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Image geo-localization is an important research problem. In recent years,

the IARPA Finder program gathers many researchers to develop the technology to

address the geo-localization task. One particularly effective approach is utilizing

the large-scale ground-level image and/or overhead imagery with image matching

techniques for image geo-localization. In this dissertation, we focus on two different

aspects of geo-localization. First, we focus on indoor image and use geo-localization

to recognize different business venues. Second, we address the venerability of such a

computer vision system and apply geo-localization to solve media forensics problems

such as content manipulation and meta-data manipulation.

With the prevalence of social media platforms, media shared on the Internet

can reach millions of people in a short time. Sheer amounts of media available on

the Internet enable many different computer vision applications. However, at the

same time, people can easily share a tampered media for malicious goals such as

creating panic or distorting public opinions with little effort.



We first propose an image localization framework for extracting fine-grained

location information (i.e. business venues) from images. Our framework utilizes

the information available from social media websites such as Instagram and Yelp to

extract a set of location-related concepts. Using these concepts with a multi-modal

recognition model, we were able to extract location information based on the image

content.

Secondly, to make a robust system, we address the metadata tampering de-

tection problem, detecting the discrepancy between the images and its associated

metadata such as GPS and timestamp. We propose a multi-task learning model

to verify its authenticity by detecting the discrepancy between image content and

its metadata. Our model first detects meteorological properties such as weather

condition, sun angle, and temperatures from the image content and comparing it

with the information from the online weather database. To facilitate the training

and evaluating of our model, we create a large-scale outdoor dataset labeled with

meteorological properties.

Thirdly, we address the event verification problem by designing a convolu-

tional neural networks configuration specifically target for image localization. The

proposed networks utilize the bilinear pooling layer and attention module to extract

detail location information from the image content.

Forth, we present a generative model to generate realistic image compositing

using adversarial learning, which can be used to further improve the image tamper-

ing detection model. Finally, we propose an object-based provenance approach to

address the content manipulation problem in media forensics.
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Chapter 1: Introduction

Image localization is important for marketing and recommendation of local

business; however, the level of granularity is still a critical issue. Given a consumer

photo and its rough GPS information, we are interested in extracting the fine-

grained location information, i.e. business venues, of the image. In Chapter 2, we

propose a novel framework for business venue recognition. The framework mainly

contains three parts. First, business-aware visual concept discovery: we mine a set

of concepts that are useful for business venue recognition based on three guidelines

including business awareness, visually detectable, and discriminative power. We

define concepts that satisfy all of these three criteria as business-aware visual con-

cept. Second, business-aware concept detection by convolutional neural networks

(BA-CNN): we propose a new network configuration that can incorporate semantic

signals mined from business reviews for extracting semantic concept features from

a query image. Third, multi-modal business venue recognition: we extend visually

detected concepts to multi-modal feature representations that allow a test image to

be associated with business reviews and images from social media for business venue

recognition. The experiments results show the visual concepts detected by BA-CNN

can achieve up to 22.5% relative improvement for business venue recognition com-
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pared to the state-of-the-art convolutional neural network features. Experiments

also show that by leveraging multi-modal information from social media we can fur-

ther boost the performance, especially when the database images belonging to each

business venue are scarce.

In order to make a robust system, in Chapter 3, we address the metadata tam-

pering problem. Image content or metadata editing software availability and ease of

use has resulted in a high demand for automatic image tamper detection algorithms.

Most previous work has focused on detection of tampered image content, whereas

we develop techniques to detect metadata tampering in outdoor images using sun

altitude angle and other meteorological information like temperature, humidity and

weather, which can be observed in most outdoor image scenes. To train and evaluate

our technique, we create a large dataset of outdoor images labeled with sun alti-

tude angle and other meteorological data (AMOS+M2), which to our knowledge,

is the largest publicly available dataset of its kind. Using this dataset, we train

separate regression models for sun altitude angle, temperature and humidity and a

classification model for weather to detect any discrepancy between image content

and its metadata. Finally, a joint multi-task network for these four features shows a

relative improvement of 15.5% compared to each of them individually. We include

a detailed analysis for using these networks to detect various types of modification

to location and time information in image metadata.

Chapter 4 describe an alternative approach to the metadata tampering detec-

tion problem, aiming to verify the authenticity of the metadata associated with the

image, using a deep representation learning approach. We propose a deep neural
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network called Attentive Bilinear Convolutional Neural Networks (AB-CNN) that

learns appropriate representation for metadata verification. AB-CNN address sev-

eral common challenges in verifying a specific type of metadata – event (i.e. time

and places), including lack of training data, fine-grained differences between distinct

events, and diverse visual content within the same event. Experimental results on

three different datasets show that the proposed model can provide a substantial

improvement over the baseline method.

In order to further improve the tampering detection algorithm, Chapter 5 de-

scribe an algorithm that can be used to generate additional training data with image

compositing. Compositing a realistic image is a challenging task and usually requires

considerable human supervision using image editing software. We propose a gen-

erative adversarial networks (GANs) architecture for automatic image compositing.

The proposed model consists of four sub-networks: a transformation network that

improves the geometric and color consistency of the composite image, a refinement

network that polishes the boundary of the composite image, a discriminator net-

work, and a segmentation network for adversarial training. Experimental results on

both synthesized images and real images show that our model, Geometrically and

Color Consistent GANs (GCC-GANs), can automatically generate realistic compos-

ite images compared to several state-of-the-art methods, and does not require any

manual effort.

In Chapter 6, we present an analysis of embeddings extracted from different

pre-trained models for content-based image retrieval. Specifically, we study em-

beddings from image classification and object detection models. We discover that
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even with additional human annotations such as bounding boxes and segmenta-

tion masks, the discriminative power of the embeddings based on modern object

detection models is significantly worse than their classification counterparts for the

retrieval task. At the same time, our analysis also unearths that object detection

model can help retrieval task by acting as a hard attention module for extracting ob-

ject embeddings that focus on salient region from the convolutional feature map. In

order to efficiently extract object embeddings, we introduce a simple guided student-

teacher training paradigm for learning discriminative embeddings within the object

detection framework. This approach can then be used the retrieve original images

from the tampered one in order to identify content manipulation.

Finally, in Chapter 7, we summarize the dissertation and discuss potential

future research direction.
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Chapter 2: Business-Aware Visual Concept Discovery from Social

Media for Multimodal Business Venue Recognition

2.1 Introduction

Nowadays, there are a sheer amount of images being uploaded to social media

sites on the web everyday. Although some of the images contain check-in information

that discloses at which business venues they were taken, many of the images do not

have such information available. For example, the images uploaded to Flickr or

Google Photos only contain GPS information but no check-in information. Even for

images which have check-in information, most check-ins are famous travel landmarks

while very few of them are local business venues. There arises an interesting research

problem: given image content taken in some business venue and its GPS information,

we aim to infer which venue the image was taken at.

Recognition of the business venue (e.g. cafe shop, local restaurant) in an image

can help many applications for personalization and location-based services/marketing.

For instance, it allows personalized promotion based on the business venue a user

had visited, or accurate check-in suggestion in social media applications. One might

think this is an easy task: since we already have the GPS information, we can just
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Figure 2.1: Given an image uploaded to social media and its rough GPS information,
we want to automatically find out the business venue where it was taken. (a) We
first mine a list of business-aware visual concepts from social media, (b) use the
proposed BA-CNN to detect these business-aware visual concepts from the query
image and (c) associate visual concepts with images and business reviews in a geo-
tagged database to recognize the business venue.

map it to the GPS information of business venue. However, GPS information is not

accurate enough to achieve such fine-grained geo-localization tasks. According to

experiments conducted in Maier and Kleiner (2010), modern GPS sensors can have

up to 40 meter error, especially in the urban area. Hence, GPS can only help us

narrow down the candidates within a nearby area, and we need a more reliable way

to recognize the venue.

There are many previous works focusing on geo-localization based on matching

visual content. However, most of the works only target on a coarser granularity

of location (e.g., city), and they are only applicable for outdoor images while a

huge portion of the images on social media websites are indoor images. The major

challenge is – indoor images contain less unique visual patterns and many business
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venues have only a few images associated with them, so it is hard to recognize

location in such a fined-grained setting without any high-level semantic descriptions

(e.g., coffee cups in the cafe). Some other previous works use text information

to infer the user’s location. However, these methods cannot deal with the cases

when a query image is not associated with any texts and they do not utilize visual

information, which can provide useful clues.

By leveraging freely available social media on the Internet, we propose a novel

framework to address this challenging problem. As shown in Figure 2.1, our sys-

tem mainly contains three parts: (1) Business-Aware Visual Concept Discovery:

By mining large-scale social media text corpus, we discover a set of business-aware

visual concepts that are useful for business venue recognition. (2) Business-Aware

Visual Concept Detection: we detect the concepts from images using a novel con-

volutional neural network configuration (BA-CNN), and (3) Multimodal Business

Venue Recognition: we then use Word Vector Model [3] to extend visually detected

concepts to word representations and further combine with image content for mul-

timodal venue recognition. Note that the extension of multimodal feature represen-

tations only relies on the visual content of a query image without being associated

with any texts.

To sum up, the contributions of this paper include: (1) to the best of our

knowledge, this is the first work to recognize business venues by using visual con-

tent in consumer photos; (2) we develop a systematic framework to automatically

mine visually detectable business-aware concepts from reviews of local businesses;

(3) we propose a novel CNN configuration to incorporate semantic signals mined
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from business reviews for training visual concept detector and extracting business-

aware semantic features; (4) we extend a visual representation to multimodal feature

representations – visual concepts and word vectors – to associate with multiple in-

formation sources on the Web for business venue recognition.

2.2 Related Work

Our work is closely related to several research directions. (1) Geo-location pre-

diction: predicting the location information from an image or a short text description

(i.e. tweets). (2) Visual concept detection: finding a semantic representation of an

image. (3) Convolutional neural networks: learning visual representation based on

a deep neural network. In the following section, we will discuss the related works in

each area and the differences with our work.

2.2.1 Geo-location prediction

There are many related works for inferring the location from an image. Hays

and Efros (2008) is one of the early studies that successfully infer geo-information

from a single image. They use a simple data-driven approach to find geo-information

based on a large-scale geo-tagged database. However, they only focus on outdoor

images with coarse granularity up to city level. Schindler et al. (2007) is another

early work on geo-location prediction, which focus on location recognition within a

city. They developed an algorithm to select informative low-level features to improve

the recognition accuracy in a large-scale setting. While their granularity is smaller,
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they only focus on street view images within a 20 kilometer range. In Friedland

et al. (2010), they use multimodal information to infer the geo-information of a

video, but they only focus on city-scale granularity by using low-level feature such

as SIFT features [7]. In Fang et al. (2013), they tried to find discriminative image

patches for city-level geo-location prediction. In Lin et al. (2015), they use aerial

images to help geo-location prediction. While they can achieve a finer granularity,

the technique can only apply to images of outdoor buildings. There are also many

works that focus on landmark recognition [10] [11], which is highly related to geo-

location predication. However, these works relay on distinct low level visual patterns

to recognize the landmarks. Note that in [12], they also use GPS information to

assist the retrieval task, which is similar to our setting, but they only focus on

landmark recognition.

Our work is different from the aforementioned works in many different aspects.

(1) We focus on fine-grained business venue recognition, while most previous works

only address city-level granularity. (2) We focus on consumer photos which contain

both indoor and outdoor images, while most previous works can only deal with

outdoor images. (3) We derive a semantic representation from the image content,

which can be used to match the text information in the reviews of business venues

available in a multimodal database.

There are also many works focusing on geo-location prediction based on texts

in the social media (i.e. tweets): Chen et al. (2013) Chen et al. (2014) Hulden et al.

(2015) DeLozier et al. (2015). However, text information is not always available and

there might not be location-related information available in the texts. Therefore,
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texts and images can be viewed as complementary sources for geo-location predic-

tion. In this work, we focus on the case where only an image is available as the

query for business venue recognition.

2.2.2 Visual concept detection

Our work is also related to the research of visual concept detection. There are

many previous works that address generic concepts discovery [17] [18]. However,

these concepts are not mined for the purpose of business venue recognition, and

therefore, as shown later in the experiments, do not perform well compared to our

business-aware visual concepts.

Chen et al. (2014) propose to mine semantic concepts from event description

for event detection. Ye et al. (2015) further improve the concept definition by min-

ing concepts from “WikiHow.” Compared to these works, we have the following

advantage: (1) We consider the discriminative power in terms of business categories

while they define a separate set of concepts for each event. (2) We use the features

learnt by CNN rather than hand crafted. The concept features in our work are fur-

ther constrained by the labels of business venues, which incorporate the correlations

of concepts associated with the same business venues. (3) We further represent each

detected concept as a meaningful word vector that are learned by large-scale review

corpus.
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2.2.3 Convolutional neural networks

Convolutional neural networks have shown superior performance in many com-

puter vision tasks [21]. Therefore, we adopt it for our visual concept detection. Our

CNN configuration is developed based on the one in [22], and implemented with

open source framework named CAFFE [23]. Different from the original network

structure, our configuration is able to extract semantic concepts while maintain

discriminative powers for business venue recognition.

2.3 Proposed Method

2.3.1 System overview

Our goal is to recognize the business venue by a single query image. This sec-

tion introduces the major components of our system (cf. Figure 2.1): (a) Business-

Aware Visual Concept Discovery: mining a list of business-aware visual concepts

from a business review corpus. (b) Business-Aware Visual Concept Detection: using

a novel CNN configuration to detect the semantic concepts from query images. (c)

Multimodal Business Venue Recognition: extending visual concepts to multimodal

representation for business venue recognition.

2.3.2 Business-Aware Visual Concept Discovery

We follow three guidelines to discover business-aware visual concepts: (1) Busi-

ness Awareness: the relevance with business venues. For example, “earth” is not
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a good business-aware concept because it might not be commonly used in any of

the business venues; on the other hand, “cat” might be a good business-aware

concept because it could appears in local pet shops. (2) Visually Detectable: the

detectability from visual content in an image. For instance, “disease” although usu-

ally appears at hospitals, is hard to be detected by image content, and thus not a

good visual concept; on the other hand, “medicine” is a good visual concept be-

cause it has more consistent visual patterns for detection. (3) Discriminability: the

discriminative power to distinguish between different business venues. For example,

“person” might not have enough discriminability because it appears in general busi-

ness venues, while “burger” could be a good concept as it appears more frequently in

American restaurants. According to these three guidelines, we first introduce the ap-

proach of mining many candidate concepts from reviews of local businesses followed

by selecting concepts with high accuracy of visual detection and low entropy across

business venues. Figure 2.2 shows an overview of our method for business-aware

visual concepts discovery.

2.3.2.1 Mining Candidate Concepts

Following the guidelines mentioned above, we first mine the candidate concepts

from reviews of local businesses on a social media website (i.e. Yelp) to ensure the

property of business awareness. We first classify the business venues by their top-

level category in the Yelp business category topology 1 (example categories include

restaurants, active life, automotive, etc.) We then gather 3,000 reviews from each

1https://www.yelp.com/developers/documentation
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Figure 2.2: The overview for business-aware visual concept discovery. We first
collect Yelp reviews and find frequent nouns in every business category, and then
remove general terms (to every category) and offensive terms (blocked by Instagram)
to construct a set of candidate concepts. Finally, we select concepts with visual
consistency and low normalized entropy across locations.

business category respectively. From each category, we select 500 frequent nouns

based on their document frequency as our candidate concepts. Note that we use

NLTK Toolkit [24] to tokenize the words in the reviews and find the part-of-speech

tags. We only select the nouns as candidate concepts to ensure the concepts are more

visually detectable. There are many overlapping concepts in each category and we

find 2,143 concepts overall. In order to ensure the discriminability of the candidate

concepts, we remove concepts that appears in more than ten different categories.

We also remove concepts that are offensive terms that blocked by Instagram API

and result in 1,723 concept candidates. Table 2.1 shows some candidate concepts

found in each category.
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Category # of Concepts Example Candidate Concepts

Restaurants 233 chicken, milk, apple, sashimi, onion, tea, chef, pasta, waiter, pizza
Pets 190 doctor, vet, furry, tail, adoption, cage, toy, cat, doggie, salon
Automotive 184 motorcycle, windshield, carpet, auto, girlfriend, stereo, wheel, gas, tank, dealership

Table 2.1: Example candidate concepts in each category mined from reviews of local
business.

