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Abstract: One of the challenges for chemical processes today, from a safety and profit standpoint,
is the potential that cyberattacks could be performed on components of process control systems.
Safety issues could be catastrophic; however, because the nonlinear systems definition of a cyberattack
has similarities to a nonlinear systems definition of faults, many processes have already been
instrumented to handle various problematic input conditions. Also challenging is the question
of how to design a system that is resilient to attacks attempting to impact the production volumes or
profits of a company. In this work, we explore a process/equipment design framework for handling
safety issues in the presence of cyberattacks (in the spirit of traditional HAZOP thinking), and present
a method for bounding the profit/production loss which might be experienced by a plant under
a cyberattack through the use of a sufficiently conservative operating strategy combined with the
assumption that an attack detection method with characterizable time to detection is available.

Keywords: process control; process design; cybersecurity; process operational safety; nonlinear
dynamic systems

1. Introduction

Cybersecurity is becoming an issue of significant importance in the control systems literature [1–3].
While cybersecurity has received focus in various applications, such as the power grid [4,5], it has
only recently begun to receive focus in the chemical engineering/chemical process control literature.
Cyberattack-resilience was examined in several contexts for various types of control systems, including
in cases where specific attack types are in view (e.g., denial-of-service attacks [6]) or in cases
where an appropriate definition of resilience is sought [7], and using techniques such as state
estimation [8]. More generally in the cybersecurity literature, game theory (e.g., [6]) and Markov
decision processes (e.g., [9]) have been used (e.g., in modeling attack-defender interactions as part
of securing control systems against attacks, or without specific control implications but for network
security). Reference [10] (again without control focus) used Markov decision processes to trade
off between making a system able to recover from attacks and to prevent them from succeeding.
For chemical processes, early work studying control system cybersecurity involving a simple chemical
process was performed by Cárdenas et al. [11]. Recently, several works have begun to probe the
cybersecurity issue for chemical processes in greater depth. For example, our recent work [12] explored
several different model predictive control (MPC) designs with respect to whether they are resilient to
cyberattacks in which it was assumed that the attack involved false state measurement information
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being provided to the MPC’s at each sampling time. Reference [13] explored a neural network-based
cyberattack detection mechanism for nonlinear (including chemical) processes. Reference [14] used a
dynamic watermarking scheme for control system attack detection.

For chemical processes, it would be expected that attacks may be geared toward targeting safety
or production volumes/profitability. Many safety issues which could be brought on by cyberattacks
in the process industries could be considered (e.g., if a runaway reaction was to be blocked from
being protected against via the control system by an attacker). In addition, profitability attacks
might involve, for example, an attack intended to set off a safety system to spoil the quality of
production to ruin material being produced or even potentially cause shortages of needed materials.
Though techniques for completely isolating control or safety systems from any others could be tried
to prevent attacks, industry has interest in new developments in networking/communication and
computing (e.g., wireless sensors [15–17], the Internet of Things [18,19], and Cloud computing [20])
for the potential that these applications have for ushering in even greater efficiency. Some new
developments will not be best used with conservative information technology best practices for
cybersecurity (for example, air gapping business and industrial control networks can limit the ability to
use the Industrial Internet of Things to its fullest capacity [21]), and we can expect to see further
developments for manufacturing in the future that could not be used without modifications to
current paradigms in securing computing and communication networks that will continue to make
cyberattack-resilience of control systems a critical industrial concern.

This work explores how knowledge of the allowable set of initial conditions for the process state
and knowledge of the input bounds can be used in designing process equipment and controllers that
are cyberattack-resilient under certain assumptions, providing explicit links between process and
control design with a cybersecurity angle. Specifically, we consider the benefits of a control design
known as Lyapunov-based economic model predictive control (LEMPC) [22], an optimization-based
controller for which a distinguishing feature is its ability to maintain the closed-loop state in a
bounded operating region even in the presence of sufficiently small disturbances, for promoting
cyberattack-resilience. The property of LEMPC that will receive focus in this context is the bounded
operating region, termed the “stability region,” in which the LEMPC is guaranteed to maintain the
closed-loop state. This region serves as a set of allowable initial conditions from which the process
should be initialized under the controller, and it aids in allowing the worst-case scenarios under both
safety-based cyberattacks and profit-based attacks to be characterized to aid in developing physical
systems and control laws with the ability to withstand attacks.

For the safety discussion, the stability region will play a key role in an initial framework to be
suggested for making a system cyberattack-resilient. To develop the framework, we will use several
process examples, controlled both with and without LEMPC, to illustrate the fundamental nature of
control system cybersecurity and its relationship to process design. We will conclude our discussion
of control system cybersecurity and process safety with a process example under LEMPC that will
showcase the potential benefits of considering worst-case operating conditions to design against
(through the equipment and safety systems) if the initial condition is contained within the stability
region. Throughout this discussion, the relationship between cybersecurity design procedures and
those traditionally used to mitigate consequences from actuator faults will be highlighted, which will
indicate that LEMPC may also provide an interesting framework for integrating process safety and
control development through the equipment/safety system designs and the stability region in general.
Specifically, the chemical process industries have historically taken a conservative design approach that
may help to prevent many potential “successful” cyberattacks on current systems (in the sense that they
are able to manipulate process inputs) from causing safety issues. For example, many processes where
failure of a cooling input could lead to a runaway reaction were given backup safety mechanisms that
take over when such a problem occurs, such as safety relief valves [23]. A traditional procedure which
process designs undergo is known as a hazard and operability (or HAZOP) analysis [24], in which
each part of the process is examined in great detail for the potential failure modes, and thereafter
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instrumented to prevent failures from causing safety problems. If a cyberattack were to be equivalent to
one of the failure modes (e.g., if it involved an attacker moving a valve to a fixed position unassociated
with the controller’s computed control action), but the designers had already considered that as a
potential fault, the system may already contain protections against such safety issues. The fault-tolerant
control framework proposed in [25] attempts to make a process safe in the presence of faults via a
conservative design strategy; a similar concept is used here to discuss cyberattack-resilience from a
design perspective.

In the second half of the work, we again note the benefits of the stability region and LEMPC for
cyberattack-resilient control, but in that case for resilience against profit-based attacks (in the sense that
the worst-case profit losses under an attack could be characterized with help from the knowledge of the
allowable initial conditions in the stability region, the input bounds, and an assumption that an attack
detection mechanism which can detect attacks within a known timeframe is available). Specifically,
through the use of input rate of change constraints [26] and a conservative operating region, conditions
required to guarantee boundedness of the closed-loop state within the stability region for a known
timeframe even in the presence of an attack are developed.

This paper is organized as follows: Section 2 presents various preliminaries, including notation,
the class of systems considered, and a description of LEMPC. Section 3 reviews the nonlinear systems
definition of cybersecurity from our prior work [12], which will underlie the discussion in the remainder
of the paper regarding the use of LEMPC, and in particular closed-loop simulations considering initial
conditions within the stability region, for enhancing cyberattack-resilience for safety and profitability
through design and control. Section 4 provides an analysis of the manner in which the stability
region of LEMPC may aid in analyzing cyberattack-resilient process designs. It begins by making
explicit connections in a nonlinear systems context, both theoretically (Section 4.1) and through a
numerical example (Section 4.1.1), between process design and control. Subsequently, a larger-scale
process example is used for illustrating relationships between design and control system cybersecurity
(Section 4.1.2), and finally, Section 4.1.3 introduces the relationships between the stability region in
LEMPC and cybersecure equipment/safety system design. Section 4.1.4 closes out the safety and
equipment-based discussion. The second half of the paper (Section 5) focuses on the benefits of the
LEMPC stability region for handling profit/production-based attacks. An LEMPC formulation and
its implementation strategy are presented in Sections 5.1 and 5.2 that, as demonstrated in Section 5.3,
are able to maintain the closed-loop state in a bounded operating region even after a false sensor
measurement occurs on the LEMPC. Section 5.3.1 demonstrates this development, and conclusions
from the cybersecurity studies presented in this paper are presented in Section 6. This paper is an
extended version of [27] and [28].

2. Preliminaries

2.1. Notation

The notation | · | signifies the Euclidean norm of a vector. xT signifies the transpose of a vector
x. We define tk = k∆, where ∆ refers to the sampling period and k = 0, 1, . . .. diag(x) represents
a matrix with the components of the vector x on its diagonal. A class K function is a function
α : [0, a) → [0, ∞) where α(0) = 0 and the function strictly increases. Set subtraction is signified by
“/” (i.e., x ∈ A/B := {x ∈ Rn : x ∈ A, x /∈ B}). Ωρ := {x ∈ Rn : V(x) ≤ ρ} denotes the level set of a
positive definite function V.

2.2. Class of Systems

We consider classes of process systems of the form:

ẋ = f (x, u, w) (1)
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where x ∈ X ⊂ Rn represents the process state vector, u ∈ U ⊂ Rm represents the process input vector,
and w ∈W ⊂ Rz represents the vector of bounded process disturbances (i.e., W := {w ∈ Rz| |w| ≤ θ,
θ > 0}). f is a nonlinear, locally Lipschitz vector function of its arguments. We consider that
f (0, 0, 0) = 0 and that X is the set of safe states (i.e., if x ∈ X, ∀ t ≥ 0, no process incidents occur).

We consider that the system of Equation (1) is stabilizable in the sense that there exists a sufficiently
smooth positive definite Lyapunov function V : Rn → R+, as well as class K functions αj(·),
j = 1, . . . , 4, and a controller h1(x) that can asymptotically stabilize the origin of the closed-loop
system of Equation (1) with w(t) ≡ 0 in the sense that:

α1(|x|) ≤ V(x) ≤ α2(|x|) (2)

∂V(x)
∂x

f (x, h1(x), 0) ≤ −α3(|x|) (3)∣∣∣∣∂V(x)
∂x

∣∣∣∣≤ α4(|x|) (4)

h1(x) ∈ U (5)

∀ x ∈ D ⊂ Rn, where D is an open neighborhood of the origin. The level set Ωρ ⊂ D ∩ X of V is
termed the stability region.

We furthermore assume that h1(x) is locally Lipschitz such that:

|h1,i(x)− h1,i(x̂)| ≤ Lh|x− x̂|, i = 1, . . . , m (6)

for all x, x̂ ∈ Ωρ, with Lh > 0, where h1,i represents the i-th component of h1. Also, because f is
considered to be a locally Lipschitz function of its arguments and V is sufficiently smooth:

| f (x, u, w)| ≤ M (7)

| f (x1, u1, w)− f (x1, u2, w)| ≤ Lu|u1 − u2| (8)

| f (x1, u1, w)− f (x2, u1, 0)| ≤ Lx|x1 − x2|+ Lw|w| (9)

|∂V(x1)

∂x
f (x1, u1, w)− ∂V(x2)

∂x
f (x2, u1, 0)| ≤ L′x|x1 − x2|+ L′w|w| (10)

for all x1, x2 ∈ Ωρ, u, u1, u2 ∈ U, and w ∈W, where M, Lu, Lx, Lw, L′x, and L′w are positive constants.

2.3. Model Predictive Control

Model predictive control (MPC) is an optimization-based control framework where the optimal
control action is determined from the following optimization problem at every sampling time tk:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (11a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (11b)

x̃(tk) = x(tk) (11c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (11d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (11e)

In Equation (11), u(t) ∈ S(∆) represents that the input trajectory is a vector of piecewise-constant
inputs held for periods ∆. The stage cost Le(x, u) is optimized (Equation (11a)) subject to constraints on
the states (Equation (11d)) and inputs (Equation (11e)), where state predictions come from the nominal
(w ≡ 0) dynamic model of Equation (11b).
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2.4. Lyapunov-Based Economic Model Predictive Control

Lyapunov-based economic model predictive control (LEMPC) [22] is a variation on the MPC
formulation in Equation (11) as follows:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (12a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (12b)

x̃(tk) = x(tk) (12c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (12d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (12e)

V(x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N),

if x(tk) ∈ Ωρe (12f)

∂V(x(tk))

∂x
f (x(tk), u(tk), 0)

≤ ∂V(x(tk))

∂x
f (x(tk), h1(x(tk)), 0)

if x(tk) ∈ Ωρ/Ωρe (12g)

where the notation follows that in Equation (11). Ωρe ⊂ Ωρ is a level set of V which renders Ωρ forward
invariant under the LEMPC of Equation (11).

