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Chapter 1: INTRODUCTION

Shape registration is one of the important research topics for biomedical research

and clinical diagnosis. Its application ranges from analyses of cardiac deformations [2] to

brain structures deformations cause by diseases such as Epilepsy [33] or Alzheimer [15].

Considering that the deformations of most organs such as heart or brain structures are non-

isometric, it is very difficult to find the correspondence between the shapes before and after

deformation, and therefore, very challenging for diagnosis purposes.

For solving these challenges, there are two categories of methods for detection and

categorization of 3D shape deformation: spatial registration methods and spectral methods.

Spatial registration methods usually require well-defined features or landmarks to map two

shapes [66, 56]. It becomes even more challenging when the landmarks are difficult to

define in certain 3D shapes, such as hippocampus, heart, etc. Iterative Closest Point (ICP)

method introduced by Besl and Mckay in [4] is one of the popular approaches in spatial

registration-based methods. In this approach, the initial transformation for global matching

is first estimated and then the closest points are found by minimizing the distance between

two shapes. In spite of the simplicity of the algorithm, it is computationally costly to

identify the closest points and it does not converge very fast. The ICP method has been used

in many research areas such as multi-modality image registration [54]. They tried to find

the most-likely correspondence between two shapes using principal direction tree search.

Han et al. [10] enhanced the ICP method for registering the large-scale 3D environment

models. They tried to avoid the local minima to reach an optimal registration. According to

their experiments, the computational time is around 20 times more than standard ICP. There

are many other spatial registration methods that can be applied on 3D shapes for medical

applications, such as Flirt [19] and surface parameterization-based approaches [65]. These

methods use atlases and landmarks as well.
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Spectral methods, on the other hand, do not need any landmarks. Shape spectrum,

inspired by Fourier transform in signal processing [43], is another method to represent and

differentiate shapes. This method was applied on graphs earlier. Considering a discrete

meshes as a graph, shape spectrum is defined by a Laplacian matrix of the vertices and

their connections. Using the concept of Fourier transform, the eigenvalues of the Laplacian

matrix define the spectrum of the graph, and the eigenfunctions are the orthogonal bases.

Therefore, the functions defined on graphs can be projected to the orthogonal bases and

analysed in the spectrum domain. Karni and Gotsman [20] used this projection for smooth-

ing and mesh comparison purposes. Jain and Zhang [18] employed the extended version

of this method for shape registration in the spectrum domain. However, the Laplace spec-

trum approach focuses more on the connectivity of the graph which may lead to distorted

mappings [64]. Along this direction, Reuter [43] and Lévy [28] defined a shape spectrum

approach with the Laplace-Beltrami operator on a manifold and employed the eigenvalues

and eigenvectors as a global shape descriptor [41, 39]. Shape spectrum is invariant to iso-

metric deformations and different triangulations. Also, the computing time is affordable

and it can reveal the fine characteristics of the shape. The eigenvectors are orthogonal basis

functions; therefore, the shape can be projected to the orthogonal bases and then analyzed

and reconstructed using these bases [51]. As the geometry changes, the spectrum of the

shape changes as well. Because of these important advantages of Laplace-Beltrami spec-

trum, this method is used by lots of studies and many shape analysis approaches such as

shape recognition and shape matching [37]. Some studies employed the spectrum of this

operator to classify and differentiate shapes [26, 23]. However, the spectrum through these

methods can only show the global difference between shapes and cannot map and quan-

tify the non-isometric shape differences due to the lack of non-isometric registration with

spectrum.
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There are some other methods, besides the spectral and ICP-like approaches. One

of these approaches is diffeomorphism, which usually yields global optima. For exam-

ple, Windheuser et al. [58] proposed a framework for computing an elastic orientation-

preserving matching of non-rigid 3D shapes. Some other approaches are based on min-

imizing metric distortion, such as [6, 46]. There also exists some works [7, 11, 12] for

visualization of shape deformations.

In order to address the above challenging problems, we present two new spectral

based methods for quantifying and visualizing the deformations and point to point cor-

respondence between surface shapes through the variation of shape spectrum. We also

integrate all these methods in a workflow system in order to utilize the execution of our

methods using web browsers. There are three major contributions presented in this work.

• We present a novel approach based on spectral geometry to quantify and visualize

non-isometric deformations of 3D surfaces by mapping two manifolds. The proposed

method can determine multi-scale, non-isometric deformations through the variation

of Laplace-Beltrami spectrum of two shapes. Given two triangle meshes, the spectra

can be varied from one to another with a scale function defined on each vertex. The

variation is expressed as a linear interpolation of eigenvalues of the two shapes. In

each iteration step, a quadratic programming problem is constructed, based on our

derived spectrum variation theorem and smoothness energy constraint, to compute

the spectrum variation. The derivative of the scale function is the solution of such a

problem. Therefore, the final scale function can be solved by integral of the result

from each step, which, in turn, quantitatively describes non-isometric deformations

between two shapes. This method can detect the shape deformation but cannot detect

the point to point correspondence between two shapes.
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• We extend our method to use eigenvectors in some features points in addition to

eigenvalues to find the point to point correspondence between two shapes. In order

to register two surfaces, we map both eigenvalues and eigenvectors of the Laplace-

Beltrami of the shapes by optimizing an energy function. The function is defined by

the integration of a smooth term to align the eigenvalues and a distance term between

the eigenvectors at feature points to align the eigenvectors. The feature points are

generated using the static points of certain eigenvectors of the surfaces. By using

both the eigenvalues and the eigenvectors on these feature points, the computational

efficiency is improved considerably without losing the accuracy in comparison to the

approaches that use the eigenvectors for all vertices. The variation of the shape is ex-

pressed using a scale function defined at each vertex. Consequently, the total energy

function to align the two given surfaces can be defined using the linear interpolation

of the scale function derivatives. Through the optimization the energy function, the

scale function can be solved and the alignment is achieved. After the alignment, the

eigenvectors can be employed to calculate the point to point correspondence of the

surfaces. Therefore, the proposed method can accurately define the displacement of

the vertices.

• We present a workflow system named DATAVIEW that implement all above meth-

ods and give the user the accessibility to integrate, customize and execute all these

methods and can execute up to 64 task runs in parallel. For employing this workflow

system, users do not require to install any software tools and can create, save, share,

reuse, and run their workflows only using a web browser without knowing the imple-

mentation details of the service. For employing the DATAVIEW workflow system,

we extend this workflow system by integrating the software tools we used in this

study, to this platform which is one of the challenges of this research. Also, in order
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to provide processing the data in parallel, we integrate high-end computing resource

like grids to the system to speed up the processing, which is another challenge for

this work.

This dissertation proposal is organized as follows:

Chapter 2 presents definitions and detailed description of shape spectrum. This

provides a mathematical foundation on which the remainder of the chapters will be based.

Chapter 3 presents our first innovative method to define the deformation of the shape

using the variation of the eigenvalues of the Laplace-Beltrami operator of the shape.

Chapter 4 presents our second innovative approach that can calculate the point to

point correspondence between two shapes using the eigenvalues and eigenvectors variation

of the shape.

In chapter 5, we demonstrate the workflow system that integrate our methods and

give the users the capability of running our codes using their web-browsers without in-

stalling any software tools.

Chapter 6 presents the conclusion of our work.
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Chapter 2: BACKGROUND

2.1 Related work

Shape spectrum is a method to represent the shape. There is a powerful tool called

Laplace-Beltrami (LB) operator that can analyze the intrinsic property of the shape. Em-

ploying this operator, Reuter [43] and Lévy [28] defined a shape spectrum approach with

the Laplace-Beltrami operator on a manifold and employed the eigenvalues and eigenvec-

tors as a global shape descriptor [41, 39]. The eigenvectors are orthogonal basis functions;

therefore, the shape can be projected to the orthogonal bases and then analyzed and re-

constructed using these bases [51]. As the geometry changes, the spectrum of the shape

changes as well. Some studies employed the spectrum of this operator to classify, register,

and differentiate shapes [26, 23, 27, 14]. However, the spectrum through these methods

can only show the global difference between shapes and cannot map and quantify the non-

isometric shape differences due to the lack of non-isometric registration with spectrum.

There exists other work that employs shape spectrum to match shapes. Rodolà et

al. [45] proposed a method based on the Laplace–Beltrami eigenvectors for computing par-

tial functional correspondence between non-rigid shapes that have isometric deformation.

Litany et al. [31] extended this study to match partial shapes that undergo topological noise

and non-isometric deformation within the same framework. There are some limitations

for this method. The main limitation lies in its reliance on good local features to drive

the matching process. Shi et al. [52] used the difference between the eigenvectors of two

surfaces to generate a conformal mapping, but the method is computationally expensive.

While many promising techniques were developed, most of the existing methods can find

the corresponding points for the shapes that were under isometric deformation and there

is still a lack of a method that can generate the correspondence between points for non-

isometric shape structure change in a timely efficient fashion.
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In this chapter, we are going to explain the definition of shape spectrum and how to

describe a shape using the spectrum of the Laplace-Beltrami operator of the shape.

2.2 Eigenvalues and Eigenfunctions of the Shape

In this work, we use Laplace-Beltrami operator to compute the geometric spectrum

of a manifold. Let f1 ∈ C2 be a real function defined on a Riemannian manifold M . The

Laplace-Beltrami operator M is defined as:

Mf1 = O · (Of1), (2.1)

where Of1 is the gradient of f1 and O· is the divergence on the Manifold M . The Laplace-

Beltrami operator is linear differential and can be calculated in local coordinates. Let ψ

be a local parametrization of a submanifold of M such that, ψ : Rn → Rn+k, gij =<

∂iψ, ∂jψ >, G = (gij), W =
√

detG, and (gij) = G−1, where i, j = 1, 2, ..., n, <,> is

the dot product and det is the determinant. The Laplace-Beltrami operator then is defined

on the submanifold as ∆f1 =
1

W

∑
i,j

∂i(g
ijW∂jf1). If M ⊂ R2, the Laplace-Beltrami

operator reduces to the Laplacian:

∆f1 =
∂2f1

(∂x)2
+

∂2f1

(∂y)2
. (2.2)

We compute the eigenvalue of the Laplacian equation defined as follows:

Mf = −λf, (2.3)

where the family solution {λi} is a real nonnegative scalar and will result in the corre-

sponding real family functions of {fi} for i = 0, 1, 2, .... The spectrum is defined to be the
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eigenvalues arranged increasingly as 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ +∞. In the case of a close

manifold or an open manifold with Neumann boundary condition, the first eigenvalue, λ0,

will always be zero, and the corresponding eigenvector, f0, is a constant vector. The spec-

trum is an isometric invariant because it only depends on the gradient and divergence which

are dependent only on the Riemannian structure of the manifold.