2.3.2.2 Selecting Informative Concepts

After finding candidate concepts, we need to select useful concepts for business

venue recognition from an image. For each concept, we use it as keyword to retrieve

1,000 images from a social media website, i.e. Instagram. Since images downloaded

from Instagram are quite noisy, we do two-fold cross validation by using convolu-

tional neural networks (CNN) [22] to select qualified images for learning accurate

detectors of visual concepts.

The main idea of two-fold cross validation is – dividing the images into two

sets, training a separate concept classifier for each set, and finally using each to

verify images in the other set. We select top 250 images from each set based on

the classification score for training the concept detectors. Figure 2.3 (a) shows

the training data before the cross-validation selection for concept “pizza” while

Figure 2.3 (b) shows the training data after cross-validation selection. We can see

that the training data after selection are more visually consistent and therefore

can achieve better accuracy for concept classification. The experiment in Table 2.2

shows that by cross-validation selection we can achieve up to 48.5% classification

accuracy compared to 36.5% by simply using all images as training data. Finally,

we remove concepts that have validation accuracy lower than 50% (using hash tag
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Figure 2.3: (a) Images crawled from Instagram by the hash tag “pizza.” (b) Images
selected by cross-validation that are more visually consistent and correctly represent
the visual concept.

Training Data All Random CRV

Rank-1 Accuracy 36.5% 38.7% 48.5%

Table 2.2: Accuracy of concept classifiers trained by all images (All), randomly
selected images (Random) and the images selected by cross-validation (CRV). Note
that the accuracy involves the concepts that are less visually detectable. After
concept selection, CRV can reach 85% accuracy.

as ground-truth) to ensure the visual detectability of concepts.

We then further select the concepts with more discriminative power by com-

puting the cross-location normalized entropy using the following formula:

η(X(c)) = −
n(c)∑
i=1

p(x
(c)
i ) log2(p(x

(c)
i ))

log2(n
(c))

, (2.1)

where X is a random variable that denotes the venue distribution of concept c.

η(X(c)) is the normalized entropy for that concept. n(c) is the total number of

business venues that have concept c and p(xi(c)) is the probability of the concept
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Figure 2.4: Example concepts and corresponding images.

appears in a business venue i. We prepared a dataset from Instagram that contains

250,000 images associated with 1,000 different business venues and computed the

normalized entropy for each concept in terms of its distribution over business venues.

Finally, the 490 concepts with the lowest entropy value are selected as business-aware

visual concepts for business venue recognition. Figure 2.4 shows some example

concepts and corresponding images.

2.3.3 Convolutional Neural Networks for Business-Aware Concepts

(BA-CNN)

Convolutional Neural Networks have shown promising results in many com-

puter vision related problems. Here we adopt the state-of-the-art visual features

learned by CNN [22] as a baseline for business venue recognition. Note that because

of (1) scalability: too many business venues and (2) sparsity: only a few images

for most business venues (cf. Figure 6), we cannot directly train the classifiers to

distinguish different business venues. Instead, we learn the features supervised by
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Figure 2.5: System framework for multimodal business venue recognition. Given an
query image, we first find a list of candidate venues from social media using GPS,
and detect business-aware concepts from image content using BA-CNN (C+V). We
then use a Word Vector model to generate the text representation. The visual
concept scores and text representation of the query image are then matched against
those extracted from the reviews and images in the database. The business venue
associated with the best-matched images and reviews is returned as the most likely
business venue.

different types of labels at the output layer of an CNN, and use the activations from

the last fully-connected layer (FC7) before the output layer as the features to rep-

resent an image. The types of labels could be: general concepts used in ImageNet

(ImageNet-CNN), business-aware concepts (BA-CNN (C)) and a subset of business

venues (BA-CNN (V)). The comparisons of different types of labels are presented

in the experiments later. Finally, we apply nearest neighbor classifier based on the

CNN features of an query image and database images. The business venue asso-

ciated with the most similar database image is output as the predicted business

venue. Note that the GPS of the query image is used to narrow down the candidate

business venues. The impact from the number of candidates is discussed in the
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Experiments section.

However, simply use CNN features may suffer from several problems. For

ImageNet-CNN (i.e. a network trained on ImageNet labels), the concepts are pre-

defined and not relevant to local businesses; for BA-CNN (C) the discriminability

only lies in separating different business-aware concepts rather than business venues;

finally, BA-CNN (V) the business venues are limited to the venues comprising more

training images and thus cannot cover general business venues. Furthermore, the

common problem of CNN features is – they do not have semantic meaning, which

is a key property to associate with other data domains.

To address these issues, we propose a new CNN configuration (BA-CNN

(C+V)) to detect business-aware concepts for business venue recognition. As shown

in Figure 2.5 (a), instead of using FC7 for recognition, we let layer (FC8) supervised

by business-aware concept labels and add another layer (FC9) on top of the concept

layer supervised by a subset of business venue labels. This way, we can extract

features from FC8, where each dimension corresponds to a business-aware visual

concept, and has the discriminative power to separate different business venues. In

our experiments, BA-CNN (C+V) is demonstrated with a higher recognition accu-

racy compared to the other CNN features extracted from images. Moreover, it is

able to associate multimodal data (e.g., text and images) for recognition since the

features extracted by BA-CNN (C+V) are the responses of semantically describable

concepts.
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Figure 2.6: The number of images in each business venue sampled from social media
(> 50% venues have < 5 images).

2.3.4 Multimodal Business Venue Recognition

Once we have the concept representation detected by BA-CNN, we can use it

for business venue recognition. However, we want to further improve the recognition

accuracy by extending image content to multimodal representations – visual con-

cepts and text representation, to utilize the text information, i.e. business review,

of the business venues available on the social media. Figure 2.5 shows our system

framework for multimodal business venue recognition.

We first use review text of local businesses (e.g. Yelp reviews) to train word

vector model [3] that can convert each word into a 500-dimensional vector repre-

sentation. For each query image, we use the top-5 visual concepts detected from

the query image as concept words and average the word vector representation of

the top-5 concepts to represent another modality of the image. As shown in Fig-

ure 2.5 (b), visual concept representation and word vector representation are then

fused together to form the final representation. Here we simply use early fusion (i.e.

concatenate the 490 dimensional concept representation and 500 dimensional word
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vector representation together to form a 990 dimensional vector) to combine two

modalities. Similarly, the images and reviews associated to business venues in the

databases are also represented as visual concepts and word vectors, respectively. Fi-

nally, we use a nearest neighbor classifier with L2 distance based on the multimodal

representation to determine the most likely business venue.

2.4 Experiments

2.4.1 Data Collection and Experimental Settings

For our experiments, we need images and reviews related to business venues.

We use the public data, Yelp Challenge Dataset 2, which contains information and

reviews of 61,184 business venues in ten different cities from Yelp for this purpose.

We then map the venues to the Instagram checkin based on GPS information and

venue name. 22,763 venues were found on Instagram. We collect up to 1,000 images

for each venue. The distribution of images over venues is shown in Figure 2.6. Note

that more than a half of the venues have fewer then five images. We take 250 images

from each of 1,000 different venues as training data to train the BA-CNN and to

compute the normalized entropy in each concept. We than take the other venues

with more than eleven images as our evaluation set. In total, 7,699 venues are used

for evaluation. For each venue, we randomly select one image as query image. The

remaining 10 images together with 20 Yelp reviews of the venue construct a geo-

tagged database, where the visual concepts (image) and the word vector (reviews)

2http://www.yelp.com/dataset challenge
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are used to represent the associated business venue. During the recognition, we use

GPS information from the query image to narrow down candidate venues to two to

ten neighboring venues. We use rank-1 accuracy as our evaluation metric.

2.4.2 Improvements by BA-CNN

We compare BA-CNN with several baselines and different settings: (1) ImageNet-

CNN (FC8) [17]: we use responses of general concepts (FC8) from CNN trained

on ILSVRC 2012 data as a baseline feature. (2) ImageNet-CNN (FC7) [21]: we

use CNN trained on ILSVRC 2012 to extract features (FC7) for business venues

recognition. (3) BA-CNN (C): we use CNN trained on Instagram images labeled

with 490 business-aware visual concepts to extract features from FC7. For each

of the 490 concepts, we further collect 4,000 images from Instagram and use 2,000

images with higher classification scores as training data, in total around one million

images are used for training. (4) BA-CNN (V): we use 250,000 images from 1,000

different business venues as training data to train CNN and extract features from

FC7. (5) BA-CNN (C+V): we use the configuration in Figure 2.5 (a) to extract

the business-aware concepts for recognition.

As shown in Figure 2.7, for every method the accuracy drops when the number

of neighborhood venues increase because the task becomes more difficult. However,

BA-CNN (C+V) can achieve up to 77.5% accuracy when there are two candidates

and still maintain around 45% accuracy when the candidate numbers increase to

ten; overall, the performance is the best against the other baselines.
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Figure 2.7: Recognition accuracy as different numbers of neighboring business
venues are considered as candidates. When there are more business venues nearby,
the performance will drop because the task becomes harder. BA-CNN (C+V) out-
performs all other baseline consistently.

ImageNet-CNN performs much worse than BA-CNN and the relevant ap-

proaches because the concepts in ImageNet are generic concepts without consid-

ering business awareness and discriminative information between business venues.

BA-CNN (C) and BA-CNN (V) have similar performance but BA-CNN (C+V)

outperforms both methods because it utilizes both the concept and venue label in-

formation in a hybrid structure. Also, BA-CNN (C+V) can take advantage of the

semantic representation and be used for multimodal recognition as shown in the

following section.
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2.4.3 Results of Multimodal Business Venue Recognition

We use the word vector model to convert the visual concepts detected from

the query image and the reviews of each business venue in the database as a vector

of text representation. Table 2.3 exhibits the accuracy of business venue recog-

nition by matching the text representations only, that is, no database images are

used. WordVec (Google News) shows the performance of the model trained with

Google News dataset (about 100 billion words) and WordVec (Business-Aware)

indicates the model trained with Yelp reviews (about 0.2 billion words). Random

Guess is the accuracy of randomly picking one of the candidate venues. We can see

both methods outperform random guessing significantly (more than 115% relative

improvement), which suggests that the concepts generate from BA-CNN (C+V) in-

deed have semantic meaning and highly relevant to what might appear in reviews

of local business. WordVec (Business-Aware) performs slightly better than Word-

Vec (Google News) that again shows the importance of business-awareness in the

application of business venue recognition.

When combining BA-CNN (C+V) with Word Vectors, we can further improve

the recognition accuracy, demonstrating the complimentary nature of the image

and text information. It is worth noticing that the multimodal recognition only

requires an query image without any text because the proposed image representa-

tion, business-aware visual concepts, can be used directly when text representation

is available.

The multimodal representation is particularly important for the image sparsity
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problem in the database of business venues. As shown in Figure 2.6, many of the

business venues contains fewer than five images on Social Media website. Therefore,

we also evaluate our method with different number of images (range from one to ten

images) for each business venue. In Figure 2.8, “WordVec” indicates the accuracy of

matching query image and database reviews when no database images are available.

As the number of database images in the business venues decreases, the recognition

accuracy by image representations drops. “ImageNet-CNN (FC7)” only outperforms

“WordVec” when there are more than three images of each venues in the database.

The accuracy is obviously boosted by further considering database reviews (“BA-

CNN (C+V)” vs. “BA-CNN (C+V) + WordVec”) when few images are available,

suggesting the proposed multimodal recognition method have advantages to tackle

the image sparsity issue. In social media, the associations between images and

venues are mainly based on user checkins. However, because of the heavy tail and

power law behavior of checkins per venue [25], only a few famous venues feature a

large number of checkin images, while general business venues have only few checkin

images. In consideration of this problem, our approach poses a new opportunity to

push the generality of automatic recognition to common business venues.

2.5 Conclusion

We propose a novel framework for business venue recognition. We first mine

business-aware visual concepts from reviews of local business, and then incorporate

business-aware concepts with convolutional neural networks for representing images
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Method Acc.@2 Acc.@5

Random Guess 50.0% 20.0%
WordVec (Google News) 65.8% 39.1%
WordVec (Business-Aware) 69.1% 42.3%

BA-CNN (C+V) + WordVec 78.5% 56.1%

Table 2.3: The recognition accuracy with 2 and 5 candidate venues. Simply using
text representation obviously outperforms random guess, suggesting the concepts
extracted from BA-CNN (C+V) indeed have semantic meaning. WordVec (Business-
Aware) surpasses WordVec (Google News) demonstrating the importance of business
awareness. BA-CNN (C+V) + WordVec can reach the best accuracy.

as response of visual concepts. The semantics of visual concepts can be further

represented by text representation. We propose to use multimodal representation

for business venue recognition and the experiments show its superiority against the

single modal approaches and the state-of-the-art visual features, especially when

there are insufficient images to represent the venues. In the future, we will seek the

opportunity to associate more data domains, e.g., company profiles, purchase logs.

Moreover, we will investigate the other metadata that can replace GPS to narrow

down candidate venues, e.g., time, social network.
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Figure 2.8: The accuracy with different number of images for each business venue.
Image sparsity decreases the accuracy of the models using image representation,
while text representation is stable, and multiple modalities (BA-CNN (C+V) +
WordVec) can improve more in such cases.
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Chapter 3: Detection of Metadata Tampering through Discrepancy

between Image Content and Metadata using Multi-task

Deep Learning

3.1 Introduction

Tampered image metadata is frequently encountered in image forensics. Ease

of metadata access and modification using simple EXIF tools has resulted in tam-

pered images that are difficult to detect, except in very special cases or after rigorous

expert investigations. Our goal in this paper is to automate this process and reduce

the effort required by experts.

One of the areas where image metadata authenticity is very important is legal

cases where an image is shown as evidence of a certain activity at a certain time.

The time-stamp of the image cannot be trusted just on its own as it is easily mod-

ified. It needs to be corroborated by some additional information in the image if

available. For example, in the Duke Lacrosse case [26], the timestamp of one of

the images matched with the timestamp of one of the player’s watch. We develop

automatic techniques to perform similar types of analysis in outdoor images using

meteorological information.
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Figure 3.1: Given an image, we first detect information such as sun altitude angle,
temperature, humidity and weather conditions using multi-task deep learning. We
then compare the inferred properties to the same information collected from the
Internet based on image metadata to detect if there is any tampering.

We focus on image location and timestamp tamper detection, as these two are

the most important factors in the image metadata. Existing research has focused on

checking the validity of the location information by matching image content against

a large-scale image database such as Google street view images using content-based

image retrieval techniques. However, this only works well with very few locations

having distinct features such as tourist landmarks.

Although it is hard to directly infer location and time from the image con-

tent, recent research has shown that advances in machine learning have enabled

reasonably accurate prediction of meteorological information directly from image

content [27, 28, 29, 30]. Therefore, we utilize the sun altitude angle and other

historical meteorological information such as temperature, humidity and weather

— all available on the web — to detect image metadata tampering. Our goal is

to infer meteorological properties separately, directly from image content and then
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compare them to the same properties obtained from historical weather databases at

the time and location specified in the image metadata. We expect that, unless the

image metadata was carefully tampered with to ensure consistency with weather

patterns, metadata tampering will lead to inconsistencies that can be detected by

our proposed algorithm.

To train and evaluate our approach, we first collect a large-scale dataset

(AMOS+M2) with images, metadata (i.e., timestamps and GPS location), as well

as sun altitude angle and meteorological information based on the already existing

AMOS [31] database and the Weather Underground Internet API [32]. We then use

AMOS+M2 to learn different convolutional models for prediction. In order to utilize

the correlation between different sources of information, we further propose a joint

model based on multi-task learning, which predicts all of the features simultaneously.

While there has been some work in this area, our novelty lies in the fact that our

test and training data comes from different web cameras, and our research includes

the results of applying these models to image forensics. Also, by combining different

networks using multi-task learning, we are able to further improve the prediction

accuracy. Figure 6.1 shows the overview of our system.

The main contributions of this paper include: (1) analyzing the use of sun alti-

tude angle and meteorological information for image content vs. metadata discrep-

ancy detection; (2) exploiting the benefit of multi-task learning on meteorological

information and sun angle prediction; (3) constructing a large-scale dataset called

AMOS+M2 containing more than 500,000 outdoor images labeled with the above

mentioned information and the metadata.
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3.2 Related Works

There has been a large amount of research in the field of digital image forensics.

Sencar [33] provide a survey of the different available digital image forensics tech-

niques. The survey includes methods based on image source identification, synthetic

image identification, and detection of image tampering. Most of the tampering de-

tection techniques perform statistical analysis of the different kinds of variations in

the observed signals after tampering.