3. Chemical Engineering and Control System Cybersecurity

Our recent work [12] defined cyberattacks in a nonlinear systems context as follows:

Definition 1. A cyberattack on a feedback control system is a disruption of information flow in the loop such
that any u ∈ U can potentially be applied at any state x that is accessed by the plant over time.

The remainder of this work focuses on characterizing two methods for developing resilience to
attacks of this type: one which takes advantage of the process design, and another which assumes the
availability of a detection method with a characterizable time to detection.

4. Safety-Based Attacks and Control System Cybersecurity

This section analyzes design-based approaches for preventing cyberattack success, along with
numerical examples which demonstrate how design and cyberattacks on control systems can be related.
Throughout this discussion, we will exemplify and discuss the results with a focus on cyberattacks
consisting of false state measurements being provided to the control system, but in general, process
designs for which no safety issues occur even when the worst-case input trajectories are applied to
the system (i.e., inherently safe designs) would be a way for combating cyberattacks brought on by
any means by which an actuator may provide a series of inputs in the input bounds that do not have
any relationship to being stabilizing. This means that process designs which do not allow safety
issues for any allowable input trajectories could even avoid unsafe situations if false signals were
sent from a controller to an actuator, for example, or if any type of false state measurement attack
occurred (including classical attacks like min-max, replay, and denial-of-service). Throughout this
section, the simulation studies were performed in either MATLAB R2016a or R2016b, on either a
Lenovo model 80XN x64-based ideapad 320 with an Intel(R) Core(TM) i7-7500U CPU at 2.70 GHz,
2904 Mhz, running Windows 10 Enterprise, or on a desktop Intel(R) Xeon(R) CPU E-3 1240 v5 at
3.50GHz, with a 64-bit operating system with an x64-based processor running Windows 10 Enterprise;
simulations noted as being performed in Ipopt were performed on the latter machine.
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Remark 1. Though the focus is on false measurements provided directly to controllers, measurements can be
used in designing parts of an EMPC where inaccuracies in the design of these pieces of the controller could be
problematic. For example, the models used in EMPC in practice may not be derived from first-principles, but may
instead be derived via process data. If false process data is provided to the model identification algorithm and
an inaccurate process model is identified, this could be problematic for closed-loop stability under a cyberattack
as well, even if accurate sensor measurements are being received, as then plant-model mismatch could be quite
significant, leading the controller to select control actions which are not stabilizing (works such as [29–31]
demonstrate that under sufficient conditions, closed-loop stability under LEMPC incorporating empirical process
models can be guaranteed if the mismatch between the empirical model state predictions and the actual dynamic
system state is sufficiently small). Though this does represent a possible alternate attack mechanism, it has a
different character than that considered in this work, and therefore is not addressed here but can be explored in
future work.

4.1. Safety-Based Attacks and Control System Cybersecurity: A Nonlinear Systems Perspective

In [12], resilience against attacks intended to impact process safety was defined as follows:

Definition 2. A process design that is resilient to cyberattacks intended to affect process safety is one for which
there exists no input policy u(t) ∈ U, t ∈ [0, ∞), such that x(t) /∈ X, for any x0 ∈ X̄ and w(t) ∈ W,
t ∈ [0, ∞).

In Definition 2, X̄ ⊆ X represents a set of allowable initial conditions. The process design impacts
the dynamics of the process. Furthermore, the dynamics defined by a given design may form a
hybrid system if, for example, parts of the design are physically actuated on and off (e.g., if a burst
disc bursts when the pressure gets to a certain value, changing the underlying process dynamics).
We therefore revise the definition of cyberattack-resilience above to make this explicit, using the
notation ˙̄xi = f̄i(x̄i, ūi, w̄i) to represent different models that may be activated over time, where x̄i, ūi,
and w̄i are within Xi, Ui, and Wi := {w̄i ∈ Rz | |w̄i| ≤ θi, θi > 0}, and x̄i and ūi represent the deviation
variable forms of x and u with respect to the steady-state of the i-th model, with w̄i as the disturbance
for the i-th model:

Definition 3. A process design is said to be cyberattack-resilient if there exist p process models defined by
˙̄xi = f̄i(x̄i, ūi, w̄i), i = 1, . . . , p, and associated input bounds Ui, i = 1, . . . , p, that are activated by initial
conditions within Xi and for which x̄i(t) ∈ Xi, for any input policy ūi(t) ∈ Ui, and for all w̄i(t) ∈Wi, for all
t ≥ 0, i = 1, . . . , p, when the transitions between models are activated.

Remark 2. A key difference between cyberattacks and actuator faults, despite that both may follow Definition 2,
is in the intentionality of the problems to be caused by cyberattacks. For example, during a HAZOP analysis,
chemical process personnel will consider all of the possible failure scenarios and consequences throughout the
process and set up barriers (e.g., safety instrumented systems or safety relief systems) that, independent of the
control system function, are able to prevent the process state from entering an unsafe region [32,33]. However,
if there are scenarios which were not protected due to them being thought to be extremely unlikely to occur in a
traditional fault-based framework, those may remain open for a cyberattacker to exploit. Essentially, cyberattacks
are able to go after vulnerabilities in a process that were not designed against (because they are not expected to be
possible in typical failure situations) through their ability to manipulate u to take malicious trajectories within
U over time, which is something that faults are not expected to be capable of.

4.1.1. Safety-Based Attacks and Control System Cybersecurity: Numerical Example

To demonstrate the concept of stability for the switching process models, consider the following
dynamic equation:

ẋ = −x + u (13)
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where the inputs are constrained. From a design perspective, either the input bounds can be modified
upon the process state entering certain regions of state-space, or the right-hand-side of the differential
equation can be changed. If the input bounds are considered available for change, then if the
input bounds can be activated to physically/mechanically change based on the actual process state,
the system of Equation (13) can be rendered asymptotically stable (and therefore its state maintained
within a characterizable region of state-space over time) by a series of inputs in the input bounds when
the input bounds change according to the following scheme:

u ∈ [−1, 0], if x(0) ∈ (0, ∞)

u = 0, if x(0) = 0

u ∈ [0, 1], if x(0) ∈ (−∞, 0)

If instead the input bounds are fixed and the right-hand side of the differential equation can be
physically/mechanically forced to change when the process state enters certain regions of state-space,
then if, for example, u ∈ [−1, 1], the following strategy for manipulating the dynamic model can be
used to drive the closed-loop state to the origin with some series of inputs in the input bounds (again
keeping the state within a bounded region of state-space):

ẋ = −x + 2 + u, if x(0) ∈ (−∞, 0)

ẋ = −x, if x(0) = 0

ẋ = −x− 2− u, if x(0) ∈ (0, ∞)

This numerical example indicates that it may be possible, for some dynamic models, to locate input
bounds-process model combinations that, if they could be physically triggered, could prevent unsafe
scenarios from resulting, regardless of how the inputs are selected within the bounds. This approach to
cyberattack-resilient process designs is conservative in that it requires boundedness of the closed-loop
state of each sub-model for certain sets of initial conditions regardless of the value of u. Using tighter
inputs bounds may be a way of preventing process behavior from deviating as much from steady-state
behavior [25], but could also lead to difficulties with disturbance rejection, flexibility, and profitability.

4.1.2. Safety-Based Attacks and Control System Cybersecurity: Process Design Example

The goal of this section is to provide insights into the connections between process design and
control system cybersecurity before proceeding to the following section, in which the potential benefits
of LEMPC and its stability region for this task will be highlighted. In the process example in this section,
we explore cybersecurity considerations for chemical processes from a process design perspective
using a process example comprised of two CSTR’s in series, followed by a flash drum with recycle of
condensed vapor from the flash drum back to the first CSTR. The reactant A is fed to CSTR 1 (Vessel
1) at concentration CA10 and flow rate F10, as well as to CSTR 2 (Vessel 2) at concentration CA20 and
flow rate F20. The flow rate of the recycle stream from the flash drum (Vessel 3) is Fr, and the product
stream (denoted by F3) is the liquid stream leaving the flash drum. The desired product is B and the
undesired product is C, where both are produced from A. The manipulated inputs are the rates of
heat supplied to or removed from Vessels 1, 2, and 3 at rates Q1, Q2, and Q3, respectively. The model
equations are presented below and are taken from [34], though with slight changes to the equations
for the concentrations CAr, CBr, and CCr of species A, B, and C in the recycle stream:

dT1

dt
=

F10

V1
(T10 − T1) +

Fr

V1
(T3 − T1) +

−∆H1

ρCp
k1e−

E1
RT1 CA1 +

−∆H2

ρCp
k2e−

E2
RT1 CA1 +

Q1

ρCpV1
(14)

dCA1

dt
=

F10

V1
(CA10 − CA1) +

Fr

V1
(CAr − CA1)− k1e

−E1
RT1 CA1 − k2e−

E2
RT1 CA1 (15)

dCB1

dt
= − F10

V1
(CB1) +

Fr

V1
(CBr − CB1) + k1e

−E1
RT1 CA1 (16)
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dCC1

dt
= − F10

V1
(CC1) +

Fr

V1
(CCr − CC1) + k2e−

E2
RT1 CA1 (17)

dT2

dt
=

F1

V2
(T1 − T2) +

F20

V2
(T20 − T2) +

−∆H1

ρCp
k1e−

E1
RT2 CA2 +

−∆H2

ρCp
k2e−

E2
RT2 CA2 +

Q2

ρCpV2
(18)

dCA2

dt
=

F1

V2
(CA1 − CA2) +

F20

V2
(CA20 − CA2)− k1e

−E1
RT2 CA2 − k2e−

E2
RT2 CA2 (19)

dCB2

dt
=

F1

V2
(CB1 − CB2)−

F20

V2
CB2 + k1e

−E1
RT2 CA2 (20)

dCC2

dt
=

F1

V2
(CC1 − CC2)−

F20

V2
CC2 + k2e

−E2
RT2 CA2 (21)

dT3

dt
=

F2

V3
(T2 − T3)−

HvapFrm

ρCpV3
+

Q3

ρCpV3
(22)

dCA3

dt
=

F2

V3
(CA2 − CA3)−

Fr

V3
(CAr − CA3) (23)

dCB3

dt
=

F2

V3
(CB2 − CB3)−

Fr

V3
(CBr − CB3) (24)

dCC3

dt
=

F2

V3
(CC2 − CC3)−

Fr

V3
(CCr − CC3) (25)

Cjr =
αjCj3

Kd
, j = A, B, C, D (26)

where D is an inert material, αj is the relative volatility of species j at the flash drum conditions, and Cji,
i = 1, 2, 3, is the concentration of species j in the liquid in Vessel i (Ti is the temperature in Vessel i).
Frm = FrρM, where ρM and Kd are computed as follows:

Kd =

[
C

∑
j=A

αjCj3

ρM

]
+ αD

ρ−∑C
j=A Cj3MWj

MWDρM
(27)

where

ρM =
ρ−

[
∑C

j=A Cj3MWj

]
MWD

+

[
C

∑
j=A

Cj3

]
(28)

where ρ is the density of the liquid and ρM is the molar density (which is given the same value in the
liquid and vapor in this simulation) in the flash drum, and MWj represents the molecular weight of
species j. Table 1 lists the values of the parameters used in the above equations.

