets[[1]],

16 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

195

d4 != d5 && d5 == d6,Pauli2Sets[[2]],

d4 != d5 && d5 != d6,Pauli2Sets[[3]],

True,Pauli2Sets[[4]]

;

RemovedPauli2Sets = Transpose[CliffordList[[9,1,2]]].RemovedPauli1Sets;

ΙTest = RemovedPauli2Sets[[1,1]];

CliffordList[[11]] = If[ΙTest == 1,ΙSets[[1]],ΙSets[[2]]];

{str,phase,list} = Fold[{

#1[[1]]<>#2[[2]],

Mod[#1[[2]]+#2[[3]],8],

Append[#1[[3]],#2[[4]]]

}&,

{"",0,{}},

CliffordList

];

firstdigit = list[[3]] * list[[1]]*3 + list[[2]] + 1;

cliffordnumber = FromDigits[Prepend[list[[4;;-1]],firstdigit],MixedRadix[{10,3,3,2,4

{str,phase,IntegerString[cliffordnumber,16]}

;

The Two-Qubit Clifford + CS Group

Here we develop some basic constructors for Clifford + CS circuits. We also provide a function for
checking if an operator corresponds to a Clifford + CS circuit.

Check If an Operator Is a Gaussian Clifford + T Matrix

We define a function for determining if an operator is a representation for a Gaussian Clifford + T
matrix, i.e. a Clifford + CS operator.

GaussSynth.m 17

Printed by Wolfram Mathematica Student Edition

196

DyadicQ[n_] := Module[{numerator,denominator},

{numerator,denominator} = NumeratorDenominator[n];

IntegerQ[numerator] && IntegerQ[Log2[denominator]]

];

GaussianDyadicQ[n_]:= AllTrue[ReIm[n],DyadicQ];

GaussianQ[U_/;U4Q[U]] := Module[{UGaussDyadicQ,UWGuassDyadicQ},

UGaussDyadicQ = AllTrue[Flatten[U],GaussianDyadicQ];

UWGuassDyadicQ = AllTrue[Flatten[W.U],GaussianDyadicQ];

UGaussDyadicQ || UWGuassDyadicQ

];

GaussianQ[U_/;SO6Q[U]] := Module{sp},

sp = SO6ToSpecialRep[U];

Det[U] == 1 && IntegerQ[sp[[1]]] && AllTrue[Flatten[sp[[2]]],IntegerQ]

;

GaussianQ[U_/;ValidHexDecQ[U]] := True;

GaussianQ[U_String] := GaussianQ[FromSequence[U]];

GaussianQ[U_] := Message[GaussianQ::notacircuit];

$Failed

;

Syllable Lists

For the exported versions:

18 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

197

PrePostfixList = {

{H1.H2,H1SO6.H2SO6,"H1 H2 ","H2 H1 "},

{S1.H1.S2.H2,S1SO6.H1SO6.S2SO6.H2SO6,"S1 H1 S2 H2 ","H1 S1 S1 S1 H2 S2 S2 S2 "},

{Id,IdSO6,"",""},

{S1.H1,S1SO6.H1SO6,"S1 H1 ","H1 S1 S1 S1"},

{S2.H2,S2SO6.H2SO6,"S2 H2 ","H2 S2 S2 S2 "},

{H2,H2SO6,"H2 ","H2 "},

{H1,H1SO6,"H1 ","H1 "},

{H1.S2.H2,H1SO6.S2SO6.H2SO6,"H1 S2 H2 ","H1 H2 S2 S2 S2"},

{S1.H1.H2,S1SO6.H1SO6.H2SO6,"S1 H1 H2 ","H1 S1 S1 S1 H2"},

{CNOT12.H1,CNOT12SO6.H1SO6,"H2 CZ H1 H2 ","H1 H2 CZ H2"},

{CZ.S1.H1.S2.H2,CZSO6.S1SO6.H1SO6.S2SO6.H2SO6,"CZ S1 H1 S2 H2 ","H1 S1 S1 S1 H2 S2 S2

{CZ.H1.H2,CZSO6.H1SO6.H2SO6,"CZ H1 H2 ","H1 H2 CZ "},

{CNOT12.S1.H1,CNOT12SO6.S1SO6.H1SO6,"H2 CZ S1 H1 H2 ","H1 S1 S1 S1 H2 CZ H2"},

{CZ.S1.H1.H2,CZSO6.S1SO6.H1SO6.H2SO6,"CZ S1 H1 H2 ","H1 S1 S1 S1 H2 CZ"},

{CZ.H1.S2.H2,CZSO6.H1SO6.S2SO6.H2SO6,"CZ H1 S2 H2 ","H1 H2 S2 S2 S2 CZ"}

};

SyllableList = Map[

{#[[1]].CS.ConjugateTranspose[#[[1]]],#[[2]].CSSO6.Transpose[#[[2]]],#[[3]]<>"CS "

PrePostfixList

];

SyllableListAsymmetric = Map[

{#[[1]].CS,#[[2]].CSSO6,#[[3]]<>"CS "}&,

PrePostfixList

];

And the internal data structure:

SyllableListSp = MapIndexed[

{SO6ToSpecialRep[#1[[2]]],#1[[3]],IntegerString[#2,16]}&,

SyllableList

];

SyllableListAsymmetricSp = MapIndexed[

{SO6ToSpecialRep[#1[[2]]],#1[[3]],IntegerString[#2,16]}&,

SyllableListAsymmetric

];

Normalization

In this section we develop a function for normalizing a circuit in any of our representations. This algo-
rithm is described in detail in [2].

Earliest Generator Ordering and associated row pairings

We develop here an association which matches up each syllable to their row pairings under EGO.

GaussSynth.m 19

Printed by Wolfram Mathematica Student Edition

198

TwoFourPaired = Map[

{#,Complement[Range[1,6],#]}&,

Subsets[Range[1,6],{4}]

];

TwoTwoTwoPaired = Flatten[Map[

Table[{#[[1]],{#[[2,1]],#[[2,k]]},Complement[#[[2]],{#[[2,1]],#[[2,k]]}]},{k,2,4}

Table[{{1,j},Complement[Range[1,6],{1,j}]},{j,2,6}]

],1];

PairList = Map[Sort,Join[TwoTwoTwoPaired,TwoFourPaired]];

MatchingPairings[list_] := {

list,

{list[[3]],Union[list[[1]],list[[2]]]},

{list[[2]],Union[list[[1]],list[[3]]]},

{list[[1]],Union[list[[2]],list[[3]]]}

};

PossibleSyllableListPairings = Map[

MatchingPairings[RowPairs[First[#]]]&,

SyllableListSp

];

SyllableListPairings = Map[

-> First[FirstPosition[PossibleSyllableListPairings,#]]&,

PairList

];

PairingKey = Association @@ SyllableListPairings;

Finding a leftmost syllable and normalizing in the Special representation

We develop separate synthesis algorithms here based on whether we want to synthesize a circuit using
the symmetric or asymmetric syllables.