Although there have been many successes in detecting tampering from image

content, existing techniques generally do not deal with image metadata tampering.

Kakar [34] is one of the few that have addressed this problem. However, instead

of using only sun angle for detection, we combine other meteorological information

available on the Internet and apply multi-task deep learning to further improve

accuracy.

Other related works have focused on prediction of sun angle or other meteoro-

logical information: Lalonde [35] use mathematical models based on sun illumina-

tion, shadow length and direction and shading of vertical surfaces to estimate the

sun position and illumination, and others have also investigated similar approaches

[27, 29, 30, 36]. Recently, Volokitin [28] applied deep convolutional neural networks

for temperature and time prediction. However, none of these methods utilize differ-

ent meteorological information with multi-task deep learning. Some of them only

train and test on images from the same webcam. Our goal is to learn a general

model that can be applied to any outdoor image, captured by any camera, at any
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location or time for metadata tampering detection.

3.3 Sun angle and meteorological information prediction

We use convolutional neural network (CNN) models to predict sun angle and

meteorological information. We experiment with two variants of convolutional mod-

els for our prediction tasks: AlexNet [22] and ResNet-50 [37] . AlexNet contains

five convolutional layers followed by three fully connected layers, while ResNet-50

contains 49 convolutional layers with residual connections followed by one average

pooling layer. We use AlexNet to experiment with different loss functions (mean

squared and mean absolute losses) due to the advantage of its training speed and

use ResNet-50 to train our final model to obtain better prediction results.

3.3.1 CNN for temperature, humidity, and sun angle regression

To use CNN for regression tasks, we first replace the last layer of the CNN

with a single output using a distance based loss function. Since the outputs of our

regression models should always lie in certain ranges (e.g. zero to ninety degrees

for sun angle), we use a sigmoid or an extra ReLU-like nonlinear layer to clip the

output from both sides before the final loss layer; but they improve performance

only in some cases whereas decrease performance in others. We also weight the

training loss based on the probability distribution of the ground truth labels and

call these the weighted regression models. This helps to give more importance to

the examples that are less common in the training set and tries to solve the problem
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that the dataset is not uniformly distributed. Finally, we train the network with

our AMOS+M2 dataset.

3.3.2 CNN for weather classification

For weather classification, we train a classification CNN with our AMOS+M2

dataset. We first separate our training data into four different classes: sunny, cloudy,

rainy, and snowy. Since our training set is highly unbalanced, as sunny and cloudy

images together take around 85% of the training set, directly training the network

would cause the model to be biased toward sunny and cloudy. To address this

issue, we apply data oversampling with augmentation: for each image class, we first

oversample the images to make each class have roughly the same size, and then we

apply data augmentation to each oversampled image by first randomly resizing and

keeping the smallest side of the image between 256 to 512 pixels. We then randomly

crop the image down to 227× 227 and randomly apply a left-right flip to the image.

Finally, we adopt the softmax cross entropy loss function to optimize the network

parameters. In order to reduce the training time, we initialize the weights of our

network to a model pretrained on ImageNet dataset.

3.3.3 CNN with joint multi-task learning

Since all of the meteorological information we use is correlated, it is natural

to wonder if one model can benefit from the others. Therefore, we use multi-task

learning to learn a joint model that can predict all the meteorological information
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at the same time. This is achieved by weight sharing on all the regression and

classification networks with a joint loss function. We adopt the same network archi-

tecture, ResNet-50, for all tasks so that we can share the weights crossing all four

tasks. Since the four different tasks have different output ranges, we first normalize

each output to zero mean and one standard deviation so that each loss function

will be the same scale. Let X = [x1, ..., x7] be the output of our joint network, and

Y = [y1, ..., y7] the value of the meteorological information, where (y1, ..., y4) is a

one-hot encoding vector of weather condition, and y5, y6, y7 represent sun altitude

angle, temperature, and humidity respectively. We minimize the following joint loss

function:

L(X, Y ) = −
4∑
i=1

log yip(xi) +
7∑
i=5

||xi −
(yi − µi)

σi
||2, (3.1)

where, µ5, µ6, µ7, σ5, σ6, σ7 represent the mean and standard deviation of sun altitude

angle, temperature, and humidity in the training set. p(xi) represents the probability

of the ith class being the correct weather computed by the softmax function. We

train this joint model with an initial learning rate of 0.0002 and a mini-batch size

of 256 images using Adam optimizer [38].

3.4 Metadata and meteorological information outdoor scenes dataset

In order to train our model for metadata tampering detection, we construct a

large-scale image dataset called AMOS+M2.
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Figure 3.2: Example of boundary images where the sun altitude angle changes from
negative to positive. We use these boundary images for manually verifying the
camera location. If the camera geographic location is incorrect, the calculated sun
altitude angles will be incorrect, and therefore, it is less likely that such day/night
boundary can be identified in the image content. So we check boundary images to
filter out cameras with incorrect location annotations.

Dataset # of locations # of images Metadata Meteorological information Sun angle

Weather Image Dataset [29] N/A 10K N weather N
Multi-class Weather Image [30] N/A 20K N weather N

Glasner[39] 10 6K Y temperature N
Time of the Year Dataset [28] 10 23K Y temperature N

AMOS+M2 (Ours) 638 500K Y weather, temperature, humidity Y

Table 3.1: Comparison between AMOS+M2 with other existing datasets.
AMOS+M2 contains more images from different locations; with more detailed me-
teorological information as well as sun altitude angles.

3.4.1 Data collection

We collect images from Archive of Many Outdoor Scenes (AMOS), an archive

of images collected from Internet webcams since 2006. Each image in AMOS con-

tains a timestamp and a camera ID, and each camera may contain its location

annotated by the AMOS user as well as the IP location of the webcam. Note that

the timestamp associated with any image is mostly correct because it is automat-

ically generated by the system, but the location of the camera can be missing or

incorrect.

In order to verify the location of the cameras, we first compute the distance

between the location derived from the camera IP address and the annotated location
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Figure 3.3: Heat maps of absolute difference in output sun altitude angle predictions
when small portions of the images are occluded. The two images are from the same
webcam at different times. In the first set, we can see that the network gives
importance to the sun if it is visible in the image. In the second set the network
gives importance to the reflective rock surfaces.

and filter out cameras when this distance is greater than 100 miles. We then compute

the sun altitude angle for each image based on the timestamps and the annotated

camera location using Pysolar [40] and detect the sunrise and sunset boundary,

where sun angle changes between positive and negative numbers. If the location

is correct, we should be able to visually see large illumination differences between

these boundary images as shown in Figure 3.2. We manually check these boundary

images to remove cameras with incorrect GPS locations.

After manual verification, we use the Weather Underground API [32] to collect

all the relevant meteorological information including temperature, humidity and

weather conditions based on the locations and the timestamps of the images.

3.4.2 Dataset statistics

We obtain 638 cameras from AMOS with verified locations. We randomly se-

lect 538 cameras for training and the remaining 100 cameras are used for validation.

For each camera in the training set, we randomly select around 1,000 images taken

in 2016 to construct a training set of 500,000 images; for each camera in the testing

35



0 10 20 30 40 50 60 70 80 90

absolute error in predicting sun altitude angle in degrees

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f 
te

s
t 

im
a
g

e
s
 g

iv
in

g
 l
e
s
s
 t

h
a
n

 x
 e

rr
o

r

Weighted AlexNet based regression model
Random

Figure 3.4: The x-axis in the figure is the absolute error in the prediction of sun
altitude angle and the y-axis is the percentage of test images giving error less than
or equal to the corresponding x value. The higher the area under the curve, the
better is the result. For the sun altitude angle test set, the model resulted in 55%
of test images with less than or equal to 10error and about 85% of test images with
less than or equal to 20error.

set, we randomly select 10 images taken in 2016 to construct a test set of 1,000 im-

ages. Table 3.1 shows the dataset statistics compared to related works. Compared

to existing datasets, AMOS+M2 contains more images from multiple locations, and

more detailed meteorological information, as well as sun altitude angles, enabling

us to effectively train our convolutional models.

The AMOS+M2 dataset with the images and corresponding meteorological

data and metadata will be made publicly available.
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3.5 Experiments on meteorological information and sun altitude an-

gle prediction

3.5.1 Sun altitude angle regression

The performance of an AlexNet based L2 regression model for sun altitude

angle is shown in Figure 3.4. The x axis in the figure is the absolute error in the

prediction of sun altitude angle and the y axis is the percentage of test images giving

error less than or equal to the corresponding x value.

Figure 3.4 shows that almost 55% of the images yield less than 10error and

about 85% of images give less than 20error for the weighted regression model. The

RMS sun angle prediction error for this model is 13.70. On the other hand, the

Resnet based model gives an RMSE of 11.31.

To gain insight into the internal representation of the model, we visualize

the heat maps of absolute difference in output predictions when we occlude small

portions in the image. The results are shown in Figure 3.3. These images are from

the same webcam taken at different times of the day. The heatmap shows which

area has the most impact in determining the output sun altitude angle. When the

sun is present in the first image, the model gives importance to that portion of the

image. On the other hand, it gives importance to the reflective rock surface in the

second image.
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Ground Truth: 26.7 degree Celcius; 
 Predicted: 24.8247 degree Celcius

Ground Truth: -2.8 degree Celcius; 
 Predicted: 3.6577 degree Celcius

Figure 3.5: Ground truth vs the predicted temperature values for different scenes.
The temperature model can predict temperatures even at night, which is not possible
by the sun altitude angle model.

3.5.2 Temperature regression

We perform temperature prediction using an AlexNet based regression model

with a mean absolute loss layer. The average temperature error is 8.94C and the

Pearson correlation between the ground truth and predicted temperatures is 0.7339.

For the ResNet based model, the RMS error reduces to 7.45C for the L2 loss based

model. Figure3.5 shows the ground truth and predicted temperature values from

two different images.

Figure3.6 and 3.7 show that mean absolute loss performs better than mean

squared loss. Figure3.6 shows that about 45% of images give less than 5C error and

almost 80% give less than 10C error for mean absolute regression. Figure 3.7 plots

the variation of average error with the actual ground truth label. The flatter or more

uniform the curve, the better are the results. As we can see, mean absolute regression

works better than mean squared regression. The Pearson correlation coefficient for
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Figure 3.6: The x axis in the figure is the error in the prediction of temperature
and the y axis is the percentage of test images giving error less than or equal to the
corresponding x value. So about 80% of images have less than 10C error and about
45% gives less than 5C error for the mean absolute regression model. Also the mean
absolute regression model performs better than the mean squared regression model.

mean absolute regression is 0.7339, whereas for mean squared regression is 0.6689.

The RMSE for mean absolute regression is 8.94C whereas the RMSE for mean

square regression is 9.83C.

3.5.3 Humidity regression

We find that although it is hard to infer the exact percentage of humidity from

the image, there are usually some weather related visual cues that indicate the range

of the humidity in the scene. Figure 3.8 shows examples of images that predict as

low humidity (i.e. lass than 30 percent) and high humidity (i.e. greater than 85

percent). The numbers under the images are the regression results and the numbers

in parentheses are the ground-truth humidity percentages. As shown in Figure 3.8,

low humidity images in the first row are associated with clear skies; while in the
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Figure 3.7: Polynomial fit to the error distribution vs. the ground truth temperature
labels. The flatter the curve, the more uniform the error distribution across the
output values. This shows that mean absolute regression performs better than the
mean squared regression.

second row there can be rain, cloud, and snow indicating that the humidity values

are high. Our regression network based on Alex Net achieves an average root mean

square error (RMSE) of 18.42% whereas the Resnet based model achieves RMSE

of 15.33%. Although the RMSE compared to the error in sun altitude angle and

temperature regression is high, as shown in the following sections, our joint multi-

task model can still benefit from the humidity information, which further improves

the accuracy of metadata tampering detection.

3.5.4 Weather condition classification

Figure 3.9 shows the confusion matrix and some example classification results.

The labels under the images are the output of the classifier and the labels in paren-

theses are the ground-truth labels. The red border indicates miss-classifications.
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24.5 (40.0) 26.2 (18.0) 24.1 (24.4)

98.0 (100) 89.9 (87.0) 95.7 (80.0)

Figure 3.8: Example result of humidity regression. The number under each image
is the predicted humidity and the number in the parentheses is the ground-truth.
Top row: images predicted as having low humidity. Bottom row: images predicted
as having high humidity. Although it is hard to predict the exact percentage of
humidity from an image, there are usually some visual cues indicating the humidity
range.

As shown in Figure 3.9, the classifier tends to classify rainy and snowy images as

cloudy. This is because when it is raining or snowing, the sky looks cloudy as well.

On the other hand, sometimes right after rain or snow, the road will look wet or

covered with snow, which is why it is harder to separate these classes. Our classifier

achieves 23.9% classification error rate on the test set after 100K training iteration.

3.5.5 Joint multi-task learning

Table 3.2 compares the classification error rate and regression RMSE on four

different tasks with models learned separately and jointly with multi-task learning.

All models are trained with the same network structure using the same hyper-
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Cloudy
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Sunny Cloudy RainySnowy

Sunny (Sunny)

Cloudy (Cloudy)

Rainy (Rainy)

Snowy (Snowy)

Cloudy (Sunny)
(a)

Snowy (Cloudy)
(b)

Sunny (Rainy)
(c)

Cloudy (Snowy)
(d)

0.89    0.08    0.02    0.01 

0.09    0.71    0.09    0.11

0.16    0.34    0.46    0.03

0.03    0.31    0.08    0.57

Figure 3.9: Example results and confusion matrix for weather condition classifi-
cation. Red borders indicate misclassification. Rainy and snowy are prone to be
misclassified as cloudy because the sky in each image is cloudy as well. (a) Sunny
images misclassified as cloudy because the sky, which is an important cue for sunny
images, is not visible. (b) Cloudy image misclassified as snowy because the snow
covers a huge percentage of the image. (c) Rainy image misclassified as sunny be-
cause of the bright sky. (d) Snowy image misclassified as cloudy because the snow on
the highway is mostly removed. Overall, our model can achieve 28.3% classification
error rate.

parameters with 100K training steps. As shown in the Table, all four tasks benefit

from a joint model, with weather classification enjoying the highest relative improve-

ment. This is probably because weather conditions are highly related to all three

other tasks. After joint multi-task learning, we can achieve an RMSE of 10.81, 6.9,

15.09 for sun altitude angle, temperature, and humidity regression and an error rate

of 23.9 for weather condition classification. In order to further analyze the benefit

of multi-task learning for weather classification, we train three other models using

one of the meteorological information sources (sun altitude angle, temperature, or
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Task Single Joint Rel. Improv.

Sun Angle (RMSE) 11.31 10.81 4.4%
Temperature (RMSE) 7.45 6.90 7.4%
Humidity (RMSE) 15.33 15.09 1.6%
Weather (ERR) 28.30 23.90 15.5%

Table 3.2: The RMSE and classification error rate of the individual models and the
joint model. Joint multi-task learning can improve the results for all four tasks and
yields the most significant improvement for the weather classification because the
weather is highly related to the other three sources of information.

Model Error Rate

Weather 28.30
Weather, sun angle 27.30
Weather, temperature 27.80
Weather, humidity 27.50
All 23.90

Table 3.3: Weather classification error rate, combining meteorological information
and sun altitude angle. Each slightly helps to reduce the classification error rate, and
best performance is achieved by combining all the information, which demonstrates
the effect of multi-task learning.

humidity) as well as the weather condition as input labels. The results are shown

in Table 3.3. Each type of meteorological information can slightly help with the

weather classification, and the best performance is achieved by utilizing all of the

meteorological information, which demonstrates the benefit of multi-task learning

in meteorological information prediction.

3.6 Experiments on metadata tampering detection

To analyze the effectiveness of meteorological information on tamper detection,

we generate different tampered datasets by changing the timestamps or the GPS

locations on the test images. We use ROC curves and Area under ROC curves

43



Month (AUC) Angle Humidity Temp. Weather

1 53.5% 62.5% 63.5% 67.7%
2 61.5% 71.4% 68.7% 72.5%
3 67.9% 72.3% 80.7% 71.1%
4 76.9% 74.9% 84.5% 74.1%
5 81.6% 72.2% 84.6% 73.7%
6 83.8% 73.6% 85.1% 71.6%

Table 3.4: AUC on time tampered data with large time tampering, in the order
of multiple months. The weather model yields the best performance when the
tampered time is one to two months from the ground truth because other information
only changes slightly during a short period of time. The temperature model achieves
the best performance when the tampered time is three to six months off from ground
truth due to seasonal temperature changes. Sun altitude angle prediction yields
better performance when the tampered time is further from ground truth because
the sun position changes for the same time of the day throughout different seasons.

