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Environmental advocacy organizations aim to help citizens contact their policymakers, to 

recruit new members, and to increase their contacts’ level of engagement with 

organization issues. They use online petitions and form-letter services for these purposes. 

These services put citizens in contact with policymakers and encourage citizens to take 

follow-up actions, such as sending another message, referring a friend, or making a 

donation. While these services effectively recruit members, they marginally influence 

policymakers. To increase influence, organizations now ask petitioners to include 

personal messages in their communications. This dissertation asks if text analysis of these 

personal messages can help advocacy organizations further fulfill their recruitment and 

engagement goals. It investigates text-metrics both for predicting engagement from 

existing contacts and for services, such as chatbots, to suggest follow-up actions to new 

contacts. Methods employ rule-based text analysis tools (LIWC, VADER, Flesch 

Reading Ease, and Regular Expressions) to pilot the use of pronouns, sentiment, writing 

complexity, and the identification of personal stories as predictors of engagement. Data 

include over two million messages and nearly 500,000 personal messages from over 

150,000 individuals supporting sustainable policies and projects. Results reveal 



 

 

relationships between messages and two engagement factors: (1) the number of messages 

that groups of contacts send and (2) payment of membership dues. Results also bolster 

research that highlights the importance of identifying contacts who can share stories 

about how environmental issues have affected them. Conclusions encourage advocacy 

organizations and policymakers to analyze messages to increase engagement and 

understand constituency support of policies and projects. Future work may integrate text 

analysis into membership models and advocacy services. Future work may also improve 

personal story classification and investigate machine-learning for identifying potential 

members. 
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1 

 INTRODUCTION 

This dissertation investigates relationships between the words that constituents write to 

decision makers and these constituents’ engagement with environmental nonprofit 

organizations. Findings benefit advocacy organizations, developers of online advocacy 

services, policymakers, and civil project managers. Findings contribute to research in 

applications of linguistic analysis processing to predict behaviors (e.g. McHaney et al. 

2018, Pennebaker 2011, Robinson 2013) and research in the value of personal stories 

(Sandhu 2017, The Congressional Management Foundation 2017, The Social Change 

Agency 2017a, 2017b, Karpf 2016). Methods employ popular rule-based linguistic tools, 

including the Natural Language Toolkit (Bird et al. 2019), Linguistic Inquiry and Word 

Count 2015 (LIWC 2018), Valence Aware Dictionary and sEntiment Reasoner (VADER; 

Hutto and Gilbert 2014), and Flesch Reading Ease Analysis (Flesch 1948). Data include 

over two million messages and nearly 500,000 originally authored messages from over 

150,000 individuals distributed across the United States. Messages support campaigns to 

preserve national parks, curb toxic emissions, and expedite U.S. energy independence. 

Results provide evidence to support advocacy organizations delivering messages, and the 

policymakers reading them, to employ text analysis tools in order to predict 

organizational engagement and understand constituency support of civil and 

environmental policies and projects. 
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 Background and Need 

1.1.1. Green Technology Needs Green Policy: Advocacy Organizations, Policymakers, 

and Project Managers 

Civil and environmental scientists and engineers recognize climate change. They develop 

ways to provide renewable energy, limit greenhouse gas emissions, and recycle waste. 

Project managers recognize that research innovations, however, only transition to 

practice, and scale, through policy and community support. Policy determines the 

direction and success of studying and protecting our environment. It regulates how 

communities use natural resources to generate electricity. It protects habitats and national 

parks. It determines how NASA budgets earth science vs. space exploration. It 

encourages and incentivizes recycled materials in pavement. It makes residential 

investment in solar energy feasible for homeowners. 

In the U.S., local and national nonprofit organizations advocate for environmental 

policies in several ways — education and awareness campaigns, petitions, letter-writing 

campaigns to policymakers and editors, clean-ups, protests, legal action, and 

investigations. Most importantly, advocacy organizations hold policymakers accountable 

for their promises to protect the environment and deliver energy independence from fossil 

fuels, and advocacy organizations expose policymakers when they break their promises. 

These advocacy organizations use petitions and online letter-writing campaigns 

to, explicitly, empower residents to connect with their policymakers, and advocate for 

environmental sustainability. These petitions and letter-writing campaigns, less explicitly, 

also help advocacy organizations recruit participants (Suárez 2009, Cruickshank et al. 

2010, Carpenter 2016, Parry et al. 2011, Jacobs 2016), fulfill advocacy organizations’ 
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needs to understand the behaviors and demographics of their constituents (e.g. members, 

volunteers, allies), and empower participants to take first steps up Arnstien’s “ladder of 

citizen participation” (i.e. the “engagement ladder,” Arnstien 1969): sign more petitions, 

send more letters, send more personal letters, share more personal stories that support 

specific campaigns, enlist their friends, partner and organize with the organizations, and 

become leaders themselves. Joining an organization as a dues-paying member is also part 

of this more-or-less explicit intent of organizations’ use of petition tools and surveys. 

Advocacy organizations ask citizens to support a laudable cause before asking for money. 

For example, President Barack Obama’s campaign ladder consisted of four rungs: (a) 

liking the presidential campaign on a Facebook page, (b) signing a birthday card, (c) 

filling out a survey or sharing a personal story — and at the top — (d) contributing in 

exchange for campaign swag. This ladder helped the campaign successfully mobilize a 

large, grassroots base. 

In the same way that an online marketing firm or political campaign recognizes an 

ad click as an action, advocacy organizations recognize, and carefully track, the 

behaviors of their contacts in contact relationship management (CRM) databases (e.g. 

Blackbaud Raiser’s Edge, Convio, Neon, Salesforce). Commercial companies refer to 

CRM services as customer relationship management services; advocacy organizations 

refer to CRM services as constituent relationship management services. Both use CRM 

services, however, in similar ways. Both collect contact information, event attendance 

records, donation histories, demographics, addresses, interests, household relationships, 

and other interactions. In A/B hypothesis tests, both compare levels of response to 
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different email news headlines and social media posts (Karpf 2016) with organizational 

engagement. 

One unique set of data that advocacy organizations collect are the messages that 

their contacts send to their policymakers. They collect them through petition, letter-

writing, and chat-bot services that they provide online. They refer to these tools as 

advocacy actions services, and refer to the messages that constituents author and send 

through them as advocacy action messages. Environmental advocacy organizations use 

the information from online petitions and letter-writing campaigns to learn more about 

their contacts and interact with them. When collecting signatures on door-to-door 

canvases, canvassers can write down notes about their conversations (or door slams), 

political yard signs, the demographics of the people they meet, the family members of the 

people they meet, and more. Advocacy organizations can then centrally parse this 

information into CRM fields. Online campaign managers learn different, seemingly more 

limited kinds of information than canvassers — letters to Congress, for example, require 

citizens to report their address or zip code to be taken seriously by members for 

Congress. As the message carrier, advocacy organizations can then collect these zip 

codes and feed them into services like WealthEngine (2019) to learn more about the 

potential of message writers to donate to the organization and join the organization as 

dues-paying members. 

A new data analyst at one large environmental advocacy organization calls its 

organization’s database “well collected, but not well informed” (pers. comm 2018) — 

meaning the organization has collected information about its contacts, but the 

organization still has work to do to extract actionable evidence from the information. 
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Organizations are currently in the processes of developing lumped engagement scores for 

their contacts to make their data more meaningful. They are first looking at fields that fit 

nicely into Boolean, integer, and short text fields. They are looking at, for example, the 

number of events a person has attended, their contribution history, their zip code, their 

age, their gender, and the issues that they have expressed interest in on surveys. 

While organization analysts are hard at work modeling engagement, campaign 

organizers are paying attention to research from the Congressional Management 

Foundation (2017) and the Social Change Agency (2017a, 2017b), who have revealed 

people with lived experiences affected by campaign issues will be noticed by 

policymakers, climb the engagement ladder more quickly, and can become campaign 

organizers themselves. Seth Long, regional online organizer, agrees. He wants to develop 

a deeper understanding of how personal messages impact “advocacy outcomes, equity 

values, and movement building: organizing, communications, and legal” at the Sierra 

Club (pers. comm. 2018). Personal stories, additionally, become testimony in courts, and 

ethos and pathos in articles.  

Simultaneously, while analysts are building engagement models, and while 

campaign managers are recognizing the importance of personal stories, digital product 

managers — in advocacy, in congressional offices, and everywhere — are hiring 

developers to build and add chat-bot services to their portfolio of communication tools. 

Form-based action campaigns on websites still exist, but chatbots reach people in 

focused, personal ways that websites cannot. They operate inside the communication 

tools people already use to connect with their friends and associates on a regular basis — 

sms, iMessage, Facebook Messenger, etc. They democratize action without 
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overwhelming congressional offices, and have recently become successful in doing so 

(Putorti 2019).  

Considering analysts’ goals to understand their organization’s members and 

contacts with the data they have, organizers’ recognition and search for those with lived 

experiences, and product managers’ and service developers’ new efforts to develop 

chatbots, this study tests deriving several predictor metrics from just one of the fields that 

organizations are collecting data for, but are not currently utilizing without manual 

review. The metrics from this one field could be useful to all three of these types of 

people in the environmental advocacy world — advocacy organization managers, 

campaign organizers, and product developers. The metrics from this one field may also 

be useful to policymakers receiving advocacy messages, and the civil project managers 

that policymakers share data with, in their search to understand and highlight, whether 

fairly or not, the opinions of their constituents concerning the environmental impacts of 

their policy decisions. This one field is the personal message text field where activists 

write their messages. 

Large advertising companies have built their businesses with machine learning 

and natural language processing (NLP). Google, for example, has a history of processing 

user emails to support ad targeting. Facebook extracts “entities” from business messages, 

such as greetings, sentiment, location, and quantities (Facebook 2019). This study asks if 

analysis of personal messages could also help organizations paint a more comprehensive 

picture of their organization, explain constituent behaviors, and increase organizational 

engagement in ways that business-as-usual methods (e.g. demographic profiling, 

relationship tracking, interaction tracking), alone, cannot. 
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Treating this personal message field as a Boolean variable — answering the 

question, did a contact originally author and attach a personal message to their 

communication or not — this study confirms that the presence of content in the field, 

alone, can act as a predictor of engagement without further analysis. Some baseline 

results from this study confirm what campaign organizers say — contacts who send 

personal messages are also more likely to send more messages and make financial 

contributions towards organization membership. Results show that most contacts (97% of 

the study contacts) who write personal messages at rates of 18% or higher are also more 

likely to send more than one message. Results also show the membership rate for those 

sending personal messages is 27% compared to the overall 13% membership rate for 

those sending any type of message, personal or otherwise — more than double. 

Beyond the presence of sending personal messages at all, this study applies rule-

based linguistics analyses to messages to learn more about their authors. It begins by 

asking if analysts can use frequencies of pronouns in messages to predict the number of 

messages a contact will send. To do this, this study begins by using the Linguistic Inquiry 

and Word Count (LIWC) tool, which has been successful in both predicting human 

behaviors, as well as deepening the academic understanding of how people write and 

speak in different situations. LIWC is well established; textbook writers teach students 

about it (e.g. Krippendorff 2018) and scholars have cited articles describing its 

development and operation (e.g. Pennebaker et al. 2015) thousands of times. 

Of interest to this study, LIWC is often used to analyze the words of people in 

power. Lenard (2016), Jones (2017), and Pennebaker (2011) apply it to U.S. candidates 

and political figures. It is no-doubt interesting to see how candidates and politicians in 
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power talk to their constituents, their opponents in debates, and their fellow 

representatives on the floor. This study flips the focus of these analysis to study the 

people speaking up to their policymakers instead of studying the way policymakers speak 

(at times, down) to them. From an engineering project management and public 

representative point of view, understanding and empathizing with customers and 

constituents is key to serving them. 

Beyond LIWC, researchers have studied the words that people have used in 

reaction to political candidates, environmental policies, energy, and construction projects 

— new and proposed (e.g. Wang 2012, Ding 2018). These studies are written for 

candidates, lawmakers, project managers, and project stakeholders that are judging risk 

of, and the public perception of enacting policies and making project decisions. These 

audiences are often, but not necessarily, concerned with the environmental impacts of 

their projects. In the same way this study turns its focus away from learning about how 

policymakers talk to their constituents, and to the way constituents talk to policymakers, 

it also deprioritizes how lawmakers might evaluate the risk and public acceptance of a 

project (for bad or good), and prioritizes how environmental advocacy organizations can 

improve and support (or not support) projects to keep the earth green. This study is also 

different than past and upcoming studies (e.g. Ding 2018, Li et al. 2019) in that it studies 

messages that are directly written to policymakers vs. public tweets. It tests relationships 

between messages and data inconvenient to collect by anyone other than advocacy 

service providers and their advocacy organization clients. Even policymakers, who are 

the recipients of environmental advocacy messages concerning a particular issue, often 
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do not have access to the messages sent to other policymakers on similar, or even the 

same, issue. 

This dissertation (a) studies the words of constituents instead of the words of 

policymakers and leaders, (b) focuses first on how environmental advocacy organizations 

can affect policies and projects before it focuses on how policymakers and project 

managers can judge public acceptance of their proposals and projects, and (c) relies on 

data convenient to collect only by advocacy organizations and service developers. The 

methods and findings from this dissertation are nonetheless significant to policymakers 

and project managers. Results support offices of policymakers to employ methods in this 

dissertation, even if they only have access to the messages sent directly to them. Results 

also support policymakers in better understanding advocacy organization summaries of 

messages and directly analyzing any additional message data that they may receive. 

Policymakers, unlike advocacy organizations and service providers, are, in fact, uniquely 

situated to have immediate access to messages sent from multiple audiences. Using 

methods in this dissertation, policymakers may gain insight into the strength of different 

lobbies advocating differing opinions. 

1.1.2. Exploration: Membership 

Nonprofit contributions have grown more than 10%, on average, every year since 2012 to 

over $34B in 2018 (Nonprofits Source 2018). Giving Tuesday raised $380M in one day 

for nonprofits in 2018 and $511M in 2019 (Giving Tuesday 2019). Of all nonprofits, 

environmental advocacy organizations led the group of organizations with the largest 

increases in contributions in 2018 (Nonprofits Source 2018). For this study, membership 

signifies a monthly or annual financial contribution commitment. 
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During the course of summarizing data and investigating pronouns, this study 

noticed the dictionary of swear words, negative words, long words, and punctuation in 

the LIWC program could also potentially predict engagement. At this same time, this 

study began looking at membership in addition to the number of messages a person sends 

as an indicator of organizational engagement, where membership indicates a financial 

contribution and commitment. These factors, in conjunction with the knowledge of the 

importance of personal stories, inspired a series of explorations to investigate what 

relationships additional text analyses can reveal about membership. These explorations 

(1) developed and tested rule-based linguistic regular expressions to search for words and 

phrases indicative of personal stories with input from a campaign manager that 

professionally reads and searches for personal stories, (2) assessed the sentiment of 

messages with the well-established rule-based Valence Aware Dictionary and sEntiment 

Reasoner (VADER) tool, built specifically for looking at short online messages, and (3) 

assessed the complexity of messages as a function of syllables per word and words per 

sentence with the popular Flesch reading easy model. The Flesch model provides a 

readability score tied to an education level that a reader might need to comprehend a 

piece of text. Metrics from these three assessments were then piloted as predictors of 

membership. Results show that looking at patterns of words — built out from a 

foundation of phrases centered around lived experiences — can better indicate 

organizational membership than looking at the rate that contacts use words from LIWC 

dimensions alone. They also show that sentiment and the ease of messages for people to 

read at different grade levels can also help identify non-members and members. 
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1.1.3. In the Words of Advocacy Data Analysts and Product Managers 

An analyst at one environmental nonprofit organization agrees that measures and metrics 

commonly calculated in text analysis may be piloted as predictor variables to 

engagement. They are interested, first, in natural language processing (NLP) to 

summarize message length and personal stories. They point out, for this study, “we 

currently do not have the capacity or skills in house to do NLP but have a high degree of 

interest in personal messages and how they relate to engagement.” Further, “NLP gives 

us a view into this data that we don’t have and with resulting distribution or segmentation 

from different NLP analysis, we could run tests on those audiences to see how their 

engagement differs. If this is effective in future targeting and activist engagement, we 

would also have a solid evidence for more organizational investment in NLP, modelling 

tools and skill sets working with [organization] data” (2018). 

Parul Sharma, Associate Product Director of an online advocacy system at the 

Sierra Club called AddUp (2019), points out that AddUp currently recommends action 

steps to users based upon the user’s location and the user’s last action, but she wants to 

know if message content factors can play a role in making recommendations and giving 

users “a more personalized journey.” She wants to know “what types of issues do people 

want to write personal messages for” and “is there a common theme around types of 

issues vs. sentiments.” She wants to know if content analysis can help predict if 

individuals “are at a ‘pre-member’ stage? Likely will give donations or become 

volunteers … or in the future, will become event organizers or creators?” If, for example, 

AddUp could recognize (a) personal stories and (b) writing styles indicative of a future 

organizer from an individual’s first contact with the organization, then AddUp could 
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provide tailored next steps to engage that individual. In the future, from an advancement 

(i.e. fundraising) point of view, writing characteristics could supplement location and 

financial data from services like WealthEngine (2019) in suggesting contribution levels 

to new contacts. 

In summary: Advocacy organizations want to know the feasibility of summarizing 

messages and relating them to other constituent data. They want to know if doing so can 

aid them in encouraging more messages, more sharing, more personal and localized 

prompts, and other higher value actions from their constituents (e.g. attendance, 

membership, leadership). They want to know if they can spot and amplify personal 

stories in messages, and then empower the authors of these stories to support their 

campaigns. 

1.1.4. Advocacy Campaign and Data Flow and Potential Beneficiaries 

This study commenced addressing needs of advocacy organizations and service 

developers, but results and conclusions show policymakers may equally directly benefit 

from it (Section 7.2). Civil and environmental project managers whom policymakers 

share data with will also benefit. Figure 1.1.1 illustrates how these parties work together. 
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Figure 1.1.1 Advocacy Campaign Dataflow Diagram 

 

 Goal, Objectives, and Research Questions 

The goal of this study is to explore relationships between the messages that constituents 

send their policymakers and these constituents’ engagement with advocacy organizations 

that provide the systems that enable them to send these messages. It focuses on 

environmental advocacy organizations. It fulfills two main objectives. Objective One, 

answering three originally proposed hypotheses, tests relationships between three 

properties of messages and the number of messages contacts send as a first measure of 

engagement. Those properties are: (a) pronoun usage, (b) personal message rate, and (c) 

message length. Objective Two, within a series of explorations, tests relationships 

between additional text metrics and membership as a second measure of engagement. 

Those additional metrics are based on (a) regular expression searches for personal stories, 

(b) reading ease analysis, (c) sentiment analysis, (d) frequently used words, and (e) 

collections of words. 
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These objectives should help answer the following research questions: (1) How 

can managers of advocacy organizations and policy offices analyze and categorize 

messages? (2) How can they relate messages factors to organizational engagement 

factors? (3) What methods can they use to explore these relationships and spot trends? (4) 

How can they identify personal stories among personal messages? (5) What baseline, 

text-analysis metrics could be used in CRMs and online tools? Results (Chapter 4 and 

Chapter 5) reveal observations to answer these questions; discussion and conclusion 

chapters (Chapter 6 and Chapter 7) summarize answers. For the first three questions, the 

discussion of results summarizes relationships and methods. Results and conclusions 

emphasize the importance of the number of contacts in groups of individuals on the 

applicability of tests to reveal trends (Section 4.1.2.3, Section 6.3). For the fourth 

question, Exploration Three (Section 5.3) introduces how this study used regular 

expressions in an attempt to identify personal stories and Exploration Seven (Section 5.7) 

and the discussion chapter (Chapter 6) discuss their capabilities. Appendix B lists regular 

expressions. (Regular expressions found some personal messages, but they also found 

other types of messages.) For the fifth question, methods, results, and conclusions 

summarize how simple message analysis, including one that simply counts types of 

messages, establish engagement baselines (Section 3.1, Chapter 5, and Chapter 7). In 

describing future work to develop an engagement model, conclusions discuss theoretical 

and machine learning approaches to identifying engagement predictors (Section 7.3.1) 

and (b) question if problems identified in organizing campaign canvasses offline could be 

present online (Section 7.3.2). 
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 Objective One Hypotheses: Message Content and Number of Messages 

Contacts Send 

This study begins by investigating three specific questions of interest to environmental 

advocacy organizations given only a minimal table of messages with contact identifiers. 

1. Literature has shown correlations between an individual’s linguistic style and 

their behaviors – from their ability to succeed in health (Pennebaker 2011) and 

academic programs (Robinson 2013) to selection and categorization of decision 

support simulation models used in mining, public health, water resources, and 

other applications (McHaney et al. 2018). The first hypothesis predicts similar 

relationships exist between the writing styles an activist employs and their 

engagement with an advocacy organization. To test this hypothesis, this study 

uses personal pronouns to identify writing styles and the number of actions an 

activist has taken to indicate organizational engagement. The study can accept the 

hypothesis if relationships exist between average LIWC pronoun scores (pronoun 

rates of use) for groups of contacts who have sent the same number of messages 

and the number of messages that they have sent. 

2. A second hypothesis states that there is a relationship between the number of 

personal messages contacts write and the total number of messages that they send 

(with or without personal comment). For online campaign managers, accepting 

this hypothesis would indicate that target groups that return high rates of personal 

messages are more likely to send additional messages in the future. 

3. A third hypothesis states that there is a relationship between message length with 

the number of messages that contacts send. It tests the questions, do contacts tend 
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to write more or less often if they also write long messages? A negative 

relationship would akin message words to limited units of person-hours on a 

project, where contacts sending more messages may not have time to write longer 

ones. 

These hypotheses use the total number of messages sent by contacts as a measure of 

organizational engagement for them. In doing so, they disregard the importance of 

personal stories to policymakers and organizations (Congressional Management 

Foundation 2017, Social Change Agency 2017a). They do address, however, the common 

case, reviewed in the literature review (Chapter Two), where congressional staffers 

reduce messages to yay and nay summary piles (Miler 2014), losing personal stories, but 

increasing the value of a contact’s output as a measure of influence. 

 Objective Two Hypotheses: Exploration of Personal Stories, Sentiment, 

Writing Level, Popular Words, Groups of Words, and Membership 

After testing the three initial hypotheses, this study investigates relationships between 

additional text metrics and membership. It tests a general hypothesis: There are 

differences in membership rates between (a) all contacts who have sent personal 

messages (27% membership rate) and (b) groups of contacts who have written messages 

that satisfy text conditions. Text conditions are based on the number of messages contacts 

send, personal stories in messages, message writing complexity, message sentiment, and 

the use of popular words and dictionaries of words in messages. 

In evaluating membership rates for groups of contacts satisfying conditions, this 

study considers 5%, 10%, and 15% membership rate differences from the average 27% 

membership rate for those who have sent personal messages as moderate, strong, and 
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very strong differences, respectively. A 10% difference above the 27% average 

membership rate for those who have sent personal messages is equal to a strong 37% 

(27% + 10% = 37%) membership rate. This, coincidentally, equates to a 37% increase 

(10% / 27% = 37%). It also equals a 185% increase above the membership rate for those 

who have sent any type of message (with or without a personally authored message), 

which is 13% ( 37% - 13% = 24%; 24% / 13% = 185%). Hypotheses for each text 

condition are significant if the chi-square test p-values for comparing contingency tables 

of observed and expected values are less than 0.01. 
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 LITERATURE & TECHNOLOGY REVIEW 

 Petitions, Slacktivism, Creative Campaigns, and Letters in Between 

Modern advocacy services such as MoveOn, AddUp, SwingLeft, and Change.org are 

coded around a timeless “embedded recruitment technology” that has contributed to 

historical successes of organizers prior to the internet, such as French Calvinists in the 

1560s and American Antislavery leaders in the 1830s (Carpenter 2016) – the petition. 

Adopted online, earlier by environmental advocacy organizations than other types of 

advocacy organizations (Suárez 2009), climate change awareness organizers used 

petitions and letter-writing campaigns to reach global audiences, including, notably, to 

support the 2015 Paris Agreement and the 2014 People’s Climate March leading up to it 

(Jacobs 2016, Avaaz 2015). 

The reach of online advocacy services grew as U.S. home internet use accelerated 

from 0 to 60 percent between the years 2000 and 2010 (Pew Research 2019). At the time, 

MoveOn was a visible example of resistance to the Iraq War. MoveOn’s founders credit 

its growth to their “realization” of petitions as organizing tools in 1998 (MoveOn 2019). 

At a minimal level, like in-person petition canvases (Parry et al. 2011), online advocacy 

systems recruit members and benefit the organizations that run them (Bhagat 2005). 

While petitions increase organizational engagement, researchers have argued that the 

gains come at the expense of disengaging policymakers, who become overwhelmed by 

impersonal messages. For this reason, researchers have embraced the term, coined by a 

reporter for the act of conveniently sending online communications to a policymaker, 

“slacktivism” (Morozov 2009). Another reporter, White (2010), calls the act 

“clicktivism” in a scathing comparison of online advocacy systems, like MoveOn, with 
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marketing firms that exchange “faith in the power of ideas, or the poetry of deeds, to 

enact social change” for unread messages. Miler, in 2014, further provides evidence that 

online messages are one of the least noticed forms of advocacy. She shows that these 

messages are only counted by issue into yay or nay piles by (often low-paid or unpaid) 

congressional staff and, many times, never read at all. Actual stories of lived experiences 

and thoughtful suggestions are lost between pages of faxed form letters. This observation, 

alone, adds a dark significance to this study’s use of the number of messages (personal or 

form) as a measure of organizational engagement in Objective One. Miler shows 

congressional offices are much more likely to notice and respond to constituents who 

they can “see:” donors, lobbyists, and creative activists. 

Morozov, White, and Miler have emphasized the effectiveness of well-articulated 

and moneyed campaigns over “slacktivism.” Without money, the resources to be “seen,” 

however, require luck, ingenuity, or earned ethos. Activist Kristen Mink, in an example 

of luck, was able to give the final push to remove fossil fuel lobbyist Scott Pruitt out of 

the office of the Administrator of the EPA after accidentally running into, and then 

publicly confronting him while her husband recorded the encounter on her phone in 2018. 

The video went viral. In an example of ingenuity, when thousands of daily emails, phone 

calls, and faxes started flooding one Republican senator’s office shortly after the 2016 

presidential election, to the point where the office was no longer able to count the 

messages, “creative” activists sent their messages as hitchhikers inside pizza deliveries to 

the Congress (Schulz 2017). In an example of earned ethos, Dr. Gerry Galloway, research 

professor at the University of Maryland, serves as an expert to municipalities planning for 

the effects that sea level rise (pers. comm. 2019). The developer of Resistbot, one online 
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advocacy system, would not question the importance and laudability of these examples, 

but would also name them examples of privilege (Putorti 2019). While Resistbot has, in 

the past, been guilty of overwhelming representative offices with faxes and disengaging 

policymakers, today, it delivers messages over a new electronic system recently created 

for, and advertised by, Congress, called Communicating with Congress (CWC; U.S. 

House of Representatives 2017). Responses by congressional offices to a 2015 survey 

administered by the Congressional Management Foundation (2017) show electronic 

“individualized” messages, like those couriered by Resistbot to CWC, now have greater 

influence on undecided positions than postal letters, editorials, telephone town halls, 

phone calls, lobbyist visits, and form letters. Only (1) in-person visits by constituents, and 

(2) contacts from constituent representatives, are more effective. The new system cuts the 

paper-gap; but the messages still need to be read. 

This literature shows: (1) Petitions and letter-writing campaigns are inherently 

organizing tools that help organizations recruit and engage members. Organizations that 

track the number of messages individuals send, therefore, are collecting one measure of 

organizational engagement. (This study shows that, with text analysis, the words in the 

messages that organizations collect are as important, or more important, than the count of 

the number of messages.) (2) While flooding congressional offices with form letters 

disengages them, Congress has told the Congressional Management Foundation that 

personal, “individualized” messages sent through the new, more manageable CWC 

system influence their positions on undecided issues more than most other forms of 

communication that they receive. These findings show that Congress can now more 

conveniently run text-analysis on the messages that they receive. While this study focuses 
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first on the importance of messages to advocacy organizations, as described in the 

introduction, policymakers have access to an equally unique set of messages: messages 

coming from different organizations. 

 Custom, Individual, Personal, Testimony 

The Social Change Agency (2017a) with Sandhu (2017) show that members of the 

European Parliament (MPs) agree with the U.S. Congress. Personal stories are important; 

barrages of impersonal form letters are not. Beyond that, they report, “digital campaigns 

that truly centre the voices of lived experience have the potential to be groundbreaking. 

However, there is currently little space for those with lived experience to genuinely speak 

to power using their own voices” (2017b). The Social Change Agency calls those with 

lived experiences “lost.” Once found, beyond using their stories as legal testimony, the 

Social Change Agency tells advocacy organizations that successful campaigns are led by 

those directly affected by them, and suggests ways to putting those directly affected by 

campaigns in organizing and leadership positions. Their findings encourage participatory 

project management, and encourage existing leaders to see themselves as allies of those 

with lived experiences. 

If Arnstien’s “ladder of citizen participation” (1969) or President Barack Obama’s 

engagement ladder (see Section 1.1) were constrained to only the types of messages 

people send to their representatives, unsigned petitions and form letters without reliable 

contact information would sit on the bottom rung of the ladder. Messages individualized 

with contact information would sit above those, then customized form letters above those, 

then personal messages, which have personally-authored words attached to them, above 

those, then personal stories, which express lived experiences and could be used as 
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examples in legal testimony, at the top. This dissertation uses these terms, “messages,” 

“custom messages,” “personal messages,” and “personal stories” to describe these 

different types of messages. They are detailed in Section 3.2. 

 Lost Voices and Secret Lives: Personal Stories and Personal Pronouns 

While the Social Change Agency labels individuals with personal stories “lost voices” in 

the title of their publications (2017a, 2017b), Pennebaker says pronouns, among other 

words, have “secret lives” in the title of his book (2011). Interesting to this study, 

personal stories use personal pronouns. Further, Pennebaker has shown people who are 

suffering frequently use “I” words. Although this study does not employ experts to 

manually identify people suffering from a condition, such as asthma from air poor air 

quality, and then test them for their use of “I” words, people using “I” words could be 

expressing lived experiences, and this study does test the use of “I” words as a predictor 

of organizational engagement. Pennebaker, alternatively, shows people who are focusing 

on a task tend to use low rates of “I” words. He also shows third-person singular 

pronouns like “he or she” express friends or people held in esteem, while third-person 

plural “they” pronouns are used by authors to put adversarial parties or parties that the 

author is worried about at a distance from themselves. 