20 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

199

LeftmostSyllable[U_] := SyllableListSp[[PairingKey[RowPairs[U]]]];

RemoveLeftmost[{{k_,M_},str_,numberstr_}] := Module[{leftmost,clifford},

Which[

k > 0,

leftmost = LeftmostSyllable[{k,M}];

{Dot2Sp[InvSp[leftmost[[1]]],{k,M}],str<>leftmost[[2]],numberstr<>leftmost[

k == 0,

clifford = CliffordSynthSp[{k,M}];

{{-1,SparseArray[ConstantArray[0,{6,6}]]},str<>clifford[[1]]<>StringRepeat[

True,

{{k,M},str,numberstr}

]

];

LeftmostSyllableAsymmetric[U_] := SyllableListAsymmetricSp[[PairingKey[RowPairs[U]]]];

RemoveLeftmostAsymmetric[{{k_,M_},str_,numberstr_}] := Module[{leftmost,clifford},

Which[

k > 0,

leftmost = LeftmostSyllableAsymmetric[{k,M}];

{Dot2Sp[InvSp[leftmost[[1]]],{k,M}],str<>leftmost[[2]],numberstr<>leftmost[

k == 0,

clifford = CliffordSynthSp[{k,M}];

{{-1,SparseArray[ConstantArray[0,{6,6}]]},str<>clifford[[1]]<>StringRepeat[

True,

{{k,M},str,numberstr}

]

];

test[NormItSp,"SyllableType"] := MemberQ[{"Normal","Asymmetric"},#]&;

Options[NormItSp] = {"SyllableType" -> "Normal"};

NormItSp[U_,OptionsPattern[]]?optsCheck := Module[{type},

type = If[OptionValue["SyllableType"] == "Normal",RemoveLeftmost,RemoveLeftmostAsymmetric

FixedPoint[type,{U,"",If[OptionValue["SyllableType"] == "Normal","","-"]}][[2;;3]]

];

Normalizing from a string, a hexadecimal, U(4), or SO(6).

We provide the function NormIt for normalizing operators in any of our forms.

GaussSynth.m 21

Printed by Wolfram Mathematica Student Edition

200

Options[FixPhase] = {"UpToPhase" -> True};

FixPhase[{str_,numberstr_},U_,OptionsPattern[]] := Module[{syllablesplit,syllablenum,syllablepart

If[

OptionValue["UpToPhase"] == True,

{str,numberstr},

syllablesplit = StringSplit[numberstr,"00000"];

syllablenum = If[Length[syllablesplit] > 1, syllablesplit[[1]],""];

syllablepart = FromHexDec[syllablenum<>"000001"];

clifford = Simplify[ConjugateTranspose[syllablepart] . U];

{cliffnum,cliffstr} = CliffordSynth[clifford];

numberstrfixed = syllablenum<>"00000"<>cliffnum;

nophasestr = StringDelete[str,"W "];

phasecount = StringCount[cliffstr,"W "];

strfixed = nophasestr<>StringRepeat["W ",phasecount];

{strfixed,numberstrfixed}

]

];

test[NormIt,"SyllableType"] := MemberQ[{"Normal","Asymmetric"},#]&;

test[NormIt,"OutputType"] := MemberQ[{"String","HexDec"},#]&;

test[NormIt,"UpToPhase"] := BooleanQ;

Options[NormIt] = {"OutputType" -> "String","SyllableType" -> "Normal","UpToPhase" -> True

NormItU_/;GaussianQ[U] && U4Q[U],OptionsPattern[]?optsCheck := Module[{index},

index = If[OptionValue["OutputType"] == "String",1,2];

FixPhase[NormItSp[SO6ToSpecialRep[U4ToSO6[U]],"SyllableType" -> OptionValue["SyllableType

];

NormItU_/;GaussianQ[U] && SO6Q[U],OptionsPattern[]?optsCheck := Module[{index},

index = If[OptionValue["OutputType"] == "String",1,2];

NormItSp[SO6ToSpecialRep[U],"SyllableType" -> OptionValue["SyllableType"]][[index]]

];

NormIt[hexdec_String/;ValidHexDecQ[hexdec],opts:OptionsPattern[]] := NormIt[FromHexDec[hexdec

NormIt[str_String,opts:OptionsPattern[]] := NormIt[FromSequence[str],opts];

NormIt[U_] :=

Message[NormIt::notacircuit,U];

$Failed

;

ϵ-Approximating Pauli Rotations

This section describes algorithms used for finding approximations to Pauli Rotations

Frobenius Distance of Matrices

Computes the Frobenius distance between two matrices A and B (i.e. the Frobenius norm of the differ-
ence between A and B)

22 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

201

FrobeniusDistance[A_/;MatrixQ[A],B_/;MatrixQ[B]]/;Dimensions[A] == Dimensions[B] := Simplify

FrobeniusDistance[_,_] :=

Message[FrobeniusDistance::notequidimensionalmatrices];

$Failed

;

Continued fractions and affine transformation

We describe a scheme for finding an appropriate affine transformation.

NextIterate[{aN_,rN_,pN_,qN_,pNm1_,qNm1_}] := Module{aNp1},

aNp1 = IntegerPart1rN;

aNp1,1rN - aNp1,aNp1*pN + pNm1,aNp1*qN + qNm1,pN,qN

;

ContinuedFractionToPrecision[α_,tol_] := Module{a0,iterate},

a0 = IntegerPart[α];

iterate = NestWhileNextIterate,a0,Nα - a0,2*Log101tol,a0,1,1,0,#[[4]] <= 1

If[iterate[[2]] == 0,

iterate[[3;;4]],

iterate[[5;;6]]

]

;

AffineMatrix[φ_,ϵ_] := Module{α,q,r,s,t},

α = Tanφ2;

{r,q} = ContinuedFractionToPrecisionα,Sqrtϵ8+ϵ*α*Secφ2;

{t,s} = ExtendedGCD[q,-r][[2]];

{{q,r},{s,t}}

;

Finding angle candidates for bounded and unbounded angles

For calculating a candidate solution, we first map every angle into the interval [0,π/2]. We then use our
affine transformation to find solutions to the integer programming problem.

RealQ[x_] := Element[x,Reals];

CandidateFinder[φ_?RealQ,ϵ_?RealQ] := Module{modφ},

modφ=Mod[φ,4*Pi];

Which

0<=modφ<=Pi2,

CandidateFinderBounded[modφ,ϵ],

Pi2<modφ<=Pi,

MapAt[Reverse,CandidateFinderBounded[Pi-modφ,ϵ],2],

Pi<modφ<=2*Pi,

MapAt[{-#[[2]],#[[1]]}&,CandidateFinder[modφ-Pi,ϵ],2],

True,

MapAt[{-#[[1]],-#[[2]]}&,CandidateFinder[modφ-2*Pi,ϵ],2]

GaussSynth.m 23

Printed by Wolfram Mathematica Student Edition

202

;

CandidateFinder[_,_] :=

Message[CandidateFinder::notreals];

$Failed

;

CandidateFinderBounded[φ_,ϵ_] := Module{root2k,c,s,α,p,Δ,δ,A,invA,scaledp′,scaledΔ′,scaled

root2k = 1;

c = Cosφ2;

s = Sinφ2;

α = 1-ϵ^28;

p = {c*α+s*Sqrt[1-α^2],s*α-c*Sqrt[1-α^2]};

