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a b s t r a c t 

We propose a new method of constructing questionnaire forms in the three-form planned missing data design 

(PMDD). The random item allocation (RIA) procedure that we propose promises to dramatically simplify the 

process of implementing three-form PMDDs without compromising statistical performance. Our method is a 

stochastic approximation to the currently recommended approach of deterministically spreading a scale’s items 

across the X-, A-, B-, and C-blocks when allocating the items in a three-form design. Direct empirical support 

for the performance of our method is only available for scales containing at least 12 items, so we also propose a 

modified approach for use with scales containing fewer than 12 items. We also discuss the limitations of our 

procedure and several nuances for researchers to consider when implementing three-form PMDDs using our 

method. 

● The RIA procedure allows researchers to implement statistically sound three-form planned missing data 

designs without the need for expert knowledge or results from prior statistical modeling. 

● The RIA procedure can be used to construct both “paper-and-pencil” questionnaires and questionnaires 

administered through online survey software. 

● The RIA procedure is a simple framework to aid in designing three-form PMDDs; implementing the RIA 

method does not require any specialized software or technical expertise. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

a r t i c l e i n f o 

Method name: Random Item Allocation for Three-Form Planned Missing Data Designs 

Keywords: Planned missing data, Survey design, Matrix sampling, Questionnaires 

Article history: Received 1 April 2020; Accepted 22 May 2020; Available online 28 May 2020 

DOI of original article: 10.1016/j.psychsport.2020.101701 
∗ Corresponding author. 

E-mail addresses: k.m.lang@tilburguniversity.edu (K.M. Lang), WhitneyMoore@wayne.edu (E. Whitney G. Moore). 

https://doi.org/10.1016/j.mex.2020.100941 

2215-0161/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.mex.2020.100941
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2020.100941&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.psychsport.2020.101701
mailto:k.m.lang@tilburguniversity.edu
mailto:WhitneyMoore@wayne.edu
https://doi.org/10.1016/j.mex.2020.100941
http://creativecommons.org/licenses/by/4.0/


2 K.M. Lang, E. Whitney G. Moore and E.M. Grandfield / MethodsX 7 (2020) 100941 

Specifications Table 

Subject Area: Psychology 

More specific subject area: Psychological Research Methods 

Method name: Random Item Allocation for Three-Form Planned Missing Data Designs 

Name and reference of original method Three-Form Planned Missing Data Design 

Graham, J. W., Hofer, S. M., & MacKinnon, D. P. [4] . Maximizing the usefulness 

of data obtained with planned missing value patterns: An application of 

maximum likelihood procedures. Multivariate Behavioral Research, 31 , 197 – 218. 

Resource availability: NA 

Method details 

This article is a companion to Moore et al. [17] and serves two purposes. In the first part of 

this article, we discuss a novel implementation of the three-form planned missing data design—the 

random item allocation (RIA) approach—that was shown to perform well in Moore et al. [17] . The 

RIA approach promises to substantially simplify the process of implementing planned missing data 

designs, in practice. In the second part, we provide additional details of the methodology of the 

resampling study reported in Moore et al. [17] . 

Before proceeding, we provide a brief overview of planned missing data designs (PMDDs) to 

contextualize the following content. PMDDs are a type of matrix sampling approach wherein 

researchers intentionally administer incomplete questionnaires to participants. Each participant sees 

only a subset of the full set of items in the researcher’s study. The items that participants do not 

see become missing values in the final dataset. These missing data are missing completely at random 

(MCAR) since the researcher defined the missing data patterns a priori (i.e., without consideration for 

any of the variables in the analysis) and randomly assigned participants to the missing data patterns. 

Consequently, the planned missing data introduced by a PMDD are easily treated with principled 

missing data methods like multiple imputation or full information maximum likelihood. 

The most common type of PMDD, the three-form design, entails splitting the questionnaire items 

into four blocks: an X-Block containing items each participant will see and A-, B-, and C-Blocks that 

contain items only two thirds of the participants will see. After allocating the items to blocks, the 

researcher creates three questionnaire forms by combining the X-Block items with the items from 

two of the A-, B-, or C-Blocks. Therefore, in terms of the blocks they comprise, the final set of 

questionnaires is XAB, XAC, and XBC. For more details on PMDDs, we refer interested readers to 

Graham [3] ; Graham, Hofer, and MacKinnon [4] ; Graham, Taylor, Olchowski, and Cumsille [5] ; or Little 

and Rhemtulla [11] . 

