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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Traditional inspection methods in manufacturing required technical individuals that

use a variety of gauges and tools. These techniques require time which is not consistent

because performance involves human interaction. The issue is because of the variations

involved, there is no standard due to the nature of human error and variation. With the

increasing demand for quality and speed in manufacturing, the importance of automation in

the processes, and the use of machinery to conduct inspection, attracted developers to provide

automated solutions. Automation of inspection techniques has improved both the accuracy

and the speed of inspection processes. Developers have invented devices that measure the

coordinates of the part being inspected automatically by using a device called Coordinate

Measurement Machines (CMM). CMMs inspect the part by using a touch probe that contacts

the surface of the part and makes multiple contacts with the part being inspected to collect

points on the surface. These points are then fed to a computer device and compared with the

original value to decide if the measured part within the tolerance is specified. The technology

is very precise and accurate. However, the process is slow in acquiring the dimensional

information, as is it required to make a movement and contact the part each time a point is

collected [10]. Contacting the part in order to collect data points is not efficient for collecting

a large number of points and would require a long time in the manufacturing facility. Non-

contact inspection methods, such as laser line scanners, can obtain a large number of data

points in a short period of time [11] in comparison with the contact type of inspection [1].

However, in many non-contact inspection methods, human involvement is required, which is

a time-consuming technique that is run on a trial and error basis in manual inspection [12]. In

order to avoid human involvement in inspection and make the process more time efficient and

error free, it is important to facilitate the use of automated planning for inspection in laser

scanning [13]. 3D scanning technology can be automated to generate plans for inspections

for consistent and repetitive measurement. These consistent plans are dependent on the
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dimensional information of the specific part that is being inspected and are tailored to the

specific features on the surface. In order to generate the best automated plan for the 3D

scanner to follow, the relationship between point cloud quality and scan parameters must be

defined. With the advances in CAD/CAM and machining technologies manufacturers are

able to make complex, compound curved parts, but parts need to be inspected. Traditional

methods may not capture all the data needed, especially if the parts have compound curves,

surfaces with multiple features, and other organic shapes. 3D scanners are the perfect tool

to use in order to inspect these organic shaped surfaces and ergonomically designed parts

[14]. In addition, traditional inspection of free-form surfaces requires highly skilled technical

individuals, which takes a long time. 3D scanners have made it possible to accurately and

quickly measure free-form surfaces due to their ability to measure a fine detailed surface

quickly and cover the surface faster than the CMMs while not having a visibility problem

[1]. When automating a 3D scanner, depending on the size and the type of the scanner, the

scanner is either mounted to a robotic arm and the part is on a turntable [15, 16, 17, 10]

or mounted on a robotic arm; the part is fixed, and the the scanner moves around the part

[18, 19], or it can be in place at the end probe in CMM [20]. In all cases the scanner is

programmed to make a movement over the part to scan it; these movements are based on

the location of the part being inspected in the robot/CMM workspace. When using the

scanner mounted to a robotic arm, the data gathered from the scanner are then stored in

the scanner workspace. In this dissertation, it will be referred to as the C-track workspace.

The relationship between the workspaces are not known, so there is a need for it to be derived

in order to reference a point on the surface of a part to be revisited. In this thesis I divided

the work into four tasks the that will be divided into four chapters. The first task is to

connect the workspaces together and find the relationship between the robot workspace and

the scanner workspace. The second task is to conduct experiments with systematically varied

parameters to study the effect on the scan quality caused by the view angle of the scanner

to the test object being inspected, the stand-off distance between the scanner and the test
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object, and the speed of the movement of the reboot arm, as well as the resolution setting

selected on the scanner. The third task is to study the effect of the changes in the point

cloud or the digital representation of the object for the remanufacturing applications, this

will be following all the steps in the remanufacturing facility starting from the inspection and

digitization phase all the way to the remanufacturing phase that is material deposition. The

fourth task is to use machine learning to optimize the parameters of the scanning technology

in order to get the best scanning outcomes and study the accuracy of the model.

1.1.1 Contact and Non-Contact Inspection

Contact measurement methods acquire surface geometric information using tactile

sensors such as gauges and probes that physically touch the part being inspected such as

CMMs. (Figure 1.1.a). On the other hand, non-contact measurement methods acquire

surface geometric information by using some sensing devices such as laser/optical scanners,

X-rays, or CT-scanners [1].

In contact inspecting methods there are several factors that do not need to be taken

into consideration, since it would not affect the process of measurement dimensional informa-

tion of the inspected surface. These include view angle, standoff distance, and speed. Speed

is not critical for individual point measurement because CMM speed does not affect the abil-

ity to capture a point as long as the probe is making contact with the surface. The contact

inspection methods, such as CMM, is accurate although it does not allow for the collection

of many data points as quickly as a non-contact inspection method (Figure 1.1b). Optical

CMMs are one of the technologies that are not as clear in terms of contact or non-contact;

non-contact optical CMMs systems have an optical eye to measure the dimensions of the

object. However, they have some mechanical constraints as the part has to fit in the area

designated for use. The main difference between Optical CMMs and a 3D scanners is the

ability of the 3D scanner to collect more data points and scan larger objects. Portable opti-

cal CMMs come with a scanner and a portable probe that contacts the part while scanning.

Although it has a probe, it is considered contactless as it moves freely around the surface
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Figure 1.1: Point cloud artifacts C(a,b) collected by CMM and laser scanner [1]

and only collects points based on its location on the part and on what angle it is. It provides

the ability to measure large objects by freely walking around them and has no mechanical

constraints. CT-scanners on the other hand provide a solution to inspect the geometry of

the part along with the internal structure and the condition of the part by projecting x-ray

signals in different frequencies and provide a visual representation of the part.

1.1.2 3D Scanning Technologies That Are Being Used for Various

Application

Commercial laser scanners can be attached to a robot or coordinate measuring ma-

chines (CMMs) for dimensional inspection, reverse engineering [21, 22], and re-manufacturing

[23]. Compared to a contact method, such as CMM using a touch-trigger probe, laser scan-
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ners have the advantage due to their ability to gather many points in a short time with high

speed, high resolution, and without contact sensing [24]. This advantage has also attracted

non-manufacturing fields due to the technology’s ability to do touchless scanning. 3D scan-

ning has been used in many applications, some related to civil engineering and surveying,

and others related to medical applications and historical preservation of heritage [24]. This

includes historians who capture dimensional data about sculptures to digitally record and

preserve historical artifacts [25]. Physicians use laser scanners as a surface measuring tool

for clinical assessment of patients [26]. Depending on the intended use of a 3D scanner, there

are multiple scanners to select from. No one single scanner can fulfill all the required needs

of different applications. It depends on the size of the object being scanned and the scanner’s

features. Scanners can be categorized into two types: ranging scanners and triangulation

scanners. Ranging scanners scan buildings and large objects with lower precision compared

to triangulation scanners. These scanners are fixed in one place and a laser beam is projected

from the scanner to scan up to 360 degrees around the scanner; these scanners are not ideal

to scan objects as they only scan one side that is visible on the object. Scanners are not

the same in their abilities and features. Some are small and easy to transport and have the

ability to run on a battery, while others are bulky and hard to move. Other features are

related to the ability of the scanner such as resolution, speed, field of view, and range limits.

Scanners are also not the same in their ability to scan when there is interfering radiation

[27]. This research will be working with a triangulation scanner. Which has the ability to

scan medium to large objects such as a car hood or a door, and it also provides the ability

to be moved around the object to cover the surface from all angles.

1.1.3 Challenges in 3D laser line Scanning in Manufacturing

Although laser scanners can obtain a large number of data points in a short period

of time as shown in Figure 1.2, there are challenges that hinder their use as an inspection

tool in manufacturing applications, due to some trial and error and the iteration it is taken

by the workers in taking the measurements.
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Figure 1.2: Impression of a side of the object in one instance

There is a need for development of automated laser scanning system models that

avoid the trial and error caused by manual scanning [12]. Since there is a lack of knowledge

on the effect of the different parameters the scan quality, the outcomes of automating the

process will not be a clear and accurate point cloud that can be used in the manufacturing

industry as a tool for inspection. When scanning manually, it is difficult to keep track of all

the details about the standoff distance, and the view angle due to fatigue that occur while

holding the scanner and inability to manually control it. Automating the process will make

it possible to scan a specific part while keeping track of scanning parameters such as view

angle and standoff distance by integrating it into the scan trajectory. This will result in

consistently getting a complete point cloud that represents the surface each time.
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1.1.4 Motivation and Significance

There has been little research focused on the effect of scan quality by the integration

of the 3D scanner with a robotic arm and testing the system as a whole in an effort to

automate the system. Understanding the effect of integrating these components together is

important in designing an optimized trajectory path in the future. Analysis predicts that

there will be a compound annual growth rate of 13.81 % annually in the market of 3D

Scanning over the period of 2013-2018. ("Global 3D Scanning Market 2014-2018"). This

research is motivated by the importance of a defect detection method which can be used in

today’s fast paced manufacturing facility. There is a continued demand for better quality

in manufacturing. Manufacturers are concerned about utilization by having a flexible line

manufacturing facility that is able to handle multiple products with minimum modification

to the line itself [28]. Having flexible technology that can be used with different setups is

a key component in a flexible manufacturing facilities. 3D scanning can be used in flexible

manufacturing facilities as an inspection tool for defects due to its ability to scan a variety

of products with little modification [14]. However, the current manual approach, although

it is lean and flexible, needs to be automated, as that would reduce the inspection time

approximately 30% [29] and generate more consistent scan data. This can be solved by

generating a scan path trajectory based on each part using a vision system that identifies

the part on the production line and activates the specified scan trajectory for the part being

inspected. National Institute of Standards and Technology (NIST) is initiating a project

to demonstrate how a standardized 3D model of a product can integrate and streamline

production from the initial design through the final inspection in a continuous, coherent data-

driven process. This tightly integrated, seamless string of activities is what manufacturers

call a “digital thread” [30]. Products and Manufacturing Information (PMI), proposed by

NIST, will include non-geometric attributes in a 3D CAD model that will be important for

manufacturing product components and assemblies [31]. The automated laser line scanning

system will help in increasing the information content by adding the original manufactured
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dimensional information to the digital thread, and making the scanned data more effective.

The availability of PMI will make it possible to reverse engineer a product and use the

scanning technology to collect geometric information. The collected scanned dimensional

information along with the PMI information can be used in remanufacturing applications

and inspecting the part to be remanufactured. This can also be used to sort the quality

of the parts received at the remanufacturing facility for quick decisions about accepting

or rejecting the part based on the feasibility of the part received. Despite the continued

improvement in accuracy, there is still a problem, as most of the current scanning techniques

and procedures cause very bad scanning artifacts, such as noise, outliers, missing areas, and

incomplete geometry [5]. Researchers have been addressing this with two strategies. The

first strategy is by point cloud processing to remove errors [5]. The second strategy is point

cloud path planning to minimize the amount of work in point cloud processing. Within

the second strategy there are researchers that are looking at the noise caused from the part

being inspected and the effect of the surface finish [32]. Others are looking at the problem

from the parameters on the scanning procedure [18, 6]. Understanding the effect of different

parameters on the quality of the scan is important as it can lead to better scan quality

and reduce the noise and inconsistency in the data; it also reduces the effort of cleaning

the dataset after scanning. Extensive cleaning can eliminate points that are important in

identifying the defect and make the technology not applicable for use as an inspection tool.

Having better scanning quality by using the right parameters will reduce the processing

time that will also save inspection time. It will also improve the quality of the generated

trajectory as it is generated based upon the best parameters in accordance to the curvature

of the part being scanned. Experiments in this study are expected to explain the effect of

the parameters on the scan quality that is required to benchmark future scan path planning

methods. In order to automate the technology and take it from its manual current state,

there is a need to investigate scanning techniques and define it based on the best outcomes

unlike its current trial and error technique. Manual scanning often results in numerous bad
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scanning artifacts and can require scanning the same part multiple times to capture what

was missed. This is a time consuming process that has to be avoided in automatic inspection.

This cannot be achieved unless the parameters are defined and taken into consideration in

the scan planning process. It is important for any exploration and understanding of the

problem to understand the effect of the parameter in order to suggest an improvement or to

optimize the process [32]. Parameters effect on the scan quality are still not well addressed

in the literature along with the limitations of the 3D scanning technology.

1.1.5 Research Problems

Current point cloud measurement procedures are time consuming and do not produce

good scan quality. Because current scan procedures are based on manual trial and error, they

produce scans that cannot be used as a basis for inspection due to variability in the procedure

and noise in the scans that produce many artifacts and outliers. There is a need to develop

an automated laser scanning system to avoid these variations and have a consistent data

capable for identifying defects. In this research, I am investigating the cause of having an

artifacts in the point cloud data and studying its causes. In order to do so many components

need to be added to reach to the results. First, by learning how to program the robot using

a Teach Pendant, and became familiar with the process of scanning using the 3D scanner.

Also becoming familiar with the field and gather the necessary knowledge. The parameters

that were considered in designing the path were the standoff distance and the view angle.

The change in these parameters effects the distance between the two neighboring paths. The

lower the standoff distance, the smaller is the width of the laser beam. Also, when the view

angle is smaller and the scanner is perpendicular, the smaller the laser beam is. Due to

the complexity of the scanned object in the initial experiments, ideal point cloud were not

achieved. It wasn’t clear what the factors that impacted the scan quality were. Therefore, I

concluded that there is a need to study scan parameters in order to know the factors that

affect the scan quality that prevent having noise, outliers, holes, and low sampling density

of point clouds. This also showed that in order to get the right parameters there is a need
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to select a test object that does not contribute to the noise in the scan and we can easily

distinguish the effect of the parameters by using a designed test bed. For doing so a test

bed that allow to hold some parameters constant while changing others to understand the

effect of individual parameter was designed. The selection of the test bed is very important

in characterizing the impact. Failure to design and select the right test bed will result in a

misleading information about the impact of the parameter on the scanning quality. However,

although in the optimal parameters were selected in the performed scan we found out the

resulting point cloud wasn’t clean as well and there are many noise, and outliers. This

prevent the use of the point cloud as gathered for digital additive remanufactuing and lead

us to the second phase of exploring the different phases that the point cloud go through in the

remanufactuing process that adds up to the total error. Finally, the need for optimizing the

parameter is important to get the optimal point cloud; therefore it is important to use some

optimization and machine learning tools to predict the right parameters. A study was made

to study the accuracy of the prediction tool in finding the right parameters based on the

results of an experiment made on CT-scanner; doing so will generate the knowledge needed

to automate the system. These activities led to a greater understanding on how to design

a trajectory and scan a part in the most optimized and efficient way. The robot that was

used is FANUC S-430 IW, and the scanner is Creaform MetraSCAN-R. This contribution is

significant because it is expected to automate the use of laser line scanners and make it more

consistent, reliable, and efficient as a quality monitoring tool for condition assessment in

the manufacturing and remanufacturing inspection operation. Thus, it eliminated variation

caused by manual scans.

1.1.6 Research Challenges

Currently there are two workspaces: the robot workspace and the C-track workspace.

The robot workspace is used to move the robot and record the location of the end effector

while moving. The C-track workspace is the dimensional information of the scanned object.

Deshmukh et al. [33] created a model that made it possible to determine the position and
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orientation of a robot arm, laser scanner, laser beam, and component with respect to the

robot workspace. The points that are collected are stored in the VX element on a different

workspace; one of the challenges is finding the transformation matrix that connects the C-

track workspace to the robot workspaces. Understanding this relationship and the effect

of moving the C-track is important as it will affect the way the experiment is conducted.

The relationship is also important in identifying points to scan in the inspection process and

knowing what point the scanner is pointing at on the C-track while moving in the robot

workspace. After finding the relation and its effect, the experiment was made to validate

the model. Deshmukh et al. [33] worked on a model that integrates three components in

the automated laser line scanner as this is necessary to know in automating the system; the

three components are the robot, the laser scanner and the component surface. They created

the fundamental kinematic models required for advanced automated scan path planning and

generated the forward and inverse kinematics models. The model created was the first used

for this application and had some assumptions in the modeling of the kinematics equations.

This made it challenging to use the model as the results of using it are not known. One of

the challenges is how to define point cloud quality.There are four parameters that define the

quality of point cloud that were introduced by [34, 35]: density, completeness, noise, and

accuracy. Boehler et al. [32] measured the quality by the deviation of a single point from

the object’s surface. However, the deviation of a single point is not the right approach to

use as there are variations that prevent us from getting the exact point each time a scanning

is performed, as mentioned by the same researcher due to some variability in the rate the

scanner capture and the moving speed. In this research, I defined the quality as the density,

completeness, and noise of the gathered point cloud. Since selecting the right test object

affects the ability of the scanner to scan and produce a quality point cloud, part of it is

the lack of knowledge on the effect of the different parameters on the scan quality, and this

makes it challenging to select the right test object for the experiment. Not finding the right

test object will result in misleading information that will prevent us from knowing the effect
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of the parameters.

1.1.7 Research Objectives

The research objectives are understanding the effect of: view angle, standoff distance,

scanning speed, and resolution setting on the scan quality by conducting a point cloud

measurement experiments with systematically varied scan parameters. This experiment will

help defining the effect of different parameters on the scan quality. Previous researches

did not address the effect of speed, view angle, standoff distance, and resolution and the

interaction between them in the scan quality; these are important in designing the automated

system. Understanding the effect of the parameter will be a foundation for designing the

automated scan system that will help achieve a faster inspection time that suite the industry.

This research is expected to model the location of a point on the surface in an attempt to

predict the measured point cloud, to model of relationship between the C-track workspace

and the robot workspace, to characterize the impact of point cloud measurement parameters

on the scan quality, and to verify the points prediction by feeding the location of the point to

be collected by the scanner. By accomplishing all three objectives linking the robot and the

scanner workspaces, predicting the location of the laser beam on the point being scanned,

designing the experiment with a systematically varied scan parameters, understanding the

error contribution factors from all the activities in the remanufactuing application, and the

possibility to optimize and predict the parameters of the scanner to achieved the best results

will addresses the research gaps in 3D scanning as an inspection tool and study the effect

of the scanning parameters on the scan quality. These steps will make it possible to have

an automated system capable of having a consistence scans that can be used as basis for

inspection for many applications.

1.2 LITERATURE REVIEW

This review covers the relevant literature in the area of the research in ten different

sections: free-form surface inspection methods; computer aided inspection planning; point

cloud quality for contact and non-contact inspection; 3D scanning applications; strategies
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for improving the point cloud; point cloud analysis; factors that affect scanning quality in

other research papers; robot kinematics; 3D scanning parameters; and manufacturing digital

thread and the point cloud smoothing.

1.2.1 Free-form Surfaces Inspection Methods

Advances in CAD/CAM have given manufacturers the ability to make complex and

curved surfaces. With the demand for ergonomically designed parts that have multiple

features and other organic shapes, traditional inspection methods may not be the right

tool to use. The reason is that the surface being created from curves does not have a

specific feature or shape. 3D laser line scanners are ideal for inspecting a free-form surface

[14]. Free-form surfaces exist in many forms and fields around us from manufacturing and

designing of molds and dyes and to the first clay models of products such as a car body.