To solve the differential equations, different methods can be employed such as finite

element method (FEM) and discrete differential operator. In [43], Reuter et al. discretized

the manifold and calculate the Laplace-Beltrami operator by using FEM. In this work, we

use discrete differential operator to solve this problem. In this framework, a 2D manifold

is discretized to triangle meshes of M = (V,E, F ), where V is the set of vertices, E is

the set of edges and F is the set of faces. All triangular faces assume counterclockwise

orientation. Each triangular face represents the local manifold. We can define property on

each element, e.g., vertex, edge, and face, which is a spatial average around such element.

The properties on the vertices are considered as discrete samplings on the manifold. The

discrete operators are also defined on each vertex.

Assuming the neighborhood of a vertex is approximated with the area of its Voronoi

region, a discrete Laplace-Beltrami operator can be defined with the average value over

the area of the Voronoi region. Using this concept, the Laplacian-Beltrami matrix for the

vertices of a triangle mesh can be constructed as

Lij =



−cotαij + cot βij
2Ai

if i, j are adjacent,∑
k

cotαik + cot βik
2Ai

if i = j,

0 otherwise,

(2.4)
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where αij and βij are the two angles opposite to the edge in the two triangles sharing the

edges i, j and Ai is the area of Voronoi region at vertex i. (Figure 2.1). k is the index of

triangles within 1-ring neighborhood of the vertex i.

Figure 2.1: The Voronoi region for the vertex Pi within its one-ring neighborhood. Also, a
set of angles for calculating Laplace-Beltrami matrix are shown.

Therefore, Equation 2.3 turns to:

Lf = λf, (2.5)

where f is n dimensional vector for each λ and represents the function value at each vertex

on the mesh. This equation is a generalized eigenvalue problem and is solved numerically

by constructing a sparse matrix W and a diagonal matrix S such that:

Wij =



−cotαij + cot βij
2

if i, j are adjacent,∑
k

cotαik + cot βik
2

if i = j,

0 otherwise,
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and Sii = Ai. Thus, the Laplace Matrix L is decomposed as L = S−1W and the general-

ized eigenvalue problem can be presented as:

Wf = λSf. (2.6)

W and S are symmetric matrices and S is diagonal and has positive values. λ is the

eigenvalue and f presents the eigenvectors. The eigenvalues and eigenvectors are real and

eigenvalues are positive values. The eigenvectors corresponding to different eigenvalues

are orthogonal in terms of S dot product. This can be described as follows:

< fi, fj >S= fTi Sfj, (2.7)

where fi and fj are eigenvectors of Equation 2.6 and can be reduced, respectively, to:

< fi, fj >S= 0, i 6= j, (2.8)

F1 =
n∑
i=1

fici, (2.9)

and

ci =< F1, fi >S, (2.10)

where F1 is a real function defined on a Riemannian manifold M . Under this setting,

the spectrum, {0, λ1, λ2, ..., λn−1}, the family of eigenvalues, and {f0, f1, f2, ..., fn−1}, the

family of corresponding eigenvectors, can be calculated.
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Chapter 3: SURFACE REGISTRATION USING EIGENVALUES

VARIATION

In this chapter, we focus on spectrum alignment of general shapes using the eigen-

value variation in order to quantify the non-isometric deformations between surface shapes.

In our approach, shapes are automatically aligned by calculating the metric scaling on both

shapes. Our method defines the surface shape deformation by the variation of Laplace-

Beltrami spectrum of the shapes and quantifies the multi-scale deformations through the use

of different sets of eigenvalues. Compared to the traditional approaches, it can detect and

localize small non-isometric deformations in addition to global difference of the shapes,

without using any defined landmarks on the manifolds. This is because the spectrum only

depends on the intrinsic geometry of the shape and is invariant to spatial translation, ro-

tation, scaling and isometric deformation. This method is computationally affordable and

suitable to map surface shapes for non-isometric deformation analysis.

3.1 Related Work

Reuter et al. in [41] discussed that spectrum is invariant to small amount of noise

but high level noise or small non-isometic deformation can change the spectrum dramat-

ically. The change of shape spectrum is less studied in the literature. In reality, many

deformations, such as heart motion, brain surface development, and so on, break isometry.

Hence, applying geometric spectrum methods for analyzing non-isometric deformations

is very challenging. Recent approaches [50, 52] showed the shape spectrum can be con-

trolled with a scale function on the Riemann metric. Shi et al. discussed in [50] that the

eigenvalues and eigenfunctions change according to the Riemann metric of the manifold.

Since their work focused on generating a dense registration, the eigenvalue variation was

not studied. In [52], Shi et al. used difference between the eigenfunctions of two sur-
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faces to generate a conformal map directly between them. To this end, they minimize the

difference between surfaces in the Laplace-Beltrami embedding space using optimization

approaches. This study focused on eigenfunction variation and the method was time costly.

For instance, for mapping two hippocampal surfaces with 1000 vertices, the procedure took

around 20 minutes on a 2.6-GHz Intel Xeon CPU and the maximal memory consumption

is around 60 MB.

This chapter presents a new method for quantifying and visualizing the deforma-

tions between surface shapes through the variation of geometric spectrum. Given two tri-

angle meshes, the spectra can be varied from one to another with a scale function defined

on each vertex. The variation is expressed as a linear interpolation of eigenvalues of the

two shapes. In each iteration step, a quadratic programming problem is constructed based

on our derived spectrum variation theorem and smoothness energy constraint to compute

the spectrum variation. The derivative of the scale function is the solution of such a prob-

lem. Therefore, the final scale function can be solved by integral of the result from each

step, which, in turn, quantitatively describes non-isometric deformations between the two

shapes. Our major contributions in this work can be summarized as follows:

• We prove a theorem that the shape spectrum is a piecewise analytic to a scale

function defined on the Riemann metric of the manifold. Our theorem holds in

both continuous domains and discrete triangle meshes and supports the variation of

eigenvalues for non-isometrically deformed shapes. Therefore, it enables a quantita-

tive method for deformation analysis.

• We present a spectrum alignment algorithm for triangle meshes, supporting

non-isometric deformation analysis. In the discrete domain, the variation of eigen-

values in terms of the scale vector can be turned into a matrix form, which introduces

a linear system. Together with the smoothness and local bound constraints, the linear
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system can be solved efficiently. After the eigenvalues are matched, the eigenfunc-

tion distributions are aligned as well. This means the shape spectrum can be con-

trolled analytically through a scale vector, hence, non-isometric analysis is available

within shape spectra.

• Our developed system verifies the spectrum variation theorem and demonstrates

the accuracy and efficiency of the spectral variation algorithm on visualization

of non-isometrically deformed shapes. The applications to biomedical imaging

problems show that it is a viable solution for morphometric analysis and visualiza-

tion in biomedical applications and clinical diagnoses.

3.2 Variation of the Eigenvalues and Eigenfunctions

As mentioned before in this work, we use Laplace-Beltrami operator to compute the

geometric spectrum of a manifold. As a result of non-isometric deformation, the eigenval-

ues and eigenfunctions of the shape dramatically change. On a compact closed manifold

M with Riemann metric g, we define shape deformation as a time variant positive scale

function ω(t) : M → R+ such that gωij = ωgij and dσω = ωdσ, where ω(t) is nonnegative

and continuously differentiable. By definition, the weighted Laplace-Beltrami operator be-

comes ∆gω =
1

ω
∆g. Consider the ith solution of the weighted eigen problem, this equation

can be written as:

∆gωfi = −λifi, (3.1)

or rewritten as

∆gfi = −λiωfi, (3.2)
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where the eigenfunction fi is normalized as

∫
M

f 2
i dσ

ω = 1 for i = 0, 1, 2, . . . , (3.3)

and orthogonal to other eigenfunctions, such that:

∫
M

fifjdσ
ω = 0, j 6= i. (3.4)

Next, we will explain and prove two theorems that guarantee the existence of a scale

function which aligns shapes with non-isometric deformations.

Theorem 1. λi(t) is piecewise analytic and, at any regular point, the t-derivative of λi(t)

is given by:

λ̇i = −λi
∫
M

ω̇fi
2dσ. (3.5)

Proof. ω is a nonnegative and continuously differentiable function, and ∆g is analytic. We

can compute the derivative of the eigenvalue in Equation 3.2, and get

∆gḟi = −λ̇iωfi − λiω̇fi − λiωḟi.

Then, we multiply both sides with fi and take the integral on M to get

∫
M

fi∆
gḟidσ = −λ̇i

∫
M

ωfi
2dσ − λi

∫
M

ω̇fi
2dσ −

∫
M

ḟiλiωfidσ,

which can be simplified, based on Equations 3.2 and 3.3, as

∫
M

fi∆
gḟidσ = −λ̇i − λi

∫
M

ω̇fi
2dσ +

∫
M

ḟi∆
gfidσ.



15

Note that, M is a closed manifold. According to divergence theorem, we can have

∫
M

fi∆
gḟidσ = −

∫
M

∇ḟi · ∇fidσ =

∫
M

ḟi∆
gfidσ,

hence we get Equation 3.5.