PMDD item allocation procedures 

When researchers implement a PMDD, one of the more difficult decisions they must make 

is how to allocate items across blocks. This problem has two facets: (1) how to distribute the 

items between the A-, B-, and C-Blocks, and (2) which items to include in the X-Block. Previous 

research has suggested that the items within (sub)scales should be divided among the A-, B-, and 

C-Blocks to maximize covariance coverage between scales [ 4 , 7 ]. The results presented by Moore et 

al. [17] corroborate the performance of this approach (hereafter the “between-block” assignment 

method). The natural alternative to the between-block assignment method would be to allocate all 

the items of a (sub)scale to either the A-, B-, or C-Block. This approach (hereafter the “within-block”

assignment method) should not be used when modeling associations among variables because it 

reduces covariance coverage [7] . 

Current recommendations suggest that including scale items in the X-Block (in addition to 

demographic variables) leads to better performance [5] , and the results of Moore et al. [17] , again, 

agree. In terms of how to choose the scale items to include in the X-Block, however, current best 

practice suggests allocating items based on expert knowledge, expected statistical effect sizes, and/or 

the results of previous modeling [ 5 , 11 ]. 
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Fig. 1. Flowchart describing the logic of the RIA procedure. Note: P = Number of scale items to distribute. 

The results of Moore et al. [17] suggest a much simpler solution, however. Randomly assigning 

items to the X-, A-, B-, and C-Blocks does not appear to produce any deleterious effects—at least 

when the number of items in each scale is reasonably large (i.e., 12 or more items). Moore et al. 

[17] showed that: 

1. Randomly allocating the scale items to the A-, B-, and C-Blocks (without accounting for scale 

membership) performed just as well as explicitly splitting the items between blocks. 

2. Assigning a random subset of the scale items to the X-Block (without accounting for scale 

membership) performed as well as (or slightly better than) theoretically informed X-Block 

assignment. 

Taken together, these two findings imply that researchers can construct an optimal three-form 

PMDD by simply deciding how many scale items they wish to include in the X-, A-, B-, and C- 

Blocks and randomly allocating the scale items to satisfy the desired counts (while assigning all 

demographics to the X-Block). We call this approach the “random item allocation” (RIA) procedure. 

Fig. 1 shows a schematic representation of the workflow for distributing scale items among the X-, 

A-, B-, and C-Blocks using RIA. 
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In lieu of the three steps shown in Fig. 1 , current recommendations dictate first assigning scale 

items to the X-Block using expert knowledge and/or the results of prior statistical modeling, and then 

allocating the remaining scale items across the A-, B-, and C-Blocks so that items from the same 

scale are spread across blocks [ 7 , 11 ]. The RIA procedure does not require expert knowledge, previous 

results, or explicitly balanced assignment, so RIA substantially simplifies the process of creating and 

implementing PMDDs. 

Implementation details 

Although the RIA procedure appears to work well based on the findings of Moore et al. [17] , 

researchers considering a PMDD should be mindful of certain nuances in the way PMDDs must be 

implemented with RIA. First, we recommend choosing the number of scale items assigned to the 

X-Block, P X , so that the remaining number of items, P – P X , is evenly divisible by three (for the 

three-form design). Doing so will ensure that the length of each final questionnaire form is equal. 

Second, although the RIA procedure involves randomly allocating scale items to the X-Block, the X- 

Block should not necessarily contain only these randomly assigned scale items. Variables in the A-, 

B-, and C-Blocks will be partially missing in the final dataset, so any items for which missing data is 

especially undesirable should go into the X-block. A few common examples of such items include: 

1. Demographic variables. 

2. Important covariates. 

3. Auxiliary variables (i.e., covariates that are used for missing data treatment). 

4. Any items for which missing data will be especially difficult to address (e.g., outcomes with unusual 

distributions). 

Additionally, it may be worth including any important individual items (e.g., important, univariate 

predictors or outcomes) in the X-Block. PMDDs work best when they can use strong within-scale 

associations to support missing data treatment (hence the preference for between-block assignment), 

and univariate items clearly cannot leverage within-scale associations. 