The state vector of the process is denoted by x̄ = [T1 CA1 CB1 CC1 T2 CA2 CB2 CC2 T3 CA3 CB3

CC3]
T , with steady-states denoted with an “ss” subscript for each state. The following results will

consider two steady-states, one that is open-loop unstable (x̄u = [370.22 3.29 0.17 0.042 435.32 2.74
0.45 0.11 435.15 2.88 0.50 0.12]T) and one that is open-loop stable (x̄s = [300.97 3.55 0.0035 0.00050
300.78 3.32 0.0029 0.00041 300.61 3.50 0.0033 0.00044]T), where steady-state stability was assessed
based on the eigenvalues of the numerically approximated linearization of the dynamic model [35].
For both steady-states, the manipulated inputs are Q1,ss = 0 kJ/h, Q2,ss = 0 kJ/h, Q3,ss = 0 kJ/h,
and ∆F20,ss = (F20 − 5) = 0 m3/h.
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Table 1. Process parameters for the 2 CSTR-flash drum process.

Parameter Value Units Parameter Value Units

T10 300 K E1 5× 104 kJ/kmol
T20 300 K E2 5.5× 104 kJ/kmol
F10 5 m3/h k1 3× 106 h−1

Fr 1.9 m3/h k2 3× 106 h−1

CA10 4 kmol/m3 ∆H1 −5× 104 kJ/kmol
CA20 3 kmol/m3 ∆H2 −5.3× 104 kJ/kmol

V1 1 m3 Hvap 5 kJ/kmol
V2 0.5 m3 Cp 0.231 kJ/kg K
V3 1 m3 R 8.314 kJ/kmol K
ρ 1000 kg/m3 MWA 50 kg/kmol

αA 2 - MWB 50 kg/kmol
αB 1 - MWC 50 kg/kmol
αC 1.5 - MWD 18 kg/kmol
αD 3 - F20 5 m3/h

In the following, we will first revisit the results from [27] which demonstrate the relationship
between cyberattacks and process design by operating the CSTR under an MPC, and then extend
these. We consider lower and upper bounds on Q1, Q2, and Q3 of −1× 106 and 1× 106 kJ/h and the
upper and lower bounds on ∆F20 of -5 and 5 m3/h. The MPC uses the following steady-state tracking
stage cost:

Le = 105((x̄− x̄q)P(x̄− x̄q)
T + 5× 10−12Q2

1 + 5× 10−12Q2
2 + 5× 10−12Q2

3 + 100∆F2
20) (29)

where q is u when the process is operated around the unstable steady-state and s when it
is operated around the stable steady-state. The weighting matrix in the stage cost is P =

diag(20, 103, 103, 103, 10, 103, 103, 103, 10, 103, 103, 103). In the simulations, the dynamic model of
Equations (14)–(28) is integrated using the Explicit Euler numerical integration method with an
integration step size of 10−5 h. The MPC uses the process dynamic model in Equations (14)–(28) for
making state predictions. The process is operated for one hour with controller parameters of N = 6
and ∆ = 0.005 h. MATLAB’s fmincon function was used to solve the MPC optimization problems.
Throughout this paper, due to the reasonable controller behavior in all simulations using fmincon,
both local minima found by fmincon, as well as possible local minima (without checking whether they
were truly local minima) were accepted as solutions to the MPC optimization problems. Because they
will be explored further below, the temperature trajectories in the three vessels and the heat inputs
when the process is operated under the MPC designed around the unstable steady-state for the first
0.1 h of operation are shown in Figures 1 and 2. The closed-loop state is observed to be driven to the
steady-state value by the controller in the absence of disturbances or plant-model mismatch.
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Figure 1. T1, T2, and T3 over 0.1 h of operation for the 2 CSTR-flash drum process under an MPC which
drives the closed-loop state to the unstable steady-state.
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Figure 2. Q1, Q2, and Q3 over 0.1 h of operation for the 2 CSTR-flash drum process under an MPC
which drives the closed-loop state to the unstable steady-state.

For the design with the parameters in Table 1, we explore the impacts of cyberattacks on the
MPC when the process is operated around the unstable steady-state and when it is operated around
the stable steady-state. When the MPC is operated around the unstable steady-state (i.e., q = u in
Equation (29)) and the process is initialized from xI = x̄q + [10 0.5 −0.001 −0.0001 −10 0.5 −0.001
−0.0001 10 0.5 −0.001 −0.0001]T but with a false state measurement (denoted by xF1) of xF1 = x̄u

provided to the MPC at every sampling time, the state and input trajectories in Figures 3 and 4 are
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obtained. This attack takes advantage of nonlinear dynamic behavior (e.g., as shown in Figure 3,
the heat rate inputs did not need to be high for the temperatures in the units to become high). In this
case, the MPC believes that the state is at the steady-state, and therefore computes the steady-state
input, which is not stabilizing for an initial condition slightly off of the steady-state (instead, it causes
the closed-loop state to approach a different but stable higher-temperature steady-state). It is noted
that this issue may not be able to be readily handled via techniques for accounting for disturbances in
MPC (e.g., by estimating the disturbance), as in this case, the controller is not aware of the mismatch
between the actual state and the steady-state, and therefore attempts to account for the mismatch
between those states as a disturbance would not necessarily be helpful. It also is a relatively easy
attack to recognize given the dynamics of unstable systems and the control law considered, despite the
multi-unit and interconnected nature of the system. However, fixing of the inputs at the values in
Figure 4 is the same effect as would be observed if those actuators were to be fixed at their values
via a fault; HAZOP studies should have indicated this and caused the system to be instrumented
with, perhaps, a safety valve to prevent the temperatures in the reactor from ever hitting such levels
physically. Specifically, because the safety system in that case is actuated based on a problematic
process state (pressure) regardless of the path by which that pressure was reached, then whether a
cyberattack or a fault caused that condition, the process is protected against it. In contrast, when the
process is operated around the stable steady-state (i.e., q = s) and the operating steady-state (now
x̄s) is provided as the false state measurement at every sampling time, this attack strategy drives the
closed-loop state to the steady-state x̄s because it causes the MPC to again compute the steady-state
input (which for the open-loop stable steady-state is stabilizing from xI).
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Figure 3. T1, T2, and T3 over 1 h of operation for the 2 CSTR-flash drum process under a cyberattacked
EMPC provided the false state measurement xF1 = x̄u.
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Figure 4. Manipulated inputs over 1 h of operation for the 2 CSTR-flash drum process under a
cyberattacked EMPC provided the false state measurement xF1 = x̄u.

We now look in greater detail at the role of process design in the success of cyberattacks by
analyzing a similar attack on the process described above (i.e., an attack involving a false measurement
corresponding to an alternative unstable steady-state x̄u,2 of a re-designed process being applied to
the process initialized at xI = x̄u,2 + [10 0.5 −0.001 −0.0001 −10 0.5 −0.001 −0.0001 10 0.5 −0.001
−0.0001]T). To re-design the process, it was assumed that though there should be bounds on the
states of Vessels 1, 2, and 3, the only states for which it is necessary to maintain the values at specific
targets during re-design were the concentration of the product in the product stream (CB3) and the
concentration of the byproduct in this stream (CC3). It was desired to locate a steady-state for this
process for which T1 + T2 + T3 was minimized, subject to lower and upper bounds on the vector
vdv of decision variables of the re-design (vdv = [V1 V2 V3 F10 T10 T20 Q1,ss Q2,ss Q3,ss ∆F20,ss T1,ss
CA1,ss CB1,ss CC1,ss T2,ss CA2,ss CB2,ss CC2,ss T3,ss CA3,ss]

T ; the lower bound vector was [0.2 m3 0.2 m3

0.2 m3 0.2 m3/h 260 K 260 K −1× 106 kJ/h −1× 106 kJ/h −1× 106 kJ/h −5 m3/h 260 K 0 kmol/m3

0 kmol/m3 0 kmol/m3 260 K 0 kmol/m3 0 kmol/m3 0 kmol/m3 260 K 0 kmol/m3]T , and the upper
bound vector was [10 m3 10 m3 10 m3 10 m3/h 500 K 500 K 1× 106 kJ/h 1× 106 kJ/h 1× 106 kJ/h
5 m3/h 500 K 4 kmol/m3 3 kmol/m3 2 kmol/m3 500 K 4 kmol/m3 3 kmol/m3 2 kmol/m3 500 K
4 kmol/m3]T). MATLAB’s function fmincon was used to find a locally optimal solution to this design
problem, subject to the requirement that Equations (14)–(28) be satisfied at the steady-state with
CB3 = 0.50 kmol/m3 and CC3 = 0.12 kmol/m3 as at the unstable steady-state x̄u. The resulting
design is V1 = 0.20 m3, V2 = 10.00 m3, V3 = 5.09 m3, F10 = 0.21 m3/h, T10 = 379.98 K, and T20 =

379.99 K, with the steady-state x̄u,s = [260.00 K 0.57 kmol/m3 0.15 kmol/m3 0.05 kmol/m3 364.63 K
0.26 kmol/m3 0.41 kmol/m3 0.10 kmol/m3 260.00 K 0.29 kmol/m3 0.50 kmol/m3 0.12 kmol/m3]T

corresponding to inputs Q1,ss = −5809.73 kJ/h, Q2,ss = 18144.68 kJ/h, Q3,ss = −171320.01 kJ/h,
and ∆F20,ss = −5.00 m3/h. The results from the cyberattack being performed on this process are
shown in Figure 5. In contrast to Figures 3 and 4, the maximum temperatures reached in Figure 5 are
approximately 919 K for T1, 1003 K for T2, and 895 K for T3, whereas in Figure 3, they are approximately
1156 K for T1, 1093 K for T2, and 1073 K for T3. In the above, only one cyberattack was examined
with the design change, but the lower temperatures reached in the time period examined in Figure 5
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compared to Figure 3 indicates that for the same design values of CB3 and CC3, an attack providing the
steady-state measurement to an MPC for a process designed around the steady-state in Figure 5 when
initiated slightly off that steady-state may be able to be withstood with equipment with a lower design
temperature than the process in Figure 3.
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Figure 5. T1, T2, and T3 over 10 h of operation for the 2 CSTR-flash drum process under a cyberattacked
EMPC provided the false state measurement xF1 = x̄u,2.

4.1.3. Safety-Based Attacks and Control System Cybersecurity: Equipment and Safety System Design

Based on the results of the above sections, when cyberattacks are not seeking to impact conditions
which depend on past states and inputs (as might occur with, for example, fatigue) cyberattack
resilience of a process design might be analyzed by considering what set of states can be accessed
from all initial conditions and under all input trajectories possible, given the system dynamics and
any changes in the dynamics as safety systems are activated. This means that, if all allowable initial
conditions can be characterized (as, for example, would be theoretically true with LEMPC, where the
set of allowable initial conditions could be characterized as those within the set Ωρ), then simulations
can be performed which consider all states which could be reached from these conditions for inputs in
the input bounds. For example, from all allowable initial conditions, the state at the next sampling time
could be obtained under all possible values of the inputs via simulation (the state and input spaces
would need to be discretized to carry this out practically). For each resulting state at the next sampling
time that is in the stability region, because the path to that state is not considered important and those
states were just tested as initial conditions under all possible inputs to see where the closed-loop state
can go at the end of the sampling period, they do not need to be tested again. However, for any that
go outside the stability region or access new states not previously tested, further simulations must be
done from each of those points until eventually all points that are the final states at the end of each
sampling period were already tested as an initial condition for another. This does not account for
disturbances, which could also be discretized and the above problem considered for every possible
one. Notably, this is no different than the procedure that could be used for faults.

