
Wayne State University Wayne State University 

Wayne State University Dissertations 

January 2019 

Molecular Machinery For The ‘kiss And Run’ Mechanism Of Insulin Molecular Machinery For The ‘kiss And Run’ Mechanism Of Insulin 

Secretion Secretion 

Akshata Ramesh Naik 
Wayne State University, akshoo23@gmail.com 

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations 

 Part of the Physiology Commons 

Recommended Citation Recommended Citation 
Naik, Akshata Ramesh, "Molecular Machinery For The ‘kiss And Run’ Mechanism Of Insulin Secretion" 
(2019). Wayne State University Dissertations. 2287. 
https://digitalcommons.wayne.edu/oa_dissertations/2287 

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has 
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of 
DigitalCommons@WayneState. 

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/69?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/2287?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages


MOLECULAR MACHINERY FOR THE ‘KISS AND RUN’ MECHANISM OF INSULIN 
SECRETION 

 
by 
 

AKSHATA RAMESH NAIK 
 

DISSERTATION 
 

Submitted to the Graduate School 

of Wayne State University, 

Detroit, Michigan 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

2019 

MAJOR: PHYSIOLOGY 

Approved By: 

_____________________________________ 
Advisor        Date 

_____________________________________ 

_____________________________________ 

_____________________________________ 

_____________________________________ 

 

 
  



	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© COPYRIGHT BY 
 

AKSHATA RAMESH NAIK 
 

2019 
 

All Rights Reserved 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



	

ii 

DEDICATION 

I would like to dedicate my thesis to all the wonderful people who have given me 

constant love and support during the course of my degree and otherwise. 

First and foremost, I dedicate this PhD to my parents, the pillars of my life. I have 

risen to achieve many things by stepping on their shoulders. My mother, Mrs. Chandrika 

Ramesh Naik, is my very first teacher and my best friend, ever since I can remember. My 

father, Mr. Ramesh Sampat Naik, has taught me to be strong even in times of extreme 

difficulties and hardships. Thank you both for the unconditional love and positivity that 

you create around me. 

My brother, Venkatesh R. Naik, to whom, I can pour my heart out. Your 

determination and sincerity inspires me constantly. 

I would also like to dedicate this degree to my in- laws, the ‘Sridhars’ for welcoming 

me whole- heartedly into their family. Thank you late Mrs. Pushpa Sridhar, my mother- 

in- law and late Mr. S.V. Sridhar, my father- in- law, for making me one of their own.  

Most importantly I would dedicate my PhD to my loving husband and my adorable 

children.  

My husband, Praveen Sridhar is an amazing human being, truly complements me 

in every way possible. Thank you for reinstating the courage in me each and every time I 

have needed it. My journey has been mostly smooth and happy because of your presence 

in my life. You have been wonderful in sharing responsibilities and I know that you are 

indeed proud of my achievements.  

Finally this degree is for none other than my beautiful kids. Whatever I do is 

because of them and for them. My son, Nischay Sridhar and my daughter, Nivriti Sridhar 



	

iii 

are the greatest treasures of my life who make everything else seem tiny. 

Additionally, I dedicate this thesis to my maternal grandparents, Smt. Jayalakshmi 

Srinivasan and Sri. M.A Srinivasan who loved and nurtured me unconditionally. 

Thank you everyone for the untiring patience and support expressed towards me 

during my graduate school journey. 

Lastly I would express my gratitude towards the Almighty for guiding me always. 

  



	

iv 

ACKNOWLEDGEMENTS 

My boundless gratitude is expressed towards my mentor, Prof. Bhanu P. Jena. It 

has been my pleasure and honor to be his graduate student. I remember meeting him in 

his office after enrolling in the PhD program and it has been an upward journey since 

then. His child- like enthusiasm motivates me to pursue my passion for science. Thank 

you for your guidance and constructive criticism that has made me the scientist that I am 

today. My growth in Jena lab has been immensely satisfying in terms of critical thinking, 

troubleshooting research problems, mentoring undergraduate and master’s students, not 

to mention the enjoyable environment that we all work in. 

Along the way, I had the pleasure of working with many other people. Dr. Kenneth 

T. Lewis, my friend and colleague who taught me during my initial few months of joining 

this lab. I would like to thank in particular, Dr. Suvra Laha, Mr. Eric Kuhn, Ms. Sanjana 

Kulkarni and Mr. Nikhil Yedulla, co- authors of chapters in this thesis. I would also like to 

acknowledge all the wonderful people in the lab, whom I trained and worked with: Dr. 

Maheshika Pahliwadana, Mr. Keith Kokotovich, Ms. Rishika Pulvender, Mr. Asiri 

Liyanaraarchi and Mr. Brent Formosa. 

I would additionally like to thank my committee members, Dr. Daniel A. Walz, Dr. 

Joseph C. Dunbar, Dr. Robert J. Wessells and Dr. Christopher V. Kelly for all the advice 

and suggestions. My gratitude expressed towards the Department of Physiology and its 

office staff, especially to Ms. Christine Cupps for helping students outside of the lab. 

Finally, a big thank you to all my amazing friends – Ken, Carthic, Josh, Eric, 

Rishika, and Brent, who kept me sane during this degree. 

It has been a privilege to work with so many delightful people.  



	

v 

TABLE OF CONTENTS 

Dedication ii 

Acknowledgements iii 

List of Figures vii 

List of Abbreviations viii 

Chapter 1: Introduction 1 

Transient Cell Secretion 1 

Molecular Machinery for Transient Cell Secretion 2 

Insulin Secreting Porosome Complex 3 

Proteome and Structure of the Insulin Secreting Porosome Complex 3  

Specific Aims 6 

Chapter 2: Functional Reconstitution of the Insulin Secreting Porosome  
Complex in Live Cells 8 

Abstract 8 

Introduction 8 

Experimental Procedures 10 

Results and Discussion 14 

Chapter 3: Intravesicular and Intracellular pH is Critical for Glucose  
Stimulated Insulin Release  23 

Abstract 23 

Introduction 23 

Experimental Procedures 25 

Results and Discussion 27 

Chapter 4:  Assembly and Disassembly of SNARE Protein Complex is  
pH Dependent 32 



	

vi 

Abstract 32 

Introduction 32 

Experimental Procedures 34 

Results and Discussion 39 

Chapter 5: Identification of an Epileptic Drug that Affects Glucose  
Stimulated Insulin Secretion 47 

Abstract 47 

Introduction 47 

Experimental Procedures 49 

Results and Discussion 51 

Chapter 6: Discussion and Conclusions 58 

Appendix A Copyright License Agreement for Chapter 2 61 

Appendix B Copyright License Agreement for Chapter 4 62 

Appendix C Copyright License Agreement for Chapter 5 63 

References 64 

Abstract 80 

Autobiographical Statement 82 

 

 

 

 

  



	

vii 

LIST OF FIGURES 

Figure 2.1: Electron and atomic force micrographs of MIN6 cells  
demonstrate the presence of cup-shaped porosome  
complexes at the cell plasma membrane 16 

Figure 2.2: Enriched presence of TREK-1, Gαi3, and Syntaxin-1A  
immunoreactivity in porosome-reconstituted MIN6 cells 18 

Figure 2.3: Porosome-reconstituted MIN6 cells demonstrate elevated  
glucose-stimulated insulin secretion 19 

Figure 2.4: Enriched presence of TREK-1, Gαi3, and Syntaxin-1A  
immunoreactivity in homogenates of porosome-reconstituted  
MIN6 cells, and the consequent glucose-stimulated insulin  
release is observed at 24h and 48h following reconstitution 21 

Figure 3.1: Bafilomycin A inhibits intragranular acidification in MIN6 cells 27 

Figure 3.2: Bafilomycin A reduces glucose stimulated insulin release in MIN6  
cells 28 

Figure 3.3: Bafilomycin treatment leads to accumulation of insulin within MIN6  
cells 30 

Figure 4.1: Glucose-stimulated insulin secretion of Min-6 cells induces an  
intracellular pH drop followed by alkalization, demonstrated using  
pH-sensitive CdTeQDs 40 

Figure 4.2: NSF-ATP mediated t-/v-SNARE complex disassembly is  
attenuated in acidic pH environment 42 

Figure 4.3. Association between t-SNARE liposomes and v-SNARE  
liposomes in presence of NSF-ATP is governed by pH 44 

Figure 5.1: Inositol depletion in MIN6 cells is observed following 5 hours of  
VPA exposure 52 

Figure 5.2: Decreased co-localization of vH+-ATPase subunit C with insulin  
in VPA-treated MIN6 cells 53 

Figure 5.3: VPA treatment significantly reduces glucose-stimulated insulin  
secretion in MIN6 cells 54 

Figure 5.4: VPA treatment increases total intracellular insulin content in MIN6  
cells 55 

	 	



	

viii 

LIST OF ABBREVIATIONS 
	
AFM   Atomic Force Microscopy 
 
EM   Electron Microscopy 
 
MIN6   Mouse Insulinoma Cells 
 
TREK-1  Potassium channel subfamily K member 2 protein 
 
HSP   Heat Shock Proteins 
 
SNARE Soluble N-ethylmaleimide Sensitive Factor Attachment Protein 

Receptor 
 
AQP    Aquaporin 
 
ISG   Insulin Secreting Granule 
 
NSF   N-ethylmaleiamide sensitive factor 
 
ATPase  Adenosine Triphosphatse 
 
v H+ ATPase  vacuolar H+ ATPase 
 
VPA   Valproate 
 
FDA    Food and Drug Administration 
 
SNAP 25  Synaptosomal Associated Protein 25 kDa 

PCS   Photon Correlation Spectroscopy 
 
VAMP   Vesicle Associated Membrane Protein 
 
MIPS   Myo-Inositol Phosphate Synthase 
 
DAG    Diacylglycerol 
 
  



1	

 

CHAPTER 1: INTRODUCTION 

Cell secretion is a universal phenomenon and is extremely important for a variety 

of cellular functions. All cells ranging from prokaryotic bacteria, eukaryotic yeasts to 

mammalian cells undergo secretion1,2. A variety of physiological processes such as 

neurotransmission, release of histamines from mast cells following exposure to allergens, 

or the release of hormones from endocrine cells to maintain homeostasis all occur from 

the release of secretory products from within the cells to the cell exterior. These secretory 

contents are contained within membrane bound compartments termed as ‘secretory 

vesicles’ or ‘secretory granules’. Upon cell stimulation, secretory vesicles travel to 

associate with the cell plasma membrane where they dock and fuse at the specialized 

cup-shaped lipoprotein structures and release their contents to the outside of the cell.   

Transient Cell Secretion 

Secretion occurs either via complete collapse of the vesicle at the cell plasma 

membrane, termed as ‘total fusion’ or via the transient engagement and fusion of the 

vesicle with the cell plasma membrane, termed as ‘kiss-and-run’ mechanism3. This latter 

process of kiss-and-run, enabling the release of a portion of intravesicular contents to the 

outside, while retaining the chemical and morphological integrity of the secretory vesicle 

following a secretory episode.  

The kiss-and-run mechanism of cell secretion is supported by the observation of 

partially empty vesicles in electron micrographs of cells, following cell secretion. To 

enable such transient docking and fusion event at the cell plasma membrane, given that 

vesicle membrane are under high surface tension and therefore would favor collapse at 

the cell plasma membrane, the presence of a permanent docking and transient fusion 
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port at the cell plasma membrane was hypothesized and discovered by our laboratory 

over 20 years ago, and named the ‘porosome’4.  

Molecular Machinery for Transient Cell Secretion 

Studies now demonstrate that the ‘fusion pore’, an opening between the vesicle 

membrane and cell the plasma membrane is established at the porosome base oriented 

towards the interior of the cell. Historically, the kiss-and-run or transient mode of docking 

and fusion of secretory vesicles at the cell plasma membrane were proposed in 19735,6, 

which could explain the fractional release of intra-vesicular contents from cells during cell 

secretion. How this transient mechanism could be accomplished, remained a mystery. 

Subsequently in 1990, it was suggested that the fusion pore formation, which results from 

a ‘preassembled ion channel-like structure could open and close6. In the early 1990s it 

was proposed that the primary difficulty in observing such preassembled structures at the 

cell plasma membrane and fusion pore formation at such a level was due to the absence 

of tools for ultrahigh resolution live cell imaging7. The invention of force microscopy in the 

mid-1980s changed all that. In the mid-1990s, the hypothesis of the presence of secretory 

portals was confirmed by the discovery of the ‘porosome’, a new cellular structure at the 

cell plasma membrane8 using the atomic force microscope (AFM)9 an imaging tool that 

has revolutionized nano-science especially nano cell biology. Using AFM, 100–180 nm in 

size cup-shaped secretory portals were observed at the plasma membrane of live 

pancreatic acinar cells that secreted digestive enzymes through them8. The presence and 

morphology of these secretory portals were further confirmed using electron microscopy 

(EM)9-11.  

Porosomes have been discovered in almost all secretory cells such as neurons, 
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epithelial airway cells in the lungs, endocrine growth hormone releasing cells of the 

pituitary gland, and also in endocrine pancreatic beta cells, by our group, and 

subsequently by other researchers as well9,12-17. The function of the porosome as a 

universal secretory portal, its chemical composition, and its structural and functional 

reconstitution has been extensively studied and has greatly advanced our understanding 

of this supra-molecular lipo-protein structure.   