In development and application of the text analysis tool, Linguistic Inquiry and 

Word Count (LIWC 2018), Pennebaker has shown relationships between the use of 

different types of personal pronouns in journal entries and social status. Of interest to 

nonprofit organizations, and likely to the Social Change Agency, he suggests that future 

research could show correlations between the use of personal pronouns and individual 

leadership traits. Robinson (2013) used LIWC to show language analysis of students’ 
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course introductions at the beginning of a semester can be used to predict final semester 

grades. The test of the first hypothesis in this study employs LIWC to count and 

categorize pronouns in personal advocacy messages. It tests if there are relationships 

between the use of personal pronouns and the number of messages people send as a 

measure of organizational engagement. 

 Listening to Power Before Listening to Those Speaking Up to It 

While writers have used “we” to refer to “me and you” as well as a first-person group of 

people, in this study, none of them penned pluralis majestatis — the royal form of “we,” 

into any of their messages. Researchers, however, love analyzing those today who might 

have used the term long ago. Lenard (2016) uses LIWC to look at gender differences in 

how representatives in the 113th U.S. Congress use pronouns in representing their 

constituents and Jones (2017) does this for Hillary Clinton. Lenard shows male 

politicians use the pronoun “you” more than female politicians and that no significant 

gender differences exist in the use of other pronouns. She does show, however, all 

politicians frequently use “I” words in formal addresses. Jones (2017) shows how Hillary 

Clinton from 1992 to 2013 spoke with an increasingly masculine pronoun vocabulary, 

with less and less “I” words (4.34% to 2.77%) and more and more “we” words (2.50% to 

3.44%). Jones also illustrates Pennebaker’s (2011) findings on the use of pronouns to 

describe friends vs. adversaries. Jones does this with an extreme example of how 

President Donald Trump references his family and executives with first-person personal 

pronouns, such as “my,” while he distances himself from “out-group” parties with the 

article “the” in referencing “the gays,” “the women” and “the Hispanics.” 
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Pronoun analyses can be contradictory with each other. While Jones and 

Pennebaker (2011) associate “I” words with the female gender, outside of politics, Mulac 

et al. (2013) calls them masculine words. In another example, Pennebaker faults 

presidential candidate John Kerry’s speech writers’ advice to Kerry to use the first-person 

plural “we” words in greater frequency (Pennebaker 2011). Pennebaker contends the 

advice led to lower ratings. The speech writers, defending themselves, might have called 

the style inclusive, not nosism. Ruijuan (2010), alternatively, credits President Obama’s 

frequent use of “we” in conversational patterns along with “you” words to create an 

“intimate dialog” during a presidential victory speech. For this study, a negative 

relationship between the use of “I” words and engagement and a positive relationship 

between “we” words and engagement would support the theory that highly engaged 

political activists speak in the more masculine form that Jones (2017) shows politicians 

leaning toward. (Jones points out President Trump is a notable, sole outlier; he uses first-

person singular “I” words at very high rates.) 

 VADER and Flesch Ease of Reading Tests 

As described in the introduction, while summarizing results from Objective One, this 

study noticed examples of swear words, negative words, short messages, and minimal 

punctuation from contacts who were not active members. These observations, and advice 

from sociologist Wojciech Sokolowski (pers. comm. 2019), inspired an exploration 

between popular rule-based sentiment and writing complexity. Frame alignment theory in 

nonprofit research (Snow et al. 1986, Sokolowski 1996) supports the idea that individuals 

may adopt the language of organizations that they belong to. If an advocacy organization, 



 

25 

for example, uses positive language in their communications with their members, 

engaged members may also use positive language in writing policymakers. 

Researchers have used sentiment analysis on Twitter data to evaluate project 

acceptance (Ding 2018) and estimate damage of natural disasters (Li et al. 2019). 

Valence Aware Dictionary and sEntiment Reasoner (VADER; Hutto and Gilbert 2014) 

was selected among other sentiment classifiers for its logical, rule-based model. It 

considers a dictionary of words, crowd-validated as positive or negative. It was made 

specifically to evaluate social media messages, which are similar to many of the online 

messages in this study. Its lexicon, openly available to browsing on GitHub, contains not 

only words, but also emojis, emoticons, and netspeak. Unlike network-derived models, 

individual VADER scores are easily explained, and the VADER project authors give 

clear guidance on how to interpret them. VADER reports positive, negative, and 

compound scores. Project authors recommend testing messages on their compound 

scores: Messages with compound scores above or equal to 0.05 are positive; messages 

with compound scores below or equal to -0.05 are negative; other messages are neutral. 

VADER is accessible with Python via the Natural Language Toolkit (NLTK; Bird et al. 

2019). This study pilots the validation of VADER with a random sample of 400 messages 

and six human reviewers. Appendix C describes the validation process. 

 If VADER is the standard for lexical-based sentiment analysis of short 

messages without machine learning, then Flesch (1948) readability tests are the same for 

assessing readability of a passage of text. Flesch ease of reading scores are based on the 

number of syllables per word and the number of words per sentence in a message. As 

shown in Section 5.4, Flesch scores are tied to education grade levels from grade-school 
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reading levels to college graduate reading levels. The Bureau of Labor Statistics (2015) 

shows that education is the best indicator of citizen volunteer rates among other 

predictors factors, including age, race, marriage, children, and employment. If writing 

grade level is an indicator of education, and if membership is an indicator of 

volunteering, then this study should expect, therefore, people who write at higher grade 

levels to have higher membership rates. 

For policymakers and civil project managers, text analysis of messages sent 

directly to them may tell them different things than messages observed on Twitter. If 

relationships between messages and membership exist, and policymakers have messages 

segmented by communication channel, policymakers may then be able to assess the 

strength of individual advocacy groups delivering the messages in addition to public 

sentiment. For advocacy organizations, relationships could be used to directly address the 

need that they have to suggest next steps to individuals, with minimal information, after 

they send a message. 
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 METHODOLOGY 

 Approach 

This study begins by employing basic, exploratory, deductive research methods to 

achieve Objective One introduced in Chapter 1 (Section 3.3). It tests three hypotheses to 

investigate relationships between the number of messages that contacts send and the 

following message and text metrics: 

1. The use of pronouns 

2. The number of personally authored messages 

3. The length of messages that contacts write  

The total number of messages that contacts send is the first measure of engagement to 

which this study relates text predictors. In conducting these initial tests, tangential, 

incomplete observations of message frequency, message content, and organizational 

membership status of message authors inspire notions that membership rates increase 

with the following message and text metrics:  

1. The number of messages contacts send 

2. Personal stories in messages 

3. Positive message sentiment 

4. Message writing complexity (i.e. writing grade level) 

These conjectures, along with education and volunteering data from the Bureau of Labor 

Statistics (2015), and along with and frame alignment theory (Snow et al. 1986, 

Sokolowski 1996), encourage additional explorations into message predictors of 

membership (Section 3.4, Chapter 5). This study labels these additional explorations as 

Objective Two explorations. It begins these additional explorations by calculating 
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baseline membership rates (rates of dues paying members) for contacts grouped by the 

number of messages and the number of personally authored messages that they send – 

two message metrics that require no text analysis. Next, it compares these baseline 

membership rates to membership rates of groups of contacts using lower and higher rates 

of pronouns, personal stories, positive sentiment, and complex sentences, with the 

following tools: Linguistic Inquiry and Word Count (LIWC), expert judgement and 

regular expressions, Valence Aware Dictionary for sEntiment Reasoning (VADER), and 

the Flesch ease of reading test. This study uses Pearson’s Chi-Squared test to determine 

whether membership differences for these groups of contacts are significant. 

From an applied research perspective, conditions that create the largest groups of 

contacts, with the highest membership rate differences from their alternative-condition 

groups, are, alone, the best predictors of membership and candidates for the future 

development of a predictive engagement model. In an applied, methodical, search for 

conditions (i.e. patterns), sans any theoretical basis, this study concludes Objective Two 

explorations with the calculation of membership rates of (a) 10,000 groups of contacts 

using or not using the 5,000 most popular words found in messages and (b) groups of 

contacts using or not using words from each LIWC dimension. 

The study alternates between deductive and inductive reasoning in exploring 

message metrics and text metrics indicative of two types of organizational engagement: 

the number of messages contacts send (Objective One) and organizational membership 

(Objective Two). Observations made while completing Objective One tests informed the 

development of Objective Two tests.  
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While the applied needs of environmental advocacy organizations, policymakers, 

and advocacy service providers motivate this study, the lack of research in predicting 

organizational engagement from message analysis and text analysis of advocacy 

messages sent directly to policymakers (vs. publicly on social networks) drives the basic 

research goals to describe data and test theories found in related studies. The most 

applied methods that this study employs are the tests of membership rates for groups of 

contacts using popular words and the tests of membership for groups of contacts using 

words in LIWC dimension dictionaries. Future applied research can build on this study’s 

findings to develop organizational engagement prediction models. Table 3.1.1 

summarizes the variables, data, and methods that this study uses, for the two objectives, 

to study the relationships between message predictors and the two measures of 

engagement. Section 3.3 lists the tools that this study uses to accomplish these tasks. 
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Table 3.1.1 Independent Message Predictor Variables and Dependent Engagement 
Variables 
 

Objective One Objective Two: Exploration 

Measure of 
Engagement 
dependent 
variables 

Number of Messages Contacts Send Membership Rate 
 
Number of contacts in a group that 
are members divided by the total 
number of contacts in that group 

Message and 
Text Predictors 
of Engagement 
independent 
variables 
 
(Test results in 
parenthetical 
section 
references) 

Pronoun Use Rates (Section 4.1) 
Personal Message Rate 
(Section 4.2) 
Average Message Length 
(Section 4.3)  

Number of Messages (Section 5.1.1) 
Use of Pronouns (Section 5.1.2) 
Message Length (Section 5.1.3) 
Personal Stories (Section 5.3) 
Writing Complexity (Section 5.4) 
E5. Sentiment (Section 5.5) 
E6. Popular Words (Section 5.6) 
E7. All LIWC Dimensions 
(Section 5.7) 

Methods 
Overview 

Objective One methods review data, 
construct databases, group contacts 
by the number of messages that they 
have sent, top-code contacts who 
have sent over 20 messages into a 
single group, calculate lumped 
predictor variable values (pronouns 
use rates, personal message rate, 
average message length) for each 
group, and describe correlations and 
trends to test hypotheses 

Objective Two methods define 
membership baselines and 
significant membership difference 
scales, group contacts by predictor 
variable rates, calculate membership 
rates for these groups, and compare 
these membership rates to baseline 
membership rates 

 

 

 Data: Terms, Collection, and Database Construction 

This section begins by describing the original data collected by this study and discusses 

how, without access to contact tables, to use contact data in message records. It then 

defines message terms required for understanding subsequent method descriptions in this 

chapter and findings in the results and conclusion chapters. This section, most 

importantly for this purpose, defines distinctions between all messages, custom messages, 

personal messages, and personal stories. Finally, this section describes the data collection 
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period, schema for database fields required by this study to conduct analyses, and 

guidance on database constructing for future studies. 

3.2.1. Original Data: Contact Data in Message Records  

Original study data include over two million messages and nearly 500,000 originally 

authored messages from over 150,000 individuals across the U.S. (Appendix A). The 

messages support sustainable civil and environmental policies and projects. While many 

messages to public officials are public information, collecting messages requires 

coordination with both organizations encouraging messages and the software service 

providers delivering messages. Messages in this study have been collected by these 

advocacy organizations and service providers through a variety of website services, CRM 

databases, and chatbot reports. 

After being prepared for testing hypotheses, data consist of message and contact 

tables. Message tables contain records of advocacy messages that contacts send their 

policymakers. Message records include both the messages themselves and metadata 

about the messages Metadata include fields for the systems that messages are sent 

through, such as CQ (https://cqrollcall.com/), Capwiz (now obsolete), Salesforce 

(https://www.salesforce.com/), Convio (http://www.convio.com/), Facebook 

(facebook.com/), and custom campaign websites built around CiviCRM 

(https://civicrm.org/). Metadata also include fields for advocacy topics, such as air and 

water quality, climate change, energy, transportation, water supply, wildlife, birds, and 

ivory. Contact tables contain records of people that advocacy campaigns have interacted 

with. Contact data include the online advocacy systems that contacts have used, their paid 

membership statuses, event attendance information, and other demographic information. 

https://cqrollcall.com/
https://www.salesforce.com/
http://www.convio.com/
https://civicrm.org/
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With the messages table and the contacts tables, this study can define message and text 

metrics for each message, lump message metrics into contact message metrics, and lump 

contact message metrics into contact group message metrics.  

While this study would have ideally started with two tables, one for messages and 

one for contacts, most contact data was originally stored in message table fields and this 

study extracted it into a contact table via unique contact IDs. Future studies may 

encounter this problem. While it is safe for researchers to assume all contact relationship 

management systems have tables of contacts, contact reports are not always available or 

easily generated by advocacy product managers for privacy, convenience, and system 

compatibility reasons. Some advocacy service providers, for example, do not retain or 

report contact tables for older campaigns at all. Advocacy organizations, additionally, can 

have separate membership management and online advocacy systems for which contact 

IDs are separate. While this study had access to partial information from contact tables, it 

relied on contact metadata stored in message records. 

Retrieving contact information dispersed in multiple message tables requires more 

work than retrieving contact information from a single contact table. It requires more join 

queries and more logic to handle discrepancies. It is also storage inefficient. For example, 

the birthday and gender values that contacts report do not usually change and should 

generally be stored in contact tables, not message tables. This study did notice, however, 

that future work could use some contact data when it is stored in message tables. 

Multiple, timestamped records of a contact membership statuses, for example, could help 

test a temporal engagement hypothesis in the future; e.g. the relationship between 

advocacy message frequency and membership renewal times. Changes in mailing 
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addresses recorded in an action table, furthermore, could aid future spatiotemporal 

studies, such as the study of relationships between address changes, locations of coal-

fired power plants, and related personal stories in messages. 

Organizations and service providers continually clean their databases to maintain 

data accuracy and consistency. For this study, they have previously both checked, and 

protected input fields that collect, the data used in this study for duplicate contacts, 

human entry errors, and non-humans (e.g. spam bots). Additionally, name fields, phone 

number fields, email fields, complete address fields, and other personally identifiable 

information have been removed prior to the analysis of messages. Finally, some of the 

example messages used to illustrate points in this dissertation (not analyzed data) have 

been modified to preserve the privacy of the message authors. 

3.2.2. Messages Category Terms: Messages, Custom Messages, Personal Messages, 

and Personal Stories 

This study divides messages into three principal categories: (1) not custom and not 

personal messages (1,586,252; abbreviated NOTCORP messages), (2) personal messages 

(491,027; abbreviated PM), and (3) custom messages (122,345; abbreviated as CM). See 

Figure 3.2.1. The first category of messages, not custom and not personal messages, does 

not contain individually authored text. This study, therefore, cannot perform text analysis 

on messages in this category to describe individual authors’ writing styles or sentiment. 

Policymakers treat these non-customized, prewritten messages more like petition 

signatures than individual letters. They devalue these messages (Section 2.1).  

The second category, personal messages, contains messages originally authored 

by message senders. Some personal messages, moreover, contain stories of “lived 
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experiences” (Sandhu 2017) concerning the effect of environmental issues on the 

authors’ lives. This study performs text analysis on all personal messages.  

Finally, the third category, custom messages, contains prewritten messages (i.e. 

form letters) that individuals have edited. Future studies may be able to extract the 

individually written part of custom messages for text analysis. 

While contacts could have customized or attached personal messages to many 

NOTCORP messages before they were sent, data records do not reveal if some 

NOTCORP messages lacked the option for contacts to customize them. In total, data 

consists of 2,199,624 messages – personal, customized, or not – which were sent by 

690,631 unique contacts (an average of 3.6 messages per contact). Of these, 194,409 

contacts have sent personal messages. A very small number of personal messages 

(0.015%) in the data have custom messages attached to them. This study categorizes 

these messages as PM for text analysis, not CM. 

Beyond these categories of messages (NOTCORP, PM, and CM), this study 

further categorizes and describes personal messages, both objectively and subjectively, to 

define potential predictors and measures of engagement. With only the single “message” 

field in message records, which contain words that comprise the body text of each 

personal message, several potential linguistic predictors of engagement and descriptive 

metrics can be derived. First, counting the number of words in this field yields a word 

count (WC) value. Then, with the LIWC tool, this study learns about the percentage of 

words used in each message across LIWC dictionary dimensions, including the pronoun 

dimensions pertinent to Hypothesis One and family dimension pertinent to Objective 

Two. LIWC also calculates words per sentence (WPS). WC and WPS are both objective 
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message metadata. While the selection of words in LIWC dictionaries are subjective, they 

have been developed and refined by past research (Pennebaker et al. 2015). Given these 

dictionaries, the calculation of LIWC rates are objective calculations, reported as 

percentages of dictionary words in individual messages (from 0% to 100%). These 

calculations enable messages to be compared to each other, lumped into per-contact rates, 

and compared to messages in other corpuses. 

 

Figure 3.2.1 Message Categories 
This study divides 2,199,624 total messages into three top level categories: not custom and not 
personal messages (1,586,252), personal messages (491,027), and custom messages 
(122,345). Personal messages contain subjectively categorized personal stories. 
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3.2.3. Collection Period 

This study collected messages that were sent between July 1, 2017 and October 31, 2018 

for one set of data and from 2012 to 2014 for a smaller set. For the messages that this 

study collected in 2017 and 2018, this study collected personal (PM) and custom 

messages (CM) messages between July 1, 2017 and October 10, 2018 (16 months) and 

other (NOTCORP) messages between July 1, 2018 and October 10, 2018 (four months). 

This study computed LIWC scores for personal messages and used all messages to 

compute the number of messages sent per contact as a measure of engagement. The 

results for testing Hypothesis One describe the effects of limiting the analysis of 

messages to those sent during the personal messages time period and excluding 

NOTCORP messages completely. 

3.2.4. Database Schema 

Messages Table 

After preparing data for analysis, the messages table contains the fields shown in Table 

3.2.1 necessary to first test the three hypotheses defined by Objective One and, second, 

test the relationships defined by Objective Two explorations. 
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Table 3.2.1 Messages Table 
 

Field Description 

Message ID Unique, primary key (integer) 

Contact ID Contact key (integer) 

Message Text 

Message category Personal, custom, not personal or custom 
enumerated values (enum) 

VADER Score  Sentiment score from -1 to 1 (float) 

Flesch Reading Ease Score Score (float) 

LIWC Rates 

• Pronouns   

• Personal Pronouns 
o First-Person Singular “I” 

Pronouns  
o First-Person Plural “We” 

Pronouns 
o Second-Person “You” 

Pronouns 
o Third-Person Singular 

“He/She” Pronouns 
o Third-Person Singular “They” 

Pronouns 

• Impersonal Pronouns 

Percentages of words (float) 

 

The Contact ID field identifies unique contacts. It is a necessary field for summarizing 

message data for individual contacts, which, in turn, is necessary for summarizing groups 

of contacts who have sent the same number of messages. The message category field is 

necessary to determine which messages have personal messages attached to them so that 

this study can determine linguistic properties authentic to their authors. (Note: While 

message category is expressed here as a single field, in many study calculations, message 

category was expressed with multiple category-named tables fields for query 

convenience, efficiency, and readability.) This field is also essential to testing Hypothesis 

Two – the relationship between personal and all messages. Although Objective Two 

methods look at relationships between each LIWC pronoun dimension and engagement, 

the test of Hypothesis One only required usage percentages for the personal pronouns. 



 

38 

Contacts Table 

After preparing data for analysis, the contacts table contains the fields in Table 3.2.2. 

Table 3.2.2 Contacts Table 
 

Field Description 

Contact ID Unique, primary key (integer) 

Member Boolean field describing if a contact has ever been a 
member at the time of sending a message 

Number of Personal Messages Number (int) 

Total Number of Messages Number (int) 

Average LIWC Rates 

• Pronouns   

• Personal Pronouns  
o First-Person Singular “I” 

Pronouns  
o First-Person Plural “We” 

Pronouns 
o Second Person “You” 

Pronouns 
o Third-Person Singular 

“He/She” Pronouns 
o Third-Person Singular 

“They” Pronouns 

• Impersonal Pronouns 

Average percentages of words (float) 

 

In addition to the fields for the contacts table listed in Table 3.2.2, the following fields 

contribute to calculation checks: 

• Number of custom messages (int) 

• Number of not personal or custom messages (int) 

The Contact ID field is a unique ID necessary to relate contacts and messages. The 

Member field is a Boolean field indicating if the contact has ever sent a message during 

the study time period while having an active membership status, where a contact’s 

membership status is active for a year after paying membership dues for it. The two 

number of message fields (personal, total) are group summaries of message data 

described in the message table (Table 3.2.1). Like the number of message fields, average 

LIWC rates are summaries of data from the contact table. The number of message fields 
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and the average LIWC rate fields speed up analysis, especially for large sets of messages 

(>100,000), but may be replaced with SQL queries to join message table data to contact 

data. 

Additional Fields 

Beyond the essential fields listed above, other fields were available in the messages table 

from the data that were not used. They could be used in future work as segments, drivers, 

and measures of engagement: message type (e.g. petition), message issue (e.g. energy 

policy, ivory, plastic straws, whales), contact gender, contact device (mobile or not), 

advocacy system (e.g. CQ, Convio, etc.), membership level (e.g. student, limited income, 

standard, big donor). Note that most contacts in this study’s data were classified at the 

standard membership level. (See the introduction to Chapter 5 for more information 

about membership levels.) 

3.2.5. Database Construction: Creating Message and Contact Tables 

As described above, this study did not begin with the ideal messages tables and contact 

tables needed to test hypotheses showing the relationship between message attributes and 

the number of messages that contacts send as a measure of organizational engagement; 

original data were composed of message records, with contact metadata inefficiently 

attached to these message records. Further, data were split across several files and fields 

were untyped1 in comma-separated-value (CSV) text files. The first step this study took 

was to combine files with similar fields in a database. In doing so, it assigned types and 

 

 

1 That is, initial data were not composed of structured data formats with types (e.g. integers, dates, 

text, etc.), like they are in a database. 
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keys to database fields. To do this, Excel and the following Python packages were used: 

Sys, Os, Pandas, Numpy, Datetime, Pymysql, Sqlalchemy, and Scipy. 

First, ten CSV files containing personal (PM) and custom message (CM) records 

and four files containing other (NOTCORP) tables were manually converted into 

standard Excel XLSX format by opening the CSV files in Excel, removing extraneous 

summary text at the end of each file, and cleaning up the first row of each spreadsheet to 

make sure each first-row cell was correctly labeled as a field name with respect to its 

column’s rows. During this process, Excel automatically guessed and saved the type of 

each field. It correctly recognized and typed most dates, numbers, and text. As expected, 

it did not assign more specific information to fields, like floating point precision values to 

numbers or character sizes to text. 

Next, this study imported data into Python Pandas objects for exploration and 

conversion to MySQL tables via the Sqlalchemy Python package. (For comparison, 

creating Pandas objects directly from CSV files with the Pandas read_csv module 

worked, but did not automatically type data as well as preprocessing the data in Excel.) A 

Python script iterated through each Excel file and added each message record into one of 

two MySQL tables – one for personal and custom messages (coded CMPM) and one for 

other messages (NOTCORP). MySQL was then used to confirm the uniqueness of 

message IDs. Queries to count unique message and contact IDs revealed that IDs from 

some sources were case sensitive, so this study set the collation2 of these keys 

 

 

2 For an introduction to database collations, see Chapter 10 of the MySQL manual: “Character 

Sets, Collations, Unicode” (https://dev.mysql.com/doc/refman/8.0/en/charset.html). 

https://dev.mysql.com/doc/refman/8.0/en/charset.html
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accordingly. Additional database instructions then set primary and unique indices on both 

the message and contact ID fields of these message tables. 

This study then grouped messages by Contact ID across both CMPM and 

NOTCORP message tables with the MySQL GROUP BY command to create a unique 

contact table with summary contact fields. It used MySQL functions COUNT, AVG, 

SUM, and IFNULL to calculate summary metrics like the sums of all messages, personal 

messages, and customized messages in the contact table. For each contact, this study set 

contact gender to the last value of gender reported by the message table. A concatenation 

function created a field of all personal message text for each contact, which acted later as 

a calculation check throughout the analysis (e.g. double-checking pronoun use rates 

among message words for contact outliers using high and low rates of pronouns). 

After this study created the contact table, this study used LIWC to assign word 

count rate scores (i.e. percentage pronoun words per message) and summary scores (e.g. 

total word count, words per sentence) to each individual personal message. To do this, 

Python scripts were used to tabulate message IDs and corresponding message text from 

the database into an Excel file for LIWC. LIWC made a copy of this table and appended 

its linguistic scores to each record. Python was then used in a reverse operation, to import 

the scores into a new database table. JOIN and GROUP BY functions were then used to 

calculate the average and standard deviation of scores for each unique contact. In 

retrospect, LIWC scores could have been calculated before contact tables were created to 

shorten the procedure described thus far, but isolating the linguistic analysis both limited 

potential memory problems and avoided any problems of inputting irrelevant data into 

the LIWC program (e.g. contact id, contact metadata, message topic, etc.). 
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3.2.6. Example Database Construction 

Meet Lisander Snodgrass, Bowser Lemans, Guybrush Gilbert, and “Whale Lover” Gene. 

They are four fictitious environmental advocates who have sent messages to their 

congressional representatives in two different campaigns, reported by two different 

advocacy systems in Table 3.2.3 and Table 3.2.4. Using their messages, this section 

provides a simplified example of preparing data for analysis through the construction of a 

database containing a combined messages table and containing a derived contacts table 

(Table 3.2.5, Table 3.2.6). Throughout this example, table rows related to Lisander 

Snodgrass have been highlighted to emphasize database operations and calculations. 

While the non-fictitious study in this dissertation began with a message table 

already prepared, containing unique message IDs, unique contact IDs, and personally 

identifiable information removed, researchers repeating this study with their own data 

may need to prepare data themselves and make assumptions to distinguish unique 

contacts. In this example, source Table 3.2.3 contains fields for message ID (ID), 

message, contact ID (CID), email, and member. Source Table 3.2.4 only contains 

message, email, and member fields. 
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Table 3.2.3 Example Source Messages 
ID is message ID; CID is Contact ID 
 

ID Message CID Email Member 

1 Thank you for your support 1 Lisander.Snodgrass22@example.com Yes 

2 NULL 2 Bowser.LeMans@thimbleweed.pl Yes 

3 NULL 1 Lisander.Snodgrass22@example.com No 

4 We are affected by this issue 3 Guybrush.Gilbert@mymonkeytownusa.me Yes 

 

Table 3.2.4 Example Source Messages 
 

Message Email Address Member 

Save the whales! Lisander Snodgrass No 

I love whales! Whale Lover Gene No 

 

 

Future studies may be forced to use contact identifiers like email, phone number, full 

name, and address to distinguish individuals and eliminate duplicate contact records. In 

this example, Table 3.2.4 contains no contact ID field, so email is the best contact 

identifier for these two tables. Even if unique contact IDs are given, if one other unique 

identifier is given, COUNT and DISTINCT commands should be used to check table 

consistency between the contact identifiers. Database operations on these tables yield a 

combined messages table (Table 3.2.5). 
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Table 3.2.5 Example Combined Messages Table 
This message table, along with contact Table 3.2.6, are the results of combining message source 
tables (Table 3.2.3 and Table 3.2.4). 
 
 

ID Message Type CID 
Source 
Table Name 

1 Thank you for your support Personal 1 1 Lisander Snodgrass 

2 NULL Not Personal 2 1 Bowser LeMans 

3 NULL Not Personal 1 1 Lisander Snodgrass 

4 We are affected by this issue Personal 3 1 Guybrush Gilbert 

5 Save the whales! Personal 1 2 Lisander Snodgrass 

6 I love whales! Personal 4 2 Whale Lover Gene 

 
 

Table 3.2.6 Example Derived Contacts Table 
This contacts table, along with messages Table 3.2.5, are the results of combining message 
source tables (Table 3.2.3 and Table 3.2.4). 
 

ID Messages 
Not Personal 
Messages 

Personal 
Messages Member Name 

1 3 1 2 1 
Lisander 
Snodgrass 

2 1 1 0 1 Bowser LeMans 

3 1 0 1 1 Guybrush Gilbert 

4 1 0 1 0 Whale Lover Gene 

 

 

In this database construction example, note that there are no customized messages (CM) 

and that “not personal messages” are similar to NOTCORP messages found in this 

study’s actual data (Table 3.2.5). Also notice that the resulting contacts table (Table 

3.2.6) categorizes Lisander Snodgrass as a member because the original message tables 

report him as paying for membership dues at least one time, even though it also reports 

him as a non-member one time. (This study categorizes contacts among the actual, non-
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fictitious data in this same way – labeling a contact as a member means that the contact 

has been a member at least once during the study period.) 

After this study constructs message and contact tables similar to example tables 

(Table 3.2.5 and Table 3.2.6), it is ready to continue analysis by calculating and storing 

LIWC, VADER, and Flesch scores as message fields in the database. Once this is 

complete, contacts and groups of contacts are ready to be queried by predictor variables 

and the two measures of engagement (“messages” and “members” fields) in the contacts 

table. The following sections, describing Objective One, continue this example. 