(AUC) as our performance metrics. In the rest of this section, we discuss the results

of tampering detection on different types of tampered test sets.

3.6.1 Time metadata tampering detection

We construct the time tampered dataset by changing the timestamps on half

of the test images to create positive samples (i.e. tampered) while the rest of the

test images maintain their authentic timestamps and serve as negative samples. The

three types of time tampered datasets are constructed by changing the timestamps

in the test images with different month, day, and hour variances respectively. We

then use the absolute difference of the sun altitude angle, humidity, and temperature

between the output of our model and the meteorological information downloaded

from the Internet, as well as the weather probability score output to compute the

ROC curve and the AUC percentage.
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Day (AUC) Angle Humidity Temp. Weather

1 50.3% 60.1% 54.7% 67.5%
2 50.3% 61.6% 57.1% 70.1%
3 49.7% 64.8% 56.4% 69.5%
4 50.2% 63.9% 56.0% 69.6%
5 49.6% 64.7% 57.9% 69.2%
6 50.2% 64.8% 59.3% 69.9%

Table 3.5: AUC on time tampered data with time tampering in the order of multiple
days. The weather model achieves the best performance compared to other models.
This is because all other meteorological information and sun altitude angle only has
little change during short periods and it is hard to detect the difference.

Table 3.4 shows the AUC using different types of meteorological information,

on the time tampered dataset with tampering variation in months. As shown in

the table, when the time difference is one to two months, the weather model has

the best performance in detecting inconsistency. This is because the change in sun

altitude angle, humidity, and the temperature is small and our model has a hard

time perceiving differences in these properties. On the other hand, the weather

classifier can better separate different weather conditions happening in different

months. When the time difference is three to six months, the temperature model

has the best performance, because there is seasonal change and temperature exhibits

large differences, which can be detected by our model. Sun altitude angle performs

better when the tampering time is larger because the sun angle at the same time of

the day will change more with greater variation in months. The ROC curves for the

temperature model based monthly time tamper detector are shown in Figure 3.10(a).

Table 3.5 shows the AUC on time tampering dataset with tamper quantity

variation in days ranging from one to six days. The overall performance is worse
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Figure 3.10: (a) ROC curves for the temperature model based monthly time tam-
pered data detector. The different plots are for different variance noise in months
added to tamper with metadata. The best performance expected is at a variation
of 6 months, when the maximum seasonal variation is observed. (b) ROC curves
for the sun altitude angle based hourly time tamper detector. The different plots
are for different variance noise in hours that was used to modify the image time
meta-data. The maximum sun altitude angle variation should be when the time
difference is about 6 hours, which is what we can observe here. (c) ROC curve for
time tampered data with timestamp changes ranging from one hour to one year. By
combining all four models with late fusion, we can achieve better performance for
tamper detection with an AUC of 85.5%.

than Table 3.4 because these meteorological measures exhibit less change during

shorter intervals. The weather model again has the best performance overall and

humidity has the second best.

Table 3.6 shows the AUC on the time tamper dataset with tampering in hours

ranging from one to six hours. As shown in the table, sun altitude angle model has

the best performance and the performance increases as the number of hours increase.

This is because weather usually does not change too much during the same day, while

sun angle will keep changing throughout the day. The ROC curve for the sun angle

based hourly time tampering detection model is as shown in Figure 3.10 (b).

Since each of these models performs best when detecting different types of

tampering, we combine them all with late fusion by adding the normalized scores
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Hour (AUC) Angle Humidity Temp. Weather

1 58.6% 53.1% 51.2% 53.8%
2 65.3% 56.5% 53.5% 53.8%
3 68.6% 59.2% 54.3% 56.5%
4 71.9% 60.6% 54.5% 57.8%
5 74.8% 61.4% 56.4% 58.2%
6 73.7% 63.1% 56.6% 58.7%

Table 3.6: AUC on time tampered data with time tampering in the order of multiple
hours. The sun altitude angle model yields the best performance because the sun
altitude angle changes throughout the day while the weather usually varies little in
a day.

from each model. Figure 3.10 (c) shows the ROC curve with a tampered dataset

that randomly changes the timestamps within a range from one hour to one year.

By combining all the models, we leverage the strength of each model and achieve

better performance on tamper detection.

3.6.2 Location metadata tampering detection

We construct two location tampered test sets by changing the latitude and

the longitude of the image metadata respectively. Figure 3.11 shows the AUC of

tampering detection on longitude tampered test set with different models. The

performance of each model increases as the tampered distance increases because

of a larger change in meteorological features. However, the sun angle model does

not perform well in this case, because 1000km is too short a distance to have any

detectable sun angle variation.

Figure 3.12 shows the AUC of tampering detection on latitude tampered test

set. Temperature model has better performance on this test set compared to the
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Figure 3.11: AUC on longitude tampered data. The performances of all models
increase as the tampered distance increases.

previous one because temperature changes are more noticeable in different latitudes.

3.7 Conclusion

We propose a joint multi-task learning model to predict meteorological infor-

mation from an image and use it to detect image metadata tampering. Our exper-

iments show that joint multi-task model achieves better performance compared to

any one model, and using the joint model we can detect different types of image

metadata tampering with reasonable accuracy. Currently, we only apply simple late

fusion to combine models for different meteorological information for tampering de-

tection. Different ways to combine the models for meteorological information can

be exploited in the future to further improve the detection results.
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Figure 3.12: AUC on latitude tampered data. Compared to Figure 3.11, temper-
ature model has better performance because temperature changes more drastically
along different latitudes.
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Chapter 4: Deep Representation Learning for Metadata Verification

4.1 Introduction

With the prevalence of social media platforms, an image shared on the Inter-

net can reach millions of people in a short time. At the same time, people can easily

share a tampered image for malicious goals such as creating panic or distorting pub-

lic opinions with little effort. As a result, image tampering detection has become an

emerging topic in the research community to prevent such attacks. Image tampering

methods generally fall into two board categories: content manipulation and meta-

data tampering. The former alters the image content by splicing or removing some

regions inside the image while the later doctors the metadata associated with the

image, such as timestamp, geo-tag, or captions. Figure 4.1 (a) shows an example of

content manipulation, where the person in the image is removed with image editing

software; while Figure 4.1 (b) shows an example of metadata tampering, where the

caption misleads people to believe a Miami downtown street is under water during

hurricane Irma; but the water depicted in the video is, in fact, the Miami River.

While many efforts have been made in the media forensics research community to de-

velop algorithms to detect content manipulation with moderate success, little work

has focused on detecting metadata tampering. We tackle the metadata verification
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(a) (b)

Figure 4.1: Two types of media tampering. (a) Example of content manipulation.
The person in the image is removed with photo editing software. (b) Example of
metadata tampering. The caption indicates a Miami downtown street is under water
while the water depicts in the video is, in fact, the Miami River.

problem: given a set of images with common time and location metadata and some

probe images, we want to verify whether the probe images have the same metadata.

We focus on a specific type of metadata - event (i.e. time and places), which is

the most common tampering target. Figure 6.1 illustrate the metadata verification

problem.

Owing to the great success of deep convolutional neural networks in many re-

lated computer vision tasks such as image classification and image geo-localization,

we attack metadata verification with a deep representation learning approach. We

design a deep neural network called Attentive Bilinear Convolutional Neural Net-

works (AB-CNN) that aims to learn a relevant representation for the task.

We address several challenges in metadata verification with AB-CNN. First,
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we use an augmented training process to alleviate the problem of training data

scarcity. To this end, we collect a large-scale image dataset with location information

from Yahoo Flickr [41]. Second, a bilinear pooling layer is included to distinguish

different fine-grained events. Finally, an attention module is utilized to help the

model learns to focus on important visual cues and ignore diverse visual contents

that are irrelevant to event verification.

The contributions of this work include: (1) To our best knowledge, this is

the first work to address metadata verification with deep representation learning

approach. We show how a deep neural network can be adapted for metadata ver-

ification, and the proposed AB-CNN is able to learn relevant representation for

the task. (2) We construct a large-scale image dataset with 1 million images from

1,000 different location downloaded from Yahoo Flickr, which we show is useful for

learning a representation for metadata verification. (3) In Section 4.4, we show

that AB-CNN can be extended to the landmark recognition task, and achieving

state-of-the-art performance in Google Landmark Recognition Challenge.

4.2 Related Works

Content manipulation detection traditionally focus on detecting tamper-

ing artifacts within the image such as double JPEG compression [42], CFA color

array analysis [43], and local noise pattern analysis [44, 45]. Recently, with the

advance of deep learning research, many works also adopt deep learning for content

manipulation detection. Specifically, Cozzolino [46] combine the steganalysis rich
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(a) (b)

Figure 4.2: Given (a) a set of images with the same metadata (i.e. taken from a
known event) and (b) some probe images, the goal of metadata verification is to
verify whether these probe images have the same metadata (i.e. taken in the same
event). In the above examples, images with the blue border are positive samples
and images with the red border are negative samples.

model (SRM) with a convolutional neural network (CNN) for localizing manipulated

regions. Rao [47] uses SRM filters as initialization for CNN kernels for manipulation

detection. Salloum [48] use a fully convolutional network (FCN) to directly predict

the tampered region. Bappy [49] use a sequence model with LSTM to find boundary

artifacts. Zhou [50] adopt a two-stream network with faster-rcnn [51] framework for

detecting manipulated regions. We also adopt a deep learning model for tamper

detection; however, we focus on metadata tampering instead of content manipu-

lation detection. Some works also utilize metadata [52, 53] to improve detection

accuracy. However, they assume metadata is always trustworthy, which also shows

the importance of metadata tampering detection.

Metadata tampering detection aims to verify the authenticity of the meta-

data associated with the image. Kakar [34] propose an algorithm for sun azimuth
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Figure 4.3: System overview of the proposed network configuration. The system
contains three main modules. (1) An augmented training set is collected from the
Internet and used to pre-train a multi-class for transfer learning. (2) Bilinear pooling
is adapted to model the feature correlation. (3) An attention module is utilized to
automatically learn to handle the diverse visual content within an event image set.
Section 4.3 provide a detail description of the three modules.

estimation to verify temporal metadata. Li [54] use shadows to verify time and

location. More recently, Chen [55] used a multi-task learning framework to predict

various meteorological information in order to detect discrepancies between image

content and metadata. In constrast to previous works, we use a deep representa-

tion learning approach to learn a suitable representation for metadata verification

directly from data.

Landmark Recognition aims to recognize popular landmarks depict in im-

ages. Different approaches such as local feature matching [56], image retrieval [4, 57],

and image classification [58] have been adopted for the task. We show that our model

can also be extended to landmark recognition and achieving a competitive result in

the Google Landmark Recognition Challenge.
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4.3 Methods

4.3.1 System Overview

We cast the metadata verification as a representation learning problem and

propose a convolutional neural network called Attentive Bilinear CNN (ABC-Net)

with binary outputs as our model. Figure 6.4 shows an overview of the proposed

network. It includes three modules that are designed for verifying a specific type

of metadata – event. First, a multi-class image classification model is pre-trained

with an augmented training set and shares weights with the binary model. Second,

bilinear pooling is adopted to model feature correlations. Third, an attention module

is learned for the model to focus on informative image regions. The remainder of

the section describes the details of each module.

4.3.2 Augmented Training and Weight Sharing

Because it is hard to collect many images having nearly identical location and

time , the metadata verification task typically has less training images compared

to traditional image classification. To address this limitation, we utilize a transfer

learning technique that is widely adopted in the literature – we fine-tune a pretrained

network that is previously trained on a multi-class image dataset. Previous work

usually pretrains the model on ImageNet [17], which contains around one million

images from 1,000 different classes. However, we find that images from the ImageNet

dataset are usually quite different from the images used in the metadata verification
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task. ImageNet contains images of different objects while metadata verification

datasets contains images of different scenes. To this end, we collected a large-scale

image dataset consist of one million images taken in 1,000 different locations as

our augmented training set. The dataset is a subset of YFCC100M [41]. For each

image in YFCC100M dataset with geo-tag, we first obtain a hierarchy of Where-On-

Earth Identifier (WOEID) by reverse geocoding, and then select the finest scale of

the WOEID as its location label. We first download 1,000 images from each of the

1,000 different locations containing the most images. We then run an indoor/outdoor

classifier [59] on the downloaded images and remove indoor images from the dataset.

We only keep locations with more than 500 outdoor images, so the final dataset

consists of 914,109 images from 995 different locations. We call this the Yahoo

Flickr Location (Yahoo-FL) Dataset. Figure 4.4 shows some example images in the

Yahoo-FL dataset.

4.3.3 Bilinear Pooling

Bilinear pooling has shown promising results on several computer vision tasks,

such as fined-grained classification, texture classification, and visual question an-

swering [60, 61, 62, 63]. We hypothesize that it will also be helpful for the metadata

verification since images from different events sometimes might contain similar but

different fined grained visual patterns, and when an attacker tampers the meta-

data, they will usually choose a different but similar event. For instance, Figure 4.5

contains several examples of similar structures with fine-grained texture differences
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San Francisco City Hall

Groenplaats Treinstation

Circuit de Catalunya-Porta

Arlington National Cemetery

Figure 4.4: Example images in the Yahoo-FL dataset. The dataset consists of 955
different locations with 914,109 outdoor images.

from different locations.

Given an input image I, we first use a convolutional neural network (CNN) to

extract a feature map F ∈ Rw×h×c. We then can calculate the bilinear features as:

B(F ) =
W∑
i=1

H∑
j=1

FijF
T
ij (4.1)

As described in [62], this formulation is related to order-less descriptors such as
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VLAD [64], Fisher vectors [65] and region covariance [66], and is able to effectively

capture the second order statistics of the input features. The diagonal entries of the

output bilinear matrix B(F ) represent the variances of each feature channel, and

the off-diagonal entries represent the correlations between different feature channels.

The output matrix B(F ) is first converting to a vector v and then goes through

following mapping function:

f(v) =
sign(v)

√
|v|

||sign(v)
√
|v|||2

, (4.2)

which calculates the signed square root followed by l-2 normalization to project the

vector to Euclidean space [65]. Note that for an input feature with c channels, the

dimensionality of the above bilinear representation is c2. Such high dimensionality

prevents efficient training of the deep neural networks due to computation and

memory constraint. Therefore, following previous work [60], we use tensor sketching

to reduce the dimensionality of the original bilinear vector. We first generate random

vectors h1, h2 ∈ N c and s1, s2 ∈ {−1,+1}c, where hk(i) is uniformly drawn from

{1, 2, ..., d}, sk(i) is uniformly drawn from {−1,+1}, and d is the target dimension.

We then define the sketch function Ψ(x, s, h) = [S1, S2, ..., Sd] as:

Sj =
∑

i:h(i)=j

s(i)xi, (4.3)
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Figure 4.5: Similar structures from different locations in the Google landmark recog-
nition dataset. Bilinear pooling describes in Section 4.3.3 helps to distinct the fine-
grained differences between them.

finally, we compute the compact bilinear vector as:

φ(x) = F−1(F (Ψ(x, s1, h1)) ◦ F (Ψ(x, s2, h2))), (4.4)

where F and F−1 represent the Fast Fourier Transformation and Inverse Fast Fourier

Transformation, and ◦ represents element-wise multiplication. For a CNN feature

map F , the compact bilinear feature representation is calculated as:

Φ(F ) =
∑
i,j

φ(Fij). (4.5)
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(a) (b)

Figure 4.6: (a) Self-attention module. Given a convolutional feature map, the at-
tention network uses it to compute a spatial attention map. The attention map
is then used as weights for pooling the original feature map. (b) Guided-attention
module. The model takes another image from the same event as the guide image,
and uses it to provide additional information for learning the attention function.