This theorem can be applied to discrete matrix as well. Assume that Ω is a nonneg-

ative, continuously differentiable and diagonal matrix, based on Equation 4.1, a weighted

generalized eigenvalue problem can be presented as follows:

Wfi = λiΩSfi, (3.6)

where λi and fi are ith corresponding solution. The eigenvectors can be normalized as

< fi, fi >ΩS= 1 for i = 0, 1, 2, . . . , (3.7)

and orthogonal to each other, i.e.,

< fi, fj >ΩS= 0, when i 6= j. (3.8)

Theorem 2. λi is piecewise analytic and, at any regular point, the t-derivative of λi is

given by:

λ̇i = −λifiT Ω̇Sfi, (3.9)

Proof. We can compute the derivative of the eigenvalue equation, Equation 3.6, and get

Wḟi = λ̇iΩSfi + λiΩ̇Sfi + λiΩSḟi,
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multiply fTi from the left to obtain

fTi Wḟi = λ̇if
T
i ΩSfi + λif

T
i Ω̇Sfi + fTi λiΩSḟi,

and simplify it, based on Equations 3.6 and 3.7, as

fTi Wḟi = λ̇i + λifi
T Ω̇Sfi + fi

TWT ḟi.

Finally, we obtain Equation 3.9 as W is symmetric.

Our theorems show that the spectrum is smooth and analytical to non-isometric

local scale deformation. They support the variation of eigenvalues for the alignment of

non-isometrically deformed shapes, hence an automatic registration-free method for defor-

mation analysis.

3.3 Algorithm for Computing Spectral Variations

Based on the theorems proved in Section 3.2, this section will detail a discrete

algorithm for the alignment of non-isometrically deformed shapes through the variation of

eigenvalues. Consider two closed manifolds, M and N , represented with discrete triangle

meshes, their first k1 nonzero eigenvalues and eigenvectors are

λMi
, fMi

, λNi
, and fNi

, for i = 1, 2, . . . , k1.

To align two shapes we use first k1 smallest eigenvalues. By increasing k1, some high

frequency deformations may be detected. As we mentioned before, the deformation is not

isometric, thus the first k1 eigenvalues of two manifolds are not the same. In order to align
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the first k1 eigenvalues of N to those of M , a continuous scale diagonal matrix Ω(t) is

applied on N . Ω is an n by n matrix, where n is the number of vertices on N . The element

Ωii at the diagonal is a scale factor defined on each vertex on N . According to Theorem 2,

the derivative of each eigenvalue is expressed by those of Ωii analytically. Thus, the scale

matrix Ω will introduce a variation and alignment from N to M on eigenvalues. The

following will explain the details how to calculate the diagonal matrix Ω numerically.

3.3.1 Matrix Eigenvalue Variation

We assume that the eigenvalues of N vary linearly towards those of M . This linear

interpolation is represented as:

λi(t) = (1− t)λNi
+ tλMi

, t ∈ [0, 1]. (3.10)

At the beginning, t = 0, and λi(0) starts as λNi
, while t reaches 1, λi(1) aligned to λMi

. At

any regular time t ∈ [0, 1], the derivative is constant value and can be calculated as:

λ̇i(t) = λMi
− λNi

, t ∈ [0, 1]. (3.11)

Combining Equations 3.11 and 3.9, the derivative of each λi(t) leads to an equation of Ω

as follows:

− λi(t)fi(t)T Ω̇Sfi(t) = λMi
− λNi

, t ∈ [0, 1]. (3.12)

Each diagonal element Ωii represents a scale factor at vertex i on manifold N . Ω(0) is an

identity matrix on N , and Ω(1) aligns the first k1 nonzero eigenvalues of N to those of

M . Although the time derivative of Ω can be calculated in Equation 3.11 but solving this

equation is not straightforward. We need to transform the individual integration equation

into a linear system. We achieve this by extracting the diagonals as vectors vΩ and vS and
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then employing Hadamard product, which is an element wise matrix product as follows:

A ◦B = C such that Aij ·Bij = Cij. (3.13)

Then, Equation 3.9 can be rewritten in a linear form as follows:

(vS ◦ fi ◦ fi)T · vΩ̇ =
λNi
− λMi

λi(t)
, t ∈ [0, 1]. (3.14)

Note that, as the first k1 eigenvalues are going to be aligned, we can get k1 independent

equations, which lead to a linear system as follows:

A · vΩ̇ = b, (3.15)

where A is a row stack of (vS◦fi◦fi)T with k1 rows and b is the right side of Equation 3.14.

Considering that practically k1 is much less than the number of nodes in the mesh,

the system is underdetermined and has no unique solution. Thus, suitable constrains are

necessary to provide an optimized solution for the linear system.

3.3.2 Smoothness Constraints

In this work, we focus on the global smoothness of the scale factors distributed on

N . Consider a scalar function f ∈ C2 is define on the continuous manifold< Nc, g >. The

gradient of f describes the local change of f . A smoothness energy of f is defined with the

total squared magnitude of the gradient∇f on Nc as:

E =

∫
Nc

‖∇f‖2dσ. (3.16)
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Note that∇f is a vector, and the squared magnitude is calculated as a dot product:

‖∇f‖2= ∇f · ∇f. (3.17)

Then, the integral on Nc becomes

E = −
∫
Nc

f∆gfdσ. (3.18)

At time t, we investigate the scale function ω(t) and dω|t. Then, we can obtain the follow-

ing smoothness energy:

E = −
∫
Nc

(ω + dω)∆g(ω + dω)dσ

= −
∫
Nc

dω∆gdωdσ − 2

∫
Nc

ω∆gdωdσ −
∫
Nc

ω∆gωdσ.

(3.19)

On the discrete triangle mesh N , the scale function is a vector vΩ, which is the diagonal of

matrix Ω. The integral is a matrix product as follows:

E =< vΩ + vΩ̇,L · (vΩ + vΩ̇) >S

= (vΩ + vΩ̇)T · S · L · (vΩ + vΩ̇)

= (vΩ + vΩ̇)T ·W · (vΩ + vΩ̇)

= vT
Ω̇
·W · vΩ̇ + 2vTΩ ·W · vΩ̇ + vTΩ ·W · vΩ.

(3.20)

Assume that vΩ is known at each time t and vΩ̇ is to be solved in Equation 3.15. vΩ̇ is

going to minimize the quadratic smooth energy Eq at any time,

Eq = vT
Ω̇
·W · vΩ̇ + 2cT · vΩ̇, (3.21)
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where c = W · vΩ. In order to preserve the physical availability, vΩ must be bounded,

i.e., the scale factor cannot be zero or negative; and it cannot be infinite either. We denote

a lower bound and an upper bound with hl,hu > 0, where hl and hu are n dimensional

constant vector. vΩ̇ must satisfy

hl ≤ vΩ + vΩ̇ ≤ hu. (3.22)

This inequality bound can be written into a matrix form:

G · vΩ̇ ≤ h, (3.23)

where G is stack of identity matrices as

G2n×n =

−In×n

In×n

 , (3.24)

and h is a 2n dimensional vector as

h2n×1 =

vΩ − hl

hu − vΩ

 . (3.25)

The linear system (Equation 3.15), smoothness constraint (Equation 3.21), and constant

bound (Equation 3.23) introduce a quadratic programming problem at each time t. Assume

the eigenvalues and eigenvectors are known at each time t, the derivative of the scale matrix

Ω̇ is the solution of such quadratic programming.
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3.3.3 Linear Integration

In Section 3.3.2, we have shown that at each time t, the derivative of the scale

function can be calculated as a solution of a quadratic programming. In the initial state, the

scale function is identity which starts from manifold N itself. The final scale matrix can be

achieved by the following integral:

Ω(1) = I +

1∫
0

Ω̇dt. (3.26)

This equation aligns the first k1 nonzero eigenvalues from N to M . This integration is

discretely approximated with an iteration. We divide the time interval [0, 1] into K steps

which we index them as q. In the initial state, q = 0, Ω(0) = I, λi(0) = λNi
, and

fi(0) = fNi
. In order to reduce the numerical error, we reinitialize the problem at the

beginning of each step q = 0, 1, · · · , K. Instead of aligning λNi
to λMi

, we align λi(q) to

λMi
. λi(q) and fi(q) are re-calculated with Equation 4.1 and current Ω(q). The result Ω̇(q)

can be used to calculate Ω(q + 1) as follows:

Ω(q + 1) = Ω(q) +
1

K − q
Ω̇(q). (3.27)

After K steps, the desired Ω(K) will be achieved and manifold M will be aligned to

manifold N . The summary of the algorithm can be found in Algorithm 1.

3.4 Experiments and Applications

The proposed algorithm and system are implemented using Python and C++ on a

64-bit Linux platform. The experiments are conducted on a computer with an Intel Core i7-

3770 3.4 GHz CPU and 8 GB RAM. We apply our algorithm on 2D manifolds, represented
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Algorithm 1 Eigenvalue Alignment
Input: Closed 2D manifolds N and M , represented by triangle meshes, and constant k1;
Output: Diagonal weight matrix Ω(q) on N , aligning first k1 nonzero eigenvalues from
N to M ;
Initialize Ω(0) ← I, calculate matrices W and S on N , and
λMi

, fMi
, λNi

, and fNi
, for i = 1, 2, . . . , k1;

while q < K do
Calculate λi(q), fi(q), for i = 1, 2, . . . , k1 using Equation 4.1 with Ω(q);
Construct the quadratic programming problem using Equations 3.15, 3.21, and 3.23;
Solve the quadratic programming problem to get Ω̇(q) and calculate Ω(q + 1);
q ← q + 1;

end while

with triangle meshes. In the experiments, we use hippocampi extracted from brain MR

images and their surface meshes have around 5000 vertices. Besides the vertex number,

there are two constants, K iteration and the first k1 nonzero eigenvalues to be aligned. Ac-

cording to the algorithm described in Section 3, each iteration is an independent quadratic

programming problem. Thus, the complexity is linear to the step number K. k1 determines

how many eigenvalues to be re-initialized at the beginning of each step. The algorithm cal-

culates the eigenvalues by iterations with the complexity ofO(n2) to the number of vertices

and linear to k1. The average computing time for around 5000 nodes, with k1 = 100 and

K = 10, is around 17 seconds. Note that, the larger theK is, the more accurate the approx-

imation is, in terms of the linear interpolation. In practice, we found K = 10 is sufficient

to get the accurate result with a reasonable computational time. Ideally, including more

eigenvalues for alignment can be more accurate. However, the numeric eigenvalue calcu-

lation is not reliable on higher indexed eigenvalues, which will bring more unsuitability. It

is noted that the unstable eigenfunctions are introduced by the symmetry. This is avoided

by applying some preprocessing with existing symmetry analysis algorithms. Our experi-

ments show that the first 100 eigenfunctions carry sufficient geometry information and are

also quite reliable. The middle range frequencies provide sufficient geometry information
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for the fine deformation. So we usually choose k1 = 100 in our experiments. Details about

how we choose K and k1 in our experiments are provided in Section 3.4.1.