 Objective One Methods: Relationships Between Messages and the Number of 

Messages that Groups of Contacts Send 

Objective One focuses on relating three message metrics (pronoun use rates, personal 

message rates, and the average message length) to the number of messages that contacts 

send. This section describes the methods that this study uses, considerations for lumping 

text metrics for contacts and groups of contacts, and example calculations. It contains the 

following subsections: 

1. Hypothesis One: Personal Pronouns (Section 3.3.1) 

2. Hypothesis Two: Personal Messages (Section 3.3.2) 

3. Hypothesis Three: Message Length (Section 3.3.3) 

4. Example Objective One Calculations (Section 3.3.4) 

3.3.1. Hypothesis One: Personal Pronouns 

Procedure 

To begin relating pronoun use rates with the number of messages that contacts send, 

using the database of message and contact tables described above, this study first counts 
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the use of personal pronouns in every personal message. It then counts the total number 

of words in every personal message. To do this, this study, 

1. Creates message table fields for each of the eight LIWC pronoun rate dimensions 

a. All pronouns 

b. All personal pronouns 

c. First-person singular “I” pronouns (e.g. “I,” “I’ve,” “me”) 

d. First-person plural “we” pronouns 

e. Second person “you” pronouns 

f. Third-person “she/he” pronouns 

g. Third-person “they” pronouns 

h. All impersonal pronouns (e.g. “it,” “that,” “there”) 

2. Creates a message table field for word count 

3. For each message record, and for each of the eight LIWC pronoun dimensions, 

counts and stores pronoun use rates (words per message) and all words in the 

fields created in step one and two in this list, above 

Note: During this process, for exploratory purposes not necessary for answering 

Hypothesis One, this study creates fields and records scores for all other LIWC 

dimensions (e.g. rates of swear words, positive-sentiment words, punctuation, etc.). See 

Pennebaker et al. (2015) for a complete list of LIWC dimensions. 

 This study aims to understand relationships between the use of pronouns by 

contacts with the number of messages that these contacts send. To this end, it, 

1. Creates contact table fields for, and calculates values for, lumped pronoun metrics 

and lumped word counts metrics with database join and math statements 
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a. Average contact LIWC rate, weighted by message 

b. Contact LIWC rate, for all contact messages 

c. Average message word count, weighted by message 

d. Total word count of all contact messages 

2. Groups contacts by the number of messages that they have sent and calculates, for 

each of these groups, average, minimum, and maximum LIWC rates and word 

counts 

3. Top-codes groups of contacts who have sent more than 20 messages 

4. Plots lumped contact group LIWC rates calculated in step five of this procedure 

against the number of messages contacts all sent in each group 

5. Calculates Pearson correlations between the lumped contact group LIWC rates 

and the number of messages contacts all sent in each group 

Finally, this study compares the resulting relationships and correlations between group 

average LIWC rates and the number of messages groups of contacts send. 

Lumping Text Metrics: Details and Rationale 

This study lumps pronoun and word count text metrics by groups of contacts for contacts 

who have all sent the same number of messages. It first averages text metrics in 491,027 

personal messages for each of the 194,409 contacts who have sent at least one personal 

message. Second, this study groups these contacts by the total number of messages that 

they have sent. It top-codes contacts who have sent more than 20 messages into a single 

group. In this second grouping, text-metrics are once again averaged, this time by 

contact. Top-coding contacts mitigates problems of high pronoun rate variability in small 
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groups of contacts when calculating averages, viewing plots, and calculating correlations 

described in Section 3.3.1. 

Top-coding contacts to test all three hypotheses in objective one, and explore 

membership in objective two, consists of grouping contacts who have sent more than 21 

messages into a single group and calculating lumped message and text messages for 

them. Results reported in Section 4.1.2.3 show the importance of top-coding contacts. 

Table 3.3.1 compares this method to two other methods. Instead of observing 

relationships between groups of contacts (Column C), this study could have observed 

relationships for either the series of personal messages (Column A) or the series of 

contacts who sent personal messages (Column B). 

Table 3.3.1 Three Methods to Relate Text Metrics to the Number of Messages that Contacts 
Send 

Method A. Message Based B. Contact Based C. Group Based 

Series Length and 
Unit 

491,027 Messages 194,409 Contacts 21 Groups of 
Contacts 

Predictor Fields Pronoun rate, word count Contact-lumped 
pronoun rate  

Group-lumped 
pronoun rate 

Engagement 
Variable 

Total number of messages sent 
by related contacts 

Total number of 
messages sent 

Total number of 
messages sent 

 

The message-based method described in Table 3.3.1 would entail creating a message 

table field for, and assigning values to each message record for, the total number of 

messages sent by each message’s author identified by contact ID. Then, this study could 

compare personal message text metrics (pronoun rate and word counts) to the total 

number of messages sent by personal message authors for each of the 491,027 personal 

messages. This message-based method is problematic in addressing Hypothesis One of 

Objective One. Objective One is interested in the linguistic styles of individual contacts 
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and this message-based method does not equally consider the linguistic styles of 

individual contacts. Instead, it equally considers the linguistic styles of individual 

messages. Moreover, this message-based method considers very short messages and very 

long messages be equally reflective of individual contact linguistic styles, while longer 

messages are in fact better indicators of linguistic styles.  

The contact-based method described in Table 3.3.1 addresses the problems of the 

message-based method by computing average text metrics per contact. Using this 

method, this study can compare lumped text metrics for each of the 194,409 contacts to 

the total number of messages that they have sent. The quantity of contacts and potentially 

high ranges of pronoun rates in this method, however, could yield hard to read, densely 

covered, plots of average linguistic scores for each contact vs. the number of messages 

each contact has sent. (Section 5.2 further explores this case.) The group-based method 

that this study used, described in Table 3.3.1, addresses the problems with the contact-

based method by summarizing text metrics for each group of contacts with average text 

metrics. Trends are easier to identify in plots of 21 group pronoun rates than in plots of 

194,409 individual contact pronoun rates. (Section 5.2, along with membership data, 

explores trends for ungrouped contacts.) 

Short Example for Calculating Average Pronoun Rates for Groups 

In a hypothetical sample of two contacts, for the category of all personal pronouns, if the 

first contact sent five messages, two personal and three petition-style messages, with the 

two personal messages having 3% and 5% rates of personal pronouns, that first contact 

has an average personal pronoun rate of 4%. If the second contact also sent five 

messages, but all personal, and with the rates of personal pronouns of 4%, 5%, 6%, 7%, 
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and 8%, that contact has an average personal pronoun rate of 6%. Given these are the 

only two contacts in this short example, an example figure of group pronoun rates would 

show a single point at 5% personal pronouns (ordinate) for contacts who have sent five 

messages (abscissa): ( (3% + 5%) / 2 + (4% + 5% + 6% + 7% + 8%) / 5 ) / 2 = 5%.  

Averaging message metrics weighted by contact gives each contact an equal influence 

over a contact group average regardless of the number of messages that they send. An 

unweighted average across all messages, alternatively, gives contacts who send more 

personal messages more influence on the average. The unweighted average of all 

messages in this example would be influenced more by the second contact, who sent five 

personal messages, than the first contact, who sent two messages. The unweighted 

average of 3%, 5%, 4%, 5%, 6%, 7%, and 8% is 5.4%. While this unweighted average 

can summarize messages of a group of contacts, it does not directly address the objective 

of this research to study individual contacts. Contact-weighted averages, conversely, both 

directly describe contacts and can be compared to values in literature that also do so. 

These contact-weighted averages also soften the effects of outlying contacts who may 

send a high ratio of personal messages to other messages, with an unusually high or low 

percentage of words in a particular category. 

Hypothesis One Method Development: Spreadsheet Limitations, Top-Coding, 

and Software 

This study initially used Excel spreadsheet pivot tables to pilot the processes of grouping 

contacts by the total number of messages sent, and plotting LIWC group average rates 

against this metric. This worked, but slowly, and due to software constraints, only for the 

set of personal messages (vs. all messages) and only for summarizing a partial number of 
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LIWC scores per database sheet. Results from this precursory analysis showed the 

personal pronouns “we” and “you” were related with the number of personal messages 

sent, but did not account for all messages (NOTCORP messages) sent. This spreadsheet 

process required creating new pivot tables for each pronoun metric to avoid spreadsheet 

software and memory limits. (Rendering computation results as spreadsheet views is 

slower and requires more memory than storing values in a database result objects.) In 

addition to looking at personal pronouns, average LIWC dimensions were plotted against 

the groups of contacts who have sent the same number of messages. These plots showed 

a potential negative relationship between perceptual words ( “see,” “hear,” and “feel”) 

and the number of messages sent by contacts. Although no other trends were found, 

spreadsheet plots revealed some high ranges of text metrics for groups of contacts who 

sent high numbers of messages. The spreadsheets showed the number of contacts in 

groups of contacts who sent high numbers of messages are low, and this inspired the top-

coding methods that this study ultimately used. 

To more efficiently test Hypothesis One, to check the initial spreadsheet 

observations, and to begin exploration into the correlations between the number of 

messages contacts sent and all LIWC dimensions, this study used Anaconda, a collection 

of data science Python packages. It used Spyder to create a Python script to rapidly plot 

LIWC dimensions against groups of contacts who have sent the same number of 

messages. This script relied on Pandas, a data analysis library, and Matplotlib, a plotting 

library. Next, this study used Orange3 to review summaries of these data in several ways: 

Orange3 automated initiating Python scripts and SQL queries. Orange3 filtered results by 

group size; specifically, before this study ultimately top-coded groups of contacts who 
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sent more than 20 messages, it used Orange3 to filter our groups of contacts with small 

numbers of contacts in them. Orange3 plotted correlations and calculated correlation 

coefficients for each LIWC dimension and for each group of contacts who have sent the 

same number of messages to their policymakers. Orange3 tabulated the correlation 

coefficients for every group average LIWC dimension and the number of messages sent 

by each group. Both the graphs created in Spyder with Pandas and Matplotlib, and the 

graphs created in Oranage3, confirmed the preliminary results from the spreadsheet 

analysis for personal messages only, and for the larger sets of NOTCORP messages. The 

following chapter reports results. This study used the same tools that were used to test 

Hypothesis One test Hypothesis Two and Hypothesis Three. Section 3.5 lists all tools and 

their website addresses. 

3.3.2. Hypothesis Two: Personal Messages 

The originally proposed procedures for testing Hypothesis Two prescribed 

1. Calculating, for each contact who sent at least one personal message 

a. The number personal messages that they sent 

b. The ratio of the number of personal messages that they sent to the number 

of messages that they sent that did not have a personal message attached to 

them 

2. Plotting the number of messages sent by each contact against the two potential 

predictor metrics calculated in step one 

This procedure produced plots that hinted at relationships, but revising the procedure to 

average the number of personal messages sent and average the ratio of personal messages 

sent for groups of contacts who have sent the same number of messages, with the same 
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groups used to test Hypothesis One, revealed a clearer picture. Following final 

procedures to test Hypothesis Two, this study 

1. For each contact, calculates 

a. The number of personal messages sent by the contact 

b. The number of total messages sent by the contact 

c. The rate of personal messages sent by the contact 

(the ratio of the two previous calculations) 

2. For groups of contacts who have sent the same number of messages, calculates 

a. The average number of personal messages sent for all group contacts 

b. The average rate of personal messages sent for all group contacts 

3. Plots the two, group metrics calculated in step two, above, against the number of 

messages sent by contacts in each group 

4. Compares the average rate plots with consideration to the number of contacts in 

each group 

3.3.3. Hypothesis Three: Message Length 

To test Hypothesis Three, the relationship between the length of each message and the 

number of messages sent, this study uses the same groups used for testing hypotheses one 

and two. This study 

1. Uses word count as a measure of message length 

2. Plots average word counts for groups of contacts against the number of messages 

sent by contacts in each group (both variables calculated during the test for 

Hypothesis One) 
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3. Compares average word count points in the plot created in step two with 

consideration to the number of contacts in each group of contacts who have sent 

the same number of messages 

3.3.4. Example Objective One Calculations 

Given example message and contact tables (Table 3.2.5 and Table 3.2.6), derived from 

source message tables (Table 3.2.3 and Table 3.2.4) at the end of Section 3.2, methods to 

test Hypothesis One for the example data, with no top-coding, for the count of all 

pronouns (a single, example LIWC dimension), yield the example message and contact 

tables, Table 3.3.2 and Table 3.3.3. Table 3.3.2 shows the field for the count of all 

pronouns for example calculation purposes only. The non-fictitious study database does 

not contain this field, but it can be back-calculated from the word count field and the 

LIWC pronoun rate field. 
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Table 3.3.2 Example Message Table with Pronoun Rate and Word Count Fields 
The rows for Lisander Snodgrass are highlighted to emphasize the calculation of lumped metric 
rates. 

ID Message Type CID 
Source 
Table 

Count of All 
Pronouns 
(pronouns) 

Word 
Count 

(words) 

LIWC 
Pronoun 

Rate 
(% 

pronouns) 
Example 

Name 

1 
Thank you 

for your 
support 

Personal 1 1 
2 

(you, your) 
4 

50% 
(2/4) 

Lisander 
Snodgrass 

2 NULL NOTCORP 2 1 NULL NULL NULL 
Bowser 
LeMans 

3 NULL NOTCORP 1 1 NULL NULL NULL 
Lisander 

Snodgrass 

4 

We are 
affected 
by this 
issue 

Personal 3 1 
1 

(we) 
6 

16.66% 
(1/6) 

Guybrush 
Gilbert 

5 
Save the 
whales! 

Personal 1 2 0 3 
0% 

(0/3) 
Lisander 

Snodgrass 

6 
I love 

whales! 
Personal 4 2 

1 
(I) 

3 
33.33% 

(1/3) 

Whale 
Lover 
Gene 
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Table 3.3.3 Example Contact Table with Lumped LIWC and Word Count Fields 
The row for Lisander Snodgrass is highlighted to emphasize the calculation of lumped metric 
rates. 
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1 3 1 2 1 
25% 

avg(50%, 
NULL, 0%) 

28.57%* 
3.5 = 
avg(4, 

NULL, 3) 

7 
(4 + 

NULL 
+3) 

Lisander 
Snodgrass 

2 1 1 0 1 NULL NULL NULL NULL Bowser LeMans 

3 1 0 1 1 16.66% 16.66% 6 6 
Guybrush 

Gilbert 

4 1 0 1 0 33.33% 33.33% 3 3 
Whale Lover 

Gene 

 
* Lisander Snodgrass’s average pronoun rate for all messages, weighted by messages length, is 
equal to the sum of all pronouns that Lisander used divided by the sum of all messages words 
that he wrote, calculated for this example as (2+NULL+0) / (4+NULL+3) = 2/7 = 28.57%, or, as 
calculated in the non-fictitious study database with total word counts and pronoun rates, as (4 
words * 50% pronouns / word + NULL + 3 words * 0% pronouns / word) / (4 words + NULL + 3 
words) = (4*0.5 + 3*0.0) /(3+4) = 2/7 = 28.57%. 
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Table 3.3.4 show the four contacts from Table 3.3.3 lumped into groups of contacts who 

have sent the same total number of messages. Notice the null values are ignored in 

average functions, effectively summarizing the group average pronoun rates and group 

average word count rates for contacts who have sent personal messages (Guybrush 

Gilbert and Whale Lover Gene). 

Table 3.3.4 Example Contact Groups 

Group 
ID 

Group Size 
(Contacts) 

Number of 
Messages 

Sent by 
Each 

Contact 

Personal 
Message 

Rate 

Group Average 
Pronoun Rate for 

Contacts who have 
Sent at Least one 
Personal Message 

Group Average 
Word Count for 

Contacts who have 
Sent at Least on 

Personal Message 

1 
1 

(Just 
Lisander) 

3 
66.66% 

2/3 
25% 

3.5 = 
avg(4, NULL, 3) 

2 

3 
(Bowser, 

Guybrush, 
and Gene) 

1 
66.66% 

(0+1+1)/3 

25% 
avg(NULL, 

16.66%,33.33%) 

4.5 
avg(NULL,6,3) 

 
 

In this example, for Hypothesis One, Table 3.3.4 reveals that there is no difference 

between the number of messages sent by contacts who have sent at least one personal 

message and the rate that these contacts use pronouns; the single contact who sent three 

messages (Lisander) used pronouns at the same rate as the two contacts who have sent 

one personal messages (Guybrush, and Gene): 25%. For Hypothesis Two, there is also no 

difference between the personal message rate of the single contact (Lisander Snodgrass) 

who sent three messages (2/3 personal) and the three other contacts who sent one 

message each (2/3 personal). Finally for Hypothesis Three, groups of contacts who only 

sent one message in this example sent them with one word, on average, longer than the 

“group” of one contact that sent three messages (4.5 - 3.5 = 1). 
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 Objective Two Methods: Membership Exploration 

Objective Two explores relationships between message and text metrics with a second 

measure of engagement, membership. Methods and results of these explorations are 

written together, in the Chapter 5. Objective Two begins by reviewing relationships 

between membership and the message and text metrics used in testing objective one 

hypotheses (Section 5.1.1). Next, for ungrouped contacts, Objective Two calculates 

correlations between the use of LIWC dimension words and (a) membership, (b) the 

number of messages that contacts have sent, and (c) the number of personal messages 

that contacts have sent (Section 5.1.2). Finally, it reports membership rates for contacts 

grouped by conditions defined by terms used to search for personal stories (Section 5.3), 

writing complexity defined by the Flesch reading ease test (Section 5.4), sentiment 

defined by the VADER sentiment classifier (Section 5.5), popular words among all 

personal messages in this study (Section 5.6), and words in all LIWC Dimensions 

(Section 5.7). 

Appendix B, Appendix C, and Appendix D support reproducing procedures and 

building on these methods. Appendix B describes and lists MySQL search queries and 

regular expressions used by this study in attempts to find personal stories in messages. 

Appendix C reports methods and results of validating VADER for advocacy messages. 

Appendix D suggests methods for validating the classifying personal stories in messages. 

 Tools 

Table 3.5.1 lists the analysis tools, development environments, and Python libraries that 

this study uses to develop databases, code methods, analyze data, and visualize data. 

Table 3.5.2 lists software platforms and node (https://nodejs.org/en/) packages that this 
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study uses to collect data during the validation of VADER with human reviewers, 

described in Appendix C. These platforms and packages may also be used in future work 

to prototype advocacy services. Table 3.5.3 lists the programming languages that this 

study uses to accomplish these tasks. 

Table 3.5.1 Analysis Tools, Development Environments, and Python Libraries 
 

Tool Website Address 

Analysis Tools and Development Environments  

Anaconda https://www.anaconda.com  

Atom https://atom.io/  

Excel https://products.office.com/en-us/excel  

Google Sheets https://www.google.com/sheets  

Linguistic Inquiry and Word Count (LIWC) http://liwc.net/  

MySQL Workbench https://www.mysql.com/products/workbench/  

Orange3 https://orange.biolab.si/  

SPSS https://www.ibm.com/products/spss-statistics  

Spyder https://www.spyder-ide.org/  

VS Code https://code.visualstudio.com/  

Python 3 Libraries  

Matplotlib https://matplotlib.org/  

NLTK https://www.nltk.org/  

NumPy https://numpy.org/  

Pandas https://pandas.pydata.org/  

PyMySQL https://github.com/PyMySQL/PyMySQL  

Scipy https://www.scipy.org/  

Seaborn https://seaborn.pydata.org/  

SQLAlchemy https://www.sqlalchemy.org/  

textstat https://github.com/shivam5992/textstat  

Python Core Libraries  

sys https://docs.python.org/3/library/sys.html  

os https://docs.python.org/3/library/os.html  

datetime https://docs.python.org/3/library/datetime.html  

difflib docs.python.org/2/library/difflib.html  

 
  

https://www.anaconda.com/
https://atom.io/
https://products.office.com/en-us/excel
https://www.google.com/sheets
http://liwc.net/
https://www.mysql.com/products/workbench/
https://orange.biolab.si/
https://www.ibm.com/products/spss-statistics
https://www.spyder-ide.org/
https://code.visualstudio.com/
https://matplotlib.org/
https://www.nltk.org/
https://numpy.org/
https://pandas.pydata.org/
https://github.com/PyMySQL/PyMySQL
https://www.scipy.org/
https://seaborn.pydata.org/
https://www.sqlalchemy.org/
https://github.com/shivam5992/textstat
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/datetime.html
http://docs.python.org/2/library/difflib.html
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Table 3.5.2 Platforms and Node Packages for Validating VADER Sentiment and 
Prototyping Services 

Tool Website Address 

Platform  

Apache https://www.apache.org/  

Debian https://www.debian.org/  

WordPress https://wordpress.org/  

Node Packages  

create-react-app https://www.npmjs.com/package/create-react-app  

flesch https://www.npmjs.com/package/flesch  

flesch-kincaid https://www.npmjs.com/package/flesch-kincaid  

gender-detection https://www.npmjs.com/package/gender-detection  

react https://www.npmjs.com/package/react  

sentence-splitter https://www.npmjs.com/package/sentence-splitter  

syllable https://www.npmjs.com/package/syllable  

vader-sentiment https://www.npmjs.com/package/vader-sentiment  

wordcount https://www.npmjs.com/package/wordcount  

 
Table 3.5.3 Study Programming Languages 

Tool Website Address 

ECMAScript 6 https://www.ecma-international.org  

MySQL 8 https://www.mysql.com/  

PHP 8 https://www.php.net/  

Python 3 https://www.python.org/  

SCSS 1.24 https://sass-lang.com/  

 
 

  

https://www.apache.org/
https://www.debian.org/
https://wordpress.org/
https://www.npmjs.com/package/create-react-app
https://www.npmjs.com/package/flesch
https://www.npmjs.com/package/flesch-kincaid
https://www.npmjs.com/package/gender-detection
https://www.npmjs.com/package/react
https://www.npmjs.com/package/sentence-splitter
https://www.npmjs.com/package/syllable
https://www.npmjs.com/package/vader-sentiment
https://www.npmjs.com/package/wordcount
https://www.ecma-international.org/
https://www.mysql.com/
https://www.php.net/
https://www.python.org/
https://sass-lang.com/
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 RESULTS FOR OBJECTIVE ONE: NUMBER OF MESSAGES 

Results from testing Hypothesis One show that relationships exist between the number of 

messages contacts have sent their policymakers and the average use of all pronouns 

(negative relationship), the average use of first-person plural “we” pronouns (negative 

relationship), and the average use of third-person singular “you” pronouns (positive 

relationship) (Section 4.1). Hypothesis Two test results show that the average rate of 

personal messages to general messages for groups of contacts who have sent more than 

one message is higher than the average rate of personal messages for the group of 

contacts who only sent a single message (Section 4.2). Hypothesis Three test results show 

that most groups of contacts send the same number of messages (Section 4.3). The 

following three sections of this chapter report these findings along with intermediary 

calculation results that inspire Objective Two explorations (Chapter 5). Each section 

contains plots of predictor variables (LIWC rates, personal messages rates, and average 

message length) along ordinate axes and the number of messages that contacts have sent 

along abscissa axes. 

 Hypothesis One: Relationships Between Pronouns and the Number of 

Messages that Contacts Send 

4.1.1. Hypothesis One Test Results 

LIWC reports word counts of (1) all pronouns (2) all personal pronouns, (3) first-person 

singular “I” pronouns (e.g. “I,” “I’ve,” “me”), (4) first-person plural “we” pronouns, (5) 

second-person “you” pronouns, (6) third-person singular “she/he” pronouns, (7) third-

person plural “they” pronouns, and (8) all impersonal pronouns (e.g. “it,” “that,” “there”). 

Table 4.1.1 and Figure 4.1.1 through Figure 4.1.7 summarize the relationships between 
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the use of each of these categories of pronouns and groups of contacts who have sent the 

same number of messages (personal or otherwise). Each figure plots the use of pronouns 

as a percentage of words used in personal messages (LIWC score), averaged per contact, 

and then averaged per group of contacts who have sent the same number of messages 

(personal or otherwise). See Section 3.3 for example calculations. 

Table 4.1.1 labels correlations strong for R2 ∈ [0.7,1], moderate for R2 ∈ [0.3,0.7), 

and weak for R2 ∈ [0.2,0.3). For the three LIWC dimensions of all pronouns, all personal 

pronouns, and “she/he” pronouns, the linear-logarithmic relationships listed in Table 

4.1.1 and plotted in Figure 4.1.1, Figure 4.1.2, and Figure 4.1.6, compensate for a 

positive bias in the linear relationship for large groups of contacts that have sent small 

numbers of messages (one, two, and three messages). 
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Table 4.1.1 Relationships Between Group Average Pronoun Use Rates and The Number of 
Messages Sent by Contacts 
 

 
LIWC 
Dimension 

 
Correlation Range (%)  

R2 

Pronoun 
Use Rate 

(%) Min Max Summary 

1 All 
Pronouns 

0.77 -0.18 ln 
[Messages] 

+ 14.1 

13.6 14.4 A strong, negative, linear-log 
correlation with a small (0.8%) 
range exists 

2 Personal 
Pronouns 

0.51 -0.107 ln 
[Messages] 

+ 8.9 

8.5 9.1 A moderate, negative, linear-log 
correlation with a small (0.6%) 
range exists 

3 I 0.03 2.3e-3 
[Messages] 

+ 1.53 

1.4 1.8 No obvious correlation exists. The 
rate of first-person singular “I” 
pronouns decreases for the bulk 
of the contacts sending between 
one and four messages from 
1.7% to 1.5%, and then increases 
slowly to 1.6% for the smaller 
groups of contacts sending more 
messages 

4 We 0.87 -0.0311 
[Messages] 

+ 4.05 

4.0 3.3 A very strong, negative, linear 
correlation with a small (0.7) 
range exists 

5 You 0.70 0.016 
[Messages] 

+ 2.26 

2.2 2.8 A moderately strong, positive, 
linear correlation with a small 
(0.6) range exists 

6 She/He 0.29 -0.0234 ln 
[Messages] 

+ 0.371 

0.3 0.5 Over all messages, a weak, 
negative, linear-log correlation 
exists. The rate decreases from 
0.5% to 0.3% from one to five 
messages before remaining at 
0.3% for all numbers of messages 
(except at 18 messages, where 
the rate returns briefly to 0.4%). 

7 They Not calculated; 
close to constant 

0.6 0.7 The rate remains close to 
constant between a very small 
0.6% to 0.7% range 

8 Impersonal 
Pronouns 

0.55 -0.0118 
[Messages] 

+ 0.553 

4.9 5.3 A moderate, negative, correlation 
with a very small (0.4%) range 
exists 
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Figure 4.1.1 Group Average Use of Pronouns (%) vs. Messages Sent 
Trendline: R2 = 0.765 for [Group Average Use Pronouns] = -0.18 ln [Messages] + 14.1 

 
Figure 4.1.2 Group Average Use of Personal Pronouns (%) vs. Messages Sent 
Trendline: R2 = 0.51 for [Group Average Use of Personal Pronouns] = -0.107 ln [Messages] + 8.9 
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Figure 4.1.3 Group Average Use of “I” Pronouns (%) vs. Messages Sent 
Trendline: R2 = 0.025 for [Group Average Use of “I” Pronouns] = 2.3e-3 [Messages] + 1.53 
The rate of first-person singular “I” pronouns decreases for the bulk of the contacts sending 
between one and four messages. Over all messages, no obvious correlation exists. 
 

 
Figure 4.1.4 Group Average Use of “We” Pronouns (%) vs. Messages Sent 
Trendline: R2 = 0.871 for [Group Average Use of “We” Pronouns] = -0.0311 [Messages] + 4.05 
A strong, linear, negative correlation exists. 
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Figure 4.1.5 Group Average Use of “You” Pronouns (%) vs. Messages Sent 
Trendline: R2 = 0.691 for [Group Average Use of “You” Pronouns] = 0.016 [Messages] + 2.26 
A moderate, linear, positive, correlation exists. 

 
Figure 4.1.6 Group Average Use of “She/He” Pronouns (%) vs. Messages Sent 
Trendline: R2 = 0.288 for [Group Average Use of “She/He” Pronouns] = -0.0234 ln [Messages] + 
0.371. The LIWC rate decreases from 0.5 to 0.3 from one to five messages before remaining at 
0.3 for the remaining numbers of messages (except at 18 messages, where the rate returns 
briefly to 0.4). 
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Figure 4.1.7 Group Average Use of “They” Pronouns (%) vs. Messages Sent 
The rate remains constant between 0.6% and 0.7% 

 
Figure 4.1.8 Group Average Use of Impersonal Pronouns (%) vs. Messages Sent 
Trendline: R2 = 0.553 for [Group Average Use of “She/He” Pronouns] = -0.0118 [Messages] + 
0.553 
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4.1.2. Additional Observations and Calculation Checks for Hypothesis One 

Chapter 6 discusses the results of testing Hypothesis One reported in the previous section 

(Section 4.1.1). This section reports results of additional observations, calculation checks, 

and variations of the test for Hypothesis One. It includes the following sections: 

1. Use of Pronouns: Contact Averages vs. Message Averages vs. Other Corpuses 

This section compares the average pronoun use rates in the study data calculated 

in two different ways (over all messages, weighted message author, and equally 

and over all messages). It then compares these rates to rates in literature. 

2. Minimum, Average, and Maximum Pronoun Rates for Groups and Contacts 

This section discusses testing the use of minimum, average, and maximum 

pronoun rates for (a) groups of contacts and for (b) messages that contacts have 

sent to describe groups of contacts. 

3. Group Sizes 

This section shows the importance of top-coding contacts who sent more than 20 

messages into a single group. 

4. Sensitivity of Word Count on First-Person Plural (“We”) Pronouns: Do pronoun 

relationships hold true or vary for contacts who write longer messages? 

This section shows the effect of limiting study message data to increasingly 

longer messages (from a minimum of 0 words to a minimum of 100 words in 

steps of 10 words) on relationships between the use of “we” words and the 

number of messages that contacts have sent. 
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5. First-Person Plural “We” Group Averages Weighted By Word Count vs. Contact 

This section compares weighting individual messages that contacts write equally 

to weighting these messages by message length. 

6. Limiting “Our” Time Period 

This section shows the effects on the relationship between the use of “we” words 

and the number of messages that contacts have sent in the two cases of (a) 

limiting study message data to the four months for which NOTCORP data was 

collected and (b) analyzing only personal messages by removing all NOTCORP 

messages and custom messages from the study data. 

Contact Averages vs. Message Averages and Other Corpuses 

The results to Hypothesis One are found by calculating the LIWC group average rates for 

contacts who have written at least one personal message. (See detailed methods in 

Section 3.3.1.) Table 4.1.2 and Figure 4.1.9 compare the overall, average, personal 

message LIWC pronoun rates weighted by contact (Table 4.1.2 column two) against 

overall, unweighted, average, personal message rates (Table 4.1.2 column three). Both of 

these rates are calculated irrespective of the groups of contacts who sent the same number 

of messages that were used to test Hypothesis One, and the overall unweighted, average, 

message rates are calculated irrespective of contacts. The two overall rates are similar. 