Insulin Secreting Porosome Complex 

Porosomes in β cells of the endocrine pancreas were demonstrated using EM and 

AFM on mouse insulinoma (MIN6) cells18. The insulin secreting porosome complex range 

in size, from 100 – 120 nm in diameter, compared to the 15 nm neuronal porosome 

complex and 100 – 180 nm porosome in pancreatic acinar cells. It is noteworthy, because 

the size of the porosome complex, correlates well to the size of secretory vesicles, within 

each cell type. For example, synaptic vesicles ranging in size from 30 – 50 nm19 dock at 

porosomes 1/2 to nearly 1/3 the vesicle size while similarly, the insulin secreting granules 

and zymogen granules measuring on average 500 nm, dock at porosomes measuring 

nearly 1/3rd the secretory vesicle size (140 nm on average)20,21. Structurally, the insulin 

secreting porosome complex is similar to the acinar cell porosome and it lacks the central 

plug that is almost exclusive to the neuronal porosome complex for rapid release of 

neurotransmitters.  

Proteome of the Insulin Secreting Porosome Complex 

The 100 – 120 nm sized MIN6 cell porosome has been immunoisolated and mass 

spectrometry reveals that it comprises of approximately 30 different core proteins. On the 

contrary, the nuclear pore, which is similar in size, is comprised of nearly 1000 protein 
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molecules22. Like any other porosome, the MIN6 cell porosome contains cytoskeletal and 

motor proteins such as actin, myosin and tubulin. Additionally, membrane channel 

proteins such as potassium channel subfamily K member 2 protein TREK-1, calcium 

transporting ATPase are also associated with the MIN6 cell porosome in addition to GTP 

binding signaling proteins, and heat shock chaperone proteins, HSP70 and HSP90. The 

presence of these proteins in the MIN6 cell porosome has been further confirmed using 

immunoisolation and Western Blot18. Since HSPs function in both protein folding and in 

assembly of protein complexes, their presence in MIN6 cell porosome was found to have 

a similar role. Immunoisolated porosomes from MIN6 cells treated with an inhibitor (17-

demethoxy-17-(2-prophenylamino) geldanamycin) against the late chaperone protein, 

HSP90, involved in protein assembly, exhibited loss of several proteins from the 

porosome complex18. However, the levels of these proteins were unchanged in the total 

cell homogenate. This strongly suggests that HSP90 is critical to the assembly and folding 

of the MIN6 porosome complex. It has further been demonstrated that cells exposed to 

HSP90 inhibitor secrete significantly sub-optimal levels of insulin upon stimulation by 

glucose.  

The MIN6 porosomes also comprise the SNARE (soluble N-ethylmaleimide 

Sensitive Factor attachment protein receptor) protein, synaptosomal associated protein 

25 kDa (SNAP 25). SNAP 25, a target SNARE (t SNARE) protein along with syntaxin 1 

interact with vesicular SNARE (v SNARE) proteins such as synaptobrevin to form the 

multimolecular SNARE complex, important for vesicle fusion at the plasma membrane23. 

When the vesicle membrane and the plasma membrane come in close proximity in the 

later part of secretion, the t and v SNAREs interact with each other in a circular array and 
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bring the apposing membranes together to form the fusion pore. The fusion pore thus 

forms at the base of the porosome complex via t/v SNAREs. It is widely accepted that the 

bivalent cation Ca+2 is involved in bridging, and fusion of the two negatively charged 

juxtaposed membrane bilayers24. It has further been demonstrated, using molecular 

dynamic simulations that there is expulsion of coordinated water molecule during the 

membrane lipid mixing process; as hydrated calciums are much bigger (~6 Ao) to fit in the 

space between the opposing bilayers brought together via the t/v SNARE molecular 

complex (~2.8 Ao)25. The distance between the membrane bilayers held together by 

calcium phosphate bridges is demonstrated to be 2.92 Ao25. 

Apart from carrying the secretory products and anchoring v SNARE proteins in its 

membrane facing the cell cytosol, the secretory vesicle has a greater role to play in the 

process of secretion. The vesicle itself is a microcosm of biochemical signaling cascade, 

harboring many molecules such as ion and water channels along with signaling proteins 

such as heterotrimeric G proteins in its membrane, that are involved in the regulation of 

vesicle volume required for the expulsion of vesicular contents.  

The physiology of the secretory vesicle with regards to its volume and pH are 

critical for cell secretion. Swelling of granules prior to release was suggested as early as 

the 1960s and was thereafter confirmed as a requirement for mast cell degranulation26. 

Secretory vesicle swelling provides increase in membrane surface tension for vesicle 

fusion with the plasma membrane and osmotic gradient for vesicular content release 

following the establishment of continuity between the porosome membrane.27 Hence, 

preventing secretory granule swelling has been demonstrated to compromise secretion 

competency28. This swelling phenomenon has been confirmed in secretory vesicles of 
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various cell types such as zymogen granules of acinar cells of exocrine pancreas and 

synaptic vesicles of neurons. The bidirectional water channel, aquaporins (AQP) are 

involved in rapid gating of water molecules into the granules and are regulated by the 

GTPase activity of G proteins present at the secretory granule membrane29-31. It has 

further been demonstrated in neuronal synaptic vesicles that swelling is pH sensitive. 

Preventing acidification of synaptic vesicles lowers vesicle volume even after GTP 

stimulation32. Thus, the pH of secretory granules, play a critical role in regulating vesicle 

physiology, and consequently, cell secretion. 

This study is aimed at further understanding the role of the 3 main components of 

transient kiss-and-run secretion machinery in cells elaborated previously, namely 

involvement of the porosome, SNARE protein complex and the insulin secretory granules 

(ISG). 

Specific Aims 

Specific Aim I: Functional reconstitution of the insulin secreting porosome 
complex in live cells. 

The neuronal porosomes and the acinar cell porosomes have been 

immunoisolated and both structurally and functionally reconstituted into artificial lipid 

bilayers. Both of these types of porosomes have been characterized structurally and 

functionally using AFM, EM, solution x-ray, mass spectrometry and electrophysiological 

apparatus respectively10,12. However, the insulin secreting porosome complex from MIN6 

cells had not been studied. Given the importance of insulin secretion in physiology, further 

characterization of the insulin-secreting porosome complex in beta cells and its functional 

reconstitution into live cells was investigated. To study using a homogenous beta cell 

population, rat insulinoma MIN6 cells18 were used throughout the study. 
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Specific Aim II: Intravesicular and intracellular pH is critical for glucose stimulated 
insulin release. 

Secretory vesicles maintain a relatively lower pH compared to the cell cytoplasm, 

which is important for vesicle homeostasis33. In this study, we have confirmed these 

results in insulin secreting MIN6 cells demonstrating that blocking pH drop 

pharmacologically, significantly reduces glucose stimulated insulin release. 

Specific Aim III: Assembly and disassembly of SNARE protein complex is pH 
dependent. 

Once the SNARE complex is formed allowing for vesicle docking on to the plasma 

membrane, it has to be disassembled to terminate the secretion process. A protein 

termed as N-ethylmaleiamide sensitive factor (NSF) enables disassembly of SNARE 

complex34. NSF is an ATPase associated with several cellular activities, making it an 

AAA+ ATPase35. Although NSF is ubiquitously found in the cell cytoplasm, we 

hypothesized that its ATPase activity is sensitive to changes in intracellular pH.   

Specific Aim IV: Identification of an epileptic drug that affects glucose stimulated 
insulin secretion.  

The ISG contains the proton pump vacuolar H+ ATPase (vH+ ATPase) on the 

granule membrane. Valproate, an FDA approved anticonvulsant is used in the treatment 

of epileptic seizures. Although specific mechanistic actions of the drug are unknown, it is 

highly suggested that the main target of valproate is the vH+ ATPase pump36. The proton 

pump is also present on neuronal synaptic vesicles, thereby regulating neurotransmitter 

release37. Our study was involved in understanding the mechanism of action of this drug 

on MIN6 cells and its effects on the proton pump.   
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CHAPTER 2: FUNCTIONAL RECONSTITUTION OF THE INSULIN SECRETING 
POROSOME COMPLEX IN LIVE CELLS 

(This Chapter contains previously published material. See Appendix A) 

Abstract 

Supramolecular cup-shaped lipoprotein structures called porosomes embedded in 

the cell plasma membrane mediate fractional release of intravesicular contents from cells 

during secretion. The presence of porosomes, have been well documented in many cell 

types that include neurons, acinar cells of the exocrine pancreas, growth hormone 

secreting cells of the pituitary, and insulin-secreting pancreatic beta cells, and functionally 

reconstituted into artificial lipid membrane. Earlier studies on mouse insulin-secreting 

MIN6 cells report 100 nm porosome complexes composed of nearly 30 proteins. In the 

current study, porosomes have been functionally reconstituted for the first time in live 

cells. Isolated MIN6 porosomes reconstituted into live MIN6 cells demonstrated 

augmented levels of porosome proteins and a consequent increase in the potency and 

efficacy of glucose-stimulated insulin release. Elevated glucose-stimulated insulin 

secretion 48h post reconstitution, reflects on the remarkable stability and viability of 

reconstituted porosomes, documenting the functional reconstitution of native porosomes 

in live cells. These results, establish a new paradigm in porosome-mediated insulin 

secretion in beta cells. 

Introduction 

Glucose stimulated release of insulin stored in secretory vesicles in β cells occur 

either by complete collapse of the vesicle membrane at the cell plasma membrane, or the 

transient fusion of secretory vesicles at the base of plasma membrane associated 100 

nm cup-shaped lipoprotein structures composed on nearly 30 proteins, called 
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porosomes18,38. Porosomes mediate fractional release of intravesicular contents during 

cell secretion	 and consequently in electron micrographs, partially empty secretory 

vesicles accumulate in cells following a secretory episode4. In earlier studies, isolated 

porosomes from the exocrine pancreas and neurons have been structurally and 

functionally reconstituted into artificial lipid membranes10,12. Transmission electron 

micrographs of pancreatic porosomes reconstituted into PC: PS liposomes, exhibit a 150 

– 200 nm cup-shaped basket-like morphology, similar to its native structure in cells10. 

Similarly, isolated neuronal porosomes reconstituted into lipid membrane appear nearly 

identical to the native structure at the presynaptic membrane10,12. In these earlier studies, 

the functionality of isolated porosomes obtained from the exocrine pancreas and neurons 

have been tested following their reconstitution into lipid membrane of an 

electrophysiological bilayer apparatus EPC9. Membrane-reconstituted porosomes on 

exposure to isolated secretory vesicle preparations in the presence of calcium exhibit an 

increase in conductance and capacitance, demonstrating the fusion of the isolated 

secretory vesicles at the porosome-reconstituted lipid bilayer and the consequent intra-

vesicular content release. Furthermore, in the presence of various modulators of 

porosome proteins, altered fusion and release is observed, demonstrating the isolated 

porosome complexes to be functional. 

The current study on MIN6 cells using electron microscopy (EM), atomic force 

microscopy (AFM), and immuno-AFM, demonstrate as previously reported in MIN6 

cells18, partially empty docked vesicles at the base of 100 nm cup-shaped porosomes at 

the cell plasma, through which insulin is released. Photon correlation spectroscopy (PCS) 

on isolated porosomes from MIN6 cells, demonstrate them to measure on an average 
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100 nm. To test whether isolated porosomes from MIN6 cells can be functionally 

reconstituted into live MIN6 cells, and to determine their stability and viability following 

cellular reconstitution, the current study was undertaken. Results from this study 

demonstrate that isolated MIN6 porosomes reconstituted into live MIN6 cells exhibit an 

increase in potency and efficacy of glucose-stimulated insulin release within one hour 

following reconstitution and sustained even 48h later. This is the first demonstration of 

the functional reconstitution of porosomes in a live cell, documenting the establishment 

of a new paradigm in porosome-mediated insulin secretion. 

Experimental Procedures 

MIN6 Cell Culture 

MIN6 mouse insulinoma cells were cultured according to published procedure18 in 

high-glucose (25 mM) Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen) 

supplemented with 10% fetal calf serum, 50 μM β-mercaptoethanol and antibotics 

(Penicillin and Streptomycin). Porosome isolations and electron microscopy were 

performed using MIN6 cells grown to confluence in 100 x 13 mm sterile plastic petri 

dishes. Immunofluorescence microscopy was performed on MIN6 cells grown to 60-70% 

confluence in 35 mm petri dishes with glass bottom coverslips (MatTek, Ashland, MA). 

Electron Microscopy 

Transmission electron microscopy of MIN6 cells was performed as described in a 

previously published procedure17,39. Briefly, cells were fixed in 2% glutaraldehyde/ 2% 

paraformaldehyde in ice-cold PBS for 24 h, washed with buffer, embedded in 2% 

SeaPrep agarose, followed by post-fixation for 1 h at 4 �C using 1% OsO4 in 0.1 M 

cacodylate buffer. The sample was then dehydrated in a graded series of ethanols, 
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through propylene oxide, and infiltrated and embedded in Spurr’s resin. Ultrathin sections 

were cut with a diamond knife, retrieved onto 200 mesh nickel thin-bar grids, and 

contrasted with alcoholic uranyl acetate and lead citrate. Grids were viewed with a JEOL 

1400 transmission electron microscope (JEOL USA, Inc., Peabody, MA) operating at 60 

or 80 kV, and digital images were acquired with an AMT-XR611 11 megapixel CCD 

camera (Advanced Microscopy Techniques, Danvers, MA). 

Atomic Force Microscopy 

AFM was performed according to minor modification of previously published 

procedure8,9,16,40, on fixed (2% glutaraldehyde/ 2% paraformaldehyde) MIN6 cells grown 

on glass cover slips. Fixed cells in phosphate buffered saline or PBS (1X) pH 7.4, were 

incubated for 30 min at R.T. in insulin antibodies at a final concentration of 0.2�g/ml 

(Santa Cruz Biotechnology Inc, Santa Cruz, CA), followed by 30 min incubation in 30 nm-

Gold conjugated secondary antibody (experimental). Control experiments were 

performed by exposing fixed MIN6 cells to secondary Gold conjugated antibody, followed 

by fixation, prior to imaging using the AFM. Imaging was performed using the Nanoscope 

IIIa AFM from Digital Instruments. (Santa Barbara, CA). Images were acquired in the 

“tapping” mode in air, using silicon nitride tips with a spring constant of 0.38 N.m-1, and 

an imaging force of <200 pN.  Images were obtained at line frequencies of 2 Hz, with 512 

lines per image, and constant image gains. Topographical dimensions of cellular 

structures were analyzed using the software nanoscope IIIa4.43r8, supplied by Digital 

Instruments. 