3.4.1 Experiments on Synthetic Data

Sensitivity Analysis

We analyze the sensitivity of our model with respect to the number of iteration (K)

and eigenvalues (k1). To this end, we employ the Bunny model with 3000 vertices and

make a bump on the back of the bunny. Figure 3.1 shows the original and target bunnies.

The dashed circle shows the bump made on the back of the bunny. We conduct an empirical

study to map the original bunny to target one using 30, 50, 80 and 100 eigenvalues and 10

iterations. The results are presented in Figure 3.2 and shown that by increasing the number

of eigenvalues, the outcome is better to match the synthetic target results. By comparing the

result for 80 and 100 eigenvalues, one can conclude that the results don’t change after 80

eigenvalues. Therefore 80 is sufficient for the number of eigenvalues. We conduct another

experiment and map the original bunny to the target one using 80 eigenvalues and 1, 5, 10

and 15 iterations, respectively. Figure 3.3 shows the results of this mapping. As one can

conclude, the outcome is improved from 1 iteration to 10 iterations and is not improved

between 10 and 15. Therefore, 10 is the sufficient number of iteration.

Hippocampus Data

In order to evaluate the efficiency of our method, we synthetically generate some

non-isometric deformations based on an initial shape. In this experiment, we use a hip-

pocampus segmented from 3D brain MR images. The surface is then deformed manually

to make a non-isometric deformation. Our spectrum alignment is applied on the first 100

nonzero eigenvalues. Note that, no correspondence information is used in the experiments.
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Figure 3.1: We made a bump on the back of the bunny. The original and target bunnies are
shown in this picture.

Figure 3.2: The result of mapping the original bunny to the target one in Figure 3.1 using
30, 50, 80 and 100 eigenvalues and 10 iterations.

Figure 3.3: The result of mapping the original bunny to the target one in Figure 3.1 using
80 eigenvalues and 1, 5, 10 and 15 iterations.
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In the first experiment, we synthetically generate a bump on the original surface.

Then we align the original object to the bumped one to obtain the scale function. Fig-

ure 3.4a and 3.4b show the original and deformed objects, respectively. Figure 3.4c shows

the result of mapping the original shape to the deformed one. The spectrum variation

can detect and localize the non-isometric deformation clearly. The red color indicates the

located dilating area. In order to see the values of scale function, we also provide the

histogram in Figure 3.4d. The histogram has more positive areas than negative, which con-

cludes to the shape expansion when mapping from the shape in Figure 3.4a to the one in

Figure 3.4b. It is worthy to mention that we use a threshold to show the deformed area in

Figure 3.4c. The threshold value ε is defined as follows:

ε = min(|min(Ω)|, |max(Ω)|). (3.28)

area Ai which has scale values over the threshold ε indicates the expansion as shown in

Figure 3.4c. When area Ai having scale values less than −ε, it indicates the shrinkage.

(a) (b) (c) (d)

Figure 3.4: The result of mapping the original 3D object to the synthetic one. (a) shows
the original object. (b) is obtained by generating a bump on the original shape. (c) shows
the result of mapping shape (a) to the one in (b) where the expansion is determined and
located. The histogram of the scale matrix is presented in (d). The histogram has more
positive area, which mean the shape has an expansion.
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In the second experiment, we shrink one part of the original manifold. Then, we

align the original shape to the shrunk one. Figure 3.5a and 3.5b shows the original and de-

formed shapes. Figure 3.5c shows the results of mapping. As can be seen, the local shrunk

region is detected and pinpointed by our method. The blue color shows the contraction

of the area. In order to see the distribution of the computed scale function, we present its

histogram in 3.5d. The histogram has more negative areas, which concludes to the shape

contraction when mapping from the shape in Figure 3.5a to the one in Figure 3.5b.

In the third experiment, we scale the manifold by a factor of 0.5 and align the

original shape to the scaled one. Figure 3.6a shows the comparison of the original and

scaled objects. Figure 3.6b shows the result of mapping the original shape to the scaled

one. As can be seen the whole surface is blue which means it is globally shrunk. The

histogram result from this mapping is shown in Figure 3.6c. The center of the histogram is

moved to -0.661 (equal to the changes of the Voronoi areas of the two shapes) which shows

(a) (b) (c) (d)

Figure 3.5: The result of mapping the original 3D object to a modified object generated
by shrinking a local area of the original data. (a) shows the original object. (b) shows the
modified object generated by shrinking a local part of the original shape. (c) shows the
result of mapping the original shape in (a) to the shrunk shape in (b), where shrinkage is
localized. The histogram of the computed scale function is presented in (d). The histogram
has more negative area, which means the shrinkage of the shape.
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the shrinkage of the whole object while there exist almost no local spectral variations across

different vertices.

These experiments clearly demonstrate that our method is able to detect and localize

non-isometric deformations as well as global deformations.

3.4.2 Applications on Real Patient Imaging Data

To evaluate our method on real imaging data, we have conducted two studies:

Epilepsy study and Alzheimer study. In both studies, hippocampus, which is located in

temporal lobe of brain, is affected by these diseases.

Epilepsy Study and Diagnosis

Mesial temporal lobe epilepsy (mTLE) is one of the most common types of focal

epilepsy. Among mTLE structural abnormalities, hippocampus is one of the most frequent

structures that can be affected. As indicated in [17], epilepsy may cause shrinkage of the

(a) (b) (c)

Figure 3.6: The result of mapping the original 3D object to the object which generated by
scaling the original data by a factor of 0.5. (a) shows the original object in comparison to
the synthetically scaled one. (b) shows the result from mapping the original shape to the
scaled one. The whole object surface is blue which means the object is globally shrunk.
The histogram of the scale matrix is presented in (c). The histogram center has moved to
-0.661 with very little eigenvalue variations across vertices.
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affected hippocampus in comparison to the non-affected one. Note that, traditional voxel-

based approaches can determine expansion or shrinkage but cannot localize deformations.

We apply our method on twenty TLE patients for localizing and quantifying the shape

variation between left and right hippocampi. In our data, half number of the patients are

reported to have left defected hippocampus and the other half have abnormality in the right

hippocampus. To generate the 3D hippocampus surface, right and left hippocampi are

segmented manually using MRIcro Tool from 3D T1 images. Right hippocampi are then

mirrored in order to have the same orientation as the left ones. For epilepsy study, we have

also applied our spectrum alignment to the first 100 nonzero eigenvalues in order to obtain

the scale function.

The abnormal deformations are accurately localized and quantified, which are con-

sistent with clinical findings in the patients’ medical records. In Figure 3.7, column 1 and 2

show samples of left and right hippocampi. Column 3 shows the computed scale function

distributions on the left hippocampus surface when mapping from the left one to the right.

The colors denote the values of scale function in each vertices. Red means dilating, blue

means contraction, and white means no distortion. According to the clinical record, Fig-

ure 3.7a is for a patient case that has left abnormal hippocampus, therefore, mapping from

the left hippocampus to the right displays more expansion (indicated in red), i.e., the left

hippocampus is shrunk (diseased) compared to the right, normal one. Figure 3.7b depicts

another patient case that has the right defected hippocampus. When mapping from the left

hippocampus to the right, the scale distribution displayed on the left hippocampus surface

mainly shows the shrinkage (indicated in blue) which indicates the right hippocampus is

shrunk (diseased) in comparison to the left hippocampus.

To check how the eigenfunctions vary after changing the eigenvalues, we select the

12th eigenvalue and show the eigenfunctions corresponding to this eigenvalue on the source

manifold before and after mapping to the target manifold. Figure 3.8 shows the 12th eigen-



29

(a) (b)

Figure 3.7: The results of mapping the left hippocampus to right one for two cases. (a)
shows a case in which the left hippocampus is affected by epilepsy. (b) shows a case
that has right abnormal hippocampus. The first, second, and third columns represent left
hippocampus, right hippocampus, and the result of mapping left hippocampus to right one,
respectively.

Figure 3.8: The 12th eigenfunction of the original left hippocampus (first column), the
original right hippocampus (second column), and the spectrum-aligned left hippocampus
(third column). The pattern of the eigenfunction for the left hippocampus shape has been
changed in order to map the right one.

function of the original left hippocampus (first column), the original right hippocampus

(second column), and the spectrum-aligned left hippocampus (third column). The eigen-

functions are normalized between -1 and 1. The values of eigenfunction at each vertex are

expressed with color map, where red means larger value, blue means smaller ones, and

white means zero. Comparing the eigenfunction patterns before and after the alignment, a

great improvement is obtained and the pattern of the eigenfunction in the source manifold

has changed in order to well align to the target manifold.
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In order to show the variation of eigenvalues of the manifolds before and after align-

ment, we list the 2nd to 8th eigenvalues of left hippocampus (before and after mapping)

and right hippocampus in Table 3.1. The eigenvalues are normalized by the first nonzero

one to remove the scale factor. It can be seen that after applying the spectrum alignment

algorithm, the eigenvalues of the source manifold have changed to well align with the target

ones.

Table 3.1: The result of aligning eigenvalues from the left hippocampus to right one using
the same case as in Figure 3.7a.

Manifold λi/λ1, i ∈ [2, 8]

Left Hippocampus 3.87, 7.76, 11.93, 14.22, 15.88, 18.49, 20.62
Right Hippocampus 4.36, 7.75, 11.20, 12.62, 16.60, 18.35, 21.73
Aligned Left One 4.36, 7.75, 11.19, 12.62 , 16.59, 18.34, 21.73

Alzheimer Study and Diagnosis

Alzheimer disease (AD) is a brain mis-functionality that is caused by the loss of

neurons and neural volume. Hippocampus, a part of the mesial temporal lobe memory

system, is vulnerable to damage in the early stage of Alzheimer. Volumetric longitudinal

studies [60, 57] using MR images show hippocampal atrophy during time in comparison

to healthy cases. In many clinical studies, it was observed that the variation is more in

the left hippocampus than the right one and there exists a deformation of CA1 region in

hippocampus which can be extended to the subiculum region [29]. In this work, we conduct

experiments on the dataset provided by the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) to show that our shape variation analysis method confirms the aforementioned

observation.