4.3.4 Attentive Bilinear CNN (AB-CNN)

For metadata verification, images from the same event usually contain diverse

visual contents beside information which can be used to identify the event; addi-

tionally, the useful information usually located in a small region of the image. To

this end, we propose to utilize an attention module to the network to better focus

on the informative regions in the image. Attention models have been successfully

applied to many different tasks such as machine translation [67], image captioning

[68], visual question answering [69], and image retrieval [57]. We first describe a self-

attention module commonly used in previous works, and we then describe a novel

attention module, guided-attention, integrated with our bilinear CNN model for the

metadata verification task. Figure 4.6 illustrates the proposed attention module.
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4.3.4.1 Self-Attention

Given a CNN feature map F ∈ Rw×h×c, the goal of the attention module

is to learn a attention function α(x; θ), where α(Fij; θ) represent the importance

of the region (i, j) in the image, and θ denotes the parameters of the attention

function. The final representation is the weighted sum of the feature map instead

of unweighted average pooling:

Φ(F ) =
∑
i,j

α(Fij; θ)Fij. (4.6)

Here the attention function α is represented by an attention network with two 1× 1

convolutional layers. To avoid negative weighting, we apply a soft-plus function to

the attention output similar to [57]. Finally, by combining with compact bilinear

pooling, the final attentive bilinear representation is calculated as:

Φ(F ) =
∑
i,j

log(1 + eα(Fij ;θ))φ(Fij). (4.7)

4.3.4.2 Guided-Attention

As shown in Figure 4.7, sometimes an image might contain multiple informa-

tive regions, and which region in the image is important for identifying the event

depends on other images in the dataset. We propose a novel attention module

called guided-attention to address this issue. As illustrated in Figure 4.6 (b), dur-

ing training, the model takes an extra guide image from the same class as input,
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and calculates its convolutional feature map with average pooling g. The attentive

bilinear representation is then computed as:

Φ(F ) =
∑
i,j

log(1 + eα(Fij ,g;θ))φ(Fij), (4.8)

for each spatial location, g and Fij are concatenated and go through the attention

network to compute the attention score. Note that during test time, there is no

guide image available, since we do not know the event of the probe image; therefore,

we use the probe image itself as the guide image. We empirically observe that works

well, as it provides additional global context to the attention function.

4.3.4.3 Attention Learning

The attention function is learned jointly with the CNN network parameters.

For each input image, the network will calculate a vector y ∈ R2:

y = WΦ(F ), (4.9)

where W ∈ R2×d are the network parameters of the final classification layer. The

soft-max cross entropy is used to calculate the loss for training:

L = −y∗log
( ey

1T ey

)
, (4.10)
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(a)

(b)

(c)
Figure 4.7: Some images have multiple informative regions. For instance, (b) con-
tains two regions that can help to identify the event. When comparing with image
(a), the upper part is more important; when comparing with image (c), the lower
part is more important for learning good representation.

where y∗ is the ground-truth label. The network is trained with stochastic gradient

descent with back-propagation to minimize the above loss function.

4.4 Experiments

4.4.1 Datasets and Evaluation Metrics

We evaluate the proposed method using three different datasets, including (1)

Yahoo Flickr Location Dataset (Yahoo-FL), (2) Medifor Event Verification dataset

(MediFor-EV), (3) Google Landmark Recognition Dataset (Google-LR).

Yahoo-FL contains 914K images from 955 locations, and it is a subset of

YFCC100M dataset [41]. Details of the dataset can be found in Section 4.3.2.

Figure 4.4 shows some images in the dataset. Each location represents one event in
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Berlin Air Show

2011 Chicago Blizzard

2014 Chinese New Year
in London

Hurricane Harvey

Figure 4.8: Images in the MediFor-EV dataset. The dataset contains 2,315 images
from twelve different events. Each column contains images of the same event.

our experiments, and we select 35 locations as our event set while other locations are

used as augmented training set. For each event set, we randomly select 50 images

for testing and up to 1000 images for training. We also randomly select an equal

number of images as negative samples for both training and testing. Note that

negative samples in the test set are selected from a disjoint set of locations to test

the generalization ability of the model. For Yahoo-FL, we use binary classification

accuracy (ACC) as our evaluation metrics.

MediFor-EV consists of images taken at twelve different events throughout

the world, including Berlin Air Show, Berlin Marathon, 2011 Chicago Blizzard,

2014 Chinese New Year at London, Hurricane Harvey, Hurricane Ike, Hurricane

Irma, Hurricane Katrina, Hurricane Matthew, Hurricane Sandy, 2010 Oshkosh, and

64



2011 Oshkosh. Figure 4.8 shows some example images in the dataset. The dataset

contains two splits, training set, and testing set. The training set contains around

200 images of each event with a total of 2,315 images, and the test set contains

50 images of each event with a total of 600 images. The dataset is part of the

Media Forensics Challenge 20181. For MediFor-EV dataset, we follow the challenge

guideline and use area under ROC curve (AUC) as our evaluation metric.

Google-LR contains 1.2 million training images from 15K different landmarks

and 117.7K probe images. The dataset is extremely imbalanced with 6.5K classes

in the training set contain fewer than 10 images. The dataset is released as part of

the Google Landmark Recognition Challenge2. We follow the competition guideline

and use global average precision (GAP) as our evaluation metric. Global average

precision considers the prediction as well as the confidence score of all probe images,

and is calculated as:

GAP =
N∑
i=1

p(i)r(i), (4.11)

where N is the number of probe images, p(i) is the precision at rank i, and r(i)

denotes the relevance of prediction i. Detailed description of this evaluation metric

is available on the Google Landmark Recognition Challenge website 3.

1https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018
2https://landmarkscvprw18.github.io/
3https://www.kaggle.com/c/landmark-recognition-challengeevaluation

65



Method Accuracy

CNN (ImageNet) 69.0%
CNN (Flickr) 83.4%
A-CNN 83.7%
B-CNN 83.7%
AB-CNN 84.5%

Table 4.1: Experimental results of Yahoo-FL dataset. Augmented training provides
large performance gain as the model learns better feature for distinguishing different
events. Both A-CNN and B-CNN provide moderate improvement. When combining
both, the model achieves the highest performance.

4.4.2 Compared Algorithm

We compare the proposed methods with following the baseline algorithms:

(1) CNN(ImageNet): Basic CNN with ResNet-50 [37] architecture pre-trained

on ImageNet Dataset. (2) CNN(Flickr): ResNet-50 with augmented training on

Yahoo-FL as described in Section 4.3.2. (3) A-CNN: ResNet-50 with augmented

training and attention module described in Section 4.3.4. (4) B-CNN: ResNet-50

with augmented training and bilinear pooling described in Section 4.3.3. (5) AB-

CNN ResNet-50 with augmented training, bilinear pooling, and attention module.

Section 4.3.4.1.

4.4.3 Experimental Results on Yahoo-FL

Table 4.1 shows results with different algorithms on the Yahoo-FL dataset.

By using the augmented training set, the accuracy greatly improves from 69.0%

to 83.4%. This is because the model learns a representations which better sep-

arates different events through the multi-class classification training process. By

adding either attention module (A-CNN) or bilinear pooling layer (B-CNN), the
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Figure 4.9: Binary classification accuracy of Yahoo-FL for different events using A-
CNN and B-CNN. Each model improves performance on different events. Two model
are complementary to each other. AB-CNN combine the two model together, and
it is able to benefit from both modules, which further improve the overall accuracy.

performance improves from 83.4% to 83.7%. Figure 4.9 shows classification accu-

racy broken down to different events for A-CNN and B-CNN. A-CNN and B-CNN

improve performance on different events, and by combining the two methods to-

gether, the performance further increases to 84.5%. The results demonstrate the

effectiveness of the proposed network and the complementary effect of bilinear pool-

ing and attention module. Figure 4.10 shows qualitative results with the attention

heatmap overlayed on the test images. The attention module helps the model focus

on background structure which is helpful to distinguish different events.

4.4.4 Experimental Results on MediFor-EV

Table 4.2 shows the experimental results on MediFor-EV. Similar to the re-

sults on Yahoo-FL, the proposed method is able to learn better representations

and achieve higher performance compared to the baseline CNN model. Augmented

training provides less performance gain for MediFor-EV dataset compared to Yahoo-
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Figure 4.10: Visualization of spatial attention on the test image. Our model learns
to focus on the background structure instead of people in the foreground, which
helps distinct different events.

Method AUC

CNN (ImageNet) 84.4%
CNN (Flickr) 87.2%
A-CNN 87.8%
B-CNN 87.5%
AB-CNN 88.9%

Table 4.2: Experimental Results in MediFor-EV dataset. AB-CNN improves the
performance from 84.4% to 88.9% in terms of area under ROC curve (AUC) compare
to baseline CNN.

FL, because the data distributions between the augmented training set and event

training set have large differences. Note that since the amount of training data in

MediFor-EV is small, we fix all weights in CNN except the final classification layer

after the augmented training process. Figure 4.11 shows some positive results on

MediFor-EV with the proposed model. Our model can learn an appropriate repre-

sentation and successfully verify the metadata in these examples. Figure 4.12 shows

some failure cases of our model. Probes with close-up images and indoor images are

exceedingly challenging because there is usually not enough visual information for

the model to learn a good representation.
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Method GAP

CNN (ImageNet) 14.0%
A-CNN 14.8%
B-CNN 15.4%
AB-CNN 18.7%

AB-CNN (SE-ResNeXt) + Re-Ranking 25.6%
AB-CNN (Ensembles) + Re-Ranking 32.2%

Table 4.3: Results of AB-CNN on Google-LR dataset. We extend the AB-CNN for
landmark recognition task and improve the result from 14.0% to 18.7% in terms
of global average precision (GAP) compare to the baseline model. By combining
advanced network architecture, spatial local feature re-ranking, and model ensemble,
we improve the GAP to 32.2%, which give us rank 2 out of 483 teams in the challenge.

4.4.5 Experimental Results on Google-LR

We extend AB-CNN for the landmark recognition task by considering the

landmark id of each image as its metadata. Since Google-LR already consists of one

million training images, we do not apply the augmented training process with Yahoo-

FL. Instead, we directly train a multi-class classification network with the training

data. Table 4.3 shows the experimental results on Google-LR. By adapting AB-CNN

to the landmark recognition task, we were able to improve the GAP from 14.0% to

18.7% compared to the baseline CNN approach. By adopting a more advanced

network architecture, SE-ResNeXt [70], with spatial re-ranking using local features

[57], we improved the GAP to 25.6%. Finally, by combining multiple models with

ensembling, we can further improve the GAP on the validation set to 32.2%.
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Berlin_Marathon (0.998) Chicago_Blizzard_2011 (0.995) Chinese_New_Year_London_2014
(0.972)

Hurricane_Sandy (0.820) oshkosh2010 (0.749)

(a) True Positive

Hurricane_Sandy (0.051)

Huricane_Katrina

berlin_air_show (0.000)

oshkosh2011 Chinese_New_Year_London_2014

oshkosh2010 (0.002) Hurricane_Sandy (0.009)

hurricane_matthew

berlin_air_show (0.031)

oshkosh2010

(b) True Negative

Figure 4.11: Positive results generated by our model. The event name under the im-
age is the metadata associated with the images. Name in red indicates the metadata
was tampered and the event name on the top is the original metadata. Numbers
in the parenthesis are the confidence scores output by our model. (a) True positive
probes verified by our model. Our model can extract informative representation
from the image and use it to verify the metadata. (b) True negative examples. Our
model successfully rejects these tampered probes based on the learned representa-
tion.

4.5 Conclusion

We address the metadata verification with a deep representation learning ap-

proach. Based on experiments on three different datasets, we show the proposed

network configuration, AB-CNN, can learn suitable representation for the task and

verifying a common metadata, event, associated with the image. We also show our

model can be extended to landmark recognition, achieving state-of-the-art perfor-

mance. Metadata verification is an important topic for media forensics researches,

future directions includes metadata verification with a wider range of metadata, as

well as detecting inconsistencies between different metadata in addition to media

content.
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(a) False Positive
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hurricane_matthew

Huricane_Katrina

(b) False Negative

Figure 4.12: Negative results generated by our model. (a) False positive examples.
Our model fails to detect this tampered probe. (b) False negative examples. Our
model indicates the metadata was tampered while it is actually not. Close-up image
(Last example in the first row, first and second example in the second row) and
indoor image (third and fourth example in first row, third and fifth example in the
second row) is especially challenging because these probe images usually does not
contain enough information for the model to verify the metadata.
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Chapter 5: Toward Realistic Image Compositing with Adversarial

Learning

5.1 Introduction

Image compositing aims to create a realistic-looking image by taking the fore-

ground object of one image and combining it with the background from another

image (cf. Figure 6.1). In order to make the composite image look realistic, many

factors need to be considered, such as scene geometry, object appearance, and se-

mantic layout. It is a challenging task and usually requires a human expert carefully

adjusting details including geometry and color using professional image editing soft-

ware such as PhotoShop to create a single composition.

Many previous works [71, 72, 73, 74, 75, 76, 77, 78] try to alleviate the burden

by creating algorithms that can automatically adjust the appearance of the fore-

ground image and makes it fit into the background naturally. While this may work

in some cases, many of these approaches still require human supervision to help

with tasks such as determining the location and size of the foreground object or

capturing the lighting conditions of the scene.

Generative adversarial networks (GANs) have recently been shown to have
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the ability to generate realistic looking images [79, 80, 81, 82, 83, 84, 85, 86] by

learning to deceive an adversarially trained discriminator network. However, im-

age composition is a different task from image generation because the composite

image must maintain details from the input images and apply only slight changes

to improve the realism of the composition. Recent work [87] modified the GAN

framework by restricting the range of the generator to a geometric manifold using a

spatial transformer network [88], in order to generate realistic composite images that

are geometrically consistent. However, such a model only works if the foreground

appearance is already consistent with the background image. If the domain of the

foreground and the background images are different, geometric transformation alone

does not have the ability to generate a natural-looking composite image. As shown

in Figure 6.1, for a composite image to be realistic, the model needs to address both

geometric and color consistency. However, it is not trivial to combine previous works

to automatically adjust both color and geometry since these two properties are in-

terdependent: geometric correction relies on color consistency while color correction

also relies on geometric consistency.

To address the above issue, we propose a GANs architecture called Geomet-

rically and Color Consistent GANs (GCC-GANs) for image compositing that si-

multaneously learns both geometric and color correction with adversarial training.

GCC-GANs contain four sub-networks, a transformation network, a refinement net-

work, a discriminator network, and a segmentation network. The transformation

network and the refinement network act together as the generative compositing

model, which aims to generate a composite image while considering geometric, color,

73



and boundary consistency. At the same time, the discriminator network and the

segmentation network help to increase the realism of the composite image through

adversarial training. The discriminator network learns to separate the composite

images from the real ones while the segmentation network learns to separate the

foreground object from the background in the composite images. Unlike previous

works that restrict the generator to geometric transformations, our model can apply

both geometric and color correction as well as boundary refinement to generate a

composite image. GCC-GANs are trained end-to-end with a geometric loss, a ap-

pearance loss, a adversarial loss, and a adversarial segmentation loss. Experimental

results show that it can generate geometrically and color consistent images in both

synthetic and real-world datasets.

The contributions of this paper include: (1) Demonstrating the need for both

geometric and color consistency for the image compositing task, (2) proposing an

novel end-to-end model that creates realistic composite images based on the gener-

ative adversarial network framework, and (3)extensive evaluations including human

perception experiments show the ability of the proposed model to generate realistic

composite images compare to different state-of-the-art methods.

5.2 Related Work

Image Compositing models try to combine a foreground image with a back-

ground image seamlessly. Many prior works focus on how to modify the appearance

of the foreground image to better fit into the background based on color gradients
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[71, 72] or color statistics [73, 74, 75]. Agarwala [89] provide a system to combine

multiple source images taken in a similar scene. Lalonde [76] develop an interactive

system to allow creating composite images by selecting foreground objects from a

large database. With advancement of the deep learning research in computer vision,

various deep learning models [77, 78, 87, 90] were also introduced for image com-

positing. Similar to our approach, Zhu use a discriminative model to estimate the

realism of composite images. However, their discriminative model is fixed during

the image compositing process and can not be improved for better composition.

Tsai introduced an end-to-end encoder-decoder network for image harmonization.

Although these methods can generate realistic composition, they still rely on a hu-

man to complete the semantic tasks such as deciding the location and size of the

foreground objects. Most recently, Tan [90] propose to use deep neural networks

to learn the location and size of the foreground object for human composition; Lin

[87] use generative adversarial networks (GANs) with spatial transformer networks

[88] to learn the correct geometry transformation of the foreground object. These

works consider geometric consistency in image compositing, but can only work when

the domain of foreground image and background image are similar. Our work ex-

tends previous works by providing a unified end-to-end framework that learns to

adjust both the geometry and appearance consistently, which allow our model to

automatically compositing images from different sources.

There are also many works that try to combine synthetic 3d objects with

images [91, 92, 93, 94, 95]. However, these methods require explicitly reconstructing

the scene geometry and environment illumination in order to render the 3d object.
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On the other hand, our model can directly take the rendered object as input for

composition.