Insulin-Secreting Porosome Isolation and Reconstitution 

SNAP-25 specific antibody conjugated to protein A-sepharose® was utilized to 
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immunoisolate the porosome complex from solubilized MIN6 cells. The solubilization 

buffer was composed of 2% Triton X-100, 1 mM benzamidine, 5 mM Mg-ATP, and 5 mM 

EDTA in PBS at pH 7.4, supplemented with protease inhibitor mix (Sigma, St. Louis, MO). 

Each immunoisolation utilized 2 mg of Triton-solubilized control MIN6 cells. Five 

micrograms of SNAP-25 antibody conjugated to the protein A-sepharose® were 

incubated with the 2 mg of the solubilized cells for 1 h on ice, followed by three washes 

of 10 volumes of wash buffer (500 mM NaCl, 10 mM Tris, 2 mM EDTA, pH 7.5). The 

immuno pull down complex associated with the immunosepharose beads was eluted 

using low pH (pH 3.0) PBS (1X) to dissociate the porosome complex from the antibody 

bound to the beads, and the eluted sample was immediately returned to neutral pH in a 

total volume of 200 μL. An 80 μL of the isolated porosome suspension and 100 μL of 1 

mg/ml of solubilized MIN6 homogenates were aliquoted and resuspended in Laemmli 

reducing sample preparation buffer41, boiled for 2 min, and used for SDS-PAGE and 

Western blot analysis. 100 μL of the isolated porosome preparation was added to a 

confluent MIN6 cell culture grown in a 100 x 13 mm sterile plastic petri dish42 to enable 

reconstitution. 

Glucose-Stimulated Insulin Secreting from MIN6 Cells 

MIN6 cells grown to confluence in 100 x 13 mm sterile plastic petri dishes, and 

following 30 min exposure to isolated pososomes, were monitored for glucose-stimulated 

insulin release at 1h to 48h following porosome reconstitution. All secretion assays were 

performed at room temperature (25 �C). Cells were washed three times using 5ml/wash 

of PBS, pH 7.4, and incubated in 35 mM glucose-PBS. 200 μL aliquots were removed at 

times 0, 10, and 30 min following 35 mM glucose incubation. The aliquots were 
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centrifuged at 4,000 x g to remove any cells that may have been aspirated, and 160 μL 

of the supernatant was mixed with 40 μL of 5x Laemmli reducing sample preparation 

buffer41, boiled for 2 min, and resolved using SDS-PAGE followed by Western blot 

analysis utilizing a insulin-specific antibody. Following completion of the secretion assays, 

cells were solubilized in equal volumes of PBS, their protein concentration determined. 

To compare total insulin in the control and reconstituted cells, equal volume of the cell 

lysate in Laemmli reducing sample preparation buffer41 was immunoblotted using insulin-

specific antibodies. 5 μg of the cell lysate was also used in SDS-PAGE and Western blot 

analysis to determine the immunoreactive presence of various porosome-associated 

proteins. Percent insulin release was measured from the optical densities of insulin 

Western blots of the secreted and whole cell lysates. 

Western Blot Analysis 

Isolated MIN6 homogenates and porosomes in Laemmli buffer were resolved in a 

12.5% SDS-PAGE, followed by electrotransfer to 0.2 mm nitrocellulose membrane. The 

membrane was incubated for 1h at room temperature in blocking buffer (5% nonfat milk 

in phosphate buffered saline or PBS (1X) pH 7.4 containing 0.1% Triton X-100 and 0.02% 

NaN3) and immunoblotted for 2 h at room temperature with antibodies raised against 

insulin (Santa Cruz Biotechnology Inc, Santa Cruz, CA), and porosome associated 

proteins Gi3, Syntaxin-1A, and TREK-1 (K+ channel) (Santa Cruz Biotechnology Inc, 

Santa Cruz, CA), all at a final concentration of 0.2 g/ml in blocking buffer. The 

immunoblotted nitrocellulose sheets were washed in PBS (pH 7.4) containing 0.1% 

Tween, prior to incubation for 1h at room temperature in horseradish peroxidase-

conjugated secondary antibodies at a dilution of 1:5000 in blocking buffer. The 
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immunoblots were washed in PBS containing 0.1% Tween and processed for enhanced 

chemiluminescence and exposure to X-Omat-AR film. The exposed films were then 

developed and photographed. 

Immunofluorescence Microscopy 

To determine the distribution of the porosome-associated protein Gαi3 and SNAP-

25 in control and porosome-reconstituted MIN6 cells, immunofluorescence studies were 

performed according to published procedures17. To determine the position of the cell 

nucleus, cells were exposed to DAPI nuclear stain (Molecular Probes, Life Technologies, 

Carlsbad, CA). Phase and immunofluorescent images were acquired using an 

immunofluorescence FSX100 Olympus microscope through a 100x objective lens 

(numerical aperture = 1.40) with illumination at 405 nm, 488 nm, or 647 nm. The co-

association of Gαi3 and SNAP-25 and their cellular distribution was determined by 

merging the fluorescent and phase images.   

Results and Discussion 

Atomic force microscopy (AFM), transmission electron microscopy (TEM), and 

small angle X-ray solution scattering (SAXS) studies, combined with electrophysiology, 

biochemistry, and molecular biology approaches, have played a major role in the 

discovery of the porosome –the universal secretory portal in cells, and determination of 

its nanometer-scale structure-function in a variety of cell types including β-cells of the 

endocrine pancreas38 and in mouse insulinoma MIN6 cells18. The porosome was 

discovered nearly two decades ago, first in acinar cells of the exocrine pancreas8,10, and 

subsequently in chromaffin cells of the adrenal medulla43, growth hormone GH-secreting 

cells of the pituitary, at the terminals of neurons12,39,42, in astrocytes15, in hair cells of the 
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inner ear44, and in various cell lines such as the rat basophilic cell line RBL-2H3, the 

human bone marrow mononuclear cells BMMC45, in the mucin-secreting Calu-3 cells of 

the human airways epithelia44, and in the insulin-secreting MIN6 cells17, amongst others. 

In the current study, both EM and AFM were used to further study the morphology of 

MIN6 cells and the porosomes associated at its cell plasma membrane. Transmission EM 

and AFM performed on fixed MIN6 cells demonstrate the presence of typically 100 - 300 

nm membrane bound secretory vesicles, and the presence of approximately 100 nm 

porosomes (Figure 2.1). In EM micrographs, the 100 nm cup-shaped porosomes are also 

found with docked secretory vesicles (Figure 2.1 A [b]). The morphology of coated pits 

(Figure 2.1 A [c]) in comparison, are much different from the porosome structures. While 

porosomes in MIN6 cells have a cup-shaped morphology, coated pits appear nearly 

spherical with a thick coat (Figure 2.1 A [c]). Photon correlation spectroscopy (PCS) of 

the isolated MIN6 porosomes, also demonstrate an average size of approximately 91 nm 

(Figure 2.1 A [d]), similar to what is observed in the electron micrographs (Figure 2.1 A 

[b])17. AFM studies of insulin-immuno gold-labeled MIN6 cells demonstrate the 

localization of immunogold to the porosome opening (Figure 2.1 B [f]), which is absent in 

porosomes of control MIN6 cells, which had been exposed only to the secondary gold-

conjugated antibody (Figure 2.1 B [d,e]). Similar to earlier immuno-AFM studies on the 

exocrine pancreas9,10 and the growth hormone secreting cells16 of the pituitary gland, the 

immunolocalization of insulin-immunogold at the porosome opening (Figure 2.1 B [f]), and 

the presence of partially empty docked secretory vesicles at the porosome base (Figure 

2.1 A[b]), demonstrates the 100 nm cup-shaped structures at the cell plasma membrane 

of MIN6 cells to be the secretory portals for fractional release of intravesicular insulin 



16	

 

during cell secretion. 

 

 

 

Figure 2.1: Electron and atomic force 
micrographs of MIN6 cells demonstrate 
the presence of cup-shaped porosome 
complexes at the cell plasma 
membrane. (A[a]) Electron micrograph 
of a MIN6 cell, and the nucleus (N),
insulin containing electron dense 
secretory vesicles (V), mitochondria 
(M), porosome (P), coated vesicle (CV), 
and microvilli (MV), within the cell. 
Scale bar = 500 nm. (A[b]) Two 100 nm 
porosomes at the cell plasma 
membrane, one with a docked 
secretory vesicle that has a portion of 
its contents released. (A[c]) A coated 
vesicle at the MIN6 cell plasma 
membrane, illustrating the shape and 
size difference compared to the 
porosome. (A[d]) Photon correlation 
spectroscopy of isolated MIN6 
porosome complex demonstrates its 
average size to measure approximately 
91 nm. (B[a]) Two-dimensional atomic 
force microscope image of a portion of 
MIN6 cell, demonstrating the nucleus 
size, and size-heterogeneity between 
insulin-containing vesicles. (B[b]) 
Section analysis demonstrates the 
secretory vesicle to measure 258 nm. 
(B[a]) Low surface distance, compared 
to the nucleus measuring 961 nm in 
surface distance and 581 nm in height 
(B[b]). In (B[c]), a three-dimension AFM 
image of (B[a]) is shown for clarity. 
(B[d]) High-resolution two-dimensional 
atomic force micrograph of a portion of 
Min6 cell, demonstrating the presence 
of the nucleus to the top left, two 
secretory vesicles to the right and a 
porosome between the two. (B[e]) 
Section analysis of this control MIN6 
cells exposed to 30 nm-Gold 
conjugated secondary, demonstrates 
the presence of secretory vesicles 
measuring 232 nm and 437 nm. The 
porosome opening measures 136 nm, 
and no gold particles are observed at 
the site. (B[f]) Three-dimensional 
atomic force microscope image of a 
Min6 porosome (P) with several 30 nm 
immuno gold (G) particles localized at 
the porosome opening.	
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Isolated MIN6 Porosomes Reconstitute into Live MIN6 Cells 

Porosomes from MIN6 cells were isolated using antibody directed at the 

porosome-associated t-SNARE protein SNAP25 and immuno pull down. The isolated 

MIN6 porosomes were reconstituted into live MIN6 cells by incubating MIN6 cells in 

culture with the immunoisolated MIN6 porosomes for various periods. Porosome 

reconstitution was evaluated using Western blot analysis and immunocytochemistry. The 

functional reconstitution of porosomes into live MIN6 cells was also determined by 

measuring the potency and efficacy of glucose-stimulated insulin secretion at 1 h, 24 h, 

and 48 h following porosome reconstitution, and compared to insulin release from control 

MIN6 cells.  

Immunoisolated porosomes from MIN6 cells when subjected to mass 

spectrometry17 demonstrated the presence of approximately 30 core proteins, among 

them SNAP-25, Gαi3, Syntaxin-1A, and TREK-1. Western blot analysis on equal protein 

amounts of total cellular homogenates from control and porosome-reconstituted MIN6 

cells demonstrated that the porosome associated proteins Gαi3, Syntaxin-1A, and TREK-

1, are elevated in the reconstituted cell homogenate fraction (Figure 2.2 A). No change in 

insulin immunoreactivity is observed in the reconstituted MIN6 cell homogenates, 

demonstrating that porosome reconstitution has no influence on the total amount of 

cellular insulin. To further confirm porosome reconstitution in MIN6 cells, 

immunocytochemistry using Gαi3 and SNAP-25 primary antibody, followed by secondary 

fluorescent rhodamine and fluorescene antibodies respectively, were utilized. Elevated 

level of the co-localized presence of Gαi3 and SNAP-25 is observed in the porosome-

exposed MIN6 cells (Figure 2.2 B [a] over 2.2 B [b]), demonstrating porosome 
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reconstitution (Figure 2.2 B). To further demonstrate porosome reconstitution in live MIN6 

cells, a functional assessment of glucose-stimulated insulin secretion following 

reconstitution was required, and was performed in the study. 

 
Figure 2.2: Enriched presence of TREK-1, Gαi3, and Syntaxin-1A immunoreactivity in porosome-
reconstituted MIN6 cells. (A) Western blot analysis of 5 μg of MIN6 cell homogenate from control and 
porosome-reconstituted cells. Note the enriched presence of all three porosome proteins: TREK-1, G�i3, 
and Syntaxin-1A. No change in insulin immunoreactivity is observed in the reconstituted MIN6 cell 
homogenate. (B) Immunofluorescence microscopy demonstrates increased Syntaxin-1A and G�i3 
immunoreactivity and their increased co-localized presence in porosome-reconstituted MIN6 cells. 
 