All CAD software has the ability to draw a free-form surface; this is important because it

gives the ability to generate dimensional information and compares it with the inspection

data. With the ability to make and machine a free-form surface, the demand for inspection

arises. Inspection techniques for free-form surfaces are not as mature as they are related

to products with regular features, like plane or cube. Future research on free-form surface

inspection is predicted to focus on the development of techniques that give better accuracy

and efficiency and reduce cost [13].

1.2.2 Computer Aided Inspection Planning
Past Technology

Research prior to 1995 showed the focus was on two and a half dimensional features,

and the goal of the system for Computer Aided Inspection (CAIP) was tolerance-driven or

geometry-based system driven [36]. The tolerance-driven CAIP system focuses on features

that have specific tolerance requirements. ElMaraghy et al. [37] developed one of the earliest

CAIP systems. The system depends on a knowledge-based approach in generating inspection

tasks. The system was developed using purpose logic programming language and uses a

feature oriented approach in modeling inspection. In designing the system, they considered

the characteristics of the CMMs, the geometry of the object being inspected and the function
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of the object in designing the system. Most of the research at that time focused on developing

conceptual level CAIP systems for CMMs. These systems require inspection operator input

for feeding the system the important inspection features to look for or tolerances that need

to be checked. Geometry-based CAIP system focuses on planning how to obtain a complete

geometric description of an object using the inspection data. Inspection of part surfaces is

made automatically using a tactile sensor. The tactile sensor collects points on the part

surface; then the measured data are aligned with the CAD design data model, and the error

is calculated [38]. The system usually ignores tolerance information and focus is on the

matching geometry between the designed shape and the inspected object. Geometry-based

CAIP systems are not as widely used as tolerance-driven CAIP systems. Furthermore,

geometry-based CAIP systems tend to acquire more data points and thus require more

time; this caused the technology to become un-popular and made the industry search for

an alternative [36]. The alternative way had to be more efficient to gather a large number

of points in a short period of time such as 3D laser line scanners if they can be efficiently

implemented [36].

Recent Technology
In the past 20 years, researchers have started to look for computer-aided inspection

planning system with one or more modules. These include inspection feature selecting and

sequencing, measuring/sampling point’s selection and optimization, collision-free path plan-

ning and generation, and inspection execution [36]. On-Machine Inspection (OMI) has been

widely preferred to directly inspecting in manufacturing and quality control. This feature

is vital for an automated production system that identifies the error earlier in the machine

and saves time for. OMI processes integrate design, machining, and inspection aspects of

manufacturing and allow the product to be inspected and accepted on the machine while be-

ing made [36]. Inspection-related information, such as dimensions, tolerances and geometric

items, are becoming available for use and can be retrieved from Standard for the Exchange

of Product (STEP) model data and used in creating inspection process plans [36]. The

technology used in this research is stand-alone and not installed on-machine; this will allow
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the technology to be used to inspect a variety of products. Non-contact devices, such as

3D optical scanners, are gradually maturing for use in inspection. This kind of research has

caused non-CMM measurement methods to become a major research trend [6]. Automated

planning for free-form surface inspection for CMM and laser-scanning is becoming important

as it reduces human involvement in order to make the process more time efficient and error

free [13].

Inspection Methods Limitations
Laser line scanners can be used as a substitute for tactile probes for CMMs. The dif-

ference is that it is not touching the surface, but only the laser line is projected on the surface;

it also has the ability to collect a larger number of data points compared to tactile CMMs,

and has the ability to measure larger objects than CMMs. There are many types of CMMs,

some with mechanical, optical, laser, or white light, and they are all used for inspection.

Although both types are used as inspection tools and to generate dimensional information,

procedures for evaluation differ between the CMM and laser line scanner. Therefore, error

specifications with the scanners are difficult because there are many factors that influence

scan quality such as surface quality, surface orientation, and scan depth. Nevertheless, there

are benefits for using each type of inspection methods. Inspection methods can be contact

and non-contact or a combination of both [13]. Contact sensors require touching the surface

of the object in order to register the coordinates of the point. It has to take the measurements

multiple times in different locations to have a data cloud of points that gives a dimensional

representation. As mentioned previously, the CMM is an example. Li and Gu [13] mentioned

that the visibility problem for a scanning system is similar to the accessibility problem for

CMM; they both require planning and optimizing of the scan path. When using the CAD

model, the important point to be inspected is generated based on the optimized path. Non-

contact measurement systems are systems that gather points on the surface of the part by

directing pulses of light and calculating the time it takes the pulse to return back to the

sensor. These 3D scanners are categorized in terms of use and accuracy into two categories:

Ranging/Terrestrial scanners and Triangulation/Shape scanners [27]. 3D scanners are used
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Figure 1.3: Bulk/Terrestrial scanners [2]

for Modeling From Reality (MFR) as you are gathering dimensional coordinates from an ex-

isting product or a clay model. Li and Gu [13] suggested that many non-contact inspections,

human involvement is still required, which is a time-consuming technique. It is expected to

enhance the accuracy of a non-contact measure approach by using higher accuracy sensors

and optimizing the measurement parameter. 3D laser line scanners are important in quality

control as they have the ability to scan from 50-100 times faster than CMMs [13]. There

are two types of laser scanners; the first is ranging scanners - Bulk/Terrestrial scanners.

This type of scanner is used for scanning large objects with low procession. It is used in

many fields ranging from surveying in architecture, engineering, and construction (AEC)

to preservation of cultural heritage [39, 40, 25]. Terrestrial scanners work by placing the

scanner at the distance recommended by the manufacturer from the surface it is intended

to scan. Pulses are released, and their time traveled to the object and back to the scanner

is measured; the distances are calculated based on the time of travel, and a data point is

recorded see Figure 1.3 [27].

Due to their being no uniform method for measuring the accuracy of terrestrial laser

scanners and testing facilities until recently. The analysis works through different face poses
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Figure 1.4: Triangulation scanners or shape scanners attached to a robot

using different scanners, compares the different scans together, and then ranks them by the

accuracy and repeatability of the scanner [41]. In addition, the results and the technology are

not the same as with dimensional laser scanners as terrestrial scanners have measurements

errors of magnitude greater than shape scanners. Furthermore, manuals and pamphlets

about product specifications should not be trusted; care given to the scanner and the the

setup and calibration of single setup varies between one product to another and one scan to

another [32]. The second type is triangulation scanners, such as shape scanners. This type

of scanner is used for scanning with high precision. Unlike the first scanner, this scanner

moves along the object it is going to scan, and a laser beam is projected on the surface of

the part being inspected. A camera predicts the distance from the lens to the surface based

on the shape of the laser beam, see Figure 1.4. This kind of scanner comes in single camera

solution - double camera solution [27]

Unfortunately, there haven’t been many complete studies on the triangulation scanner

as there have been for ranging scanners. There have been multiple studies on small aspects

in the scanning process. such as digitizing errors [4]; cleaning point cloud [5], effect of

standoff distance and view angle [4, 6]; and generating a path [10]. However, there has not

been a complete study of all the necessary parameters to be considered to have an accurate

consistent point cloud and make the system able to be automated while mounted to a robot.
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1.2.3 Point Cloud Quality for Contact and Non-Contact Inspection

The advantage of using a 3D scanner over a touch trigger probe is the ability to

measure contactless and capture a large number of points in a short period of time. Touch

trigger probes capture one data point per touch. In order for a touch trigger probe to capture

the same number of data points that a 3D scanner collects it would take a long time and thus

makes the technology infeasible. On the other hand, the disadvantage of laser line scanning

at the moment is its limited accuracy and the strong influence of the surface quality on the

accuracy. As it is difficult to inspect shiny surfaces such as machine steel and aluminum

using a 3D laser line scanner [4]. Laser line scanners are less accurate than conventional

touch-trigger probes like CMMs. While there are standardized procedures to evaluate the

accuracy of touch-probe sensors, these are not appropriate for use with 3D scanners because

error specification 3D scanners are difficult due to influencing factors such as surface quality,

surface orientation, and scan depth that are not relevant in CMMs [6]. There is a need

for standardized procedures to evaluate 3D scanner accuracy due to uncertainties in the 3D

scanning such as surface quality, surface orientation and scan depth [6]. While it is known

that the best view angle for scanning is when the scanner is normal to the surface, this is not

always possible due to visibility problems [1]. The visibility problem for scanning systems is

similar to the accessibility problem for CMMs [13].

1.2.4 3D Scanning Applications

There is a global demand for a freeform and ergonomic product that comes in complex

shapes, but they are hard to design and require a long time to do so. Manufacturers are

using reverse engineering techniques in product design to save time and shorten time for

development by scanning existing shapes and modifying them [42]. They are also being

used for remanufacturing purposes in which commercial laser scanners have been mounted

on robots or CMMs and used for reverse engineering and re-manufacturing applications

[4, 43, 44, 12]. It also has been used to reproduce existing components [23]. Manufacturers
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have also been using 3D scanners to design molds for use by scanning the clay model of

their first product, collecting the dimensional information and feeding it to CAD software

in the design process. In this work the applications will use the technology as an inspection

tool to gather the dimensional information for manufacturing and remanufacturing facility

by collecting all the necessary points from the surface.

1.2.5 Strategies for Improving Point Cloud

There are two strategies for improving point cloud. Researchers have been addressing

this in two ways. The first strategy is by working on the gathered point cloud and processing

it to remove errors. The second strategy is by working on the scan parameters, and investi-

gating the different parameters in an effort to understand their effects on the quality of the

point cloud.

Point Cloud Processing
Cleaning of the point cloud is a necessity at this time. When manually scanning

sometimes points are collected by mistake. These points can be the fixture of the part, a

hand movement in the background, or a loose wire. Point cloud processing works after the

point cloud is gathered to identify these outliers based on predefined boundaries and to clean

the data. Researchers have been working on point cloud processing for many reasons.
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Figure 1.5: (a) picture of the part; (b) raw data collected by the scanner; (c) combined three
method used in the literature; (d) the proposed method [3]

Wang and Feng [3] suggested that the collected point cloud is usually full of mea-

surement outliers. They classified the outliers as sparse outliers, or isolated or non-isolated

outlier clusters. They worked on developing a tool that works on all kinds of outliers. They

suggested that the non-isolated outlier clusters are the most challenging to detect and cur-

rent clustering methods will mix the non-isolated cluster with surface points, which will

cause a noise in the gathered point cloud. They studied all the existing tools such as plane

fitting criterion, miniball criterion, and nearest-neighbor reciprocity criterion [5], and they

developed a tool that works on the data gathered by using the majority voting principle

to make an improvement to the current outlier detection techniques see Figure 1.5. They

suggested that the outliers are known to be associated with the scan path and it is possible

to identify the outliers with redundant scans by changing the scan path.

Parameter Investigation
This strategy includes both parameter investigations that are related to the setup

of the scan such as the view angel, standoff distance, as well as point cloud path planning.
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Some researchers have studied the effect of in-plane and out-of-plane angles that have an

important effect on the measured standard deviations because the measurement noise is

mainly concentrated in the depth direction of the scanner. They have found that proper

orientation while scanning can reduce outlier extensity and that outliers are dependent on

the orientation of the scanner [6, 20].

Lee and Park (2000) [10] made an effort to automate the scanning process first by

generating a path that considers all the accessible directions while considering the constraint

in laser scanning operations. They made sure to fulfill the view angle, depth of view, in

relation to the part, avoiding collision with the probe as well. They then calculated the

number of scans and the most desired direction for each scan and generated the scan path that

gives the least scan time. They suggested that the algorithm they used will enable automatic

inspection by building a consistent and efficient scan plan. However, they concluded that

the accuracy and efficiency of algorithms need to be further improved. Furthermore, the

algorithm they used didn’t take into consideration the shape of the part and didn’t maintain

the curvature of the part and distance while scanning.

Feng et al. [4] studied the effect of standoff distance and view angle on scan quality.

In the experiment they mounted a commercial laser line scanner to a CMM robot. The

experimental results showed that the random errors of the scan data are close to the nominal

values provided by the manufacturers. Moreover, they found that there is a relationship

between scan depth (standoff distance) and the projected angle (view angle) see Figure 1.6

[4]. However, they did not study the effect of speed on the scan quality, but this is an

important factor to consider for the use of the technology as an inspection tool.
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Figure 1.6: The systematic error of the scanned data in relation to the view angle and
standoff distance [4].

Researchers have studied the digitizing errors of 3D laser scanners, and have suggested

that the measurement is affected by object geometry and its position in the work window[4]

. Other researchers have investigated the influence of surface reflectance, wetness, and color

selection on the measurement of the terrestrial laser scanners and found that there is an effect

from surface wetness, color selection, and material scanned on the quality of the point cloud

measured, which has an effect on scan quality [45]. The accuracy information provided for

the laser scanner by the manufacturers is generated for a controlled environment and thus

cannot be generalized for the manufacturing environment [18]. Thus, there is a need to

investigate the accuracy and test the equipment to generate general knowledge on the best

use for the technology in order to mount it to a robot and automate it.

Although different parameters have been investigated in the literature by many re-

searchers, there has not been a complete study on all the necessary parameters to be consid-
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ered as in the automated scanning system. The resolution setting and the speed of moving

the robotic arm are very important factors in automating the inspection process. If the

speed of the robot is causing noise to the gathered data cloud, understanding the speed and

the resolution effects are very important. Not knowing the effects of all the parameters will

make optimizing the measurement and achieving the best path plan impossible.

1.2.6 Point Cloud Analysis

Most 3D scanning technology is improving steadily. However, most available scanning

techniques still produce artifacts, such as noise, holes, outliers, or ghost geometry see Figure

1.7. Post processing is important for creating 3D model. The point cloud gathered from

the available scanning techniques showed a demand for a scan cleaning tool to work on

the acquired data points in order to create a digital 3D surface data. Weyrich et al. [5]

developed tools that work directly on the acquired point cloud to clean and improve it.

They also suggested that post processing of point cloud should be performed before surface

reconstruction could be made (they called their tool a point cloud cleaning toolbox). The

post processing of a 3D scan repair in point cloud is done by erasing irrelevant points,

removing outliers, Smoothing MLS, and doing point relaxation, MLS spray scanning, and

automatic hole fitting. It is challenging to scan a part and compare it to a point cloud as

shown in [32]. Points collected with a contact system were faster and easier to deal with in

processing due to the homogeneity of the points collected and the amount of points [1].

There are two methods of alignment between design and measurement data. The

first is automatic, where best fit and features are based on the alignment of the object. The

second is semi-automatic, where users need to do an initial alignment by manually arranging

the design model and closely measuring the data. Then, the system will do the remainder of

the registration operation. There are multiple commercial packages used for inspection and

comparison of contact and noncontact measurement. Most can handle free form surfaces;

however, user interference is often required. These packages have the function of inspection

and comparison. Some of the popular brand names for packages used for inspection are:
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Figure 1.7: Scanning errors "Typical artifacts of raw scanner data. Top Row: Holes due to
sensor restrictions, noise, outliers. Bottom Row: Low sampling density due to gracing sensor
views, low sampling density at delicate surface details, and holes due to critical reflectance
properties." [5]

Polyworks, Rapid form, Geometric, Imageware, Metrics, and Spatial Analyzer [13].

1.2.7 Factors That Affect Scanning Quality in Previous Studies

The literature has covered factors that affect scan quality. Some are related to a

free form surface while others are irrelevant to the technology used in this study. The best

orientation is when the laser beam is normal to the surface. However, despite the effect

of the change in the angle, this is not always possible as there will be some accessibility

problem that will prevent achieving a normal angle [1]. Boehler et al. [32] investigated the

accuracy of different terrestrial 3D scanners by having different test targets and comparing

the quality of the measurement obtained. They studied plane surfaces with different re-

flectivity at different ranges and noise caused by the range or range effect on scan quality.

The parameters they looked at were angular accuracy (view angle effect), range accuracy

(standoff distance), resolution, edge effect, surface reflectivity (lighting), and environmental

conditions (temperature). They designed their experiment by selecting a box and a sphere.

The box studied the range accuracy, resolution, and surface reflectivity. The sphere to study
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the angular accuracy since the way the scanner works is by changing the lens angle and

the mirror in a fixed increment and collect points; when the angle increment is large, fewer

details and resolution will represent the sphere. The experiment was done in a controlled

temperature room at about 20 degrees C. However, the technology they used is different

from the one used in this study as the application it is used for since in this technology the

scanner is fixed. However, the similarity will be in the surface reflectivity, and the speed of

movement if it is faster than the scanner capturing capabilities. Martins et al. [46] worked

on a model to prove the effectiveness of automated laser line scanners and their ability to

substitute manual scanning. They concluded that the technology can be used. However, it

requires optimizing the number of viewpoints and the path to be taken in order to get more

reduction in scanning costs and improve the performance of the system [46]. Manorathna et

al. [18] showed that the angle of steepness affects the number of points collected, and thus

the angle hinders the scanner ability to collect data points. In the experiment they compared

the number of ideal laser lines that can capture around 1280 laser points when normal to the

surface versus when it is on an angle. Li and Gu [13] suggested that the accuracy of the non-

contact measurement approach is expected to be enhanced by optimizing the measurement

parameters. Optimizing the measurement parameters comes after knowing the relationship

that the parameters have on the scan quality. Without knowing this, it is difficult to get

meaningful information. This led me to the importance of studying scanning parameters

in order to know the relationship and define it. With all the development in the accuracy

of these instruments, the most available scanning techniques cause severe scanning artifacts

such as noise and errors in the scans that are not present in the actual model [5]. Thus,

there is a need to study 3D shape scanner techniques. In recent years, some researchers have

proposed to developing automated planning for visual or laser inspections [13]. However, in

order to successfully develop automated planning for visual or laser inspections that does

not produce artifacts or missing points and holes, there is a need to understand what causes

the artifacts or outliers to avoid them. By experimentally testing the scan parameter and
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its effect on the scan quality, a better automated system can be developed. There is a need

for standardized procedures to evaluate 3D scanners accuracy due to uncertainties in the 3D

scanning such as surface quality, surface orientation and scan depth [6]. In order to achieve

a standardized procedure, there is a need to accomplish four tasks that will make it possible.

First is linking the workspace of the robot to the scanner workspace. This will let me know

the location of the robot on the surface of the part being inspected and will collect the right

point cloud. The second task is designing an experiment with a systematically varied scan

parameters to study the effect of the parameters on the quality of collecting point clouds.

Third, is studying the effect of the parameters and the post procession application on the

point cloud in the remanufacturing digital thread. Finally, is by studying the alternative for

quality perdition by selecting the right parameters for the CT-Scanning application, which

can be generalize for other scanning technology. In the experiment I studied factors that

hindered me from getting a consistent and efficient scan plan to be able to get quality scans

with the least amount of noise and outliers in the scan and the least amount of post pro-

cessing effort to make a decision about the condition of the part. Thus, the interactions

between the different scan parameters are important, and from the literature done, there has

not been one complete study that provides the necessary knowledge to generate a scan path.