Generative adversarial networks [79] have been utilized on many different

image generation task [80, 81, 82, 84, 96, 97, 98, 99]. Conditional GANs [96] provide a

way to generate images from different classes given different input. Isola [80] provide

a framework that translate image from one domain to another given pairs of training

images. Zhu [84] further extend the framework to work on unpaired training images

using cycle consistency. However, these frameworks can not directly apply to image

composition task since the composed images need to keep most of the the detail

information of both foreground and background images in a consistent manner.

Instead of direct image generation, our model utilize the adversarial training process

to learn geometric and color corrections for realistic composition.

5.3 Proposed Method

5.3.1 System Overview

Figure 6.4 shows an overview of the proposed network architecture. The model

consists of four sub-networks: a transformation network, a refinement network, a

discriminator network, and a segmentation network. The transformation network

and the refinement network act together as the generative compositing model and

is described in section 5.3.2. The discriminator network and the segmentation net-

work help the generative model thorough adversarial training and is described in

section 5.3.3. Given an input triplet consists of a background image, a foreground
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image, and an object mask, the compositing model learns to composite realistic

images; the discriminator network learns to distinguish composite images from the

real images. At the same time, the segmentation network tries to separate the fore-

ground object from the background in the composite image. The model is trained

to optimize the min-max objective function described in section 5.3.4.

5.3.2 Generative Compositing Model

Given a foreground image with N pixels If ∈ [0, 1]N×3 with a foreground mask

α ∈ {0, 1}N and a background image Ib ∈ [0, 1]N×3 as inputs I = {If , Ib, α}, the

process of image compositing can be formulated as follow: Ic = G(I; θG)

= A(I) ◦ F (I) + (1−A(I)) ◦ Ib, where G is the compositing model which combines

the foreground region of If indicated by the mask M and the background image

Ib; θG is the model parameters. F (I) ∈ [0, 1]N×3 is the transformed foreground and

A(I) ∈ [0, 1]N is the alpha mask. Under this formulation, a simple alpha composition

model can then be described as identity functions: A(I) = α;F (I) = If .

If only the geometric correction is considered as in [87], the model becomes:

A(I) = H(α, Th(I; θG))

F (I) = H(If , Th(I; θG)), where H(·) is the geometric transformation function, such

as homography, affine or similarity transform, and Th(·) the transformation matrix.

We use spatial transformer network [88] to predict the transformation parameters.

On the other hand, if we assume foreground/background geometry is consistent

and only consider the color correction, F (I) becomes a color transformation function
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F (I) = C(If , Tc(I; θG)) which adjusts the appearance of the foreground image. we

use a linear brightness and contrast model [77]:

C(If , Tc(I; θG)) = If1λ1000λ2000λ3β1β2β3, (5.1)

where Tc(I; θG) = (λ1, λ2, λ3, β1, β2, β3) is a transformation network that predicts

the contrast and brightness parameters.

To apply both geometric and color correction to the composite image, we can

then combine Equation 5.3.2 and Equation 5.1:

F (I) = C(H(If , Th(I; θG)), Tc(I; θG)), (5.2)

note that we can use a single network to predict both color and geometric transfor-

mation parameters at the same time, so that T (I; θG) = [Th(I; θG);Tc(I; θG)] and

simplify Equation 5.2 as:

F (I) = (C ◦H)(If , T (I; θG)). (5.3)

Equation 5.3.2 and Equation 5.3 together describe our compositing model Ic =

G(I; θG). However, the composite image might still contain some boundary artifacts.

To address this issue, we introduce a refinement network R with an encoder-decoder

architecture that further refines the composite image. So the final composition model

can be described as: Ic = G(I; θG)

= R(A(I) ◦ F (I) + (1− A(I)) ◦ Ib). We adopted architecture described in [100] for
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our refinement network.

5.3.3 Adversarial Training

Equation 5.3.2 describes our compositiing model Ic = G(I; θG) with transfor-

mation network and refinement network. We adopt a similar procedure described in

[79] to train a discriminator network D(x; θD) with adversarial learning. Adversarial

learning maximizes the following adversarial loss La to distinguish natural image Ib

from the composite image Ic:

La(D,G) = EIb
[
logD(Ib)

]
+ EIc

[
log(1−D(Ic))

]
. (5.4)

We use a basic three-layer convolutional network for discriminator network and

adopt spectral normalization [101] to stabilize the training process. To reduce the

discrepancy between foreground and background in the composite image, we propose

to train an additional segmentation network S that learns to separate the foreground

object from the background in the composite image. The network is trained with

adversarial segmentation loss: Ls(S,G) =
∑
s∈fg EIc

[
log(1−Ds(Ic))

]
+
∑
s∈bg EIc

[
log(Ds(Ic)

]
, where s ∈ {fg ∪ bg} indicate different spatial locations,

and fg, bg are set of foreground and background spatial locations in the composite

image. The segmentation network S detect the foreground region by generating

foreground/background probabilities for each spatial location. We also adopt the

architecture in [100] for the segmentation network.

79



5.3.4 Geometric and Color Consistent GAN (GCC-GAN)

Following [79], we optimize the composition model described in Equation 5.3.2

by minimizing a min-max objective:

minθGmaxθD,θSLa(D,G) + λLs(S,G). (5.5)

Additional constraints are needed since directly minimizing the above objective will

usually lead to the trivial solution where the compositing model simply removes the

foreground in the composite image using geometric transformations. Therefore, we

add a geometric loss term to our objective function:

Lg = EI
[
‖T (I; θG)‖22 + λmaske

−k ‖A(I)‖1
N

]
(5.6)

The first term in Equation 5.6 penalizes large transformations, similar to the update

loss in [87]; the second term is an exponential loss that directly penalizes the size

of the foreground mask if it is too small. For data with ground-truth geometric

transformation parameters, we directly use mean square error between the predict

parameters and the ground-truth parameters as our geometric loss.

Finally, we use a pixel-wise L1 loss Lc to anchor the transformed foreground

image to the original foreground image: Lc = EI

[
‖(H(If ,T (I;θ))−F (I))◦A(I)‖1

‖A(I)‖1

]
.

Combining the above three loss terms, the final loss function for our GCC-
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GAN becomes:

minθGmaxθDλaLa + λsLs + λgLg + λcLc, (5.7)

where λa, λs, λg, and λc are hyper-parameters that control the weights between

different loss terms.

5.4 Experiments

5.4.1 Image Compositing with Synthesized Objects

We first validate our model in a simplified artificial setting with a synthesized

dataset. We first use the Panda3D game engine1 to render images containing a table

and a soda can. We render three images for each 3d configuration, including a fore-

ground image with a soda can, a background image with a table, and a ground-truth

composite image with a soda can on the table. We then apply random geometric

and the color perturbation to the foreground, and we ask our model to composite

the perturbed foreground into the background image. Since the synthesized images

have a perfect segmentation mask, there will be no boundary artifact in the compos-

ite image. As a result, we omit the refinement network and segmentation network

in our model for the experiment. We train our model on 15,000 synthesized train-

ing triplets with 200 epochs. Figure 5.3 (a) shows some example results. The first

column is the initial composition with foreground perturbation, the second column

is the output of our model, and the third column is the ground truth composite

image. Our model is able to correct the geometric and color of the foreground and

1https://www.panda3d.org/
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generate a plausible composite image.

Importance of Color Consistency. To demonstrate the importance of color

consistency in the composite image, we also train a model with only geometric

transformation network similar to the one in [87]. Figure 5.3 (b) shows the result

of geometric only model. The model fails to generate plausible composite images

because geometric transformation alone cannot move the composite image on to the

manifold of the training data.

5.4.2 Image Compositing with Common Objects

We use Common Object in Context (COCO) [102] dataset for our compositing

experiments. COCO dataset consists of 330K images with segmentation masks of

80 common object categories.

Training Data Generation. Our goal is to generate a composite image by insert-

ing an object from a foreground image into a new background image. However, we

do not have training data with realistic composite images, which requires intensive

human annotation with editing software. Instead, we automatically generate train-

ing data by perturbing the input images. Figure 5.4 shows the process of training

data generation. For each input image with object mask, we first select an auxiliary

object mask from another image in the dataset with same object category. We then

use morphological operations and combining the object mask with auxiliary mask to

remove the boundaries from the image, simulating the boundary mismatch during

testing. Finally, we apply the geometric and color distortion to the foreground to
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simulate the geometric and color mismatch during testing. For each input image

I, we generate a background image Ib, a foreground image If and a object mask α

as input to our model. Our model then tries to composite the foreground object

into background and generate realistic composite image. We select object segments

that occupy between 5% to 50% of the whole image for our experiments. For each

segments, we select 5 auxiliary object mask with largest intersection of union, re-

sult in 516,070 training triplets. During testing, we simply remove a object from a

background image, and tries to composite another foreground object with the back-

ground. Note that our goal is to evaluate image compositing algorithms, therefore

we use the ground-truth object mask to segment the objects, however, we can also

use semantic segmentation algorithm to segment objects for image compositing.

Compared Baselines. We compare our model with several different baselines:

• Alpha Composition: linear combination of the foreground and background

using the alpha mask.

• Poisson Blending [72]: a gradient based method that minimize the gradient

changes in the composite image.

• Deep Harmonization [78]: an end-to-end encoder-decoder network with

semantic segmentation.

• Pix2Pix [80]: an image-to-image translation network with adversarial loss.

Figure 5.7 shows some qualitative results of the proposed method compared to

baselines. Note that since the baselines do not account for geometric consistency, for
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fair comparison, we select a foreground object that best matches the background,

and adjust the geometry to match the foreground and background mask before input

to the baselines. Even without geometric mismatch, our model can automatically

generate competitive or more realistic composite image compared to all baseline

methods. Pix2Pix model can generate images of similar quality compared to the

proposed method, however, in the following section, we show that when there is

geometric inconsistency between foreground and background, Pix2Pix model will

fail to generate plausible composite image since their model does not incorporate

geometric losses (cf. Figure 5.6).

Importance of Geometric consistency. Figure 5.5 shows the process of geomet-

ric correction of the proposed model with some examples. The first column is the

background image, the second column is the foreground object with mask. Third

column shows initial composition with simple copy-paste operation. The foreground

and background in the initial composition is geometrically inconsistent. In fourth

column, our model first transform the foreground to make the composite image ge-

ometrically consistent using spatial transformer network. Finally, the last column

shows the refinement network will make the boundary more realistic and achieve

realistic image compositing. Figure 5.6 shows comparison between our model and

model without geometric correction (i.e. Pix2Pix). Our model is able to perform

geometric transformation to the foreground and generate plausible composite image

while Pix2Pix fail to generate realistic composite image.

Human Perceptual Experiments. We conduct different perceptual experiments

to quantitatively evaluate our model. In the first experiment, we want to verify
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Method % Real

Alpha composition 4.1%
Poisson blending [72] 10.0%
Deep harmonization [78] 8.6%
Pix2Pix [80] 10.2%
GCC-GAN (Ours) 11.0%

Real image 73.8%

Table 5.1: Human perceptual experiment with single image. We ask the annotator
to check if there is any unusual artifact in the image. GCC-GAN can fool the
annotator 11% of the time compared to baselines. Note that for fair comparison,
we ensure the geometric consistency by select foreground object best matching the
background.

Method GCC-GAN Perform Better

Alpha composition 82.5%
Poisson Blending [72] 67.3%
Deep Harmonization [78] 71.4%
Pix2pix [80] 56.7%

Table 5.2: Human perceptual experiment with pairs of images. Given two images,
we ask the annotator to select the more realistic image from pair. The output of
GCC-GAN is selected more than half of the time compare to all other baselines.

how well our composite image can fool a human subject under close examination

compared to baseline method. We randomly select ten images from each of the

80 categories in COCO dataset with a total of 800 images. For each image, we

generate five composite images using different algorithms. We show the composite

image as well as original real image to the annotator with random order and ask

them to check if there is any unusual artifact in the image and obtain a total of

4,800 annotations. Table 5.1 shows the results of the experiment. Even though the

input image does not require any geometric correction, our model still outperforms

all baseline in term of human perception, which demonstrates the effectiveness of

the adversarial training process with segmentation network. Note that 26.2% of real
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images were actually annotated as fake, which shows the annotator is really strict,

and they annotate each image meticulously.

In the second experiments, we want to directly compare our algorithm with

baselines. We randomly collect five images from each categories, with a total of 400

images. We show annotator two composite images. One image is generated by our

model while the other is generated with one of the baseline methods. To ensure fair

comparison, both images are generated with same foreground and background with

matching object mask to ensure the composite image is geometrically consistent, and

is shown to the annotator with no particular order. Table 5.2 shows the results of the

experiment. Again, even without geometric correction, our model can outperform

all baseline method and generate better composite image.

Qualitative results and Failure cases. Figure 5.8 show composite image gen-

erate by our model along with the original image for different object categories.

Figure 5.9 show some failure cases. In the first example, our model does not have

any pose information and was not able to consider semantic layout of the street

scene. Therefore, the model composite the car with a inconsistent pose. In the

second example, the foreground segmentation mask is imperfect (i.e. the wheel of

the bike), so the model generate a composite image with inconsistent appearance.

In third example, we tries to insert a color train into a black and white background,

since most of our training data is color image, the model did not learn to change

the appearance of foreground into black and white. In the last example, we show

the failure case of composite image with an animal. Our model works better with

rigid objects, and have hard time model animal with diverse poses.
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Method Average RGB-N Score

Alpha composition 75.4%
Poisson blending [72] 75.8%
Deep harmonization [78] 77.0%
Pix2Pix [80] 69.1%
GCC-GAN (Ours) 63.7%

Real image 57.8%

Table 5.3: Average manipulation score with different compositing algorithms. The
score is generated by a state-of-the-art manipulation detection algorithm [1], a higher
score indicates a higher possibility that an image is manipulated. GCC-GAN is able
to generate more realistic images that fool the manipulation detection algorithm.
Note that Poisson blending and deep harmonization perform worse than alpha com-
position probably because the compositing process introduces additional artifacts
that capture by the manipulation detection algorithm.

Image Manipulation Detection. In this experiment, we want to see how well

can composite image generated by our model fool a image manipulation detection

algorithm. To this end, we utilize a well-trained state-of-the-art image manipulation

detection model, RGB-N [1]. The model use a two-stream faster-rcnn network to

detect different type of image manipulation. We randomly select 50 images output

by each of the algorithm and pass them through the RGB-N model to generate

manipulation score. Table 5.3 shows the average manipulation scores of different

compositing algorithms. Our model gets lowest RGB-N score compare to all other

baselines, which indicates the RGB-N model consider composite images generated

by GCC-GAN are more real.

5.4.3 Implementation Details

We implement GCC-GAN with PyTorch [103] deep learning framework and

train on the Nvidia GTX 1080TI GPUs. The input is resized to 128 × 128 for the
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experiments on synthesized dataset and 256×256 for the experiments on COCO, we

use Adam [38] optimizer with a initial learning rate of 0.0002, (λa, λs, λg, and λc)

are set to (0.01, 0.01, 1, 1) to empirically to balance the loss terms. We use a batch

size of 1 for both experiments, and train 200 epochs for the synthesized dataset and

5 epochs for the COCO experiment. We use affine as our geometric transformation

function.

5.5 Conclusion

We propose a generative network called GCC-GAN for image compositing

which considers both geometric, color, and boundary consistency. We successfully

use adversarial training with a discriminator network and a segmentation network

to improve our model. Based on experiments on synthesized dataset as well as

real world object dataset, we show both geometric and color consistency is crucial

for generating realistic-looking composite images. We also GCC-GAN yield better

results compare to several state-of-the-art baselines with human perceptual exper-

iments as well as a experiment with manipulation detection algorithm. Despite

the promising results, we show GCC-GAN has some limitations, such as failure to

dealing with object with diverse poses. Future work includes incorporating pose in-

formation into our image compositing framework and using GCC-GAN to improve

image manipulation detection algorithms.
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Figure 5.1: The goal of image composition is to create a realistic image by combining
a foreground object with a background image. The x-axis corresponds to increasing
color consistency in the composite image, while the y-axis corresponds to increasing
geometric consistency. However, the composite image only looks realistic when
both geometric and color consistent are considered (cf. image in the red box). (Best
viewed in color)
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Figure 5.2: System Overview of the proposed network architecture. (a) Given an
input triplet consisting of a foreground object, a foreground mask, and a background
image, the generative compositing model learns to create a realistic composite image,
in order to fool both the discriminator network and the segmentation network.
(b) Given a real image, the discriminator network learns to predict real while the
segmentation network learns to identify the image as a background.