Δ = 2*Sqrt[1-α^2]*{-s,c};

δ = ϵ^28*{c,s};

A = AffineMatrix[φ,ϵ];

invA = Inverse[A];

scaledp′ = A.p;

scaledΔ′ = A.Δ;

scaledδ′ = A.δ;

θΔ′ = VectorAngle[scaledΔ′,{1,0}];

Which

θΔ′ > Pi2,

m1 = scaledΔ′[[2]] scaledΔ′[[1]];

m2 = scaledδ′[[2]] scaledδ′[[1]];

valid = CatchDo

{x1,x2,x3,x4} = {

Ceiling[scaledp′[[1]]+scaledΔ′[[1]]],

Floor[scaledp′[[1]]],

Floor[scaledp′[[1]]+scaledΔ′[[1]]+scaledδ′[[1]]],

Floor[scaledp′[[1]]+scaledδ′[[1]]]

};

Do

y0 = Ifx <= x2,

Ceilingm1*x - scaledp′[[1]] + scaledp′[[2]],

Ceilingm2*x - scaledp′[[1]] + scaledp′[[2]]

;

y1 = Ifx <= x3,

Floorm2*x - scaledp′[[1]]-scaledΔ′[[1]] + scaledp′[[2]] + scaled

Floorm1*x - scaledp′[[1]]-scaledδ′[[1]] + scaledp′[[2]] + scaled

;

Do[

transformed = invA.{x,y};

If[Norm[transformed] <= Sqrt[2]^k,Throw[{k,transformed}]],

{y,y0,y1}

];,

{x,x1,x4}

;

24 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

203

{scaledp′,scaledΔ′,scaledδ′} *= Sqrt[2];,

k,0,Ceiling4*Log21ϵ+6

;;,

θΔ′ == Pi2,

m1 = scaledδ′[[2]] scaledδ′[[1]];

valid = CatchDo

{x1,x2} = {

Ceiling[scaledp′[[1]]],

Floor[scaledp′[[1]]+scaledδ′[[1]]]

};

Do

y0 = Ceilingm1*x - scaledp′[[1]] + scaledp′[[2]];

y1 = Floorm1*x - scaledp′[[1]]-scaledΔ′[[1]] + scaledp′[[2]] + scaled

Do

transformed = invA.{x,y};

If[Norm[transformed] <= Sqrt[2]^k,Throw[{k,transformed}]],

y,Floory0+y12,y1

;,

{x,x1,x2}

;

{scaledp′,scaledΔ′,scaledδ′} *= Sqrt[2];,

k,0,Ceiling4*Log21ϵ+6

;;,

True,

m1 = scaledδ′[[2]] scaledδ′[[1]];

m2 = scaledΔ′[[2]] scaledΔ′[[1]];

valid = CatchDo

{x1,x2,x3,x4} = {

Ceiling[scaledp′[[1]]],

Floor[scaledp′[[1]] + scaledδ′[[1]]],

Floor[scaledp′[[1]] + scaledΔ′[[1]]],

Floor[scaledp′[[1]] + scaledδ′[[1]] + scaledΔ′[[1]]]

};

Do

y0 = Ifx <= x2,

Ceilingm1*x - scaledp′[[1]] + scaledp′[[2]],

Ceilingm2*x - scaledp′[[1]] - scaledδ′[[1]] + scaledp′[[2]] +

;

y1 = Ifx <= x3,

Floorm2*x - scaledp′[[1]] + scaledp′[[2]],

Floorm1*x - scaledp′[[1]] - scaledΔ′[[1]] + scaledp′[[2]] + scaled

;

Do[

transformed = invA.{x,y};

If[Norm[transformed] <= Sqrt[2]^k,Throw[{k,transformed}]],

{y,y0,y1}

];,

{x,x1,x4}

;

GaussSynth.m 25

Printed by Wolfram Mathematica Student Edition

204

{scaledp′,scaledΔ′,scaledδ′} *= Sqrt[2];,

k,0,Ceiling4*Log21ϵ+6

;;

;

valid

;

Solving Lagrange Four-Squares

Rather than implement our own solver based off of well known algorithms, we instead use a basic
Mathematica function as the inputs for this problem never get too big.

Lagrange4[n_]:=Module{x1,x2,x3,x4},{x1,x2,x3,x4}/.FindInstance[x1^2+x2^2+x3^2+x4^2==n

SU(4) Approximations Using a Candidate Solution

We provide an algorithm for finding a rotation by angle φ up to error ϵ for any of the 15 Pauli matrices.

26 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

205

SU4Z1Finder[φ_,ϵ_]:=Module{k,x,y,a,b,c,d,Invroot2k,α,β,χ},

{k,{x,y}} = CandidateFinder[φ,ϵ];

{a,b,c,d} = Lagrange4[2^k-x^2-y^2];

Invroot2k = 1Sqrt[2]^k;

α = Invroot2k*(x+I*y);

β = Invroot2k*a+I*b;

χ = Invroot2k*c+I*d;

{

{α,0,-Conjugate[β],-Conjugate[χ]},

{0,α,χ,-β},

{β,-Conjugate[χ],Conjugate[α],0},

{χ,Conjugate[β],0,Conjugate[α]}

}

;

PauliRotation[φ_/;Not[RealQ[φ]],ϵ_/;Not[RealQ[ϵ]],_] :=

Message[PauliRotation::notreals];

$Failed

;

PauliRotation[φ_,ϵ_,"ZI"] := SU4Z1Finder[φ,ϵ];

PauliRotation[φ_,ϵ_,"XI"] := H1 . SU4Z1Finder[φ,ϵ] . H1;

PauliRotation[φ_,ϵ_,"YI"] := S1 . H1 . SU4Z1Finder[φ,ϵ] . H1 . ConjugateTranspose[S1];

PauliRotation[φ_,ϵ_,"IZ"] := EX . SU4Z1Finder[φ,ϵ] . EX;

PauliRotation[φ_,ϵ_,"IX"] := EX . H1 . SU4Z1Finder[φ,ϵ] . H1 . EX;

PauliRotation[φ_,ϵ_,"IY"] := EX . S1 . H1 . SU4Z1Finder[φ,ϵ] . H1 . ConjugateTranspose[S1

PauliRotation[φ_,ϵ_,"ZZ"] := CNOT21 . SU4Z1Finder[φ,ϵ] . CNOT21;

PauliRotation[φ_,ϵ_,"XZ"] := H1 . CNOT21 . SU4Z1Finder[φ,ϵ] . CNOT21 . H1;

PauliRotation[φ_,ϵ_,"YZ"] := S1 . H1 . CNOT21 . SU4Z1Finder[φ,ϵ] . CNOT21 . H1 . ConjugateTranspose

PauliRotation[φ_,ϵ_,"ZX"] := H2 . CNOT21 . SU4Z1Finder[φ,ϵ] . CNOT21 . H2;

PauliRotation[φ_,ϵ_,"XX"] := H1 . H2 . CNOT21 . SU4Z1Finder[φ,ϵ] . CNOT21 . H2 . H1;

PauliRotation[φ_,ϵ_,"YX"] := S1 . H1 . H2 . CNOT21 . SU4Z1Finder[φ,ϵ] . CNOT21 . H2 . H1