Moreover, past studies do not provide quantitative details that can be used as constraints

for future scan trajectory, but they were based on the best results for an individual setup.

Because speed is an important factor in the manufacturing environment, Li and Gu, [13]

suggested that the increasing of speed and using of higher accuracy sensors and optimizing

measurement parameters to use the technology for inspection purposes should be fully ex-

plored, in the experiment I am going to test the effect of standoff distance, view angle, speed,

and resolution and their effects on scan quality. While the investigation of the accuracy of

different kinds of surveying scanners has been done, there is still need for results that can

be generalized to be used as input for the industry for inspection purposes in order to get

the best point cloud quality that is consistent and clear.
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1.2.8 Robot Kinematics

Commercial laser line scanners can be attached to a robot or coordinate measur-

ing machines (CMMs) for dimensional inspection, reverse engineering [21, 22], and re-

manufacturing [23]. Laser line scanners have an advantage due to their ability to gather

many points in a short time with high speed, and high resolution, and without contact sens-

ing [24]. This advantage has also attracted non-manufacturing fields due to its ability to

scan without contact. 3D scanners are designed for different applications. There are scanners

that are small and easy to transport and have the ability to run on a battery while others

are bulky and hard to move. Other features are related to the ability of the scanner such as

resolution, speed, field of view, and range limits. Also, scanners are not the same in their

ability to scan when there is interfering radiation [27]. The Creaform MetraScan-R scanner

is one that was be used for the work. It is a triangulation scanner that can scan medium to

large objects such as a car hood or a door, and it provides the ability to move around the

object covering the surface from all angles. Although laser line scanners can obtain many

data points in a short period, there are challenges that hinder its use as an inspection tool

in manufacturing applications. Currently the process is labor intensive. There is a need for

development of automated laser line scanning system models to avoid the trial and error

caused by manual scanning [12]. Since there is a lack of knowledge on the effect of the dif-

ferent parameters on scan quality, the outcomes of automating the process are not perfectly

predictable. When scanning manually, it is difficult to keep track of all the details about the

standoff distance and the view angle due to fatigue that occurs while holding the scanner and

the inability to manually control it. Automating the process will make it possible to scan

a specific part while keeping track of scanning parameters such as view angle and standoff

distance by integrating it into the scan trajectory. This will result in consistently getting a

complete point cloud that represents the surface each time. Martins et al. [46] worked on a

model to prove the effectiveness of automated laser line scanners and its ability to substitute

manual scanning. They concluded that the technology can be used. However, it requires
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optimizing the number of viewpoints and the scan path trajectory in order to get more re-

duction in scanning costs and improve the performance of the system [46]. Previous research

has developed algorithms that determine robot poses in relation to component surface [47],

and the relationship between a six degree of freedom robot and laser line scanner with and

without an external tracking device [17, 48, 49]. The length of the laser beam is considered

as the stand-off distance between the component surface and the scanner; it is assumed to be

constant [12] and in our experiment was set at 300 mm. Larsson and Kjellander [19] created

an automated system with a turntable that captures the component surfaces automatically

in the form of point cloud datasets by having a preprogrammed path with pre-determined

scan parameters.

There have been few efforts focused on the points collected on the surface of an object

in addition to the position and orientation of the robot end effector [33]. Deshmukh et al. [33]

linked the automated laser line scanning system with the component surface and established

the forward and inverse kinematic models that are required for advanced automated scan

path planning. What is missing is the relationship between the component surface and the

data gathered from the C-track and the relationship of the C-track to the data gathered.

The location of an external tracker such as the C-Track is a less explored area that is

important to fully discover and understand in order to create a trajectory that fully covers

the points in the inspection process and create a trajectory that saves time while fulfilling

the purpose. Thus, knowing the kinematic relationship between the robot workspace and

the location of the laser beam and the relationship between the robot workspace and the

C-track workspace is important.

In our system the scanner collects data points by moving the robot from one location

to another. The location of the scanner is registered by the C-Track in the data collection

process. Knowing the kinematics of the robot and the location of the laser beam is important

as it will link the two workspaces, the C-track and the robot.
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1.2.9 3D scanning parameters

Previous studies have focused on some parameters that affect the cleanliness of the

collected point cloud from the noise. Based on the nature of these parameters, we can divide

them into two general categories: hard parameters and soft parameters. Hard parameters,

such as view angle, standoff distance, and speed, would require a physical change while soft

parameters, such as lighting, color, and resolution, require changes in the parameters that

have no movement or angle or distance or speed change from the object being scanned. In

this research, the main focus will be on hard parameters and only one soft parameter will

be addressed, resolution.

Hard parameters have been the focus of several studies. Gistel et al. [6] along with

Wang et al. [20] and Gerbino et al. [50] studied the influence of changing the view angle on

the laser scanner 3D point cloud quality. Based on their observations, using different view

angles resulted in different standard deviation of the collected points and, as a result, different

scanning qualities [6, 20, 50]. In addition, Wang et al. [20] found that using an appropriate

view angle can particularly reduce the outlier’s intensity and improve the scanning quality

[20].

Based on the findings of Martinez et al. [1], the best orientation is when the laser

beam is normal to the surface. However, despite the effect of the change in the angle, this is

not always possible as there will be some accessibility problems that will prevent having a

normal angle. This was confirmed by a similar study done by Manorathna et al. [18]. They

compared the number of points captured by the scanner when it is normal to the surface

versus when it is on an angle. Based on their findings, best results are achieved when the

laser beam is normal to the surface. Both Feng et al. [4] and Van et al. [6] studied the effect

of the view angle in conjunction with the standoff distance on the quality of the collected

point cloud. They did several experiments with different standoff distances and view angles

as can be seen in Figure 1.8, and based on the results, both parameters had a significant

effect on the scanning quality.
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Figure 1.8: In plane and out of plane view angle [6].

On the other hand, some researchers have focused on the soft parameters. Blanco

et al. [51] showed that different light sources have different impacts on the quality of a

digitized surface [51]. This is particularly important when scanning a reflective surface such

as machined aluminum. Rico et al. [52] studied another soft parameter named surface

roughness. They introduced a measure called flatness value which is an index for the surface

roughness. Their findings showed that using different flatness values results in changing the

scanning quality [52].

Other researchers have investigated the effect of a combination of hard and soft pa-

rameters on the scanning quality. Vukavsinovic et al. [53] studied the influence of the view

angle, distance, object color, and scanning resolution on the scanning quality. They sug-

gested a set of guidelines to be followed in order to achieve a better point cloud quality.

Based on these guidelines, it is important to maintain a uniform color and the right thick-

ness on the whole surface when coating. In addition, the object being scanned should be as

close as possible to the measuring sensor. Finally, the trajectory should follow the object

geometry and maintain the same stand off distance to the object being scanned in order to

reduce the noise generated. Bohler et al. [32] investigated the accuracy of different terrestrial
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3D scanners by having different test targets and comparing the quality of the measurement

obtained [32]. They studied plane surfaces with different reflectivities at different ranges

and the noise caused by the range or range effect on the scanning quality. They examined

several parameters including angular accuracy (view angle effect), range accuracy (standoff

distance), resolution, edge effect, surface reflectivity (lighting), and environmental conditions

(temperature). They designed their experiment by selecting a box and a sphere. The box

was used to study the range accuracy, resolution, and surface reflectivity.

Moreover, some studies have focused on the general aspect of the feasibility of using 3D

laser scanners as inspection tools and their efficiency. Martins et al. [46] worked on a model to

prove the effectiveness of automated laser line scanners and their ability to substitute manual

scanning. Based on their conclusion, this technology is applicable. However, it requires

optimizing the number of viewpoints and paths to be taken in order to get more reduction

in scanning costs and improve the performance of the system [46]. Li et al. (2004) suggested

that the accuracy of the non-contact measurement approach is expected to be enhanced by

optimizing the measurement parameters. Optimizing the measurement parameters requires

knowing their effects on the scanning quality [13]. Without knowing these effects, it is

difficult to obtain meaningful information. With all the development in the accuracy of the

instruments, most available scanning techniques cause severe noise and errors in the scans

that are not present in the actual model [5]. Although previous studies have investigated the

effect of several parameters on the scanning quality as indicated in Table 1.1 at the end of the

Introduction chapter on page 50, they did not cover two particularly important parameters,

the scanning speed and resolution [53]. These two parameters should be further investigated

before using the 3D scanning technology as an efficient inspection tool in the industry.

1.2.10 Manufacturing Digital Thread And Point Cloud Smoothing

Additive manufacturing is flexible with workpiece geometry and can be used when

many other manufacturing methods cannot be implemented [60]. It has been shown that

material deposition along with the complimentary operations can satisfactorily provide the
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flexibility and agility needed to remanufacture high value EoL cores to original equipment

manufacturer specifications [61, 62, 63, 64, 65, 66]. However, there are challenges preventing

the technology from being the mainstream, such as production rate and cost of production

[64]. This is because the deposition rate is slow, so making a single part requires hours or days

depending on the size of the object. Thus, remanufacturing using additive manufacturing

should be optimized to remanufacture a product that has higher imbedded energy as the

time spent in longer than when using traditional manufacturing methods. Rickli et. al

[9] made some progress towards describing the framework for salvaging failed builds and

remanufacturing via additive manufacturing; however, significant theoretical and practical

challenges still exist. In order to proceed with additive remanufacturing processes, digital

translation of the physical shape needs to be captured [63]. This allows the realization of the

defect and generates the appropriate corrective additive manufacturing procedure. While

laser line scanners have been used more often for inspection and reverse engineering in

industry [66], it is also being used for remanufacturing purposes where commercial scanners

are mounted on a robot or CMM and used for reverse engineering and remanufacturing

applications [4]. Because speed is an important factor in the manufacturing environment,

Li et al [13] suggested the increment of speed, sensor accuracy, and measurement parameter

optimization should be fully explored for technology implementation and to understand the

effect that the speed has on the quality of the collected point cloud. Digital translation

of a part is captured by a point cloud output from 3D scanning the surface of the object.

The points are collected in Cartesian coordinate form and then converted to a mesh format.

However, raw data from optical devices such as 3D laser scanner contain noise. Studying

the effect of this noise and how it propagates within additive remanufacturing is essential to

compensate for the error in meshing and slicing operations. Moreover, this will only reduce

the errors to a certain extent and will give a better point cloud that have fewer errors.

Smoothing a point cloud can be done by taking the original point cloud and applying the

nearest neighbor algorithm to correct the noise in the gathered point cloud, though other
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smoothing algorithms do exist. Rosli et. al [67] created a model that could adapt the density

of the model based on bootstrap error estimation to avoid over smoothing using Bilateral

Filtering. However, point cloud smoothing can eliminate some important features from the

point cloud such as sharp edges. This is a common limitation for the point smoothing

because it is based on averaging of neighboring points. With the additive remanufacturing

model presented in this paper, it is essential that smoothing preserve the features of an end-

of-use part that require reprocessing. Bi and Wang [68] summarize a general point cloud

processing procedure that features six key steps. First, the point cloud must be filtered of

noise and unwanted surfaces. Next, the point cloud is registered with a model to locate

similar and dissimilar dimensions. Third, surfaces not fully captured by the scanner and/or

lost in the noise filtering are reconstructed. Fourth, the point cloud is smoothed. Fifth, a

feature detection algorithm is used to compare the scanned point cloud with model. Last,

a data comparison tool is used to compare the model with the gathered data. While Bi

and Wang [68] provide a useful strategy to process point clouds, variation still exists in each

of their six steps, depending on the application. For example, Piya et al [69] demonstrate

how their prominent cross-section (PCS) method serves to repair damaged turbine blades.

The PCS method is an adjusted point cloud processing approach that groups the final four

steps of Bi and Wang’s [68] workflow into one algorithm. Although Piya et al [69] show a

successfully rebuilt turbine blade, their method is limited to 2.5-D geometries. As mentioned

in the introduction, multiple researchers have developed smoothing strategies that attempt to

retain model integrity [70, 71]. Their strategies are tested on damage-free models; however,

applications with damaged models could contribute to determining the effects smoothing

has on the damaged regions. Brown et al. [60] investigated the nonsystematic translation

errors on the digital design and their root causes on the steps of additive manufacturing

by proposing feedback loops to ensure digital design integrity starting from tessellation all

the way to toolpath generation. Brown et al. [60] focused on CAD to mesh in the additive

manufacturing sequence. This literature is relevant as it focuses on the digital design integrity
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for additive manufacturing, and since the technology that is used in this remanufacturing

work are additive manufacturing the paper offers an additional aspect that is important

regarding digital design data integrity. This paper attempts to propose a model for the effect

of the point cloud data of each of the five steps in the remanufacturing process. These steps

include scanning, smoothing, meshing, slicing, and material deposition. This paper covers

the changes in the point cloud collected by the 3D scanner from the collection phase to the

material deposition phase. As a result, it is critical to investigate the scanning process for

the collection of the point cloud and the smoothing of the point cloud up until a satisfactory

point cloud is achieved. The generated point cloud then can be used to proceed with the

following steps in the remanufacturing activity while ensuring that the errors generated in

these steps are determined to compensate for it in the following steps to achieve the desired

results.

1.3 APPROACH

There are multiple tasks that were addressed to answer the proposed research ques-

tion. This first task is linking the C-track workspace to the robot workspace and defining

the relationship between the two workspaces as this is important to plan for the trajectory

of the scanner and the point cloud reconstruction. The second task is to know the effect of

the different scanning parameters on the overall point cloud quality. Knowing this will make

it possible for future optimization of the parameters to be selected right in order to decrees

the noise in the point cloud made by the process of the scanning as it was shown in the

literature and the primary experiment it is very important to select the right parameter to

eliminate or reduce the noise in the point cloud. In this task, experiments were conducted

with systematical varied scan parameters. These parameters will be the view angle, standoff

distance, speed, and resolution. The goal of the research is to establish the knowledge of

the impact of measurement parameters on the scan comparing to the CAD model of the

test object being scanned. This will lead to a good understanding of scan parameter effects

on quality and inspection method performance that will allow for an automated inspection
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system capable of capturing consistent, accurate, and clean point clouds. The third task was

to study the effect the point cloud on the remanufacturing digital thread. The parameters

of the 3D scanner can only be improved to a certain extent. The noises on the point cloud

can be generated due to many factor other than the parameters. Therefore, in order to use

the point collected form the 3D scanner for remanufacturing application. There is a need

to clean the point cloud. This task follow the point cloud life cycle for the remanufacturing

application and address all the processes that effect the point cloud such as the smoothing

and cleaning the point cloud, meshing, slicing, and the actual material deposition and de-

termine the sources of error and the extent of error from each step. The fourth task is to

study the applicability of the implementation of predictive model to optimize the parameters

of a CT-Scanner. As the parameter of the scanner need to be optimized in order to select

the right parameters to select and get the best scan quality. For this task experiments were

made with five parameters that are the voltage of the x-ray source, the current or the x-ray

source, the filterer installed on the x-ray source, and the integration time of the CT-Scanner.

The results were analyzed and the predictive model were found to be applicable.

1.3.1 Linkage of C-Track in the Kinematic Model

Automated Laser Line Scanning (ALLS) is used for inspection by collecting the point

cloud of the surface and storing it to a computer. The elements of an ALLS system are

a laser line scanner attached to a six degree of freedom FANUC S-430 IW robot and a

computer to collect the point cloud and make the comparison [33]. Creaform MetraScan-R

system contains a laser projector, lens, and image sensor. The reflection of the laser light

on the measured surface passes through the lens and is recorded via the image sensor. It

forms a triangle between the scanner and the object and the camera, see Figure 1.9, (i.e.

triangulation). The (x,y,z) of a point on a measured surface is determined from the coordinate

system of the laser projector, the coordinate system of the lens, and the coordinate system

of the image sensor.

The link between the robot workspace and the C-track workspace is not known. The
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Figure 1.9: Point collection of general laser line scanners to be used as end effectors model
[7]

scanner is running in the C-track workspace. The robot is running in the robot workspace.

The relationship between the two workspaces must be known in order to design a trajectory

that takes into consideration the dimensional information of the test object being inspected.

In the model made by Deshmukh et al. [33] all the equations were defined in relation to

the robot workspace including the component surface. However, the point on the surface

and acquired point cloud collected by the 3D scanner cannot be compared because the

relationship between the C-track (scanner) workspace and the robot workspace was not

found. In this task I will select a specific point to scan and gather the data from the scanner

in the C-track workspace, measure the location of the point in the robot workspace, and

derive the equation for the kinematic relationship between the two workspaces.

1.3.2 Prediction of the Location of the Laser Beam

Using equations by Deshmukh et al. [33], I validated the model by creating a test

board that has four points that are pre-selected. The location of the four points within the
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Figure 1.10: Point location validation board

robot workspace are known. Then, using the inverse kinematics equation provided from her

model I derive the location of the robot end effector to have the laser beam exactly on the

center of the points A, B, C, and D see Figure 1.10. After getting the laser beam on the

point selected, the location of the point in the C-track workspace was be recorded for future

reference to define the transformation matrix between the two workspaces.

1.3.3 Systematical Varied Scan Parameter Experiment

The objective of this task is to understand the impact of point cloud measurement

parameters on scan quality. Collecting a large point cloud dataset with systematically var-

ied scan parameters is important in understanding the impact of parameters. Automated

point cloud measurement is critical to isolate all sources of variation that is caused by man-

ual scanning. The approach that will be used to obtain a sufficient database is physical

measurements using the automated point cloud measurement test bed in the engineering

technology lab with varied scan parameters. In doing this experiment, six tasks are to be

completed as the following sections listed below:

Understanding the Difference Between Vertical and Horizontal View Angles
Previous researchers have studied the view angle for scanners that have only one laser

line [6]. In their test they studied the effect of vertical vs horizontal change in the view angle

see Figure 1.11 and they found that there is an effect on the noise by changing the angle

Figure 1.12.
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Figure 1.11: In-plane and out-of-plane view angle image [6].

Figure 1.12: The effect of In-Plane vs Out-of-Plane angle image [6]
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Figure 1.13: The used 3D scanner drawing from Creaform training materials

However, because there are two laser lines in the scanner used in my experiment, I

would like to study if the results from the previous studies are relevant to this experiment,

and thus whether the effect that the angle has on the scan quality for the vertical angle

is different than the horizontal angle or if it is irrelevant in our type of scanner. In order

to know if the results they received would be similar to what I would expect and to know

the characteristics of the scanner, I repeated the experiments they performed exactly and

compare the results for this reason and also to test the model used for comparing the point

cloud in my experiment.