Table 4.1.2 and Figure 4.1.9 also compares these overall, average rates against 

average rates supplied in “The Development and Psychometric Properties of LIWC2015” 

(Pennebaker et al. 2015) for Twitter messages and the grand mean of six other text 

categories: blogs, expressive writing, novels, natural speech, the New York Times, and 

Twitter. Table 4.1.2 and Figure 4.1.9 report Twitter messages outside the grand mean of 
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all six LIWC text categories to emphasize the comparison between advocacy messages 

and Twitter messages. Among the six LIWC text categories, Twitter messages most 

closely resemble personal advocacy messages in length. In fact, nonprofit organizations 

often encourage constituents to share their advocacy messages on Twitter. 

Comparing study text to the other text categories, Table 4.1.2 and Figure 4.1.9 

show, first, that contact average pronoun rates are similar to message average pronoun 

rates. Second, in comparison to general writers of Twitter messages and general writers 

of text in the six LIWC text categories, environmental advocates use fewer “I” pronouns 

and more “we” pronouns. They use “he/she” pronouns at similar rates to those found in 

the Twitter messages, and less than those found in the six LIWC text categories. 

Results from the test of Hypothesis One (4.1.1) showed the use of “we” pronouns, 

among all LIWC pronoun dimensions, has the strongest correlation with the number of 

messages that contacts have sent. While the overall use of “we” pronouns used per 

message is low (3.9%), comparing the use of this dimension to its use in the six other 

LIWC text categories in Table 4.1.2, its rate of use is more than four times each of the 

values found in blogs (0.91%), expressive writing (0.81%), novels (0.61%), natural 

speech (87%), the New York Times (38%), and on Twitter (0.74%). The percentage is 

closer to that of positive and negative emotional words, which range from 2.1 to 5.5 

percent in these same LIWC categories, have much larger LIWC dimension dictionaries 

(620 for positive emotions and 720 for negative emotions), and are frequently used in 

sentiment analysis studies such as Kouloumpis (2011), for Twitter messages, H Wang 

(2012, 2012), for presidential candidates’ Twitter messages, and Luxon, E.M. (2019), for 

environmental policy news coverage. 
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Table 4.1.2 Pronoun Rate Comparison 
This table lists average pronoun rates for study data calculated in two different ways and for 
Twitter messages and six text categories of reported by Pennebaker et al. (2015): blogs, 
expressive writing, novels, natural speech, NY Times, and Twitter 
 

 Average Pronoun Rate (%)  

 Study Data Pennebaker et al. (2015)  

LIWC Pronoun 
Category 

Contacts’ 
Message 
Average Messages 

LIWC Twitter 
Messages 

Average of Six LIWC 
Text Categories 

Dictionary Size 
(words) 

All 14.12 13.85 13.62 15.22 143.00 

Personal 8.92 8.72 9.02 9.95 93.00 

I 1.62 1.48 4.75 4.99 24.00 

We 3.92 3.83 0.74 0.72 12.00 

You 2.30 2.39 2.41 1.70 30.00 

She/He 0.42 0.36 0.64 1.88 17.00 

They 0.66 0.66 0.47 0.66 11.00 

Impersonal 5.19 5.12 4.60 5.26 59.00 

 
 

 
Figure 4.1.9 Plot of Table 4.1.2. Comparing the Use of Pronouns in Personal Message Data 
with the Use of Pronouns in LIWC Twitter and General Data Sets 
 

Minimums, Averages, and Maximums for Groups and Contacts 
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This study calculated additional series of LIWC values, not reported above, while 

calculating group averages of contact averages. It calculated minimums and maximums 

for both groups and contacts, yielding a total of 9 series (including the average series) for 

each of the LIWC pronoun dimensions. Group minimums were the least practical metric, 

as the minimum use of each dimension was, as expected, zero for this case. A single 

message that does not contain a word in a particular LIWC dimension makes the 

minimum zero for its author and its author’s group. Group maximum rates were also not 

very useful. They contain regular ratio values for the minimum, average, and maximum 

rates (e.g. 100%, 50%, 66%) of contacts. For example, a single contact sending a single 

message with 50% pronouns (e.g. “love you”) might define the maximum “you” rate for 

their group (50%). Finally, group minimums of contact average rates and group 

maximums for contact average rates were calculated. These two series show minimums 

and maximums approaching upper and lower average contact rates. These rates express 

the distributions minimum and maximum contact rates. Figure 4.1.10 and Figure 4.1.11 

show, as examples, the group maximum and group average rate series. While less 

pertinent to answering the research questions than the group averages of the contact 

averages, the group minimum and maximum diverging lines in Figure 4.1.11 confirm 

what is expected — that rate ranges are greater for contacts who send more messages. 
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Figure 4.1.10 Average Use of Pronouns (%) vs. Messages Sent Expressed by Group 
Maximums of (a) Contact Minimums, (b) Contact Averages, and (c) Contact Maximums 
Values are regular numerical ratios (e.g. 50%, 66.66%) 
 

 
Figure 4.1.11 Use of All Pronouns vs. Number of Messages Sent Expressed by Group 
Averages of (a) Contact Minimums, (b) Contact Averages, and (c) Contact Maximums 
The group averages of contact minimums and maximums express the range of pronoun usage 
for each group of contacts who have sent the same number of messages. 
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Group Sizes 

Contacts have sent between one and 238 personal messages. For the group of contacts 

who have sent exactly one message, 78,334 out of 442,079 (18%) of these contacts wrote 

a personal message. The group that sent the highest number of personal messages, in 

comparison, is not a group at all: it’s a single contact that sent 238 messages, nine of 

which were personal messages. Figure 4.1.12 and Figure 4.1.13, in comparison to top-

coded Figure 4.1.4, show the effect of group size (number of contacts) on the LIWC 

group average calculations for first-person plural (“we”) pronouns. As the number of 

messages sent by each contact in each group increases along the abscissa, the group size 

(right axis) decreases. On a semi-log plot, Figure 4.1.13 shows that this decrease is 

exponential until the group size starts to dip below 1,000 contacts, at which point it starts 

decreasing more rapidly. As group size decreases, the variability of LIWC group means 

increase, and overall relationships become visually less apparent. 

Figure 4.1.14 shows this effect of decreasing group size on all LIWC pronoun 

attributes. Outliers in Figure 4.1.14 are more common for groups where group size is 

small. For example, the extreme outlier visible in the upper right of Figure 4.1.14 for the 

“group” that sent 147 messages per contact is, like the “group” that sent 238 messages, 

actually a single contact. This contact has written, in a single personal message, “thank 

you for your consideration.” Compared to other messages, this short message contains an 

extremely high percentage of “you” words (40%), that is over 15 times the average “you” 

rate for all messages shown in Table 4.1.2 (2.39%) and for the group average rates shown 

in Figure 4.1.5 (ranging from 2.2% to 2.6%). This message uses no other pronouns. The 

“group of one” sending 140 total messages is another outlier. This contact sent 138 
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messages, but only two of them were personal — and the two that he or she sent were 

comprised of random characters like “asdlkfhalfjd.” (While the author of these characters 

might have been using them to express an emotion or an exclamation, it is impossible to 

tell for sure.) To avoid small group problems, like these two, this study top-coded groups 

of contacts (19,017 of them; 2.75%) who sent more than 20 messages. This top-coding 

resulted in a minimum group size of 1,371 contacts for the group of contact that each sent 

a total of 20 messages. Figure 4.1.15 shows that top-coding the results in this manner 

accounts for most contacts (671,614/690,631; 97.25%) and messages (70% general 

messages; 71% personal messages) in the groups of contacts who sent 20 or less 

messages. (Winsorizing or eliminating values would produce similar effects in explaining 

correlation variations.) 

 

 
Figure 4.1.12 Group Average Use of “We” Pronouns (%) (left axis) and Group Size (right 
linear axis) vs. Messages Sent 
Compare to Figure 4.1.4, this figure does not top-code contacts who sent more than 20 
messages into a single group. This shows the variability in “we” percentages increases as group 
size decreases. 
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Figure 4.1.13 Group Average Use of “We” Pronouns (%) (left axis) and Group Size (right 
log axis) vs. Messages Sent. 
Compared to Figure 4.1.12, the log scale for group size emphasizes the relationship between the 
use of the “we” words and the engagement factor, messages per contact, for the bulk of the 
contacts who sent a low number of messages. The log scale for group size also reveals the high 
number of “groups” with only a single contact in them for contacts who have sent over 100 
messages (bottom right of this figure). 
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Figure 4.1.14 Group Average Use of all LIWC Pronouns Dimensions (%) (left axis) And 
Group Size (right log axis) vs. Messages Sent. 
This plot shows the variability all LIWC pronoun attributes increases as group size (contacts) 
decrease. 
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Figure 4.1.15 Number of All Messages and Number of Personal Messages (left axis) and 
Group Size (right axis) vs. Messages Sent 
 
 

Sensitivity of Word Count on First-Person Plural (“we”) Pronouns: Do Pronoun 

Relationships Hold True or Vary for Contacts who Write Longer Messages? 

Although a clear, strong negative relationship exists between the number of messages 

that contacts send and first-person plural “we” pronouns, R2 = 0.87 (Table 4.1.1, Figure 

4.1.4), the practical use of “we” pronouns to predict organizational engagement from a 

single message is limited by (a) the low percentage of “we” pronouns in each message 

and (b) by the low regular word count for a personal messages. Figure 4.1.5 shows the 

frequency distribution of word count is positively skewed with an average of 29 words 

per message and a mode of 11 words per message. 
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Figure 4.1.16 Positively Skewed Distribution of Word Count 
Average = 29 Words; Mode = 11 Words 
 

While many studies do review linguistic attributes that are used in low frequencies (like 

the studies referenced in Section 4.1.2.1), determining the difference of using 3% or 4% 

of “we” pronouns in a single personal message, given word count, is unrealistic. 

These observations inspire a message length (word count) sensitivity analysis on 

the relationship between “we” pronouns and the number of messages that contacts send. 

This analysis should answer the question: Is it easier to predict the number of messages 

that contacts send from the use of “we” pronouns for contacts who write longer 

messages? Repeating the test of the relationship between “we” pronouns on the number 

of messages sent in Hypothesis One, and limiting the group size in this test for contacts 

who write messages with a minimum average word count in the range of zero to 100 

shows, at first, that the correlation decreases with word count. A weaker, but still strong 

correlation (R2=0.74) exists at a 20 word minimum limit. A moderate correlation exists 

(R2=0.52) for a 30 word minimum limit. Results are shown in Table 4.1.3 and Figure 
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4.1.17. The decreasing correlation may be due to decreasing group size (also tabulated in 

Table 4.1.3; less contacts send longer messages), but the wavering tail correlation 

increase shown in Figure 4.1.6 may be due to word count. Future work could investigate 

these relationships further. 

Table 4.1.3 Effects of Limiting Data by Minimum Word Count (WC) on the Correlation 
Between the Use of First-Person Plural “we” Pronouns and Groups of Contacts Who Have 
Sent the Same Number of Messages. 
 

Minimum WC R2 Group Size (Contacts) 

0 0.87 690,631 

10 0.85 248,552 

20 0.74 162,666 

30 0.52 123,411 

40 0.35 100,210 

50 0.25 84,574 

60 0.20 73,736 

70 0.15 65,559 

80 0.23 59,500 

90 0.35 54,752 

100 0.09 50,892 

 
Figure 4.1.17 Effects of Limiting Data by Minimum Word Count (WC) on the Correlation 
Between the Use of First-Person Plural “we” Pronouns and Groups of Contacts Who Have 
Sent the Same Number of Messages. 
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 First-Person Plural “We” Group Averages Weighted By Word Count vs. Contact 

Objective One methods describe two procedures to lump pronoun rates for groups in 

Section 3.3.1. The first procedure calculates average contact LIWC rates, weighted 

equally messages (step 4a in Section 3.3.1). Results reported in Section 4.4.1 at the 

beginning of this chapter follows this procedure. The second procedure (step 4b in 

Section 3.3.1) calculates contact LIWC rates for all contact messages. This is equivalent 

to weighting messages by message length in the calculation of each contact rate, or 

concatenating the personal messages that each individual contact wrote, and calculating 

an overall, single, contact LIWC score. 

In weighting messages equally to calculate average contact pronoun use rates, 

short messages could lead to contact rates that misrepresent the linguistic styles of their 

authors expressed in any long messages also written by them. For example, a contact who 

sends one very short message, “I love you,” uses zero words in the LIWC “we” pronoun 

dimension. If that same contact sends a longer message using “we” words at a rate of 

10%, following the procedure in step 4a in section 3.1, the test for Hypothesis One would 

give the contact an overall 5% rate (0%+10%)/2 = 5%). Repeating Hypothesis One “we” 

words, but with word count averages instead of contact averages, yields results similar to 

the original results. Results from this “we” pronoun test are shown in Figure 4.1.7. 
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Figure 4.1.18 Group Average Use of “We” Pronouns Weighted by Message Length and 
then by Contact (%) vs. Messages Sent 
Trendline: R2 = 0.895 for [Group Average Use of “She/He” Pronouns] = -0.016 [Messages] + 3.55 
Results are similar to those found by equally weighting “we” rates by message, 
where R2 = 0.895, shown in Figure 4.1.4. 
 
 

Limiting “Our” Time Period 

As described in the data section, messages that were not customized and were not 

personalized (NOTCORP) were only available between July 1, 2018 through October 31, 

2018 (four months), while personal messages and customized messages were available 

between July 1, 2017 and October 10, 2018 (16 months). This difference in periods 

presented two main options for testing the three initial hypotheses: (1) using all data to 

calculate the number of messages and the average linguistic rates for each contact, and 

(2) constraining the data to the limited set of four months. A third, intermediate option, is 

to (3) remove the NOTCORP data. The advantage of the first option is that it considers a 

longer history for each contact and therefore a larger sample of messages. The 

disadvantage of the first option is that it increases the variability of the average number of 
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messages sent per contact when contacts are individually more or less active before and 

after July 1, 2017. The advantage of the first option – the longer time period and greater 

number of messages used to describe a contact – can also be considered a disadvantage. 

Advertising companies like Google, for example, place less value on older data. In fact, 

Google even allows users to have their data usage purged automatically after three or 

eighteen months (Google 2019) – but no less. The second option could be, therefore, 

considered advantageous in that only linguistic rates calculated from recent months 

would be considered. (A future temporal analysis could test the sensitivity of time ranges 

on relationships, provided new data.) The third option, like the first option, considers the 

longer 16-month time period, but it eliminates the NOTCORP data, and its limited 

timeframe, completely. This third option still considers messages without personal 

messages — the customized messages for which linguistic scores were not computed for. 

While the results chapter reports findings from selecting the first option as the 

primary method of conducting the study, results from testing the second and third option 

were similar. Figure 4.1.19 demonstrates the effect of limiting the study time period on 

the test of first-person plural “we” pronouns as a predictor of engagement. Even though 

the number of contacts in each group has been reduced, a strong, negative, linear 

correlation remains (R2 = 0.827). Figure 4.1.20 shows the third analysis option — 

eliminating the NOTCORP data. It yields a correlation of R2 = 0.717. These figures 

indicate that considering both the petition-style messages, and the messages that contacts 

choose not to customize, alongside the messages that they do customize, strengthen 

observed correlations. 



 

84 

 
Figure 4.1.19 Group Average Use of “We” Pronouns (%) vs. Message Sent After July 1, 
2018 
Trendline: R2 = 0.827 for [Group Average Use of “We” Pronouns] = -0.0358 [Messages] + 3.74 

 
Figure 4.1.20 Group Average Use of “We” Pronouns (%) vs. Personal Message Sent 
Trendline: R2 = 0.717 for [Group Average Use of “We” Pronouns] = -0.0166 [Messages] + 3.95 
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 Hypothesis Two: Relationships Between Personal Messages and the Number 

of Messages that Contacts Send 

Figure 4.2.1 shows results from the methods to test Hypothesis Two for groups of 

contacts who sent the same number of messages. The average personal message rate 

increases from 18% to 24% to 26% between groups of contacts who sent one, two, and 

three messages. The rate stays at 26% personal messages before slowly decreasing to a 

minimum of 15% for contacts who sent 35 messages. It then increases to rates 

approaching 50% for small groups of contacts who sent a lot of messages (>40). 

Given the group size discussion in the results for the test of Hypothesis One 

(section 4.1.2.3), most contacts who have sent two or more messages are more likely to 

have sent personal messages at a higher rate than contacts who sent a single message. 

Additionally, the small number of contacts who sent many messages (>40), sent personal 

messages at an increasing rate. Figure 4.2.2 shows a simpler plot of the average number 

of personal messages sent instead of the rate. 

Contacts who write more messages also send personal messages at a higher rate. 

Inversely, and directly answering the research question, contacts who send personal 

messages at high rates also send more messages. For the bulk of the contacts (671,614 

among 690,631; 97%) sending under 20 messages: groups of contacts who send 

messages at the average rate of 18%, send only send one message. The group of contacts 

sending two to twenty messages, send them at an average rate of 25%. 

A final, simpler way to understand the relationship between the use of personal 

messages and the use of all messages is by reviewing the plot of the total number of each 

of these categories of messages as shown in Figure 4.1.15, above, and isolated in Figure 
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4.2.3, below. The figure shows the ratio of personal messages to all messages increasing 

as the number of messages that contacts send increases from one message to two 

messages. 

 
Figure 4.2.1 Average Personal Message Rate vs. Messages Sent per Contact 

 
Figure 4.2.2 Average Personal Messages vs. Messages Sent per Contact 
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Figure 4.2.3 Number of All Messages and Number of Personal Messages for Groups of 
Contacts Who Have Sent the Same Number of Messages from One to Twenty 

 

 Hypothesis Three: Relationships Between Message Length and the Number 

of Messages that Contacts Send 

Figure 4.3.1 shows that, on average, most contacts write messages one word longer (28 to 

29 words) when they write more than a single message. The number of messages then 

begins to drop by a slight 1/10 of a word per message with a moderate strength 

correlation (R2=0.694). The average message length for the group sending more than one 

message, however, is 29 words, and the average message length for all messages is also 

29 words. In summary, groups of contacts who send only one message send very slightly 

shorter messages (1 word). (Interestingly, as shown in Chapter 5 explorations, most 

contacts who send more messages are also more likely to contribute membership dues to 

the organization.) 
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Figure 4.3.1 Word Count vs. Number of Messages Sent 
Trendline: R2 = 0.694 for [Word Count] = -0.01 [Messages] + 29.3 
After two messages, contacts who sent more messages, sent slightly shorter messages. 
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 RESULTS FOR OBJECTIVE TWO: 

MEMBERSHIP EXPLORATION 

This chapter both details methods and reports relationships between message and text 

metrics with a second measure of engagement, membership. It labels contacts as 

members if they have paid any amount of membership dues to their organization within 

the past year of any message that they have sent, or have been designated as a lifetime 

member by their organization for a large contribution during or before the study period. It 

refers to the percentage of members in different groups of contacts as a membership rate 

for that group. 

The first section of this chapter, Section 5.1, reports relationship between membership 

and the message and text metrics used in testing Objective One hypotheses: 

1. Number of messages and personal messages (Section 5.1.1) 

2. Use of pronouns (Section 5.1.2) 

3. Message length (Section 5.1.3) 

Next, Section 5.2 reports correlations between the use of LIWC dimension words and 

membership for ungrouped contacts. It also reports correlations between the use of LIWC 

dimension words and the measure of engagement from Objective One, the number of 

messages that contacts send, as well as the number of personal messages that contacts 

send – but for individual, ungrouped contacts vs. the groups of contacts. 

 Section 5.3 through Section 5.7, finally, reports membership rates for contacts 

grouped by conditions defined by the following text metrics: 

1. Terms used to search for personal stories (Section 5.3) 

2. Writing complexity defined by the Flesch reading ease test (Section 5.4) 
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3. Sentiment defined by the VADER sentiment classifier (Section 5.5) 

4. Popular words among all personal messages in this study (Section 5.6) 

5. Words in all LIWC Dimensions (Section 5.7) 

Among the 690,631 total contacts who have sent any type or number of messages, 90,698 

are members (13% membership rate), 194,409 have authored personal messages (28%), 

and 52,323 are members who have sent personal messages (7.6%). Compared to the 

overall 13% membership rate (90,698/690,631), the membership rate for those sending 

personal messages is 27% (52,323/194,409). Section 5.3 through Section 5.7 compares 

conditional membership rates to alternative conditions and these baseline membership 

rates (13% and 27%). 

Contacts labeled as members in this study gave a minimum of $15/year. Most 

contacts gave suggested amounts, or more. For reference, Table 4.3.1 shows minimum, 

suggested, and maximum membership rates for large, prominent U.S.-based nonprofit 

environmental organizations that actively host online advocacy systems to send petitions 

and letters to policymakers. The average, regular, annual membership or one-time 

donation rate for these organizations is $52/person/year. Study data did not come from all 

these organizations. 
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Table 4.3.1 Membership Rates for Large, National Environmental Nonprofit Organizations 
with Online Petition or Letter-Writing Campaigns. 
Data comes from organization websites, ProPublica (2019) and the Internal Revenue Service 
(2019) for 501c3 and 501c4 organizations. Organization form 990 revenue comes from several 
sources, including, but not exclusively from membership dues. Study data did not come from all 
of these organizations. 

 Monthly  Annual or One Time 

Form 990 
Revenue (M) Advocacy Organization M

in
 

S
u
g

g
e
s
te

d
 

M
a
x
 

 M
in

 

S
u
g

g
e
s
te

d
 

M
a
x
 

Earthjustice $35 - $1,000  $35 $30 $1,000 $80 

Environmental Defense Fund $15 $25 $75  $35 $50 $1,000 $211 

Greenpeace $15 $25 $55  $30 $50 $120 $17 

National Audubon Society $20 $50 $500  $20 $50 $500 $134 

National Wildlife Federation $8 $50 $50  30 50 1000 $83 

Natural Resources Defense 
Fund $15 $20 $100 

 
$35 $50 $200 $182 

Nature Conservancy $15 $100 $10,000  $15 $100 $10,000 $1,185 

Sierra Club $15 $20 $85  $25 $39 $75 $141 

Wildlife Conservation Society $10 $20 $100  $25 $50 $500 $279 

World Wildlife Fund (WWF) $10 $15 $50  $25 $50 $5,000 $257 

Average $16 $36 $1,202  $28 $52 $1,940 $257 

 
 
 

 Exploration One: Membership as a Measure of Organizational Engagement 

This section reports test results of relating three types of predictor metrics to membership. 

These three types of predictor metrics are similar to the three types of predictor metrics in 

the three initial hypotheses in Objective One; they are: the number of messages and the 

number of personal messages a contact has sent (Section 5.1.1), pronoun use (Section 

5.1.2), and message length (Section 5.1.3). 

5.1.1. Membership and The Number of Messages Sent 

This exploration begins by testing relationships between the number of messages that 

contacts have sent, the measure of engagement of Objective One, to membership, the 

measure of engagement of Objective Two. Figure 5.1.1 shows positive relationships 
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between the number of messages that contacts have sent as a predictor of membership. 

Similar to Figure 4.1.13 and Figure 4.1.14 in Section 4.1.2.3, Figure 5.1.1a shows the 

effects of groups of contacts with low numbers of contacts, who have sent high numbers 

of messages, on the variability of membership rates. As the number of messages that 

groups send increases, group size rapidly decreases to one or two contacts, and the 

variability of membership rates increases. For example, the average size of groups of 

contacts sending 100 or messages is equal to two. This example explains the points that 

could form a horizontal line at the 50% membership rate in Figure 5.1.1a. Connected, 

other points in Figure 5.1.1a would form other horizontal lines at other regular 

membership rates for small groups of contacts (e.g. 0%, 25%, 33%, 66%, 75%, and 100% 

membership rates). As addressed in the results for Hypothesis One, Figure 5.1.1b top-

codes groups of contacts sending more than 20 messages into a group of 19,017 contacts. 

(See Section 3.3.1.2 for a description of how this study top-codes contacts and Section 

4.1.2.3 for the importance of top-coding contacts who have all sent high numbers of 

messages, over 20.) 
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(a) All Groups of Contacts who Sent the Same Number of Messages 
Membership rates are percentages of members for groups of contacts. 
 

 
(b) Groups of Contacts who Sent the Same Number of Messages, Top-Coded for Contacts who 
Sent More than 20 Messages 
 
Figure 5.1.1 Membership Rate (%) vs. Number of Messages Sent 
Membership rates range from 7%, for the group of contacts who sent one message, to 
37%, for the groups of contacts who sent 13, 15, 16, 17, and 21+ messages. Membership 
rates are percentages of members for groups of contacts. 
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Figure 5.1.2 flips looking at average membership rates as a function of groups of contacts 

who sent the same number of messages, to looking at the average number of messages 

sent as a function of membership. The figure shows a total of four groups of two 

averages. The first two groups show that members send more messages than non-

members. They send, on average, 3.753 more messages (6.445 - 2.692 = 3.753; a 139.4% 

increase) and 1.478 more personal messages (1.995 - 0.517 = 1.478; a 285.9% increase). 

The second two groups in Figure 5.1.2 represent contacts who have sent at least 

one personal message. These groups are interesting to this study because the contacts’ 

personal messages in these groups permit this study to perform text analysis on them. 

These two groups show, in general, similar results to the first two groups: members send 

messages at higher rates than non-members. Specifically, for contacts who have sent at 

least one personal message, average overall message rates increase by 3.061 messages 

(7.938 - 4.877 = 3.061; a 62.76% increase) and personal message rates increase by 1.277 

(3.459 - 2.182 = 1.277; a 58.52% increase). Comparing the first two groups to the second 

two groups, for each group, contacts who have sent at least one personal message are also 

more likely to send more messages overall. 
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Figure 5.1.2 Average Number of Messages and Personal Messages Sent Per Contact 
Organized by Conditions of Membership and Whether a Contact has Sent a Personal 
Message 
 

5.1.2. Membership and LIWC Pronoun Rates 

Figure 5.1.3 shows that most contacts use no or low rates (≤ 1%) of pronouns from each 

individual “i,” “we,” “you,” “she/he” and “they” pronoun dimension. These contacts have 

membership rates equal to or slightly lower than the baseline membership rate for all 

contacts who write personal messages (27%). The contacts who use pronouns from each 

individual “i,” “we,” “you,” “she/he” and “they” dimension at a rate of 1% or lower have 

respective membership rates of 25%, 23%, 25%, 27%, and 26%. The contacts who use 

pronouns from each individual “i,” “we,” “you,” “she/he” and “they” dimension at rates 

between 1% and 2% have much higher respective membership rates of 36%, 35%, 36%, 

31%, and 35%, but much fewer contacts use pronouns in these dimensions at rates higher 

than 1%. For the contacts that do use pronouns at rates higher than 1% for “i,” “we,” 
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“you,” “she/he” and “they” pronoun dimensions, Figure 5.1.3 shows a negative 

relationship between these pronouns and membership. 

Membership rates are all lower for contacts that use no or low rates (≤ 1%) of 

pronouns from the all pronoun, all personal pronoun, and impersonal pronoun dimensions 

(19%, 20%, and 22%) compared to the membership rates for  “i,” “we,” “you,” “she/he” 

and “they” dimensions. Additionally, Figure 5.1.3 does not show clear trends between 

membership and the use of all pronouns and all personal pronouns for pronoun use rates 

greater than 1%. These observations illustrate the parent-child category relationships 

between pronoun dimensions in LIWC (2018) and show that contacts do not use all types 

of pronouns in all messages.3 

  

 

 

3 Given message time stamps, these plots could inspire future tests of relationships between 

membership, pronoun diversity, and changing perspectives of authors. See Pennebaker (2011) for a 

discussion of the importance of analyzing changing perspectives in text. 
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a. All Pronouns 

 
b. All Personal Pronouns 
 
Figure 5.1.3 Membership Rate (%) vs. LWIC Pronoun Dimensions Rates (%) 
For (a) All Pronouns, (b) All Personal Pronouns, (c) “I” Pronouns, (d) “We” Pronouns, (e) “You” 
Pronouns, (f) “They” Pronouns, (g) “She/He” Pronouns, (h) and Impersonal Pronouns 
Contacts are grouped into bins by their individual average message LIWC rates. Membership 
rates are percentages of members for groups of contacts. 
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c. “I” Pronouns 

 
d. “We” Pronouns 
 
Figure 5.1.1 Continued. Membership Rate (%) vs. LWIC Pronoun Dimensions Rates (%) 
For (a) All Pronouns, (b) All Personal Pronouns, (c) “I” Pronouns, (d) “We” Pronouns, (e) “You” 
Pronouns, (f) “They” Pronouns, (g) “She/He” Pronouns, (h) and Impersonal Pronouns 
Contacts are grouped into bins by their individual average message LIWC rates. Membership 
rates are percentages of members for groups of contacts. 
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e. “You” Pronouns 

 
f. “She/He” Pronouns 
 
Figure 5.1.1 Continued. Membership Rate (%) vs. LWIC Pronoun Dimensions Rates (%) 
For (a) All Pronouns, (b) All Personal Pronouns, (c) “I” Pronouns, (d) “We” Pronouns, (e) “You” 
Pronouns, (f) “They” Pronouns, (g) “She/He” Pronouns, (h) and Impersonal Pronouns 
Contacts are grouped into bins by their individual average message LIWC rates. Membership 
rates are percentages of members for groups of contacts. 
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g. “They” Pronouns 

 
h. Impersonal Pronouns 
 
Figure 5.1.1 Continued. Membership Rate (%) vs. LWIC Pronoun Dimensions Rates (%) 
For (a) All Pronouns, (b) All Personal Pronouns, (c) “I” Pronouns, (d) “We” Pronouns, (e) “You” 
Pronouns, (f) “They” Pronouns, (g) “She/He” Pronouns, (h) and Impersonal Pronouns 
Contacts are grouped into bins by their individual average message LIWC rates. Membership 
rates are percentages of members for groups of contacts. 
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5.1.3. Membership and Message Length 

Figure 5.1.4 shows that for average word count bins, membership rates quickly increase 

from 17% to 30% as average word counts for individual contacts increase between 1 to 

40 words long. Then, membership rates begin to slowly decrease with increasing average 

word counts and decreasing numbers of contacts. The contacts who sent messages with 

average word counts less than or equal to 40 account for most of the contacts who sent 

personal messages (79%; 152,712 out of 194,409 contacts). The contacts who have sent 

messages with an average word count greater than 40 words have an average membership 

rate of 28%, which is close to the baseline membership rate for all contacts who write 

personal messages (27%). 