Below, we sketch how this concept for performing such an analysis could be initiated using
two continuous stirred tank reactor examples, one which uses a safety system, and one which
does not. A goal of the examples in this section is also to clarify the significant similarity between
cyberattack-resilient process designs and those which maintain safety under process faults, while also
highlighting key differences.
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The first system to be explored will revisit an example previously presented in [27], but with
a slight change for the purpose of presenting the resilient design mechanism outlined above.
This example consists of a continuous stirred tank reactor (CSTR) which is followed by process
piping and is considered for converting species A to B, where the piping is rigidly fixed at the CSTR
outlet and has a bellows joint with spring constant ks on the other side. The concentration of reactant
CA and temperature T in the reactor evolve according to the following dynamic model:

ĊA =
F
V
(CA0 − CA)− k0e

− E
RgT C2

A (30)

Ṫ =
F
V
(T0 − T)− ∆Hk0

ρLCp
e
− E

RgT C2
A +

Q
ρLCpV

(31)

where the inlet reactant concentration CA0 and heat rate Q are the manipulated inputs. The parameters
F, k0, V, E, ∆H, Rg, Cp, and ρL (provided in Table 2) correspond to the flow rate through the CSTR,
the pre-exponential constant, the CSTR volume, the reaction activation energy, the enthalpy of reaction,
the ideal gas constant, the heat capacity of the liquid in the CSTR, and the density of the liquid in the
CSTR, respectively.

Table 2. CSTR process parameters.

Parameter Value Units

V 1 m3

Cp 0.231 kJ
kg K

T0 300 K
∆H −1.15× 104 kJ

kmol
k0 8.46× 106 m3

h kmol
F 5 m3

h
E 5× 104 kJ

kmol
ρL 1000 kg

m3

Rg 8.314 kJ
kmol K

As in [27], we consider that the goal in characterizing the worst-case conditions under a
cyberattack is to select appropriate equipment designs for the CSTR and piping if possible. In particular,
we here focus on the value of ks, which could have a significant impact on the ability of the equipment
to withstand a cyberattack. To see this, consider that the yield strength of the piping is 270 MPa,
and that its thermal expansion coefficient, Young’s Modulus, length, and cross-sectional area are
12.5× 10−6 K−1, 200 GPa, 2.54 m, and A = 0.002041 m2, respectively [36]. The CSTR is controlled by
an MPC with the stage cost stage cost:

Le =100(CA − CAs)
2 + (T − Ts)

2 + (CA0 − CA0s)
2 + 10−10(Q−Qs)

2 (32)

and with the inputs restricted as follows: 0.5 ≤ CA0 ≤ 7.5 kmol/m3 and |Q| ≤ 5 × 105 kJ/h.
In [27], this process was examined without additional constraints on the states and inputs. In this
section, however, we will extend the work in [27] to present a concept for determining the worst-case
conditions which could occur under a cyberattack so that equipment might be designed to withstand it.
To analyze the worst-case condition, it is helpful to characterize the set of allowable initial conditions,
which is done by using Lyapunov-based stability constraints to bound these conditions. In particular,
Lyapunov-based stability constraints are developed around the steady-state CAs = 1.22 kmol/m3,
Ts = 438.2 K, CA0s = 4 kmol/m3, and Qs = 0 kJ/h, (i.e., we define x = [x1 x2]

T = [CA − CAs T − Ts]T

and u = [u1 u2]
T = [CA0 − CA0s Q−Qs]T), using V = xT Px, with P given as follows:

P =

[
1200 5

5 0.1

]
(33)
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The model of Equations (30) and (31) has the form ẋ = f̃ (x) + g(x)u, where f̃ represents
a vector function derived from Equations (30) and (31) that is not multiplied by u, and g(x) =

[g1 g2]
T = [ F

V 0; 0 1
ρLCpV ]T represents the vector function which multiplies u in these equations.

The Lyapunov-based controller h1(x) was designed such that h1,1(x) = 0 kmol/m3 and h1,2(x) is first
computed as follows (Sontag’s Formula [37]):

h1,2(x) =

−
L f̃ V+

√
L f̃ V2+Lg̃2 V4

Lg̃2 V , if Lg̃2 V 6= 0

0, if Lg̃2 V = 0
(34)

and then saturated at the input bounds if they are exceeded. L f̃ V and Lg̃2 V are Lie derivatives of V with

respect to the vector functions f̃ and g̃2, respectively. ρ′ and ρ′e were set to 300 and 225, respectively.
It should be noted that in [22], it is demonstrated that when disturbances, the sampling period,

and ρe are sufficiently small, the closed-loop state will not be able to leave Ωρ for the process operated
under LEMPC. In this example, however, the controller parameters do not meet these requirements,
and therefore the simulations do not allow closed-loop stability to be guaranteed. However, because the
guarantees could be obtained with modified selection of control design parameters, we use this type
of control design to demonstrate how the cyberattack-resilient design methodology would proceed if
Ωρ was forward invariant such that it represented the allowable set of states without attacks.

The MPC uses a prediction horizon of N = 10 and a sampling period of ∆ = 0.01 h, and is
solved using MATLAB’s function fmincon. The explicit Euler numerical integration method with
an integration step of 10−4 h is used to simulate the process. The process is initialized off of its
steady-state condition CA = CAs, T = Ts, CA0 = CA0s, and Q = Qs from an initial condition at
CA − CAs = −0.4 kmol/m3 and T − Ts = 8 K. When no cyberattack occurs, this controller drives the
closed-loop state back to the steady-state. However, when a cyberattack is performed, the temperature
of the fluid leaving the CSTR can increase considerably (for example, Figure 6 shows the trajectory
when a false state measurement of CA(tk) = 0.8 kmol/m3 and T(tk) = 430 K is provided to the MPC
at every sampling time for an hour, where the temperature increases by over 400 K above CAs).
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Figure 6. States over one hour of operation for the process of Equations (30) and (31) under EMPC
with a sensor attack.
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In [27], it was noted that if ks is unusually stiff (e.g., ks = 5.5× 107 N/m), then yielding could occur
for the piping when the temperature is about 278 K greater than its steady-state value. This means that
if the piping temperature comes to thermal equilibrium with the fluid leaving the pipe at the end of
the time period shown in Figure 6, yielding is possible. In contrast, for a more common (and less stiff)
spring constant (e.g., ks = 4.4× 105 N/m [36]), T− Ts would need to be greater than about 39,410 K to
cause yielding, which is much greater than the temperature which the piping would be expected to
approach according to Figure 6. Therefore, as long as the CSTR itself can withstand the temperature in
Figure 6, the piping can be considered to be resilient against the attack on the CSTR’s control system.

The example above tests one specific initial condition and attack. An exhaustive search technique
was suggested above for searching for the worst-case conditions under all attacks. The first step in
this search technique was suggested to be characterization of the set of allowable initial conditions,
which for LEMPC could be considered to be all the states in the stability region. The state-space can be
discretized to identify all of these states for simulation purposes; for the purpose of demonstrating the
proposed technique, a relatively coarse discretization (where the points from which the simulation
will be carried out are shown in gray in Figure 7) was performed for this example, though a finer one
would give more comprehensive results.
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Figure 7. Initial states in the stability region.

The next step in the proposed procedure is to identify all possible states which could be reached
from the set of initial conditions after one sampling period, for any input in the input bounds.
For cyberattacks (as well as faults), this represents all possible inputs that could be applied, given any
false state measurement or other possible attack. Again using a relatively coarse grid, this can be
simulated for this example by finding the final values of the states for CA0 between 0.5 and 7.5 kmol/m3

in increments of 0.5 kmol/m3, and for Q between −5× 105 and 5× 105 kJ/h in units of 105 kJ/h.
The plots of the resulting initial conditions at the end of a sampling period are shown in Figure 8.
The grid was too coarse to capture many of the other final conditions; however, despite only capturing
some of the possible final conditions which could occur for various initial conditions in Ωρ when
inputs in the input bounds are applied for a sampling period, Figure 8 does indicate the concept
of the mechanism for checking cyberattack-resilience of a process design. Specifically, after the first
sampling period, some of the states under some of the input trajectories are still in Ωρ; with a finer
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grid, these points should already have been tested during the first test to see where they would go
next under all inputs. Specifically, because the states over the subsequent sampling period do not
depend on past values of the states or inputs (i.e., how the state came to be at its initial condition),
any final points at the end of the first sampling period (which would serve as initial points for the
considerations in the next sampling period) which are the same as those considered at the beginning
of the first do not need to be considered in the second sampling period, because the final conditions at
the end of the subsequent sampling period were effectively already evaluated by the end of the first
sampling period. However, taking all points outside of Ωρ at the end of the first sampling period as
initial conditions for the second sampling period and analyzing all possible trajectories which could
occur within the input bounds after this occurs could be undertaken.

Figure 8. Final states after one sampling period when initialized in the stability region and for multiple
inputs within the input bounds applied.

We here highlight that in an actuator fault involving a valve becoming stuck at a given position,
the only possible scenarios after the first sampling period as the state evolves from all possible initial
conditions under each possible input value are those which have the same input applied as in the prior
sampling period. In contrast, in a cyberattack, the input could take any trajectory in any subsequent
sampling period. However, if this more conservative approach to evaluating possible worst-case
scenarios is used for both cyberattacks and faults, both can be protected against via process design
in an equivalent fashion. This may be a very computationally intensive screening method, however,
due to the large number of possible scenarios which would need to be evaluated, despite the ability
to prune off those where final states from one sampling period correspond to initial states which
were already looked at at a prior sampling time in later sampling periods. It should be noted that the
equipment must be resilient against even time-varying types of “faulty” behavior, such as fatigue that
might be induced by time-varying profiles of the inputs which observers may not be aware of.

In the example above, the discussion focused on ways of checking that an equipment design is
fully cyberattack-resilient through an inherently safe design by designing equipment to withstand
the worst-case scenarios that could be encountered from any possible state and for any possible
inputs. However, this approach may result in a highly conservative and possibly expensive design.
An alternative is to add safety systems. For example, consider the methyl isocyanate (MIC) hydrolysis
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model from [38] in which the hydrolysis reaction is assumed to occur in a CSTR according to the
following dynamic equations:

dCA
dt

= −k0e−E/(RT)CA +
F
m
(CA0 − CA) (35)

dT
dt

=
−∆Hk0

Cp
e−E/(RT)CA +

F
m
(T0 − T)− U

mCp
(T − Tj) (36)

where the process parameter values and units corresponding to the mass of the reaction mixture
(m), the pre-exponential constant k0, the activation energy E, the ideal gas constant R, the flow rate
F through the CSTR, the heat of reaction ∆H, the heat transfer coefficient U, and the inlet fluid
temperature T0 are noted in Table 3. The concentration of MIC in the reactor (CA, in mol/kg) and
the temperature in the reactor (T, in K) are the states of the process, with the jacket temperature Tj
representing the manipulated input. The steady-state values of these variables (CAs, Ts, and Tjs) are
also noted in Table 3.

Table 3. CSTR process parameters for the MIC hydrolysis process [38].