Since the shape of the scanner is not the same as the scanner they used, I will define

the angle that is vertical from the scanner as the Out-of-Plane Angle. This angle is vertical

to the two cameras on the scanner around the x-axis see Figure 1.12. The other angle is

horizontal from the scanner as the In-Plane Angle around the y-axis. An experiment will

be conducted, and three different view angles will be made to understand the effect between

the vertical and horizontal angles. The three inputs parameters were 70 degree angle, 80

degree angle, and 90 degree angle. The previous study changed one factor at a time and

compared the effect by the number of data points gathered using each view angle. However,

I compared the results by running a simple one line trajectory to scan a flat surface. This

is an important step as the outputs from this step will be given to the next experiment,



40

Figure 1.14: The actual used 3D scanner from Creaform training materials

which will involve multiple parameters with multiple levels. Knowing the importance of the

orientation of the scanner is essential in order to generate the ideal trajectory to scan any

part in the future. With hand held scanner, the two cameras are always on top, but when it

is attached to the robot, the orientation is not being accounted for while moving. This test

will define the importance of keeping track of the orientation of the scanner while scanning.

Designing the Trajectory for the Scan
In generating the trajectory, I used what ElMaraghy and Yang [29] did. Based on

the CAD model of the test object selected, they decomposed the whole surface into different

patches based on the view angle and standoff distance and generated a linear zigzag path to

scan the patches. I created a tool with Matlab that generate the zigzag based on the dimen-

sion of the test object and the view angle and the standoff distance. The kinematic model

will be added into consideration to know the location of the point that I am collecting, as it

will contribute to the knowledge of standoff distance and view angle in designing the trajec-

tory. The trajectory will then be programmed to the robot software which is ROBOGUIDE.

The setting for the viewing and standoff distance will be added to the path in the program.

Each setting will require a separate program to execute.
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Setting Up and Designing the Point Cloud Measurement Test Bed
This test setup provided the required tools to investigate the effect of the view angle

on the component surface, stand-off distance, and scan speed on scanning quality. Since

Manorathna et al. [18] suggested that the accuracy of the information provided for the laser

scanner by the manufacturers is generated for a controlled environment, it thus cannot be

generalized for the manufacturing environment. The experiments were done in the manufac-

turing engineering laboratory with a setup similar to the manufacturing environment, and

the robot used is similar to the robots used in industry to test the influence of certain factors.

The robot that was used is 6-DOF Fanuc S430iw industrial robot Figure 1.15. The laser

line scanner Creaform MetraSCAN-R is attached to the robot as the end effector and uses

as external locating system separate from the robot location system to locate the laser line

scanner and obtain the position in space of measured point (x,y,z) coordinates. In designing

the test bed, I took into consideration the reachability of the component surface based on

the limitation of the robot, especially the selected measurement parameters. This is critical

as it insures elimination of user-induced system noise. The software that will be used for

simulation is Fanuc ROBOGUIDE.
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Figure 1.15: The robot attached to the laser scanner.

Designing a Component Surface Electronically and Material Selection
In designing the component surface, the first step is to design a similar surface elec-

tronically using CAD software. The CAD model will be then converted to triangles and

points will be generated to represent the dimensional information of the part. In selecting

the material to be used it is important to consider the surface finish of the test object. Spec-

ular, shiny, dark surfaces must be avoided because they generate spurious points that do not

lie on the actual object surface [1]. Therefore, I used a white board with matte finish as the

experimental components as recommended by Manorathna et al. [18] as it is the best surface

to use in order to avoid noises in the measurement process. My goal in doing the experiment

to test the parameters and surface reflectivity is not one of them. Thus, I should eliminate

all factors that might affect surface reflectivity in order to minimize possible errors.

Designing An Experimental Component Surface And Fixture Design
It is crucial to design the experiment to reduce or eliminate the chance of having an

un-controlled variation in point cloud measurement and inspection from unexpected source

such as a complicated component surface geometry or surface reflectance. The goal of the
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component(s) is to represent a benchmark surface able to characterize the effect of scanner

view angle, stand-off distance, and scan speed on scanning quality. The selected component

surface as mentioned will be simple, with three edges to test the effect of the characteristics.

Once a scan path has been designed and generated for the experiment. It will remain the

same and won’t change for all the replication throughout the duration of the project to

control the variation caused by the scan trajectory as much as possible since it is not under

the scope of study. The experiment will determine the factors that affect the accuracy of

the scan quality. This will also increase the quantifying effect of the parameter on the scan

quality. The part selected is a flat work piece surfaces. This work-piece is a simple flat

surface with no curvature or features to show the effect of changing the parameters.

Figure 1.16: Experimental Components Selected

Scanners run on a frequency in collecting data points, when scanning the same test

object twice using the same path and parameter will not collect the exact same point twice

but will collect points that represent the shape[32]. However, automation will reduce varia-

tion and improve consistency in the point cloud measurement. The first component, Figure

1.16, is a simple, flat surface with no curvature or features. The flat surface is selected for

the experimental test object because it is trivial and does not contain any surface features

also as recommended by Gestel et al. [6] artifact that are complex, which gives results that

are difficult to analyze; also flat surfaces are easy and fast to scan and can easily represent

the measurement task. Therefore, I used the flat surface for the experiment. A half-sphere

won’t allow me to study the effect of the factors one at a time since the sphere is curved;

also, the scanner will be able to collect multiple points at multiple distances and view angles

and won’t show the effect as clear compared to the flat surface.
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The Design of Point Cloud Measurement
Experiments performed with the automated point cloud measurement test bed will

target four scanning parameters: (1) view angle of the laser line scanner to the component

surface, (2) scanner stand-off distance, and (3) scan speed and (4) resolution. While there

might be other parameters that are important that have an impact on point cloud quality,

the focus will be on only the four mentioned parameters due to the expected improvements

that these parameters will have on the point cloud quality by optimizing the parameters

settings. The settings that were selected for each parameter tested are provide in Table

1.2. The values used are within the limits specified. The view angles values used for the

scanner are within the limits specified, and the stand-off distance is within the minimum

and maximum distance. The speed of movement was within the camera ability to capture.

The resolution was within the camera’s resolution ability. The experiment were conducted

based on the plan provided in Table1.2.

Table 1.2: Parameters and parameter controls for the experiment

Parameter Parameter Control Number of inputs Response
View Angle Angle (di) 3

Quality (Q)Stand-off Distance (L-Pi) 3
Scan Speed mm/sec 3
Resolution mm 3

In Table 1.2, the four parameters targeted in this research are controlled by four fac-

tors: the normality angle to the surface (di), stand-off distance (L-Pi), scan speed which is

determined by the robot arm settings (mm/sec), and the selected scan resolution (mm). The

study will investigate three normality inputs, three stand-off inputs, three scan speed inputs,

and three resolution inputs. Normality input parameters will be the minimum angle, max-

imum angle, and normal to point surface. Stand-off distance inputs parameters will be the

minimum distance, maximum distance, ideal distance. The scan speed input parameter will

be high speed, ideal speed, and slow speed. The resolution parameter will be high resolution,

ideal resolution, and low resolution based on the guidelines of the Creaform MetraSCAN-R
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laser line scanner. The proposed multilevel factorial design for the experiment of the point

cloud measurement experiments will yield eighty-one unique parameter combinations. The

automated scan path for each of the proposed surfaces will be pre-programmed and will

not be modified throughout the point cloud measurement experiments to reduce variation.

However, there will be changes in the parameter being tested such as the laser line scanner

normality, stand-off distance, scan speed, and the resolution parameters. All the parameters

were be saved with the trajectory and loaded to the robot and ready for run prior to the

experiment. In this experiment I had 81 runs. Each run took on average half an hour to

conduct with a total running time for the experiments of 40 hours. Raw data were be col-

lected along with the run order to look for variation or outliers if they exist in the process.

The experiments took about two weeks once all the programming and setup were completed.

Gestel et al. [6] mentioned that there are four parameters that define the quality of point

cloud: noise, density, completeness, and accuracy. In their research they only studied noise

and accuracy [6]. Lartigue et al. [35] suggested that noise is an indicator of data sampling

errors and evaluated by the deviations between the points gathered and the surface model.

The density is related to the point cloud density and the number of points collected that rep-

resent the part; the completeness is an indication or gaps in the point cloud; accuracy is an

indication of measurement uncertainty [35] In my research I studied density, completeness,

and noise. The data gathered from the test object were be compared to the data generated

from the CAD model, the number of data points gathered does not affect the accuracy of

the scan, but its coordinate will. I used the several measures including Mean Square Error

(MSE) [32] . The mean-squared error (MSE) between two captured data c(x,y,z) and g(x,y,z)

c is the data gathered from the CAD model and g is the data gathered from scanner. Boehler

et al. [27] measured the quality by the deviation of a single point from the object’s surface;

in the process they noticed that while it is possible to record dimensional information of an

object several times from different scanned points, it is impossible collect the exact same

points in each time. Therefore, they collect the points then model it in a 3D shape, and
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finally calculate the quality by the deviation of a single pint from each observation. Two

strategies for scan path generation can be used. For the plane surface the global strategy

was be used; it scans the test object all at once and maintains the same standoff distance

above the artifact. However, this strategy might not fit right for other edged surface because

there are multiple surfaces. The appropriate strategy to use is the multi oriented strategy

where the artifact will be patched into small patches and scanned each patch individually

on certain orientations, then travel to the other patch [1] .

1.3.4 Assumptions and Limitations

Limitations are the four mentioned parameters. In selecting the shape to scan and do

the experiments on I selected the surface that is recommended in the literature that does not

cause noise in the scanning process. different surfaces will not be taken into consideration.

The same surface will be used in the two made models. I am not going to test different

shapes other than the proposed shape as this shape test for what is need to know about the

parameters. Moreover, this shape is supposed to study the parameters that I am testing and

provide accurate results and thus the results might be generalized. While there is an effect on

the surface reflectivity and the material used, I am not going to address this in the research,

and it will not be within the scope of this work. In the literature it is recommended to

stay away from using specular, shiny, dark surfaces because they cause noise in the gathered

data [1]. It is recommended to use white and matte surfaces in designing the experimental

components [18]. I followed these recommendations by MartÃŋnez and Manorathna [1, 18]

in designing the test object. My assumption is that their recommendations will work with

all 3D scanners, and by following their recommendations, I am reducing or eliminating the

noise effect on the gathered data. There are factors that I am not going to investigate in the

experiment, as these factors might add noise to the experiment such as signal radiation and

the effect of sunlight in the experiment. All the experiment were made in the same setting

in a similar time frame to reduce the variation that is caused by these factors. I also used

one scanner calibration to reduce the effect of scanner calibration in the experiment. Results
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were from the equipment tested and not general to all other devices and scanners.

1.4 CONTRIBUTIONS

There are four expected contributions that this work adds to the research knowledge

and to the application field to achieve an automated inspection system. First is defining

the relationship between the C-track workspace and the robot workspace this is necessary to

know what is the point that is being collected on the surface and that it can be referenced

in the robot workspace. The second contribution is on the role of the right parameter on

the scan quality. The third is to show the error propagation in the point cloud for the

remanufacturing process planning and how the digital thread is affected by the point cloud

processing. The fourth is the use of the machine learning to optimize the scanning technology

and predict the scan quality, the machine that was used in this work is CT-scanner.

1.4.1 C-track Transform and Model Validation

3D scanners digitally capture the shape of physical objects. Robots move the 3D

scanner over the surface of on object to collect the point cloud of the surface, which are

collected to form a digital representation of an object. In Deshmuk et al. [33] the component

surface, robot, and scanner in three workspaces, but only the link that reflects the location of

the component surface in the robot workspace was found. However, the point on the surface

and acquired point cloud collected by the 3D scanner could not be compared because the

relationship between the C-track (scanner) workspace and the robot workspace was not

found. In this work, I derived the transformation for the robot space and C-track camera

space to be able to know the location on the robot workspace that is derived by the 3D

scanner. Knowing the relationship between all the workspaces is necessary for integrating

the system and designing the Automated Laser Line Scanning systems (ALLS). Failure to

connect the workspaces together will result in a disintegrated system. This will make me

unable to use the gathered information about the component surface in designing a trajectory

to scan a specific test object, or know the location of the test object in relation to the robot

and the accurate location of the scanner. After linking the coordinate of the component
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surface with the coordinates of the robot in the robot workspace, I will validate the model

by comparing a single point on the surface with single point cloud point on the gathered

scanned data. In this experiment I used a FANUC S430i robot, a Creaform MetraSCAN-R

scanner, robot offline programming software such as Roboguide will be used to program

the robot as well as the kinematic models that connect the component surface to the robot

workspace [33] and a test object to validate the proposed link between the robot workspace

and the component surface. Validating the model will provide the ground work to build upon

for future applications with the ALLS, and this will make it possible to have an integrated

system capable of knowing the points that should be visited in order to collect all the

necessary points on the component surface. There are assumptions made in modeling the

kinematics equations, one of which is that the laser beam is in the center of the scanner and

at a specific distance from the robot end effector. However, in the actual scanner the laser

beam is not located in the center of the scanner it is displaced from the center. This requires

the model to be modified to fit the actual scanner. This is a necessary step to make as it will

validate the model as well as it will like the C-track and robot workspaces. This work will be

the basis for future applications with the 3D scanner. By knowing the relationship among

all the workspaces, we will be able to design a system capable of identifying the location

of the surface that was missing in the scan and to revisit it in the inspection process. It is

essential to know where the defect is located exactly on the component to then easily revisit

a specific area on the test object just by feeding the point to the robot.

1.4.2 The Role of the Right Parameter On the Scan Quality

The outcome of this research task is to find the effect of different parameters on scan

quality. This is important as it works as the input for future optimization tasks and also for

programming future scan paths [46, 72]. The long-term goal of the tasks is to develop an

initial step towards 100% on line point cloud measurements in manufacturing systems. It

will make the technology practical to advance the field and practice of manufacturing quality

monitoring as it reduce the amount of noise and will increase accuracy and consistency in
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the point cloud. It will also save time in the inspection process and make the technology

appealing for the manufacturing industry.

1.4.3 Error Propagation in the Point Cloud for Remanufacturing

Process Planning

In this research the sources of errors in the remanufacturing digital thread for additive

manufacturing were studied, and the overall error was measured in different steps, starting

from the scanning error after reducing the error by selecting the right parameters, to the error

that is generated from smoothing and cleaning the point cloud, to the error generated from

meshing the point cloud of the scan for measuring the amount of the defect to generate the

correction plan for the material deposition, to the error of slicing in the plan for the movement

of the material deposition, and finally to the error generated by the actual manufacturing

and material deposition. The errors were calculated for the scanning phase, the smoothing

phase and the mathematical models. Errors were found in the scanning, smoothing, meshing,

and slicing.

1.4.4 Using a Predictive Model to Optimize the Parameters of a

CT- scanner

The final goal of this research is to test the use of machine learning in predicting

the scanner parameter. This research was conducted on a different type of scanner a CT

scanner, which shows both the surface structure as well as the internal structure of the part.

This can lead to a tool that can be integrated into a different scanner. In our case this can

be integrated into the CT scanning software in which users would be prompted to input

the approximate density and thickness of the item to be scanned. The tool would use our

prediction models as a basis for simulating scan parameters and output a set of recommended

parameters. The preliminary testing of the accuracy of the prediction shows that the model

can be used as a prediction tool for the CT scanning application.
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CHAPTER 2: LINKAGE BETWEEN MEASURED AND

COLLECTED POINTS WITHIN THE SCANNING PROCESS

FOR THE INTEGRATED AUTOMATED LASER LINE

SCANNING INSPECTION SYSTEM

2.1 Abstract

3D laser line scanning is a cutting-edge technology that digitally captures the shape

of physical objects. 3D laser line scanner is skillfully designed and mounted onto the robot

(FANUC S-430 iW) to automate the scan path and quality inspection processes. The robot’s

primary function is to transport the 3D laser line scanner above the surface of an object

to collect point cloud datasets of the surface. Point clouds of the surface are collected

and form a digital representation of an object. The kinematic relationship between the

component surface of the part being scanned,the robot, and the scanner were previously

derived. However, the location of the point on the physical surface and acquired point

cloud collected by the 3D laser line scanner cannot be compared because a relationship

between the robot and scanner workspaces was not found. In this work the transformation

of the robot workspace and the scanner workspace was derived (C-track camera space) to be

able to know the location of a point being collected on the robot workspace. Knowing the

relationship between all the workspaces is necessary for integrating the system and designing

an Automated Laser Line Scanning system (ALLS) with an external tracker. It will help in

trajectory planning for the 3D scanner, which can lead to an autonomous system capable

of automatically scanning and collecting points. Failure to connect the workspaces together

will result in disintegrated systems, which would limit the ability to design a trajectory to

scan a specific part, or know the location of the part in relation to the robot workspaces and

laser line scanner.

2.2 Introduction

3D scanning is recognized as an advanced technology used for speed, accuracy, and

coverage. With automated 3D technology, users can improve quality and compliance without
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slowing down production. The processes used for 3D scanning make it faster to scan a

part with complex dimensions while reducing time consuming orientation and alignment

processes. As a result of remanufacturers encountering high uncertainties in component

quality and factors related to sustainability, it is necessary to incorporate this advanced

technology for the effectiveness and efficiency of quality inspection and condition assessment

operations. By understanding the relationship of the missing links, which are the location of

the C-track in the robot work cell and the point that is being collected, a trajectory can be

created that takes into consideration points collected from one location to the next, which

in turn allows users to make careful predictions. Within the automated system there are

several components that contribute to the function of the automated scanning system. The

components utilized consist of the robot, laser line scanner (Creaform MetraScan-R), and the

C-track. The C-track has dual camera sensors fitted with high quality optics and lighting,

enabling it to measure all reflectors in the parameters of the workspace. Besides the tracking

capability of the whole systems reference model, the C-track ensures the exact localization of

the laser line scanner (Metra Scan-R), in turn offering high end automated scanning solutions

like scan trajectory optimization algorithms and optimized meshing output. There has been

considerable research on automated scanning systems regarding path planning strategies

[19]. However, there is no exact solution to explain the relationship between the robot and

the C-track. Systems with encoders linking the robot arm and the scanner do not require

this relationship. The relationship between the C-track and robot are required here because

the C-track is external and independent of the robot. The relationship of the two is very

important for this research because it will integrate the zero position of the C-track compared

with both the end effector and the base frame of the robot. Knowing the location of the

C-track is very important as when the area being scanned is in front of the C-track it can

be reached by the robot. However, when the end effector is at this position it is causing

an occlusion to the C-track. Thus, this area can’t be scanned, so the locations shouldn’t

be considered while planning the trajectory, but another end effector view angle should be
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considered. In this study, the link between the measured and collected points in the scanning

process was investigated. To do this, the location of all the components in the workspace

were taken into consideration. These components are the center of the robot, the kinematic

model of the robot, the location of the end effector, the location of the end of the laser line

scanner, the location of the laser beam in the space, and finally the location of the C-track in

the work cell. These models establish an understanding of the relationship between scanning

procedures and measured point cloud datasets and are the foundation for automated laser line

scan monitoring and assessment. In the absence of these models, laser line scanning would

continue to be a time and resource intensive monitoring and assessment strategy and have

little relevance except in single workspace instances. The long-term goal that this research

contributes to is to transform quality monitoring methods in new product manufacturing

and condition assessment methods in remanufacturing operations. This can only become

possible through laser line scan automation and scan trajectory optimization. However,

efficient automation and scan trajectory optimization require a fundamental understanding

of the kinematics of automated laser line scan systems (ALLS). After linking the coordinates

of the component surface with the coordinates of the robot in the robot workspace, the

model will be validated by comparing a single point on a surface with a single point. This

experiment uses a FANUC S-430Iw robot, a MetraSCAN-R laser line scanner, robot offline

programming software (Roboguide, Robcad, Workspace), and a test object to validate the

proposed link between the robot workspace and the component surface. Validating the model

will provide the foundation for future applications with the ALLS, and this will allow us to

have an integrated system capable of knowing the points that should be visited in order to

collect all the necessary points on the component surface. This work will be the base for

future applications with scan path planning for 3D laser line scanning. In CMMs and other

types of measuring systems there is a direct link between the internal moving system or the

robot arm and the external scanner. In the scanning process the point cloud is encoded

with the location of the point being collected. However, in the current system these two
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components are not linked, which makes it challenging to predict the point to be collected

by moving the robotic arm from one location to another without connecting the C-track and

robot workspaces. The knowledge that will be gained from this work will make it possible

to encode the point collected by the laser line scanner to the movement of the robot arm.