The membership rate for the group of contacts that includes contacts who sent 

messages with an average word count equal to the mode word count of all personal 

messages (13 words) is 26%, which is close to the baseline membership rate for all 

contacts who write personal messages (27%). The membership rate for the group of 

contacts that includes contacts who sent messages with an average word count equal to 

the average word count of all personal messages (29 words) is 30%, which is only 

slightly higher than the baseline membership rate (27%). 

Overall, membership rates (left axis) and the positively skewed distribution of 

word count (right axis) show that for most contacts, average word counts between one 

and the overall average word count (29) are better predictors of membership rate 

differences than higher average word counts are. For example, Figure 5.1.4 groups 

contacts who write messages 25 words shorter than the average message (29 - 25 = 4 

words) with contacts that have a 17% membership rate (17% - 30% = -13%; a strong 



 

102 

difference). Alternatively, Figure 5.1.4 groups contacts who write messages 25 words 

longer than the average message ( 29 + 25 = 54 words) with contacts that have a 29% 

membership rate (29% - 30% = -1%; a slight difference). 

 
Figure 5.1.4 Membership Rate vs. Average Word Count 
Contacts are grouped into bins by their individual average message word counts. 
Membership rates are percentages of members for groups of contacts. 
 

 Exploration Two: Ungrouped Correlations 

While the results from Hypothesis One show correlations between pronoun usage and the 

average number of messages that groups of contacts send, correlations between pronoun 

usage and the number (not average) of messages that individual contacts send approach 

zero for all contacts. This makes sense: groups of thousands of contacts sending tens of 

thousands of messages reveal more information than single contacts sending a few 

messages — the bulk of the data. By limiting the test of individual correlations to more 

prolific writers (as identified by minimum word counts and minimum numbers of 

messages sent), correlations begin to appear. In summary, it is easier to distinguish 

correlations among contacts who write longer and more messages. Figure 5.2.1 shows 

these correlations for contacts sending a minimum number of personal messages equal to 
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1, 2, 10, 15, and 20 (rows of plots) with minimum word counts of 0, 25, and 75 (columns 

of plots). Pronoun dimension correlations are plotted alongside other LIWC dimensions 

described in LIWC 2018. Notice that, while practically nonexistent, when the data are 

less restricted, the correlation coefficients between “we” and “you” words are 

respectively negative and positive as seen in the group test results of Hypothesis One. As 

the minimum number of messages per contact increases, and the minimum average word 

count per contact increases, the trend becomes slightly reversed: For example, the very 

small groups of prolific writers (e.g. the 77 contacts who wrote an average of 75 words 

per message — three times the average — among at least 15 messages — five times the 

average) tend to use “we” words somewhat more often (R=0.18), and “you” words 

slightly less often (R=-0.16) for greater numbers of messages. 
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(a) Contacts sending at least one personal messages (pm ≥ 1) 
 
 

 
(b) Contacts sending at least two personal messages (pm ≥ 2) 
 
Figure 5.2.1 Continued. Relationships (R) between Individual Contact Linguistic Score 
Averages and Engagement (Messages, Personal Messages, and Membership) for Minimum 
Average Word Counts – avg(pm) – of 0, 25, 50, and 75. 
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(c) Contacts sending at least ten personal messages (pm ≥ 10) 
 

 
(d) Contacts sending at least three personal messages (pm ≥ 3) 
 
 
Figure 5.2.1 Continued. Relationships (R) between Individual Contact Linguistic Score 
Averages and Engagement (Messages, Personal Messages, and Membership) for Minimum 
Average Word Counts – avg(pm) – of 0, 25, 50, and 75. 
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(e) Contacts sending at least 20 personal messages (pm ≥ 20) 
 
Figure 5.2.1 Continued. Relationships (R) between Individual Contact Linguistic Score 
Averages and Engagement (Messages, Personal Messages, and Membership) for Minimum 
Average Word Counts – avg(pm) – of 0, 25, 50, and 75. 
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 Exploration Three: Personal Stories 

As described in the introduction, research bodies and practitioners encourage nonprofits 

to look for personal stories among personal messages (Karpf 2016, Congressional 

Management Foundation 2017, Social Change Agency 2017a, 2017b, Long 2018) to 

create “groundbreaking” (Social Change Agency 2018b) digital campaigns. These 

researchers have shown that contacts who share stories about how they have been 

affected by campaign issues have a greater potential to contribute to nonprofits as 

participants and organizers. In fact, an original proposal for this dissertation considered 

training a naive Bayes classifier to attempt to identify personal stories for advocacy 

campaigns. While a machine learning classification model could be developed in the 

future, work on Objective Two begins by using key-phrase searches to identify messages 

with personal stories. It then tests whether specific phrases are related to membership. 

This exploration developed phrases from a collection of words already used by an 

employee of one nonprofit advocacy organization to look for personal stories. This 

employee noticed that the following phrases help identify personal stories for their team: 

1. As a 

2. I am a 

3. I live 

4. In my state/district 

5. My family 

6. My husband 

7. My wife 

8. My children 
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While some letter-writing campaigns may elicit many personal stories of lived 

experiences, permitting organizations’ legal teams to pick and choose testimonials, many 

campaigns do not, and sets of small numbers of identified stories lead to statistically 

insignificant findings about membership even if those stories may be practically applied. 

Categorical chi-squared tests comparing small groups of contacts who have sent personal 

stories to those who have not sent personal stories, on the basis of membership, yield 

high, insignificant, p-values. 

To address this problem of small groups matching conditions, inspired by LIWC 

pronoun dictionaries and work by Gordon et al. (2009), who looks for stories in longer 

passages of text, the study casts a net to catch personal stories by expanding the original 

list of personal story phrases (above) to include subject pronoun variations (first-person, 

second-person, third-person, singular, plural; e.g. “I” and “we”), verb tenses (past, 

present, future) and endings (e.g. “ed” and “ing”), object single and plural ending 

variations (e.g. child vs. children), and limited consideration to imperfect tense (e.g. was 

vs. had) and some associated hedge phrases (e.g. have been living, had lived, go to, going 

to). 

It tests for the presence of phrases (a) starting a message, (a) anywhere, and (c) at 

the beginning of sentences and prepositions, qualified by patterns of punctuation and 

spaces. Searching for phrases at the beginning of a message automatically finds messages 

that begin with sentences that begin with the phrases, e.g., “as a scientist…,” but does not 

find messages that contain later sentences that begin with the phrases, e.g., “stop the 

pipeline. As a scientist….” Searching anywhere finds both types of messages, increasing 

the number of results. Qualifying messages actually limits the number of search results 
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returned by queries, but in many cases, aligns results closer to their queries’ intent. For 

example, an unrestricted search for “as a” returns unintentional results for any message 

with a word ending in “as” and a following word beginning with “a,” like, “The 

department has already accepted the contract…,” where “has already” contains the 

matching phrase. A regular expression to search for this particular unintended result 

(MySQL expression “[a-z]as a[a-z]”) returns 7,588 similar messages. Most of these 

messages do not tell personal stories like those found by the more complex pattern 

matching for “as a” at the beginning of sentences and prepositions (MySQL expression 

“(([:punct:][:space:](As a))|(^As a))[:space:]”). (Note: Despite the capital letter “A” 

shown in the pattern of this example, expressions in this study were matched against 

fields with a case insensitive collation to pick up prepositional phrases, e.g. “after 

witnessing the dissemination of African Elephants from my family home village over the 

last 20 years, as an African, I hope that you will support the U.S. program to….”) 

Reading messages resulting from the initial queries reveals most regular 

expressions describing these phrases do, indeed, reveal what an advocacy organization 

might call “personal stories” — but not necessarily “lived experiences” (Sandhu 2017, 

Social Change Agency 2017a). Many resulting messages independently convey other 

meanings, such as volition to act and threats, e.g. “I will vote against every conservative 

politician I can and switch my party affiliation if Bears Ears National Monument is 

reduced by even one square foot”; family support, e.g. “my husband and I urge you to do 

this”; specific occupation, e.g. “I am a carpenter and, therefore…support…sustainable 

logging. The Giant Sequoias are too important…”; education and income, e.g. “I am an 
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undergrad who with student loans. I try my best every single month to save energy in 

every way possible….” 

Contacts describing battles with asthma near sources of pollution convey personal 

stories. A search for sentences beginning with “I’ve had” and “I live” return results such 

as,  

I’ve had asthma my whole life. I grew up in LA in the 50s and this issue matters to 

me. I want a world where my grandchildren can breathe easy,  

and  

I live along the interstate outside this operation. My family and friends are getting 

sick with asthma and are being forced to exercise indoors since fracking began. 

Methane and VOCs need to be regulated in every way possible  

These messages have subjectively “more” personal stories in them than results from other 

queries for “my daughter” and “I have:” 

My child and I have asthma. Do your job. Protect our air! 

and 

I have asthma and need clean air to breathe. 

While this review exposes varying degrees of personal stories and intents of messages 

found with different expression patterns, this exploration did not rank messages by 

degrees of personal story. This work might be better suited for a machine learning in the 

future. This exploration does, however, evaluate several categories of searches and, 

additionally, tests LIWC dimensions and the most popular words used in messages. It 

reports findings for searching for personal stories with references to family, gender, 

residence, education, activism, volunteering, voting, spending, suffering, and swear 
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words. Appendix B lists the SQL queries and regular expressions used by this study to 

conduct these searches. 

5.3.1. Personal Stories and Family 

The study began exploration with a search recommended by a nonprofit organization to 

test for the presence of “my husband” or “my wife” at the beginning of a message to find 

personal stories. The search found some personal stories — but more interestingly, 

successfully identified high membership rates. Table 5.3.1. shows that authors who have 

begun their messages with “my wife” or “my husband” (n=608, coded in MySQL as 

“LIKE ‘my husband%’”) have almost double the membership rate of those who did not 

(49% vs. 27%). A chi-square test shows the relationship is significant, X2 (k=1, 

n=194,409) = 154, p < 0.01. Table 5.3.2 shows the calculation of expected values for this 

statistic. Authors who have used these terms anywhere in their messages (n=1,219, e.g. 

"%my husband%") have a 45% membership rate compared to a 27% membership rate for 

those that do not (also p<0.01). Limiting this test to the group of contacts who have sent 

longer-than average messages has little effect on the test results: The number of results 

decreases to 438 contacts and the membership rate increases by one percent, to 50% — 

producing a 23% increase over the 27% membership rate of the alternative results (p < 

0.01).  

Table 5.3.3 shows results for variations for husband and wife queries tested 

independently along with other family conditions. The chi-squared tests for second-

person and third-person husband and wife search conditions, such as searches for “your 

wife,” have low enough conditional group sizes that their p-values exceed 0.1; their 

relationships therefore are not significant. Table 5.3.3 also shows that groups of contacts 
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who begin messages with search terms, despite their lower group sizes, generally have 

one or two percent higher membership rates compared to contacts who use the search 

terms anywhere in their messages. Further, the groups of contacts matching alternative 

conditions have membership rates close to the general membership rate of contacts 

sending personal messages (27% to two significant figures). 

Contacts who discuss children have the highest numbers of matching contacts and 

significant 36% and 37% membership levels compared to the average 27% membership 

rate. Queries that find these contacts match “my children” and “our children” in addition 

to singular “child” expressions. Figure 5.3.1. shows these membership rates.  

In summary, contacts who discuss their family members are more likely to be 

members, and contacts discuss their children more than their spouses. An expansion 

study could test membership against references to grandchildren and other types of 

family members and friends not tested here: sons, daughters, mothers, fathers, etc. 
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Table 5.3.1 Husband and Wife Personal Story Observation Contingency Table and 
Calculations 
A “personal story” condition in this table is defined by the case where a contact has written a 
message beginning with “my husband” or “my wife.” X2 (k=1, n=194,409) = 154, p < 0.01 
 

Observed 

Began a message 
with “my husband” 

or “my wife” 

Did not begin 
message with “my 
husband” or “my 

wife” Sum  Total Proportion 

Member 299 52,024  52,323 0.269 
(52,323/194,409) 

Not a Member 309 141,777 142,086 0.731 
(142,086/194,409) 

Sum 608 193,801 194,409 1 

Membership Rate 49% 
(100%*299/608) 

27% 
(100%*52,024 

/193,801) 

27% 
(100% 
*52,323 

/194,409) 

 

 
 
 
 
 
Table 5.3.2 Husband and Wife Personal Story Expected Values Contingency Table and 
Calculations 
Along with observations from Table 5.3.2, this table shows expected values and sub-calculations 
to calculate the chi-squared statistic and the chi-squared test p-value. These two tables serve as 
examples for additional chi-squared tests in Chapter 5. 
 

Expected 

Began a message 
with “my husband” 

or “my wife” 

Did not begin 
message with “my 
husband” or “my 

wife” 

Member 164 
(608*0.269) 

52,157 
(194,409*0.269) 

Not a Member 444 
(608*0.731) 

141,642 
(194,409*0.731) 

Sum 608 193,801 
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Table 5.3.3 Membership Rates (m), Sizes (contacts, n), and Chi-Squared Test P-Values for 
Family Conditions (true, c, and not true, ~c) 

condition term n
|c

 

n
|~

c
 

m
|c

 

m
|~

c
 

m
|c

-m
|~

c
 

m
|c

-m
 

p
 

starts with my family 586 193,823 38% 27% 12% 11% 0.00 
contains my family 2,258 192,151 38% 27% 11% 11% 0.00 
phrase starts with my family 873 193,536 37% 27% 11% 11% 0.00 
starts with our family 155 194,254 40% 27% 13% 13% 0.00 
contains our family 1,496 192,913 36% 27% 9% 9% 0.00 
phrase starts with our family 219 194,190 39% 27% 12% 12% 0.00 
starts with my child 166 194,243 38% 27% 11% 11% 0.00 
contains my child 2,060 192,349 37% 27% 10% 10% 0.00 
phrase starts with my child 337 194,072 38% 27% 11% 11% 0.00 
starts with our child 578 193,831 38% 27% 11% 11% 0.00 
contains our child 14,005 180,404 36% 26% 10% 9% 0.00 
phrase starts with our child 1,579 192,830 36% 27% 9% 9% 0.00 
starts with my husband 384 194,025 47% 27% 21% 20% 0.00 
contains my husband 811 193,598 41% 27% 15% 15% 0.00 
phrase starts with my husband 528 193,881 45% 27% 18% 18% 0.00 
starts with my wife 224 194,185 52% 27% 25% 25% 0.00 
contains my wife 410 193,999 51% 27% 24% 24% 0.00 
phrase starts with my wife 273 194,136 52% 27% 26% 25% 0.00 
starts with my wife or my husband 608 193,801 49% 27% 22% 22% 0.00 
contains my wife or my husband 1,219 193,190 45% 27% 18% 18% 0.00 
contains your wife or your husband 62 194,347 24% 27% -3% -3% 0.63 
contains his wife or her husband 53 194,356 26% 27% 0% 0% 0.93 
 

 
Figure 5.3.1 Family Words and Membership 
37% membership rate for 20,001 total contacts 
Membership rates are percentages of members for groups of contacts. 
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5.3.2. Self-Identification Predictors for Personal Stories and Membership 

As describing one’s husband or wife may be indicative of a personal story (and perhaps 

money spent on membership; Figure 5.3.1, above), categorizing one’s self is by definition 

personal, and results from the search for terms like “as a,” “I am,” and “I live,” reveal 

more than just the stories of “lived experiences” (Sandhu 2017, Social Change Agency 

2017a)  that this exploration set out to look for. Results of these types of searches answer 

questions that advertising companies and banks traditionally asked consumers to judge 

consumer income and make credit determinations. Without taking a survey, some writers 

identify their own family membership, gender, occupations, affiliations, and education, 

writing “I am a mom,” “I am a doctor,” “I am a college student,” “I am a teacher,” or “I 

am a Marylander.” Table 5.3.4 shows membership rates for these types of queries. 

 

General Self-Identification 

For general self-identification conditions, Table 5.3.4 shows that contacts who identify 

themselves have above-average membership rates. Contacts who use begin phrases with 

“as a” are the most relevant, with membership levels 13% above the average 27% rate. 

Figure 5.3.2 highlights contacts identifying themselves in first person have 6-7% higher 

membership rates than those identifying themselves in second person. See Appendix B, 

personal story reference Table 1 for regular expressions used to identify these conditions. 
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Table 5.3.4 Self-Identification and Membership 

condition term n
|c

 

 n
|~

c
 

m
|c

 

m
|~

c
 

m
|c

-m
|~

c
 

m
|c

-m
 

p
 

starts with As a 6,266  188,143 40% 26% 14% 13% 0.00 

contains As a 23,230  171,179 37% 26% 11% 10% 0.00 

phrase starts with As a 6,749  187,660 40% 26% 13% 13% 0.00 

starts with I am a 3,338  191,071 38% 27% 12% 11% 0.00 

contains I am a 5,692  188,717 38% 27% 11% 11% 0.00 

phrase starts with I am a 2,323  192,086 38% 27% 12% 11% 0.00 

starts with We are 3,110  191,299 35% 27% 8% 8% 0.00 

contains We are 13,271  181,138 34% 26% 8% 7% 0.00 

phrase starts with We are 6,754  187,655 33% 27% 7% 6% 0.00 

starts with We are a 591  193,818 36% 27% 9% 9% 0.00 

contains We are a 2,598  191,811 37% 27% 10% 10% 0.00 

phrase starts with We are a 250  194,159 32% 27% 5% 5% 0.09 

 

 
Figure 5.3.2 Self-Identification and Membership 
This plot shows data from Table 5.3.4 for “phrase starts with” conditions. 
37% membership rate for 15,779 total contacts (15,779 = 6,749 + 3,338 + 5,692, where all 2,323 
messages containing “we are a” also contain “we are.”) Membership rates are percentages of 
members for groups of contacts. 
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Gender Self-Identification 

For gender, Figure 5.3.3 shows small numbers of contacts identify with male terms (56) 

and female terms (150). The low difference between the observed and expected 

membership rates for females along with the low number of contacts yields a more 

modestly significant chi-squared test p-value of 0.05 compared to the male p-value, 0.01. 

Contacts who state their gender have higher than average membership rates (45% males 

and 34% females), but not many contacts do so (150 + 56 = 256). See Appendix B, 

personal story reference Table 2 for the regular expressions used to find contacts who 

identify themselves as male or female. 

 

 
Figure 5.3.3 Self Gender Identification and Membership 
Membership rates are percentages of members for groups of contacts. 
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Residence Self-Identification 

For self-identification of residency, Table 5.3.5 shows higher than average membership 

rates, up to 41%, for contacts stating they live in a place in the first-person, with a good 

number of results for phrases that contain “I live” (2,819), start with “I live” (1,784), 

contain “I live in” (1,465) and start with “I live in” (1,131). “We call home” phrases were 

not detected enough to call membership rate differences significant. The last row of the 

table tests a more complex condition for several identifications of “living” by the MySQL 

expression, “REGEXP '(I( went| went to| am|\'m| will| will be| was| have| have been|)( go 

to| going| going to|)) (live|living)',” which looks for several first-person singular patterns 

described in the introduction of this chapter, successfully increasing the number of 

matching results while limited false positive detection rates. Figure 5.3.4. plots data in 

Table 5.3.5 for “phrase starts with” conditions and the complex expression for first-

person singular identification of living. See Appendix B, personal story reference Table 3 

for regular expressions used to find contacts who identify themselves as living in a place. 

Table 5.3.5 Residence and Membership 

condition Term n
|c

 

n
|~

c
 

m
|c

 

m
|~

c
 

m
|c

-m
|~

c
 

m
|c

-m
 

p
 

contains I live 2,819 191,590 39% 27% 12% 12% 0.00 
phrase starts with I live 1,784 192,625 39% 27% 12% 12% 0.00 
contains I live in 1,465 192,944 41% 27% 14% 14% 0.00 
phrase starts with I live in 1,131 193,278 40% 27% 13% 13% 0.00 
contains We live 1,445 192,964 32% 27% 5% 5% 0.00 
phrase starts with We live 359 194,050 36% 27% 10% 10% 0.00 
contains We live in 639 193,770 34% 27% 7% 7% 0.00 
phrase starts with We live in 206 194,203 39% 27% 12% 12% 0.00 
contains We call home 100 194,309 31% 27% 4% 4% 0.36 

phrase starts with We call home 2 194,407 0% 27% 
-

27% 
-

27% 0.39 

complex 
First-Person Singular 
Live/Lived/Living 3,178 191,231 39% 27% 12% 12% 0.00 
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Figure 5.3.4 Residence and Membership 
This plot shows data from Table 5.3.5 for “phrase starts with” conditions. 
39% membership rate for 3,737 total contacts 
Membership rates are percentages of members for groups of contacts. 

 

Family Role Self-Identification 

Contacts identifying themselves as spouses, parents, grandparents, children, siblings, 

aunts, and uncles, identified with several, long MySQL expressions, like, “REGEXP '(I 

am|I\'m|I was|I have been|I will be) (a|an|the) ([a-z]+ 

|)(grandma|grandmother|grandpa|grandfather)'” return good membership results, but low 

conditional group sizes. All chi-squared test p-values for these searches are relatively 

high compared to other tests in this exploration, with the exception of the test for self-

identification as a “son, daughter, child, or kid.” That test returns 216 matching contacts 

with a 44% membership rate (X2 = 34 for k=1 and n=216; p < 0.01). See Appendix B, 

personal story reference Table 2 for regular expressions used to identify these conditions. 
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Education Self-Identification 

The test for contacts identifying themselves as students, graduates, or teachers — found 

with the MySQL expression, “REGEXP '(I am|I\'m|I was|I have been|I will be) (a|an|the) 

([a-z]+ |)(college|student|phd|master\'s|master of|doctor 

of|graduate|professor|ta|teacher|highschool|elementary school|preschool|pre-school|higher 

education|research)” — yield only 193 results, a membership rate of 28%, only one 

percent greater than the average, and a chi-squared test p-value of 0.74 indicating an 

insignificant relationship. Alternatively contacts who identify themselves as teachers, not 

through declaration such as “I am” and “I’m,” but through verbs such as “teach” and 

variations of “teach,” return a higher membership of 38%, but a similarly low number of 

results (185 contacts). The chi-squared test p-value for the verb test is significant (X2 = 

12 for k=1 and n=185; p < 0.01). See Appendix B, personal story reference Tables 2 and 

3 for regular expressions used to identify these conditions. 

Working and Occupation Self-Identification 

Table 5.3.6 show results from looking for contacts who explicitly name themselves with 

specific words in a similar way that family roles were identified, above. It also shows 

results for identifying contacts through verb use, in a similar way that teachers were 

identified with “teach” verbs, above. Although the words ending in “ist” and “tor” 

generally find contacts working in professional fields, this analysis is in no way 

comprehensive. The occupation taxonomy from the Bureau of Labor Statistics could 

greatly improve this exploration in future work 

(https://www.bls.gov/oes/current/oes_stru.htm). See Appendix B, personal story 

reference Tables 2 and 3 for regular expressions used to identify these conditions. 

https://www.bls.gov/oes/current/oes_stru.htm
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 Combined with a taxonomy of occupations, work and occupation searches could 

aid organizations in immediately organizing letter-writing campaign participants. For 

example, a chatbot interacting with a person who self-describes themselves in a message, 

“I’m a hydrologist at … and I support expanding the Rainscapes program in Montgomery 

County,” could ask that person whether the bot’s controlling organization could send the 

author’s message with other scientists’ messages to representatives together. With a 

positive reply, the bot could then ask if the person would like to join an online group of 

concerned scientists who have written to support the Rainscapes program, or flag the 

person for a follow-up call with a legal action team looking for testimony. 

  



 

122 

Table 5.3.6 Work, Occupation, and Membership 

identification root-term n
|c

 

n
|~

c
 

m
|c

 

m
|~

c
 

m
|c

-m
|~

c
 

m
|c

-m
 

p
 

self *ist, doctor, nurse 386 194,023 41% 27% 14% 14% 0.00 
self *ist 345 194,064 41% 27% 14% 14% 0.00 
self *tor 85 194,324 47% 27% 20% 20% 0.00 
self *or 749 193,660 39% 27% 12% 12% 0.00 
self *er 2,076 192,333 39% 27% 13% 12% 0.00 
self doctor, nurse 61 194,348 49% 27% 22% 22% 0.00 
self lawyer, judge 7 194,402 29% 27% 2% 2% 0.92 
self engineer 34 194,375 26% 27% 0% 0% 0.95 
verb work 898 193,511 38% 27% 11% 11% 0.00 
verb program 6 194,403 67% 27% 40% 40% 0.03 
verb analyz 3 194,406 0% 27% -27% -27% 0.29 
 
 
 
 

 
Figure 5.3.5 Work, Occupation, and Membership 
Membership rates are percentages of members for groups of contacts. 
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Activism, Volunteering, Voting, and Spending Self-Identification 

In addition to the key phrases that identify personal stories listed at the beginning of this 

exploration section, nonprofit organizations are interested in voters and contributors to 

causes. Reading through search results for personal stories reveals evidence of past 

activism in addition to personal stories. Table 5.3.7 shows membership rates for contacts 

who have used verbs “volunteer,” “join,” “protect,” “guard,” “save,” “fight,” and “spend” 

with first-person singular “I” words, tested with expressions like those used for tests of 

“teaching,” explained above. Results show limited numbers of matching results and 

modestly significant p-values. Even though contacts discuss “spending” in higher 

numbers then contacts discuss “volunteering” and “joining” combined, the latter two 

metrics reveal much higher, and significant membership rates (52% and 44%). See 

Appendix B, personal story reference Table 3 for regular expressions used to identify 

these conditions. 

Table 5.3.7 Activism Verbs Used in the First-Person 

root term(s) n
|c

 

n
|~

c
 

m
|c

 

m
|~

c
 

m
|c

-m
|~

c
 

m
|c

-m
 

p
 

volunteer 66 194,343 52% 27% 25% 25% 0.00 
join 63 194,346 44% 27% 18% 18% 0.00 
protect, guard, save, saving, fight, fought 217 194,192 35.02% 26.90% 8.12% 8.11% 0.01 
spend 114 194,295 32% 27% 5% 5% 0.26 
 

  



 

124 

Outdoor Appreciation Self-Identification 

Advocacy organizations like The Audubon Society, the Sierra Club, and other 

organizations give their members access to outdoor program and events with 

membership. Table 5.3.8 shows that a limited search for outdoor verbs shows campers, 

hikers, and walkers have significantly higher levels of membership than the average 

despite their moderately low regular expression matching rates. See Appendix B, 

personal story reference Table 3 for regular expressions used to identify these conditions. 

Table 5.3.8 Outdoor Verbs 
49% membership rate for 682 total contacts 

root term(s) n
|c

 

n
|~

c
 

m
|c

 

m
|~

c
 

m
|c

-m
|~

c
 

m
|c

-m
 

p
 

camp 54 194,355 44% 27% 18% 18% 0.00 
hike, hiking 218 194,191 54% 27% 27% 27% 0.00 
trek 1 194,408 0% 27% -27% -27% 0.54 
climb 8 194,401 63% 27% 36% 36% 0.02 
ski 4 194,405 25% 27% -2% -2% 0.93 
hunt, fish 25 194,384 32% 27% 5% 5% 0.57 
bike, biking, cycl 6 194,403 50% 27% 23% 23% 0.20 
hike, hiking, walk 325 194,084 48% 27% 21% 21% 0.00 
swim, swam 19 194,390 47% 27% 20% 20% 0.04 
ride, riding, rode 22 194,387 41% 27% 14% 14% 0.14 
 

Suffering Self-Identification 

Words of suffering surfaced in reading through personal stories identified by the previous 

searches. They uncover lived experiences that negatively impact message writers’ lives. 

Stem verbs, including “suffer,” depriv,” “die,” “dying,” “hurt,” “curs,” “broke,” “break,” 

“lost,” “lose,” “endur,” and “I will go through,” all return small numbers of results with 

p-values greater than 0.01 (mostly insignificant). The test for the presence of base 

“suffer” verbs has the greatest matching number of results among these tests (138 

contacts) with 34% membership rate (a small 7% above the average). The test for 

“endur” yields only five contacts, but three of them are members (60% membership rate, 
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p=0.10). See Appendix B, personal story reference Table 3 for regular expressions used 

to identify these conditions. 

 Swear Words 

While phrases derived from searches of personal stories find higher membership rates, 

swear words find lower membership rates. Looking purely for the presence of three four-

letter swear words, along with the presence of any swear word reported by the LIWC 

“swear” dimension, reveals contacts who swear are less likely to pay for membership. 

Table 5.3.9 shows the results. The 260 contacts who begin messages with the first swear 

word have very low membership rates (11%). Individual swear word conditions yield 

chi-square test result p-values lower than 0.01, and all exhibit membership rates lower 

than those found by the LIWC swear word test (23%). See Appendix B, personal story 

reference Table 4 for regular expressions used to identify these conditions. 

Table 5.3.9 Swear Words and Membership 

Condition Term n
|c

 

n
|~

c
 

m
|c

 

m
|~

c
 

m
|c

-m
|~

c
 

m
|c

-m
 

p
 

Starts with F Swear Word 260 194,149 11% 27% -16% -16% 0.00 
Contains F Swear Word 946 193,463 15% 27% -12% -12% 0.00 
Starts with D Swear Word 30 194,379 20% 27% -7% -7% 0.39 
Contains D Swear Word 925 193,484 26% 27% -1% -1% 0.37 
Starts with S Swear Word 8 194,401 25% 27% -2% -2% 0.90 
Contains S Swear Word 728 193,681 20% 27% -7% -7% 0.00 
Contains a LIWC Swear Word 8667 185,742 23% 27% -4% -4% 0.00 
 
 

Appendix B describes all personal story queries and includes a reference of all the 

database LIKE and REGEX conditions that this chapter uses. 
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 Exploration Four: Flesch Reading Ease 

Exploration Four tests if members that write more words per sentence and more syllables 

per word, according to the Flesch reading ease score (206.835 - 1.035 * words/sentences 

- 84.6 * syllables/words), have significantly different membership levels than the 27% 

average membership rate for contacts who sent personal messages. Tests consider 

minimum (Figure 5.4.1 and Figure 5.4.2), average (Figure 5.4.3 and Figure 5.4.4), and 

maximum (Figure 5.4.5 and Figure 5.4.6) Flesch scores per contact. The tests of 

minimum Flesch reading ease scores highlight the most difficult-to-read messages that 

each contact has written. The tests of maximum Flesch reading scores highlight the 

opposite — the simplest-to-read messages that contacts have written. The tests of 

minimum scores show significant differences in membership rates. The tests of maximum 

scores show no differences. 