We employ ten healthy and ten AD cases aging between 74-80 which have longitu-

dinal study for one year to track and compare the deformation of left and right hippocampi.
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(a) (b)

(c)

Figure 3.9: Longitudinal study for Alzheimer disease. Column 1 shows the baseline hip-
pocampus and column 2 shows the hippocampus after 1 year. Column 3 shows the defor-
mation (scale function) results from aligning the baseline hippocampus to the one after one
year. (a) and (b) show the left and right hippocampi results for an AD patient, respectively.
(c) shows the result for a hippocampus in a normal case.

Our motivating data example consists of ten healthy and ten AD patients which were down-

loaded from the hippocampal study in ADNI and were segmented using Freesurfer soft-

ware [?]. The 3D object and surface meshes are generated using the method mentioned

before and the scale function is obtained by applying our proposed method. According

to our results, the AD patients’ left and right hippocampi are shrunk after one year. The

average of shrinkage for AD cases is more than health cases in both right and left hip-

pocampi. We also confirm that in AD patients the average of shrinkage is more in the left

hippocampus than right one. In addition to the global deformation, the local analysis using

our method shows that the middle region of hippocampus, called CA1, is affected more

severely in both left and right hippocampi. Figure 3.9 shows the results of applying the
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proposed method on an AD and healthy cases for left and right hippocampi. The baseline

hippocampus is aligned to the hippocampus after one year and the results are shown on the

source manifold. As one can see, the left and right hippocampi in AD cases have shrinkage

in the middle of the hippocampus. This can be extend to the tail of hippocampus in some

cases. Also Figure 3.9 shows that in the normal case the hippocampus has little change

after one year. Therefore, our results confirm the clinical observation.

3.4.3 Comparisons to Spatial Registration Methods

In order to further demonstrate the capabilities of our method, we compare the

results of our algorithm with the ones employing non-rigid Iterative Closest Point (ICP) al-

gorithm [4]. In the non-rigid ICP method, we fist find the rigid transformation of the source

manifold to the target. Then, using the non-rigid registration method, we further register

the manifold to the target to build the point-to-point correspondence. The displacement of

each corresponding point pairs between the rigid registered source manifold and the target

manifold presents the deformation distribution. In order to compare two methods, we syn-

thetically deform a shape by stretching and bending the geometry from both top and bottom

sides of the shape as shown in Figure 3.10. Column 1 and 2 show the original and the syn-

thetically deformed shapes, respectively. Figure 3.10a and 3.10b show different views of

the shapes. Column 3 and 4 show the results of spectrum alignment and non-rigid ICP

methods, respectively. From the results, we can see that our method detects the expansions

on both ends while the non-rigid ICP method detects the shape deformation at the bottom

end instead of both ends.

In order to further compare two methods, we also make an expansion in one part

of the synthetically deformed shape as in Figure 3.10 and compare the results. Figure 3.11

shows the original and synthetically deformed shapes in column 1 and 2, respectively. The
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locally deformed area is marked with a red circle. The results of the spectrum alignment

and non-rigid ICP registration method are shown in column 3 and 4. As we can see, our

spectrum alignment method detects the deformation more accurately than the non-rigid

ICP method. The local expansions, including previously deformed ends in Figure 3.10, are

exactly localized.

Our method can also detect the deformation of the shapes using different number of

eigenvalues. This allows us to analyze shape deformation using lower or higher frequency

bands. Figure 3.12 shows the results of spectrum alignment of a shape in 3.12a to one

(a)

(b)

Figure 3.10: The results of mapping the original shape to the synthetically deformed shape
using our method and non-rigid ICP. Column 1 shows the original shape. Column 2 shows
the synthetic data which is bent and stretched at both ends. Column 3 and 4 show the
results of mapping the shape in column 1 to column 2 using our method and non-rigid ICP
technique, respectively. (a) and (b) show the different views of the shape.
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(a)

(b)

Figure 3.11: We manually add an expansion to the deformed shape in Figure 3.10 to com-
pare our spectrum alignment method and the non-rigid ICP results. The locally deformed
area is marked with a red circle. Column 1 shows the original shape. Column 2 shows
the locally expanded shape from Figure 3.10 (Column 2). Column 3 and 4 shows the re-
sults of aligning column 1 to column 2 using our method and the non-rigid ICP technique,
respectively. (a) and (b) show different views of the shapes.

(a) (b) (c) (d)

Figure 3.12: The results of spectrum alignment of a shape in (a) to one in (b) using different
sets of eigenvalues. (c) and (d) show the results of using first 20 and 80 eigenvalues.
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in 3.12b using different sets of eigenvalues. As we can see, subtle deformations will be

added to the results when using higher indexed number of eigenvalues.

The qualitative and quantitative comparisons of our method, non-rigid ICP method

and voxel-based method are documented in Table 3.2. The voxel-based method is based on

the number of the voxels in the original 3D MR images [17]. Using this method only the

global volume of the hippocampus can be detected and the running time for this method is

more than 45 seconds. Based on our experiments, the computing time for our method is

less than 20 seconds while ICP method costs over 60 seconds. In order to quantitatively

evaluate the capabilities of these methods in localizing deformations, we use the following

metric to compute their agreement, A, as follows:

A =
D ∩G
D ∪G

, (3.29)

where D is the localized deformation region and G is the known ground truth of the de-

formed region. The experiments demonstrate that the average outcome for our method is

about 92%; for ICP method is about 81%; and for voxel-based method is about 85%. There-

fore, our method outperforms the non-rigid ICP method in these shapes with few landmarks

and features. Our method performs much better when there is mixture of different types of

deformations.

Table 3.2: Comparison among our method, non-rigid ICP and voxel-based method.

Capabilities Our Method Non-rigid ICP Voxel-based
Registration-Free X

Global Deformation X X X
Local Deformation X X

Multi-scale Deformation
Quantification X

Average accuracy: A 92% 81% 85%
Computation ≈ 20s > 60s > 45s
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Chapter 4: SURFACE REGISTRATION WITH EIGENVALUES

AND EIGENVECTORS

In this Chapter, we focus on spectrum alignment of the non-isometrically deformed

surfaces using both eigenvalue and eigenvector variations in order to find the correspon-

dence and map the non-isometric deformations. To search for the alignment, we utilize a

scale function on the surface that deforms one surface to a targeted one. Compared to the

traditional approaches through the experiments, our method can accurately and automati-

cally map and localize the point-to-point non-isometric deformations in addition to global

difference of the shapes. Because the spectrum of shape is only depended on the intrin-

sic geometry, our method is invariant to spatial translation, rotation, scaling, and isometric

deformation. Our method is computationally efficient and takes considerably less time to

execute compared with existing methods [52].

4.1 Related Work

By definition, shape spectrum represents the information of intrinsic local geome-

try. It is invariant to isometric deformations and different triangulations. Reuter et al. [43]

defined the spectrum of the Laplace-Beltrami operator of a shape as the signature or fin-

gerprint of the shape. Rustamov in [47] employed the spectrum of this operator for shape

clustering and classification purposes. Lévy in [28] employed the theory of stationary

waves to study the behavior of eigenvectors and the static points of the eigenvectors. These

points correspond to the locations that do not move in the theory of stationary waves. This

study shows that the static points are strongly linked to the geometry of a shape and these

points’ locations change when the geometry varies. As these points are extracted from

eigenvectors, they are invariant to isometric deformations of the shape. Thus, these points

can be employed as the feature points to describe the geometry of the shape. Reuter et
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al. [44, 40] employed these points, together with the domains generated by these static

points, as topological features to segment and register different parts of the shapes. But the

deformation of the shapes is restricted to be isometric in these studies. In reality, many de-

formations, such as heart motion, brain development, and so on, are not isometric. Hence,

applying geometric spectrum methods for analyzing non-isometric deformation and regis-

tration is very challenging. Some recent work [50, 52] showed that the shape spectrum can

be controlled with a scale function on the Riemannian metric. Shi et al. [50] discussed that

the eigenvalues and eigenvectors change according to the Riemannian metric of a mani-

fold. Later in [52], Shi et al. employed this metric to measure the difference between the

eigenvectors of two surfaces in order to generate a conformal mapping between them. To

this end, they minimized the difference between surfaces in the Laplace-Beltrami embed-

ding space using an optimization approach. This work focused on eigenvector variation,

but the eigenvalue variation was not investigated, and the method is very computationally

expensive. For instance, to map two hippocampal surfaces with 1000 faces, the procedure

took around 20 minutes on a computer with a 2.6-GHz Intel Xeon CPU and approximately

60 MB memory consumption. Instead, Hamidian et al. presented a method to align two

surfaces by mapping their eigenvalues [9, 13]. This method provided a deformation ma-

trix showing the deformation of the initial surface to the target one but did not generate a

point-to-point correspondence mapping of the vertices. Cosmo et al. [8] employed a sim-

ilar method to align eigenvalues. After the eigenvalue alignment, they used the similarity

between the eigenvectors to find the corresponding points. This method is applicable to

cases in which the eigenvectors turn out to be similar after aligning the eigenvalues. But in

the cases of dramatic deformations like heart beating, just aligning the eigenvalues cannot

make eigenvectors very similar. Therefore, the correspondence among deformations can-

not be identified correctly. In this kind of dramatic deformation, eigenvectors need to be

involved in the alignment process to find the correct corresponding points.
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There are recent advances in the field of spectral shape analysis closely related to

the proposed approach. For instance, Kovnatsky et al. [25] showed how to modify (align)

the eigenvectors of the Laplace-Beltrami operator in order to match non-isometric shapes.

Ovsjanikov et al. [36] proposed a spectral method for shape matching which is to find an

alignment between eigenvectors based on a set of linear constraints. Later, they [35] pre-

sented a method for finding functional correspondence between manifolds based on the

geometric matrix completion framework [24]. In [35, 49, 61], visualizing shape deforma-

tions based on a spectral representation of the correspondence was shown. However, the

key difference between the methods mentioned above and our proposed approach lies in

the fact that our method is using both eigenvalues and eigenvectors to align two manifolds

versus these methods employed only the eigenvectors. Also, our method extracts feature

points from eigenvectors, instead of using all the points, and employs them to align two

surfaces without loosing accuracy.