PauliRotation[φ_,ϵ_,"ZY"] := S2 . H2 . CNOT21 . SU4Z1Finder[φ,ϵ] . CNOT21 . H2 . ConjugateTranspose

PauliRotation[φ_,ϵ_,"XY"] := H1 . S2 . H2 . CNOT21 . SU4Z1Finder[φ,ϵ] . CNOT21 . H2 . ConjugateTranspose

PauliRotation[φ_,ϵ_,"YY"] := S1 . H1 . S2 . H2 . CNOT21 . SU4Z1Finder[φ,ϵ] . CNOT21 . H2

PauliRotation[_,_,_] :=

Message[PauliRotation::invldstring];

$Failed

;

test[PauliRotationSequence,"SyllableType"] := MemberQ[{"Normal","Asymmetric"},#]&;

test[PauliRotationSequence,"OutputType"] := MemberQ[{"String","HexDec"},#]&;

Options[PauliRotationSequence] = {"OutputType" -> "String","SyllableType" -> "Normal"};

PauliRotationSequence[φ_,ϵ_,pauli_,opts:OptionsPattern[]]?optsCheck := NormIt[PauliRotation

General Unitary Decomposition

Here we develop an algorithm for the approximation of any U(4) matrix using the Clifford + CS gate set.

GaussSynth.m 27

Printed by Wolfram Mathematica Student Edition

206

Angles of rotation in the Pauli decomposition

First, we develop a method for finding the Pauli decomposition of an operator in terms of its 15 Pauli-
rotation angles.

28 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

207

SafeArcTan[a_,b_] := Ifa == 0 && b == 0,0,ArcTan[a,b];

AngleFind[{{a_,_},{b_,_}}] := SafeArcTan[a,b];

SmallPauliDecomposition[o_] := Module[{v1,v2,v3,φ1,φ2,φ3,M1,M2,o′,o′′},

v1 = o[[1;;2,3]];

φ1 = -SafeArcTan @@ Reverse[v1];

M1 = {{Cos[φ1],Sin[φ1],0},{-Sin[φ1],Cos[φ1],0},{0,0,1}};

o′ = Simplify[M1 . o];

v2 = o′[[2;;3,3]];

φ2 = -SafeArcTan @@ Reverse[v2];

M2 = {{1,0,0},{0,Cos[φ2],Sin[φ2]},{0,-Sin[φ2],Cos[φ2]}};

o′′ = Simplify[M2 . o′];

v3 = o′′[[1;;2,1]];

φ3 = SafeArcTan @@ v3;

{φ1,φ2,φ3}

];

PauliDecomposition[U_?U4Q] := PauliDecomposition @ U4ToSO6 @ U

PauliDecomposition[U_?SO6Q] := Module[{a,b,c,d,U1a′,Da,U2a′,U1d′,Dd,U2d′,U1a,U2a,U1d,U2d,Db

a = U[[1;;3,1;;3]];

b = U[[4;;6,1;;3]];

c = U[[1;;3,4;;6]];

d = U[[4;;6,4;;6]];

{U1a′,Da,U2a′} = SingularValueDecomposition[a];

{U1d′,Dd,U2d′} = SingularValueDecomposition[d];

{U1a,U2a,U1d,U2d} = {

FullSimplify[Det[U1a′]] * U1a′,

FullSimplify[Det[U2a′]] * U2a′,

FullSimplify[Det[U1d′]] * U1d′,

FullSimplify[Det[U2d′]] * U2d′

};

Db = Simplify[Transpose[U1d] . b . U2a];

Dc = Simplify[Transpose[U1a] . c . U2d];

blocks = Map[{{Da[[#,#]],Db[[#,#]]},{Dc[[#,#]],Dd[[#,#]]}}&,Range[1,3]];

{φXX,φYY,φZZ} = -Map[AngleFind,blocks];

{φZI1,φXI1,φZI2} = -SmallPauliDecomposition[U1a];

{φZI3,φXI2,φZI4} = -SmallPauliDecomposition[Transpose[U2a]];

{φIZ1,φIX1,φIZ2} = -SmallPauliDecomposition[U1d];

{φIZ3,φIX2,φIZ4} = -SmallPauliDecomposition[Transpose[U2d]];

{

{φZI1,"ZI"},{φXI1,"XI"},{φZI2,"ZI"},

{φIZ1,"IZ"},{φIX1,"IX"},{φIZ2,"IZ"},

{φXX,"XX"},{φYY,"YY"},{φZZ,"ZZ"},

{φZI3,"ZI"},{φXI2,"XI"},{φZI4,"ZI"},

{φIZ3,"IZ"},{φIX2,"IX"},{φIZ4,"IZ"}

}

];

PauliDecomposition[_] :=

Message[PauliDecomposition::notanoperator];

$Failed

;

GaussSynth.m 29

Printed by Wolfram Mathematica Student Edition

208

Reconstruction using Pauli-rotation angles

ApproximateOp[_,ϵ_/;Not[RealQ[ϵ]]] :=

Message[Approximate::notreal];

$Failed

;

ApproximateOp[U_?U4Q,ϵ_] := Module{anglesaxes,pauliapproximations},

anglesaxes = PauliDecomposition[U];

pauliapproximations = MapPauliRotation#[[1]],ϵ15,#[[2]]&,anglesaxes;

Simplify[Dot @@ pauliapproximations]

;

ApproximateOp[U_?SO6Q,ϵ_] := Module{anglesaxes,pauliapproximations},

anglesaxes = PauliDecomposition[U];

pauliapproximations = MapPauliRotation#[[1]],ϵ15,#[[2]]&,anglesaxes;

U4ToSO6 @ Simplify @ Dot @@ pauliapproximations

;

ApproximateOp[_,_] :=

Message[Approximate::notanoperator];

$Failed

;

test[ApproximateSequence,"IfGaussianDoExact"] := BooleanQ;

test[ApproximateSequence,"SyllableType"] := MemberQ[{"Normal","Asymmetric"},#]&;

test[ApproximateSequence,"OutputType"] := MemberQ[{"String","HexDec"},#]&;

Options[ApproximateSequence] = {"IfGaussianDoExact" -> True,"OutputType" -> "String","SyllableType

ApproximateSequence[_,ϵ_/;Not[RealQ[ϵ]],OptionsPattern[]] :=

Message[ApproximateSequence::notreal];

$Failed

;

ApproximateSequence[U_,ϵ_,opts:OptionsPattern[]] := Module[{normitops},

normitops = FilterRules[{opts},Options[NormIt]];

If[

OptionValue["IfGaussianDoExact"] && GaussianQ[U],

NormIt[U,Append[normitops,"UpToPhase"->False]],

NormIt[ApproximateOp[U,ϵ],normitops]

]

];

End of functions in the private context

End[];

30 GaussSynth.m

Printed by Wolfram Mathematica Student Edition

209

Exported Functions
Protect[Id,X1,X2,Z1,Z2,W,H1,H2,S1,S2,CZ,CNOT12,CNOT21,EX,CS,U4ToSO6,

IdSO6,X1SO6,X2SO6,Z1SO6,Z2SO6,ΙSO6,H1SO6,H2SO6,S1SO6,S2SO6,CZSO6,CNOT12SO6,CNOT21SO6,

FromSequence,FromHexDec,CliffordQ,CliffordSynth,RightCliffordSimilar,LeftCliffordSimilar

CandidateFinder,PauliRotation,PauliDecomposition,ApproximateOp,ApproximateSequence];

EndPackage[];

GaussSynth.m 31

Printed by Wolfram Mathematica Student Edition

210

Bibliography

[1] Paul Benioff. The computer as a physical system: A microscopic quantum me-
chanical hamiltonian model of computers as represented by turing machines.
Journal of statistical physics, 22(5):563–591, 1980.