Caveats, limitations, & extensions 

The RIA procedure entails randomly assigning items to blocks, but not every method of randomly 

allocating items to blocks constitutes an implementation of what we are calling RIA. Many web-based 

survey programs (e.g., Qualtrics) will generate a novel questionnaire for each participant by randomly 

sampling from a pool of items. This “on-the-fly” approach to item allocation has been suggested 

in the literature (e.g., [11] ), but we are not aware of any empirical evaluation of its performance. 

Furthermore, the results of Moore et al. [17] do not directly apply to “on-the-fly” item randomization 

because the RIA procedure we implemented in this study represents a different type of randomization. 

For each replication in our study, we generated a new set of (three) questionnaire forms via RIA, 

but every hypothetical “participant” in our study saw only one of those three forms. The situation 

modeled in our study, therefore, is one wherein a researcher generates a fixed set of three forms via 

the RIA procedure and does not update the structure/contents of those forms during data collection 

(either manually or via the sampling software). The “on-the-fly” item randomization approach is 

a logical extension of the procedure tested in our study, not an equivalent alternative. Increased 

computational complexity of the resulting missing data problem is one potential drawback of the “on- 

the-fly” approach. Randomly generating a, potentially unique, questionnaire form for each participant 

will increase the number of missing data patterns relative to the three-form design we explore in this 

study. Although “on-the-fly” randomization will generally produce more missing data patterns, these 

missing data will still be easily treated MCAR, so we conjecture that the “on-the-fly” approach would 

perform well, in practice. The veracity of this conjecture is currently under investigation, however, so 

the results of Moore et al. [17] should not be taken as direct empirical support for “on-the-fly” item 

randomization. 

The RIA procedure is not always an appropriate tool for implementing PMDDs. In certain 

circumstances, the between-block allocation method is a better way to distribute items to the A-, 
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B-, and C-Blocks. RIA should only be applied to scales that have a relatively large number of items 

(the number of items required is discussed below). When it comes to allocating items to the A-, B-, 

and C-Blocks, RIA is a stochastic approximation to the between-block assignment method—RIA works 

because it tends to split a scale’s items across blocks. When applied to scales with few items, the 

RIA approach will tend to generate solutions wherein some blocks have no items from a given scale 

while other blocks contain multiple items from the same scale—i.e., solutions that (partially) resemble 

those produced by the within-block assignment method. In these situations, directly implementing 

the between-block assignment method is probably the best option. The best approach for a scale 

comprising only four items, for example, would be to split the four items evenly between the X-, A-, 

B-, and C-Blocks (i.e., assign one item to each block). Similarly, a scale with fewer than four items 

should have one item included in the X-Block and the remaining items deterministically distributed 

between as many of the A-, B-, and C-Blocks as possible. With three items, for example, one item 

should go into the X-Block, and then one item could go into the A-block and one into the B-Block. 

The C-Block would not get any items, in this case. 

Hybrid RIA 

The scales analyzed in Moore et al. [17] contained 13, 13, and 14 items respectively, so the findings 

suggest that the RIA procedure works well for scales with 13 or more items. That being said, a scale 

with 12 items would, on average, contribute three items to each block, and a 13th item does not 

dramatically change the expected item allocation. Therefore, we believe it is reasonable to extrapolate 

the good performance of the RIA procedure to scales containing 12 or more items. Because the results 

of Moore et al. [17] do not directly support the use of RIA for scales with fewer than 12 items, 

we suggest a hybrid approach. For scales that comprise 5 to 11 items, one could use conditional 

randomization with the requirement that each block must contain at least one item from each scale. 

Fig. 2 illustrates the workflow for implementing such a hybrid RIA for a scale with few (e.g., less 

than 12) items. We have not directly evaluated the performance of this hybrid procedure, but we 

have good reason to expect this approach to perform well. Namely, the hybrid approach combines 

two item allocations procedures—RIA and between-block assignment—that do have direct empirical 

support. To implement a PMDD using (hybrid) RIA, we suggest the following procedure: 

1. Assign demographics, covariates, auxiliary variables, and other important (or problematic) univariate 

items to the X-Block (as discussed above). 