Parameter Value Units

T0 293 K
m 4.1× 104 kg
k0 4.13× 108 s−1

Cp 3000 J kg−1 K−1

U 7.1× 106 J s−1 K−1

Tjs 293 K
Ts 305.1881 K
F 57.5 kg s−1

E 6.54× 104 J mol−1

∆H −8.04× 104 J mol−1

R 8.314 J mol−1 K−1

CA0 29.35 mol kg−1

CAs 10.1767 mol kg−1

A1 −20.1597 −
B1 −1.1878× 103 K
C1 1.3274× 10 −
D1 −2.4414× 10−2 K−1

E1 1.3907× 10−5 K−2

We consider a control and safety system design similar to that from [38]. Specifically, an MPC
was designed with the objective function Le = 3(CA − CAs)

2 + 5(T − Ts)2 + (Tj − Tjs)
2 and with

the Lyapunov-based stability constraint of Equation (12g) using V = xT Px for P = [200 33; 33 40],
and the Lyapunov-based controller designed via Sontag’s control law. The bounds on the input are
280 ≤ Tj ≤ 300 K, with ρ = 7000 used in fixing the stability region size as in [38]. The process is
simulated under the MPC using an integration step of 10−3 s in an MPC and of 10−6 s for the process,
with N = 10, for 850 s of operation with ∆ = 1 s. The process state was initialized at Ca = 12 kmol/m3

and T = 310 K. Ipopt [39] was used to perform the simulation with automatic differentiation using
ADOL-C [40]. In addition, a safety system was used in which three actions were taken: (1) the state
measurements provided to the LEMPC were used to set the value of the manipulated input to its
lower bound when V(x) > ρ (these measurements could be falsified by a cyberattacker who could
falsify the state measurements to the LEMPC); (2) a physical mechanism opens a valve when the
temperature becomes greater than 320 K in the CSTR and leaves it open for the subsequent time until
the temperature drops back below 320 K (physically actuated safety valves typically operate based on
pressure rather than temperature exceeding a limit, but in this case, we use temperature for a numerical
example that demonstrates the concept of the safety system securing a system against cyberattacks).
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When the safety valve opens, it is assumed that a mass flow rate of water equal to that of the mass
flow rate of fluid leaving through the safety valve exits the CSTR; this flow rate m f low (in kg/m2 s) is
given by:

p1 = A1 +
B1

T
+ C1 log10 T + D1T + E1T2 (37)

p2 = − B1

T2 +
C1

T ln(10)
+ D1 + 2E1T (38)

m f low = 3514.80

√
T

Cp
10p1 p1 p2 (39)

The values of A1, B1, C1, D1, and E1 are given in Table 3, and are set equal to values from [41]
for an Antoine-like equation for methyl isocyanate. The form of Equation (39) used in this paper
was inspired by a safety valve example from [42], but the safety system design was not rigorously
performed for this example. However, the flow rate given by Equation (39) serves to demonstrate the
concept of the use of safety systems in arresting the impacts of a cyberattack, as is demonstrated below,
and the lack of a rigorous safety system modeling effort does not detract from the overall conclusion
that one could simulate the process and its safety system under various possible cyberattacks to
understand worst-case scenarios, or whether the safety system allows the design to be resilient against
the attacks. The dynamic equations in the presence of the safety system thus become:

dCA
dt

= −k0e−E/(RT)CA +
F
m
(CA0 − CA)−

m f low ASVCA

m
(40)

dT
dt

=
−∆Hk0

Cp
e−E/(RT)CA +

F
m
(T0 − T)− U

mCp
(T − Tj) +

m f low ASV

m
(Tcooling − T) (41)

where ASV = 0.4 m3 represents the safety valve area (selected for the purpose of allowing the safety
system to combat a cyberattack as will be demonstrated below) and Tcooling = 280 K is the temperature
of the cooling water stream that is injected into the reactor as part of the safety system. The heat
capacity of all streams, including the pure water stream, is taken to be Cp for simplicity; despite a large
number of modeling assumptions that are not true physically in this example, it is effective at showing
the concept of the safety system preventing the cyberattack success, as discussed below.

Specifically, Figure 9 shows the state-space trajectory when the system is controlled by the MPC
described above and started from an initial condition off the steady-state (i.e., CA = 12 kmol/m3,
T = 310 K), in the absence of a cyberattack (i.e., accurate state measurements are provided to the
MPC at every sampling time). In the presence of an attack involving the false state measurement
CA = 11 kmol/m3, T = 300 K provided to the MPC at every sampling time, even though the
closed-loop state exits the region Ωρ as in Figure 10 (which shows 300 s of operation), the safety system
activates and drives it back into the stability region. If this type of test were performed for all possible
initial conditions and inputs in the input bounds (which are all the possible ones which a cyberattacker
providing false state measurements or other attacks would be able to cause) in the presence of the safety
system to ensure that the safety system is able to prevent any attack from causing an issue, the system
including the safety system could be concluded to be cyberattack-resilient as long as the safety system
does not fail (even if it would not have been resilient without the safety system activating).
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Figure 9. State-space plot when no cyberattack is performed for the methyl isocyanate hydrolysis
process. Data was plotted every 1000 integration steps (i.e., every 10−3 s).

Figure 10. State-space plot when a cyberattack is performed for the methyl isocyanate hydrolysis
process. Data was plotted every 1000 integration steps (i.e., every 10−3 s).

The outcome of the above analysis is that many processes today may find that they already have
cyberattack-resilient designs if the initial designs were made fault-tolerant; however, the results above
suggest a method by which organizations may evaluate whether this is true for their own designs and
better understand the assumptions under which original designs were developed may differ from the
assumptions necessary when considering cyberattack-resilience.
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4.1.4. Understanding Safety-Based Attacks and Control System Cybersecurity in Light of Industrial
Safety Practice

The two above examples take an inherent safety perspective on cyberattacks. In general, one
would expect that good process design practice within a traditional safety framework (e.g., HAZOP)
should eliminate many safety issues that could arise from cyberattacks on the control systems.
In particular, a state-based approach to safety [33] in which all hazardous states are identified and
ways of activating the safety systems when such states are reached would be expected to alleviate any
potential consequences of a cyberattack. This would hold then regardless of the path by which the
attacker manages to create the problem (e.g., whether there exists some stealthy route by which to
set up a problematic state within a unit). The question that remains open from a safety perspective is
then perhaps the question of whether all conditions in state-space that could correspond to an unsafe
operating condition and could be impacted by a cyberattack are identified and incorporated within
the safety system today. Essentially, the question is, what have the designers allowed the system to do?
For example, consider level control of a tank. If the tank is designed so that even at the maximum flow
rate possible out of the actuator, the tank cannot overflow, then even if an attacker gains control over
the level control loop and in a worst case takes the flow rate to its maximum value, the tank cannot
overflow. Even in the case of the Stuxnet attacks, the system failed because the centrifuges were able to
spin at rates that would destroy them. Had an upper bound been specified on their rate of rotation
physically, they would not have been able to be broken by an attack. However, perhaps the nuance
with cyberattacks is what types of dynamic operating conditions might be set up by an attacker with
control over the time behavior of the actuators, and not just, as would be more expected in the case of
an actuator fault, their position. For such a case, potentially it is not only the states that are important,
but how they accumulate over time. For example, equipment life is predicted based on experience
with a typical operating policy. If cyberattacks could alter that typical operating policy, the question is
whether they could potentially break process equipment at a different time than expected. This may
be able to be handled with sufficient safety factors in design and routine maintenance/maintenance
checks. The above suggests that considering cyberattacks during a HAZOP may be beneficial at
locating new worst-case scenarios to instrument systems against, and also for incorporating process
dynamic effects in safety analysis.

5. Profit/Production-Based Attacks and Control System Cybersecurity

Though safety concerns for cyberattacks represent the most crucial issues to address from a
cybersecurity standpoint, as addressed above, attacks intending to impact economics also pose a threat,
and methods for preventing these could also be applied to preventing safety incidents. We consider
that one way that companies may be able to move toward addressing this issue is by using a control
design that ensures that the closed-loop state cannot leave a bounded region of operation within a
sampling period, under the assumption that a detection mechanism can be developed that can detect
the attack within a sampling period. This section assumes the existence of such a detection mechanism,
and develops the conditions under which the closed-loop state would be maintained in a bounded
region for a sampling period if an attack occurs. Future work can seek to identify attack detection
mechanisms and integrate them with the proposed approach to analyze the potential of this technique
for reducing damage from profitability-focused cyberattacks. The premise is that if the closed-loop
state can be maintained within a bounded region of state-space, the worst-case profit loss in that region
could be assessed a priori through closed-loop simulations of the state, from any initial condition in that
region, under any input in the input bounds and with all possible disturbance realizations, which could
reveal both the best-case and worst-case profits over the subsequent sampling period. The difference
between these then serves as an upper bound on the potential profit loss over that sampling period
before an attack is detected. If the attack can be detected within a sampling period, then mitigating
actions (including stopping the use of the false state measurements in determining control actions) can
be performed to prevent significant profit/production loss. If the worst-case profits are not acceptable,
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the sampling period length and the size of the stability region could be tuned to attempt to modify the
worst-case condition.

5.1. Cyberattack-Resilient Lyapunov-based Economic Model Predictive Control for Profit/Production-Based
Cyberattacks: Formulation

In this section, we develop a controller formulation that, as suggested in the above section,
ensures that the closed-loop state remains within a bounded operating region Ωρ′ ⊂ Ωρ, both in the
absence of a cyberattack, and for at least one sampling period in the presence of an attack involving
false state measurements being provided to the sensors as long as the false state measurement deviation
from the actual measurement is within a bound to be characterized below. We assume that the false
state measurements which must be considered are within Ωρ′ (or else the attack would be detected by
the closed-loop state deviating from its theoretically guaranteed behavior, which is that it must remain
within Ωρ′ in the absence of an attack). The method presented below is not restricted from a control
design perspective to any number of sensors being attacked; however, [43] characterizes observability
conditions for detecting attacks on linear systems, and the assumed detection algorithm may thus
require that no more than a certain number of sensors be attacked to function correctly; characterizing
this, however, is outside the scope of this work. The proposed LEMPC formulation is as follows:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (42a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (42b)

x̃(tk) = x(tk) (42c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (42d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (42e)

|ui(tk)− h1,i(x̃(tk))| ≤ εr, i = 1, . . . , m (42f)

|ui(tj)− h1,i(x̃(tj))| ≤ εr, i = 1, . . . , m,

j = k + 1, . . . , k + N − 1 (42g)

V(x̃(t)) ≤ ρ′e, ∀ t ∈ [tk, tk+N),

if x(tk) ∈ Ωρ′e (42h)

∂V(x(tk))

∂x
f (x(tk), u(tk), 0)

≤ ∂V(x(tk))

∂x
f (x(tk), h1(x(tk)), 0)

if x(tk) ∈ Ωρ′/Ωρ′e (42i)

This formulation is similar to that in Equation (11), except that it replaces ρe and ρ with ρ′e and
ρ′, respectively, where ρ′e < ρe and ρ′ < ρ, with Ωρ′e ⊂ Ωρ′ , and includes the input rate of change
constraints from [26]. This is done to ensure that even if the closed-loop state leaves a set Ωρ′ within a
sampling period under a cyberattack, it is still within a larger set Ωρ within which the Lyapunov-based
controller h1(x), if subsequently provided with accurate state measurements, is able to drive the
closed-loop state back into Ωρ′ .

5.2. Cyberattack-Resilient Lyapunov-based Economic Model Predictive Control for Profit/Production-Based
Cyberattacks: Implementation Strategy

In this section, we present a possible implementation strategy for cyberattack-resilient control
that relies on sufficient conservatism in Ωρ′ compared to Ωρ based on how large a sampling period ∆
is. Attacks are assumed to be flagged at tk if x(tk) is more than |δ′| off of a predicted value xp(tk) for
the state (predicted from state predictions using the dynamic model of Equation (42b)); specifically,



Mathematics 2020, 8, 499 23 of 38

if |x(tk)− xp(tk)| > |δ′|, then an attack is flagged. As will be shown in the stability and feasibility
analysis for this proposed strategy, the value of δ′ selected will impact the conservativeness of Ωρ′

compared to Ωρ. However, the proposed strategy does not make provision for selecting a value of δ′

that will avoid false positives in terms of cyberattack detection.
The proposed implementation strategy is as follows: At tk, the state measurement x(tk) is obtained.