[2] Richard P Feynman. Simulating physics with computers. International journal
of theoretical physics, 21(6):467–488, 1982.

[3] Andrew Steane. Quantum computing. Reports on Progress in Physics,
61(2):117, 1998.

[4] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum
computation. Proceedings of the Royal Society of London. Series A: Mathe-
matical and Physical Sciences, 439(1907):553–558, 1992.

[5] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of computer
science, pages 124–134. Ieee, 1994.

[6] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM journal on Comput-
ing, 26(5):1510–1523, 1997.

[7] Seth Lloyd. Universal quantum simulators. Science, pages 1073–1078, 1996.

[8] John Preskill. Quantum computing and the entanglement frontier. Rapporteur
talk at the 25th Solvay Conference on Physics, 2012.

[9] Aram W Harrow and Ashley Montanaro. Quantum computational supremacy.
Nature, 549(7671):203–209, 2017.

[10] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, 2018.

211

[11] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A
Buell, et al. Quantum supremacy using a programmable superconducting
processor. Nature, 574(7779):505–510, 2019.

[12] David P DiVincenzo. The physical implementation of quantum computation.
Fortschritte der Physik: Progress of Physics, 48(9-11):771–783, 2000.

[13] Scott Aaronson and Alex Arkhipov. The computational complexity of linear
optics. In Proceedings of the forty-third annual ACM symposium on Theory
of computing, pages 333–342. ACM, 2011.

[14] Peter W Shor. Scheme for reducing decoherence in quantum computer mem-
ory. Physical review A, 52(4):R2493, 1995.

[15] Daniel Eric Gottesman. Stabilizer Codes and Quantum Error Correction. PhD
thesis, California Institute of Technology, 1997.

[16] Juan I Cirac and Peter Zoller. Quantum computations with cold trapped ions.
Physical review letters, 74(20):4091, 1995.

[17] Neil A Gershenfeld and Isaac L Chuang. Bulk spin-resonance quantum com-
putation. science, 275(5298):350–356, 1997.

[18] David G Cory, Amr F Fahmy, and Timothy F Havel. Ensemble quantum com-
puting by nmr spectroscopy. Proceedings of the National Academy of Sciences,
94(5):1634–1639, 1997.

[19] Daniel Loss and David P DiVincenzo. Quantum computation with quantum
dots. Physical Review A, 57(1):120, 1998.

[20] Emanuel Knill, Raymond Laflamme, and Gerald J Milburn. A scheme for
efficient quantum computation with linear optics. Nature, 409(6816):46, 2001.

[21] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles,
techniques, and tools. Addison wesley, 7(8):9, 1986.

[22] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Ab-
hari, Nhung Hong Nguyen, and Cinthia Huerta Alderete. Full-stack, real-
system quantum computer studies: architectural comparisons and design in-
sights. In Proceedings of the 46th International Symposium on Computer Ar-
chitecture, pages 527–540. ACM, 2019.

[23] Aram Harrow. Quantum Compiling. PhD thesis, Massachusetts Institute of
Technology, 2001.

[24] Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Infor-
mation, 2:15023, 2016.

212

[25] Mark Ettinger, Peter Høyer, and Emanuel Knill. The quantum query com-
plexity of the hidden subgroup problem is polynomial. Information Processing
Letters, 91(1):43–48, 2004.

[26] Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proc. of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, 1996, 1996.

[27] Lov K Grover. From schrödinger’s equation to the quantum search algorithm.
American Journal of Physics, 69(7):769–777, 2001.

[28] Dominic W Berry, Graeme Ahokas, Richard Cleve, and Barry C Sanders.
Efficient quantum algorithms for simulating sparse hamiltonians. Communi-
cations in Mathematical Physics, 270(2):359–371, 2007.

[29] Dominic W Berry, Andrew M Childs, and Robin Kothari. Hamiltonian sim-
ulation with nearly optimal dependence on all parameters. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science, pages 792–809.
IEEE, 2015.

[30] Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and
Rolando D Somma. Simulating hamiltonian dynamics with a truncated taylor
series. Physical review letters, 114(9):090502, 2015.

[31] Andrew M Childs. Universal computation by quantum walk. Physical review
letters, 102(18):180501, 2009.

[32] Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su.
Toward the first quantum simulation with quantum speedup. Proceedings of
the National Academy of Sciences, 115(38):9456–9461, 2018.

[33] Guang Hao Low and Isaac L Chuang. Optimal hamiltonian simulation by
quantum signal processing. Physical review letters, 118(1):010501, 2017.

[34] Guang Hao Low and Isaac L Chuang. Hamiltonian simulation by qubitization.
Quantum, 3:163, 2019.

[35] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm
for linear systems of equations. Physical review letters, 103(15):150502, 2009.

[36] Andris Ambainis. Variable time amplitude amplification and a faster quantum
algorithm for solving systems of linear equations. Preprint available from
arXiv:1010.4458, 2010.

[37] Leonard Wossnig, Zhikuan Zhao, and Anupam Prakash. Quantum linear sys-
tem algorithm for dense matrices. Physical review letters, 120(5):050502, 2018.

[38] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

213

http://arxiv.org/abs/1010.4458

[39] David Beckman, Amalavoyal N Chari, Srikrishna Devabhaktuni, and John
Preskill. Efficient networks for quantum factoring. Physical Review A,
54(2):1034, 1996.

[40] Johannes Buchmann, Jiirgen Loho, and Jorg Zayer. An implementation of the
general number field sieve. In Annual International Cryptology Conference,
pages 159–165. Springer, 1993.

[41] Aleksei Yur’evich Kitaev. Quantum computations: algorithms and error cor-
rection. Uspekhi Matematicheskikh Nauk, 52(6):53–112, 1997.

[42] GM D’Ariano, C Macchiavello, and MF Sacchi. On the general problem of
quantum phase estimation. Physics Letters A, 248(2-4):103–108, 1998.

[43] H Dieter Zeh. On the interpretation of measurement in quantum theory.
Foundations of Physics, 1(1):69–76, 1970.

[44] Maximilian Schlosshauer. Decoherence, the measurement problem, and in-
terpretations of quantum mechanics. Reviews of Modern physics, 76(4):1267,
2005.

[45] Andrew M Steane. Efficient fault-tolerant quantum computing. Nature,
399(6732):124, 1999.

[46] Peter W Shor. Fault-tolerant quantum computation. In Proceedings of 37th
Conference on Foundations of Computer Science, pages 56–65. IEEE, 1996.