2. Classify the scales into two groups: 

a. Small Scales (e.g., fewer than 12 items) 

b. Large Scales (e.g., 12 or more items) 

3. Pool the items from all large scales and make X-, A-, B-, and C-Blocks by following the RIA logic 

outlined in Fig. 1 . 

4. For any small scales, make X-, A-, B-, and C-Blocks by following the hybrid RIA logic outlined in 

Fig. 2 . 

5. The final X-, A-, B-, and C-Blocks are the union of the X-, A-, B-, and C-Blocks created in Steps 3 

and 4. 

6. Combine the final X-, A-, B-, and C-Blocks into the three questionnaire forms (i.e., XAB, XAC, XBC). 

Any univariate items that are not important enough to include in the X-Block can be randomly 

allocated among the A-, B-, and C-Blocks. This procedure is represented graphically in the visual 

abstract for this paper. 

Practically speaking, researchers can implement the random assignment described above by using 

a random number generator like those available in Excel, SPSS, SAS, or R (as well as numerous other 

sources, including mobile and web-based applications). The procedure outlined above will produce 

a one-time random assignment of items to the X-, A-, B-, and C-Blocks. These blocks can then be 

combined into three printed questionnaire forms (i.e., XAB, XAC, and XBC). Alternatively, researchers 

can define the blocks in online survey software and set the sampling routine to randomly present two 

of the A-, B-, and C-Blocks to each study participant after they complete the X-block. Either approach 
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Fig. 2. Flowchart describing the logic of the hybrid RIA procedure as applied to a single scale. Note: P = Number of items in 

the scale. 

will result in randomly presenting one of the three questionnaire forms to each participant. The “on- 

the-fly” approach, on the other hand, could potentially present a different combination of items to 

each participant. 

When applying the basic RIA procedure, there is a possibility that some scales may not have 

any items assigned to the X-block. The risk of this issue is greater for smaller scales. The hybrid 

RIA procedure avoids this possibility, so it may be desirable to apply the hybrid RIA procedure even 

when the number of scale items is sufficient to justify basic RIA (i.e., 12 or more). Hybrid RIA is not 

without its limitations, however. Implementing hybrid RIA is more complicated than implementing 

basic RIA. So, using hybrid RIA, in lieu of basic RIA, entails more effort and increases the chances for 

implementation errors. Researchers interested in a pragmatic alternative to hybrid RIA that avoids the 

above issues could simply apply basic RIA and check the resulting X-block allocation. If any scales are 

not represented in the X-block, the researcher can rerun the basic RIA procedure until an acceptable 

X-block is generated. 
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Extended methods of the resampling study 

In this section, we provide additional methodological details of the resampling study reported 

in Moore et al. [17] . We conducted this resampling study to evaluate the performance of different 

instantiations of the three-form PMDD in an ecologically valid fashion. The original data from which 

we sampled (hereafter, the “population data”) were collected by Moore and Fry [15] to study the 

effects of motivational climate perceptions on exercise participants’ class ownership and enjoyment. 

We excluded cases from the population data that met either of the following criteria: (1) had a 

missing race value or (2) endorsed a race category that represented less than 1% of the sample size. 

We implemented these exclusion criteria for four reasons: 

1. Imputing/analyzing nominal variables was not the focus of our study. 

2. Nominal variables are notoriously difficult to impute [9] . 

3. Sparse categorical variables often cause estimation problems [1] 

4. Nominal variable imputation tends to be very slow, so retaining missing race values would 

substantially extend the computation time of our study without adding any scientific benefit. 

The resulting population data contained N = 5244 participants of which 98.5% self-identified as 

female (0.65% missing) and 90.2% self-identified as white. The average observed participant age was 

49.27 years (SD = 11.09, 1.47% missing). All variables except race had a small amount of missing data. 

The variable-wise percentages of missing data ranged from 0.04% to 1.47%. For further details of the 

population data collection and characteristics see Moore and Fry [15] . 