Initial

Ground
Truth

Outputs

(a) (b)
Figure 5.3: Experiments on the synthesized dataset. (a) Through geometric and
color transformations, our model learns the relationship between the soda can and
the table, and successfully generate composite images with a soda can sit on the
table. (b) Without color transformation, the model cannot learn the correct trans-
formation because geometric transformations alone can not move the composite
image on to the manifold of the training data.
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Figure 5.4: The process of training data generation. For a given image and its
object mask, we first select an auxiliary object mask from a different image in
the dataset with the same semantic category. We use morphological operation to
remove the boundary in the foreground object and background image. We then
combine the object mask with the auxiliary ones to simulate the boundary mismatch
during testing. Finally, we apply geometric and color perturbation to simulate the
inconsistency during testing.
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Composition
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Figure 5.5: Geometric correction of GCC-GAN. The first and second column shows
the original image and a foreground object. Third column shows composite image
using alpha composition, the geometry is inconsistent between foreground and back-
ground. Forth column shows composite image after geometric transformation, and
the last column shows the output of GCC-GAN with the final refinement network.
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Background Foreground Pix2Pix GCC-GAN (Ours) Original

Figure 5.6: Comparison between baseline and GCC-GAN when the input geometry
is inconsistent. GCC-GAN is able to correct the geometric error and generate more
plausible composite image compared to baseline method (Pix2Pix).
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Figure 5.7: Qualitative results of different algorithms. The first column is the
original image, the second column is the foreground object mask. The rest of the
columns shows the outputs of different algorithms. Note that since the baseline
methods do not account for geometric consistency, for fair comparison, we select
foreground objects best matching the background to ensure geometric consistency.
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Figure 5.8: Qualitative results. The first and the third columns show the original
images. The second and the fourth columns contain output of GCC-GAN.
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Figure 5.9: Failure cases. (1) GCC-GAN does not incorporate pose information and
does not learn the semantic layout of street, therefore, composite image contain car
with unrealistic pose. (2) GCC-GAN generate unrealistic image due to segmentation
error. (3) Since most of our training data are color images, GCC-GAN composite
a color train into a black and white background. (4) GCC-GAN perform better
with rigid objects and have hard time composite object with diverse poses such as
animals.
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Chapter 6: An Analysis of Object Embeddings for Image Retrieval

6.1 Introduction

Convolutional neural networks trained on large-scale image classification datasets

such as ImageNet [17] have been shown to be an effective generic feature extractor

that can be applied to different vision tasks. These include modern object detection

frameworks such as Faster-RCNN [51], which utilizes the same network architecture

pre-trained on image classification datasets for feature extraction. With the avail-

ability of large-scale object detection and segmentation datasets such as COCO [102]

and OpenImagesV4 [104] that come with additional bounding boxes and mask anno-

tations, we explore whether features extracted from models trained on them would

display similar effectiveness as a generic feature extractor. While ImageNet clas-

sification embeddings have been extensively studied [105, 106, 107, 108, 109, 110],

little work has focused on analyzing embeddings extracted from object detection

models. In this paper, we investigate the performance of such embeddings for image

retrieval.

Our analysis shows that even though object detection or instance segmenta-

tion model utilizes additional annotations, the embedding learned from these models

is significantly less discriminative than embeddings learn from classification models

97



0

10

20

30

40

50

60

70

conv4_4 conv4_5 conv4_6 conv5_1 conv5_2 conv5_3

RParis6K (mAP)

ResNet50 (OpenImages)
FasterRCNN (OpenImages)

Figure 6.1: We provide a detailed analysis of embeddings extracted from different
pre-trained models for image retrieval. While object detection model utilizes addi-
tional spatial annotations, embeddings extracted from the modern object detection
model consistently perform worse than the classification model trained on the same
dataset (OpenImagesV4) with the same backbone structure for image retrieval.

when conducting image retrieval. This suggests that the joint learning of classi-

fication and localization leads to degradation of the discriminative power of the

resulting embeddings. However, we also discover that by retrieving similar objects

as opposed to images, we can significantly improve image retrieval performance.

For the best of both worlds, we show that by utilizing object detection as a hard

attention module to extract embeddings from the classification model pertaining to

the object regions, it allows the model to focus on salient regions and at the same

time ignore background clutter.

For applications with an efficiency requirement, we propose a guided student-

teacher training regime. We first train a teacher classification network with image-
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level labels as a discriminative feature extractor. This is followed by training a

light-weight student network on top of the detection model that projects the feature

map of the detection model into a more discriminative feature space guided by the

teacher model. During image retrieval, we use the object detector as a hard attention

module and extract object-level embeddings from the output of the student network

with a single forward pass. This is as opposed to maintaining a separate feature

extractor and an object detector, which would require two forward passes. Such a

student network would still decouple feature learning from localization, which helps

to preserve the discriminative power of the features. It is also possible to learn

different student transformations without re-training the object detection model.

Our contributions include: (1) We empirically show that embeddings extracted

from object detection models are less discriminative than embeddings extracted from

image classification models when the task of image retrieval is considered. (2) We

demonstrate that an object detector can help image retrieval performance by acting

as a hard attention module. (3) For efficiency, we propose a student-teacher training

paradigm, which allows us to extract discriminative object embeddings in a single

forward pass. (4) Finally, extensive experimental results show the advantage of

the proposed approach. Further, we also demonstrate the efficacy of our approach

for near-duplicate object retrieval, which allows for an important application in

detecting image splicing.
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6.2 Background and Related Work

Representation learning from large-scale datasets. Previous works mainly

studied the transferability of embeddings extracted from classification models that

have been trained on datasets such as ImageNet to other tasks [105, 106, 107, 108,

109, 110]. For instance, [106] reports comprehensive results of applying embeddings

from the ImageNet-trained classification model to object detection, scene recogni-

tion, as well as image retrieval. In contrast, the efficacy of embeddings obtained

from object detection models trained on large-scale object detection datasets such

as COCO [102] and OpenImages [104] has not been widely studied. In this work,

we provide an analysis of embeddings extracted from different models pre-trained

on large-scale datasets for the retrieval task.

Content-based image retrieval aims to retrieve relevant images from an

image database given a query image based on the image content. Early work [111]

used global color and texture statistics such as color histogram and Gabor wavelet

transform to represent the image. Later advances on instance retrieval using local

feature [7] and indexing methods [112, 113, 114] achieved robustness against illumi-

nation and geometric variations. With the recent broad adoption of convolutional

neural networks (CNN), different techniques has been proposed for global feature

extraction [115, 116, 117, 118, 119, 120], local feature extraction [121, 122, 123], em-

bedding learning [124, 125, 126, 127], as well as geometric alignment [128, 129, 130]

using deep networks. Zheng [131] provide a comprehensive review of recent ap-

proaches towards image retrieval. Different from traditional image retrieval using
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either global features or local features, our approach generates a few discriminative

object embeddings utilizing object detection models for image retrieval.

Object detection aims to detect different objects in an input image. Girshick

[132] proposed one of the first deep learning based object detection models, R-

CNN, which improved the accuracy significantly compared to traditional methods

[133, 134, 135]. Since then many enhancements [51, 136, 137, 138] have been made to

improve accuracy as well as the training/inference time. A comprehensive survey of

recent deep learning based object detection methods can be found in [139]. By taking

advantage of recent success in object detection, our model can learn discriminative

object-level embeddings for image retrieval. Most recently, Teichmann [140] utilized

a specialized landmark detection model to aggregate deep local features [121] for

landmark retrieval. Object detection has also been used to improve the performance

of other vision tasks such as visual question answering [141].

Knowledge distillation [142, 143, 144, 145, 146] compress a complex model into

a simpler one while maintaining the accuracy of the model. Bucilua [142] first pro-

posed to train a single model to mimic the outputs of an ensemble of models. Ba

[143] adopted a similar idea to compress deep neural networks. Hinton [144] further

generalized the idea with temperature cross-entropy loss. Our student-teacher ap-

proach is related to knowledge distillation, which learns a simple student model to

mimic the output of a complex one. What is different is that we leverage a detection

network to provide additional guidance during training, which we show is effective

for training the student network.
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Model Training Set (# of Img. / Cls.) ROxf RPar CUB200 Cars196

Faster-RCNN [51]

COCO (330K / 80)

18.7 28.3 4.1 2.4
Faster-RCNN-FPN [137] 20.4 31.0 3.3 3.1
Mask-RCNN [147] 20.7 33.0 3.0 2.4
Mask-RCNN-FPN [137] 34.2 48.1 2.9 3.6
ResNet50 [37] ImageNet (1.2M / 1K) 40.1 57.3 21.2 11.1

Faster-RCNN [51]
OpenImagesV4 (1.7M / 601)

19.5 32.3 4.7 2.2
ResNet50 [37] 41.2 61.2 19.3 11.0

Table 6.1: Image retrieval performance (mAP) with embeddings extracted from
different pre-trained models for four different retrieval benchmarks. Even though all
detection and instance segmentation models are initialized with weights trained on
ImageNet classification dataset, the embeddings learned from these models perform
significantly worse than embeddings learned from the classification model.

6.3 Analyzing Embeddings for Image Retrieval

6.3.1 Embeddings from Pre-trained Models

We first provide a detailed analysis of embeddings extracted from different

pre-trained models, including image classification, object detection and instance

segmentation models using four different retrieval benchmarks.

Retrieval benchmark. We consider four datasets for benchmarking, includ-

ing USCB bird dataset [148] (CUB200), Stanford car dataset [149] (Cars196), and

two landmark datasets, ROxford5K [150] (ROxf) and RPairs6K [150] (RPar). For

CUB200 and Cars196 we follow the same protocol in [151] and use leave-one-out par-

titions to evaluate on every images in the test set. ForROxford5K andRParis6K we

follow the medium protocol described in [150], using 70 and 55 images as queries,

4,993 and 6,322 images as database. We use mean average precision (mAP) to

measure the performance of different embeddings.
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Pre-trained models. We consider seven different pre-trained models includ-

ing (1) Faster-RCNN [51] and (2) Faster-RCNN with feature pyramid networks

[137] (Faster-RCNN-FPN) trained on COCO [102], (3) Mask-RCNN [147] and

(4) Mask-RCNN with feature pyramid networks (Mask-RCNN-FPN) trained on

COCO with bounding box and mask annotations, and (5) ResNet50 [37] trained on

ImageNet. To control the effect of different training data, we also compare with (6)

Faster-RCNN and (7) ResNet50 trained with the same dataset (OpenImagesV4

[104]). We adopt open source implementation1 of Faster-RCNN and Mask-RCNN

with ResNet50 as a backbone feature extractor for all our detection and segmenta-

tion models and the same backbone as our classification model. For all Faster-RCNN

and Mask-RCNN models, we use weights from the ImageNet classification model to

initialize the backbone network and use the default 3x learning rate schedule to

train the models. We use images from OpenImagesV4 to learn project matrix for

PCA dimensionality reduction.

During test time, we first resized the image to a maximum size of 1024×1024,

we then extract features from conv5 3 layer [37] and used max-pooling to produce

image embeddings from different pre-trained models. We then use cosine similarity

between embeddings for retrieval ranking. Note that for a fair comparison, we do not

apply any post-processing tricks such as multi-scale ensemble and query expansion.

Embeddings comparison. Table 6.1 shows the mean average precision of

different models when used as feature extractors on the four retrieval benchmarks.

Comparing Faster-RCNN (COCO) and Mask-RCNN (COCO), we note that addi-

1https://github.com/facebookresearch/detectron2
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Figure 6.2: Analysis of embeddings with (a) different PCA dimension and (b) differ-
ent pooling techniques. Embeddings learned from classification model consistently
achieve the best performance.

tional mask annotations decrease the performance of the embeddings on some of

the dataset, suggesting that additional localization constraints might even hurt the

retrieval performance further. Also, by increasing the size of the training set from

COCO to OpenImagesV4, the Faster-RCNN performance improves on some datasets

but degrades on other datasets. Most importantly, although all the models are ini-

tialized with weights trained on ImageNet classification, embeddings extracted from

detection and segmentation models perform significantly worse than the embed-

dings from the ImageNet classification model. Even when comparing Faster-RCNN

(OpenImages) with ResNet50 (OpenImages) which are trained with the same train-

ing data, but with Faster-RCNN utilizing more human annotations (i.e. bounding

boxes), embeddings learned from classification model still significantly outperform

embeddings learned from detection model. This suggests that enforcing both clas-

sification and localization during training compromises the discriminative ability of

the embedding. Consequently, decoupling localization and classification might be
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Figure 6.3: Performance of embeddings extracted from different layers of the pre-
trained models. Embeddings from lower layers of classification and detection models
have similar performance as they learn similar low-level texture features. However,
their performance starts to diverge as we use higher layers, with the classification
model achieving better performance.

crucial for learning embeddings that are effective for image retrieval.

PCA and pooling. Note that different spatial pooling techniques [150] and

post-processing steps such as dimensionality reduction [152] have been shown to

greatly affect retrieval performance. Given a convolutional feature map from conv5 3

layer F ∈ RW×H×C , we consider the following pooling functions P :RW×H×C → RC :

(1) sum pooling [116] (SPoC), (2) max-pooling [153] (Max), (3) regional max-pooling

[117] (R-MAC), and (4) generalized mean pooling [154] (GeM). We also perform

experiments while varying the number of dimensions in PCA from 64 to 2,048 with

whitening. Figure 6.2 shows a detailed analysis of the effect of different pooling
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techniques and post-processing steps. Figure 6.2 (a) shows retrieval performance

of four benchmarks with different PCA dimensions. Even though the performance

of all embeddings decreases as the feature dimension goes down, embeddings from

the classification model (ResNet50) consistently perform the best for all dimensions,

which further supports our previous observation. Figure 6.2 (b) shows the mAP for

different pooling techniques. Here, ResNet50 embeddings again consistently achieve

the best performance among embeddings from different pre-trained models on all

datasets.

Embeddings from different layers. Figure 6.3 shows the performance with

embeddings extracted from different layers in ResNet50 backbone from conv4 1 to

conv5 3. Note that for lower-level embeddings, detection models and classification

models share similar performance, because they represent similar low-level texture

features. However, their performance diverges for embeddings from high-level lay-

ers. This is an important observation since embeddings extracted from higher level

(conv5 x) achieve better retrieval performance across all datasets. This again sup-

ports the embeddings from classification models as being better suited for image

retrieval.

Unsupervised clustering. To provide additional evidence that image clas-

sification model learns better embeddings compare to detection models, we con-

duct additional experiments by performing k-means clustering using embeddings

extracted from different pre-trained models, and evaluate the cluster quality based

on normalized mutual information (NMI). As shown in Table 6.3, embeddings ex-

tracted from the image classification model achieve better clustering results in terms
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Dataset ROxf RPar
Embeddings mAP P@10 mAP P@10

CNN 40.1 61.3 57.3 96.7
CNN-OE 53.4 76.0 69.7 98.6

Table 6.2: Performance of image retrieval by utilizing object detection model. We
use object detection as a hard attention module for extracting object-level regional
embeddings from convolutional feature maps for image retrieval. Retrieval perfor-
mance in terms of mean average precision (mAP) and precision at ten (p@10) both
shows significant improvement compared to using a single embedding from the whole
image.

Model (Training Set) CUB200 Cars196

Faster-RCNN

COCO

25.5% 21.3%
Faster-RCNN-FPN 26.0% 23.3%

Mask-RCNN 24.7% 20.8%
Mask-RCNN-FPN 29.2% 24.7%

ResNet50 ImageNet 57.6% 39.0%

Faster-RCNN
OpenImagesV4

30.8% 20.4%
ResNet50 55.8% 41.0%

Table 6.3: NMI of embeddings from different models. Similar to the results of image
retrieval, embeddings from the classification model also show superior performance
compared to features from the detection models.

of NMI compared to the detection model and segmentation model. This demon-

strates that embeddings from the classification model are better suited for both

image retrieval as well as unsupervised clustering task.

6.3.2 Can Object Detection Help Image Retrieval?

Even though the embeddings extracted from object detection models are less

discriminative, here we show how localization can be beneficial when conducting im-

age retrieval. Using the same benchmarks, we show that by explicitly utilizing object
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Figure 6.4: Overview of the student-teacher training paradigm. We first train a
teacher classification network to learn discriminative features, and a separate object
detection model for bounding box prediction. Finally, we train a compact student
network to transform the feature map from the detection model to the discriminative
feature space, guided by the teacher model.

bounding boxes predicted by the detection model as a hard attention mechanism,

thereby ignoring background clutter, image retrieval performance can be improved.