[47] Emanuel Knill, Raymond Laflamme, and Wojciech H Zurek. Resilient quan-
tum computation. Science, 279(5349):342–345, 1998.

[48] Ben W Reichardt. Quantum universality from magic states distillation applied
to css codes. Quantum Information Processing, 4(3):251–264, 2005.

[49] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal
clifford gates and noisy ancillas. Physical Review A, 71(2):022316, 2005.

[50] Daniel Gottesman. An introduction to quantum error correction and fault-
tolerant quantum computation. In Quantum information science and its con-
tributions to mathematics, Proceedings of Symposia in Applied Mathematics,
volume 68, pages 13–58, 2010.

[51] Earl T Campbell, Barbara M Terhal, and Christophe Vuillot. Roads towards
fault-tolerant universal quantum computation. Nature, 549(7671):172–179,
2017.

[52] Bryan Eastin and Emanuel Knill. Restrictions on transversal encoded quan-
tum gate sets. Physical review letters, 102(11):110502, 2009.

[53] Sergey Bravyi and Jeongwan Haah. Magic-state distillation with low overhead.
Physical Review A, 86(5):052329, 2012.

214

[54] Andrew M Steane. Overhead and noise threshold of fault-tolerant quantum
error correction. Physical Review A, 68(4):042322, 2003.

[55] Robert Raussendorf and Jim Harrington. Fault-tolerant quantum computation
with high threshold in two dimensions. Physical review letters, 98(19):190504,
2007.

[56] Austin G Fowler, Ashley M Stephens, and Peter Groszkowski. High-threshold
universal quantum computation on the surface code. Physical Review A,
80(5):052312, 2009.

[57] Daniel Gottesman. Fault-tolerant quantum computation with local gates.
Journal of Modern Optics, 47(2-3):333–345, 2000.

[58] Adam Paetznick and Ben W Reichardt. Universal fault-tolerant quantum
computation with only transversal gates and error correction. Physical review
letters, 111(9):090505, 2013.

[59] Robert Raussendorf. Key ideas in quantum error correction. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 370(1975):4541–4565, 2012.

[60] Jonas T Anderson and Tomas Jochym-O’Connor. Classification of transversal
gates in qubit stabilizer codes. Quantum Information & Computation, 16(9-
10):771–802, 2016.

[61] Daniel Gottesman and Isaac L Chuang. Demonstrating the viability of uni-
versal quantum computation using teleportation and single-qubit operations.
Nature, 402(6760):390, 1999.

[62] Bei Zeng, Xie Chen, and Isaac L Chuang. Semi-clifford operations, structure
of c k hierarchy, and gate complexity for fault-tolerant quantum computation.
Physical Review A, 77(4):042313, 2008.

[63] Ingemar Bengtsson, Kate Blanchfield, Earl Campbell, and Mark Howard. Or-
der 3 symmetry in the clifford hierarchy. Journal of Physics A: Mathematical
and Theoretical, 47(45):455302, 2014.

[64] Shawn X Cui, Daniel Gottesman, and Anirudh Krishna. Diagonal gates in
the clifford hierarchy. Physical Review A, 95(1):012329, 2017.

[65] Alex Bocharov and Krysta M Svore. Resource-optimal single-qubit quantum
circuits. Physical Review Letters, 109(19):190501, 2012.

[66] Sergey Bravyi and David Gosset. Improved classical simulation of quantum
circuits dominated by clifford gates. Physical review letters, 116(25):250501,
2016.

215

[67] Matthew Amy, Dmitri Maslov, and Michele Mosca. Polynomial-time t-
depth optimization of clifford+ t circuits via matroid partitioning. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
33(10):1476–1489, 2014.

[68] David Steven Dummit and Richard M Foote. Abstract algebra, volume 3.
Wiley Hoboken, 2004.

[69] Lawrence C Washington. Introduction to cyclotomic fields, volume 83.
Springer Science & Business Media, 1997.

[70] Michael A Nielsen and IL Chuang. Quantum computation. Quantum Infor-
mation. Cambridge University Press, Cambridge, 2000.

[71] Phillip Kaye, Raymond Laflamme, Michele Mosca, et al. An introduction to
quantum computing. Oxford University Press, 2007.

[72] Daniel Gottesman. Fault-tolerant quantum computation with higher-
dimensional systems. In NASA International Conference on Quantum Com-
puting and Quantum Communications, pages 302–313. Springer, 1998.

[73] E. Knill. Non-binary unitary error bases and quantum codes. Technical report,
Los Alamos National Laboratory, 1996. quant-ph/9608048.

[74] E. Knill. Group representations, error bases and quantum codes. Technical
report, Los Alamos National Laboratory, 1996. quant-ph/9608049.

[75] Bradley Dickinson and Kenneth Steiglitz. Eigenvectors and functions of the
discrete fourier transform. IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, 30(1):25–31, 1982.

[76] Maris Ozols. Clifford group. Essays at University of Waterloo, Spring, 2008.

[77] JM Farinholt. An ideal characterization of the clifford operators. Journal of
Physics A: Mathematical and Theoretical, 47(30):305303, 2014.

[78] Jeroen Dehaene and Bart De Moor. Clifford group, stabilizer states, and linear
and quadratic operations over gf (2). Physical Review A, 68(4):042318, 2003.

[79] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer
circuits. Physical Review A, 70(5):052328, 2004.

[80] D GOTTESMAN. The heisenberg representation of quantum computers.
In Proc. XXII International Colloquium on Group Theoretical Methods in
Physics, 1998, pages 32–43, 1998.

[81] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo,
Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald
Weinfurter. Elementary gates for quantum computation. Physical review A,
52(5):3457, 1995.

216

[82] Mark Howard and Jiri Vala. Qudit versions of the qubit π/8 gate. Phys. Rev.
A, 86:022316, Aug 2012.

[83] Fern H. E. Watson, Earl T. Campbell, Hussain Anwar, and Dan E. Browne.
Qudit color codes and gauge color codes in all spatial dimensions. Phys. Rev.
A, 92:022312, Aug 2015.

[84] Vivek V Shende, Aditya K Prasad, Igor L Markov, and John P Hayes. Synthe-
sis of reversible logic circuits. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 22(6):710–722, 2003.

[85] Scott Aaronson, Daniel Grier, and Luke Schaeffer. The classification of re-
versible bit operations. In Proceedings of the 8th Innovations in Theoretical
Computer Science Conference, volume 67 of LIPIcs, pages 23:1–23:34, 2017.
Also available from arXiv:1504.05155.

[86] Christopher M. Dawson and Michael A. Nielsen. The Solovay-Kitaev algo-
rithm. Quantum Information and Computation, 6(1):81–95, January 2006.

[87] Aram W Harrow, Benjamin Recht, and Isaac L Chuang. Efficient discrete ap-
proximations of quantum gates. Journal of Mathematical Physics, 43(9):4445–
4451, 2002.

[88] MS Marinov. Invariant volumes of compact groups. Journal of Physics A:
Mathematical and General, 13(11):3357, 1980.

[89] MS Marinov. Correction toinvariant volumes of compact groups’. Journal of
Physics A: Mathematical and General, 14(2):543, 1981.