Variables 

In the population data for this study, we included three of the original five constructs collected by 

Moore and Fry [15] . Specifically, 13 items assessing ego-involving climate and 14 items assessing task- 

involving climate from the Perceived Motivational Climate in Exercise Questionnaire (PMCEQ; [6] ), and 

13 items from the Caring Climate Scale (CCS; [19] ). For more information about the PMCEQ or CCS, 

see Moore et al. [17] or Moore and Fry [15] . We also included indicators of participant age, biological 

sex, and race. 

Resampling 

For each replication of the resampling study, we drew a random sample (with replacement) of 

size N = 500 from the population data described above. Rather than draw new samples for the N ∈ 

{40 0, 30 0, 20 0, 10 0} conditions, we recursively “trimmed” observations from the original sample of 

N = 500. For the results reported in Moore et al. [17] , we retained all extant missing data during the 

resampling processes. When we ran the study using only complete cases as the population data, the 

results were essentially equivalent to those derived from the incomplete population data. 

Imposing planned missing data 

Within each resampled (or trimmed) dataset, we imposed planned missing data according to nine 

different instantiations of the three-form design. These versions differed in terms of two crossed 

factors: the composition of the X-Block and the way in which we assigned items to the A-, B-, and 

C-Blocks. The X-Block factor had three levels: 

1. A trivial X-Block that contained only sex, age, and race. 

2. An informed X-Block that contained the demographic variables listed in (1) and items chosen with 

guidance from previous CFA models [ 6 , 14 ]. 

3. A random X-Block that contained the demographic variables listed in (1) and randomly selected 

scale items. 

See Moore [13] and Moore and Fry [16] for more information regarding the development of the 

informed X-Block and the parceling scheme. 

The Parcel factor also contained three levels: 
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1. A within-block condition wherein we assigned all items of each parcel to either the A-, B-, or C- 

Block. 

2. A between-block condition wherein we distributed the items of each parcel across the A-, B-, and 

C-Blocks. 

3. A random-allotment condition wherein we randomized the assignment of items to the A-, B-, and 

C-Blocks. 

In the random X-Block and the random parcel conditions, we generated a new random assignment 

for every replication of the resampling study. The combination of the random X-Block and random- 

allotment methods constitutes the RIA approach discussed in the first part of this article. 

Analysis model 

The analysis model from which we derived the parameter estimates used to evaluate the different 

versions of PMDD was a confirmatory factor analysis (CFA) with standardized latent variables 

(i.e., the measurement scale was set with the so-called “fixed factor” method of identification). 

The latent correlation structure was fully saturated, and all item intercepts, factor loadings, and 

residual variances were freely estimated. Each latent factor loaded onto three parceled indicators. 

We calculated the parcel scores after imputing the data (i.e., a unique set of parcels was computed 

from each of the M = 100 imputed datasets). To evaluate the relative performance of the different 

PMDDs, we considered the effects on latent correlations, factor loadings, item intercepts, and residual 

variances. 

Outcome measures 

To evaluate the relative performance of the different im plementations of PMDD, we compared 

latent reliabilities as well as biases and efficiencies of the parameter estimates noted above. 

Latent reliability 

Following Bollen [2] and Raykov [21] , we define latent reliability as: 

ρ
(
Y j 

)
= 

(
I ∑ 

i =1 

λi j 

)2 

ψ j j (
I ∑ 

i =1 

λi j 

)2 

ψ j j + 

I ∑ 

i =1 

θii 

where Y j is the scale score (i.e., sum of the observed items) for the j th scale, λij is the factor loading 

linking the i th indicator to the j th latent construct, ψ jj is the latent variance for the j th construct, 

and θ ii is the residual variance for the i th indicator. Latent reliability, similar to Cronbach’s alpha 

coefficient, can be viewed as the squared correlation between an observed scale score (i.e., the sum 

of the item scores) and that scale’s true score [ 2 , 21 ]. Unlike Cronbach’s alpha, however, the quantities 

that go into computing latent reliability are derived from a latent variable model, so they are not 

contaminated by measurement error. As with Cronbach’s alpha, ρ( Y ) is bounded by 0.0 and 1.0 (higher 

values indicate greater reliability). 