Figure 5.4.1 (membership rate) and Figure 5.4.2 (conditional group size) show 

that membership rates increase with minimum Flesch ease of reading scores from a 

below average membership rate of 16% (minimum Flesch score > 100; 4th grade and 

lower reading level; <10% below the overall average score of 27%) to an above average 

score of 37% (minimum Flesch score ≥ 30; college graduate reading level; >10% above 

the overall average score of 27%). All categorical chi-squared tests for these minimum 

Flesch score conditions have p-values of less than 0.001; they are significant. 
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Figure 5.4.1 Membership Rates for Groups of Contacts with Minimum Flesch Reading Ease 
Scores 
Membership rates are percentages of members for groups of contacts. 

 
Figure 5.4.2 Group Size (Number of Contacts) for Groups of Contacts with Minimum 
Flesch Reading Ease Scores 
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Figure 5.4.3 (membership rate) and Figure 5.4.4 (conditional group size) show that the 

membership rates increase with average Flesch ease of reading scores from a below 

average membership rate of 17.2% (average Flesch score > 100; 4th grade and lower ease 

of reading level) to a slightly above average score of 31% (average Flesch score ≥ 30 & ≤ 

50; college reading level). All categorical chi-squared tests for average Flesch score 

conditions have p-values of less than 0.01 except for the test where the score is greater 

than 70 and less than or equal to 80 (7th grade reading level). The p-value for that test is 

0.01. All tests, therefore, are significant, and contacts who write text at the two lowest 

reading levels (highest scores) have differences in membership rates from their 

alternative conditions of -10.36% and -7.70%. 
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Figure 5.4.3 Membership Rates for Groups of Contacts with Average Flesch Reading Ease 
Scores 
Membership rates are percentages of members for groups of contacts. 

 
Figure 5.4.4 Group Size (Number of Contacts) for Groups of Contacts with Average Flesch 
Reading Ease Scores 
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Figure 5.4.5 (membership rate) and Figure 5.4.6 (conditional group size) show that the 

maximum membership rates between groups of contacts defined by their maximum 

Flesch scores (the simplest messages that contacts have written) are almost 

indistinguishable from each other, and very close to the average total membership rate for 

contacts who sent personal messages: 27% membership. Categorical chi-squared tests for 

Flesch score conditional scores of >100, >90 and ≤ 100, >80 and ≤ 90, >60 and ≤ 70, >30 

and ≤ 50, and ≤ 30 have respective p-values of 0.00, 0.10, 0.65, 0.02, 0.16, 0.03, 0.73, 

0.16 and respective membership rate differences from opposite conditions of 1.22%, 

0.47%, 0.10%, -0.52%, -0.34%, -0.63%, 0.10%, -0.60%. Differences are, therefore, small 

or insignificant — and most of the time both — for this test. 
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Figure 5.4.5 Membership Rates for Groups of Contacts with Maximum Flesch Reading 
Ease Scores 
Membership rates are percentages of members for groups of contacts. 
 

 
Figure 5.4.6 Group Size (Number of Contacts) for Groups of Contacts with Average Flesch 
Reading Ease Scores 
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In summary, minimum score Flesch tests are more revealing than maximum score Flesch 

tests. They expose the most difficult-to-read (high grade level) passages that a single 

contact has ever written. Those scores impact membership. Maximum scores, and 

therefore average scores to a lesser extent, are less revealing. If a contact writes two 

messages and one is short and sweet (easy to understand), but the other is complex, the 

complex message can tell an organization more about its author’s potential to pay 

membership dues than the simple message. 
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 Exploration Five: Sentiment 

The compilation of all LIWC scores revealed, by accident, relationships between 

membership and swear words, positive words, and negative words in long messages and 

for contacts who sent many messages. This exploration checks for relationships between 

membership and sentiment. It calculates VADER sentiment scores for each message, and 

then calculates lumped average, minimum, and maximum scores for each person. It then 

calculates membership rates for VADER sentiment scores below the range of [0,-0.95] 

and above the range of [0,0.95] where scores below -0.05 are considered negative and 

scores above 0.05 are considered positive (Hutto and Gilbert 2014; 

https://github.com/cjhutto/vaderSentiment#about-the-scoring). Results are shown for the 

minimum, average, and maximum lumped scores per contact in Figure 5.5.1, Figure 

5.5.2, and Figure 5.5.3. Figure 5.5.4 compares the results in a single plot. 

In chi-square tests for two-by-two contingency tables of members and non-

members for each VADER condition tested, p-values were all less than 0.01 except when 

the average compound VADER score was less than or equal to 0.6, 0.65, 0.7, 0.8, and 

0.95 and the minimum VADER score was greater than 0.95. For maximum compound 

VADER scores, group sizes ranged from 651 to 147,540 as shown in Figure 5.5.5. Figure 

5.5.6 shows the difference between the membership rates for maximum compound 

VADER score conditions and their alternatives conditions. 

 

https://github.com/cjhutto/vaderSentiment#about-the-scoring
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Figure 5.5.1 Membership Rates for Contact Minimum VADER Scores 
Membership rates are percentages of members for groups of contacts. 

 
Figure 5.5.2 Membership Rates for Contact Average VADER Scores 
Membership rates are percentages of members for groups of contacts. 
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Figure 5.5.3 Membership Rates for Contact Average VADER Scores 
(Min 12%; Max 38%; 18% for score ≤ 0.05; 33% for score ≥ 0.05 ) 
Membership rates are percentages of members for groups of contacts. 
 

 
Figure 5.5.4 Membership Rates for VADER Scores (Average, Min, and Max) 
Membership rates are percentages of members for groups of contacts. 
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Figure 5.5.5 Group Sizes for Max Compound VADER Score Conditions 
(n | total = 194,409) 

 
Figure 5.5.6 The Difference Between the Membership Rates for Maximum Compound 
VADER Score Conditions and Their Alternative Conditions 
Membership rates are percentages of members for groups of contacts. 
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Table 5.5.1 compares members and non-members for average compound VADER scores. 

It shows that average membership rate for contacts who write messages with positive 

sentiment is close to the average membership rate overall. The membership rate for 

contacts who write with increasingly negative average sentiment (lower compound 

sentiment scores), however, decreases. Table 5.5.2 shows messages from six contacts, 

selected at random, for positive and negative average scores (within 0.1 of the negative 

and positive sentiment ratings equal to -0.80, -0.5, -0.05, 0.05, 0.50, and 0.80). 

 
Table 5.5.1 Membership Rates and Group Sizes for Contacts Grouped by VADER 
Sentiment Scores 

Average VADER 
Compound Score Group Size 

 
Membership Rate 

≥0.05 109,765  30% 

≥ 0.10 104,939  30% 

≥ 0.50 53,700  28% 

≥ 0.80 18,525  26% 

≤ -0.05 61,999  22% 

≤ -0.10 57,830  22% 

≤ -0.50 26,399  18% 

≤ -0.80 74,444  17% 
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Table 5.5.2 Example Messages with Positive and Negative Sentiment 

Contact  
Average VADER 
Compound Score Messages 

A  0.889 Message 1/1: I will be going green and buying clean 
energy for my family this year. Please don't pollute our 
environment further than you have. Be smart, and 
invest in our future, not wall-street. 
(Member) 

B  0.516 Message 1/2: Our world should not be sacrificed for 
higher profits for the fossil fuel industry. Let’s put 
Virginia's people first! Our children's future can't be for 
sale - for any amount of money! 
Message 2/2: Do the correct thing! Forests are 
irreplaceable. North American forests are one of those 
forests. These lands need to be protected for all 
humanity. 
(Non-Member) 

C  0.05 Message 1/1: Close down businesses like Monsanto 
who are helping to destroy our land. 
(Non-Member) 

D  -0.06 Message 1/1: Any nonrenewable project here would 
be fool hardy when we know about the emissions that 
would be released. 
(Non-Member) 

E  -0.54 Message 1/1: Fracking is hazardous and dangerous to 
the water we drink and the air we breathe. Gas is no 
longer a sustainable option. We must switch to wind 
power and safe energy sources or we will suffer great 
these bad choices! 
(Non-Member) 

F  -0.80 Message 1/2: You've f***ed up our world with your 
dishonesty and greed 
Message 2/3: When will it stop? It is tragic that life, 
plants, animals, seabirds, and the source of life to 
millions of global citizens are vanishing. We are done 
with your greed in enacting this destructive legislation. 
Please start caring. 
(Non-Member; words censored for this table) 
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 Exploration Six: Top Words 

A purely exploratory test shows the 50 most popular words among all messages, 

scrubbed for stop words (NLTK) and American Standard Code for Information 

Interchange (ASCII) punctuation characters, have greater than average membership rates 

ranging from 29% to 40%, with an average membership rate of 30%. These rates are 

comparable to some of the best rates found from more-rationally searching for terms 

related to personal stories in Exploration Three, above. The words detect contact group 

sizes satisfying their conditions of between 16,215 and 61,594 contacts. With high group 

sizes, chi-square test p-values are all lower than 0.01 for each test (significant). Table 

5.6.1 shows results from testing the top 50 words on membership rates. 

Looking individually at the top 5,000 most-used words, the highest membership 

rate, for searches returning more than 1,000 results and significant chi squared test p-

values greater than 0.01 is 50% for both the words “greenhouse” (1,059th most popular 

word) and “efficiency” (868th most popular word). Both are subject matter words. The 

alternative membership rates for these conditions (m|~c) are both equal to the average 

membership rate (27%). Conversely, the lowest significant (p<0.01, n>1,000) 

membership rate is 17%, for contacts who have used the word “impeach” (1,692). 

Interestingly, the four letter swear words and other negative words appear alongside this 

term. 

Finally, note that an early miscalculation revealed the mis-spelling for the word 

“don’t’” as “dont” without an apostrophe has a negative, significantly below-average 

membership rate of 19% (X2 = 28 for k=1 and n=869; p < 0.01). Future work might study 

misspelled words as a negative predictor of engagement. 
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Table 5.6.1 Popular Words and Membership 

Term n
|c

 

n
|~

c
 

m
|c

 

m
|~

c
 

m
|c

-m
|~

c
 

m
|c

-m
 

p
 

please 61,594 132,815 33% 24% 9% 6% 0.00 
people 35,540 158,869 33% 26% 7% 6% 0.00 
need 42,658 151,751 33% 25% 8% 6% 0.00 
protect 47,671 146,738 35% 24% 11% 8% 0.00 
clean 34,123 160,286 36% 25% 11% 9% 0.00 
us 96,674 97,735 31% 23% 8% 4% 0.00 
stop 31,377 163,032 30% 26% 3% 3% 0.00 
don't 29,748 164,661 32% 26% 7% 6% 0.00 
future 31,986 162,423 36% 25% 10% 9% 0.00 
environment 38,524 155,885 36% 25% 11% 9% 0.00 
energy 25,979 168,430 37% 25% 12% 10% 0.00 
planet 23,449 170,960 31% 26% 5% 5% 0.00 
water 26,025 168,384 34% 26% 9% 7% 0.00 
oil 23,057 171,352 37% 26% 11% 10% 0.00 
thank 24,754 169,655 37% 25% 12% 10% 0.00 
air 24,813 169,596 37% 25% 12% 11% 0.00 
would 22,253 172,156 35% 26% 9% 8% 0.00 
trump 21,345 173,064 29% 27% 2% 2% 0.00 
right 25,732 168,677 34% 26% 8% 7% 0.00 
children 25,370 169,039 36% 26% 10% 9% 0.00 
want 23,091 171,318 34% 26% 8% 7% 0.00 
must 19,557 174,852 36% 26% 10% 9% 0.00 
country 21,164 173,245 34% 26% 8% 7% 0.00 
public 23,580 170,829 38% 25% 13% 11% 0.00 
lands 20,700 173,709 39% 26% 13% 12% 0.00 
health 24,041 170,368 39% 25% 14% 12% 0.00 
make 23,925 170,484 35% 26% 9% 8% 0.00 
time 22,309 172,100 36% 26% 10% 9% 0.00 
money 17,087 177,322 32% 26% 6% 5% 0.00 
world 18,485 175,924 33% 26% 7% 6% 0.00 
keep 20,832 173,577 35% 26% 10% 9% 0.00 
one 52,777 141,632 31% 25% 6% 4% 0.00 
earth 16,042 178,367 31% 27% 4% 4% 0.00 
national 17,270 177,139 40% 26% 14% 13% 0.00 
land 33,693 160,716 35% 25% 10% 9% 0.00 
generations 17,183 177,226 36% 26% 10% 9% 0.00 
like 16,511 177,898 34% 26% 7% 7% 0.00 
drilling 15,391 179,018 37% 26% 11% 10% 0.00 
life 26,682 167,727 33% 26% 7% 6% 0.00 
take 21,673 172,736 33% 26% 7% 6% 0.00 
climate 14,845 179,564 39% 26% 13% 12% 0.00 
many 15,687 178,722 36% 26% 10% 9% 0.00 
get 21,532 172,877 33% 26% 7% 6% 0.00 
know 17,732 176,677 35% 26% 9% 8% 0.00 
wildlife 13,146 181,263 34% 26% 8% 7% 0.00 
change 16,311 178,098 38% 26% 12% 11% 0.00 
thing 33,600 160,809 32% 26% 6% 5% 0.00 
think 16,596 177,813 34% 26% 8% 7% 0.00 
american 20,656 173,753 36% 26% 10% 9% 0.00 
care 16,215 178,194 33% 26% 6% 6% 0.00 
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 Exploration Seven: LIWC Scores and Membership 

This exploration reviews relationships between membership and LIWC scores for 

pronouns and other LIWC dimensions. 

5.7.1. Pronoun Exceedance Tests 

Exceedance tests identify contacts who have ever written a message with a score 

exceeding (i.e. above) a threshold. Alternative tests identify contacts who have never 

written a message that has exceeded a threshold. Contacts, however, can send more than 

one message, so alternative exceedance tests are not the same as non-exceedance tests. 

They may hint at results to them with increasing thresholds and linguistic consistency 

between messages written by the same contact. Non-exceedance tests identify contacts 

who have ever written a message not exceeding (i.e. below) a threshold. For example, a 

contact who writes two messages with scores of one and three satisfies an exceedance test 

for a threshold of two; three is greater than two. Because they satisfy the exceedance test, 

they do not satisfy the alternative exceedance test: They have not never sent messages 

with scores above two. They satisfy, however, the non-exceedance test; one is less than 

two. As the threshold increases, in this case to four, alternative exceedance and non-

exceedance test results match; one and three are both less than four. 

5.7.2. Pronoun Exceedance Test Results 

Membership rates shown in Figure 5.7.1 change in small amounts as LIWC pronoun 

score exceedance thresholds increase from 0% to 10%. Membership rate ranges equal 

0%, 1%, 2%, 2%, 1%, 3%, 5%, 3%, and 2% for respective pronoun, personal pronoun, 

“I,” “we,” “you,” “she/he,” “they,” and impersonal pronoun conditions.  Membership 

rates change the most (5% from 29% to 23%) as “she/he” rates increase. Some 
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membership rates for she/he pronoun conditions, however, are insignificant in 

comparison to alternative conditions due to the low use of the she/he pronouns. Chi-

squared tests comparing observed and expected values of groups of members satisfying 

minimum LIWC score exceedance conditions yield p-values less than 0.01 (significant) 

except for tests of membership for “he/she” pronoun rates >4%, >5%, and >6%. Tests of 

membership rates for “he/she” pronoun rates >7%, >8%, >9%, and >10% are all 

significant, but catch low numbers of members (2% to 4% of all message writers). 

Overall, membership rate differences are small compared to those found in prior analysis. 

The alternative exceedance tests shown in Figure 5.7.2 shows the presence of any 

pronoun (from the pronoun LIWC dimension) is more revealing than the use of any 

particular pronoun (e.g. from the “I” dimensions) in two ways: (a) comparing Figure 

5.7.1 to Figure 5.7.2, membership rates are higher for groups who have ever exceeded 

thresholds and (b) membership rates drop from 28% to 19% for those who have not used 

any pronouns at all. The non-exceedance test (not shown) is not able to show this drop; 

contacts that send messages with no pronouns (pronoun rate = 0) still send messages. 

Membership rate ranges, like those shown in the exceedance tests, are all small for 

component pronoun tests. They approach the average personal message membership rate 

of 27% as test conditions identify increasing numbers of contacts that never send 

messages with scores above increasing thresholds. Word count tests show similar results 

to rate tests (Figure 5.7.3 and Figure 5.7.4). They highlight the effects of less frequently 

used pronouns (e.g. they). 
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Figure 5.7.1 Membership Rates for Exceedance Conditions 
Membership rates change in small amounts. 
Membership rates are percentages of members for groups of contacts. 
 

 
Figure 5.7.2 Membership Rates for Alternative Exceedance Conditions 
Membership rates are percentages of members for groups of contacts. 
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Figure 5.7.3 Membership Rates for Minimum LIWC Scores 
Membership rates are percentages of members for groups of contacts. 
 
 

 
Figure 5.7.4 Membership Rates for Alternative Minimum LIWC Scores (Maximums) 
Membership rates are percentages of members for groups of contacts. 
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5.7.3. Other Notable LIWC Dimensions: Swear Words, Punctuation, Nonfluencies, 

Family, and Friends 

Among membership tests for each LIWC dimension, only the test for swear words, as 

shown in exploration three, yields a below-average membership rate (23%). The 

membership rate for contacts who do not use swear words equals the average 

membership rate for contacts who write personal messages (27%). 

The presence of five LIWC dimensions yield membership rates 10% or greater 

than the average rate. Contacts who use nonfluencies (written out as “err,” “hrm,” “eh,” 

etc.), parentheses, dashes, semicolons, and colons have respective membership rates of 

37%, 37%, 37%, 37%, and 39%. The tests for the alternative conditions yield slightly 

below average and average membership rates (26%, 26%, 25%, 27%, and 27%, 

respectively). Contacts who use the more common punctuation (periods, commas, 

question marks, and exclamation marks) all have above-average membership rates, but 

only by a 2 to 5% increase (3% average increase). The test for quotes yields a 36% 

membership rate. Members use more punctuation than non-members. 

LIWC categorizes swear words and nonfluencies as informal speech dimensions. 

There are three more categories in the informal speech group, and they show moderate to 

high membership rates: netspeak (e.g. btw, lol; 31%, n=6286), assent words (agree, OK, 

yes; 34%, n=8,222), and filler words (e.g. Imean, youknow; 35%, n=740). 

Finally, supporting results found in looking for personal stories with family 

phrases, two dimensions among the LIWC social sub-processes have 35% membership 

rates: family (e.g. husband, daughter; 27,185 matches) and friends (e.g. buddy, neighbor; 

11,334 matches). Compared to the combined test for first-person references to specific 
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family members (Figure 4.3.1; 37% membership for 20,001 contacts), the LIWC family 

test returns more contacts, slightly lower membership rates, and fewer personal stories. 

In a random sample of ten messages that include LIWC family words, three of the 

messages are personal stories and seven are not. All of the personal stories contain family 

words prefixed the possessive first-person plural pronoun, “my:” 

1. The base of the Berryessa Snow Mountains was my home for many years and I 

want this monument preserved for my children and grandchildren. It is a 

majestic…. 

2. My family used to swim and fish along the Anacostia River in the 50s. Please…. 

3. My husband and I are both employed by wind energy providers and…. 

The regular expression search for first-person pronouns followed by family words is 

more specific than the identification of LIWC family words, but it would not miss any of 

the stories found by the LIWC search in the random sample of ten messages. Three of the 

messages in this sample do not contain stories (false positives). The regular expression 

would correctly classify them as not stories. The three messages contain references to (1) 

“big brother,” (2) “mother earth,” and (3) “your children” but do not describe any lived 

experiences. 
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 DISCUSSION 

 Objective One Discussion: Messages per Contact as a Measure of 

Organizational Engagement 

6.1.1. Pronouns and Messages per Person 

Consistent with prior studies (e.g. Pennebaker 2017, pp 63, 118; Lenard 2016), small 

differences (<1%) in the use of pronouns yield significant findings. Results show that 

groups of contacts who send personal messages with lower rates of pronouns overall, 

lower rates of personal pronouns overall, lower rates of first-person plural “we” 

pronouns, and moderately greater rates of “you” pronouns, also send more messages 

(Table 4.1.1). The decreasing use of “we” words is the clearest individual pronoun 

predictor of increasing numbers of messages that groups of contacts send (R2 = 0.87). 

This could indicate contacts with positive, personal association (Pennebaker 2011) with 

their state or country (e.g. “our country...” vs. “make America...”) send fewer messages. 

A sentiment test on all messages moderately supports this theory. Messages with a high 

use words “we” words exhibit a higher degree of positive sentiment (>5% “we” words; 

0.21 VADER compound sentiment) than messages with a low rate of “we” words (<3% 

“we” words; 0.09 VADER compound sentiment). 

While clear relationships exist between the central tendencies of LIWC pronoun 

rates for groups of contacts, they cannot be used to predict the number of messages that 

most individual contacts will send based on their first message. The observations and 

calculation checks made in the report of results for testing Hypothesis One (Section 

4.1.2) shows this is true for averaging rates in different ways and for different sets of 

messages. Further, Section 5.2 shows Hypothesis One cannot be accepted for individual 
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contacts, ungrouped, because most contacts do not send enough long messages. Like 

most social media posts, personally authored advocacy messages are short (Figure 

4.1.16). Unlike social media posts, many contacts write just one or two through systems 

controlled by a specific organization. This study looked briefly at these two properties — 

length and quantity — in calculating the correlation between the use of first-person plural 

“we” pronouns and the number of messages that contacts send: Table 4.1.3 and Figure 

4.1.17 show that the number of contacts sending messages is more important than the 

length of their messages in establishing correlations. (Future work could test if this 

relationship holds true for other LIWC dimensions.) In simpler terms, ranges of three to 

four percent usage of “we” of pronouns, 13.6% to 14.4% usage for all pronouns, and 2% 

to 3% usage of “you” words are small considering the average length of a personal 

messages is 29 words, and the mode length is 11 words (Figure 4.1.16). Four percent of 

11 is zero whole words. 

6.1.2. The Pronouns of Environmental Advocacy 

Given the relevance of groups of messages compared to individual messages, a 

comparison between the biggest group of messages in this study — all messages — with 

summaries of other corpuses of text provided by the LIWC manual defines a language of 

environmental advocacy. The other corpuses include tweets, blog posts, essays, news 

articles, and novels. Environmental activists use “I” words at much lower rates (1.62% 

compared to 4.99%) and “we” words at much higher rates (3.92% compared to 0.72%) 

than authors of text among the other corpuses (Figure 4.1.9). They use similar rates of 

“she/he” words as those found in tweets, which are much less than those found in longer 

passages of text. Like a parent talking to a child, this low use of “I” words and high use 
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of “we” words indicate environmental activists write to their policymakers from a 

seemingly higher social status (Pennebaker 2011, pp. 174). Supporting this theory, nine 

out of ten randomly selected messages that begin with the word “we” use the word “we” 

as the word “you,” a policy maker, or as the words “me and you.” In the message, “we 

must avoid being the country responsible for unleashing the beast of climate change by 

monstrous policies that only benefit big oil and agriculture companies” the word “we” 

refers first to the U.S. and then directly to the message recipient who, assumedly, can 

enact “monstrous policies” or not. The low use of “I” words and low use of “she/he” 

words that all environmental advocates use do not indicate anything about social status, 

but may help explain the less clear trends for these pronouns identified in the test of 

Hypothesis One. 

Finally, the overall high use of “we” words and the low use of “I” indicates that 

either (a) there are more male contacts (Pennebaker 2011), or (b) female activists use a 

typically “masculine” political vocabulary of personal pronouns — also more typical of 

the language of modern female politicians — when writing policymakers (Jones 2017). 

Interestingly, two out of three contacts are female, supporting the latter of these two 

theories. Future work could investigate what this means for the two engagement factors 

given males have higher overall membership rates (37%) compared to females (29%). 

6.1.3. Personal Messages Rates and Word Counts 

Hypothesis Two test results show that both the number of personal messages and the 

number of all messages decrease for groups of contacts sending increasingly large 

numbers of messages per contact. The number of messages sent also increases from 1 to 

10 (the bulk of the data) as the average rate of personal messages increases from 20% to 
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25% (left side of Figure 4.2.1). As the number of messages sent continues to increase, the 

rate decreases to 15% at the group that sent 40 messages, and then steadily increases to 

50% for groups of contacts who sent 90 messages (left side of Figure 4.2.1). 

In summary, groups of contacts who send personal messages at rates of 18% (one 

personal message for every five messages) are less likely to send a second message. 

Groups of contacts who do send more than one message usually send them with a 

personal message rate of 25% (one personal message for every four sent). These groups, 

however, will be smaller than the groups with lower personal message rates (Figure 

4.2.3). Advocacy organizations and policymakers evaluating an initial wave of messages 

from a specific group, therefore, can expect both continued action (a second message) 

and higher rates of personal messages if this initial wave of messages has a personal 

message rate of 25% or more. 

Advocacy campaign managers who value greater numbers of personal messages 

to look for personal stories in, and building relationships with contacts who send more of 

them, therefore, should not be discouraged by an overall lower number of messages in the 

response from a specific campaign compared to similar campaigns if the rate of personal 

messages returned from the campaign is high (25% vs. 18%). Results emphasize the 

importance of asking contacts to write personal messages, if not to help amplify their 

voices and identify personal stories, to at least help predict future engagement. 

Hypothesis Three test results show that while the number of messages sent 

roughly increases with slightly decreasing word counts for groups of contacts (29 to 26 

words; R2 = 0.69; data top-coded at 30+ messages), contacts sending more than one 

message send them at the overall average word count of 29 words compared to 28 words 
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for those who send a single message. This difference is small and insignificant for low 

numbers of messages. For large numbers of messages, it will be easier to discern one in 

five personal messages from one in four personal messages as shown above in 

comparison to discerning 28 words per message to 29 words per message. This one-word 

difference could also easily be affected the language of a specific campaign. Message 

analysts should not, therefore, use this metric to predict the number of messages a group 

may send in the future without testing the metric across high rates of similar campaigns. 

 Objective Two Discussion: Exploring Membership, Personal Stories, 

Sentiment, and Writing Simplicity 

The results from the three initial hypotheses inspired an exploration into membership as a 

measure of organizational engagement. Results show that the number of messages 

written, the use of pronouns, the identification of personal stories, sentiment, writing 

simplicity, the use of swear words, the use of punctuation, the use of popular words, and 

potentially the use of misspelled words can all help organizations identify membership 

rates. If the 90,698 contacts categorized as members pay an average of $52/year, 

campaigns receive $5.7M/year. If all 690,631 contacts paid this amount, campaigns 

would receive $35,912,812, more than double the budget of Greenpeace, the smallest 

environmental advocacy organization listed in Table 4.3.1. 

The membership rate for all contacts is 13%. The membership rate for contacts 

sending personal messages is 27%. As described in the introduction to Objective One, 

this study describes 5%, 10%, and 15% membership rate differences from the average 

27% rate, as moderate, strong, and very strong differences, respectively. Tests show: 
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1. Membership rates increase with message rates. 

Relating the two rates of engagement (messages and membership), membership 

rates more than double, from 16% to 35% for groups sending one to ten messages, 

before leveling off. Groups sending 20 or more messages have an average 

membership rate of 37%. 

2. Membership rates increase with average word count. 

Membership rates increase from 17% to 30% for the contacts who sent messages 

between one and 40 words long, before leveling off. Contacts who have sent 

messages with an average word count greater than 40 words have an average 

membership rate of 28%. 

3. Membership rates increase with certain words and phrases. 

Regular expression searches for personal stories with pronouns, verb variations, 

and LIWC scores return some stories of lived experiences, but they also identify 

authors in other ways. Membership rates increase with first-person pronouns and 

a. References to wives, e.g. “my wife” (51%; 410 contacts) 

b. References to family members, overall (37%; 2,001 contacts) 

c. Identification with phrases that begin with “As a,” (40%; 6,749 contacts) 

“I am a,” (38%; 3,338 contacts) “We are” (33%; 5,692 contacts) and “We 

are a” (32%; 2,323 contacts). 

d. Self-identification with the male gender, e.g. “I am a father…” (45%, 56 

contacts) 

e. Self-identification with the female gender, e.g. “I am a mother…;” (34%, 

150 contacts) 
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f. Self-identification of residence, e.g. “I live…” (39%; 3,737 contacts) 

g. Self-identification as a family member, e.g. “I will be a grandma…” (44%; 

216 contacts) 

h. Self-identification as a teacher with verbs, e.g. “I teach” (38%; 185 

contacts), but not with titles (e.g. “I’m a school teacher”) 

i. Self-identification with “ist” roles, like “scientist or biologist” (41%; 386 

contacts) and “er” roles, like “carpenter” or “driver” (39%; 2,076 contacts) 

j. Volunteering verbs (52% membership rate; but only 66 matches; p < .01) 

k. Outdoor activity verbs, e.g. “I have hiked” (49%; 682 contacts) 

5. Membership rates decreased with the use of swear words. 

Membership rates did not significantly increase or decrease for most words 

describing suffering, but they significantly and very strongly decreased for 

members using swear words, as low as 11% for 260 contacts beginning their 

messages with a word beginning with the letter “F” and 15% for 946 contacts 

using that word in their message. Membership rates for the group of contacts 

using any LIWC swear word (swear rate > 0) decreased to 23%. 

6. Membership rates increase with writing grade-level (i.e. message complexity). 

Membership rates steadily increase from 16% (4th grade level) to 37% (college 

graduate) with decreasing minimum Flesch ease of reading scores (21% range). 

7. Membership rates increase with sentiment. 

Maximum compound VADER scores describe the most positive message a 

contact has sent. They are good indicator of membership (Figure 5.5.3; 12% to 

38%). Minimum and average VADER scores are less descriptive. Contacts with 
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negative maximum VADER scores (<-0.05) have an average membership rate of 

18%. Contacts with positive scores (>0.05) have 33% membership rates (15% 

range). 

8. Membership rates increase with popular, on-topic words like “efficiency” and 

“greenhouse” and decrease with negative words. 

Among the top 5,000 subject words used in messages, the two words (a tie) used 

by at least 1,000 contacts with the highest levels of membership (50%) are 

“efficiency” and “greenhouse.” The word used by at least 1,000 contacts with the 

lowest membership level (17%; n=1,692) is “impeach” and is found among swear 

words not tested earlier with similarly low membership rates. 