[90] Ken Matsumoto and Kazuyuki Amano. Representation of quantum circuits
with clifford and π/8 gates. Preprint available from arXiv:0806.3834, 2008.

[91] Brett Giles and Peter Selinger. Remarks on matsumoto and amano’s normal
form for single-qubit clifford+ t operators. Preprint available from arXiv:

1312.6584, 2013.

[92] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Fast and efficient ex-
act synthesis of single-qubit unitaries generated by clifford and t gates. Quan-
tum Info. Comput., 13(7-8):607–630, July 2013.

[93] Andreas Blass, Alex Bocharov, and Yuri Gurevich. Optimal ancilla-free pauli+
v circuits for axial rotations. Journal of Mathematical Physics, 56(12):122201,
2015.

[94] Alex Bocharov, Yuri Gurevich, and Krysta M. Svore. Efficient decomposition
of single-qubit gates into V basis circuits. Phys. Rev. A, 88:012313 (13 pages),
2013.

217

http://arxiv.org/abs/1504.05155
http://arxiv.org/abs/0806.3834
http://arxiv.org/abs/1312.6584
http://arxiv.org/abs/1312.6584

[95] Vadym Kliuchnikov, Alex Bocharov, Martin Roetteler, and Jon Yard. A
framework for approximating qubit unitaries. Preprint available from arXiv:

1510.03888, 2015.

[96] Brett Giles and Peter Selinger. Exact synthesis of multiqubit Clifford+T
circuits. Physical Review A, 87:032332, 2013.

[97] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Asymptotically op-
timal approximation of single qubit unitaries by Clifford and T circuits using
a constant number of ancillary qubits. Phys. Rev. Lett., 110:190502 (5 pages),
2013.

[98] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Practical approxi-
mation of single-qubit unitaries by single-qubit quantum clifford and t circuits.
IEEE Transactions on Computers, 65(1):161–172, 2016.

[99] Peter Selinger. Efficient Clifford+T approximation of single-qubit operators.
Quantum Information and Computation, 2014.

[100] Neil J. Ross and Peter Selinger. Optimal ancilla-free clifford+T approximation
of z -rotations. Quantum Information & Computation, 16(11&12):901–953,
2016.

[101] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261(4):515–
534, 1982.

[102] PP Vaidyanathan. Unitary and paraunitary systems in finite fields. In IEEE
International Symposium on Circuits and Systems, pages 1189–1192. IEEE,
1990.

[103] Todd Tilma and ECG Sudarshan. Generalized euler angle parametrization for
su (n). Journal of Physics A: Mathematical and General, 35(48):10467, 2002.

[104] Vadym Kliuchnikov. Synthesis of unitaries with clifford+ t circuits. Preprint
available from arXiv:1306.3200, 2013.

[105] Earl T Campbell, Hussain Anwar, and Dan E Browne. Magic-state distillation
in all prime dimensions using quantum reed-muller codes. Physical Review X,
2(4):041021, 2012.

[106] Matthew Amy, Jianxin Chen, and Neil J. Ross. A finite presentation of CNOT-
dihedral operators. In Proceedings of the 14th International Conference on
Quantum Physics and Logic, QPL ’17, pages 84–97, 2017. Also available from
arXiv:1701.00140.

[107] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A meet-
in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 32(6):818–830, 2013.

218

http://arxiv.org/abs/1510.03888
http://arxiv.org/abs/1510.03888
http://arxiv.org/abs/1306.3200
http://arxiv.org/abs/1701.00140

[108] Matthew Amy and Michele Mosca. T-count optimization and reed-muller
codes. IEEE Transactions on Information Theory, 2019.

[109] Luke E Heyfron and Earl T Campbell. An efficient quantum compiler that
reduces t count. Quantum Science and Technology, 4(1):015004, 2018.

[110] Giulia Meuli, Mathias Soeken, and Giovanni De Micheli. SAT-based {CNOT,
T} quantum circuit synthesis. In Proceedings of the 10th International Con-
ference on Reversible Computation, RC ’17, pages 175–188, 2018.

[111] Peter Selinger. Generators and relations for n-qubit Clifford operators. Logical
Methods in Computer Science, 11(10):1–17, Jun 2015.

[112] Andrew N Glaudell, Neil J Ross, and Jacob M Taylor. Canonical forms for
single-qutrit clifford+ t operators. Annals of Physics, 406:54–70, 2019.

[113] Vadym Kliuchnikov, Alex Bocharov, and Krysta M Svore. Asymptotically op-
timal topological quantum compiling. Physical review letters, 112(14):140504,
2014.

[114] Neil J. Ross. Optimal ancilla-free Clifford+V approximation of z-rotations.
Quantum Information and Computation, 15(11–12):932–950, 2015.

[115] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Compu-
tation. Graduate Studies in Mathematics 47. American Mathematical Society,
2002.

[116] Alex Bocharov, Xingshan Cui, Vadym Kliuchnikov, and Zhenghan Wang. Ef-
ficient topological compilation for a weakly integral anyonic model. Physical
Review A, 93(1):012313, 2016.

[117] Victor V Albert, Kyungjoo Noh, Kasper Duivenvoorden, Dylan J Young,
RT Brierley, Philip Reinhold, Christophe Vuillot, Linshu Li, Chao Shen,
SM Girvin, et al. Performance and structure of single-mode bosonic codes.
Physical Review A, 97(3):032346, 2018.

[118] Erik Hostens, Jeroen Dehaene, and Bart De Moor. Stabilizer states and clif-
ford operations for systems of arbitrary dimensions and modular arithmetic.
Physical Review A, 71(4):042315, 2005.

[119] Marios H Michael, Matti Silveri, RT Brierley, Victor V Albert, Juha Salmile-
hto, Liang Jiang, and Steven M Girvin. New class of quantum error-correcting
codes for a bosonic mode. Physical Review X, 6(3):031006, 2016.

[120] Murphy Yuezhen Niu, Isaac L Chuang, and Jeffrey H Shapiro. Hardware-
efficient bosonic quantum error-correcting codes based on symmetry operators.
Physical Review A, 97(3):032323, 2018.

219

[121] Alex Bocharov. A note on optimality of quantum circuits over metaplectic
basis. Quantum Information and Computation, 18(1&2):0001–0017, 2018.

[122] Alex Bocharov, Shawn X Cui, Martin Roetteler, and Krysta M Svore. Im-
proved quantum ternary arithmetic. Quantum Information & Computation,
16(9-10):862–884, 2016.

[123] Alex Bocharov, Martin Roetteler, and Krysta M Svore. Factoring with qutrits:
Shor’s algorithm on ternary and metaplectic quantum architectures. Physical
Review A, 96(1):012306, 2017.

[124] Simon Forest, David Gosset, Vadym Kliuchnikov, and David McKinnon. Ex-
act synthesis of single-qubit unitaries over clifford-cyclotomic gate sets. Jour-
nal of Mathematical Physics, 56(8):082201, 2015.

[125] Shiroman Prakash, Akalank Jain, Bhakti Kapur, and Shubangi Seth. Normal
form for single-qutrit clifford+ t operators and synthesis of single-qutrit gates.
Physical Review A, 98(3):032304, 2018.