Relative efficiency (RE) 

We calculated the RE of each estimated parameter (i.e., latent correlations, factor loadings, item 

intercepts, and residual variances). RE is defined as: 

RE = R −1 
R ∑ 

r=1 

SE (θ ) r 

SE ( ̂  θ ) r 

where SE ( θ ) r is the standard error for the parameter in the complete data control condition (i.e., 

the condition wherein we did not impose any planned missing data), SE ( ̂  θ ) r is the standard error 
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for the parameter in the planned missing condition, and r = 1, 2, …, R indexes replication of the 

resampling study. In our study, RE quantifies the loss of efficiency (i.e., the increase in sampling 

variability) introduced by the planned missing data (relative to data with only naturally occurring 

missing data). A value of RE = 1.0 would indicate no loss of efficiency; whereas a value of RE < 1.0 

indicates some loss of efficiency (smaller values indicate greater losses). 

Percent relative bias (PRB) 

We also calculated the PRB for each estimated parameter and latent reliability. PRB is defined as: 

P RB = 100 

( 

ˆ θ − θ

θ

) 

where ˆ θ = R −1 
∑ R 

r=1 
ˆ θr is the average of the estimated parameters and θ is the true value of the 

parameter. In this study, we took the averages of the complete data parameter estimates (i.e., those 

estimates derived from data with no planned missing) as the “true” parameter values. PRB gives 

a measure of bias (i.e., the expected difference between the estimated and true parameters) as a 

percentage of the true parameter value. Absolute values of PRB larger than 10 are often viewed as 

indicative of “unacceptable” levels of bias [18] . 

Convergence failures 

In addition to evaluating bias and efficiency, we also tracked four types of convergence failure: 

1. Complete failures of an entire study replication (i.e., runs wherein the program crashed for an 

indeterminate reason). 

2. Failures of the imputation process (i.e., fatal errors returned by the program when imputing the 

missing data). 

3. Non-convergent CFA models (i.e., runs wherein either the program crashed when estimating the CFA 

models or the maximum likelihood estimator of the CFA models did not converge). 

4. CFA models that converged to inadmissible solutions (i.e., Heywood cases) 

Software & computing environment 

We conducted all analyses using the R statistical programming language [20] . To treat the missing 

data (both planned and un-planned), we used the mice package [27] to generate 100 imputed datasets 

using 20 iterations of the chained equations algorithm. Before running the full resampling study, we 

conducted a small number of test runs wherein we checked the convergence of the imputation models 

by examining trace plots of the imputed values’ means and standard deviations. We used predictive 

mean matching [ 10 , 23 ] as the elementary imputation method because it tends to perform well with 

non-normally distributed, quasi-continuous items such as those in our data [26] . 

We estimated the CFA models using ordinary maximum likelihood estimation in the lavaan 

package [22] . We pooled the multiply imputed parameter estimates using the Rubin [24] pooling rules 

as implemented in the mitools package [12] . The online supplementary material includes the R scripts 

used for this study. 

The resampling study was run in parallel on the Lisa high performance computing cluster ( https: 

//www.surf.nl/en/lisa- compute- cluster- extra- processing- power- for- research ) that is administered by 

SURFsara ( https://www.surf.nl/en ). We used the routines in the parallel [20] package to parallelize the 

computations of our study across nodes of the Lisa cluster. We used the message passing interface 

(MPI) protocol provided by the parallel package to implement the parallelization. All pseudorandom 

numbers were generated with the L’ecuyer, Simard, Chen, and Kelton [8] method as implemented in 

the rlecuyer package [25] . 

https://www.surf.nl/en/lisa-compute-cluster-extra-processing-power-for-research
https://www.surf.nl/en
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Procedure 

Our final design comprised 3( X-Block ) × 3( Parcel ) × 5( Sample Size ) = 45 fully crossed conditions. 

Within each condition, we ran R = 495 replications. As noted above, each replication began by 

randomly sampling N = 500 observations from the population data. To generate samples with N < 

500, we “trimmed down” the current working dataset by removing 100 observations. We repeated 

this process, recursively, to create samples with N ∈ {40 0, 30 0, 20 0, 10 0}. At each level of N —before 

imposing the planned missing data—we fit the analysis model to the full data and saved the parameter 

estimates for the complete data control condition that would define the “true” population values (as 

described above). 

Supplementary material and/or Additional information 

A ZIP archive containing the R scripts used to conduct this resampling study is available as online 

supplementary material. 
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