9. Membership rates increase with the presence of any pronoun compared to no 

pronouns. 

Contacts who do not use pronouns at all have low membership rates (19%). For 

contacts who do you use them, individual pronouns rate increases reflect only 

small changes in membership rates. 

10. Membership rates increases with the use of nonfluencies (37%) and less used 

punctuation (38% for colons). 

11. The membership rate is low for contacts who misspell “don’t” as “dont” (19%). 

Results sketch a picture of a stereotypical member: An outdoorsy parent with a job and 

spouse that talks about their children. They write for an educated audience and use 

positive, issue-related words in sentences delineated with punctuation. They do not 

complain about impeachment or use swear words, but may informally write nonfluencies 

into their messages. 
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For one analyst, identifying personal stories in advocacy messages will help their 

organization “be better set up to recognize what kinds of personal messages we are 

getting, and which have the best value for continued/increased engagement.” This study 

used regular expressions inspired by keywords that campaign managers use. It used first-

person phrases and looked for references to family, home, suffering, and personal 

interests. Matches showed that what makes a personal story “personal” and a “story” is 

subjective and a framework that could categorize and measure story attributes in short 

advocacy messages could be helpful. In conducting these searches, matches also revealed 

information about contacts that an advocacy organization or policy office might collect in 

a survey. Contacts reveal personal interests, professions, and family information in there 

stories. Self-written levels of education were only found in small numbers, but the 

writing complexity score and found occupations may hint at these levels. 

 Limitations and Two Database Gotchas 

This study found that compared to predictors of membership investigated in the 

exploration (Objective Two), pronoun predictors for the number of messages a contact 

sends has limited practical application for the initial problem that inspired this research 

— rapid response to a new contact with limited information. The length of most 

messages are too short to be studied individually with pronouns only. Additionally, this 

study (a) was not segmented by location or topic, (b) did not have access to a complete 

contact demographics, but it could have used state as a proxy indicator, (c) did not have 

exact location data so it did not address an originally proposed objective to test 

engagement and personal stories with the proximity to sources of pollution, and (d) did 
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not have access to political affiliation for any contacts. Future work and case studies 

could address these limitations. 

There are two database problems that all data analysts should watch out for and 

were found in this study: (1) Some raw database IDs for some campaigns were 

alphanumeric case-sensitive strings. In creating a contact table, a new auto increment 

primary key may be created to avoid this problem. This study used a case-sensitive field 

collation to address the problem. (2) Data from different organizations and different for 

different campaigns used different character encodings. A few points of data had quotes 

replaced by questions marks. After correction, LIWC analysis trends became slightly 

more definite. 
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 CONCLUSIONS AND FUTURE WORK 

 Text Analysis for Online Advocacy Organizations 

We stand now where two roads diverge. But unlike the roads in Robert Frost’s 

familiar poem, they are not equally fair. The road we have long been traveling is 

deceptively easy, a smooth superhighway on which we progress with great speed, 

but at its end lies disaster. The other fork of the road — the one less traveled by 

— offers our last, our only chance to reach a destination that assures the 

preservation of the earth. 

 

— Rachael Carson, Silent Spring, 1962 

My message is that we’ll be watching you. This is all wrong. I shouldn’t be up 

here. I should be back in school on the other side of the ocean. Yet you all come to 

us young people for hope. How dare you. You have stolen my dreams and my 

childhood with your empty words. Yet I am one of the lucky ones. People are 

suffering. 

 

— Greta Thunberg, United Nations Climate Action Summit, 2019 

Carson paints a picture and provides efficacy to her readers to think and make decisions 

— readers without the internet and policymakers without fax machines. Thunberg is 

direct and angry, speaking like a hero in the golden age of distraction. VADER sentiment 

scores rate their respective quotes negative (-0.2) and more negative (-0.4) and Flesch 

scores rate them readable to 7th grade students (Flesch score of 77) and low-grade-level 

students (Flesch score of 98). 

Jones (2017), Lenard (2016), and Pennebaker (2011) would contend that Carson’s 

high use of first-person plural inclusive “we” words represent a high social status and a 

“masculine,” authoritative linguistic style that female politicians have recently begun to 

adopt. They would say Thunberg’s high use of pronouns (one or more in almost every 

sentence), and especially her high use of the word “I” reflect a female speaker, self-

focused and aware of the suffering of her generation. 
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These researchers have shown that the words and public speeches of leaders, 

candidates, and officials who people elect to represent their families and vote for their 

children’s future, are well studied, and a joy to analyze and read about. Philosophers, 

bloggers, and reporters study how these leaders speak to their constituents and each other 

and archive their words as history. What can researchers now learn about the words that 

activists speak back to power? How will organizations use this knowledge to empathize, 

ally, or manage them? 

⁂ 

This dissertation was inspired by the successful development of an online advocacy 

system created for a small nonprofit organization in Maryland in the early 2000s. It 

helped the group of faith-based and union-backed organizers win living wage and 

healthcare legislation by filling state legislators’ inboxes with customized form letters, 

properly addressed via a GIS-based zip code matching system. As petitions do, it also 

helped the organization recruit members and grow. “Slacktivism” worked! But this form 

of activism turned from influencing policymakers to disengaging them (Miler 2014, 

Social Change Agency, 2017a, Congressional Management Foundation 2017) and the 

term “slacktivism” was coined as such by Morozov in 2009. White, at this time, decried 

the “ideology of marketing” in activism as “clicktivism” (2010). Even so, this study and 

advocacy organizations listen to Karpf (2017, 2018), resolutely looking for the potential 

of analyzing and A/B testing everything. Results from this research show that 

environmental advocacy organizations should solicit and analyze personal messages from 

their constituents to both limit slacktivism — that is, limit disengaging policymakers with 

impersonal messages — and bolster their understanding of their contacts. In soliciting 
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personally written messages, in combination with services like Communicating with 

Congress (CWC, 2017), advocacy organizations can help keep policymakers from being 

inundated with form-letters. In analyzing personal messages, organizations can exploit 

and improve on the metrics reviewed in this study. 

 At minimum, organizations need to continue giving individuals the option of 

writing a personal message in online advocacy campaigns. If they are not already doing 

so, by starting they can begin to predict future behavior from their contacts’ messages. 

Results show that the membership rate for those sending a personal message in this 

study’s data is 27%, compared to the overall 13% membership rate for those sending any 

type of message, personal or otherwise: more than double. Results also show that groups 

of most contacts who write personal messages at rates of higher than 18% (one in five), 

also send more than one message. Simply asking for and counting personal messages can 

help organizations establish baseline engagement predictions without any text analysis. 

Additionally, given that impersonal messages can disengage policymakers and bury the 

personal messages, organizations should also stop sending impersonal letters along with 

personal ones, or flag them in a way that systems like CWC can recognize them as 

petitions. Without a system like CWC that mitigates the risk of losing personal messages 

among others, organizations should hand-deliver signatures in batches or at strategic 

times to avoid disengagement with policy makers. 

 Once advocacy organizations are collecting personal messages, they should 

analyze their text to help them further predict the number of messages that groups of 

constituents will send and future payments for membership. Results from this study show 

analysts and algorithms can use text in two situations: (a) in analyzing and engaging large 
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groups of individuals, and (b) in response to a contact immediately after they have sent a 

message (i.e. the chatbot predicament). Results show that, in analyzing groups of 

contacts, low pronoun rates overall and low first-person plural “we” pronoun rates 

indicate a group will be more likely to send more messages. For either analyzing groups 

of contacts or rapidly responding to a single contact online, the results also show that 

organizations should be able to more readily ask for membership contributions from 

contacts who have sent increasing numbers of messages and word counts approaching a 

threshold. The threshold for this study was 30 words — one word above the average. It 

may vary between organizations and campaigns.  

 From within the text, to further identify potential members, advocacy 

organizations should look for messages written for higher reading levels (low reading 

ease scores), and use of positive sentiments, self-references, references to family and 

friends, punctuation, and informal speech aside from swear words. Organizations and 

campaigns are unique, so campaign managers should pilot the relevant engagement 

factors discussed above for their own data in order to reveal other trends. They may begin 

doing this by identifying and testing popular words. Message reviewers may use regular 

expressions or future machine learning models to help them identify personal stories, but 

these methods should not replace timely, human review of messages. Text metrics are not 

perfect, and they can be misused. 

 Test Analysis for Policymakers, Service Providers, and Stakeholder 

Managers 

In the same way that online advocacy organizations learn from electoral campaigns, but 

should not mimic them (Karpf 2017), policymakers should conduct the analysis 
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recommended above for advocacy organizations but adjust them to fit their situations. 

Given term limits in public offices, policymakers may not start their terms with large 

histories of constituent engagement. With smaller databases, they will not be able to run 

the pronoun use tests to anticipate future message frequencies. 

As policymakers build their CRM databases, they will also find themselves in the 

unique situation where they are receiving messages couriered by several advocacy 

organizations about a single policy or project. In this case, they will be able to use text 

metrics to spot and judge power differences between organizations. For advocacy 

organizations, Karpf (2018) emphasizes that data, in general, needs to be delivered in 

ways that decision makers can interact with. This is equally true for policymakers. To 

support policy makers and advocacy organizations alike, online advocacy service 

providers (e.g. CWC) need to build text metrics into their reports. 

Stakeholder management researchers, Kahn et al. 2017, have developed 

psychological attributes that they recommend civil and environmental project managers 

to look for in managing stakeholders: motivation and concern, expectation and 

perception, and attitude and behavior. These researchers share best practices for 

managing supportive, indifferent, and adversarial stakeholders (Kahn et al. 2019). In 

summarizing Petro-Canada’s website, their research praises Petro-Canada’s “highly-rated 

. . . ‘win-win’ policy” of “innovative and diverse strategy execution measures” for its 

“fair, ethical and professional approach in its dealings with its secondary stakeholders in 

all its projects and operations inside and outside Canada.” They highlight an example, 

originally shared by Petro-Canada, of how this fossil fuel company put a local fishing 

community at ease during exploration of drilling sites offshore of the Caribbean islands 
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of Trinidad and Tobago. The company conducted courses for the fishers on how they 

could learn new “survival techniques” and safely continue using their equipment during 

the offshore exploration. At the courses, they gave away reflectors and GPS devices. 

They also installed “fish aggregating devices” to keep fish away from their exploration. 

The researchers also show how Petro-Canada paid for First Nation social programs, like a 

daycare facility, before mining their land in Fort McMurray, Canada. Future studies 

could investigate if psychological attributes described by these researchers could be 

identified through text analysis of constituent messages. If so, in promoting 

environmentally sustainable technologies or not, policymakers could share findings with 

civil and environmental project managers, and they, together, could judge the power of 

influence that the stakeholders have over their projects and researchers could test the 

management frameworks introduced by Kahn et al. For example, stakeholder managers 

and policymakers working with (or for) companies like Petro-Canada, who implement 

education programs, hazard mitigation infrastructure, and social services to ensure safety 

and public acceptance of their projects, could benefit from analyzing advocacy messages. 

Opposition letters to offshore drilling and mining in communities written with relatively 

high rates of pronouns, high writing grade levels, and high numbers of personal stories 

about “my” or “our” children could help these managers plan increases to their 

community engagement budgets. If messages come from more than one environmental 

advocacy organization, text analyses could further aid stakeholder managers to determine 

which groups have the highest numbers of dues-paying members and could best fund 

putting the personal stories they are collecting into community forums, legal testimony, 

and advertisements. 
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 Future Work 

7.3.1. Engagement Framework and Investigating Relationships of Messages and 

Time Use Profiles 

Future work should consider past research to develop a social cognitive theory to 

describe what a regular dues-paying member is, what a person with a lived experience is, 

and what a volunteer is — three roles that describe people that environmental advocacy 

organizations seek to engage. To start, it could use an online implementation of 

Arnstien’s “ladder of citizen participation” (1969) as an engagement dimension. Next, it 

could use the Bureau of Labor Statistics (BLS) American Time Use Survey (2019) data 

to determine a dimension for volunteering. 

It should then see if relationships between text analysis metrics found in this study 

and additional data, like more granular membership contribution data and constituent 

event participation histories, can help explain the roles defined by the theory. A 

multivariate model could help predict how well contacts fit into these three roles. Given 

BLS data, for example, occupations reported by contacts in messages could help rate a 

contact along dimensions for volunteering and giving without asking contacts questions 

directly; BLS reports unemployed people volunteer twice as much (0.44 hrs/day) as 

employed people (0.21 hrs/day). Flesch scores, if tied to education and income, could 

help place a contact along a dimension for giving. 

This theory-based approach of making educated guesses of engagement predictors 

and then piloting them contrasts machine-learning approaches and the approach 

employed by Exploration Six in this study. Without any social or behavioral a priori 

observations or theory (or “bias,” depending on how relevant observations and theories 
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are to specific situations), Exploration Six brutally tests thousands of the most popular 

words in this study in an attempt to find words that contacts use with minimum 

frequencies indicative of high and low membership rates. Model development should use 

both theoretical and exploratory approaches. Machine learning and unbiased exploration 

might confirm theories, or it may inspire additional theories and tests. Exploration Six 

and Exploration Seven in this study, for example, confirmed the relationships between 

negative words and membership studied in Exploration Three, exposed the relationships 

between nonfluencies and punctuation with membership, and inspired the review of all 

informal word dimensions categorized by LIWC. 

7.3.2. Doing What You Love or Marginalizing “Lost Voices” 

In the development of any engagement model, as described above, advocacy 

organizations should be wary of focusing on any one measure of engagement at the 

expense of others. During the November 2019 Virginia state elections, non-partisan Get 

Out The Vote (GOTV) canvassers working with Virginians Organized for Interfaith 

Community Engagement (VOICE) were rewarded with more smiles, more residents 

willing to take publicity photos, fewer slammed doors, and fewer guard dogs, when 

canvassing in more affluent neighborhoods where more people were excited to vote or 

could be encouraged to register (pers. exper. 2019). Nall (2018) explores these behaviors, 

investigating situations where on-foot canvassers stay in the neighborhoods where they 

receive positive responses and where they have smaller social distances from residence 

(e.g. language). In response to these perceived successes, canvassers could inadvertently 

marginalize the people that are directly affected by issues that their organizations are 

addressing. Canvassers may miss testimony, miss the opportunities to ally with people 
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directly affected by issues, and miss opportunities to expand their campaign with new 

leaders. VOICE mitigated these pitfalls by pairing canvassers from different backgrounds 

and targeting districts with low voter turnouts. Future work could investigate if similar 

problems are present in online advocacy campaigns. Nall states “online mobilization 

presents one challenge to our way of describing the canvass.” Results from this study 

show higher rates of membership contributions from contacts who write at higher grade 

levels with positive sentiments. Future work should investigate if targeting these contacts, 

in particular, hides testimony from potential future campaign leaders personally affected 

by campaign issues. 

7.3.3. Improving Online Advocacy Services 

An early proposal for this dissertation described testing ways to improve online advocacy 

services instead of proposing to study constituent messages passed through them. It 

focused on testing methods to lower transaction costs for constituents to take action 

online and keep them engaged. The problems identified in the original proposal did not 

disappear: 

Citizens need effective ways to regularly engage in policy decisions that 

impact them – whether these decisions shape civil and environmental projects, or 

other projects. Research shows that both social media and online advocacy 

software services, public and private, have simplified and increased access to 

policymakers in the last two decades, but the efficacy for, sustainability of, and 

timeliness of interactions that they provoke needs improvement (Bimber 2001, 

Boulianne 2009, Karpf 2010, Kenski 2010, Bakker, T.P. et al. 2011, Kim et al. 

2017). Even with the new ease of access to policymakers that online tools give 
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citizens, it’s hard for citizens to stay informed on multiple issues and strategically 

time their actions. Adserà et al. 2003 and Castells 2007 show that many citizens 

are disenfranchised with this process and that they feel powerless to corrupt 

governments. policymakers in corporations and in government have access to 

advisory boards and cabinets to research different issues and propose issue-

specific solutions at key times. Average citizens do not have these teams. They, by 

default, only have their elected representatives. 

Without time for their own research and without their own issue-matter 

experts to advise them, many citizens become disengaged with policies that affect 

them and do not follow-up with their representatives, trust them (Castells 2007), 

vote (File 2015, U.S. Elections Project 2016, Pew 2017, U.S. Census Bureau 

2018), or even know who their lawmakers are. Lawmakers, in turn, are left out of 

touch with their constituents’ positions, and rely on their own heuristics (accurate 

and representative or not), research (peer reviewed or not), advisors (at least they 

can have them – official or not), and biases (Broockman and Ryan 2016, 

Broockman and Skovron 2017, Butler and Broockman 2011, Haynes et al. 2011, 

2011, 2012, Tversky and Kahneman 1973, 1974, Kahneman 2011). They have 

also long been susceptible to special interest lobbying and campaign 

contributions (Snyder 1990, Claessens et al. 2008). Further, spikes of 

communication on popularized issues leave policy offices unprepared to 

summarize and respond to public comments and questions. Citizens, similarly, 

become fatigued with the effort and timeliness necessary to respond to proposed 

policy revisions. 
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Researchers and policy campaign managers from public, academic, 

community, and nonprofit organizations strive to limit this disengagement. They 

know that political participation and perceptions of democracy reinforce each 

other (Oni et al. 2017) and that, along with money, continuous and timely contact 

can persuade policymakers (Miler 2014), even with template-driven letters and 

petitions as part of a larger lobbying plan (Karpf 2010). Campaign managers, in 

particular, rely on software services to educate and enlist citizens to engage 

policymakers, often elected, on issues that affect the citizens. They are always 

looking for ways to provoke timely and sustained action and improvements to the 

status quo in advocacy services could directly benefit them. 

 

While this dissertation, the study of relationships between constituent messages and 

organizational engagement, does not directly address these problems, findings may 

support the development of new services that do. This effort may continue as a follow-up 

to the results of this dissertation. 
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APPENDIX A.  STATES AND TERRITORIES 

The 2,199,624 messages in this study were sent from campaigns that targeted 

environmental advocacy issues in either (a) all U.S. states and territories, (b) no state or 

territory, or (c) an individual state or territory. The following is a list of each of these 

location targets and, in parentheses, the number of messages generated from these 

target’s associated campaigns, sorted from the greatest number of messages to the least 

number of messages. Note: messages were sent from campaigns targeted at all 50 states 

except Kansas, North Dakota, and South Dakota. 

All (1,193,389) 

None (877,493) 

MN (21,948) 

CA (10,006) 

VA (9,626) 

PA (8,593) 

OH (8,445) 

WA (8,411) 

NC (7,203) 

CO (6,259) 

NY (5,483) 

MI (3,965) 

AZ (3,526) 

FL (3,511) 

MD (3,433) 

IL (2,859) 

OR (2,851) 

 

TN (2,470) 

MA (2,235) 

UT (1,815) 

IN (1,712) 

WY (1,709) 

WV (1,554) 

NM (1,490) 

TX (1,312) 

MO (898) 

OK (801) 

WI (777) 

NV (770) 

KY (729) 

GA (596) 

LA (472) 

CT (450) 

ID (386) 

 

PR (367) 

MS (348) 

AL (299) 

DE (219) 

DC (205) 

NH (188) 

MT (187) 

NE (165) 

VT (165) 

ME (87) 

SC (70) 

IA (66) 

NJ (62) 

HI (11) 

RI (7) 

ND (1) 
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APPENDIX B.  PERSONAL STORY QUERIES 

Exploration three explains how attempts to find lived experiences, as defined by Sandhu 

(2017), in messages began with text searches for “as a,” “i am a,” “i live,” “my family,” 

“my husband,” “my wife,” and “my children.” This appendix lists these searches. All 

searches are case insensitive. For background, please see the MySQL 8.0 reference 

manual, especially documentation on searches and regular expressions: 

https://dev.mysql.com/doc/refman/8.0/en/regexp.html#operator_regex 

B.1. Simple MySQL Searches for Personal Stories 

Basic MySQL searches that identify terms anywhere in a message take the form of,  

• SELECT * FROM table WHERE message LIKE “%Term%” 

Where the following words replace “Term”:  

1. As a 

2. I am a 

3. We are 

4. We are a 

5. I live 

6. I live in 

7. We live 

8. We live in 

9. We call home 

10. My family 

11. My husband 

12. My wife 

13. My child 

14. My husband 

15. My wife 

Some of these searches can return unintended results when looking for personal stories. 

For example, the first search for “as a” can return a message containing the words “has 

already.” Removing the first percentage sign around the term in the “as a” query helps. In 

this case, the modified search looks for the term at the beginning of a sentence. For 

example: 

• SELECT * FROM table WHERE message LIKE “Term%” 

https://dev.mysql.com/doc/refman/8.0/en/regexp.html#operator_regex
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The modified searches for terms at the beginning for messages eliminate unintended 

results like the "has already" result for the “as a” query. They also eliminate, however, 

terms that begin sentences and phrases in the middle of messages. While this study still 

uses and reports results from these modified queries, to find terms that begin sentences 

and phrases in the middle of messages, this study uses regular expressions. Personal 

Story Reference Table 1, at the end of this appendix, includes a complete list of these 

basic MySQL search conditions. 

B.2. Regular Expression Searches for Personal Stories 

Simple searches returned some unintended results, like the "has already" result. The 

following regular expressions to find the simple search terms at the start of messages, 

sentences, and prepositions eliminate problems like these. 

1. (([:punct:][:space:](As a))|(^As a))[:space:] 

2. (([:punct:][:space:](I am a))|(^I am a))[:space:] 

3. (([:punct:][:space:](We are))|(^We are))[:space:] 

4. (([:punct:][:space:](We are a))|(^We are a))[:space:] 

5. (([:punct:][:space:](I live))|(^I live))[:space:] 

6. (([:punct:][:space:](I live in))|(^I live in))[:space:] 

7. (([:punct:][:space:](We live))|(^We live))[:space:] 

8. (([:punct:][:space:](We live in))|(^We live in))[:space:] 

9. (([:punct:][:space:](We call home))|(^We call home))[:space:] 

10. (([:punct:][:space:](My family))|(^My family))[:space:] 

11. (([:punct:][:space:](Our family))|(^My family))[:space:] 

12. (([:punct:][:space:](My Child))|(^My Child))[:space:] 

13. (([:punct:][:space:](Our Child))|(^My Child))[:space:] 

14. (([:punct:][:space:](My husband))|(^My husband))[:space:] 

15. (([:punct:][:space:](My wife))|(^My wife))[:space:] 

Personal Story Reference Table 1, at the end of this appendix, includes a complete list of 

these basic MySQL search conditions. As an example of a complete MySQL search using 

one of the patterns above, the search for “I am a” at the beginning of a sentence or 

preposition looks like this: 

• SELECT * FROM table WHERE message 

• REGEXP '(([:punct:][:space:](I am a))|(^I am a))([:space:])' 
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B.3. Self-Identification with Nouns 

The search for “as a” and “I am a” return messages written by contacts who label 

themselves with specific terms. They identify themselves as belonging to groups such as 

gender categories, family roles (e.g. “father”), organizations (“member”), occupation 

categories (e.g. “carpenter”), and contacts living in specific locations (e.g. “Marylander”). 

The following regular expression expands the “I am” search to include variations such as 

“I’m a,” “I have been a,” and “”I will be the.” 

• REGEXP '(I am|I\'m|I was|I have been|I will be) (a|an|the) [a-

z]+' 

Suffixes to this pattern narrow results to specific labels that contacts call themselves and 

also account for a single, optional label modifier ([a-z]+ |). For example, the following 

regular expression identify self-descriptions of male and female family roles: 

• REGEXP '(I am|I\'m|I was|I have been|I will be) (a|an|the) 

([a-z]+ 

|)(male|boy|man|guy|husband|father|dad|papa|grandpa|grandfathe

r|granddad|son|brother|uncle)([:alpha:]|[:space:])' 

• REGEXP '(I am|I\'m|I was|I have been|I will be) (a|an|the) 

([a-z]+ 

|)(female|girl|lady|wife|mother|mom|mama|momma|grandma|grandmo

ther|grandmom|daughter|sister|aunt)([:alpha:]|[:space:])' 

Personal Story Reference Table 2, at the end of this appendix, includes a complete list of 

patterns that identify self-descriptions of family role, gender, some occupations (e.g. 

“doctor,” “carpenter”) and places of living (e.g. “Marylander”). 

B.4. Activity Self-Identification with Verbs 

Self-identification can also be found in verbs. While above searches expect sentence 

objects to suffix them, past, present, and future tense verbs can also identify specific task 

and occupation specific verbs. This study uses the following expression to search for a 

generic verb action: 
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• REGEXP '(I( went| went to| am|\'m| will| will be| was| have| 

have been)( go to| going| going to|))' 

Notice the lack of the pipe (“|”) after the words “have been” in this generic verb action 

expression that more specific queries use (“have been|”). The pipe makes the verb 

modifiers (e.g. “ will”) optional. Without a specific verb in this generic query, the 

modifiers are necessary. A more sophisticated program could identify verbs with a 

dictionary to improve this generic query. It would identify any verb followed by the word 

“I.” 

Personal Story Reference Table 3, at the end of this appendix, includes a complete 

list of patterns that identify, with verbs, more specific content related to self-

identification, job identification, outdoor activities, suffering, pain, and experience. For 

example, the following expressions were used to search for people who camp and hike: 

• REGEXP '(I( went| went to| am|\'m| will| will be| was| have| 

have been|)( go to| going| going to|)) camp' 

• REGEXP '(I( went| went to| am|\'m| will| will be| was| have| 

have been|)( go to| going| going to|)) (hike|hiking)' 

B.5. Swear Words 

This study looked for three swear words at the beginning and anywhere in sentences, and 

compared membership rates of contacts who have used those words to those using any of 

the LIWC swear words with the following MySQL query parts (words censured with 

“**”): 

• `Message` LIKE 'f**k%%' 

• `Message` LIKE '%%f**k%%' 

• `Message` LIKE 'd**n%%' 

• `Message` LIKE '%%d**n%%' 

• `Message` LIKE 's**t%%' 

• `Message` LIKE '%%s**t%%' 

• `swear` > 0 

The patterns are listed in Personal Story Reference Table 4. 
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B.6. Finding Members With Matching Messages 

The following MySQL query, defined in Python, describes how this study searched for 

contacts who used messages matching the searches and expressions described above, in 

the variable “search condition” below: 

command =""" 

SELECT COUNT(*) as 'Contacts' 

FROM ( 

SELECT DISTINCT CID 

FROM messages 

WHERE 

"""+search_condition+""" 

) AS a 

LEFT JOIN contacts b 

ON a.CID = b.CID 

WHERE b.`ever member` = """+str(membership)+"""; 

"""; 

Where “messages” is a table of personal messages, “cid” is a unique contact id, 

“contacts” is a table of contacts, and “member” is a field that contains either one or zero, 

determining if a contact has ever been a member within a year of one of their messages in 

the study period. This query is in the loop 

for membership in [0,1] 

For the calculation of membership rates for conditions and alternative conditions. 

B.7. Personal Story Search Reference Tables 

The following tables provide a reference of all of the MySQL LIKE and REGEX 

condition patterns that Exploration Three uses to search for personal stories. 

1. Basic MySQL searches for personal stories 

2. First-Person Singular Self-Identification with Nouns 

3. First-Person Singular Self-Identification with Verbs 

4. Swear Words 
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B.8. Personal Story Reference Table 1. Basic MySQL Searches for Personal 

Stories (LIKE and REGEX) 

Note: The word “basic” in the title of this section refer to basic words and phrases 

developed from those that one nonprofit advocacy organization uses to manually, ad hoc 

search for personal stories in advocacy messages. 