The location of the reference frame of the C-track is also determined. In this experiment the

zero frame of the robot and the C-track is measured while using all the tools needed to know

its location precisely. All these steps and the outcomes of this work will improve trajectory

planning for 3D laser line scanning.

2.3 The Current System

3D scanners have been mounted to robotic arms or other types of mechanical devices

such as CMMS in an effort to automate the data acquisition process and inspect a part

[21, 22]. This will substitute the old way of manual data acquisition which generates an

inconsistent point cloud that cause noises and variability in inspection processes. Mounting

the scanner to a robot with an external track results in two disintegrated workspaces The

robot moves in the robot workspacem and the scanner moves in the workspace created by

the C-track.

To my knowledge, this has not been studied before. It is important to find the

relationship between the points that are being collected and the location of the scanner in

the workspace because this will allow for the creation of a scan trajectory based on the

feature of the part being inspected.

2.4 Elements of the Automated Laser Line Scanning System

The Automated Laser Line Scanning System (ALLS) studied here consists of a laser

line scanner attached to a six degree of freedom FANUC S-430 IW robot as the tool frame, a

robot controller, a program to move the robot, cables, a scanner controller, C-track, a power

supply for the scanner, a computer, and software to collect and process the data points

collected.
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Figure 2.1: Point collection of general laser line scanners to be used as end effectors model
(image from Bracun et al., 2006) [7]

2.4.1 Laser Line Scanner

As mentioned in Deshmukh et al. [33], the Creaform MetraSCAN-R scanner operates

by the steering of laser beams, followed by a distance measurement at every pointing direc-

tion. A 3D laser scanner consists of a laser, a ranging unit, a control data unit, and a location

tracker (C-track). The laser unit produces the laser beam that is needed for measurement.

The ranging unit determines the distances and angles. When a laser stripe projects onto

a surface of a component, the reflected beam is detected by cameras; this determines the

distance based on the shape and speed of the reflection. The Creaform MetraScan-R system

contains a laser projector, a lens, and an image sensor. The reflection of the laser light on

the measured surface passes through the lens and is recorded via the image sensor. It forms a

triangle between the scanner and the object and the camera (i.e. triangulation). The (X, Y,

Z) of a point on the measured surface is determined from the coordinate system of the laser

beam, see Figure 2.1. However, in our system the locations of the points are determined in

relation to the location of the C-track.

The link between the robot workspace and the camera workspace (C-track) is not

known. The scanner is running in the C-track workspace. The robot is running in the robot
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Figure 2.2: Offset of the Creaform MetraSCAN-R laser line scanner MetraSCAN training
PPT)

workspace. The relationship between the two workspaces has to be known in order to design

a trajectory that takes into consideration the dimensional information of the test object

being inspected. In the model made by Deshmukh et al. [33] all the equations were defined

in relation to the robot workspace including the component surface. However, the point on

surface and acquired point cloud collected by the 3D scanner could not be compared because

the relationship between the C-track (scanner) workspace and the robot workspace was not

found.

2.4.2 FANUC S-430 IW Robot

The FANUC S-430 IW robot arm has six joints with six degree of freedom. The

kinematics of each of the joint will be shown in the kinematic section (J1, J2, J3, J4, J5,

and J6). The scanner is attached to the robot end effector J6 as a standoff distance. This

distance is to account for the laser beam and the dimensions of the scanner. The tool center

point of the laser scanner is defined in the tool frame to create a Z-offset that is the distance

from the end of robot arm to the scanner end effector, see Figure 2.2.
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2.5 Approach

In this experiment, tools such as a water level device, protractor, and laser pointer

were used to measure and identify the angles and distance between the components in the

work cell. First, the kinematics model for the FANUC S- 430 iW robot was validated by

using the model suggested by Deshmukh et al. [33] as well as by adding the dimensions

of the scanner and the laser beam along with the physical model. A simple program for

the robot was created to locate a point on the work space. The scanner was left collecting

points until enough data points were collected in the intersection between the two laser

beams. In order to get accurate measurements and a collection of point cloud datasets that

represent a specific point, the robot was in static mode and was not moving, which made

it challenging to collect points. The point clouds collected were saved in a text file with

three taped columns. To locate the reference frame for the C-track, another experiment was

done, a manual scanning to determine of the actual axis (X, Y, and Z). The first step for

the manual scanning was to scan the floor in the X-axis. Then a manual scanning for the

Y-axis was done, followed by the Z-axis. After collecting the cloud measurement data, the

data was plotted to determine the desired point for the actual study and further references.

Moreover, the data gave a better reading for the axis of the research that was done earlier.

The manual scanning showed the differences in X-axis, Y-axis and Z-axis, which made it clear

that the reference frame for the C-track is between the two cameras in the C-track. Thus,

the calculation for the location of the C-track used earlier will be the same in both cases,

making it possible to predict the points to be collected by the scanner based on location of

the C-track in a specific position with a specific orientation.

2.6 Methodology

The 3D scanner was attached to the end effector of Fanuc S- 430-iW and the C-track

was placed on the negative Y-axis of the robot world frame Figure 2.3(a).

The distance between the robot and the C-track was measured using a measuring tape

Figure 2.3. Also, the distance between the C-track and the Laser sensor that was attached
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(a) (b)

Figure 2.3: The workspace of the robot (a): without the table (b): with the table.

to the robot’s end effector was measured Figure 2.6. The robot was calibrated and set to

the zero position for exact measurement Figure 2.4. Then, validation was performed on the

robot to check the zero position using the kinematic model of the robot and compared with

the actual data collected from the robot controller using the Teach Pendant see Figure 2.5.

The kinematics equation was implemented in Maple 17 to get the end effector position.

After that, the MetraScan-R was attached to the end effector of the robot and the dimensions

of the laser scanner were taken into account along with the standoff distance for the laser

beam, the kinematic model that represents the actual setup was developed, Figure 2.5.

In Figure 2.4, A blank sheet of paper was placed on the test bed underneath the laser

beams to test the trajectory, and the laser sensors were placed within range of the C-track

in order to collect the point cloud datasets.

The distance between the laser sensor was then measured using a measure tape in

order to validate the measurement in Maple 17 later on. Moreover, the workspace was

measured and marked using tape for more accurate position repeatability of the process,
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Figure 2.4: The robot calibrated and set up at zero position without the Scanner installed

Figure 2.5: Drawing the representation of the robot kinematics Djuric, (2007) [8]
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(a) (b)

Figure 2.6: The robot calibrated and set up at zero position with the scanner installed and
the table placed with the laser beam in the zero position

Figure 2.6.

2.7 Kinematic Model and the Relationship between the C-track

and the Robot Reference Frame

The relationship between the C-track and the robot reference frame was derived using

forward kinematics and validated physically on the actual robot. To know the location of

the robot end effector, the location of the laser beam on the workspace was noted along with

the measurement of the 3D scanner, Figure 2.7. Using kinematic equations for six degree

of freedom FANUC S430 IW, the robot end effectors was moved to a fixed point named

the home position. The joint angles of the robot (θ1 − θ6) were determined while taking

into consideration the limitation of the joints and validated with the actual robot based

on research by [73, 74] while ensuring that the selected position for the home position was

not in singularity[75]. The home position using the equations and the actual space of the

robot in the work cell for FANUC S-430 IW robot with the model obtained by [74] was

validated. Work by Deshmukh et al. [33] work was extended by incorporating the location

of the C-track to the location of the point on the surface determined by the laser beam by

using forward kinematic equations to obtain the validated position for the FANUC S-430 IW

robot, laser scanner, and laser beam. The robot was calibrated and set to the zero position

then joint 5 was moved -90 degrees to the ground see the robot D-H Parameters Table 2.3.
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Figure 2.7: The robot work cell along with the calculation of the angles and the measurement
of the workspace.

The equations for the forward kinematics are as follows: The general homogeneous

transformation matrix for all the robot joints.

A =



cos(θ)−cos(α) ∗ sin(θ) sin(α) ∗ cos(θ) a ∗ cos(θ)

sin(θ) cos(α) ∗ cos(θ) −sin(α) ∗ cos(θ) a ∗ sin(θ)

0 sin(α) cos(α) d

0 0 0 1


(2.1)

Equation 2.1: The Homogenous Transformation Matrix A01 the relationship between

reference frame and joint 1 in the robot.
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Table 2.3: Robot D-H parameters

Th1: 0.00 D1: 740.0 A1: 305.0 Al1: -90.0
Th2: -90 D2: 0.00 A2: 925.0 Al2: 180.0
Th3: 180.0 D3: 0.00 A3: -250.0 Al3: 90.0
Th4: 0.00 D4: -1110 A4: 0.00 Al4: -90.0
Th5: -90.00 D5: 0.00 A5: 0.0 Al5: 90.0
Th6: 180.0 D6: -260.0+605 A6: 0.00 Al6: 180.0

A01 =



cos(θ1)−cos(α1) ∗ sin(θ1) sin(α1) ∗ cos(θ1) a1 ∗ cos(θ1)

sin(θ1) cos(α1) ∗ cos(θ1) −sin(α1) ∗ cos(θ1)a1 ∗ sin(θ1)

0 sin(α1) cos(α1) d

0 0 0 1


(2.2)

Equation 2.2: The Homogenous Transformation Matrix A12 the relationship between

joint 1 and joint 2 in the robot.

A12 =



cos(θ2)−cos(α2) ∗ sin(θ2) sin(α2) ∗ cos(θ2) a2 ∗ cos(θ2)

sin(θ2) cos(α2) ∗ cos(θ2) −sin(α2) ∗ cos(θ2)a2 ∗ sin(θ2)

0 sin(α2) cos(α2) d

0 0 0 1


(2.3)

Equation 2.3: The Homogenous Transformation Matrix A23 the relationship between

joint 2 and joint 3 in the robot

A23 =



cos(θ3)−cos(α3) ∗ sin(θ3) sin(α3) ∗ cos(θ3) a3 ∗ cos(θ3)

sin(θ3) cos(α3) ∗ cos(θ3) −sin(α3) ∗ cos(θ3)a3 ∗ sin(θ3)

0 sin(α3) cos(α3) d

0 0 0 1


(2.4)
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Equation 2.4: The Homogenous Transformation Matrix A34 the relationship between

joint 3 and joint 4 in the robot

A34 =



cos(θ4)−cos(α4) ∗ sin(θ4) sin(α4) ∗ cos(θ4) a4 ∗ cos(θ4)

sin(θ4) cos(α4) ∗ cos(θ4) −sin(α4) ∗ cos(θ4)a4 ∗ sin(θ4)

0 sin(α4) cos(α4) d

0 0 0 1


(2.5)

Equation 2.5: The Homogenous Transformation Matrix A45 the relationship between

joint 4 and joint 5 in the robot

A45 =



cos(θ5)−cos(α5) ∗ sin(θ5) sin(α5) ∗ cos(θ5) a5 ∗ cos(θ5)

sin(θ5) cos(α5) ∗ cos(θ5) −sin(α5) ∗ cos(θ5)a5 ∗ sin(θ5)

0 sin(α5) cos(α5) d

0 0 0 1


(2.6)

Equation 2.6: The Homogenous Transformation Matrix A56 the relationship between

joint 5 joint 6 in the robot

A56 =



cos(θ6)−cos(α6) ∗ sin(θ6) sin(α6) ∗ cos(θ6) a6 ∗ cos(θ6)

sin(θ6) cos(α6) ∗ cos(θ6) −sin(α6) ∗ cos(θ6)a6 ∗ sin(θ6)

0 sin(α6) cos(α6) d

0 0 0 1


(2.7)

To get the location of the laser beam, all the joint homogeneous equations were multiplied

as given in equation 2.7.

T06 = A01 ∗ A12 ∗ A23 ∗ A34 ∗ A45 ∗ A56 (2.8)

For the previous equations, a program was made in Matlab to give the location of the end
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Figure 2.8: Matlab prompt to get forward kinematics by inserting D-H parameters and theta

effector using forward kinematics by taking the D-H parameters in an input dialogue length

and angles of all joints of the robotic arm Figure 2.8. Defaults for the robot were inserted,

and a theta value was given for a specific location

The location of the C-track in relation to the robot end effector is given by equation

2.9.

~A = ~B + ~C (2.9)

The current location of the C-track is measured and given by the vector C-track and

the location of the end-effector in the workcell space is given by T06

Ctrack =


0

−1330

1530

 (2.10)
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T06 =


1415

0

1050

 (2.11)

The relationship between the location of the laser beam and the Ctrack is given by

equation 2.12

Xfinal = Ctrack − T06 =


−1415

−1330

480

 (2.12)

2.7.1 The Relationship between the C-track Reference Frame and

the Robot Reference Frame

In this step the location of the origin of the C-track workspace was validated. The

data collected by the scanning process was saved in (X, Y, Z) points. The points that

were gathered did not consider the reference point as the center of the test object. The

relationship between the point being collected and the shape of the part was not known. It

was determined that the points gathered change every time the C-track is moved. However,

this could not be linked to a specific reference, so three coordinates of three different points

were collected. The coordinates of these points were gathered in relation to the camera

workspace and the robot workspace. The relationship between the two workspaces were

derived and programmed. The program takes the location of the C-track in relationship to

the robot, and two points on the part were manually inserted; this will translate any point

on the part from the robot workspace to the scanner workspace that the scanner gathered

while scanning. The program worked by inserting the location of the C-track in the robot

workspace, which is the origin of the camera workspace along with points on the X axis of
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Figure 2.9: Matlab prompt to insert origin of the C-track

the C-track and points that lie on the XY plane of the C-track or on the XZ plane of the

C-track. Points XY and XY along with the points on the X axis set up the orientation of

the C-track and define the relation ship. The software that does this was made and can be

seen in the Figure 2.9 below.

The results will give two mattresses, R and R_back; R is the relationship between a

point in the global as seen from the local which means the location of the part being scanned

with a known location in the robot workspace in the C-track workspace. To get this, the

location of the point in the robot workspace is multiplied it by R in matrix 2.13. R_back is

the Point in the local as seen from the global which means the point in the scanner workspace

can be converted to the global workspace that is the robot workspace by multiplying it by

R_back in matrix 2.14.

R = 10e+ 03 ×



0.0006−0.0008−0.0001 2.1252

0.0008 0.0006 −0.0001−0.9384

0.0002 0.0000 0.0010 −1.3391

0 0 0 0.0010


(2.13)
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R_back = 10e+ 03 ×



0.0006 0.0008 0.0002−0.3048

−0.0008 0.0006 0.0000 2.2606

−0.0001−0.00010.0010 1.4097

0 0 0 0.0010


(2.14)

2.8 Summary

This chapter showed the relationship between the locations of the reference frame

of the C-track in relation to the robot workspace. The kinematic model that represents

the relationship between the workspaces was derived along with the center of data points

collected. Multiple experiments were done to locate and validate the location of the scanner

in the C-track workspace, and it was determined that the location of the workspace of the C-

track is the center of the two cameras of the C-track. These outcomes provide an opportunity

to generate an optimum scan path planning technique capable of knowing the points to be

collected beforehand. Knowing the positions of the robot arm, the 3D laser line scanner,

and the C-track position while scanning along with the shape of the object being scanned

can lead to creation of scan trajectories that take into consideration the dimension of the

part being scanned. The limitation of the work is that the relationship between the location

of the C-track and the location of the robot end effector is not always the same equation;

it only depends on the current robot setup provided along with the current location of the

C-track. Moving the C-track will not give the same results. By using the results, points

collected from the scanner at this given position can be predicted. Future work will be

generalizing the model and creating software that takes all the positions and orientations of

the components in the work cell, such as the location of the C-track and orientation along

with the location and orientation of the robot, to predict the location of given points on the

C-track workspace.
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CHAPTER 3: STUDYING THE EFFECT OF SCANNING

SPEED AND RESOLUTION ON POINT CLOUD QUALITY

3.1 Abstract

3D scanning can be used for many applications in manufacturing and remanufactur-

ing by offering a sustainable solution to end-of-use (EoU) core disposal and recovery. These

manufacturing and remanufacturing activities require an accurate identification of the dam-

age in order to generate recovery plans that suit the known damaged parts. Using 3D laser

scanners as an inspection tool can facilitate this process by measuring the defect. In the

preliminary study conducted, an error caused by different parameters was found in the point

cloud gathered from the scanning process. Therefore, it was necessary to investigate the fac-

tors affecting the scanning accuracy and minimize the scanning errors in order to generate

appropriate material deposition paths. Previous studies have identified several factors such

as the view angle and standoff distance and investigated their effects on scanning quality.