Reconstituted Cells Exhibit Increased Glucose-Stimulated Insulin Release 

To test whether the porosome complexes reconstituted into live MIN6 cells are 

functional, glucose-stimulated insulin release assays were carried out on both control and 

porosome-reconstituted MIN6 cells. A time-dependent increase in insulin release is 
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observed in both control, and porosome-reconstituted MIN6 cells upon exposure to 

glucose (Figure 2.3 A, B). Although little change in the basal levels of insulin release is 

observed in MIN6 cells 1h following reconstitution with the porosome complex, a 

significant (p<0.05) increase in glucose-stimulated insulin secretion is demonstrated in 

the reconstituted cells 30 min following exposure to elevated glucose over controls 

(Figure 2.3 B). In addition to demonstrating an increase in the potency of insulin secretion, 

Figure 2.3:	 Porosome-reconstituted
MIN6 cells demonstrate elevated
glucose-stimulated insulin secretion. 
Note the increase in time-dependent insulin 
release from reconstituted MIN6 cells. (A)
Representative insulin immunoblot of total
MIN6 cell homogenate (TH) and glucose-
stimulated insulin release at times 0, 10,
and 30 min, in control and porosome-
reconstituted experimental MIN6 cells. A
preproinsulin band is present only in the
total homogenate fraction and not in the 
secreted fraction. (B) Bar graph of percent
insulin release at time 0, 10, and 30 min, in
control and reconstituted experimental
MIN6 cells. A significant increase in time-
dependent insulin release from porosome-
reconstituted MIN6 cells is observed in the 
30 min time point (n=6; *p < 0.05). Note, no
change in basal insulin release is observed
in porosome-reconstituted MIN6 cells. (C)
The rate of insulin secretion per minute was
calculated to be 0.062%/min of the total in
control cells that increased to 0.107%/min
of the total in the porosome-reconstituted
cells, a 70% increase in the insulin release
rate.	
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porosome-reconstitution results in >70% increase (from 0.062%/min to 0.107%/min) in 

the efficacy of glucose-stimulated insulin release in MIN6 cells (Figure 2.3 C). These 

results demonstrate for the first time, the functional reconstitution of isolated insulin-

secreting porosomes into live insulin secreting MIN6 cells, and the consequent increase 

in both the potency and efficacy of insulin release. The observed time-dependent increase 

in insulin secretion, and the presence of proinsulin in the total homogenate (TH) fractions 

(Figure 2.3 A) from both control and experimental (reconstituted) MIN6 cells, and its 

absence in the secreted fraction in both groups, demonstrate the MIN6 cells to be intact 

and viable. Next, we determined the stability of reconstituted porosomes into live cells, to 

understand the life span of porosome complexes in cells for possible future therapeutic 

applications. 

Porosome Reconstitution is Stable and Functional 

To determine the stability of reconstituted porosomes in live MIN6 cells, the 

elevated presence of porosome associated proteins Gαi3, Syntaxin-1A, and TREK-1, in 

porosome-reconstituted MIN6 cells, and their glucose stimulated insulin secretion was 

assessed 24 h and 48 h following reconstitution.  

Similar to results obtained at the 1h time point following porosome reconstitution, 

there are elevated levels of Gαi3, Syntaxin-1A, and TREK-1, in porosome-reconstituted 

MIN6 cell homogenates (Figure 2.4 A). Results from this study further demonstrates 

sustained glucose stimulated insulin secretion at both 24 h and 48 h following porosome 

reconstitution (Figure 2.4 B). Similar to results obtained at the 1 h time point following 

porosome reconstitution, there is little change in the basal levels of insulin secretion, 

however the elevated glucose stimulated insulin secretion is continually maintained in the 
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reconstituted cells, demonstrating the functional stability of the reconstituted porosome 

complex.  

 

 

Figure 2.4: Enriched presence of TREK-1, Gαi3, and Syntaxin-1A immunoreactivity in homogenates 
of porosome-reconstituted MIN6 cells, and the consequent glucose-stimulated insulin release is 
observed at 24h and 48h following reconstitution. (A) Representative Western blots of MIN6 cell 
homogenate from control and porosome-reconstituted (experimental) MIN6 cells at 24h and 48h,
demonstrating the enriched presence of the porosome proteins TREK-1, Gαi3, and Syntaxin-1A. No 
change in total insulin immunoreactivity is detected in the experimental homogenate. (B) The enriched
presence of porosome proteins in (A), is reflected on the elevated levels of glucose-stimulated insulin 
release in both the 24h and 48h following porosome reconstitution into MIN6 cells.	
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In conclusion, this is the first demonstration of the functional reconstitution of 

isolated porosomes in live cells. Reconstitution of porosomes isolated from the exocrine 

pancreas9 and neurons12, into artificial lipid membrane, have previously been reported. 

In the current study, isolated insulin-secreting porosomes from MIN6 cells have been 

successfully reconstituted in live MIN6 cells, demonstrating that the isolated insulin-

secreting porosome complex is functionally intact. Results from this study further 

establish the role of porosome as a universal secretory portal in cells, which regulates the 

kiss-and-run mechanism of fractional insulin release46. In further agreement with the 

porosome-mediated kiss-and-run mechanism of cell secretion, it has been demonstrated 

that “secretory granules are recaptured largely intact following stimulated exocytosis in 

cultured endocrine cells”47; “single synaptic vesicles fuse transiently and successively 

without loss of identity”48; and “zymogen granule exocytosis is characterized by long 

fusion pore openings and preservation of vesicle lipid identity”49. Utilizing the porosome-

mediated kiss-and-run mechanism of secretion in cells, secretory vesicles are capable of 

reuse for subsequent rounds of exo-endocytosis, until completely empty of contents. 
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CHAPTER 3: INTRAVESICULAR AND INTRACELLULAR pH IS CRITICAL FOR 
GLUCOSE STIMULATED INSULIN RELEASE 

Abstract 

Swelling of secretory vesicles is critical to cell secretion as shown previously in 

synaptic vesicles of neurons. The heterotrimeric G protein mediated synaptic vesicle 

swelling occurs via water gating aquaporin channels. Water follows into the vesicles after 

proton (H+ ions) entry through vacuolar H+ ATPase (vH+ ATPase) pump. In insulin 

secreting MIN6 cells, we show that insulin granule acidification occurs primarily via vH+ 

ATPase since use of bafilomycin A prevents granule acidification. Furthermore, granule 

acidification plays an important role in glucose stimulated insulin secretion as bafilomycin 

A treatment prevents insulin secretion in MIN6 cells. Additionally, we demonstrated 

accumulation of insulin granules upon bafilomycin A treatment as shown by 

immunocytochemistry. 

Introduction 

The secretory vesicles apart from acting as cargo tightly regulate the exocytosis of 

release products. The internal volume of secretory vesicle is important for optimum 

secretion. Osmotic swelling of granules were first suggested and demonstrated in sea 

urchin eggs50,51. Further it was proved in mast cells that osmotic swelling of granule is 

important for fusion of secretory vesicle with the plasma membrane in addition to fusion 

pore dilation52. Henceforth, importance of vesicle swelling in fusion and exocytosis was 

determined in a variety of different granules such as zymogen granules of pancreatic 

acinar cells, and synaptic vesicles of the neuron to name a few29,53. The extent of vesicle 

swelling is shown to be directly proportional to the amount content released out of the 

cell53. 
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The molecular mechanisms underlying the swelling process have been fairly 

elucidated. Aquaporins (AQP), the rapidly gating water channels are present on the 

secretory granule membrane of acinar zymogen granules, synaptic vesicles of rat brain, 

intracellular vesicles of rat kidney and mouse liver31,54,55 and are involved in causing 

osmotic swelling of vesicles. At least 13 different isoforms of aquaporins have been 

identified; AQP1 is present on the zymogen granules while AQP6 is present on the 

synaptic vesicles. The aquaporins are under the control of heterotrimeric G proteins, more 

specifically Gαi3 in zymogen granules and Gαo in the neuronal synaptic vesicles. Although 

the exact mechanisms have not yet been deduced, the electrochemical gradient 

generated by the influx of protons (H+ ions) are a major drive in the events that follow to 

increase vesicle volume. The proton pump, vacuolar H+ ATPase (vH+ ATPase) present 

on the synaptic vesicle membrane operates upstream of Gαo induced aquaporin mediated 

synaptic vesicle swelling32.  

The heterotrimeric G protein, Gαi is localized on the insulin secretory granules and 

it stimulates insulin secretion56. If insulin secreting cells follow a similar pathway of 

modifying granule physiology then lower granular pH is of prime importance. Additionally, 

the acidic pH of intragranular lumen is also important for conversion of insulin from its 

prohormone and maturation of the granule57-59.   

In this study, we used MIN6 cells and subjected them to Bafilomycin A, a 

pharmacological inhibitor of vH+ ATPase thus preventing acidification of the cell and 

insulin secreting granules (ISG). We demonstrated a significant loss in glucose stimulated 

insulin secretion in the treated cells as compared to the controls. Additionally we showed 

an accumulation of insulin within the Bafilomycin A treated cells. Theoretically, we could 
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isolate the insulin granules and perform experiments to monitor live changes in volume 

and pH. But, insulin granules are highly unstable and lyse instantaneously. 

Experimental Procedures 

Glucose Stimulated Insulin Secretions from MIN6 Cells in Culture 

MIN6 cells were grown to confluence using sterile 100 X 13-mm plastic Petri dishes 

according to published procedure60. Cells were cultured in 25 mM glucose Dulbecco’s 

Modified Eagle Medium (Invitrogen) containing 10% fetal calf serum, penicillin, 

streptomycin, and 50M B-mercaptoethanol. Cells were stimulated using 35 mM glucose, 

and insulin secreted into the medium was collected at 10 and 30 min. Stimulation assays 

were performed 10min after exposure to 10nM and 50nM Bafilomycin A respectively. All 

secretion assays were carried out at room temperature (RT), and the cells were washed 

with phosphate buffered saline (PBS) pH 7.4 prior to stimulation. Following glucose 

stimulation, 200 μL aliquots of the supernatants were collected at 0, 10 and 30 min post 

stimulation. Aliquots were centrifuged at 4000 X g to remove any aspirated cells, and 160 

μL of the supernatant was mixed with 40 μL of 5x Laemmli reducing sample preparation 

buffer41 for Western blot assay. To obtain the total amount of insulin in cells, Min6 cells 

were solubilized in 100 μL of homogenization butter (2 mM EDTA, 2 mM ATP, 0.02% 

Triton X-100, 1:500 protease inhibitor cocktail, pH7.4) following secretion assays, and 

protein concentrations61 were determined prior to Western blot analysis. 

Detection of Intracellular and Intragranular pH Changes in MIN6 Cells 

MIN6 cells were cultured on 35 mm glass bottom petri dishes and were treated 

with either 10 nM Bafilomycin A, 50 nM Bafilomycin A or with vehicle. Changes in 

intracellular and intragranular pH were detected using acridine orange (AO). AO is a 
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membrane penetrating dye, which is a weak base that accumulates within acidic 

compartments of the cell. AO emits a bright orange fluorescence at lower pH shifting to 

dimmer orange at relatively basic pH. MIN6 cells were incubated with AO (2 μg/ mL) for 

20 minutes at 37o C post treatment with Bafilomycin A or vehicle, washed with sterile 1x 

PBS, pH 7.4. Orange compartments indicating acidic granules were observed under 

fluorescence microscopy.   

Western Blot Analysis 

MIN6 cell lysates (10 μg) in Laemmli buffer were resolved on 12.5% SDS-PAGE 

and electro-transferred to 0.2 mm nitrocellulose membrane. The membrane was 

incubated at RT for 1 h in blocking buffer (5% non-fat milk in PBS- 0.1% Tween pH 7.4), 

washed thrice with PBS-0.1% Tween, and immunoblotted at 4�C overnight with mouse 

polyclonal anti-insulin (2D11-H5) (SC 8033).  Prior to incubation for overnight at 4oC with 

secondary antibodies (Donkey anti-Rabbit Alexafluor 594 (Invitrogen A21207) 

nitrocellulose membranes were washed in PBS-0.1% Tween pH 7.4, thrice. Immunoblots 

were processed for enhanced chemiluminescence, exposed to X-Omat-AR film, 

developed and analyzed using ImageJ. 

Immunocytochemistry 

MIN6 cells were grown on 35 mm glass bottom Petri dishes for 

immunocytochemistry. The distribution of anti- Gi3 subunit and ISGs in 10nM and 50nM 

Bafilomycin A treated (10min at 37oC) MIN6 cells were compared with vehicle treated 

control MIN6 cells. Primary antibodies, rabbit polyclonal anti- Gi3 (SC 262) and mouse 

polyclonal anti-insulin (SC 8033) and secondary antibodies, Donkey anti-Rabbit 

Alexafluor 594 (Invitrogen A21207) and donkey anti-Mouse Alexafluor 488 (Life 
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technologies A21202), were used in the study. Cells were exposed to DAPI nuclear stain 

for nucleus localization. An immunofluorescence FSX100 Olympus microscope was used 

to acquire immunofluorescent images through a 63x objective lens (numerical aperture, 

1.40) with illumination at 405, 488, or 647 nn. Insulin and Gi3 localization and cellular 

distribution were obtained through merging fluorescent images using ImageJ. 

Results and Discussion 

Bafilomycin A Prevents Acidification of Insulin Granules  

Bafilomycin A and concanamycins are a related family of pleicomacrolide 

antibiotics derived from Streptomycetes species. They are highly specific 

pharmacological inhibitors of vacuolar H+ ATPase (vH+ ATPase) without affecting any 

other type of ATPase pump62,63. 

 
Figure 3.1: Bafilomycin A inhibits intragranular acidification in MIN6 cells. MIN6 cells were incubated 
with 50nm Bafilomycin A for 10 minutes at 37oC and loaded with acridine orange. Note the drop in bright 
orange fluorescence in treated cells (f) as compared to control cells (c). Scale bar = 50 μm. 

 
MIN6 cells were incubated with acridine orange (AO), which accumulated within 

intracellular compartments. These intracellular compartments have a high probability of 
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being insulin secreting granules since majority of the cell interior is made up of granules. 

Bright orange fluorescence was observed within control MIN6 cells depicting acidified 

granules (Figure 3.1, a-c). MIN6 cells pretreated with 50 nm Bafilomycin A exhibited a 

quenched fluorescence, not being as bright as the control cells (Figure 3.1, d-f). Hence, 

this concludes that Bafilomycin A was able to inhibit acidification of secretory granules 

within MIN6 cells. 