In this paper, we present a novel method that can align two surfaces and visualize

the corresponding points through the variation of geometric spectrum. This is achieved

by mapping eigenvalues and certain feature points extracted from the eigenvectors of two

surfaces. Given two triangle meshes, the spectra can be varied from one to another with

a scale function defined on each vertex. In order to compute the alignment, we aim to

minimize an energy function which is the integration of a smoothness term for aligning the

eigenvalues and a distance term describing the distance between the corresponding feature

points. Optimizing this energy function is a quadratic programming problem which can be

solved using an iterative method. Furthermore, we assume that the variation of eigenvalue

is expressed as a linear interpolation of eigenvalues of the two surfaces. The derivative

of the scale function is the solution of such a problem. Therefore, the final scale function

can be computed by an integral of the derivatives from each step. Subsequently, the scale

function can describe the mapped surface eigenvectors that can be employed to find the
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point-to-point correspondence. Our major contributions in this work can be summarized as

follows:

• We present a spectrum alignment algorithm using eigenvalue and eigenvector

variations for 3D surfaces, supporting non-isometric global and local deforma-

tion analysis. In the discrete domain, the variation of eigenvalues and eigenvectors

in terms of the scale function can be presented as matrices. Employing these ma-

trices, together with the smoothness function to align the eigenvalues and a distance

function to align the feature points extracted from eigenvectors, a linear system can

be defined. By solving this system, the eigenvalues and eigenvectors are aligned and

the corresponding points of the surfaces can be determined.

• Feature points automatically extracted from eigenvectors of the surfaces, along

with the defined distance between the corresponding feature points, can lead

to an improved correspondence with considerably reduced computational cost.

Because our method aligns both eigenvalues and eigenvectors at the same time, a

limited number of feature points for the eigenvectors are sufficient to warrant the

alignment. This helps to improve the accuracy and reduce the computational time

considerably. These feature points are proven to be highly related to the geometry of

the shape and they change when deforming the shape.

• Our developed system demonstrates the accuracy and efficiency of the spectral

variation and registration algorithm on visualization of non-isometrically de-

formed shapes. The applications to biomedical imaging problems show that it is a

viable solution for morphometric analysis and visualization in biomedical applica-

tions and clinical diagnoses.



40

4.2 Surface Registration Using Spectral Optimization

In this work, we employ Laplace-Beltrami operator to compute the geometric spec-

trum of a manifold. As we mentioned in chapter 2, Laplace-Beltrami operator can be

presented as:

Wfn = λnSfn, (4.1)

where fn and λn are the nth eigenvector and eigenvalue, respectively. The eigenvectors

for different eigenvalues are orthogonal in term of S dot product. Using this concept, an

embedding IM : M → R∞ [48] is proposed as follows:

IΦ
M = (

f1(x)√
λ1

,
f2(x)√
λ2

...,
fn(x)√
λn

) ∀x ∈M, (4.2)

where Φ = {f0, f1, f2, ...}. By finding the proper map between the eigenvector embeddings

after solving the sign ambiguity, two shapes can be aligned. Considering that for each

eigenvalue, there is a vector of size n eigenvector, mapping eigenvectors of two surfaces

for all the vertices is time-consuming. Therefore, we propose to use the eigenvector values

for certain feature points to map the shapes.

4.2.1 Calculating the Feature Points

Using the spectrum of Laplace-Beltrami operator, Lévy [28] employed the theory

of the stationary waves to model the shape. The spectrum contains a lot of information

about the shape which can therefore be used for matching and mapping among different

shapes. Looking closely to the eigenvectors, it shows that the n-th eigenvector can have at

most n nodal domains. The nodal domains are the partitions of the surface that have the

same sign. In this work, we are interested in the points, called nodal sets, which are the
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static points between two nodal domains. In other words, the nodal sets separate the nodal

domains. These nodes are the still zones in the theory of stationary waves. Lévy in [28]

showed that these points are strongly linked to the geometry of the shapes. In our method,

we use the nodal sets of certain eigenvectors as the feature points to map the eigenvectors

of two shapes. As mentioned before, the n-th eigenvector has at most n − 1 nodal sets

which partition the n nodal domains. We use this concept and employ the nodal sets of the

eigenvectors corresponding to the first non-zero eigenvalue as the first set of feature points.

Figure 4.1a shows the first non-zero eigenvector for a sample left ventricle of heart and

the red set of points in Figure 4.1b show this first feature set. The second feature sets are

the nodal sets for the eigenvector corresponding to the second or third non-zero eigenvalue

that are parallel to the first set of feature points. We use the parallel points in order to get

exclusive sets of points for mapping the eigenvector of two shapes. Figure 4.1c shows the

eigenvector corresponding to the second non-zero eigenvector and the blue sets of points

on Figure 4.1b present the second sets of feature points. This approach can provide us three

sets of points that are used for matching the eigenvectors of different shapes. When needed,

more nodal sets can be used. Using these feature points for mapping the eigenvectors,

instead of using all of the points, reduces the computational time considerably.

To illustrate the changes of nodal sets in the non-isometric deformation, we generate

a bump on the surface of a bunny and compute these points for the original and deformed

surfaces. Figure 4.2 shows these static points and that the nodal sets for two shapes vary

when applying a non-isometric deformation. Therefore, these points are valuable in identi-

fying landmark features of surfaces.
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Figure 4.1: (A) The eigenvector corresponds to the first non-zero eigenvalue. (B) The three
nodal sets. The red set shows the static points for eigenvector corresponding to the first
non-zero eigenvalue. The blue sets show the static points for eigenvectors corresponding
the second or third non-zero eigenvalue. (C) The eigenvector corresponds to the third non-
zero eigenvalue.

(a) (b)

Figure 4.2: Static points for an original and deformed bunny. (a) shows the static points for
eigenvectors corresponding to the first eigenvalue; (b) shows the static points for eigenvec-
tors corresponding to the second eigenvalue.

4.2.2 Spectral Registration Using Eigenvector and Eigenvalue

To register two surfaces, the challenge is to minimize the difference between the

two shapes in the spectral space. In order to align two surfaces using the LB spectral space,

we aim to maximize the similarity between both eigenvalues and eigenvectors of the LB

operator of the surfaces.

As a result of non-isometric deformation, the eigenvalues and eigenvectors of the

shape dramatically change. On a compact closed manifold M with Riemann metric g, we
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define shape deformation as a time variant positive scale function ω(t) : M → R+ such that

gωij = ωgij and dσω = ωdσ, where ω(t) is non-negative and continuously differentiable.

To increase the similarity between eigenvectors, we try to minimize the distance

of the eigenvectors on the feature points. Therefore, we need a distance function in the

embedding space. We employ the distance measure that was proposed in [52]. In order to

find the optimal scale function ω for two surfaces (N,ωg1) and (M, g2), the energy function

is defined as follows:

E(ω,Φ1,Φ2) =

∫
N

[
dΦ2

Φ1
(x,M)

]2
dN(x)

+

∫
M

[
dΦ2

Φ1
(N, y)

]2
dM(y),

(4.3)

where dΦ2
Φ1

(x,M) and dΦ2
Φ1

(N, y) are defined as follows:

dΦ2
Φ1

(x,M) = infy∈M ‖ IΦ1
N (x)− IΦ2

M (y) ‖2,∀x ∈ N,

dΦ2
Φ1

(N, y) = infx∈N ‖ IΦ1
N (x)− IΦ2

M (y) ‖2,∀y ∈M,

(4.4)

and ω is the scale function that applies onN and Φ1 and Φ2 are the eigenvector basis for LB

embedding of (N,ωg1) and (M, g2). In this work, we focus on mapping one manifold to

another and aim to find such a metric optimization. Therefore, we assume that the manifold

M is fixed and N changes using the scale function ω to minimize the distance between M

and ωN on those feature points.

To increase the similarity of eigenvalues between two manifolds N and M , we em-

ploy the theorem proved in previous chapter ( [13]) using Equation 3.5. This theorem shows

that the spectrum is smooth and analytical to non-isometric local scale deformation. Based

on this theorem, non-isometrically deformed shapes can be registered when minimizing the

energy function between eigenvectors on the feature points.
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4.3 Numerical Optimization Using Spectral Variation

In this section, we will detail a discrete algorithm for the alignment of non-isometrically

deformed shapes through the variation of eigenvalues and eigenvectors. Consider two

closed manifolds, N and M with the eigenvalues of λ1 and λ2, and eigenvector basis of

Φ1 and Φ2. These two manifolds are represented with discrete triangle meshes. We use

their first k1 non-zero eigenvalues and eigenvectors to align two surfaces. As we men-

tioned before, the deformation is not isometric; thus the first k1 eigenvalues of these two

surfaces are not the same. In order to align the first k1 eigenvalues of N to those of M ,

a continuous scale diagonal matrix Ω(t) is applied on N . Ω is an m by m matrix, where

m is number of vertices on N . The element Ωii at the diagonal is a scale factor defined

on each vertex on N and will introduce a variation and alignment from N to M . It is a

non-negative, continuously differentiable matrix.

To solve the numerical problem, we use the time interval of t and we divide the time

interval of t ∈ [0, 1] into K steps which we will index them as q. For each step of q, we

solve an optimization equation to increase the similarity of eigenvalues and eigenvectors of

ΩN toward those of manifoldM . At the beginning, t = 0, the eigenvectors and eigenvalues

are Φ1 and λ1 and Ω(0) = I . When t reaches 1, the eigenvalues and eigenvectors will be

λ2 and Φ2. In order to do that, we employ the Equation 3.11 mentioned in Chapter 3 which

shows that the eigenvalues of N vary linearly toward those of M .