If |x(tk) − xp(tk)| > |δ′|, consider that a cyberattack is occurring and use a backup strategy (e.g.,
redundant sensors) to obtain correct state measurements for use in controlling the process under
the LEMPC of Equation (42). If |x(tk) − xp(tk)| ≤ |δ′|, control the process using the LEMPC of
Equation (42) for the next sampling period. Assuming the availability of a cyberattack detection
technique that can locate a cyberattack within the next time period ∆ using measurements of the
process state at more frequent intervals between tk and tk+1 (where at these more frequent intervals,
the LEMPC is not re-solved), the closed-loop state will not leave Ωρ over the next sampling period
even if |x(tk)− xp(tk)| ≤ |δ′| but an attack occurred.

5.3. Cyberattack-Resilient Lyapunov-based Economic Model Predictive Control for Profit/Production-Based
Cyberattacks: Stability and Feasibility Analysis

In this section, we demonstrate that inputs computed by the LEMPC of Equation (42) are
guaranteed to maintain the closed-loop state of the process of Equation (1) within Ωρ for a sampling
period under sufficient conditions if a falsified state measurement satisfying |x(tk)− xp(tk)| ≤ |δ′|
is provided in Equation (42c). We first note that when accurate state measurements are provided,
closed-loop stability of the system of Equation (1) follows from the results in [22,26]. Therefore, this
section develops the theory for the closed-loop state evolution under a cyberattack for this LEMPC.
Because we look at the evolution of the state over a single sampling period after a cyberattack occurs,
without loss of generality, we consider that the time at the start of that sampling period is t0 = 0.

We note that the LEMPC of Equation (42) computes different control actions depending on the
value of x(t0). We are interested in bounding how much the actual process state trajectory when the
falsified state measurement is provided to the LEMPC deviates from the trajectory when the true state
measurement is provided after a sampling period, and in particular under what conditions bounding
the predicted state trajectory under the optimal input resulting from the falsified state measurement
would correspond to bounding the actual state trajectory under the same input within a pre-specified
region. In summary, the cyberattack situation considered in this section is as follows:

Definition 4. Consider the state trajectories from t ∈ [t0, t1) that are the solutions of the systems

ẋa = f (xa(t), ū, w(t)) (43)

and
ẋb = f (xb(t), û, w(t)) (44)

where xa(t0) = xb(t0) = x0, where ū is the optimal input for t ∈ [t0, t1) computed from the LEMPC of
Equation (42) with the state measurement x0, while û is the optimal input for t ∈ [t0, t1) computed from the
LEMPC of Equation (42) with the state measurement x0 + δ, where x0 + δ is a falsified state measurement.
The trajectory xa(t), t ∈ [t0, t1), represents the behavior of the process in the absence of a cyberattack over the
sampling period from t0 to t1, whereas the trajectory xb(t), t ∈ [t0, t1), represents the behavior of the process
over the sampling period from t0 to t1 when a cyberattack consisting of a sufficiently small state measurement
falsification (i.e., |δ| is sufficiently small) is performed at t0.

The relationship between δ and δ′ will be clarified below. Because changes in the initial condition
in Equation (42) change the constraint set of the LEMPC, it would be expected that the input that the
LEMPC will compute may vary with changes in this initial condition. Therefore, it is expected that
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xa(t1) 6= xb(t1). However, if ∆ is small enough, it would be expected that these are not too different
due to continuous dependence on initial conditions [44].

The motivation for using the input rate of change constraints in Equation (42) is that analyzing the
differences in the state trajectories xa and xb in Definition 4 requires an understanding of the magnitude
of the difference between ū and û. The input rate of change constraints allow the differences between
the inputs computed when the different initial conditions are provided to the EMPC to be bounded in
a manner that depends on the constraint form. Specifically, we assume as in [12] that the attacker may
avoid detection by providing a falsified state measurement trajectory where the state measurements at
every sampling time are within Ωρ′ ; because feasibility of the LEMPC of Equation (42) was proven
in [26] to hold when the measurement in Equation (42c) is in Ωρ′ , feasibility of the LEMPC at t0 is
ensured whether or not there is an attack at that sampling time. Furthermore, due to the fact that the
optimal solution will be feasible, the optimal values of the input vectors ū(t0) and û(t0) in Definition 4,
for which the components will be denoted by ūi(t0) and û1,i(t0), i = 1, . . . , m, respectively, satisfy:

|ūi(t0)− h1,i(x̃a(t0))| ≤ εr (45)

|ûi(t0)− hi(x̃b(t0))| ≤ εr (46)

The following proposition bounds the difference between xa and xb in Definition 4 by taking
advantage of the input rate of change constraints in Equations (45) and (46).

Proposition 1. Consider the systems in Definition 4 operated under the LEMPC of Equation (42) designed
based on a controller h1(·) satisfying Equations (2)–(6). The following bound holds:

|xa(t)− xb(t)| ≤ fu(t) (47)

for t ∈ [0, t1), where

fu(τ) :=
Lu(2εr + Lh|δ|)

√
m

Lx
(eLxτ − 1) (48)

Proof. The proof consists of two parts. In the first part, we demonstrate that due to Equations (45)–(46),
|ū− û| is bounded. In the second part, we use this bound to derive Equation (48).

Part 1. The difference in the inputs ū and û which would be applied to the process if the accurate
measurement x̃a(t0) = x0 is provided to the LEMPC of Equation (42) at t0 compared to if the false
measurement x̃b(t0) = x0 + δ is provided can be bounded due to the use of the input rate of change
constraints and Equation (6) as follows:

|ūi(t0)− ûi(t0)|
= |ūi(t0) + h1,i(x̃a(t0))− h1,i(x̃a(t0)) + h1,i(x̃b(t0))

− h1,i(x̃b(t0))− ûi(t0)|
≤ |ūi(t0)− h1,i(x̃a(t0))|+ |h1,i(x̃a(t0))− h1,i(x̃b(t0))|
+ |ûi(t0)− h1,i(x̃b(t0))|
≤ 2εr + Lh|x̃a(t0)− x̃b(t0)|
≤ 2εr + Lh|δ|

(49)

for all i = 1, . . . , m, and x̃a(t0), x̃b(t0) ∈ Ωρ′ . Thus, the differences in the components of the inputs ū
and û that would be computed at t0 with and without the cyberattack are bounded in Equation (49)
by a bound that depends on how deviant the false state measurement was from the actual state
measurement (i.e., δ).



Mathematics 2020, 8, 499 25 of 38

Part 2. Consider now the actual state trajectories xa and xb given by Equations (43)–(44) under the
two different inputs ū and û throughout the sampling period from t0 to t1. In this case:

xa(t) = xa(t0) +
∫ t

t0

f (xa(s), ū, w)ds (50)

xb(t) = xb(t0) +
∫ t

t0

f (xb(s), û, w)ds (51)

Subtracting Equation (51) from Equation (50) and taking the absolute value of both sides gives:

|xa(t)− xb(t)|

≤
∫ t

0
[| f (xa(s), ū, w(s))− f (xb(s), û, w(s))|] ds

=
∫ t

0
[| f (xa(s), ū, w(s))− f (xa(s), û(s), w(s))

+ f (xa(s), û(s), w(s))− f (xb(s), û, w(s))|] ds

≤
∫ t

0
[| f (xa(s), ū, w(s))− f (xa(s), û(s), w(s))|

+| f (xa(s), û(s), w(s))− f (xb(s), û, w(s))|] ds

(52)

for all t ∈ [0, t1). Using Equations (8) and (9), the following bound is achieved:

|xa(t)− xb(t)| ≤
∫ t

0
[Lu|ū(0)− û(0)|+ Lx|xa(s)− xb(s)|] ds

≤ Lu|ū(0)− û(0)|(t− 0) + Lx

∫ t

0
|xa(s)− xb(s)|ds

≤ Lu(2εr + Lh|δ|)
√

mt + Lx

∫ t

0
|xa(s)− xb(s)|ds

(53)

for all t ∈ [0, t1), where the last inequality follows from Equation (49). Finally, using the
Gronwall-Bellman inequality [44], it is obtained that:

|xa(t)− xb(t)| ≤
Lu(2εr + Lh|δ|)

√
m

Lx
(eLxt − 1) (54)

for t ∈ [0, t1).

We now present two propositions, the first of which bounds the difference between the trajectories
of the actual and nominal systems of Equation (1) when initialized from the same state, and the second
of which uses the following proposition to relate δ′ and δ.

Proposition 2. [22,45] Consider the systems

ẋy(t) = f (xy(t), ū(t), w(t)) (55)

ẋz(t) = f (xz(t), ū(t), 0) (56)

with initial states xy(t0) = xz(t0) ∈ Ωρ. There exists a K function fW(·) such that

|xy(t)− xz(t)| ≤ fW(t− t0) (57)
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for all xy(t), xz(t) ∈ Ωρ and all w(t) ∈W with:

fW(τ) =
Lwθ

Lx
(eLxτ − 1) (58)

Proposition 3. Consider that the following holds:

|x̃b(tk+1)− xp(tk+1)| ≤ |δ′| (59)

where xp(tk+1) is the solution of the nominal system of Equation (1) initialized from the last (accurate) state
measurement at tk, then if

fW(∆) + |δ′| ≤ |δ| (60)

the following holds:
|x̃a(tk+1)− x̃b(tk+1)| ≤ |δ| (61)

Proof. From the triangle inequality, Equation (57), and Equations (59) and (60):

|x̃a(tk+1)− x̃b(tk+1)| = |x̃a(tk+1)− xp(tk+1) + xp(tk+1)− x̃b(tk+1)|
≤ |x̃a(tk+1)− xp(tk+1)|+ |xp(tk+1)− x̃b(tk+1)|
≤ fW(∆) + |δ′| ≤ |δ|

(62)

The use of Equation (57) in the above statement assumes that the measurement at tk was accurate
(i.e., xp(tk) = x̃a(tk)).

The above proposition indicates that the proposed implementation strategy (i.e., if |x(tk) −
xp(tk)| > |δ′|, a warning is presented to operators) can be used to guarantee that the actual state
and the state measurement are within a certain bound at the first sampling period when the state
measurement is falsified and that has not yet been detected. This will be used in proving that the
closed-loop state remains within Ωρ for a sampling period following that attack, as is demonstrated in
the theorem below that follows one further proposition used in proving that main result.

Proposition 4. [22,45] Consider the Lyapunov function V(·) of the system of Equation (1). There exists a
quadratic function fV(·) such that:

V(x) ≤ V(x̂) + fV(|x− x̂|) (63)

for all x, x̂ ∈ Ωρ′ with
fV(s) = α4(α

−1
1 (ρ′))s + Mvs2 (64)

where Mv is a positive constant.

Theorem 1. Consider the system of Equation (1) in closed-loop under the LEMPC design of Equation (42)
based on a controller h1(x) that satisfies the assumptions of Equations (2)–(5) and (6). Let εw > 0, ∆ > 0,
ρ > ρ′ > ρe > ρ′e > ρmin > ρs > 0 satisfy:

ρ′e ≤ ρ′ − fV( fW(∆)) (65)

− α3(α
−1
2 (ρs)) + L′x M∆ + L′wθ ≤ −εw/∆ (66)

ρ′ + fV( fu(∆)) ≤ ρ (67)

− α3(α
−1
2 (ρ′e)) + L′x M∆ + L′x|δ|+ L′wθ ≤ −ε′w/∆ (68)

ρmin = max{V(xb(t + ∆)) : xb(t) ∈ Ωρs} (69)
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and
ρ = max{V(xb(t + ∆)) : xb(t) ∈ Ωρ′/Ωρ′e} (70)

If x(t0) ∈ Ωρ′ and N ≥ 1, then the state xb(t1) ∈ Ωρ.