Figure 3.2: Bafilomycin A reduces glucose stimulated insulin release in MIN6 cells. Both 10 nM and 
50 nM (c) Bafilomycin A significantly decreases insulin secretion at 10 and 30 minutes post glucose 
stimulation as depicted in western blots compared to controls (a). Additionally, bafilomycin A reduces the 
rate of insulin release (d) and also the amount of insulin released (e); *p < 0.05, n = 3. 

Bafilomycin A Treatment of MIN6 Cells Inhibit Glucose Stimulated Insulin Secretion 

The importance of pH in granule maturation is well established64. Therefore, we 

wanted to test whether Bafilomycin A treatment has an effect on glucose stimulated 

insulin secretion. We observed a significant reduction (p < 0.05) in insulin secretion upon 

Bafilomycin A treatment of MIN6 cells. Both, 10 nM and 50 nM Bafilomycin A showed 

statistically much lower insulin release compared to vehicle treated controls (Figure 3.2). 

Not just the potency, but also the efficacy of glucose stimulated insulin release was 
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reduced in the Bafilomycin A treated MIN6 cells (Figure 3.2, d,e). 

Bafilomycin A Treatment Reduces Insulin Granule Association with the Plasma 
Membrane 

Immunocytochemistry was performed on control and Bafilomycin A treated MIN6 

cells.  Antibody against insulin was used to depict insulin secreting granules as insulin is 

contained inside granules within the cells. Additionally, antibody against Gαi3 was used 

as a membrane marker since the heterotrimeric G protein is a transmembrane protein. 

MIN6 cells treated with 10 nM and 50 nM Bafilomycin A demonstrated reduced co-

localization of insulin secreting granules with Gαi3 as opposed to the control cells which 

showed more co-localization (Figure 3.3, a-l). 

Additionally, the density of insulin antibody is significantly highest in both the 10 

nM and 50 nM Bafilomycin A treated MIN6 cells as compared to controls (Figure 3.3, m). 

This suggests that there is a high probability of ISG accumulation within the treated MIN6 

cells that are not being secreted out. 

Therefore, these set of results demonstrate that ISG acidification is critical for 

insulin release. When granule acidification was prevented using bafilomycin A, insulin 

release dropped dramatically. The events that follow insulin granule acidification are 

important and can be studied as a future direction. In neuronal synaptic vesicles, vesicle 

swelling after water entry via AQP has been demonstrated. MIN6 ISG could follow a 

similar pathway since ISG swelling is also critical for insulin release. Similarly, the 

signaling events upstream of ISG acidification are yet to be elucidated completely. It is 

extremely difficult for ISGs to survive in vitro, outside of the cell. Hence this limits 

monitoring in vitro ISG swelling and analyzing their surface charge using photon 

correlation spectroscopy. 
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Figure 3.3: Bafilomycin treatment leads to accumulation of insulin within MIN6 cells. Notice increase 
in insulin granules (green) in 10 nm Bafilomycin A (h) and 50 nm Bafilomycin A (l) treated cells compared 
to control cells (d). Scale bar = 100 μm. Imagej analysis demonstrates significantly higher antigen density 
of insulin granules in treated cells as compared to controls (m); *p < 0.05. Insets depict digitally zoomed 
regions of equal areas if insulin (green) channel to show ISG accumulation within control, 10 nm and 50 
nm Bafilomycin A treated cells. 
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Since vH+ ATPase are the primary ion channels that help reduce ISG pH, 

understanding the working molecular mechanisms of vH+ ATPase is useful as well. vH+ 

ATPase is a multimolecular subunit with each subunit having a specific function that is 

important for insulin release. However, further research awaits in understanding the role 

of ISG physiology critical for insulin release. 
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CHAPTER 4: ASSEMBLY AND DISASSEMBLY OF SNARE PROTEIN COMPLEX IS 
PH DEPENDENT 

(This Chapter contains previously published material. See Appendix B) 

Abstract 

Intracellular pH homeostasis governs a variety of cellular activities such as protein 

folding and cell secretion including neurotransmission and insulin release. Nanoscale pH 

measurements of cells and biomolecules therefore hold great promise in understanding 

a plethora of cellular functions, in addition to disease detection and therapy. An unusual 

approach using cadmium telluride quantum dots (CdTeQDs) as fluorescent pH sensors, 

combined with imaging, spectrofluorimetry, atomic force microscopy, and Western blot 

analysis, enabled us to study intracellular pH dynamics regulating cell secretion. This tool 

provided us with highly precise relative pH measurements during insulin secretion. 

Additionally, the pH-dependent interaction between membrane fusion proteins, also 

called the soluble N-ethylmaleimide Sensitive Factor activating protein receptor 

(SNARE), was determined. CdTeQD-loaded insulin secreting MIN6 cells demonstrated 

an initial (5-6 min) intracellular acidification upon glucose stimulation, which was reflected 

as a loss in QD fluorescence, followed by alkalization and a return to resting pH in 10 min. 

Analysis of the SNARE complex in insulin secreting MIN6 cells demonstrated a 

consequent increase initially followed by loss of complexed SNAREs within 10 min. 

Further, using both, native and recombinant neuronal SNAREs, we confirmed that 

relatively lower pH stabilizes the SNARE complex, providing a molecular understanding 

of the role of intracellular pH during cell secretion.   

Introduction 

There has been tremendous improvement in obtaining accurate pH measurements 
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of cells and biomolecules over the years65. However, we still face major challenges at the 

nanometer and milli-pH scale in cells. Nano scale and single molecule intracellular 

measurements of pH hold great promise in understanding an array of cellular functions 

at the molecular level and for applications from disease detection to therapy65. Cellular 

phenomenon such as autophagy and mitophagy alter intracellular pH66, in addition to a 

number of diseases; among them cancer and Alzheimer’s67,68. Intracellular alkalization is 

shown to inhibit cell secretion,69,70 whereas acidification stimulates release71,72. The role 

of intracellular acidification in SNARE protein complex assembly/ disassembly is poorly 

understood, and is the subject of the current study. Secretion from cells involves fusion 

of cargo containing membrane bound vesicles with the cell plasma membrane. 

Specialized membrane fusion proteins at the vesicle membrane called v-SNARE73, and 

at the cell plasma membrane termed target or t-SNAREs interact and assemble in a t-/v-

SNARE rosette or ring conformation to promote fusion between opposing lipid 

membranes74,75. The t-/v-SNARE is a very stable complex, requiring an ATPase called 

N-ethylmaleimide-sensitive factor (NSF) for its disassembly. The ATPase activity of NSF 

requires basic pH optima76,77. To determine the time-dependent shifts in intracellular pH 

following stimulation of cell secretion, fluorescent-stable pH-sensitive 2 nm cadmium 

telluride quantum dots (CdTeQDs) were used78,79, as opposed to the commonly used pH-

sensitive fluorescent dyes such as (2',7'-Bis-(2-Carboxyethyl)-5-(and-6)-

Carboxyfluorescein Acetoxymethyl Ester) (BCECF) and Acridine Orange (AO) that 

bleaches rapidly upon exposure to light.  

In this study, intracellular pH dynamics during cell secretion was determined 

utilizing MIN6 cells, a well-characterized glucose-sensitive insulin-secreting mouse 



34	

 

insulinoma sourced cell line that accurately models the pancreatic beta cell60. Additionally, 

MIN6 cells and immunoisolated SNARE complexes from rat brain neurons were both 

used, to determine the effects of pH on assembly-disassembly states of native SNAREs.  

Further, recombinant neuronal SNARE proteins expressed in E. coli, affinity purified and 

reconstituted into artificial liposomes, were used to further establish SNARE assembly-

disassembly in different pH environments ex vivo.  

Experimental Procedures 

Estimation of Cellular pH Changes by Quantum Dots, Following Stimulation of 
Secretion  

The relative fluorescent intensities of CdTeQDs were estimated at different pH, 

using a Hitachi F-2000 Fluorescence spectrophotometer. 5 μL of CdTeQDs (5mg/mL) 

was resuspended in 2.5 mL of PBS (1X) (1:500) with pH intervals ranging from 4.1 to 

10.3. Then 500 μL of the resuspended QDs were added to a cuvette to measure their 

fluorescent intensities. The excitation wavelength was kept fixed at λex=350nm for these 

COOH functionalized CdTe core-type QDs (Sigma-Aldrich) with emission at λem=520nm. 

Changes in intracellular pH following stimulation of secretion, was assessed by 

preloading MIN6 cells with CdTeQDs, followed by glucose exposure. 150 μg/mL of 2 nm 

CdTeQDs was added to a MIN6 cell suspension in DMEM-HG growth media (Dulbecco’s 

Modified Eagle Medium (GE Healthcare), 25 mM glucose, 10% fetal calf serum, 50 μM 

β-mercaptoethanol, 100 U/mL Penicillin, and 100 μg/mL Streptomycin). After 45 minutes 

of incubation, the cells were washed and resuspended in PBS pH 7.4. Cells were then 

imaged using an optical microscope (Zeiss; Axiovert 200, Plan-Apochromat 100x/1.40 oil 

DIC, Axiocam r.1.2 color, Axiovision Rel. 4.8), before and following addition of 35 mM 

glucose. Images were captured at 1 minute intervals before and immediately following 
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glucose exposure. The fluorescent intensity of images obtained were analyzed and 

graphed using the Origin 8.5 software. Further confirmation of intracellular pH change 

after stimulation was measured in suspended cells by fluorescence spectrophotometry. 

10 mL of MIN6 cells in suspension were centrifuged at 200 x g and resuspended in 110 

μL containing 1.5 mg/ml CdTeQDs and incubated for 15 minutes on ice. After incubation, 

CdTeQD-treated cells were diluted 95x in PBS and added to a quartz cuvette. After 2 

minutes of equilibration in the chamber, measurements were made every 2 seconds for 

720 seconds, with 35 mM glucose added for stimulation at the 120 seconds time point. 

The first 120 seconds of measurements were averaged and used to calculate the baseline 

relative signal for the post glucose stimulation time points. 

MIN6 Cell Culture 

MIN6 mouse insulinoma cells were cultured according to published procedure in 

DMEM-HG60. Fluorescence microscopy was performed on MIN6 cells grown to 60-70% 

confluence in 35 mm petri dishes with glass bottom coverslips (MatTek, Ashland, MA). 

Expression and Isolation of Full-Length Neuronal T-SNARES, V-SNARE and NSF 

-terminal xHis-tag constructs for SNAP-25 and NSF, C-terminal 6xHis-tag 

constructs for Syntaxin 1A and VAMP2 were generated according to published 

procedures.  All four proteins were expressed with 6xHis at full length in E. coli (BL21DE3) 

and isolated by Ni-NTA (nickel-nitrilotriacetic acid) affinity chromatography (Qiagen, 

Valencia, CA) as previously published80.  Protein concentration was determined by BCA 

assay. 

Preparation of Proteoliposomes 

All lipids were obtained from Avanti Polar Lipids (Alabaster, AL). A 5 mM lipid stock 
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solution was prepared by mixing lipid solution in chloroform-DOPC (1,2-dioleoyl 

phosphatidylcholine): DOPS (1,2-dioleoyl phosphatidylserine) in 70:30 mol/mol ratios in 

glass test tubes. The lipid mixture was dried under gentle stream of nitrogen and 

resuspended in 5 mM sodium phosphate buffer, pH 7.5, by vortexing for 5 minutes at 

room temperature.  Unilamellar vesicles were formed following sonication for 2 minutes, 

followed by a 50 nm pore size extruder.  Vesicles ranging in size from 42 - 62 nm in 

diameter were obtained as assessed by AFM and photon correlation spectroscopy (PCS).  

Two sets of proteoliposomes were prepared by gently mixing either t-SNARE complex 

(Syntaxin-1/SNAP-25; final concentration 25 µM) or VAMP2-His6 (final concentration 25 

µM) with liposomes80,81, followed by three freeze/thaw cycles to enhance protein 

reconstitution at the vesicles membrane. 

Atomic Force Microscopy  

Atomic force microscopy (AFM) was performed on liposomes placed on mica 

surface in buffer, using a minor modification of our previously published procedure75,81.  

Liposomes were imaged using the Nanoscope IIIa AFM from Digital Instruments. (Santa 

Barbara, CA).  Images were obtained in the “tapping” mode, using silicon nitride tips with 

a spring constant of 0.38 N.m-1, and an imaging force of <200 pN.  Images were obtained 

at line frequencies of 2 Hz, with 512 lines per image, and constant image gains.  

Topographical dimensions of the lipid vesicles were analyzed using the software 

nanoscope IIIa4.43r8, supplied by Digital Instruments. 

Measurement of Liposome (PC:PS Vesicles +/- T-SNARE and V-SNARE) Size Using 
Photon Correlation Spectroscopy (PCS) 

Size of liposomes, proteoliposomes, and proteoliposome clusters were determined 

using PCS.  PCS is a well-known technique for the measurement of size of μm to nm size 
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particles and macromolecules. PCS measurements were performed in a Zetasizer Nano 

ZS, (Malvern Instruments, UK).  The size distributions of bare PC: PS vesicles and 

vesicle-reconstituted SNAREs were determined using built-in software provided by 

Malvern Instruments. Prior to determination of the vesicle hydrodynamic radius, 

calibration of the instrument was performed using latex spheres of known size. In PCS, 

subtle fluctuations in the sample scattering intensity are correlated across microsecond 

time scales. The correlation function was calculated, from which the diffusion coefficient 

was determined using the Stokes-Einstein equation, hydrodynamics radius can be 

acquired from the diffusion coefficient82. The intensity size distribution, which was 

obtained as a plot of the relative intensity of light scattered by particles in various size 

classes, was then calculated from a correlation function using built-in software. The 

particle scattering intensity is proportional to the molecular weight squared. Volume 

distribution can be derived from the intensity distribution using Mie theory83. The 

transforms of the PCS intensity distribution to volume distributions can be obtained using 

the provided software by Malvern Instruments.  