For mapping of eigenvectors, in each step we minimize the distance function de-

scribed in the Equation 4.3 between ΩN and M . The following will explain the details

how to calculate the optimization function to minimize the distance between eigenvalues

and eigenvectors in each step.
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4.3.1 Eigenvector Optimization Equation

To minimize the energy function in Equation 4.3, we need to calculate the distance

between two manifolds using Equation 4.4. In order to do that, we compute the k1 eigen-

values and eigenvectors for both manifolds using Equation 4.1. One of the concerns about

the calculating the eigenvectors is the sign ambiguity. This means that either fn or−fn can

be the eigenvector of a specific eigenvalue. For a target surface M , we fix the eigenvectors

by picking random signs for Φ2. Then, we calculate the feature points as described before.

For the surface N , we start with Ω = 1 and in each step we update the surface using the

optimized Ω to minimize the energy function E.

At each step, we first calculate the k1 eigenvalues and eigenvectors of the updated

surface N using Equation 4.1. Then we calculate the 3 sets of feature points using the

eigenvectors as explained before. We need to find the corresponding feature sets on two

surfaces for solving the sign ambiguity of eigenvectors. As shown in Figure 4.1A, there is

one nodal set for the eigenvector corresponding to the first non-zero eigenvalue. Therefore,

these sets are matched on two surfaces. For the other two nodal sets, we calculate the

corresponding sets using their signs on the eigenvector corresponding to the first non-zero

eigenvalue. We first calculate and determine the sign of this eigenvector using the histogram

of the positive and negative eigenvector values for both surfaces. As we mentioned before,

the second sets of the nodal nodes are parallel to the first set. Also, the sets of nodes are

at the opposite sides of the first nodal set. Therefore, each set of nodes has a different

sign value on the first eigenvector. By knowing the sign of the first eigenvector, we can

categorize and determine the corresponding sets of nodes for the second feature sets.

By detecting the corresponding feature sets in each step, we find the nearest fea-

ture points of surface N to the feature points of M that minimize the distance equation,

Equation 4.4. To achieve this, we consider all combinations of signs for k1 eigenvectors
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for surface N to minimize the distance equation. After finding the corresponding points

and the signs, the points are employed to generate matrix C as the nearest feature points

map from IΦ1
N to IΦ2

M . This map can be presented as Id(BV1) = CV2 where V1 and V2 are

the vertices of surfaces N and M , respectively. Matrix B is a diagonal matrix of size V1

in which the diagonal elements for the feature points are 1 and 0 otherwise. Matrix C has

value of 1 only for the feature points; therefore, the projection relation Id can present a

linear interpolation map from feature points of surface N to M . Using this map, we write

the energy function, Equation 4.3, in a discrete numerical form as:

E =

k1∑
n=1

(
1

S(N)

(
Bf1,n√
λ1,n

− Cf2,n√
λ2,n

)T
Ω

(
Bf1,n√
λ1,n

− Cf2,n√
λ2,n

))
, (4.5)

where S(N) is the surface area of N and Ω is the scale function. In this work, because

we change the surface N toward surface M and surface M does not change in each step,

the second part of the Equation 4.3 is zero and only the first part is used to calculate the

numerical equation. Considering that in each iteration the corresponding feature points are

calculated and the eigenvalues do not change, the derivative of E with respect to time can

be defined as follows:

Ef =
∂E

∂t
=

k1∑
n=1

(
1

S(N)
DsTn Ω̇ Dsn

)
, (4.6)

where Dsn =

(
Bf1,n√
λ1,n

− Cf2,n√
λ2,n

)
and Ω̇ =

∂Ω

∂t
. Because Ω is a diagonal matrix, we

extract the diagonal elements as a vector vΩ and Equation 4.6 can be rewritten as:

Ef =

k1∑
n=1

(
1

S(N)
((Dsn)2)TvΩ̇

)
. (4.7)
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Using this equation, we update the eigenvectors through the numerical optimization of the

gradient of the energy function in each step.

4.3.2 Eigenvalue Optimization Equation

In order to increase the similarity of two eigenvalues of λ1 and λ2, we employed the

method mentioned in Chapter 2. As we mentioned in Chapter 2, the eigenvalue derivative

can be defined as 3.9:

λ̇n = −λnfTn Ω̇Sfn. (4.8)

Using this Equation, Equation 3.12 can be rewritten in a linear form as:

(vSN
◦ f1,n ◦ f1,n)T · vΩ̇ =

λ1,n − λ2,n

λ1,n(t)
, t ∈ [0, 1]. (4.9)

Note that, as the first k1 eigenvalues are going to be aligned, we can get k1 independent

equations, which lead to a linear system as follows:

a · vΩ̇ = b, (4.10)

where a is a row stack of (vSN
◦ f1,n ◦ f1,n)T with k1 rows and b is the right side of

Equation 4.9.

Considering that we use the first k1 eigenvalues for this work and that practically k1

is much less than the number of nodes in the mesh, the system is underdetermined and has

no unique solution.

We solve this by assuming that the scale factors distributed on N are smooth as

mentioned in Chapter 3. On the discrete triangle mesh N , with the scale function vector



48

vΩ, the smoothness energy of E is define as:

Eλ = vT
Ω̇
·WN · vΩ̇ + 2zT · vΩ̇, (4.11)

where z = WNv·Ω. Through the combination of this energy function and the energy

function calculated for eigenvectors, the distance between the eigenvalues and eigenvectors

of two surfaces can be minimized.

4.3.3 Energy Equation Integration

In order to increase the similarity of eigenvalues and eigenvectors of two surfaces,

we integrate the energy function calculated for both eigenvalues and eigenvectors in order

to find a scale matrix that minimizes the total energy function as follows:

ET = Eλ + Ef =

vT
Ω̇
·WN · vΩ̇ + 2zT · vΩ̇ +

k1∑
n=1

(
1

S(N)
((Dsn)2)TvΩ̇

)
.

(4.12)

In order to preserve the physical availability, vΩ must be bounded, i.e., the scale

factor cannot be zero or negative; and it cannot be infinite either. We employ the same

lower and upper bound as mentioned in Chapter 3:

hl ≤ vΩ + vΩ̇ ≤ hu. (4.13)

The linear system (Equation 4.10), energy function (Equation 4.12), and constant bound

(Equation 4.13) form a quadratic programming problem at each time t. Assume the eigen-

values and eigenvectors are known at each time t, the derivative of the scale matrix Ω̇ is

the solution of such quadratic programming.
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The summary of the algorithm can be found in Algorithm 2. As shown, after K

steps surface N will be aligned to surface M and the correspondence can be computed

using the aligned eigenvectors.

Algorithm 2 Spectrum Alignment
Input: Closed 2D manifoldsN andM , represented by triangular meshes, and constant k1;
Output: Diagonal weight matrix Ω(q) on N , aligning first k1 non-zero eigenvalues and

corresponding eigenvectors of feature points from N to M ;
1: Initialize Ω(0) ← I, calculate matrices WN and SN , and
λ2,n, f2,n, λ1,n, and f1,n, for n = 1, 2, . . . , k1;

2: Compute the feature points for surfaces M .
3: while q < K do

a: Calculate λ1,n(q), f1,n(q), for n = 1, 2, . . . , k1 using Equation 4.1 with Ω(q);
b: Calculate the feature points for surface Ω(q)N using f1,n(q); solve the eigenvector
sign ambiguity; and find the corresponding features points between surface Ω(q)N and
M ;
c: Construct the quadratic programming problem using Equations 3.15, 4.12, and 3.23;
d: Solve the quadratic programming problem to get Ω̇(q) and calculate Ω(q + 1);
e: q ← q + 1;

4: end while
5: The correspondence of surface N and M can be computed using the aligned eigenvec-

tors.

4.4 Experiments and Applications

The proposed algorithm and system are implemented using Python and C++ on a

64-bit Linux platform. For visualization purposes, we employ MATLAB and VTK library

in Python. The experiments are conducted on a computer with an Intel Core i7-3770 3.4

GHz CPU and 8 GB RAM. We apply our algorithm to 2D manifolds, represented with

triangle meshes. We employ the approach in [63, 59] to generate the uniform meshes.

The number of vertices in those meshes is about 3000 for most of the experiment data.

Besides the vertex number, there are two constants, i.e., K iteration and the first k1 nonzero

eigenvalues and eigenvectors to be aligned. For our experiments we choose K = 10.
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This number is sufficient to generate accurate results. We use different k1 for different

experiments. Depending on the resolution that we need in our experiments, the number k1

may vary. The average computational time for 3000 nodes, with k1 = 8 and K = 10, is

around 12 seconds.

4.4.1 Experiments on Synthetic Data

Our Results

In order to evaluate our method, we manually make some non-isometric deforma-

tions on the surface of the shape and then we register the initial shape to the deformed one.

In these experiments, we use a Stanford bunny model and make a non-isometric deforma-

tion on the surface and then generate uniform triangle meshes on both surfaces. We employ

the first 10 non-zero eigenvalues and the corresponding eigenvectors to do the alignments.

The processing time for k1 = 10, K = 10, and 3000 mesh vertices is about 43 seconds.

Note that, no correspondence information is used in the experiments.

In the first experiment, we manually generate a bump on the back of a bunny and

align the original surface to the deformed one. Figure 4.3 shows the original surface in

(a) (b) (c) (d)

Figure 4.3: The result of mapping the original 3D object to the synthetic one. (a) shows
the original object. (b) is obtained by generating a bump on the original surface. (c) and
(d) show the results of point-to-point mapping the original surface (cyan) to the target one
(yellow) from different angles.
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(a) (b) (c) (d)

Figure 4.4: The result of mapping the original 3D object to the synthetic one. (a) shows
the original object. (b) is obtained by generating an indentation on the original surface. (c)
and (d) show the results of point-to-point mapping the original surface (cyan) to the target
one (yellow) from different angles.

cyan and target surface in yellow. The location of the bump is marked by a red circle.

Figure 4.3c and 4.3d present the results of point-to-point mapping of the surfaces from

different angles. The original and targeted shapes are overlaid and the arrows in the bump

area show the deformation of each vertex from the original to the targeted surface.

In the second experiment, we manually create an indentation on the surface of a

bunny and align the original surface to the dent one. Figure 4.4a and 4.4b show the original

and the surface results of creating the non-isometric dent on the surface, respectively. Fig-

ure 4.4c and 4.4d present the result of point-to-point mapping of surfaces using our method.