Proof. Feasibility of the optimization problem of Equation (42) at t0 was ensured in [26] when x̃b(0) ∈
Ωρ and Equation (66) holds (namely h1(x) implemented in sample-and-hold is a feasible solution).
To prove the stability result, we consider four cases: Case 1) the actual process state at t0 is x0 ∈ Ωρ′e
but the falsified state measurement at t0 is x0 + δ ∈ Ωρ′e ; Case 2) the actual process state at t0 is
x0 ∈ Ωρ′/Ωρ′e but the falsified state measurement at t0 is x0 + δ ∈ Ωρ′/Ωρ′e ; Case 3) the actual process
state at t0 is x0 ∈ Ωρ′/Ωρ′e but the falsified state measurement at t0 is x0 + δ ∈ Ωρ′e ; and Case 4) the
actual process state at t0 is x0 ∈ Ωρ′e but the falsified state measurement at t0 is x0 + δ ∈ Ωρ′/Ωρ′e .

Case 1. When the state measurement x0 ∈ Ωρ′e is provided to the LEMPC, it was proven in [26]
that under the condition in Equation (65), V(xa(t1)) ≤ ρ′. From Equation (42h), V(x̃b(t1)) ≤ ρ′e.
From Proposition 4, Proposition 1, and Equation (54):

V(xb(t1)) ≤ V(xa(t1)) + fV(|xa(t1)− xb(t1)|)
≤ ρ′ + fV( fu(∆))

(71)

if V(xb(t1)) ∈ Ωρ′ . If ρ is chosen such that the condition of Equation (67) is satisfied, then ρ′ must be
chosen to be sufficiently less than ρ such that Equation (67) holds, or

ρ′ + α4(α
−1
1 (ρ′))

[
Lu(2εr + Lh|δ|)

√
m

Lx
(eLx∆ − 1)

]
+ Mv

[
Lu(2εr + Lh|δ|)

√
m

Lx
(eLx∆ − 1)

]2

≤ ρ

(72)

Case 2. When the state measurement x0 ∈ Ωρ′/Ωρ′e is provided to the LEMPC, it was proven
in [26] that under the condition in Equation (66), V(xa(t)) ≤ V(x0), ∀ t ∈ [0, t1). To determine whether
V(xb(t)) ≤ V(x0), ∀ t ∈ [0, t1), we note that from Equation (42i) and Equation (3):

∂V(x̃b(t0))

∂x
f (x̃b(t0), û(t0), 0)

≤ ∂V(x̃b(t0))

∂x
f (x̃b(t0), h(x̃b(t0)), 0) ≤ −α3(|x̃b(t0)|)

(73)

The time-derivative of V along the closed-loop state trajectories of xb from 0 to t1 is given by:

V̇(xb(τ)) =
∂V(xb(τ))

∂x
f (xb(τ), û(t0), w(τ)) (74)

Adding and subtracting ∂V(x̃b(t0))
∂x f (x̃b(t0), û(t0), 0) from the right-hand side of Equation (74) and using

Equation (73) gives:
V̇(xb(τ)) ≤ −α3(|x̃b(t0)|)

+

∣∣∣∣∂V(xb(τ))

∂x
f (xb(τ), û(t0), w(τ))

−∂V(x̃b(t0))

∂x
f (x̃b(t0), û(t0), 0)

∣∣∣∣
≤ −α3(|x̃b(t0)|) + L′x|xb(τ)− x̃b(t0)|+ L′w|w|
≤ −α3(|x̃b(t0)|) + L′x|xb(τ)− xb(t0)− δ|+ L′wθ

≤ −α3(|x̃b(t0)|) + L′x|xb(τ)− xb(t0)|+ L′x|δ|+ L′wθ

≤ −α3(α
−1
2 (ρ′e)) + L′x M∆ + L′x|δ|+ L′wθ

(75)
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since x̃b(t0) ∈ Ωρ′/Ωρ′e . If Equation (68) holds, then V̇(xb(τ)) ≤ −ε′w/∆ for τ ∈ [0, t1), with the result
that V(xb(t)) ≤ V(x0), ∀ t ∈ [0, t1).

Case 3. When the state measurement x0 ∈ Ωρ′/Ωρ′e is provided to the LEMPC, it was proven
in [26] that under the condition in Equation (66), V(xa(t)) ≤ V(x0), ∀ t ∈ [0, t1). From Equation (70),
V(xb(t)) ≤ ρ, ∀ t ∈ [0, t1).

Case 4. When x0 + δ ∈ Ωρ′/Ωρ′e but x0 ∈ Ωρ′e , Equation (42i) is applied. From the proof
for Case 2, this causes V(xb(t)) ≤ V(x0), ∀ t ∈ [0, t1) if Equation (68) holds and x0 ∈ Ωρ′e /Ωρs ,
such that V(xb(t)) ≤ ρ′ < ρ, ∀ t ∈ [0, t1). If instead x0 ∈ Ωρs , then Equation (69) guarantees that
x(t1) ∈ Ωρmin ⊂ Ωρ.

The above theorem bounds how large |δ| could be such that even if a false state measurement
defined by |δ| is provided to the LEMPC of Equation (42) at t0, the closed-loop state of the system of
Equation (1) remains within the stability region over the subsequent sampling period (i.e., it gives the
conditions required for ∆, ρ′, ρ′e, θ, ρmin and ρs to maintain the closed-loop state in Ωρ throughout a
sampling period if the measurement at tk satisfies |x(tk)− xp(tk)| ≤ |δ′|, but x(tk) is actually a false
state measurement, and no new control action is applied throughout a sampling period). δ′ can be set
arbitrarily small in the implementation strategy to reduce the conservatism needed in the design of
Ωρ′ according to the conditions of Theorem 1; however, this may come at an increased risk of false
alarms via the proposed strategy, as any predicted and actual state measurements are expected to
deviate by some amount due to disturbances/plant-model mismatch.

The above proof indicates that ρ′ can be selected to be sufficiently conservative compared to ρ

for closed-loop stability purposes in the presence of a cyberattack; however, ρ could be selected to
limit the potential profit loss during an attack. Specifically, the profit is determined as the time-integral
of le throughout a sampling period; because le is considered to be a continuous function of x and u,
and the difference between the trajectories of xa and xb is bounded (Equation (47)) and between û and
ū is bounded (Equation (49)), the maximum difference between the time-integral of le as a function of
xa and ū and between the time-integral of le as a function of xb and û throughout a sampling period
is also bounded. The larger ρ is, the larger ρ′ can be without closed-loop stability issues, potentially
causing a greater worst-case difference between xa and xb and therefore a greater potential profit loss.
From a production volume perspective, the goal of maintaining desired production volumes could
be considered to be a constraint on a production volume function pv(x, u). If there is a constraint on
this function that is satisfied, for example, within the LEMPC, then because this function depends
continuously on x and u and the differences in the trajectories of xa and xb, as well as û and ū are
bounded, then there should be a maximum difference in how far off pv can be from a value in the
EMPC, which may be related to how large ρ and ρ′ (which limits how far apart xa(t0) and x̃b(t0)) are.
However, as will be demonstrated in the example below, the actual relationship between falsified
state measurements and profit changes under the resulting control actions compared to a case without
falsification is not necessarily straightforward and depends on the dynamics and profit metric.

Remark 3. Equation (72) indicates that ρ′, εr, |δ|, and ∆ must be sufficiently small such that the conditions in
that equation can be met for a given ρ. Smaller attacks (i.e., smaller values of |δ|) allow for more flexibility in the
control design (e.g., in allowing larger input changes through larger εr, larger sampling periods ∆, or larger
regions Ωρ′ within which the LEMPC seeks to operate the process while still maintaining x(t) ∈ Ωρ).

Remark 4. The role of |δ| has some similarities to measurement noise bounds, but an extension that precisely
describes how a context similar to that described above for handling cyberattacks might be compared to
measurement noise is outside the scope of this work (but available in [28]).

Remark 5. Equation (70) is required because in Case 3, when x0 ∈ Ωρ′/Ωρ′e but x0 + δ ∈ Ωρ′e , the constraint
of Equation (42i) should be applied to drive the closed-loop state back toward Ωρ′e if the state measurements
were correct, as the use of Equation (42h) was proven to maintain the closed-loop state in Ωρ′ when x0 ∈ Ωρ′e .
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Equation (70) ensures that even if the “wrong” constraint is used in the LEMPC for a sampling period when
x0 ∈ Ωρ′/Ωρ′e due to the cyberattack, the closed-loop state can still be maintained in Ωρ. This case helps to
showcase why, if there is no state measurement obtained, the closed-loop state may exit the stability region at the
next sampling time. Specifically, if the closed-loop state is in the region outside of Ωρ′ but a state measurement is
obtained stating that it is in Ωρ′e , then the constraint applied is not guaranteed to drive the closed-loop state to a
lower level set and therefore it could leave Ωρ.

5.3.1. Cyberattack-Resilient EMPC: Chemical Process Examples

In this section, we provide two process examples that illustrate several concepts from the above
sections. First, we focus on the fact that when an attack involves a falsified state measurement being
provided to an EMPC, this state measurement changes the constraint set of the EMPC and therefore
would be expected to cause a different input to be computed than would have been computed if the
state measurement had been correct. In light of this, the first numerical demonstration focuses on
an EMPC design without Lyapunov-based stability constraints or input rate of change constraints;
even without such constraints, we can demonstrate that with a small difference between the actual
and falsified state measurements, the inputs computed by an EMPC may not be significantly different.
This example considers the continuous stirred tank reactor (CSTR) process described in [46]. In this
process, the reactant is introduced into the reactor through an inlet stream with flow rate F, temperature
T0, and initial concentration CA0. For the purposes of this chemical process model, it is assumed that
the contents of the tank have a uniform composition and temperature throughout. A heating jacket
provides heat to the reactor at rate Q. Equations (30)–(31) therefore describe the dynamics of the
system, where the parameters are given in Table 4 and the inputs are bounded (the inlet reactant
concentration CA0 ∈ [0.5, 7.5] kmol/m3 and heat rate supplied Q ∈ [−50.0, 50.0] MJ/h).

Table 4. CSTR model process parameters.

Parameter Value Unit

V 1 m3

T0 300 K
Cp 0.231 kJ/kg·K
k0 8.46× 106 m3/h·kmol
F 5 m3/h
ρL 1000 kg/m3

E 5× 104 kJ/kmol
R 8.314 kJ/kmol·K

∆H −1.16× 104 kJ/kmol

To control the above process, an EMPC is used with the following stage cost function:

Le = −k0e
−E

RT(t) (CA(t))2 (76)

The simulations were initialized from CA(t0) = 2.0 kmol/m3 and T(t0) = 425.0 K and run at one
sampling time with a sampling period of length 0.01 h, with a prediction horizon of N = 10 and an
integration step of 10−3 h used to simulate the process with the Explicit Euler numerical integration
method. The simulations were performed in MATLAB using the function fmincon.

To examine the effect of a cyberattack over a sampling period, false sensor readings of the
concentration, CA,False and temperature, TFalse were provided to the EMPC. Values of CA,False ∈
[1.8, 4.0] kmol/m3 and TFalse ∈ [420, 430] K were selected due to their proximity to the actual value for
the state at t0. Figures 11 and 12 show results under various cyberattack scenarios. The values in the
legends of each figure represent the falsified state measurements (CA,False, TFalse), in units of kmol/m3

and K, respectively, that were provided to the EMPC at t0 when it computed the inputs in Figure 12
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that resulted in the state trajectories over a sampling period shown in Figure 11. As shown by the
state trajectories, sufficiently small falsified state measurements may not cause the computed inputs
to be significantly different than they would have been with the correct state measurement over one
sampling period.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
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0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
425
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435

Figure 11. Trajectories of CA and T for one sampling period for various cyberattack scenarios.
The trajectories are overlapping.
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Figure 12. Values of CA0 and Q for one sampling period for various cyberattack scenarios.