Specifically, for each image, we first deploy the object detection model trained on

the OpenImagesV4 dataset to detect up to eight bounding boxes per image. For

each bounding box, object-level embedding is extracted from conv5 3 layer (with

resolution up to 32× 32) of ResNet50 model pre-trained on ImageNet using an ROI

align layer [147]. To compute the similarity between two images, we first aggregate

the convolutional feature map with max-pooling and compute the maximum simi-

larity between pairwise objects embeddings. Table 6.2 shows mAP and precision at

ten (P@10) of image retrieval when using the image embeddings (CNN) and the

object-level embeddings (CNN-OE). CNN-OE achieves better performance across

different datasets, which suggests the detection model can help retrieval by acting

as a hard attention mechanism.
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6.4 Efficient Image Retrieval using Object Embeddings

Section 6.3.2 provides a simple approach toward utilizing object detection for

improving retrieval performance. However, CNN-OE uses two separate models: a

classification model used for generating discriminative feature maps, and a detection

model responsible for the hard attention, resulting in two forward passes during

inference. To be more efficient, we propose to use knowledge distillation [144] to

combine the two models. Figure 6.4 shows the overview of our approach for image

retrieval. During training, we first train a classification teacher model that learns

to generate discriminative features as well as a separate object detection model.

We then train a student network that transforms the feature map from the object

detection model to the teacher model. During test time, the combined model outputs

both the bounding box predictions as well as the discriminative feature maps. ROI

align layer with spatial pooling is used to extract object embeddings from the feature

maps to perform retrieval.

Training student networks. Figure 6.5 illustrates three different types

of student networks. We first consider a simple model compression approach by

training a compact student model to directly mimic the output of the teacher net-

work (cf. Figure 6.5 (a)). Given an input image I, a pre-trained teacher net-

work T :RW×H×3 → R
W
32
×H

32
×C , we construct a student network Sfull:R

W×H×3 →

R
W
32
×H

32
×C with one convolutional layers and four bottleneck layers with skip connec-

tions [37] and parameters θs. We directly minimize the mean squared error between
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Figure 6.5: Three different types of student networks. (a) Compact student network
Sfull that directly takes input images and tries to mimic the output of the teacher
network. This can be considered as a simple model compression approach. (b)
Student network that utilizes the low-level features from the detection model Stop;
it is more compact compared to Sfull, since it reuses the lower layers from the
detection model. (c) Student network with multi-scale guidance Sguided. It takes
both high-level and low-level feature maps from the detection model as guidance to
learn the discriminative features from teacher network.

the output feature maps using gradient decent:

minimizeθs
∑
I

||Sfull(I; θs)− T (I)||2. (6.1)

It is commonly believed that the shallower layers in convolutional neural networks

learn common low-level features such as edges which can be useful for all visual tasks.

Since we already compute these low-level features in the detection model, we can

reuse them for training the student model. The detection model’s backbone network

is represented as (Dl4 ◦Dl3 ◦Dlower)(·), where Dlower:R
W×H×3 → R

W
4
×H

4
×C

8 , denotes

the lower layers in the network; Dl3:R
W
4
×H

4
×C

8 → R
W
8
×H

8
×C

4 , and Dl4:R
W
8
×H

8
×C

4 →

R
W
16
×H

16
×C

2 are the higher layers. We consider a student model Stop:R
W
4
×H

4
×C

8 →

R
W
32
×H

32
×C that only contains the top layers (cf. Figure 6.5 (b)). Reusing the lower

layers from the detection network Dlower:R
W×H×3 → R

W
4
×H

4
×C

8 , the mean squared
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error between the output feature maps is minimized:

minimizeθs
∑
I

||Stop(Dlower(I); θs)− T (I)||2. (6.2)

Lastly, we propose a guided student model Sguided: (R
W
4
×H

4
×C

8 , R
W
8
×H

8
×C

4 , R
W
16
×H

16
×C

2 )→

R
W
32
×H

32
×C that uses multi-scale feature maps from the detection backbone network

as guidance to learn discriminative embeddings (cf. Figure 6.5 (c)), with each layer

Li of Sguided defined as:

yi = Li(yi−1 + gi−1), (6.3)

where Li is a bottleneck layer, yi is the output of layer i, and g1, g2, g3 are the

guidance inputs from the detection backbone network with y0 = g1 and g0 = 0.

Here, we assume the guidance has the same dimension as the layer output of

the student model. For different dimensions, a linear transformation is applied

to map them into the same space. Finally, we minimize the mean squared er-

ror between the output of the student model Sguided and the teacher model T :

minimizeθs
∑
I ||Sguided(g1, g2, g3; θs)− T (I)||2. Student model with multi-scale guid-

ance can utilize both high-level and low-level features learned in the detection model.

As shown in Section 6.5.1, this is essential for learning discriminative features.
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Embeddings FLOPs # Params. ROxf RPar

Faster-RCNN - - 25.4 34.4
Student - Full (Sfull) 1.49× 109 8.02 ×106 32.1 55.2
Student - Top (Stop) 1.13× 109 7.93 ×106 43.3 56.3
Student - Guided (Sguided) 0.82× 109 5.17× 106 50.2 65.2

Teacher (CNN-OE) 3.33× 109 8.54 ×106 53.4 69.7

Table 6.4: FLOPs, number of parameters and mAP for different student models.
The performance of the proposed Sguided achieves better performance while using
fewer FLOPs and model parameters comparing to two other baseline student model.

6.5 Experimental Details

6.5.1 Experiment with Different Student Networks

We use images from the OpenImageV4 dataset to train different student mod-

els. Note that the training of the student model is unsupervised and does not

require any manual annotations. We use Adam [38] optimizer with a learning rate

of 1-e3 and batch size of 64 to train all the student models for 20,000 iterations.

Table 6.4 shows the performance of different student models in terms of mAP. Sfull

achieves the worst performance and it struggles to learn discriminative embeddings.

Stop achieves slightly better performance than Sfull by reusing the low-level feature

maps from the detection model. Utilizing the guidance from multi-scale feature

maps of the detection model, our guided student model Sguided obtains the best

performance. Note that the proposed guided student model actually also requires

the least amount of computation, with only one-fourth of the FLOPs used by the

teacher model while obtaining up to 93.6% of the performance.
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6.5.2 Experiments on Landmark Retrieval

Table 6.5 (top) compares different landmark retrieval approaches with Im-

ageNet pretrained models, including sum pooling of convolutions (CNN-SPoC)

[116], maximum activation of convolutions (CNN-MAC) [153], regional maximum

activation (CNN-R-MAC) [117], and generalized mean pooling (CNN-GeM)

[154] on ROxford5K and RParis6K dataset. For a fair comparison, we employ

the same ResNet50 pre-trained on ImageNet for all the methods. Also, we do not

apply any additional post-processing except PCA whitening. Our approach (CNN-

OE) achieves the best performance among other approaches using the same pre-

trained network; in addition, our approach still maintains competitive results using

the compact student network (CNN-OE-Sguided) described in Section 6.4. Table 6.5

(bottom) compares different state-of-the-art approaches on the same dataset. Note

that state-of-the-art methods utilize different additional training data. For example,

Radenovic [120] utilize training data pairs collected from spatial verification with

local features while Teichmann [140] utilize Google landmark dataset as additional

training data. Here we also utilize the Google landmark dataset to fine-tune our

model and extract object embeddings from the fine-tuned model. Details on the

training process are described in the supplementary material. Our model (CNN-

FT-OE) achieves state-of-the-art performance without any post-processing except

PCA whitening and also achieves competitive performance compared to the model

that uses re-ranking techniques such as spatial verification.
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Method ROxford5K RParis6K
w/ ImageNet pretrained model mAP P@10 mAP P@10

CNN-SPoC [116] 35.7 55.4 53.5 90.3
CNN-MAC [153] 40.1 61.3 57.3 96.7
CNN-R-MAC[117] 49.4 70.4 67.6 98.1
CNN-GeM [154] 45.7 67.2 63.6 96.3
CNN-OE-Sguided (Ours) 50.2 71.2 65.2 98.1

CNN-OE (Ours) 53.4 76.0 69.7 98.6

w/ additional training data mAP P@10 mAP P@10

ResNet101-R-MAC [120] 60.9 78.1 78.9 96.9
ResNet101-GeM [119] 64.7 84.7 77.2 98.1
DELF–D2R-R-ASMK [140] 73.3 90.0 80.7 99.1
DELF–D2R-R-ASMK+SP [140] 76.0 93.4 80.2 99.1
CNN-FT-OE (Ours) 78.7 91.8 83.4 98.3

Table 6.5: Comparison of different approaches on ROxford5K and RParis6K
datasets with or without additional training data. Our approach achieves the best
performance among other baselines even when a compact student model is deployed.
For model with additional training data, our model achieves competitive perfor-
mance even when comparing with the model using a re-ranking method such as
spatial verification.
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6.5.3 Fine-Grained Image Retrieval

Table 6.6 compares the proposed method with state-of-the-art embedding

learning approaches on two fine-grained image datasets, CUB200, and Cars196. We

compare several embedding learning approaches including ProxyNCA [124], An-

gular Loss [126], Margin Loss [125], Hierarchical Triplet Loss (HTL) [127],

and Multi-Similarity Loss Multi-Sim. Note that it is hard to fairly compare dif-

ferent methods as they use different network architecture or embedding dimension.

Nevertheless, we show the precision at one (P@1) of the proposed method to provide

insights into how it compares with the state-of-the-art.

Ablation study. By using object embeddings from ImageNet pretrained

model (CNN-OE), we can achieve 61.02% precision on CUB200, which is already

quite competitive with the state-of-the-art embedding learning approach. To ensure

that performance gain does not just come from using more descriptors for one im-

age, we also provide a baseline approach that randomly samples the same number of

bounding boxes from the images to extract embeddings (CNN-RandomBoxes).

Results show that CNN-RandomBoxes performs worse than CNN-OE, which demon-

strates the importance of utilizing object detector as a hard attention mechanism.

For a fair comparison, we note that the SOTA methods have all been trained on the

training sets of CUB200 and Cars196, while CNN-OE is simply using the weights of

the ImageNet classification model. For this reason, we also fine-tune the classifica-

tion model with the training set corresponding to each benchmark (CNN-FT-OE)

using the same training process as the experiment on landmark retrieval and us-
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Method Network Dimension
CUB200 Cars196

mAP P@1 mAP P@1

ProxyNCA [124] Inception BN [155] 64 - 49.2 - 73.2
Angular Loss[126] GoogLeNet [156] 512 - 54.7 - 71.4
Margin Loss [125] ResNet50 [37] 128 - 63.6 - 79.6
HTL [127] Inception BN [155] 512 - 57.1 - 81.4
Multi-Sim [157] Inception BN [155] 512 - 65.7 - 84.1

CNN-OE

ResNet50 [37]

2048 23.8 61.0 12.1 61.9
CNN-RandomBoxes 2048 21.8 58.1 10.0 53.3
CNN-OE + PCA 512 22.6 58.0 10.0 54.4
CNN-FT + PCA 512 31.2 62.0 26.0 82.3
CNN-FT-OE + PCA 512 32.0 66.5 28.8 84.3

Table 6.6: Comparison with state-of-the-art approaches on CUB200 and Cars196.
Object embeddings from ImageNet pre-trained model (CNN-OE) obtain competi-
tive results on CUB200. By fine-tuning on the training set corresponding to each
benchmark (CNN-FT-OE), we can achieve state-of-the-art retrieval performance.

Method
COCO-Fake PIR
mAP P@10 mAP P@10

CNN-SPoC [116] 32.3 34.3 40.8 61.7
CNN-MAC [153] 32.8 34.8 46.9 68.1
CNN-R-MAC[117] 40.9 42.5 44.2 65.7
CNN-GeM [154] 41.3 43.7 44.4 65.5
CNN-OE (Ours) 82.1 82.9 54.1 75.0

Table 6.7: Performance on PhotoShop Image Retrieval (PIR) dataset. Our approach
is especially suitable for retrieving tampered images with spliced objects.

ing PCA to reduce the dimension of the embeddings to 512. With fine-tuning, our

approach (CNN-FT-OE + PCA) can achieve the state-of-the-art performance of

66.48% on CUB200 and 84.27% on Cars196.

6.5.4 Near-Duplicate Object Retrieval

One interesting capability of our proposed approach is in retrieving near-

duplicate objects in images. Having demonstrated that our approach works well

in image retrieval, the same rationale that object regions help avoid the influence
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Query CNN-GeM (Rank1) CNN-OE (Rank1) Query CNN-GeM (Rank1) CNN-OE (Rank1)

Figure 6.6: Example images and rank one results in the COCO-Fake dataset. First
and the fourth column shows query tampered images, second and fifth column show
rank-1 result from CNN-GeM; third and sixth shows rank-1 result from CNN-OE.
The red border indicates incorrect matches and the yellow bounding box shows the
matching objects. The faces are masked for privacy reason.

of background clutter should also apply. This capability has an important applica-

tion in detecting tampered images that contain spliced objects [50], where a given

image can be queried against a repository of images to detect near-duplicate object

associations. Due to the proliferation of social media platforms, such application is

becoming increasingly important, where it has been shown that there is a strong

correlation between tampered images and the spread of misinformation.

To demonstrate the effectiveness of our approach for near-duplicate object

retrieval, we conduct experiments on two different benchmarks. (1) COCO-Fake:

we use the method described in [? ] to generate 58 synthesized images with spliced

objects as query images, and use images from COCO as database. We did not

include any background images corresponding to the queries as our goal is to test

on the ability to retrieve the donor images, from which the spliced objects originated.

(2) Photoshop Image Retrieval dataset (PIR). The images are collected from the

117



publicly available PS-Battles dataset [158] by selecting 3,278 original images as

queries and 60,550 tampered images as the database. Each query has at least ten

tampered versions in the database.

Table 6.7 shows retrieval results compared to different image retrieval meth-

ods. Our approach achieves better performance on both benchmarks because it

can retrieve small spliced objects as a result of the hard attention provided by the

detection model. Figure 6.6 shows some examples of the retrieval result. The first

and the fourth columns are the query images; second and fifth columns show rank-1

retrieved results by CNN-MAC. CNN-MAC retrieves images with similar scenes but

fails to retrieve tampered images that contain the spliced objects from the query

image. The third and sixth columns show the rank-1 results retrieved by CNN-OE.

6.6 Conclusion

We provided analysis of embeddings learned from different models and demon-

strated that embeddings learned from detection models are less discriminative than

their classification counterparts. Based on our analysis, we proposed an approach

that uses detection as a source of hard attention to improving retrieval perfor-

mance. Our results showed that the proposed approach achieves state-of-the-art

performance on different retrieval benchmarks. For applications with efficiency re-

quirements, we have also introduced a student-teacher training regime that only

needs a single forward pass during inference. Lastly, we show how our approach can

be applied to near-duplicate object retrieval.
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Chapter 7: Conclusion and Future Research Direction

In this dissertation, we mainly focus on image-geo localization and its applica-

tion to media forensics. We first describe an application system that utilizes image

geo-localization in Chapter 2. In Chapter 3 and Chapter 4, we then describe how

such a system can be vulnerable under metadata tampering attack, and address-

ing the metadata tampering detection problem. In Chapter 5, we further develop

an algorithm that can generate additional training data to improve the tampering

detection algorithm. Finally, in Chapter 6, we describe an alternative approach,

object provenance, that can be useful for search tampering images from a large-

scale database. Image tampering detection is a challenging problem and we are far

from solving it, especially when the tampering technique is rapidly advance along

with detection algorithms. For example, recent advances in generative adversarial

networks can generate realistic images with small computational effort compared to

the traditional computer graphic approach. One particularly interesting approach

describe in Chapter 6, provenance search, shows promising direction for tampering

detection, however, there are many questions we also need to address when this ap-

proach is used for large-scale application, such as how are we generate a provenance

database, how we do efficient search, and how to improve the recall and precision of
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the search. Finally, it worth note that another orthogonal direction is to generalize

these approaches to video as video becomes more and more important in our daily

digital life.
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and Matti Pietikäinen. Deep learning for generic object detection: A survey.
arXiv preprint arXiv:1809.02165, 2018.

[140] Marvin Teichmann, Andre Araujo, Menglong Zhu, and Jack Sim. Detect-
to-retrieve: Efficient regional aggregation for image search. arXiv preprint
arXiv:1812.01584, 2018.

[141] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson,
Stephen Gould, and Lei Zhang. Bottom-up and top-down attention for im-
age captioning and visual question answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6077–6086,
2018.
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