 

Condition Term MySQL Pattern 

Message contains As a LIKE “%As a%” 

Message starts with As a LIKE “As a%” 

Phrase starts with As a REGEX “(([:punct:][:space:](As a))|(^As 

a))[:space:]” 

Message contains I am a LIKE “%I am a%” 

Message starts with I am a LIKE “I am a%” 

Phrase starts with I am a REGEX “(([:punct:][:space:](I am a))|(^I 

am a))[:space:]” 

Message contains We are LIKE “%We are%” 

Message starts with We are LIKE “We are%” 

Phrase starts with We are REGEX “(([:punct:][:space:](We are))|(^We 

are))[:space:]” 

Message contains We are a LIKE “%We are a%” 

Message starts with We are a LIKE “We are a%” 

Phrase starts with We are a REGEX “(([:punct:][:space:](We are))|(^We 

are))[:space:]” 

Message contains I live LIKE “%I live%” 

Message starts with I live LIKE “I live%” 

Phrase starts with I live REGEX “(([:punct:][:space:](I live))|(^I 

live))[:space:]” 

Message contains I live in LIKE “%I live in%” 

Message starts with I live in LIKE “I live in%” 

Phrase starts with I live in REGEX “(([:punct:][:space:](I live 

in))|(^I live in))[:space:]” 

Message contains We live LIKE “%We live%” 
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Message starts with We live LIKE “We live%” 

Phrase starts with We live REGEX “(([:punct:][:space:](We 

live))|(^We live))[:space:]” 

Message contains We live in LIKE “%We live in%” 

Message starts with We live in LIKE “We live in%” 

Phrase starts with We live in REGEX “(([:punct:][:space:](We live 

in))|(^We live in))[:space:]” 

Message contains We call 
home 

LIKE “%We call home%” 

Message starts with We call 
home 

LIKE “We call home%” 

Phrase starts with We call 
home 

REGEX “(([:punct:][:space:](We call 

home))|(^We call home))[:space:]” 

Message contains My family LIKE “%My family%” 

Message starts with My family LIKE “My family%” 

Phrase starts with My family REGEX “(([:punct:][:space:](My 

family))|(^My family))[:space:]” 

Message contains Our family LIKE “%Our family%” 

Message starts with Our family LIKE “Our family%” 

Phrase starts with Our family REGEX “(([:punct:][:space:](Our 

family))|(^Our family))[:space:]” 

Message contains My child or 
my children 

LIKE “%My child%” 

Message starts with My child or 
my children 

LIKE “My child%” 

Phrase starts with My child or 
my children 

REGEXP '(([:punct:][:space:](My 

child))|(^My 

child))(ren|)([:punct:]|[:space:]) 

Message contains Our child or 
our children 

LIKE “%Our child%” 

Message starts with Our child or 
our children 

LIKE “Our child%” 

Phrase starts with Our child or 
our children 

REGEXP '(([:punct:][:space:](Our 

child))|(^Our 

child))(ren|)([:punct:]|[:space:]) 

Message contains My husband LIKE “%My husband%” 

Message starts with My husband LIKE “My husband%” 
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Phrase starts with My husband REGEX “(([:punct:][:space:](My 

husband))|(^My husband))[:space:]” 

Message contains My wife LIKE “%My child%” 

Message starts with My wife LIKE “My child%” 

Phrase starts with My wife REGEX “(([:punct:][:space:](My 

husband))|(^My husband))[:space:]” 

 

B.9. Personal Story Reference Table 2. First-Person Singular Self-Identification 

with Nouns 

Condition MySQL Pattern 

Male '(I am|I\'m|I was|I have been|I will be) (a|an|the) 

([a-z]+ 

|)(male|boy|man|guy|husband|father|dad|papa|grandpa

| 

grandfather|granddad|son|brother|uncle)([:alpha:]|[

:space:])' 

Female REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ 

|)(female|girl|lady|wife|mother|mom|mama|momma|gran

dma| 

grandmother|grandmom|daughter|sister|aunt)([:alpha:

]|[:space:])' 

Doctors, nurses, and 
words ending in “ist” 

REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)([a-z]+ist|doctor|nurse)' 

Words ending in “ist” REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)([a-z]+ist)' 

Words ending in “tor” REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)([a-z]+tor)' 

Words ending in “or” REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)([a-z]+or)' 

Words ending in “er” REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)([a-z]+er)' 

Doctors and nurses REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)(doctor|nurse)' 

Lawyers and judges 
 
 
Note: Additional terms 
like “attorney” could 
expand this search 

REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)(lawyer|judge)' 
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Engineer REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)engineer' 

Husband or wife REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)(husband|wife)' 

Mother or father REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ 

|)(mother|father|mom|dad|mama|papa)' 

Grandmother or 
grandfather 
 
Note: The word 
“grandparent” could 
expand this search 

REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ 

|)(grandma|grandmother|grandpa|grandfather)' 

Child REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)(son|daughter|child|kid)' 

Sister or brother REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)(sister|brother)' 

Uncle or aunt REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ |)(uncle|aunt)' 

Educator 
 
(college, student, phd, 
mater’s, master of, 
doctor or, graduate, 
professor, ta, teacher, 
high school, 
elementary school, 
preschool, pre-school, 
higher education, 
research) 

REGEXP '(I am|I\'m|I was|I have been|I will be) 

(a|an|the) ([a-z]+ 

|)(college|student|phd|master\'s|master of|doctor 

of|graduate|professor|ta|teacher|highschool|element

ary school|preschool|pre-school|higher 

education|research)' 

 

B.10. Personal Story Reference Table 3. First-Person Singular Self-Identification 

with Verbs 

Condition MySQL Pattern 

Generic first-person 
singular actions 

REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been)( go to| going| going to|))' 

Self/Job Identification 

Mary REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(married|mary)' 
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Teach REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(teach|taught)' 

Vote REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(vote|voting)' 

Work REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

work' 

Live REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(live|living)' 

Program REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

program' 

Analyze REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

analyz' 

Volunteer REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

volunteer' 

Join REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

join' 

Protect, guard, save, 
fight 

REGEXP '(I( went| went to| am|\'m| will| will be| 

was| once was| used to|\'m used to| have| have 

been|)( go to| going| going to|)) 

(protect|guard|save|saving|fight|fought)' 

Spend REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

spend' 

Outdoor Activities 

Camp REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

camp' 

Hike REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(hike|hiking)' 

Trek REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

trek' 
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Climb REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

climb' 

Ski REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

ski' 

Hunt, fish REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(hunt|fish)' 

Bike, cylce REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(bike|biking|cycl)' 

Hike, walk REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(hike|hiking|walk)' 

Sim REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(swim|swam)' 

Ride REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(ride|riding|rode)' 

Suffering, pain, and experience 

Suffer REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

suffer' 

Deprive REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

depriv' 

Die REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(die|dying)' 

Hurt REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

hurt' 

Curse REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

curs' 

Break REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(broke|break)' 

Lose REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(lost|lose)' 
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Endure REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

endur' 

Bleed REGEXP '(I( went| went to| am|\'m| will| will be| 

was| have| have been|)( go to| going| going to|)) 

(bleed|bled)' 

Go through REGEXP 'I went through|I go through|I\'m going 

through|I will go through' 

 

B.11. Personal Story Reference Table 4. Swear Words 

Words are censored in this table with asterisk. 

Condition Swear word MySQL Pattern 

Message contains F**k `Message` LIKE “%F**k%” 

Message starts with F**k `Message` LIKE “F**k%” 

Message contains D**n `Message` LIKE “%D**n%” 

Message starts with D**n `Message` LIKE “D**n%” 

Message contains S**t `Message` LIKE “%S**t%” 

Message starts with S**t `Message` LIKE “S**t%” 

Message contains Any swear word in 
the LIWC swear 
dictionary dimension 

`swear` > 0 
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APPENDIX C.  VALIDATION OF VADER FOR ENVIRONMENTAL 

ADVOCACY MESSAGES SENT TO POLICYMAKERS 

C.1. Validation Summary and Introduction to Precision, Recall, and F-Score 

Measures 

The VADER analysis for rating the sentiment of environmental advocacy messages 

addressed to policymakers was validated by comparing VADER ratings to corresponding 

human ratings of 400 randomly selected personal messages from 491,027 in the 

database.  

Validation of VADER begins with a single human reviewer. It employs the same 

9-point Likert scale that Hutto and Gilbert (2014) use in their validation of VADER for 

social media words: extremely negative, very negative, moderately negative, slightly 

negative, neutral, slightly positive, moderately positive, very positive, and extremely 

positive. It also asks the reviewers to rate messages in a way that reduced variations 

between reviewer scores for Hutto and Gilbert, by asking them to rate messages in a way 

they believe others would rate messages. While Hutto and Gilbert crowd-sourced 

reviewers and screened them with an English language test, this study selected an 

English-speaking reviewer with a college degree.  

VADER identifies messages as either negative, neutral, and positive. It identifies 

messages in these categories with a 56% match rate with the human reviewer, where a 

match rate is the percentage of messages that VADER and the human reviewer rate the 

same. 

Precision, recall, and F1 scores explain the ability of a classification model to 

correctly identify truth (in this case, judged by a human reviewer) in more detail than an 
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overall match rate. For reference, precision is the number of correct classifications of 

items that a machine makes in that category divided by all the classifications of items that 

the machine makes in that category. Recall is the number of correct classifications of 

items that the machine makes in the category divided by all items in the category whether 

classified by the machine or not (Kent et al. 1955). If the primary goal of an application is 

to correctly classify a small number of items, and avoid incorrect classifications, a high 

degree of precision is more desirable than a high degree of recall. If the primary goal of 

an application is to correctly classify as many items as possible, and incorrectly 

classifying items is not important, a high degree of recall is more important than a high 

degree of precision. The F1 score is the harmonic mean of recall and precision: F1 = 

2/(1/Recall + 1/Precision). The F1 score equally weights recall and precision, irrespective 

of the importance of one over the other. Precision, recall, and the F1 scores are measures 

typically used to validate machine models. Hutto and Gilbert use them in during the 

development of VADER (2014) and Ding uses them in assessing the effectiveness of 

customized sentiment analyzers (2018). 

In this validation, VADER identifies messages with a moderate 0.51 negative 

sentiment F1 score, a low 0.13 neutral sentiment F1 score, and a moderately high 0.66 

positive sentiment F1 score. It finds negative messages with a high precision of 0.71 but a 

moderately low recall of 0.47. It finds positive messages with moderate precision of 0.57 

and a moderately high recall rate of 0.66. It finds neutral messages with low precision 

and recall rates of 0.13 and 0.14. While VADER poorly identifies neutral messages, the 

human reviewer only rated 11% of messages as neutral. They rated 49% of messages 

positive and 41% of messages negative. 
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C.2. Validation with a Single Human Reviewer 

Validation of VADER with a single human reviewer begins by assessing the accuracy of 

VADER by comparing VADER sentiment ratings and human sentiment ratings in a 

contingency table (Table 1) for the sample of 400 random messages described above. The 

table directly reports the human reviewer responses to the Likert scale as human ratings. 

For VADER ratings, the table reports a classification of VADER compound sentiment 

scores (-1 to 1) into negative, neutral, and positive categories as recommended by Hutto 

and Gilbert (2014) and described in Chapter 2. VADER compound scores less than or 

equal to -0.05 indicate negative sentiment, VADER compound scores greater than or 

equal to 0.05  indicate positive sentiment, and other VADER compound indicate neutral 

sentiment. The match rate for each VADER category (negative, neutral, positive) is equal 

to the number of VADER ratings in a category that match human ratings, all divided by 

the total number of VADER ratings in that category. For example, the match rate for 

negative VADER ratings is equal to the count of all negative VADER ratings that match 

the human ratings for the four negative Likert scale categories (extremely negative, very 

negative, moderately negative, and slightly negative) divided by the total number of 

negative VADER ratings: (18 + 27 + 23 + 23)/129 = 0.71. This negative VADER match 

rate shows that 71% of the negative ratings that VADER makes also match negative 

human ratings. This is high compared to the 0.57 positive VADER match rate, and very 

high compared to the 0.13 neutral VADER match rate.4 These match rates are measures 

 

 

4 VADER neutral sentiment ratings match the human reviewer neutral sentiment ratings with low 

rates when categorizing messages as neutral when their compound VADER scores are in the recommended 

neutral range, between -0.05 and 0.05 (Hutto and Gilbert 2014). Increasing this neutral range, increases the 

neutral match rate. The neutral match rate, similarly, increases if messages rated by the human reviewer as 
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of VADER precision. While VADER matches negative ratings more precisely than 

positive ratings, the human match rates shown in the last column of Table 1 indicate that 

VADER identifies positive human-rated messages at a higher rate than it identifies 

negative human-rated messages. 

In other words, given just two messages identified by VADER, one negative and 

one positive, because VADER is more precise in identifying negative messages, the one 

negative message is more likely to be rated negative by the human reviewer than the one 

positive message is likely to be rated positive by the human reviewer. Alternatively, 

given all 400 VADER ratings, VADER identifies more of the positive human-rated 

messages than it identifies the negative human-rated messages. It does so, however, with 

a greater likelihood of producing false positive-sentiment ratings compared to false 

negative-sentiment ratings (vs. the human reviewer). 

  

 

 

“slightly positive” and “slightly negative” are considered neutral ratings. Neutral sentiment rating match 

rates, because they are categorized as such in relatively narrow boundaries, are also more susceptible to 

positive or negative bias by either VADER or the human reviewer in comparison to negative sentiment and 

positive sentiment rating match rates. For example, as shown in Table 4, the human reviewer rated 19 

messages as slightly negative and VADER rated them as neutral. 
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Table 1. VADER and Human Sentiment for 400 Advocacy Messages 
 

 VADER Rating 
 
Total 

 
Human Match Rate Human Rating Negative Neutral Positive 

Extremely Negative 18 1 5 24 0.75 

Very Negative 27 9 7 43 0.63 

Moderately Negative 23 8 22 53 0.43 

Slightly Negative 23 15 36 74 0.31 

Neutral 11 6 26 43 0.14 

Slightly Positive 14 4 37 55 0.67 

Moderately Positive 4 2 34 40 0.85 

Very Positive 4 1 29 34 0.85 

Extremely Positive 5 1 28 34 0.82 

Total 129 47 224 400 
 

VADER Match Rate 
(Precision) 

0.71 0.13 0.57 

  

 
 

Table 2 lumps the scores shown in table one into a three by three confusion matrix in the 

same way that the VADER match rates are calculated in Table 1 — categorizing all 

positive human ratings as positive, all negative human ratings as negative, and the neutral 

ratings as neutral. For example, there are 91 messages that VADER and humans rated 

negative (18 + 27 + 23 + 23). The last column of table three contains VADER recall 

rates. These rates confirm observations of Table 1 that VADER identifies more positive 
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human-rated messages than negative human-rated messages, but with relatively greater 

false positive (type one) errors. 

Table 2. VADER and Human Sentiment Rating Confusion Matrix for 400 Advocacy Messages 
 

VADER Rating  
 

Human Rating Negative Neutral Positive Total Recall 

Negative 91 33 70 
194 0.47 

Neutral 11 6 26 
43 0.14 

Positive 27 8 128 
163 0.79 

Total 129 47 224 
400 

 

Precision 0.71 0.13 0.57 

  

 

Table 3 summarizes the overall match rate, precision, recall, and F1 scores, for negative, 

neutral, and positive VADER ratings compared to the human ratings. 

 
Table 3. Precision and Recall for VADER Sentiment Ratings 
 

VADER Rating Precision Recall F1 

Negative 0.71 0.47 0.56 

Neutral 0.13 0.14 0.13 

Positive 0.57 0.79 0.66 

 
The overall match rate with an individual human reviewer is 56%. 
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While Hutto and Gilbert (2014) recommend categorizing sentences into three ordinal 

categories with the VADER compound score at -0.05 and 0.05 thresholds, as calculated 

above, and while Likert scale questions are also ordinal, Table 4 reveals a level of match 

exists when in a confusion matrix with nine equally spaced bins for VADER ratings 

subjectively associated with the nine human ratings. 

 
Table 4. Precision and Recall for VADER Sentiment Ratings 

 
Human 
Rating 

Subjective VADER Rating 

  

-4 -3 -2 -1 0 1 2 3 4 Total Recall 

-4 4 7 4 2 2 1 3 1 0 24 0.17 

-3 3 10 6 6 11 2 1 0 4 43 0.23 

-2 4 6 6 3 13 2 7 6 6 53 0.11 

-1 4 8 7 3 19 5 11 10 7 74 0.4 

0 1 2 6 2 8 5 7 8 4 43 0.19 

1 1 6 2 5 5 6 10 14 6 55 0.11 

2 1 0 1 1 4 4 8 11 10 40 0.20 

3 1 1 1 1 1 1 9 11 8 34 0.32 

4 0 1 3 0 2 4 5 6 13 34 0.38 

Total 19 41 36 23 65 30 61 67 58 400  

Precision 0.21 0.24 0.17 0.13 0.12 0.20 0.13 0.16 0.22   
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The subjective VADER scores in Table 4 (-4 to 4) are determined by the function: 

IF( VADER>=0.7777, 4, 

  IF( VADER>=0.5555, 3, 

    IF( VADER>=0.3333, 2, 

      IF( VADER>=.1111, 1, 

        IF( VADER>=-0.1111, 0, 

          IF( VADER>-0.3333, -1, 

            IF( VADER>-0.5555, -2, 

              IF( VADER>-0.7777, -3,-4) 

            ) 

          ) 

        ) 

      ) 

    ) 

  ) 

) 

C.3. Validation with a Multiple Human Reviewers 

Table 5 shows match rates between VADER and six individual reviewers, x1 … x6, 

rating the same 400 messages and using the same Likert scale survey described for the 

single reviewer (x4) above. It also shows the match rates between VADER and the six 

reviewer’s average ratings rounded to the nearest integer (57% match rate). 

Table 5. VADER Sentiment Match Rates and Correlations 
 
 

Reviewer 
 

 
x1 x2 x3 x4 x5 x6 round(avg(x)) 

VADER Match Rate 45% 56% 51% 56% 58% 55% 57% 

 
The round(avg(x)) variable is the list of average reviewer sentiment 
scores from -4 to 4, rounded to the nearest integer. 
 

While VADER ratings match those of the average group ratings at slightly higher rates 

than the ratings of most individual reviewers, reviewer scores should only be lumped 

together if their ratings are consistent with one another. This study uses Chonbach’s alpha 

and factor analysis to check if reviewer scores are consistent with each other. Assuming 

an integer ratio scale for human reviewers from -4 to 4 corresponding to extremely 
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negative to extremely positive ratings, as assumed in Table 4 for compound VADER 

scores, Chronbach’s alpha of 0.90 for the six human reviewers indicates that reviewers 

are fairly consistent in their ratings and it is not unreasonable to take their average rating, 

rounded to the nearest integer, as a better measure of human judgement than using just 

one reviewer. In the calculation of Chronbach’s alpha, the number of reviewers, k, equals 

six, the sum of the variances of each of the reviewer’s scores is equal to 24.83 and the 

variance of all of the sums of the scores for each question is equal to 100.14. The sum of 

the variances of each of the reviewer’s scores is comparatively low compared to the 

variance of all of the sums of the scores for each question. Chonbach’s alpha equals 6/(6-

1) (1 - 24.83/100.14) = 0.90. Factor analysis, furthermore, shows most of the variables 

have similar factor loading (x1=0.68, x2=0.87, x3=0.87, x4=0.84, x5=0.88, x6=0.81). 

Table six compares the precision and recall rates from table three for a single reviewer to 

those of the group of reviewers. Values are similar. The overall accuracy increases to 

57%. Finally, compared to Table 4, for a single reviewer, Table 7 shows precision and 

recall rates for the lumped group score. 

Table 6. Precision and Recall for VADER Sentiment Ratings 
Against an Individual Reviewer and Against a Group of Reviewers 
 

VADER Rating Precision Recall F1 

Individual Negative 
Group Negative 

0.71 
0.65 

0.47 
0.53 

0.56 
0.58 

Neutral Negative 
Group Negative 

0.13 
0.17 

0.14 
0.12 

0.13 
0.14 

Individual Positive 
Group Positive 

0.57 
0.61 

0.79 
0.79 

0.66 
0.69 

 
The overall match rate with an individual human reviewer is 56%. 
The match rate with a group of six human reviewers is 57%. 
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Table 7. Precision and Recall for VADER Sentiment Ratings 
 

Group 
Human 
Rating 

Subjective VADER Rating   

-4 -3 -2 -1 0 1 2 3 4 Total Recall 

-4 2 1 4 2 0 0 1 1 0 11 0.18 

-3 4 11 4 1 6 0 3 0 2 31 0.35 

-2 4 13 4 6 12 2 2 4 6 53 0.08 

-1 4 5 8 4 16 8 9 6 4 64 0.06 

0 4 5 9 3 11 3 14 11 7 67 0.16 

1 1 6 5 6 16 14 17 24 14 103 0.14 

2 0 0 1 1 3 2 11 16 11 45 0.24 

3 0 0 1 0 1 1 4 5 13 25 0.20 

4 0 0 0 0 0 0 0 0 1 1 1.00 

Total 19 41 36 23 65 30 61 67 58 400  

Precision 0.11 0.27 0.11 0.17 0.17 0.47 0.18 0.07 0.02   

 
 

C.4. Validation Conclusion and Recommendation 

In conclusion, the human validation of VADER shows that Section 5.5 of this study 

reasonably reports that relationships between membership rates and VADER scores are 

descriptive of relationships between membership rates and sentiment. Although neutral 

sentiment rating match rates are low between humans and VADER in this validation, 
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neutral match rates increase with increasing neutral ranges as shown in Table 4 and 

Table 7. 

In comparison to sentiment language classifiers reviewed and customized by Ding 

(2018), and validated for twitter messages about public infrastructure projects, VADER 

performs well for this study. Ding reports a 20% accuracy rate for the Aylien Text API 

classifier (Aylien 2019), a 50% accuracy rate for the SentiStrength classifier (Thelwall et 

al. 2012), and a 68% accuracy rate for a customized classifier based on a sentiment 

lexicon developed by Hu et al. (2014) and Ding’s study data. These measures of accuracy 

are comparable to the 56% and 57% match rates identified in the human validation of 

VADER sentiment for advocacy messages reported in this Appendix. Given this study’s 

results (Section 5.5, Chapter 6) that sentiment classification can help identify 

membership rates of authors of advocacy messages, future work should be done to 

investigate the ability of other classifiers to identify sentiment in advocacy messages. 

Also, given Ding’s success in customizing a sentiment dictionary for Twitter data, future 

work should investigate the ability of customizing the dictionary of lexicon based 

classifiers like VADER for finding sentiment in advocacy messages. For example, in a 

review of falsely classified messages used to validate VADER in this study, changing a 

misspelled word in one message from “thenk” to “thank” in “thank you” would have 

increased the overall VADER match rate. 
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APPENDIX D.  DEFINING AND VALIDATING A MODEL FOR 

CLASSIFICATION OF PERSONAL STORIES 

As reported in Section 5.3, this dissertation did not develop and validate a model to find 

personal stories in messages because (a) it did not set out to do so and (b) results from 

searches for personal stories revealed other, related content in messages that was 

indicative of high and low membership rates. This dissertation prioritized reporting these 

results to achieve objective two over further developing a model to identify personal 

stories. Future work could be conducted to develop a personal story classifier model. 

Such a model could identify “lived experience” (Sandhu 2017) content in messages as 

well as and related content (e.g. family references) found by this dissertation in the search 

for lived experiences. It should also consider research from Gordon et al. (2009) who 

classified for personal stories in longer passages of text. This appendix suggests ways to 

validate a model in the future. 

The validation of the classification of messages as personal stories by a model 

depends on the number of descriptive factors that a model classifies messages into, and 

these factors’ scales of measurement. This study suggests future work must first better 

define what a personal story is, and what supporting and useful, related factors should be 

reported by a model classifying messages as such. In the most basic case, (a) given a 

random sample of 400 messages, (b) given a single reviewer, and (c) given a model that 

classifies messages containing “lived experiences,” as defined by Sandhu (2017), or not, 

a person familiar with Sandhu’s work should ideally be consulted to judge if each of the 

400 messages contains a personal story or not. Then, this study should describe the 

accuracy of the model with (a) the model’s match rate to the reviewers classifications, (b) 
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precision, (c) recall, and (d) F1 scores. This section details these recommendations and 

considers more complex cases for validating multiple factors with multiple reviewers. 

Research (Sandhu 2017) and campaign development guides from the Social 

Change Agency (2017a, 2017b) show advocacy organizations benefit from enlisting 

individuals who have lived experiences affected by campaign issues into organizer and 

leadership positions of campaigns. In comparison to online form-letters and petitions, 

which go unseen by policymakers (Miler 2014), leadership and rhetoric from those with 

lived experiences build trust between advocacy organizations, policymakers, and the 

public. The Congressional Management Foundation (2017) shows that, more generally, 

U.S. congressional representatives say that individualized letters from constituents help 

them take positions on issues. (Chapter 1 and Chapter 2 describe further the state of 

congressional communication.) For reference, as described in Section 3.2, this 

dissertation labels messages originally authored by users of online advocacy systems as 

personal messages. It labels personal messages that contain descriptions and references of 

lived experiences as personal stories. 

This study searches for personal stories with regular expressions (Objective Two). 

In doing so, it exposes the subjective nature of the definition of what a lived experience 

is. It also finds that messages, whether describing experiences of how campaign issues 

directly affect authors, or simply describing an author's occupation or family status, are 

related to membership rates. For example, the following messages could all indicate 

different classifications and degrees of “lived experiences”: 
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1. I plan on moving to Flint, Michigan, but am worried about water contamination 

2. My uncle died of black lung disease when I was five. Please phase out these coal 

mines in the next 10 years and provide assistance for those working in the 

industry to make the occupation transitions 

3. As a proud Marylander, I support your proposal to make our city a safe place for 

climate refugees 

4. I worry about climate change every day 

5. I drive a car and I support stronger fuel emission standards 

6. My wife and I don’t want our children playing on toxic, synthetic turf proposed in 

the new Downtown Silver Spring update plans 

Sandhu (2017) defines lived experiences as “the experience(s) of people on whom a 

social issue, or combination of issues, has had a direct personal impact.” Some of these 

messages describe past experiences, some describe worrying about future experiences, 

some describe experiences of family members, some express common experiences, and 

some simply express family associations. Each message may be subjectively classified as 

a lived experience. 

Before validating classification models (deterministic or probabilistic) of personal 

stories, therefore, more specific criteria of what a personal story is needs to be developed 

and incorporated into these models. From an applied point of view, supplementing the 

importance of lived experiences with exploration results from this study, advocacy 

organizations and policymakers may benefit from identification of self-described “direct 

personal impact” statements, that Sandhu describes, as well as identification of self-

described occupations, places of living, family roles, family relationships, and outdoor 
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activities. Both models and human judges may classify these factors on Likert scales, like 

VADER classifies sentiment, or in Boolean and null categories (present, not present, and 

undetermined). 

The most general model, with the least number of classification factors, is the 

model that classifies a message describing or not describing lived experiences as defined 

by Sandhu (2017). It reports a single, Boolean classification factor for every message. 

The next most general model adds an undetermined category to this single classification 

factor. The next most general model reports this single classification factor on an ordinal 

scale, and the next most general model reports it on a ratio scale. After this, additional 

classification factors, such as those suggested above (occupation, places of living, family 

role, etc.), with different scales measurement, define more complex models. 

To validate the most general model – the one with a single Boolean classification 

factor based on the definition of a lived experience – with only a single human judge of 

truth and a sample of 400 random messages, this study suggests building on lessons 

learned from this study’s validation of VADER with a single reviewer. It suggests 

1. Seeking a college educated, English-speaking expert well-acquainted with 

Sandhu’s definition and research on lived experiences (2017), to classify 

messages as meeting or failing to meet Sandhu’s definition as personal stories 

2. Presenting the reviewer with an online survey that 

a. Shows messages one at a time and requires human interaction between 

messages 
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b. Asks the reviewer to rate messages as they think other experts might rate 

messages to increase reviewer consistency, as it did for Hutto and Gilbert 

(2014) 

c. Shows the reviewer their progress and rewards the reviewer with positive 

thank you messages as they complete the survey 

d. Shows Sandhu’s definition of what a lived experience is alongside every 

question 

3. Ensuring the reviewer has an environment where they agree that they can focus 

on the survey; if they say the online format doesn’t work for them, the survey 

should be printed 

In the case that multiple experts are able to review messages, validation design work 

should begin by consulting with at least one expert to construct example vignettes of 

what a lived experience is and what it is not in order to ground reviewer understanding of 

what a lived experience is and increase reviewer rating consistency. An odd number of 

reviewers should review messages, or a single expert should be available to break ties. 

Reviewer consistency should be evaluated with factor analysis or a statistic such as 

Greatest Lower Bound (GLB) or Kuder-Richardson Formula 20 (KR-20). If reviewer 

consistency is low, validation will require further investigation to understand why and 

possibly eliminate bad reviewers. 

In the more complex cases, where reviewers are asked to report ordinal and ratio 

judgements for one or more metrics, this study recommends using Chronbach’s alpha and 

factor analysis to check the consistency of reviewers, as this study does for checking the 

consistency of reviewers judging message sentiment. In these cases, where reviewers are 
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asked to check messages for multiple factors, questions can be grouped by message or by 

factor. Grouping questions by factor would require the user to read each message 

multiple times (equal to the number of factors) and increase the time and effort required 

by reviewers to complete the review. Grouping questions by message, alternatively, 

would allow reviewers to keep a message in their short-term memory and then answer 

questions about each factor in it. In this second case, the survey could present factor 

questions all at once, on a single screen, in sets, or individually for each question. This 

study recommends presenting questions by message, and presenting no more than seven 

factor questions about a message on a single screen at a time. If factor questions could be 

confused with each other, the survey should present them on the same screen with 

distinctions between them highlighted. 

After reviewer data has been collected, classifier validation can employ the same 

match rate, precision, recall, and F1 scores used by this study in validating VADER 

sentiment ratings to access model accuracy. In the more complex model situations, these 

scores should be calculated for each message factor that the model and humans classify. 

 

 

 

 

 

 

 

  



 

198 

GLOSSARY . 

Action Center. A trade name for an online advocacy service. See advocacy service 

Advocacy Campaign. An effort, generally centrally managed by an advocacy 

organization, to support a specific issue. In this study, advocacy campaigns refer 

to online campaigns in which advocacy organization contacts and market targets 

are asked to send petitions and personal messages to their policymakers 

Advocacy Organization. An organization that educates the public and lobbies 

policymakers to support projects and policies. Advocacy Organizations discussed 

in this dissertation are all nonprofit, membership-based organizations which 

collect annual membership dues and contributions to support environmentally 

sustainable policies and projects. Advocacy Organizations discussed in this 

dissertation all use online advocacy services among other methods to achieve 

their goals 

Advocacy Service Provider. A software vendor that develops and provides advocacy 

services to advocacy organizations 

Advocacy Service. A software service used by advocacy organizations to both recruit 

members and enable contacts to conveniently write their policymakers 

Campaign Manager. A staff member or volunteer managing an advocacy campaign. This 

dissertation often refers to campaign managers as campaign organizers 

Campaign Organizer. See campaign manager 

Contact. A person with a relationship to an advocacy organization. Note: new contacts do 

not necessarily have information about them stored in an organizational contact 

relationship management database 
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Flesch Ease of Reading Test. A popular test that scores text on how easy it is to read by 

people with different levels of education. The Flesch score is a function of 

syllables, words, and sentences in text. See Flesch (1948) 

Linguistic Inquiry and Word Count (LIWC). A software package that counts words in 

text matching collections of words. See LIWC (2018) 

Linguistic Inquiry and Word Count (LIWC) Dimension. A labeled collection of words in 

the LIWC software package. E.g. pronouns, function words, positive emotions, 

etc. 

Linguistic Inquiry and Word Count (LIWC) Score. A LIWC test-result that describes a 

text specimen. LIWC reports all word count rates as percentages matching a 

LIWC dimension (e.g. all pronouns). LIWC reports word count as the number of 

words in text, not a percentage 

Message. Any message sent to a policymaker through an online advocacy system, 

including form letters, custom messages, and personal messages 

Messages, Custom. Prewritten advocacy messages, edited and customized by contacts 

using online advocacy services 

Message, Not Custom And Not Personal (NOTCORP). Messages that have specifically 

not been customized nor individually authored by contacts 

Message, Personal. Individually authored text sent to a policymaker. Contacts compose 

personal messages into blank text area fields on websites and in messenger-

application entry fields 

Message, Personal Story. A message that describes a “lived experience” (Sandhu 2017); 

also used to describe messages found by searches for “lived experiences” 
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Policymaker. A primary target of online advocacy campaigns, many times being state and 

national elected officials or appointees that can vote or influence project and 

policy decisions 

Valence Aware Dictionary for sEntiment Reasoning (VADER). A rule-based model that 

measures sentiment in text, specifically created for short social-media messages. 

See Hutto et al. (2014) and related code at 

https://github.com/cjhutto/vaderSentiment#about-the-scoring 

 

  

https://github.com/cjhutto/vaderSentiment#about-the-scoring
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