In the example just described, small changes in the state measurement from its actual value did
not cause significant changes in the process state under EMPC throughout the next sampling period.
We now consider a modified CSTR example under EMPC with Lyapunov-based stability constraints.
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In this process example, we again consider the CSTR from Section 4.1.3, though without consideration
of piping. The process state was initialized at xinit = [−0.4 kmol/m3 8 K]T , with controller parameters
N = 10 and ∆ = 0.01 h. The process model of Equations (30)–(31) was integrated with the Explicit
Euler numerical integration method using an integration step size of 10−4 h. The constraint with the
form of Equation (12f) is enforced at the end of every sampling time if x(tk) ∈ Ωρe , and the constraint
of the form of Equation (12g) is enforced at tk when x(tk) ∈ Ωρ/Ωρe , but then followed by a constraint
of the form of Equation (12f) at the end of all sampling periods after the first.

Several simulations were performed in which falsified state measurements were provided to the
LEMPC described above, and the process was then simulated under the optimal inputs for the first
sampling period in the prediction horizon for ∆. In these simulations, the actual state measurement
at t0 is denoted by x(t0). Simulations were performed with two values of x(t0) (denoted in the
following as the “Base” case). For each x(t0), four falsified state measurements were provided,
and the results were compared. Specifically, with x1,dev = 0.01 kmol/m3 and x2,dev = 1 K, the four
falsified state measurements provided to the LEMPC for each x(t0) were (x1(t0)+ x1,dev, x2(t0)+ x2,dev)

(denoted in the following as the (+,+) case), (x1(t0)− x1,dev, x2(t0) + x2,dev) (denoted in the following
as the (−,+) case), (x1(t0) − x1,dev, x2(t0) − x2,dev) (denoted in the following as the (−,−) case),
and (x1(t0) + x1,dev, x2(t0)− x2,dev) (denoted in the following as the (+,−) case).

We first consider x(t0) = (−0.4 kmol/m3, 8 K), for which the state trajectories resulting from the
inputs computed by the LEMPC are plotted in Figure 13. The trajectories, such as those in Figure 11,
are almost overlaid, indicating that it may be possible, for false sensor measurements sufficiently
close to the actual state measurement, to not experience closed-loop stability issues within a sampling
period. x(t0) as well as the four falsified state measurements in this case are all within Ωρe .
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Figure 13. State trajectories for x(t0) = (−0.4 kmol/m3, 8 K) and the four cyberattacks.

Another initial condition, x(t0) = (−0.243 kmol/m3, 52.75 K), was also explored with the four
different cyberattacks, with the resulting state and input trajectories presented in Figures 14–15. In this
case, x(t0) ∈ Ωρe (specifically, V(x(t0)) = 220.96), but the falsified state measurement is in Ωρ/Ωρe

for the (+,+) and (−,+) cases. In these figures it is seen that the inputs and consequently states
deviate more significantly for the same magnitude of deviations in the falsified state measurements as
were explored in Figure 13. A contributor to the significantly different inputs for some of the cases
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is that when x f (t0) ∈ Ωρ/Ωρe compared to when x f (t0) ∈ Ωρe , different constraints are activated in
the LEMPC.
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Figure 14. State trajectories for x(t0) = (−0.243 kmol/m3, 52.75 K) and the four cyberattacks.
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Figure 15. Input trajectories for x(t0) = (−0.243 kmol/m3, 52.75 K) and the four cyberattacks.

In the remainder of this example, we will analyze a case with regions Ωρ, Ωρ′ , and Ωρ′e , where ρ′e
is arbitrarily set to 0.75ρ′. First, we explore the relationship between the size of ρ and ρ′. Specifically,
consider the initial condition x1 = −0.35 kmol/m3 and x2 = 17 K. In this case, if ρ′ = 144 and
ρ = 180, then with a falsified state measurement given as x1 = −0.052 kmol/m3 and x2 = −8.393 K,
the closed-loop state does not leave Ωρ within a sampling period. Other falsified state measurements
were also tested (e.g., x1 = 0.1, x2 = 1; x1 = 0.2, x2 = 10; x1 = −0.01, x2 = −10, where x1 is in
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kmol/m3 and x2 is in K) and the closed-loop state did not leave Ωρ throughout a sampling period.
If instead, however, the initial condition is x1 = 0.2 kmol/m3 and x2 = 5 K and ρ′ = 170, with the
false state measurement x1 = −0.01 and x2 = −10, the closed-loop state leaves Ωρ within a sampling
period, as shown in Figure 16. However, if ρ′ is decreased (e.g., to 30), the closed-loop state does not
exit Ωρ within a sampling period, as shown in Figure 17 (though the initial condition for the decreased
value of ρ′ is then no longer in Ωρ′ and thus would not be expected to be an allowable initial condition).
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Figure 16. V(x) throughout the first sampling period with x1 = 0.2 kmol/m3 and x2 = 5 K and
ρ′ = 170.
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Figure 17. V(x) throughout the first sampling period with x1 = 0.2 kmol/m3 and x2 = 5 K and
ρ′ = 30.
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We now analyze two additional points highlighted above: (1) the impact of different values of
ρ′ on profit loss and (2) the impact of input rate of change constraints. To analyze these, we first
consider the case that ρ′ = 20 and the case that ρ′ = 30. To do this, we again consider the attack
x1 = −0.052 kmol/m3 and x2 = −8.393 K and the initial conditions x1 = 0.01, x2 = 5; x1 = −0.01,
x2 = −5; x1 = −0.1, x2 = −8; x1 = −0.1, x2 = 10. Of these, the first two and fourth are in Ωρ′

both when ρ′ = 20 and when ρ′ = 30, and the third is in Ωρ′ only if ρ′ = 30. The profits with and
without the attacks for all four initial conditions are shown in Tables 5 and 6, along with the differences
between the profits under the attack and without the attack (a positive profit difference corresponds to
the attacked condition being more profitable than the non-attacked condition, and a negative profit
difference corresponds to a profit loss under the attack). As shown in these tables, the attacks did not
necessarily decrease profits, but this will be impacted by the fact that many of the inputs computed
under the attacks did not maintain the closed-loop state within the stability region, whereas the inputs
computed under the EMPC with no attack would have done this. This indicates that the method for
checking for worst-case and best-case profits in the stability region should also analyze how the lowest
profits compare with a steady-state condition that meets all constraints.

Table 5. Profit results for four different initial conditions with and without cyberattacks over a sampling
period, with ρ′ = 30.

x1 x2 Profit, No Attack Profit, Attack Profit Difference

0.01 5 0.1913 0.2452 0.0539
−0.01 −5 0.1642 0.1794 0.0152
−0.1 −8 0.1547 0.1424 −0.0123
−0.1 10 0.1884 0.2354 0.0470

Table 6. Profit results for four different initial conditions with and without cyberattacks over a sampling
period, with ρ′ = 20.

x1 x2 Profit, No Attack Profit, Attack Profit Difference

0.01 5 0.1831 0.2347 0.0516
−0.01 −5 0.1567 0.1714 0.0147
−0.1 −8 0.1547 0.1359 −0.0188
−0.1 10 0.1457 0.2252 0.0795

Finally, we explore the impact of input rate of change constraints. Specifically, we return to the
case shown in Figure 16 in which the closed-loop state exits the stability region in less than ∆ when
no input rate of change constraint is applied. Input rate of change constraints were employed that
assumed that before t = 0, the steady-state inputs were applied and that the upper bound on the
change in inputs between any two sampling periods in the prediction horizon is 1 for CA0 and 104 for Q.
The resulting variation in V(x) throughout a sampling period is shown in Figure 18. This demonstrates
that the change in the constraint set of the controller can have an impact on a given attack.
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Figure 18. V(x) throughout the first sampling period with input rate of change constraints.

6. Conclusions

This work explored how cyberattacks could be prevented from creating issues for a chemical
process from both a safety and a profit/production perspective. It displayed an inherent safety
perspective for cyberattacks via two process examples, and also proposed an approach for making a
sufficiently conservative LEMPC formulation with input rate of change constraints for preventing the
closed-loop state from leaving the stability region under a false sensor measurement cyberattack in a
sampling period. The safety and control system design topics were connected through their reliance
on the ability to explicitly characterize the set of allowable initial conditions in LEMPC for making
processes cyberattack-resilient.

To conclude, we make several additional comments regarding control system cybersecurity
by exploring several additional thoughts for making systems secure against cyberattacks. The first
concept to be discussed addresses cybersecurity risks associated with false signals being supplied to the
actuators (i.e., not those from the controller) or unavailability of communication signals [47,48] between
the sensor and controller or controller and actuator. For example, consider a set of state measurements
available to a controller at a given time t0. A potential method that could be used to attempt to thwart
a cyberattack in which false sensor measurements could be provided to any sensor could be to have
the controller randomly select which sensors would provide state measurements to Equation (11) from
a set of physical sensors, with the remainder of the states for which no measurements are obtained
coming from estimates. The implementation of such a network and methodology could make it
difficult for the cyberattacker to know if the supplied false values will affect the process, since it
is presumed that the attacker would not be aware of which sensors would be providing the state
measurement at time tk. However, if the cyberattacker does manage to select sensors from which the
state measurements are being given as the initial condition in Equation (11c), the resulting deviations
of the state trajectory from the trajectory it otherwise would have taken could cause the process state
to exit the stability region. Additionally, if a cyberattacker was to modify the communication signals
received by the actuators directly (for example, replacing the signals communicated to the actuators by
a controller with false signals), then perhaps the actuators could be equipped with an ability to double
check whether the control action it receives is predicted to keep the closed-loop state in the stability
region, and if not, to provide a red flag to operators.
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Several challenges noted in the work were: (1) the computationally heavy means noted as a
possible way for analyzing whether a process design is cyberattack-resilient (i.e., testing all possible
combinations of inputs from all possible states which the system may access); (2) the need to develop
a detection method which can guarantee that an attack would be detected in a sampling period for
pairing with the conservative LEMPC formulation; and (3) the computationally intensive nature of
the proposed technique for evaluating worst-case profit loss in a sampling period for the system via
closed-loop simulations under all possible inputs and disturbances. Future research could seek to
address these considerations.

Author Contributions: H.D. wrote the manuscript and performed the simulations. M.W. worked on the
simulations in Figures 11 and 12 and the description of that example. All authors have read and agreed to
the published version of the manuscript.

Funding: Financial support from the National Science Foundation CBET-1839675, CNS-1932026, the Air Force
Office of Scientific Research award number FA9550-19-1-0059, the Wayne State University University Research
Grant, Wayne State University Engineering’s Research Opportunities for Engineering Undergraduates program,
and Wayne State University startup funding is gratefully acknowledged.

Acknowledgments: Helen Durand would like to thank the many colleagues whose discussions provided the
insights regarding the nature of faults vs. cyberattacks, and of the nature of HAZOP in relation to cybersecurity
risks, presented in this work.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Dancy, J.R.; Dancy, V.A. Terrorism and Oil & Gas Pipeline Infrastructure: Vulnerability and Potential Liability
for Cybersecurity Attacks. ONE J. 2016, 2, 579.

2. Martel, R.T. The Impact of Internet-Connected Control Systems on the Oil and Gas Industry. Ph.D Thesis,
Utica College, New York, NY, USA, 2015.

3. Goel, A. Cybersecurity in O&G Industry. In Proceedings of the Offshore Technology Conference, Houston,
TX, USA, 6–9 May 2017.

4. Ten, C.-W.; Govindarasu, M.; Liu, C.-C. Cybersecurity for electric power control and automation systems.
In Proceedings of the 2007 IEEE International Conference on Systems, Man and Cybernetics, Montreal, QC,
Canada, 7–10 October 2007, pp. 29–34. [CrossRef]

5. Zhang, Y.; Wang, L.; Xiang, Y.; Ten, C. Power System Reliability Evaluation With SCADA Cybersecurity
Considerations. IEEE Trans. Smart Grid 2015, 6, 1707–1721. [CrossRef]
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