However, scanning speed and resolution are two additional factors affecting the accuracy

of captured point cloud that have not been studied so far. Therefore, in this chapter, the

effect of scanning speed and resolution is investigated in conjunction with the view angle

and standoff distance on the scanning quality. An experiment was designed with four fac-

tors, three levels and three replications. Root Mean Square Error (RMSE) was used as the

performance measure to analyze the difference between the laser-scanned 3D point cloud

data and the model point cloud. Preliminary findings confirmed the results of the previous

studies that changing the view angle and standoff distance affects the quality of the point

cloud. Moreover, the findings showed that the scanning resolution is negatively associated

with the scanning accuracy, meaning increasing the scanning resolution will decrease the

scanning accuracy. In addition, the findings showed that the scanning speed has a negative

relationship with the scanning accuracy.
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3.2 Introduction

There are many types of technology for gathering dimensional information of a specific

object. Two of the major technologies are touch probe and 3D scanning, each of which has

its own advantages and disadvantages. The main advantages of using a 3D scanner over

traditional Coordinate Measurement Machine (CMM) is that the CMM has a touch trigger

probe that needs to make contact with the surface it is measuring and collect one coordinate

point per touch, unlike the 3D scanner that has the ability to measure points without any

contact with the object and capture a large number of points in a short period of time. In

general, Coordinate Measure Machines (CMM) are used to extract data points, but they

are relatively slow and have low resolution. On the other hand, non-contact methods using

non-contact probes enhance accuracy by eliminating noise and giving the best possible fit

according to the shape of the object [59]. CMM takes a long time for the touch trigger

probe to capture the same number of data points that the 3D scanner collects since it

captures one data point per touch. On the other hand, laser line scanners are less accurate

than conventional touch-trigger probes such as CMMs. The accuracy of 3D scanners is

strongly influenced by the characteristics of the object surface, shape, reflection, roughness,

transparency and other properties. For example, it is difficult to scan and inspect shiny

surfaces such as machine steel and aluminum using a 3D laser line scanner [4]. In addition,

there are standardized procedures to evaluate the accuracy of touch-probe sensors by using

a ball artifact. These procedures are not applicable for 3D scanning.Before developing an

automated planning for laser inspections in industry, it is necessary to understand what

causes outliers in scanning outputs. This can be achieved by experimentally testing the

scanning parameters and analyzing their effects on scanning quality. Bevsic et al. [76] studied

both measurement methods using the same evaluation procedure for the CMM on a sand

blasted aluminum part that was designed to include complicated shapes and common parts

such as planes and cylinders. They concluded that the same tools can’t be used because the

accuracy of the laser scanner is influenced by the characteristics, so further tests are needed
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to take all of the influences into account, such as surface quality, surface orientation, and scan

depth, which are not the case for CMMs. [76] [6]. The basic purpose of a 3D laser scanner is

to gather data pertaining to the shape of an actual object so that it could build 3D models

by propagating a laser beam on the surface of the target and then detect its shape through

the reflections. There are several types of 3D laser scanners that can be used in various fields

such as dentistry, mining, urban topography, reverse engineering, archaeology, etc. Time-of-

flight 3D laser scanners, projected pattern 3D scanners, and modulated 3D light scanners

are only a few examples of the different types of non-contact active 3D scanners [54]. There

are many parameters that affect the output of 3D scanning, one of which is the influence

of light that has been well studied and documented. Optimum results could be achieved

when the colors have a strong red component, such as red, white and yellow, requiring a

color setting at the light side while black and green surfaces give the poorest results [54]. In

addition, gray surfaces do not have an impact on the results and thus, can be used in the

scanning process [54]. Generally, white and matte surfaces tend to deliver more accurate

point cloud data compared to black surfaces [18]. In addition to surface lighting and colors,

surface glossiness is another factor that affects scanning quality [50]. The influence of light,

color and brightness levels on the measurements can be reduced by doing a careful analysis

of the reflected light time evolution which is imaged in the digitizing system’s sensors [52].

Martinez et al. 2010 analyzed a touch-trigger probe system against a conventional Laser

Tracking System (LTS) system and compared the results for reconstructed surfaces with

different structured light intensity [1].

Scanning orientation is another factor that may affect the accuracy of any 3D laser

scanner through influencing the incidence angle of the scanner, which is the angle between

the normal vector of the surface and the laser beam itself [4, 50, 20]. The incidence angle is

known to be closely linked to signal deterioration, where a larger angle would have a more

stretched out footprint and the reflected signal is wider while having a low magnitude causing

the sensor-to-surface relative position to be of great importance [50]. Due to the electro-
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optical nature of the scanners and the principle of optical triangulation, the geometry and

position inside the scanning window, which determines the incidence angle, tends to influence

the measurement accuracy [4]. The main problem arises because of the falsely recorded

outliers.These points are measured from different valid measurement points but usually do

not really exist on the actual surface due to using different incidence angles. Outlier points

particularly cause some difficulties in CAD/CAM applications [20]. The incidence angle also

affects the reflectorless distance measurement of 3D laser scanners.

One of the more obvious factors that affect 3D Laser scanner measurements is the

distance of the object from the sensor, which can have a significant influence on the quality

of results. In very simplified terms, the shorter the distance of the object from the sensor,

the higher the resolution and, thus, the lower the noise levels, and vice versa [6]. This can

be explained by the Gaussian beam propagation, principle which dictates that the beam

does not travel in a parallel manner but rather converges until a certain distance and then

diverges. This divergence affects the quality of the results since the beams are not entirely

reflected. This has been experimentally proven where a laser beam was directly aimed at

a camera CCD sensor and its profile was measured at 20 mm increments from 40-200 mm.

Since the sensor pixel size was known, it was easy to determine the varying width of the

beam for confirming the Gaussian principle [53]. Too close or too far a distance can both be

detrimental to the results since placing an object too far would put it out of the range of the

laser but bringing it too close would open up the possibility of collisions between the points

[46]. The relationship between the standoff distance/height and the accuracy of the scanning

results can be determined by incrementally changing the distance between the object and

the beam propagation point until an optimum working range can be found [18].

Any limitations related to the instruments and hardware can often lead to systematic

errors in the propagation of the laser beam and the accumulation of the reflected light. The

emission is affected by three factors: the beam divergence deviation, the beam deflection

unit, and the axes error including three axes which are seldom aligned and stable. This is
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usually dependent on the scanner resolution, which is related to the accuracy of the results

[50].Resolution, in this context, refers to the capability of the scanner to detect minute

features in the point cloud determined by the combination of two factors: the minimum

angle increment between two continuous points and the laser spot’s size [32]. Physical

limitations of the scanner often cause noise in the gathered point cloud data, which could

lead to deteriorated results such as holes in the artifacts scanned. In addition, herd to reach

areas for the sensors are usually in grooves with low light, often which leads to low sampling

density which can again cause the results to be inaccurate [5].

Most commercial scanners often face limitations in precise dimensional inspection

of manufactured parts since there is at least one magnitude that is digitally less accurate

compared to touch-trigger probes [4]. The surface material also affects the laser scanner

measurements in a few cases such as reflective surface material in time-of-flight laser scanners.

Moreover, roughness of the surface material creates variations in the final scan as it has been

shown in many studies that the surface roughness of a flat surface correlates to a higher

degree of laser beam scattering that leads to a higher noise level in the gathered point

cloud [52]. Additionally, if the surface is shiny, e.g. aluminum or machined steel, then the

accuracy will be severely affected since diffuse reflection is required to align the camera with

the projected laser line, which is difficult for shiny surfaces [6].

There are several other material properties that affect the quality of scanning results

through the reflectivity and roughness of the surface material [18]. Free-form surfaces, are

common in many design and manufacturing fields such as marine propellers, is a good exam-

ple. These surfaces contain a complicated sculpture that could potentially lead to a higher

magnitude of errors if the measurements are not precise [13].

There are other factors that may potentially affect scanning quality. Scanning speed is

one of the measurement parameters that needs to be fully explored before using 3D scanning

technology for inspection purposes [13]. Furthermore, using scanners with higher resolution

could potentially enhance the quality of gathered point cloud [53].
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Although the scanning speed and resolution were mentioned in previous studies, the

effect of changing these parameters on the scanning quality remains unknown. In this chap-

ter, scanning speed and resolution are considered in conjunction with the previously studied

parameters, i.e. standoff distance and view angle, to investigate their influence on scanning

quality.

3.3 Methodology

In this work an experiment was designed with systematically varied scan parame-

ters to study the effect of scanning speed and the resolution on the quality of the collected

point cloud. This research examines the factors affecting scanning quality in order to obtain

the least amount of noise in the scanning results and minimize the post processing efforts.

Although the parameters of interest for this research are speed and resolution to test the

methodology, an experiment was done involving parameters already discussed in the liter-

ature such as the standoff distance and view angle to make sure that the analysis of the

results is correct. The findings confirmed the literature by using Root Mean Square (RMS)

of the deviation.

Figure 3.1: The Test Setup with the 3D scanner mounted to the robot and the white board
as the flat surface

The scanning errors are generated from the actual 3D scanner being used.There are



74

multiple factors that contribute to the scanning error. For example, in 3.2, the scanning

error is noise in the surface, which does not represent the actual defect in the object. These

errors are greater when the surface is not straight and the view angle of the scanner is not

perpendicular to the scanner.

Figure 3.2: The shape of the scanned point cloud representing the defect.

There are n number of data points, and each data point is represented by a point

in the x-axis, y-axis, and z-axis, which form d as shown in equation 3.1 below where dn is

an individual point on the surface of the scan. The scanning errors can be determined by

a point-to-point objective quality metric which is based on comparing the scanned model

with the CAD model and calculating the Root Mean Square Error (RMSE) of the variations

[77]. For additive re-manufacturing, this would theoretically be the difference between the

captured point cloud and the actual damage observed on a part. This functions by obtaining

the value of the mean distance (root mean square error of distance), which is the change in

the Z-axis between the scanned model and the CAD model. The ideal RMSE value is zero,

meaning the lower the RMSE value, the closer the scan is to the CAD model.However, this

is rare as the scanner collects noise because it is functioning due to many factors, some of

which can be avoided while others can not. In Figure 3.2 the noise inside the circle does not

come from the actual part, and in the part where the surface is smooth, the noise came from

points in air and not on the actual surface made by the scanner while scanning.
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EScanning = ERMS =

√
1

n
(d21 + d22 + d23 + ...+ d2n). (3.1)

where dn = ∆nscan − ∆nCAD (3.2)

3.4 Systematically Varied Scan Parameters Experiment

The objective of this task is to understand the impact of point cloud measurement pa-

rameters on scanning quality. Collecting a large point cloud data with systematically varied

scan parameters is important for understanding the impact of those parameters. Automated

point cloud measurement is critical to isolate all sources of variation caused by manual scan-

ning. In this experiment the approach used was obtaining a sufficient database of physical

measurements using the automated point cloud measurement test bed with varied scanning

parameters by mounting the scanner to a robot to have a precise measurement that can be

repeated and distinguished with different levels. In Figure 3.3 six tasks were accomplished

in this experiment. First, a design for the test bed was made taking in consideration the

limitation of the robot and the capability of the scanner used. Second, the experiment was

designed and all the possible factors that are going to be studied along with the interaction

of the other parameters were identified. Third, the levels were identified for each factor after

knowing the limits of the view angles and the standoff distance then the scanner can function

on. Fourth, the data was collected and the actual experiment was performed. Fifth, the right

method was selected to compare the data. Sixth, the data gathered with the CAD model of

the part being tested were compared. Following are the factors tested and the levels used in

the experiment for the four parameters. The angle in which the scanner is in relation to the

object being scanned is shown in Figure 3.4

The distance between the scanner and the object being scanned is shown in Table

3.4 and can be seen in Figure 3.4 as the offset Z. Scan line resolution of the experiment are

shown in Table 3.5. The speed in which the joints of the robot are moving while preforming
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Figure 3.3: The steps taken to design and perform the experiment

Table 3.4: Standoff Distance Levels

Level Value
1 11 Inch
2 8.8 Inch
3 6 Inch

the scanning process is defined as the scanning speed.The speed in relation to the robot

maximum speed and how the robot is using it are shown in Table 3.6. Because the robot is
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Figure 3.4: the scanner view angle in relationship to the part being scanned

for education purposes, the maximum speed limit is 1500mm/s at 50% which this means for

the values in Table 3.6, the speeds of 5 to 25% are 150mm/s to 750 mm/s. After doing the

previous experiment and getting the results, another experiment was designed using different

levels and only the concerned parameters to validate the findings. In the new experiment

levels were rearranged in ascending order and increments were even for both the speed and

the resolution. The resolution levels for the new suggested values for validation are in Table

3.7

Therefore, the speed levels for the new suggested values for validation are in Table

3.8. These tables were selected based on observations from previous experiments and the

limitation of the scanner. In this experiment the speed levels were higher than the first

experiment as the change in the speeds was not noticeable because the values were set up

next to each other and there was little change in each level. In this experiment the limits of

the robot and scanner were identified to distinguish the effect of the change in the speed on
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Table 3.5: Scanner resolution

Level Value
1 1.0mm
2 0.8mm
3 0.2mm

Table 3.6: The Speed Levels

Level Value
1 5%
2 15%
3 25%

the point cloud collected, and the maximum speed changed from 25% the maximum speed

of the robot to 45% of the maximum speed to make the values spread across the spectrum

of the range. These values translate to 150mm/s to 1350 mm/s.

3.5 Aim of the Experiment

To address this gap, this research seeks to answer the question of whether the quality

of the point cloud is affected by changing the speed and resolution while scanning. In order to

do this, these parameters need to be further studied to identify their effects on the scanning

quality. This is important to give any future recommendations or to design a better scan

trajectory, the effect of the parameters changes must be known to see if it is significant or not

in order to design trajectories and select the appropriate parameters to perform a specific

scanning task.

3.6 Approach

All the experiments were conducted with all the given levels and parameters, and the

results were analyzed. It is better to over sample and work on a larger surface and keep

the record to avoid redoing the experiment. Therefore, a trajectory was created to study

multiple aspects in one run. The trajectory studied the repetition of the movement of the
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Table 3.7: Scanner resolution

Level Value
1 1.0 mm
2 0.6 mm
3 0.2 mm

Table 3.8: The Speed Levels

Level Value
1 5%
2 25%
3 45%

robot over a specific section, which was the center of the flat surface. The data can be used

when necessary to also test the effect of the direction of the movement from right to left or

left to right along with the other parameters in each and every iteration as shown in Figure

3.6. The points selected on the white board are marked with a small marker and matched

with the location of the trajectory, created in Figure 3.6 ,when the robot is moving.

A small section was cut from the collect point cloud and the analysis and results were

based only on this section, as seen in Figure 3.7

3.7 Results

The gathered point cloud is shown the following three figures, which represent a

scan of exactly the same shape using the same pattern, standoff distance, view angle, and

resolution. The only difference is in the speed in which the scanner is moving with. As can

be seen in Figure 3.8, there are many empty spots due to the speed in which the scanner is

moving, and this is at level 1 in the experiment Figure 3.9 shows the point cloud when the

speed is at level 2 in the experiment, Figure 3.10 shows the point cloud when the speed is

at level 3.

The collected point clouds were segmented, and the area under study shown in Figure

3.7 was compared to the original CAD model. This area was selected because it has no scan
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Figure 3.5: The scanner attached to the robot with the white board in place

Figure 3.6: The scanner Path in the experiment
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Figure 3.7: The area selected for the analysis

Figure 3.8: All parameters fixed except speed at highest setting at 25% equal to 750 mm/s.
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Figure 3.9: All parameters fixed except speed at medium setting at 15% equal to 450 mm/s.

Figure 3.10: All parameters fixed except speed at lowest setting at 5% equal to 150 mm/s.
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repetition, which is part of the scope of the study. Results were analyzed using analysis of

variance (ANOVA) and also Pearson correlation. The results of the 81 experiments with

all four factors with three levels shows that all four factors are significant as can be seen in

Table 3.11. This confirms the literature regarding the standoff distance and the view angle.

This also proves the validity of the algorithm and the tool used to analyze the point cloud.

Table 3.9: View Angle Levels

Level Value
1 70°
2 80°
3 90°

As can be see in the table, the change is negative in the increment in the levels of

the view angle and the stand off distance, because the levels are in descending order as can

be seen in Table 3.9. For the view angle, the lowest level (1) has the highest deviation from

normal in the angle and the highest level (3) has the lowest deviation from normal. Table

3.4 shows that the stand off distance of the lowest level (1) has the highest distance from the

part and the highest level (3) has the lowest distance. This is unlike resolution and speed

where it is arranged in ascending order as can be seen in Table 3.5 where the resolution

lowest level (1) has the lowest resolution and the highest level (3) has the highest resolution.

For speed as shown in Table 3.6, lowest level (1) has the lowest speed and the highest level

(3) has the highest speed. The error is decreasing as we head toward the norm for the view

angle and as we decrease the distance. and it is increasing as we increase the speed and the

resolution as can be seen in Figure 3.11
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Table 3.11: ANOVA table

Source DF SS MS F P
View Angle 2 3.9476 1.9738 4.58 0.013

Standoff Distance 2 5.4058 2.7029 6.28 0.003
Resolution 2 37.4559 18.7279 43.48 0.000

Speed 2 7.3822 3.6911 8.57 0.000
Error 72 31.0107 0.4307
Total 80 85.2022

Table 3.12: ANOVA table

Table 3.10: Factors and levels

Factor Type Levels Values
View angle fixed 3 1, 2, 3
Standoff dist fixed 3 1, 2, 3
Resolution fixed 3 1, 2, 3

Speed fixed 3 1, 2, 3

ANOVA: Response 1 versus View angle, Standoff distance, Speed, Resolution

Analysis of Variance for Response

As can be seen from Figure 3.13 after analyzing the data for validation, the error

is increasing as we increase the speed and resolution. The same results were found for the

initial experiment. However, the curve is not identical due to the different values that were

selected for the validation experiment as can be seen in Table 3.5 for the resolution and

Table 3.6 for the speed in comparison with Table 3.7 and Table 3.8, respectively.

It is increasing as we increase the speed and the resolution as can be seen in Figure

3.13

General Factorial Regression: Average error versus Resolution and Speed

Using Pearson correlation to validate the relationship of the change of the speed and

resolution on the quality of the point cloud, a positive correlation were found as can be seen
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Figure 3.11: Plot of the standoff distance view angle speed and resolution

Figure 3.12: Interaction plot of the speed and resolution
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Figure 3.13: plot of the speed and resolution

Figure 3.14: Interaction plot of the speed and resolution



87

Table 3.13: General Factorial Regression Factors and Levels

Factor Levels Values
Speed 3 1, 2, 3

Resolution 3 1, 2, 3

Table 3.14: Analysis of Variance Resolution and Speed

Source DF SS MS F P
Model 8 432.373 54.047 162.28 0.000
Linear 4 295.701 73.925 221.96 0.000
Speed 2 69.068 34.534 103.69 0.000

Resolution 2 226.633 113.317 340.24 0.000
Interactions 4 136.672 34.168 102.59 0.000

Error 18 5.995 0.333
Total 26 438.368

in Table 3.15 and 3.16 this means that as the speed increase the is an increase in the noise

or error in the point cloud. Table 3.15 shows the correlation for the experiment where I used

all the four parameters, while Table 3.16 shows only for the validation experiment where I

only studied the speed and the resolution.

Table 3.15: Pearson correlation results for the 81 experiments

Factor correlation
Speed 0.2905554

Resolution 0.5834091

After validation see Table 3.16

Table 3.16: Pearson correlation results for the 27 experiments

Factor correlation
Speed 0.3953238

Resolution 0.6239086
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3.8 Limitations

In this experiment and analysis the movement direction was not part of the study, and

the impact of repetition over the same area was not investigated. Each path was performed

once over the same area. It was also assumed that there is no influence from the robot

movement or vibration on noise created in point cloud as the robot is rigid and carries heavy

items and our scanner is a very light scanner. Experiments were performed on a white matte

surface and the results shown are only for this surface. The effect on different surfaces is not

known but assumed to be the same. Finally the effect of ambient light was assumed to be

irrelevant as the experiments were performed at the same time of day over several days.