Immunoisolation of the Native T-/V-SNARE-NSF Complex and Immunoblot 
Analysis of NSF Associated with the Complex  

To isolate the neuronal t-/v-SNARE-NSF complex and associated proteins, SNAP-

25 specific antibody (Santa Cruz, goat, 33 μg/mL, sc-7538) conjugated to protein A-

sepharose® was used. 10 mg of whole rat brain solubilized in Triton/Lubrol solubilization 

buffer (0.5% Lubrol; 1 mM benzamidine; 5 mM Mg-ATP; 5 mM EDTA; 0.5% Triton X-100, 

in PBS pH 7.4) supplemented with protease inhibitor mix (Sigma, St. Louis, MO), was 

used for the immunoisolation of the complex. Protein was estimated by the Bradford 

method61. SNAP-25 antibody conjugated to the protein A- sepharose® was incubated 
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with 1 mg of the solubilized fractions for 1 h at 4°C followed by three washes of 10 

volumes of PBS pH 7.4. Washed beads were centrifuged at 500 x g for 2 minutes after 

each wash and the supernatant was discarded. The immunoisolatated sample attached 

to the immunosepharose beads was split equally into four parts, and each part suspended 

and incubated at room temperature or 30 sec in either pH 7.4 +/- ATP, or in pH 6.0 +/- 

ATP. Following the 30 seconds incubation at room temperature, the immunosepharose 

beads were isolated and Laemmli sample preparation buffer was added to them. The 

unboiled protein samples in Laemmli buffer were then resolved using a 10% SDS-PAGE. 

Following electrotransfer to a 0.2 mm thick nitrocellulose membrane, the resolved 

proteins underwent immunoblot analysis using specific primary antibodies to NSF (Santa 

Cruz, goat, 200 ng/ml, sc-15915, lot#C012), syntaxin-1A (Santa Cruz, mouse, 200 ng/ml, 

sc-12736, lot#D0617), and insulin (Santa Cruz, rabbit, 20 ng/ml, sc-9168, lot#J0615) and 

HRP-conjugated secondary antibodies for goat (Santa Cruz, donkey, 80 ng/ml, sc-2020, 

lot#J0614), rabbit (Santa Cruz, doneky, 80 ng/ml, sc-2313, lot#H1806), and mouse 

(Santa Cruz, donkey, 80 ng/ml, sc-2314, lot#A3114). Western blotting of membranes was 

carried out according to a previously published protocol (29). Student’s t-test was 

performed on percent change over control on densitometric scan intensities of the NSF 

immunobands, for comparison between groups with significance established at 

P<0.01(*). 

T/V SNARE Complex Analysis on MIN6 Cells Homogenate at Various Time Intervals 

MIN6 cells were grown to confluence in 100 x 13 mm sterile plastic Petri dishes 

according to previously published procedure60. Assays were performed at room 

temperature (25 oC). Briefly, MIN6 cells were divided into three sets and each set was 
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stimulated with glucose for different time periods. Cells were washed thrice with 5 

mL/wash of PBS (pH 7.4) and exposed to 35mM glucose either for 1 minute, 5 minutes 

or 10 minutes. After every time point, cells were solubilized in equal volumes of PBS and 

their protein concentrations were determined. 10 μG of the cell homogenate in Laemmli 

reducing sample preparation buffer41 was used in 10% SDS-PAGE and Western blot 

analysis to determine the status of the SNARE complex at various intervals post glucose 

exposure. Immunoblot analysis of MIN6 cell homogenates electrotransferred on 0.2mm 

thick nitrocellulose membrane was performed using primary antibodies specific to 

syntaxin-1A (Santa Cruz, mouse, 200 ng/ml, sc-12736, lot#D0617), and insulin (Santa 

Cruz, rabbit, 20 ng/mL, sc-9168, lot#J0615) and HRP-conjugated secondary antibodies 

for rabbit (Santa Cruz, doneky, 80 ng/mL, sc-2313, lot#H1806), and mouse (Santa Cruz, 

donkey, 80 ng/ml, sc-2314, lot#A3114). 

Results and Discussion 

A sensitive intracellular pH detection system was required to test our hypothesis 

on intracellular pH dynamics upon stimulation of cell secretion. This was accomplished 

by utilizing core-type -COOH functionalized hydrophilic CdTeQDs, with λex = 350nm and 

λem = 520nm. Quantum dots are highly resistant to photo-bleaching, and their 

fluorescence intensity depends on its surrounding pH, allowing accurate pH detection 

over minutes. Obtaining such measurements are extremely challenging by instantly 

photo-bleaching pH sensitive dyes78. CdTeQDs sized approximately 2 nm were used for 

cellular analysis following ex vivo characterization of their fluorescence intensities in PBS 

suspensions of varying pH (Figure. 4.1 a). A relatively acidic PBS suspension elicited a 

diminished intensity of green fluorescence from the CdTeQDs (Figure. 4.1 a). Moreover, 
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the fluorescent signal to pH curve was highly linear be-tween pH 6.0 - 7.0 and pH 7.0 - 

9.0 favoring accurate interpolation in the cellular pH range. 

 
  Figure 4.1: Glucose-stimulated insulin secretion of Min-6 cells induces an intracellular pH drop 
followed by alkalization, demonstrated using pH-sensitive CdTeQDs. (a) Green fluorescent cadmium 
telluride quantum dots (CdTeQDs) are pH sensitive. Note the near-linear increase in fluorescent intensity 
with increasing pH of the suspension medium (pH 5.5 to pH 9). (b) Exposure of insulin secreting MIN6 cells 
loaded with CdTeQDs to glucose, results in a time-dependent drop in fluorescence as a consequence of a 
decrease in intracellular pH, followed by alkalization and return of fluorescence within 8-10 min.  (c, d) 
Fluorescent intensity of cells plotted following glucose exposure demonstrate a sharp drop in fluorescence
(indicating a pH drop) within the first min, followed by a gradual rise in fluorescent intensity (alkalization) in 7
min, followed by a sharp rise and return to resting pH in 9-10 min. (d) Three randomly picked fluorescent 
areas in (b) at increased resolution, demonstrate an initial drop in pH followed by increase, after stimulation 
of insulin secretion and (e) fluorescent intensity line scans of the shown areas. (f) A single pixel size of 80 
nm (red square) is obtained in the fluorescent images. (g) Spectrofluorimetry of suspended CdTeQD treated 
Min-6 confirms pH drop after glucose stimulation (red dots) but not with vehicle control (black dots) (*p<0.05).
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To determine the relative intracellular pH changes in vivo, during glucose 

stimulated insulin secretion in MIN6 cells, cultured cells were preloaded with CdTeQDs 

and exposed to 35mM glucose stimulation. Fluorescent intensity, of images captured 

every minute from 0.5 to 8.5 minutes post stimulation, was measured. Intracellular 

fluorescence measurements demonstrated rapid initial acidification within the first minute 

after glucose stimulation, followed by a gradual recovery in intracellular pH in the 

subsequent 8 minute period to near resting levels (Figure. 4.1 b-e). Glucose induced 

intracellular acidification is demonstrated at high magnification with each pixel measuring 

80 nm (Figure. 4.1 f). A similar trend was observed using spectrofluorimetry of suspended 

MIN6 cells preloaded with CdTeQDs where glucose addition induced a significant drop in 

intracellular pH followed by gradual recovery when compared to vehicle controls (Figure. 

4.1 g). 

To test the status of t-/v-SNARE complexes at various intervals following glucose 

stimulated insulin secretion from MIN6 cells, Western blot analysis on total cell 

homogenates were performed using a syntaxin specific antibody (Figure 4. 2 a).   

Result from this study demonstrated greater amounts of complexed SNAREs in 

the early acidic phase (1 minute following stimulation of secretion), compared to the later 

alkaline phase (10 minute) following glucose stimulation (Figure 4.2 a). To further test the 

role of pH on the SNARE complex in a separate tissue, the direct role of pH in ATP 

mediated dissociation of native brain t-/v-SNARE-NSF complex, was assessed. To 

perform this test, t-/v-SNARE-NSF complexes were immunoisolated from rat brain tissue 

and subjected to ATP in either acidic (pH 6.0) or basic (pH 7.4) environment (Figure 4.2 

b-d). Lower pH clearly demonstrated its inhibitory effect on ATP mediated dissociation of 
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NSF from the native t-/v-SNARE-NSF complex as observed in Western blot analysis 

using a NSF-specific antibody (Figure 4.2 c, d). 

Figure 4.2: NSF-ATP mediated t-/v-SNARE complex disassembly is attenuated in acidic pH 
environment. (a) Immunoblot analysis of MIN6 cell lysate using Synataxin-1A antibody on homogenates 
of cells following 1 min, 5 min, and 10 min of glucose stimulation, demonstrate a loss in complexed syntaxin 
at the 10 min time point. Note equal protein loads of each homogenate fraction as demonstrated using 
insulin-specific antibody. (b) Schematic outline of the experiment to isolate SNARE-NSF complex from rat 
brain tissue, and their dissociation at pH 6.0 and 7.4 in presence of ATP. (c) Immunoblot analysis using 
NSF-specific antibody demonstrate inhibitory effect of low pH on ATP-induced dissociation of NSF from 
native rat brain t-/v-SNARE-NSF complex. NSF immunoblot analysis of t-/v-SNARE-NSF complex at pH 6 
and 7.4 in presence and absence of ATP was resolved using SDS-PAGE and transfer to nitrocellulose 
membrane and probed using NSF-specific antibody. Note the complete dissociation of NSF from the 
complex at pH 7.4 in presence of ATP as opposed to pH 6.0. The data presented in 2c is from the same 
Western blot. (d) Bar graph of NSF immunoreactivity in t-/v-SNARE-NSF complex shows a significant loss 
at pH 7.4 (n=4) (*p<0.01). 

Next the role of pH on the ability of NSF-ATP to dissociate the SNARE complex 
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was further tested using purified recombinant NSF and full-length recombinant t-

SNAREs- and v-SNARE reconstituted into liposomes (Figure 4.3 a-c). SNARE 

reconstituted PC: PS liposome suspension in PBS either at pH 6.0 or 7.4 were exposed 

to NSF-ATP, and their interaction status was examined using AFM (Figure 4.3 a-c) and 

photon correlation spectroscopy (PCS) (Figure 4.3 d, e). Liposome size influences 

membrane curvature, and the interacting surface between opposing vesicle membrane 

are dictated by the size of the t-/v-SNARE rosette complex73. Hence, liposomes of uniform 

size were prepared using a published extrusion method, and used to reconstitute purified 

full-length recombinant t- and v-SNAREs for the study32. AFM examination of bare PC: 

PS liposomes (Figure 4.3 a), demonstrated vesicle size to range between 42 nm and 62 

nm, with an average size of 52 nm. Two sets of PC: PS liposomes (50 nm diameter), one 

set reconstituted with t-SNAREs (syntaxin and SNAP-25) and the other reconstituted with 

v-SNAREs, were used. AFM imaging studies demonstrated that addition of ATP to NSF 

containing suspensions of t-SNARE and v-SNARE liposomes in PBS at pH 7.4 resulted 

in dissociation of a majority of the t-/v-SNARE complexes. Consequently, vesicles formed 

dimers as opposed to pentamers observed at pH 6.0 (Figure 4.3 b). The AFM results 

were further corroborated using PCS studies (Figure 4.3 d). In agreement, PCS results 

demonstrated that liposomes at both low and neutral pH assembled into clusters of 4-5 

(228-231 nm) in absence of ATP.  However, addition of ATP to the SNARE-reconstituted 

liposome suspension at pH 6.0 resulted in a near doubling of cluster size (352 nm), 

whereas at pH 7.4, a 50% reduction in cluster size (112 nm) was observed (Figure 4.3 

d). The findings from AFM and PCS studies substantiate our results obtained using native 

neuronal SNARE complex. It further upholds our hypothesis that the initial establishment 
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of low intracellular pH upon stimulation of cell secretion, may serve as a block on NSF-

ATP mediated t-/v-SNARE disassembly (Figure 4.3 f). This low pH environment 

established immediately following stimulation of cell secretion, results in docked vesicles 

stably engaged with the cell plasma membrane via the SNARE complex, enabling vesicle 

fusion and content release. 

 

Figure 4.3. Association between t-SNARE liposomes and v-SNARE liposomes in presence of NSF-
ATP is governed by pH. (a) Representative AFM micrographs of bare 50 nm PC:PS liposomes; (b) t-SNARE 
and v-SNARE reconstituted liposomes at pH 7.4, and (c) at pH 6.0 following exposure to NSF-ATP. The 
average size of PC:PS liposomes are 52 nm, with a distribution between 42 and 62 nm. Blue dots to the 
left represent size of each liposome clusters in nm. Note following exposure to NSF-ATP at pH 7.4, SNARE-
reconstituted liposomes are present as dimers, as opposed to pentamers at pH 6.0. (d) PCS using Zeta 
sizer confirms AFM results. t-SNARE and v-SNARE reconstituted 50 nm PC:PS liposomes, demonstrating 
NSF-ATP mediated SNARE complex disassembly result in dissociation of liposome clusters at pH 7.4 
(green, ii to red, i). The average Z size of the proteoliposome clusters at pH 7.4 measure 228 nm before 
NSF-ATP addition and 112 nm following NSF-ATP exposure (green, ii to red i), conforming AFM results in 
a. In contrast, the average Z size of liposome clusters at pH 6.0 measure 231 nm prior to NSF-ATP addition 
and 351 nm following exposure to NSF-ATP, as observed in the AFM studies. (blue, iv to black, iii). (e) 
Surface charge of 50 nm PC:PS liposomes drop following SNARE reconstitution, and nearly a 50% drop in 
negative surface charges are observed in both populations of liposomes (bare and SNARE-associated) at 
pH 6.0 compared to at pH 7.4 (n=8) (*p<0.05). (f) Schematic of t/v SNARE-reconstituted liposome clustering 
behavior in presence of NSF-ATP at pH 7.4 and pH 6.0. 