[126] Xiaoning Bian. Qutrit matsumoto-amano normal form. https://www.

mathstat.dal.ca/~xbian/QutritMA/index.php, 2019. Accessed: 2019-11-
3.

[127] Matt Amy, Andrew Glaudell, and Neil J. Ross. Number-theoretic characteri-
zations of some restricted clifford+t circuits. Upcoming publication, preprint
available from arXiv:1908.06076, 2019.

[128] Alex Bocharov, Martin Roetteler, and Krysta Marie Svore. Efficient synthesis
of probabilistic quantum circuits with fallback. CoRR, abs/1409.3552, 2014.
Also available from arXiv:1409.3552.

[129] Peter Selinger and Xiaoning Bian. Relations for 2-qubit clifford+t operator
group. Quantum Programming and Circuits Workshop, 2015.

[130] David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. An
algorithm for the T-count. Quantum Information & Computation, 14(15-
16):1261–1276, November 2014. Also available from arXiv:1308.4134.

[131] Seth Greylyn. Generators and relations for the group U4(Z[1/
√

2, i]). Available
from arXiv:1408.6204, 2014.

[132] Jonathan Welch, Alex Bocharov, and Krysta Svore. Efficient approximation of
diagonal unitaries over the Clifford+T basis. Quantum Information & Com-
putation, 16(1-2):87–104, 2016.

[133] Dorit Aharonov. A simple proof that Toffoli and Hadamard are quantum
universal. Preprint available from arXiv:quant-ph/0301040, January 2003.

220

https://www.mathstat.dal.ca/~xbian/QutritMA/index.php
https://www.mathstat.dal.ca/~xbian/QutritMA/index.php
http://arxiv.org/abs/1908.06076
http://arxiv.org/abs/1409.3552
http://arxiv.org/abs/1308.4134
http://arxiv.org/abs/1408.6204
http://arxiv.org/abs/quant-ph/0301040

[134] Yaoyun Shi. Both Toffoli and controlled-NOT need little help to do univer-
sal quantum computing. Quantum Information & Computation, 3(1):84–92,
January 2003. Also available from arXiv:quant-ph/0205115.

[135] Terry Rudolph and Lov Grover. A 2 rebit gate universal for quantum com-
puting. Preprint available from arXiv:quant-ph/0210187, nov 2002.

[136] A. K. Hashagen, S. T. Flammia, D. Gross, and J. J. Wallman. Real randomized
benchmarking. Quantum, 2:85, August 2018. Also available from arXiv:

1801.06121.

[137] Miriam Backens and Aleks Kissinger. ZH: A complete graphical calculus for
quantum computations involving classical non-linearity. In Proceedings of the
15th International Conference on Quantum Physics and Logic, QPL ’18, pages
23–42, 2018. Also available from arXiv:1805.02175.

[138] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Y-calculus: A lan-
guage for real matrices derived from the ZX-calculus. In Proceedings of the
14th International Conference on Quantum Physics and Logic, QPL ’17, pages
23–57, 2017. Also available from arXiv:1702.00934.

[139] Renaud Vilmart. A ZX-calculus with triangles for Toffoli-Hadamard, Clif-
ford+T, and beyond. In Proceedings of the 15th International Conference on
Quantum Physics and Logic, QPL ’18, pages 313–344, 2018. Also available
from arXiv:1804.03084.

[140] Daniel Grier and Luke Schaeffer. The classification of stabilizer operations
over qubits. Preprint available from arXiv:1603.03999, 2016.

[141] Michael Artin. Algebra. Prentice Hall, 1991.

[142] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo,
Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald
Weinfurter. Elementary gates for quantum computation. Physical Review A,
52:3457–3467, 1995. Also available from arXiv:quant-ph/9503016.

[143] Xiaoning Bian. Private communication, Jul 2019.

[144] Andrew Glaudell, Neil J. Ross, and Jacob M. Taylor. Optimal two-qubit
circuits for universal fault-tolerant quantum computation. Upcoming publi-
cation, 2019.

[145] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axioma-
tisation of the zx-calculus for clifford+ t quantum mechanics. In Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
pages 559–568. ACM, 2018.

221

http://arxiv.org/abs/quant-ph/0205115
http://arxiv.org/abs/quant-ph/0210187
http://arxiv.org/abs/1801.06121
http://arxiv.org/abs/1801.06121
http://arxiv.org/abs/1805.02175
http://arxiv.org/abs/1702.00934
http://arxiv.org/abs/1804.03084
http://arxiv.org/abs/1603.03999
http://arxiv.org/abs/quant-ph/9503016

[146] Bob Coecke and Quanlong Wang. Zx-rules for 2-qubit clifford+ t quantum
circuits. In International Conference on Reversible Computation, pages 144–
161. Springer, 2018.

[147] Andrew Glaudell. Inexact synthesis of pauli-rotations with the fault-tolerant
clifford + controlled-phase gate set. Upcoming publication, in preparation,
2019.

[148] Michael O Rabin and Jeffery O Shallit. Randomized algorithms in number
theory. Communications on Pure and Applied Mathematics, 39(S1):S239–
S256, 1986.

[149] Wolfgang M Schmidt. Diophantine approximations and Diophantine equa-
tions. Springer, 2006.

[150] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press, 2009.

[151] Heng Fan, Vwani Roychowdhury, and Thomas Szkopek. Optimal two-
qubit quantum circuits using exchange interactions. Physical Review A,
72(5):052323, 2005.

222

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Quantum Computing and Quantum Compiling
	Applications of Quantum Computing
	Hidden Subgroup Problem
	Unsorted Search of a Database
	Hamiltonian Simulation
	Linear Equation Solving

	Approach to a Scalable Quantum Computer
	Notation and Preliminaries
	Sequences, Groups and Rings
	Quantum Circuits

	Quantum Circuit Synthesis
	Problem Statement
	Early Methods – Solovay-Kitaev
	Single Qubit Exact Synthesis – Matsumo-Amano Normal Forms
	Multi-Qubit Exact Synthesis – Giles Selinger Algorithm
	Approximate Synthesis in Single- and Multi-Qubit Circuits
	New Directions and Thesis Outline

	Matsumoto-Amano Normal Forms of Dimension Three
	Introduction
	Canonical forms
	Uniqueness of canonical forms
	Algebraic preliminaries
	The adjoint representation
	Uniqueness

	Higher Prime Dimensions
	Conclusion

	Restricted Clifford + T Circuit Synthesis
	Introduction
	Overview
	Rings and Matrices
	Rings
	Matrices

	Circuits
	Number-Theoretic Characterizations
	The D case
	The D[2] case
	The D[-2] case
	The D[i] case

	Conclusion

	Clifford + Controlled Phase Exact Synthesis
	Introduction
	Generators
	Exact Synthesis
	Structure of Optimal Normal Forms
	Conclusion

	Clifford + Controlled Phase Inexact Synthesis
	Introduction
	Overview of Approximation Scheme
	Unitary Templates and Lagrange Four-Squares
	Finding Approximations with Small Least Denominator Exponent
	Alternate Algorithm for Finding Approximations

	Pauli-Rotation Approximations
	Conclusion

	Conclusion
	Software Package for the Clifford + Controlled-Phase Gate Set
	Bibliography