3.9 Strategies for Improving the Point Cloud Quality

There are many strategies for improving the point cloud quality some of it related

to the parameters while other are related to point Cloud Post Processing. Although post

processing decrease the noise in the gathered point cloud, It can add up to the overall error

in the point cloud if the wrong methods were used. Also, It is very important to select the

right parameters and avoid collecting a large point cloud when the surface being inspected

do not require a high resolution due to the surface simplicity. This leads to the importance of

knowing the right parameters as it reduces the demand for processing power that consume

time and resources. In the experiment with a simple flat surface it was evident that the

increase in the resolution do not increase the quality of the gathered point cloud and in

fact it adds to the error in the point cloud and thus selecting the right resolution level

is important. With surfaces that has curvatures and arcs, it is important to increase the

resolution of the scanner as it will capture the curvatures in a higher precision and will

decrease the error in the point cloud. Smoothing and cleaning the point cloud can add to

the overall error and will be shown in chapter 4 and this makes studying the parameters and

increasing the accuracy of the scanner a very important task for the point cloud to be used

for manufacturing and remanufacturing applications. Also, working in improving a good

scanner point cloud is better than improving the point cloud that has a huge noise and this
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leads to the importance of studying the parameters and the scanning procedures over the

post processing of the point cloud.

3.10 Summary

As can be seen regarding the scanner used and the speeds that were selected, the

change in the speeds was significant along with the change in the resolutions. Changing the

resolution should result in a better results. However, that occurred to a certain extent, and

then the effect become negative as the point cloud size got bigger and resulted in error as

the point being sampled and calculated was higher. Therefore, further study is needed to

make a final conclusion. The significant effect of the standoff distance and the view angle

on the scanning quality was also confirmed in this experiment, and it supports the findings

from the literature.

The future plan is to test the scanner using higher speeds and compare these results

to generalize the findings. Then the scanning parameters need to be connected to the defect

in the point cloud to monitor the quality of the manufactured parts. Therefore, machine

learning most be used to predict the changes in the parameters on the point cloud. Knowing

the effect of the parameters on the point cloud is important to compensate for it in the future

steps in the re manufacturing digital thread an to reduce the effect of the parameters by

having the right parameters for the scanner by setting up the optimal trajectory to preform

the scanning task.
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CHAPTER 4: ERROR PROPAGATION IN DIGITAL ADDITIVE

REMANUFACTURING PROCESS PLANNING

4.1 Abstract

A point cloud is a digital representation of a part that consists of a set of data points

in space. Typically point clouds are produced by 3D scanners that hover above a part and

record a large number of points that represent the external surface of a part. Additive re-

manufacturing offers a sustainable solution to end-of-use (EoU) core disposal and recovery

and requires quantification of part damage or wear that requires reprocessing. This chap-

ter proposes an error propagation approach that models the interaction of each step of the

additive remanufacturing process. This proposed model is formulated, and results of the er-

ror generated from the parameters of the scanner and point cloud smoothing are presented.

Smoothing is an important step to reduce the noise generated from scanning, knowing that

the right smoothing factor is important since over smoothing results in dimensional inaccu-

racies and errors, especially in cores with smaller degrees of damage. It is important to know

the error generated from scanning and point cloud smoothing to compensate for the following

steps and generate appropriate material deposition paths. Inaccuracies in 3D model renders

can impact the remainder of the additive remanufacturing accuracy, especially because there

are multiple steps in the process. Sources of error from smoothing, meshing, slicing, and

material deposition are proposed in the error propagation model for additive remanufactur-

ing. Results of efforts to quantify the scanning and smoothing steps within this model are

presented.

4.2 Introduction

To be more sustainable and reduce material waste, Nasr et al. [78] suggested the

use of remanufacturing as it plays a significant role in value recovery. Due to the flexibil-

ity of additive manufacturing processes, it offers a sustainable solution to end-of-use (EoU)

core disposal and recovery [61, 62, 63, 64]. Despite the advantages and potential of addi-
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tive manufacturing (AM), the accuracy of the geometry continues to be a limitation to its

wider application [60]. While physical processes are important factors in the overall quality

of manufacturing, failed builds were found that can be traced back to errors in the digital

translations, with leads to the actual physical processes [60]. These errors are relevant to

additive remanufacturing applications that aim to leverage additive processes for targeted

material deposition and part reprocessing to original equipment manufacturer part specifica-

tions [79]. Thus far, error propagation in the digital thread of the additive remanufacturing

processes has not been realized. Rickli et al. (2014) [9] describe a framework for an addi-

tive remanufacturing system that uses a 3D laser-line scanner to capture external defects.

This framework is divided into three parts: condition assessment and digitization, material

deposition, and re-processing and inspection. The steps that are taken in the condition as-

sessment and digitization phase of this additive remanufacturing framework are scanning,

smoothing, meshing and slicing, leading to tool path planning for material deposition (Fig-

ure 4.1). In this chapter, the focus is on the processes that affect the point cloud in order

to use it in additive remanufacturing applications. Essentially, the defective part is received

by a remanufacturing facility. The first step is to collect the 3D point cloud of the damaged

part; there is some noise that the point cloud contains and this leads to the second step,

smoothing the point cloud to reduce noise. In order to generate the tool path plan for ad-

ditive remanufacturing, a meshed point cloud is needed to be used for slicing, Slicing is the

plan for the material deposition in regard to the trajectory and the thickness of the layer in

the additive manufacturing process and the actual material deposition. Smoothing reduces

the noise in the point cloud and makes the neighboring points closer in features because it is

based on the averaging of neighboring points. To generate the smoothed surface, points that

are noise and not near the surface must be eliminated first; then a smoothing algorithm can

be implemented. Smoothing is important to clean out errors that are not actually present

in the object under the remanufacturing process, so this step is important as it influences

subsequent meshing and slicing steps.
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Figure 4.1: Flowchart of the main steps of EoL core condition assessment and digitization
[9]

In this work experiments were conducted that demonstrate the error propagated in

the remanufacturing digital thread. The focus of this chapter is on how the different steps

in the remanufacturing process contribute to the overall error as each step adds up to the

overall error. Specific contributions are: (1) The importance of the scanning factors in the

remanufacturing digital thread and the overall error propagation in the process, and (2) The

effect of the smoothing on error propagation and the effect it has in the remanufacturing

process. The remainder of this chapter is organized as follows. Section 2 proposes error

propagation models and outlines steps in the additive remanufacturing process. Section 4

present the results of the scanning and smoothing process within the context of additive

remanufacturing, and section 5 presents the conclusions and future work.

4.3 Methodology

In this section, the proposed model for how the error is propagated in additive re-

manufacturing from the scanning to the material deposition is explained. Figure 4.4 lists
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the digital additive remanufacturing factors that are considered in the proposed model in

this chapter. Scanning is the first step, and it has the initial effect as it is the phase that is

collecting the point cloud that is the base for subsequent steps that work on this collected

point cloud. Smoothing work on the collected point cloud from the scanner removes outlier

data points or brings it closer to the surface and reduces the error generated by the scanning

phase. However, sometimes smoothing increases the error in the point cloud depending on if

the outlier feature is present on the scanned object or it is just a noise in the scan. Meshing

is transforming the point cloud by the creation of vertices, edges and faces which defines the

shape of a polyhedral object to prepare the model for slicing. Depending on how dense is

the point cloud this can adds up to the overall error as the dense point cloud represent the

surface with more details and preserve the important features as shown in Figure 4.2 by [80]

Slicing uses the mesh generated from the smoothed point cloud to create a material

deposition path plan for additive remanufacturing. Depending on the layer height the error

can be added or decrease as using a higher layer height increase the error in the manufactured

part as it is not confirming to the features in the object as shown in Figure 4.3 by [81]

. Material deposition is the final phase in which the plan that was generated from

the part scan is executed.

There are errors generated in all the activities above, and the overall error equation

4.1 is listed below. It sums all the errors from additive remanufacturing steps, Figure 4.4.

Here, error is defined as the difference between the scan, mesh, or slicing and the dam-

age/defect geometry that is being remanufactured. The error generated from each of these

steps is explained in detail in the following subsections. Since the objective of additive re-

manufacturing is to correct a damaged part, it is critical that the damage be captured and

planned for accurately.

ETotal = Escanning + Esmoothing + Emeshing + Eslicing + Eprinting (4.1)
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Figure 4.2: Effect of the density of the point cloud on preserving the features

4.3.1 Scanning Error

Scanning errors are generated from the actual 3D scanner being used. There are

multiple factors that contribute to scanning error, in Figure 4.5 show that the scanning

error is noise on the surface that does not represent an actual defect in the object. These

errors are greater when the surface is not straight and the view angle of the scanner is

not perpendicular to the scanner. Changes in scanner parameters affect the quality of the

gathered point cloud. Thus, it is important to select the right parameters when scanning a

part for remanufacturing to get a quality point cloud that is efficient for smoothing, meshing,

and slicing steps..



95

Figure 4.3: Effect of the slice height on the manufacturing error

Figure 4.5: The shape of the scanned point cloud representing the defect

The scanning errors can be captured by comparing the scanned model with the CAD

model and calculating the Root Mean Square (RMS) of the variation in comparison to the

CAD model, classified by Javaheri et al. [77] as point-to-point objective quality metrics. For
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Figure 4.4: Point cloud capturing and processing steps in the remanufacturing.
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additive remanufacturing, this would theoretically be the difference between the captured

point cloud and the actual damage observed on a part. This functions by obtaining the value

of the mean distance. d_RMS is equal to the root mean square of the distance, which is the

change in the Z-axis between the scanned model and the CAD model. The lower the RMS

value the closer the scan is to the CAD model, and the ideal is 0. There are n number of

data points and each data point is represented by

EScanning = dRMS =
√

1/n(d21 + d22 + d23 + + d2n) (4.2)

dn = ∆nScan − ∆nCAD (4.3)

4.3.2 Smoothing Errors

Smoothing errors are generated from processing the point cloud after it was scanned.

In Figure 4.6 below the smoothing reduces some of the noise data that are on the surface.

However, although a smoothing algorithm cleans the point cloud, it can lead to errors in

capturing the volume/surface. Therefore, some of the details necessary in the digital repre-

sentation of the part might get compromised depending on the number of iterations and/or

the smoothing factor.

Figure 4.6: The shape of the scanned point cloud representing the defect after smoothing.

Numerous smoothing techniques exist that aim to reduce noise without affecting

the accuracy of the scanned point cloud. For instance, Laplacian smoothing is a localized

moving-point average smoothing function that takes the surrounding points and calculates
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the average as it is moving from one location to another. This transforms the points in

the point cloud to a new location based on the smoothing factor. The ’Smoothing Factor’

essentially determines the influence of the nearest neighbors in point relocation. The higher

the ’Smoothing Factor’, the more influence the nearest neighbors have, thus leading to more

smoothing. The comparison between the CAD and the scanned data is calculated by equation

4.4.

ESmoothing =
k∑
i=1

min(Ps − PCAD)2 (4.4)

Where k is the number of adjacent vertices to node i, x̄j is the position of the jth

adjacent vertex and x̄i is the new position for node i. and ESmoothing is the error between

the point cloud after smoothing and the CAD model were ps is the point cloud scanned and

pCAD is the point cloud from the CAD model

4.3.3 Meshing Error

Meshing is the process of converting the scattered point cloud into triangles. Although

this step may not essential in additive remanufacturing processes, it remains a part of digital

processes due to practical reasons [60] as it offers a convenient interchange format to share

the file without sharing the CAD file [82]. In Figure 4.7, meshing uses the point cloud to

make a triangular mesh; therefore, when the number of the point cloud is low the curved

surfaces may be sharper and more accurate as can be seen in the bottom of the groove

compared to Figure 4.6.

The sources of the errors are dependent on the first two activities. In addition, the

size and the density of the point cloud around the curved and detailed area affect the overall

error. A larger point cloud will theoretically decrease the meshing error as it represents a

higher details to the actual model as possible. Equations 4.4-4.7 are based on Sikder et al.

[81] regarding slicing error, but they share similar concepts in calculating the error, When

triangles are generated depending on a location of the triangle and the shape it takes, some
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Figure 4.7: The shape of the scanned point cloud representing the defect after meshing the
points.

features might be omitted or altered, for example, the circular shapes become more like n-gon

(a polygon with n sides) shapes depending on the number of faces. The error is calculated

by the difference between the faces and the CAD model. Meshing error where ef is the

meshing error and EMeshing is the total surface error.

ef =

µ∑
i=1

min(ν2i , η
2
i ) (4.5)

Surface error at ith face

εi =
λ∑
j=1

ep (4.6)

Total surface face error

EMeshing =
k∑
i=1

εi (4.7)

Where νi, ηi is the vertical and Euclidian distance to the vertical and horizontal plane

on the smoothed point cloud. By selecting the face of the represented shape closest to the

mesh of the CAD model of the object, the calculated error is the distance between the CAD

model and the triangulated mesh.
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4.3.4 Slicing Error

In the slicing phase, the plan to create the material deposition or printing is done to

correcting the defect. The areas that need to be filled are shown in Figure 4.8 below, which

represent the point cloud of the defect aligned with the point cloud of the intact part.

Figure 4.8: The shape of the scanned point cloud of a defective part aligned with the scanned
point cloud of an intact part.

The slicing error is generated when the defect geometry captured by the smoothed

point cloud and mesh is converted into slices for material deposition. In Figure 4.9, the

slicing plan shows that there are some small areas that are not covered due to the layer

heights specified during slicing. These gaps can change depending on the slice height.

Figure 4.9: The slicing material deposition plan.

Sikder et al. [81] suggested an adaptive slicing algorithm to minimize the error based

on the details needed at each layer. To minimize the surface error, they created an adaptive

slicing algorithm that minimizes the slice thickness; then they calculated the error by using

this technique. In Equation 4.8 the slicing error is calculated by the minimum distance

between each slice and the surface in the created mesh. This covers the empty area that
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is considered error an by selecting the closest point from the point cloud to the mesh. The

calculated error is the distance between the triangle created in the meshing phase to the

slices created in this phase, which is represented by the white area shown in Figure 4.9

above. Equation 4.9 is the total error in that slice. Equation 4.10 is the total slicing error.

ep =

µ∑
i=1

min(ν2i , η
2
i ) (4.8)

Surface error at ith face

εi =
λ∑
j=1

ep (4.9)

Total surface face error

Eslicing =
k∑
i=1

εi (4.10)

Where νi, ηi is the vertical and Euclidian distance to the vertical and horizontal plane

on the smoothed point cloud.

4.3.5 Printing Error

A printing error can be caused BY multiple factors in the printing process (the actual

material deposition) or from previous steps to the actual material deposition mentioned

(error 1-4) that might not completely cover the shape of the defect and thus generate a

slicing plan that does not completely fill the defect space or overfills the defect space as

shown in Figure 4.10.
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Figure 4.10: Printing and actual material deposition error.

Material deposition errors that may exist include a missing filament in the extruder,

the inability to reach the specific location to add materials, and/or a smaller feature than

the layer height of the material to be deposited. Brown and Pierson (2018) [60] suggested

that errors are caused by three main sources: that include toolpath distortions, process

capability errors, and process interaction errors. The errors in this phase are not known until

the remanufactured part is inspected via destructive or non-destructive methods. Currently,

this error is represented as Eprinting and is planned to be estimated through experiments

in future research activities. The equations used for the scanning error can also be used to

study error in this step. As noted in equation 4.1 the overall error in printing is an error

propagated through the four previous steps, and it is shown into the inspection phase where

the CAD model is compared with the gathered post production point cloud.

4.4 Experimental Design

Experiments were conducted based on scanning four models including three increasing

degrees of defect, 2mm, 5mm and 8mm, and a blank model containing no defect. (The

number corresponds to the depth of the defect). Each model was scanned three times at a

resolution of 0.5mm. Consistency between scans of identical models was confirmed by using

exactly the same path and attaching the scanner to a robotic arm

The selection of the resolution at 0.5 mm showed that it produces the least error

based on the selected settings. And the speed, standoff distance, and view angle were ideal

to ensure that the errors are at minimal levels. Figure 4.12 (below) shows the obtained
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Figure 4.11: blank (top left), 2mm defect (top right), 5mm defect (bottom left), 8mm defect
(bottom right).

Figure 4.12: 8mm defect model with noise after removing the surrounding area from the
scanned data.

point-cloud of the 8mm defect model.

The model above was selected to compare the 8mm defect scan with the blank scan.

Registration was needed to place the scan and the CAD model in the same coordinate system.

The iterative close point algorithm (ICP) was used to roughly align the scans. Total errors

are the summation of all the errors from all the processes. Scanning properties were set to

ensure the best quality generated point cloud. A Metra-Scan 3D laser scanner was used to

digitize parts. The scanner was bolted to the end-effector of a six-axis robot arm. The scan

path was automated and chosen to fully cover the top surface of the part at a scan speed

that ensured complete coverage. The scanner was prompted to begin scanning while the
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part of interest was outside of the scanners capture frame as points in the initial scanning

frame are often noisy or lost by the scanner. Lastly, to ensure that surrounding objects

would not be included in the scan, the part of interest was raised up from the scanning

table by a thin support that was undetectable by the laser-scanner as it moved on the scan

path. In total, four models were scanned including three increasing degrees of defect, 2mm,

5mm and 8mm, and a blank model containing no defect. (The number corresponds to the

depth of the defect). Each model was scanned 3 times at a resolution of 0.5mm. Consistency

between scans of identical models was confirmed at a later point. Isolating the defect is key

to evaluating the smoothing process via the ’Data Comparison’ step. Without isolation, it is

challenging to distinguish the effects of smoothing on the defect vs the effects on the entirety

of the model. After the scan was performed, every point in the point cloud was represented

and for each point the algorithm finds the nearest point to it in comparison to the blank

that has no defect. Then the normal of each point was calculated, and from the normal the

distance between the point was calculated. If the angle is less than the threshold, then the

point chosen is inlier. Otherwise, if it exceeds the threshold, the point is outlier see Figure

4.13.
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Figure 4.13: Threshold Distance and Threshold Angle Defect Detection Strategy.

The difficulty in defect detection is distinguishing defect points that are close to the

blank surface. A distance comparison can only operate on a range outside of the resolution

of the scanner, in this case 0.5 mm. This means that any points within 0.5mm of the actual

surface are not captured. To compensate for these points, an angle comparison strategy

was used that compares the vertex normal of each point in the defect point cloud to the

corresponding point on the blank point cloud. The vertex normal was calculated in Matlab

by fitting a plane to the nearest neighbors of the point of interest. The shape comparison

algorithm by Avagyan et al. [83] was used by performing a detailed comparison of the

shape of a model by geometrically adjusting its rotation and translated so they are in the

same workspace with the scanned data using new viewpoint algorithms that they developed.

The metric used involves measuring the height and width of the defect at each stage in

the smoothing process. In this research, the ”Number of Iterations” was kept constant at

20 iterations, and the ”Smoothing Factor’ varied from 0.1 to 1.6. Figure 4.14 depicts the
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Figure 4.15: Normalized Depth of 8mm and 2mm Defect Models.

dimensions that were measured. The height is the depth of the defect and the width is the

width of the defect. The green line is the actual collected scan data and the purple line is

the CAD model.

Figure 4.14: Height and width dimensions.