Given the known capability of NSF to oligomerize in presence of ATP77, one would 

speculate that the observed doubling of t-/v-SNARE-NSF vesicle clusters at pH 6.0 
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following ATP addition may reflect interactions between NSF-ATP molecules associated 

with the vesicle-SNARE complexes. Protein structure, and hence protein function, is 

greatly influenced by the pH of its surrounding environment. To test if pH induces any 

major changes to the net surface charge of vesicle-associated SNAREs, zeta potential 

measurements were performed (Figure. 4.3 e)84.  SNARE-reconstituted liposomes had 

relatively more negative zeta potential value compared to bare 50 nm PC: PS liposomes 

at both pH 7.4 and 6.0. However, both liposome populations demonstrated a 50% drop 

in the net negative charge when transferred from pH 7.4 to pH 6.0 (Figure. 4.3 e). This 

50% reduction in net charge, observed both in bare and SNARE-associated liposomes 

suggests that pH of the dispersion medium primarily contributes to the surface charge on 

liposomes rather than that of the vesicle-associated SNARE proteins. 

Our results reveal a mechanism where changes in intracellular pH, reflected in the 

rapid intracellular acidification followed by gradual alkalization during cell secretion, 

governs the assembly and disassembly of the SNARE membrane fusion protein 

complexes. These results suggest that the loss in NSF-ATP induced SNARE disassembly 

at pH 6.0 is likely a consequence of a loss in the ATPase activity of NSF, abrogating the 

ability of NSF to disassemble the SNARE complex. Structural changes to the SNARE 

complex at low pH influencing NSF-ATP mediated disassembly is unlikely, given that the 

50% reduction in net charge observed in both bare and SNARE-associated liposomes is 

found to be contributed by the pH of the dispersion medium on the surface charge of 

liposomes rather than on the vesicle-associated SNAREs. The status of the SNARE 

complex may be one of several proteins influenced by the pH drop that occur during cell 

secretion. For instance, the secretory vesicle-associated vH+ ATPase is also found to be 
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critical for neurotransmitter release in neurons and insulin release from beta cells of the 

endocrine pancreas32,85. Moreover, intracellular acidification in yeast is known to stimulate 

vH+ ATPase activity86, supporting the hypothesis that an intracellular drop in pH following 

stimulation of cell secretion is also a requirement for vH+ ATPase activation during cell 

secretion. Additional roles of intracellular pH dynamics following stimulation of cell 

secretion awaits discovery 
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CHAPTER 5: IDENTIFICATION OF AN EPILEPTIC DRUG THAT AFFECTS 
GLUCOSE STIMULATED INSULIN SECRETION 

(This Chapter contains previously published material. See Appendix C) 

Abstract 

Valproate (VPA), an FDA approved anti-epileptic drug with a half-life of 12-18 

hours in humans, has shown to perturb the vacuolar proton pump (vH+ ATPase) function 

in yeasts by inhibiting myo-inositol phosphate synthase, the first and rate-limiting enzyme 

in inositol biosynthesis, thereby resulting in inositol depletion. vH+ ATPase transfers 

protons (H+ ions) across cell membranes, which helps maintain pH gradients within cells 

necessary for various cellular functions including secretion. This proton pump has a 

membrane (V0) and a soluble cytosolic (V1) domain, with the C-subunit associated with 

V1. In secretory cells such as neurons and insulin secreting beta cells, vH+ ATPase 

acidifies vesicles essential for secretion. In this study, we demonstrated that exposure of 

insulin secreting MIN6 cells to a clinical dose of VPA results in inositol depletion and loss 

of co-localization of subunit C of vH+ ATPase with insulin secreting granules. 

Consequently, a reduction of glucose-stimulated insulin secretion is observed following 

VPA exposure. These results merit caution and the reassessment of the clinical use of 

VPA. 

Introduction 

Valproate (VPA), an FDA approved drug with unknown mechanism of action, has 

been clinically used for the past four decades in treating migraines, bipolar disorders and 

epileptic seizures. Owing to its structural resemblance to gamma amino butyric acid 

(GABA), a master inhibitory neurotransmitter, VPA was initially thought to diminish neuro-

excitability and regulate various neuronal pathways87-89. Known effects of VPA include 
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histone deacetylase (HDAC) inhibition, which alters neuronal gene expression90,91. 

Inositol depletion has recently been demonstrated in cells treated with VPA, similar to the 

action of lithium, a mood-stabilizing predecessor of VPA92,93. Inositol depletion is 

attributed to inhibition of myo-inositol phosphate synthase (MIPS), the rate-limiting 

enzyme in the inositol biosynthesis pathway94,95. Inositol is a precursor to secondary 

signaling messengers including inositol 1,4,5-trisphosphate (IP3) and diacylglycerol 

(DAG)96-98. A major consequence of VPA-induced inositol loss is its inhibitory effects on 

vH+ ATPase as demonstrated in Saccharomyces cerevisae36. 

vH+ ATPase is a large multi-subunit complex consisting of a membrane (V0) and 

cytosolic domain (V1), 260 kDa and 650 kDa respectively. V0, the proton translocator, 

consists of six subunits whereas V1, which hydrolyses ATP, consists of eight subunits99.  

vH+ ATPase is present on the insulin secretory granule (ISG) membrane and functions 

similarly to its suggested role in neuronal synaptic vesicles100. It also capacitates ISGs, 

making them competent to secrete insulin, and similar to synaptic vesicles, ISG 

acidification is required for its maturation101,102. The vH+ ATPase functions specifically to 

pump H+ into ISGs with a simultaneous influx of Cl- ions by ClC-3 channel, leading to an 

ATP-dependent priming of ISGs, facilitating insulin secretion101. Moreover, granule 

acidification is necessary for enzymatic function of PC1/3 and PC2 (pro-protein 

convertases) residing within ISGs, which produce mature insulin from its pro-hormone 

peptide102.  Studies suggest vH+ ATPase to be important for membrane fusion events 

involving SNARE proteins103,104. Therefore, prevention of ISG acidification interrupts ISG 

maturation and its capability to fuse at the cell plasma membrane, leading to inhibited 

insulin release. Hence, we hypothesized that loss of vH+ ATPase function in pancreatic β 
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cells, specifically in ISGs due to VPA induced inositol depletion, would lead to decreased 

glucose stimulated insulin secretion. In the current study, using mouse insulinoma (MIN6) 

cells, we demonstrated that VPA exposure indeed causes intracellular inositol depletion. 

This resulted in the inability of vH+ ATPase cytosolic subunit C to assemble at the ISG 

membrane, precluding vH+ ATPase activity, and the consequent loss of glucose-

stimulated insulin secretion. 

Experimental Procedures 

Glucose Stimulated Insulin Secretion from MIN6 Cells in Culture 

MIN6 cells were grown to confluence using sterile 100 x 13 mm plastic Petri dishes 

according to published procedure60. Cells were cultured in 25 mM glucose Dulbecco’s 

Modified Eagle Medium (Invitrogen) containing 10% fetal calf serum, penicillin, 

streptomycin, and 50 µM β-mercaptoethanol. Cells were stimulated using 35mM glucose, 

and insulin secreted into the medium was collected at 10 and 30 min. Stimulation assays 

were performed following 0.5h, 2h, 5h, 16h, and 24h of exposure to 1mM VPA. All 

secretion assays were carried out at room temperature (RT), and cells were washed 

phosphate buffered saline (PBS) pH 7.4 prior to stimulation. Following glucose 

stimulation, 200uL aliquots of the PBS incubation medium were collected at 10 and 30 

minutes post stimulation. Aliquots were centrifuged at 4,000 xg to remove any aspirated 

cells, and 160 µl of the supernatant was mixed with 40 µl of 5x Laemmli reducing sample 

preparation buffer41 for Western blot assay. To obtain the total amount of insulin in cells, 

Min6 cells were solubilized in 100 µL of homogenization buffer (2mM EDTA, 2mM ATP, 

0.02% Triton X-100, 1:500 protease inhibitor cocktail, pH 7.4) following secretion assays, 

and protein concentrations61 were determined prior to Western blot analysis. 
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Estimation of Inositol in MIN6 Cells 

Intracellular inositol levels were determined as described previously with 

modification105. Briefly, confluent MIN6 cell plates (3 per time point) were incubated with 

1 mM VPA for 30 minutes, 2 hours, 5 hours, 16 hours, and 24 hours respectively. After 

incubation, cells were washed twice with ice-cold PBS and lysed in ice-cold water 

containing protease inhibitor. Cells were centrifuged at 16,000 xg for 10 minutes to 

remove cellular debris, and protein concentrations of the supernatants were 

determined61. Supernatant protein (400 µg) was mixed with 7.5% perchloric acid and 

stored on ice for 20 minutes. This mix was centrifuged at 10,000 x g for 10 minutes at 4 

oC to remove protein precipitates. Supernatants containing cytosol were used for inositol 

measurement. Samples were centrifuged and loaded onto columns with 1 mL of AG 1-

X8 resin/H2O (1:1) mixture. Inositol was eluted with 5 mL of H2O. Eluates were dried in 

an oven at 70 oC, stored at -80 oC.  Prior to assay, samples were dissolved in dH2O and 

inositol levels were measured using the Maslanski and Busa Method106. 

Immunocytochemistry  

MIN6 cells were grown on 35 mm glass bottom Petri dishes for 

immunocytochemistry60. The distribution of vH+ ATPase -C1 subunit and ISGs in 1 mM 

VPA-treated (5 hours at 37 oC) MIN6 cells were compared with vehicle-treated control 

(PBS) MIN6 cells. Primary antibodies, rabbit polyclonal anti vH+ ATPase -C1 (SC 20944) 

and mouse monoclonal anti-insulin (SC 8033), and secondary antibodies, donkey anti-

rabbit AF 594 and donkey anti-mouse AF 488 (Life Technologies), were used in the study. 

Cells were exposed to DAPI nuclear stain for nucleus localization.  An 

immunofluorescence FSX100 Olympus microscope was used to acquire immuno-
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fluorescent images through a 63x objective lens (numerical aperture, 1.40) with 

illumination at 405, 488, or 647nm. Insulin and vH-ATPase localization and cellular 

distribution were obtained through merging fluorescent images using Imagej. 

Results and Discussion 

VPA first came into medical use in 1962 and although its molecular mechanism of 

action is far from fully understood, it is listed in the World Health Organization as a safe 

and essential medicine107. Recent advances in understanding its mechanism of action 

have revealed perturbation of yeast vH+ ATPase function as a consequence of VPA-

induced inositol depletion94. The current study confirms this finding in a mammalian cell, 

demonstrating that clinical levels of VPA exposure decreases inositol levels in MIN6 cells. 

VPA-treated MIN6 cells from various incubation time points (Figure 5.1A) demonstrated 

a significant decline in inositol after 5h (Figure 5.1B). VPA has previously108 been shown 

to deplete inositol by inhibiting MIPS, the first and rate-limiting enzyme of inositol 

biosynthesis.  

In agreement with VPA-induced inositol depletion, disrupts vacuolar morphology 

and hence function in wild-type yeast cells36, valproate reduces vH+ ATPase subunit C1 

localization to ISG. vH+ ATPase is localized to the ISG membrane in β cells of pancreatic 

islets85,100,102. Similar to neuronal synaptice vesicles, granule acidification is important for 

insulin release. Glucose stimulation lowers intraluminal ISG pH, and pharmacological 

inhibitors of vH+ ATPase block this effect85,101,102,109. Further, studies have demonstrated 

reduced plasma insulin levels in oc/oc mice. The oc/oc mice carry a mutation for a3 

isoform of V0 domain85. The assembly of the various vH+ ATPase subunits is a highly 

orchestrated process and depends on the cell’s functional requirements110.   
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Figure 5.1: Inositol 
depletion in MIN6 cells 
is observed following 5 
hours of VPA 
exposure.	A: Schematic 
diagram showing MIN6 
cells growing in culture 
dishes for different 
periods of VPA 
exposure. Inositol is 
determined in the 
extracted cell cytosol. B: 
Inositol concentrations in 
MIN6 cell cytosol show 
significantly decreased 
intracellular inositol 
levels first after 5h of 
1mM VPA treatment 
(n=3, p< 0.05). 

 

 

 

 

 

For example, V1 association with V0 is glucose dependent in yeast as well as in 

porcine (HK-2) and mammalian kidney cells (LLC-PK1), while phosphoinositide 3-kinase 

(PI3K) inhibition is known to impede this outcome37. Therefore, in the current study, we 

wanted to determine the consequences of VPA induced inositol depletion on MIN6 vH+ 

ATPase organization. Since at the 5-hour time point following VPA exposure shows a 

significant drop in inositol in the cell cytosol (Figure 5.1), the distribution of insulin-

containing granules and the subunit C of vH+ ATPase was examined in MIN6 cells. 

Immunofluorescence labeling of MIN6 cells (Figure 5.2 A-E) demonstrated co-localization 

of the vH+ ATPase subunit C2 with insulin (green) containing ISGs. In contrast, double 

immunofluorescence labeling of VPA-treated MIN6 cells (Figure 5.2 F-J) demonstrated 

substantially diminished co-localization of the vH+ ATPase subunit C2 with insulin (green) 
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containing ISGs. Additionally, ISGs appear to localize to the center of the cell following 

VPA treatment and fail to traffic to the plasma membrane unlike normal competent ISGs 

Figure 5.2: Decreased co-localization of vH+-ATPase subunit C with insulin in VPA-treated MIN6 
cells. A-C: Immunofluorescent images of control MIN6 cells labeled with the nuclear stain DAPI (blue)
and antibodies against vH+ ATPase C subunit (red) and insulin (green). D: Composite image of MIN6 
cells labeled with DAPI, vH+ ATPase, and insulin. Note the co-localization of insulin in insulin granule 
and the C subunit of the vH+ ATPase.  E: Digitally zoomed inset from D; white arrows indicate increased
vH+ ATPase subunit C and insulin co-localization. F-H: Immunofluorescent images of 5h 1mM VPA-
treated MIN6 cells labeled with DAPI and antibodies against vH+-ATPase C-subunit and insulin. I: 
Composite image of MIN6 cell labeled with DAPI, vH+ ATPase, and insulin. J: Digitally zoomed inset 
from I; yellow arrows indicate individual vH+ ATPase and insulin puncta. Note there is little co-localization 
of vH+ ATPase and insulin. Scale bar = 15 μm.	
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observed in control cells. These results are noteworthy because subunit C, together with 

the other cytosolic subunits, needs to be assembled in the cellular membrane for a fully 

functional vH+ ATPase. Relative absence of subunit C from ISG membrane of VPA-

induced inositol-depleted cells compromises vH+ ATPase assembly and activity, would 

negatively impact cell secretion. 

Several studies attest to the knowledge that vH+ ATPase provides the 

electrochemical proton gradient for neurotransmitter uptake, storage, and ultimately 

release by a synaptic vesicle111-115.  

Therefore, we wanted to study the influence of VPA on insulin secretion from β 

cells. Glucose-stimulated insulin secretion from MIN6 cells measured at various time 

points post-VPA treatment demonstrated loss in insulin release compared to untreated 

control cells (Figure 5.3). Additionally, a significantly lower rate of insulin release was  

 

 

 

observed in VPA-treated cells compared to controls (Figure 5.3 B). The percent release 

Figure 5.3: VPA treatment significantly reduces glucose-stimulated insulin secretion in MIN6 cells. 
A: Representative western blots of MIN6 cell total homogenate (TH) and insulin secretions collected at 10
and 30 minutes after glucose stimulation in control and 1mM VPA-treated cells. B-C: Note the significant 
decrease in percent release of total cellular insulin at 10 and 30 minutes post-glucose stimulation following 
30min, 2h, 5h, 16h, and 24h of exposure to VPA (n=3, p< 0.05).	
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of total cell insulin was substantially lower at both 10 min and 30 min following glucose 

stimulation of VPA-treated cells compared to controls (0h) (Figure 5.3 A-C).  In summary, 

these studies demonstrate the detrimental effect of VPA on cell secretion. VPA exposure 

significantly lowered glucose-stimulated insulin release from MIN6 cells as observed 

using Western blot analysis. Conventionally, ELISA assays are performed to estimate 

insulin, however in the current study Western blots were used to estimate insulin release 

since ELISA assays will be unable to differentiate insulin from non-secretory proinsulin 

that may be released into the medium as a possible consequence of cell lysis. Our study 

Figure 5.4: VPA treatment increases total intracellular insulin content in MIN6 cells. A: 
Representative Western blots of MIN6 cell homogenate from control and VPA-treated MIN6 cells at various 
time points. B: Total intracellular insulin significantly increases after 5h of VPA treatment, suggesting the
cellular accumulation of insulin due to a loss in the ability of the cell to secrete (n=3, p< 0.05).	
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further demonstrated that VPA treatment resulted in the accumulation of insulin in MIN6 

cells. We analyzed total cellular insulin content in MIN6 cells post 1mM VPA treatment to 

understand whether loss in secretion was due to fusion incompetence of the ISGs or 

reduced insulin biosynthesis. Western blot analysis shows a significant increase in insulin 

content in total MIN6 cell lysate after 5 h of 1 mM VPA treatment compared to untreated 

control cells (Figure 5.4 A, B). Immuno-GAPDH signal is used as a loading control, 

demonstrating equal loading of cell lysate. Hence, insulin synthesis in VPA-treated cells 

appears to be normal; however, ISGs are unable to optimally secrete their intra-granular 

contents, leading to loss of insulin secretion and their consequent accumulation in cells. 

To our knowledge, this is the first demonstration of inositol depletion and the loss 

of insulin function in pancreatic β cells treated with a clinical dosage of VPA. A fully 

assembled vH+ ATPase leading to ISG granule acidification is required for insulin 

secretion114. Dissociation of the soluble C subunit from the vH+ ATPase complex at the 

ISG in valproate-treated MIN6 cells observed using immunocytochemistry, further 

supports the requirement of a fully assembled vH+ ATPase at the ISG in insulin secretion 

from β cells. We chose to examine subunit C of the proton pump as an indicator of 

assembly/disassembly, since it is a soluble subunit present in the peripheral stalk of the 

eukaryotic proton pump. Furthermore, when vH+ ATPase disassembles, it is known to 

separate into a V0 domain, V1 domain (without subunit C), and subunit C of V1 

domain99,116. Thus, incorporation of subunit C is the final step in assembly of a fully 

assembled and functional vH+ ATPase pump.  

Our demonstration of a loss in insulin secretion from MIN6 cells upon VPA 

exposure suggests that the VPA effect is not due to a decrease in insulin synthesis, since 
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an increase in total cellular insulin was observed in these cells as a consequence of a 

loss in its ability to secrete. Close examination of immunostained cells shows that majority 

of insulin is localized centrally and at the perinuclear region, suggesting their presence in 

the Golgi, and their inability to be appropriately packaged into secretory vesicles in VPA-

treated cells. Additionally, it could mean that the granules are somehow incompetent to 

traffic away from the Golgi toward the plasma membrane for fusion and secretion. Further 

studies using mouse and human islets are in progress to confirm these observations, 

including the use of expansion microscopy for obtaining nanometer scale distribution of 

various components of the vH+ ATPase pump. In summary, we demonstrate that clinical 

dose of VPA leads to a loss in glucose-stimulated insulin secretion from MIN6 cells. This 

loss is due in part to the incomplete assembly of vH+ ATPase at the ISG membrane as a 

consequence of VPA treatment. It is likely that inhibition of vH+ ATPase by VPA was due 

to inositol depletion, as shown in yeast. Since vH+ ATPase provides the electrochemical 

proton gradient for neurotransmitter uptake, storage, and ultimately release by a synaptic 

vesicle, we speculate that VPA action may occur by reducing neurotransmitter release by 

altering vH+ ATPase activity as a consequence of inositol depletion, thereby abrogating 

seizures in epileptic patients111-115. It is to be noted, that since VPA has a half-life of nearly 

16h and in some cases administered daily to both adults and children, sometime for a 

period of two weeks, its detrimental effects observed at very early time points in our study 

is alarming.  Results from the current findings therefore however merit caution and the 

careful reassessment of the clinical use of VPA. 
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CHAPTER 6: DISCUSSION AND CONCLUSIONS 

For decades, the prevailing worldview was that secretion operates as an all-or-

none ‘total fusion’ event, where secretory vesicles are trafficked to the cell surface where 

the membrane encapsulating the secretory vesicle fuse and completely incorporate into 

the cell plasma membrane. The vesicle contents then diffuse out of the cell. This 

hypothesis, although attractive at first glance, had several key setbacks. (i) First, it 

predicted a quantization of secretory products packaged into each secretory vesicle, 

when in fact, secretory vesicle size greatly vary even within the same cell, sometimes as 

much as 6-fold. (ii) Second, the level of additional regulation necessary to rapidly and 

precisely internalize and sequester vesicle-associated lipids and proteins following 

incorporation into the cell plasma membrane seem extraordinarily complex, given the tens 

of thousands of different membrane lipids and their differential distribution even between 

the same bilayer leaflets. (iii) Third, following a secretory episode, partially empty 

secretory vesicles accumulate within cells as observed in electron micrographs, 

demonstrating that secretory vesicles are capable of partial content release. 

Therefore, the discovery of porosome was paramount, in our understanding of the 

transient or the kiss-and-run cell secretory mechanism. Porosome is a supramolecular 

universal secretory portal, which we also demonstrated in insulin secreting MIN6 cells. 

Importantly, for the first time, we were able to reconstitute immunoisolated MIN6 

porosomes into live MIN6 cells. We demonstrated that the MIN6 porosomes are stably 

reconstituted and are able to potentiate glucose stimulated insulin secretion of MIN6 cells. 

We demonstrated that following glucose stimulation, a drop in intracellular pH is 

observed. While this drop in pH may play multiple roles, our goal was to understand its 
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importance in SNARE complex assembly/ disassembly. We demonstrated that the 

relatively lower pH inactivates an enzyme known as ‘NSF’, which is an ATP utilizing 

enzyme causing disassembly of the t/v SNARE protein complex. NSF was immuno-

isolated with other SNARE complex proteins at an acidic pH of 6.0, while it did not 

immune-isolate at a relatively basic pH of 7.4. Thus, the lower pH propagates cell 

secretion by locking the NSF with the SNARE protein complex initially and finally 

releasing it once its function is achieved. Following secretion, the cellular pH returns to 

relatively basic levels, activating NSF, disassembling the SNAREs, thus terminating cell 

secretion. Further, the drop in pH might not occur uniformly throughout the cell, but rather 

in certain regions of the cell forming a gradient of various pHs, however the impact of 

such pH gradient this remains to be investigated.  

The regulation of pH occurs not just within cells but also within the secretory 

vesicles. A bafilomycin sensitive drop in pH was observed within the insulin secreting 

granules. When intragranular pH drop was arrested using bafilomycin A, glucose 

stimulated insulin release was reduced. 

These results led to the final aim of investigating valproate, an anti convulsing 

agent used for treatment of several neurological disorders. It was previously reported that 

valproate disrupts the function of the proton pump v-H+ ATPase in yeasts by inhibiting the 

enzyme myoinositol phosphate synthase (MIPS), involved in the rate limiting step of 

inositol biosynthesis. Since v-H+ ATPase is present at the insulin secreting granule 

membrane, we hypothesized and further demonstrated disruption of insulin secretion 

upon treatment with this drug. Additionally, we also demonstrated that valproate causes 
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one of the cytosolic subunits of the pump to de-localize with the ISGs as compared to 

normal untreated cells thereby inhibiting insulin secretion.  

Although this study provides an impressive account of the importance of pH in 

regulation of insulin secretion, there still is a major gap of knowledge in the steps leading 

to pH regulation. We demonstrated the role of vH+ ATPase in lowering ISG pH but the 

upstream signaling mechanisms that activate vH+ ATPase in insulin secreting cells is yet 

unknown. In synaptic vesicles it has been established that vH+ ATPase is under the 

control of a heterotrimeric G protein81. We know that Gi and Go are localized on ISG 

membrane but the heterotrimeric G protein that activates the proton pump during 

stimulation of secretion is not known. Conventionally, heterotrimeric G proteins are 

associated with a transmembrane receptor. If vH+ ATPase is under the control of G 

protein in an insulin-secreting cell, the receptor that activates it is yet to be identified. 

Additionally, vH+ ATPase in turn activates aquaporins, which fills water molecules into 

synaptic vesicles thus increasing their volume. Whether ISGs have a similar mechanism 

and if they do, it will be important to know the aquaporin isoform that implements this 

regulation. Thus, regulation at every step of the late secretory pathway is critical to 

glucose stimulated insulin secretion. 
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The insulin secreting porosome is a supramolecular lipo-protein complex that 

measures roughly 100 – 120 nm in diameter. Porosomes allow transient fusion of insulin 

secretory granules to the cell plasma membrane and mediates partial release of secretory 

contents. Post secretion, the secretory granule reseals and re-enters to the cell interior. 

This is in contrast to the ‘total fusion’ phenomenon, where secretory vesicles completely 

fuse at the cell plasma membrane and release all of the contents to the cell exterior. This 

study involved a deeper understanding of the transient or ‘kiss-and-run’ mechanism of 

cell secretion that involves the insulin secreting porosome complex. In addition to the 

porosome, two other components of transient cell secretion, namely the t/v SNARE 

complex and the insulin secreting granules (ISGs) were also studied. We demonstrated 

for the very first time in the history of porosomes, its functional and stable reconstitution 

into live insulin secreting mouse insulinoma cells leading to improved glucose stimulated 

insulin releasing from the reconstituted cells. Further, we demonstrated a drop in 

intracellular pH once a cell has been stimulated for secretion. This lowering of pH is critical 

for locking in place, the t/v SNARE complex that are present at the base of the porosome. 
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We also demonstrated a loss in glucose stimulated insulin secretion upon prevention of 

intracellular acidification utilizing Bafilomycin A, a pharmacological inhibitor of the 

vacuolar proton pump (vH+ ATPase). The vH+ ATPase is also present on the insulin 

secretory granule membrane, which led to our fourth aim of this study. Valproate, is an 

FDA approved anticonvulsant that is widely used in the treatment of various neurological 

disorders such as epilepsy and mood disorders by disturbing vH+ ATPase activity in the 

neurons. Since, vH+ ATPase is also present on ISG membrane we wanted to understand 

effects of valproate on insulin secretion. We demonstrated that valproate treatment 

significantly reduces glucose stimulated insulin secretion. Additionally, we also 

demonstrated that valproate leads to de-localization of one of the cytosolic subunits of 

vH+ ATPase from the ISG membrane, preventing complete assembly of the proton pump. 

These results coherently suggest the importance of porosomes in transient cell secretion 

and its critical regulation via interaction with various proteins namely SNARE complex 

and ISG membrane proteins that allows for cell secretion.  
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