4.5 Results and Discussion

The major results are summarized in Figure 4.15 and Figure 4.16 (below). The

graphs plot the normalized height and width on the y-axis and the smoothing factor on the

x-axis. The normalization is the measured value divided by the expected value, thus the red

horizontal line (at 100%) represents the true value of the defect, for reference.

Both Figure 4.15 and Figure 4.16 show the ’2mm Defect’ being more affected, rela-

tively, by increasing smoothing in comparison to the ’8mm Defect’. At a smoothing factor
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Figure 4.16: Normalized Width of 8mm and 2mm Defect Models.

of 1.0, the depth of the ’2mm Defect’ was 50% of its original value while the depth of the

’8mm Defect’ was 85% of its original value. Similarly, at a smoothing factor of 1.0, the width

of the ’2mm Defect’ was 230% of its original value while the width of the ’8mm Defect’ was

130% of its original value. In absolute terms, at a smoothing factor of 1.0, the depth of both

defects was smaller by about 1 millimeter, and the width was larger by about 2.5 millimeters.

Error was more significant in measuring the width than the depth of the defect, as made

obvious by the larger error bars in Figure 4.16. Due to the nature of the defect detection

algorithm, points very close to the surface were not always recognized. This made it difficult

to accurately define the width of the defect region. In Figure 4.17, this is illustrated by the

widening of the contact point between point clouds, as the smoothing factor is increased.

However, the depth measurements were unaffected by this, and any error in depth can be

attributed to noise in the scan. Figure 4.17 (below) shows the evolution of the defect point

cloud as smoothing is increased. Initially, increased smoothing rounds the left edge of the

defect point cloud (orange) and flattens it near the face of the blank point cloud (blue).

However, at a smoothing factor of 1.5 noise is generated within the defect point cloud, but

at a smoothing factor of 1.6, the defect point cloud blows up.



108

Figure 4.17: Point cloud evolution as smoothing factor varies from 0.1 to 1.6

In theory, over smoothing should continually flatten the defect point cloud; however,

in the case of Laplacian smoothing, the point cloud starts expanding after a certain smoothing

factor. Noise is generated as points try to move farther away from the actual surface, resulting

in a much less accurate point cloud. This makes it important to carefully select the right

smoothing factor. When taking the part with an 8mm defect and comparing the scanned

data with the CAD model the RMS was 0.218 mm. After smoothing the part with an 8mm

defect and comparing the scanned data with the CAD model the RMS was 0.20264; this is

better than the prior smoothing that was 0.21851 mm. In this work error generated in the

two studied phases were calculated. In the scanning phase, errors were generated due to

two sources, systematic variation and random variation. The systematic errors are related

to the factors that being used while executing the scanning process and are repeatable. The

random errors are not related to factors being used dependent on where the part is located or

the material of the part being scanned. In the second phase, smoothing, errors are generated

due to the use of the wrong smoothing factors in the smoothing process; this increases the

error in the scanned model and move or omit necessary feature in the scanned part. In the

experiment, E-scanning and E-smoothing were calculated; the E-scanning was calculated to

be +/- .218, and the E-smoothing was calculated to be +/- .20264. The total error for the

first two phases is calculated in the following equation 4.11 the error is either negative or

positive depending on the direction of the error. If the material deposition or the point cloud

is getting less material to be deposited, then the error is negative. Otherwise, the error is
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positive.

Etotal two phases = ±EScanning ± ESmoothing (4.11)

The remaining phases of the digital additive remanufacturing steps are currently being

studied. However, it is important to study all the phases and calculate the overall error and

later introduce a way to compensate for the error in the following step. Errors are not

necessarily positive enough where it need to be subtracted; sometimes the error is negative

and can be compensated for in the next phase by adding more material or decreasing some

material to get the intended outcome.

4.6 Summary

Remanufacturing consists of three sub-processes: condition assessment and digitiza-

tion, material deposition, and reprocessing and inspection. This research aimed to improve

the condition assessment and digitization phase by studying the effect that all the steps have

on the point cloud quality used in the remanufacturing preprocessing. Scanning parame-

ters influence the captured point cloud accuracy, and smoothing has an effect on correcting

the point cloud to a certain extent. Inaccuracies in the digitization of end-of-life cores can

result in incomplete material deposition and a failing additive remanufacturing procedure.

The next step in this research is to quantify the error generated by meshing, slicing, and

printing and how to compensate for it either positively or negatively in the prior or later

activity. Outcomes from this work will aid researchers in creating point-cloud pre processing

programs by knowing the effect of all the steps, integrating it in the planning phase of the

remanufacturing activities, and designing a reconstruction plan for a defective part that is a

crucial element in the additive remanufacturing framework.
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CHAPTER 5: USING A PREDICTIVE MODEL TO OPTIMIZE

THE PARAMETERS OF A CT SCANNER

5.1 Introduction

Although computed tomography (CT) scanning technologies have been well used to

inspect a wide range of products, due to their inconstant material density and thickness, the

CT scanner always requires an adjustment to the scanning parameters whenever a new object

is loaded. This disadvantage makes the scanning process tedious and requires the involvement

of a technician to execute the inspection task for the adjustments. Besides, the performance

is not guaranteed every time. Thus, selecting the right scanning parameter is crucial to

avoid wasting time as repeating the process can lead to a catastrophe in the manufacturing

process if the decisions are not made about the production promptly and correctly. In order

to improve the scanning parameter decision-making process, the Wenzel exaCT-S device

was tested. Perception based on the that machine learning-based CT scanning parameter

predictive method should be accessible in Wenzel’s CT scanning software was tested. The

users would be prompted to type in the density and thickness of the scanned item, and

then the tool would use the inputs as the basis to simulate the scan setting and output

a set of suggested parameter ranges that likely provide error-free scans. These predictive

suggestions could reduce the time required to set scanning parameters (more valuable in

future automated scanning procedures) and, if combined with continuous data collection in

the future, predict wear or defection in a machine (i.e., scanning parameters that previously

worked are no longer sufficient). 3D scanning technology has been developed for several

years and classified by contact and non-contact types; the non-contact solution is further

divided into active and passive forms. CT scanning belongs to active non-contact scanning

technologies. Combining CT scanning with additive manufacturing is a popular research

topic. Karme, A. et al. determined the possibilities and limitations of using CT-scanning as

a quality control method in laser additive manufacturing (LAM) fabricated parts [84]. Du

Plessis, A. et al. reviewed additive manufacturing (AM) applications, such as porosity and
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defect analysis, volumetric density measurement, dimensional measurement, deformation,

surface roughness or topography, multiscale CT and fast scanning, powder analysis, multi-

materials, and also discussed the practicality and limitations of each [85]. Researchers mostly

focus on product design measurement or defect analysis, but there have been few studies on

how to improve the CT scanning setup, which is essential for the subsequent scanning process.

Hothorn, T., and Lausen, B. derived a classifier with good performance on clinical image

data to reduce glaucoma misclassification errors by comparing bagged classification trees

(bagged-CTREE) to single classification trees and linear discriminate analysis (LDA) [86].

Considering that they introduced a knowledge-based decision support strategy to support

routine clinical work, it is also helpful that a decision support model, such as a predictive

method, can be applied to the scanning process.

This technology is related to the 3D scanning as they both has a scanner that can

use different parameters to scan and gather the dimensional information. However, the CT-

scanner can gather the internal structure as well. The methodology used was discussed in

section 2 were a predictive model was made to optimize scanning setup parameters of a CT

scanner with object density and thickness. In section 3, The results about the accuracy of

the model were reveled and the results and discussions are and conclusion are in sections 4

and 5.

5.2 Methodology

Considering the property of a CT scanner, we designed 6 L shaped objects with

different materials in this research. Their shapes are approximately the same for machining

simplicity, and the material types are aluminum, clear plexiglass, brass, white nylon, black

nylon, oak wood,as shown from left to right in Figure 5.1.

The density of the selected materials varied from 0.688 to 8.1397 mg/cm3̂ by weighting

them on a high-precision scale, shown below in Figure5.2. The exaCT-S scanning parameter

setup process repeats for each sample material. After the scan parameter is set, the scan

performance can be evaluated by observable blue, yellow, grey, black, and white areas on
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Figure 5.1: Six L shape objects for experiment and scanning

the user interface. The scan setting parameters with observations of no blue or yellow areas

are classified error-free scan setting parameters.

Figure 5.2: Selected materials weight on a high precision scale to calculate density

Collected observations use five different filters, three voltage levels, three current

levels, and three integration times in the experiment. In total, we collected 1620 observations

(6 type materials * 5 filters * 3 voltages * 3 current * 3 integration times * 2 thicknesses), of

which 70% were used to train a decision tree model (Figure 5.5) to predict and, 30% were

used to test the model as shown in Figure 5.3 below.



113

Figure 5.3: Confusion Matrix for good and bad prediction for the current gathered data with
70% model and 30% testing

There are four parameters that the technician changes each time a new part is loaded

in the CT scanner. These input parameters are Filter Number, Voltage, Current, and Inte-

gration Time. The operator usually starts with the lowest filter and keeps adding the filter,

the voltage, the current and finally the integration time until there are no blue or yellow

spots in the software view. An experiment was designed to collect observations Various

materials were tested with known densities and thicknesses. A large number of experiments

were conducted, and all the observations were recorded. The observations were classified

from good to not good based on the background color and the part color in the scanning

software.A model designed to analyze the data to predict the good/bad outcomes can be

found in Figure 5.4

A decision tree classifier created 100 decision trees based on the given data gathered

in Table 5.17 these decision trees can be found in Figure 5.5.

Table 5.17: Decision Tree Classifier Parameters

Setting Value
Number Of Leaves 20
Minimum Leaf Instances 10
Learning Rate 0.2
Number Of Trees 100
Allow Unknown Levels True

Using machine learning, a boosted decision tree was created to predict the outcomes of

the new given parameters based on the experimental observation. For each input parameter,
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Figure 5.4: The model created to analyze the data predict the good/bad outcomes

Figure 5.5: Decision tree example



115

Figure 5.6: Wenzel exaCT-S device at Wayne State University

such as the thickness and the material density, a suggested range of material parameters is

predicted based on the historical data information.

5.3 Results

Through machine learning and classification algorithms, Wayne State University un-

dertook a pilot study to learn and predict viable scanning parameters for the Wenzel exaCT-S

device for a selection of material densities and thicknesses, as shown in Figure 5.6.

The material information is summarized below. Table 5.18.

Table 5.18: Material property information

Material Up Thickness/mm Bottom Thickness/mm Volume/cm3 Weight/mg Density (mg/cm3)
White Nylon 10.52 36.15 17.89644 16.9 0.944
Clear Plexiglass 11.13 37.95 18.86 22.43 1.19
Black Nylon 11.07 36.4 19.17 26.93 1.405
Brass 10.98 35.4 18.43 150.00 8.14
Oak Wood 11.1 36.01 17.86 12.29 0.688
Aluminum 11.15 36.32 18.54 52.03 2.81

The objective of this study was to demonstrate the ability to predict whether a scan-

ning process on the exaCT-S would be successful given the filter number, voltage, current,

integration time, material density, and material thickness. Results indicated that prediction

model could be applied to guide the exaCT-S device’s scan parameter selection process and

reduce the time required to converge to feasible scanning parameters favorably. The results
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(as can be seen from the confusion matrix) showed the ability to predict a scan with errors

of 95% accuracy and 97% precision.

Figure 5.7: The accuracy of the model

These outcomes are promising and indicate that 1) the exaCT-S scan parameter

selection process may be enhanced by integrating machine learning classification models that

can suggest scan settings, and 2) more detailed studies are warranted to develop applicable

ready scan parameter prediction models as can be seen in the graph in Figure 5.7 .

5.4 Discussion

The improvement we suggest to the existing software is that when the user first opens

the software to scan, a pop-up window will appear called the assistive scanning tool. This

tool suggests proper setting parameters for the intended scanning part according to density

and thickness. This tool will have two empty boxes: 1) The first box will be for the material

density and 2) the second box for the thickness of the longest edge or the spot that needs to

be scanned. The pop-up windows or the application will be looking for approximate inputs

in a database saved in the cloud that are shared among all the users of the scanner, match

the model number, and suggest the four parameters. The user can click on and select the

suggested parameters or modify it and execute the scan. The settings will be sent to the
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cloud if changed and will be saved in the software. After the scan is complete, another

pop-up window will appear and ask about rating the results of the performed scan. If the

user chooses to accept, then the previously shared parameters will be reinforced as good

scanning parameters; otherwise, it will be classified as bad scanning parameters. If a user

keeps reporting bad scans results to a selected parameter that is reported by many users

as good scanning parameters, then periodic maintenance is suggested to the CT scanner,

and the user can will receive a phone call within a week from the company suggesting the

service visit to replace the recommended part such as the reflector or do the recommended

preventive maintenance. Investing in a prediction model to preset the optimal settings for the

CT scanner can save the company money and reduce reliance on human capital to execute

the task; it can also lead to less demand on buying other inspection devices as it reduces

the bottleneck in the inspection stage. This model can be implemented and used for any

CT scanner across multiple companies and organizations by having the data gathered or

shared from similar CT scanners. This will provide a of understanding about the internal

components of the CT scanner and its effect on the scanning quality. For the scanner used

and the speeds that were selected, the change in the speeds was insignificant. Changing the

resolution results in better quality scans to a certain extent, and after that, it has a negative

effect. However, further study is needed to make a final conclusion The significant effect

of the standoff distance and the view angle on the scanning quality were confirmed in this

experiment, and it supports the findings of previous studies.

5.5 Summary

The preliminary results show that the prediction mode is accurate. Therefore, it is

feasible to work on an optimization model to predict the right parameters. Currently I am

working on several improvements and advancements to create an automated tool to predict

the optimal parameters just by knowing the thickness and density of the part. The model

has been created and many decision trees were generated to simulate different scenarios.

This model needs to be inverted to give the parameters instead of taking the parameters and
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knowing if the scan results are good or bad. I am also investigating ways to improve the

scanning results by sharing the results across different platforms and connecting the gathered

images of objects to the cloud. I will share it when ready in future publications.
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CHAPTER 6: CONCLUSION

3D scanning parameters strongly affect the quality of the point cloud. Without

knowing these effects and considering them in generating what is made might not be ideal

and can miss-lead the inspection process as it will create a point cloud with many errors. In

this dissertation, the focus was on studying the effect of the parameters on the point cloud

that add up to the total error in the inspection and re manufacturing application. Although

different parameters have been studied in the past and their effect was known, the effect

of the speed and the scanner resolution had not investigated, get their effect is significant.

For this work a robot was attached to the endeffector of a robot to make the experiment

precise and reproducible and to eliminate the external factors and have specific levels for the

parameters being tested. In chapter 2, we developed a link between the two work spaces,

the scanner and the robot cell, as they are not integrated and the relationship between the

two systems were not defined. A transformational relationship was found that can link the

location of any point in the robot work space back to the scanner work space,which will help

in knowing the points that will be collected and set the expectation of the scanner to the

points that will be gathered. In chapter 3, we designed an experiment using the 3D scanner

attached to the robot to investigate two additional parameters beyond than those studied

in the literature. A literature review was done to identify the studied parameters, and the

gap was identified. The two parameters that needed to be studied were the speed of the

movement of the robot arm and the scanner resolution. These two parameters were studied

along with two other known parameters in the literature. This was made to first validate

the findings of the literature and make sure that the methodology used in the comparison

was valid. The two parameters that were studied along with the speed and resolution are

the standoff distance and the view angle of the scanner in relationship to the surface being

scanned. The findings confirmed the literature and indicated that the changes in the speed

and the scanner resolution are significant in the errors being generated to the point cloud that

are not actually in the surface being scanned. In chapter 4, we proposed an error propagation
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approach that models the interaction of each step of the additive remanufacturing process

by incorporating all the processes that the point cloud undergo. Typically point clouds

are collected in the first phases in the remanufacturing facility to identify the defects and

generate the appropriate remanufacturing plan. There are errors that come with this point

cloud due to the scanner parameters. These errors need to be added to the overall error of

the point cloud that will be added to it in the remanufacturing data. This proposed model

was formulated and results of the error generated from the parameters of the scanner and

point cloud smoothing were presented. It is important to know the error generated from

each step or process to be able to compensate for it in the following steps and generate

appropriate material deposition paths. Sources of error from scanning, smoothing, meshing,

slicing, and material deposition were proposed in the error propagation model for additive

remanufacturing. In chapter 5, we tested parameter optimization on the scans with an

experiment done on a CT scanner. We used machine learning to predict the ability to

identify the outcomes of the scanner either good or a bad, by designing a machine learning

algorithm and creating many classification trees. The results show the ability to use these

techniques to predict the ability with high accuracy. The outcomes from this work will

aid researchers in creating point-cloud preprocessing programs by knowing the effect of all

the steps, integrating them in the planning phase of the remanufacturing activities, and

designing a reconstruction plan for a defective part that is a crucial element in the additive

remanufacturing framework.
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Journal Publications To Be Submitted
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resolution on the digital thread of the remanufacturing using additive manufacturing

technologies,”

Conference Publications

C1. M. Mojahed, J. Rickli, N. Christoforou, “Error propagation in digital additive remanu-

facturing process planning,” ASME 2019 14th International Manufacturing Science and

Engineering Conference MSEC 2019. American Society of Mechanical Engineers, 2019.

(MSEC’19), Erie,PA USA, June 2019.
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3D laser line scanners are becoming a powerful technology for capturing point cloud

datasets and collecting dimensional information for many objects. However, the use of point

cloud is limited due to many factors. These include the lack of on deep understanding of

the effect of point cloud parameters on scan quality. This knowledge is critical to gaining

an understanding of the measurement in point cloud. Currently, there are no adequate

measurement procedures for 3D scanners. There is a need for standardized measurement

procedures to evaluate 3D scanner accuracy due to uncertainties in 3D scanning, such as

surface quality, surface orientation and scan depth [6]. The lack of standardized procedures

does not allow the technology to be fully automated and used in manufacturing facilities

that would allow 100% in-line inspection. In this dissertation I worked on accomplishing

four tasks that will achieve the objective of having a standardized measurement procedure

that is critical to develop an automated laser scanning system to avoid variations and have

consistent data capable of identifying defects. The four tasks are: (1) linking the robot

workspace with the scanner workspace; (2) studying the effect of the scanning speed and the

resolution on point cloud quality by conducting an experiment with systematically varied

scan parameters on scan quality. The parameters that were tested are the effect of view

angle, standoff distance, speed, and resolution. Knowing the effect of these parameters is

important in order to generate the scan path that provides the best coverage and quality of

points collected; (3) studying the overall error of that is associated with the transformation
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of the point cloud in a remanufacturing facility using additive manufacturing. There is

also a need to know the impact of all the scanning parameters especially the speed and

the resolution; (4) modeling a machine learning tool to optimize the parameters of different

scanning techniques after collecting the scanning results to select the optimal ones that

provide the best scan quality. With the success of this work, the advancement and practice

of automated quality monitoring in manufacturing will increase.
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