The original and targeted shapes are overlaid and the arrows in the bump area show the de-

formation of each vertex from the original to the targeted surface. These results confirm

that our method can accurately detect and localize the non-isometric deformation and find

the corresponding points.

For more complex and challenging deformations, we use a hammer model and cre-

ate 2000 uniform meshes on the surface. Then we create different non-isometric defor-

mations on the surface and align the original surface to the deformed one. Figure 4.5

show the original hammer in yellow color and target deformed hammers in the cyan color.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.5: The result of mapping the original 3D hammers to the synthetic deformed
ones. (a), (d), (g), and (j) show the original hammers. (b), (e), (h), and (k) are obtained by
generating non-isometric deformation on the original surface. (c), (f), (i), and (l) show the
results of point-to-point mapping the original surface (yellow) to the target one (cyan).

Figures 4.5c, 4.5f, 4.5i, and 4.5l show the results of aligning the original surface to the

deformed ones using our method. The point-to-point alignments are demonstrated using

the arrows that connect the corresponding points on the original and deformed surfaces.

The original and target surfaces are overlaid in these figures. These results conclude that

our method can detect the simple and complex non-isometric deformations on the surface

accurately.
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Comparisons to Spatial Registration Methods

In order to further demonstrate the capabilities of our method, we compare the re-

sults of our algorithm with the ones from non-rigid Iterative Closest Point (ICP) algorithm.

ICP is introduced by Besl and Mckay in [4] and is one of the popular approaches in spatial

registration-based methods. In this approach, the initial transformation for global matching

is first estimated and then the closest points are found by minimizing the distance between

two shapes. Therefore, using this method we first register the original surface to the target

one rigidly and then the corresponding points between the rigidly registered original shape

and the target shape are calculated. For our method, we employ the first 12 non-zero eigen-

values and the corresponding eigenvectors for alignment purposes. The processing time for

3000 vertices, k1 = 12 and 10 iterations is 118 seconds.

In order to compare two methods, we use a template hippocampus and synthetically

deformed the shape by bending and stretching the shape from upper and lower sides. The

original and deformed surfaces are shown in Figures 4.6a and 4.6b, respectively, which

exhibit global variation. Figure 4.6c presents the overlay of the original and deformed

shapes. As can be seen, the top and the bottom parts of the surface are stretched and the

shape is bent in the middle part. Figure 4.6d shows the result of performing ICP rigid

registration on the original shape to map it to the deformed shape. Comparing Figures 4.6c

and 4.6d, one can notice that the rigid ICP does not match the shapes correctly, especially

in the top and bottom regions of the shapes. Figures 4.6e and 4.6f present the results of

our method and non-rigid ICP, and the arrows show the displacement of each vertex on

the surface. Because the ICP method fails in the rigid registration stage, the corresponding

points calculated using non-rigid ICP do not reflect the accurate deformation, especially

in the top and bottom region. On the other hand, because our method does not require

pre-rigid registration to find the corresponding points, this variation can be captured by
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our registration and mapping method accurately. These results justify the advantage of our

method over the rigid and non-rigid ICP method. In order to demonstrate that our method

can handle both global and local deformation simultaneously, we create a bump on the

shape of Figure 4.6b as shown in Figure 4.6g. Then we align the surface in Figure 4.6a to

Figure 4.6g using our method. Both global and local deformations (bump) can be captured

by our method as shown by arrows in Figure 4.6h. Therefore, these results confirm that our

method can detect and localize the non-isometric deformation and find the correspondence

and their displacements resulted from both global and local deformations.

Comparison to a Spectral-based Method

In order to compare our method with a similar spectral-based technique, we employ

an approach suggested by Shi et al. in [52]. They proposed a method based on aligning the

eigenvectors of two surfaces via optimization of a conformal metric on the surfaces. They

employed the eigenvectors for all the points of the surfaces therefore the computation is

very expensive.

In this experiment, we employ a template hippocampus and create 1500 uniform

vertices on the surface. Then, similar to the previous section, we synthetically deform the

shape by bending and stretching the shape from upper and lower sides. The bending and

stretches are larger in this experiment than in the previous one. Figures 4.7a and 4.7b show

the original and synthetically deformed surfaces, respectively. Figures 4.7c and 4.7d show

the results of the alignment using our and Shi et al.’s methods. As can be seen, the bottom

tip of the surface cannot be aligned correctly using Shi et al.’s method but our method can

align all the points accurately.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: Comparison of our method with ICP method using synthetic data. (a) presents
the original surface and (b) is obtained by bending and stretching the shape from the upper
and lower ends. (c) shows the result of mapping these two shapes. (d) shows the result of
ICP rigid registration result. The ICP method register the shape from one side and therefore
this method cannot generate accurate result for bending deformation. (e) and (f) present the
results of point-to-point mapping from the original surface to the deformed one using our
method and ICP method, respectively. Because the result of non-rigid ICP depends on rigid
ICP, the result is not accurate. Our method can detect the deformation accurately. In order
to show that our method can handle both global and local deformation simultaneously, we
make a bump on the deformed surface as presented in (g). The result of mapping (a) to (g)
is presented in (h).

In order to quantitatively evaluate the capabilities of these methods in localizing the

point-to-point correspondence, we use the following metric:

A = 1−
∑m

i=1 |di − dOi |∑m
i=1 |dOi |

, (4.14)
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(a) (b) (c) (d)

Figure 4.7: Comparison of our method with Shi et al.’s method [52] using synthetic data.
(a) presents the original surface and (b) is obtained by bending and stretching the shape
from the upper and lower ends. (c) shows the result of mapping these two shapes using
our method. (d) shows the result of Shi et al.’s approach. The lower tip of the shape is
not aligned correctly using Shi et al.’s method while our method can align all the points
accurately.

where di is the distance between corresponding points calculated using either methods, dOi

is the known ground truth distance,m is the number of all nodes and i is the index of nodes.

The experiments demonstrate that the average outcome for our method is 91.4% while it

is 85.8% for Shi et al.’s method. This number is 75.6% for ICP method. Therefore, our

method can find the point-to-point correspondence better than the other two methods for

complex deformation. In this experiment we use 10 iterations and 12 non-zero eigenval-

ues and eigenvectors to do the alignments. For 1500 mesh vertices, our method takes 67

seconds while Shi et al.’s approach takes 94 minutes. In [52], they mentioned that their

execution time for 1000 triangle faces with approximately 500 vertices, is 20 minutes.

Table 4.3: Comparison among our method, Shi et al.’s method and non-rigid ICP method.

Capabilities Our Method Shi et al.’s Method Non-rigid ICP
No Rigid Registration X X

Local Deformation X X X
Average Accuracy: A 91.4% 85.8% 75.6%

Computation < 120s > 20m > 60s
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Table 4.3 demonstrates the comparison between our method, Shi et al.’s method,

and non-rigid ICP method. As mentioned before, non-rigid ICP method requires rigid

registration before aligning two surfaces while Shi et al.’s and our methods do not have this

requirement. All the methods can localize the deformation of the surface but our method

has the best average accuracy based on metric defined in Equation 4.14. The computational

time for our method is considerably less than Shi et al.’s method and similar to non-rigid

ICP. Therefore, our method has the best features to align two surfaces.

4.4.2 Applications on Real Patient Imaging Data

Alzeimer Data

Alzheimer disease (AD) is a brain mis-functionality that is caused by the loss of

neurons and neural volume. Hippocampus is vulnerable to damage in the early stage of

Alzheimer. Volumetric longitudinal studies using MR images show hippocampal atrophy

during time in comparison to healthy cases. In this study we show the point-to-point defor-

mation for an Alzheimer case. We employ 10 AD and 10 healthy cases, which have longi-

tudinal study for one year to track and compare the deformation of hippocampi. The cases

are downloaded from the hippocampal study from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.usc.edu) and are segmented using FreeSurfer soft-

ware. Then, the 3D objects and meshes with 3000 vertices are generated. In this study, we

use the first 10 eigenvectors to align the surfaces. Figures 4.8a and 4.8b show a sample of

AD case for the baseline and after one year. The deformation in the tail part can be detected

visually. The deformation mapping is shown by using the blue arrows in Figure 4.8c . It

needs to be mentioned that the deformation mapping is down-sampled by five in order to

better visualize the results. As can be seen, our method can detect the deformation accu-

rately. Figure 4.8d shows the 6th eigenvector before and after alignment. Columns A and
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B show the eigenvector for the baseline surface before and after alignment, respectively.

Column C shows the targeted surface eigenvector. It is noted that our method can match

and align the eigenvectors. The color map shows the scaled value of the eigenvector.

(a) (b) (c)

(d)

Figure 4.8: (a) shows the baseline hippocampus and (b) shows the hippocampus for the
same subject after one year. (c) presents the result of mapping the baseline hippocampus
to the one after one year. (d) presents the 6th eigenvector before and after mapping. Col-
umn A shows the eigenvector before alignment and column B shows the eigenvector after
alignment. Column C shows the 6th eigenvector for the target surface.

In order to show the variation of eigenvalues of the manifolds before and after

alignment, we list the 2nd to 10th non-zero eigenvalues of baseline hippocampus (before

and after mapping) and hippocampus after one year in Table 4.4. The eigenvalues are

normalized by the first nonzero one to remove the scale factor. It can be seen that after
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applying the spectrum alignment algorithm, the eigenvalues of the source manifold have

changed to well align with the target ones.

Table 4.4: The result of aligning eigenvalues from the baseline hippocampus to one after
one year (target) using the same case as in Figure 4.8.

Manifold λi/λ1, i ∈ [2, 10]

Baseline 3.40, 7.39, 10.66, 15.36, 17.04, 21.50, 23.13, 24.94, 29.77
Target 4.17, 8.65, 11.42, 16.23, 18.97, 23.18, 26.19, 30.53, 32.38

Aligned 4.17, 8.65, 11.42, 16.23 , 18.96, 23.17, 26.19, 30.49, 32.39

Cardiac Data

We use the Sunnybrook Cardiac Data [38] for this experiment. The data is acquired

from the 3D left ventricle during cardiac cycles from end diastolic to end systolic, and

(a) (b)

Figure 4.9: (a) The result of mapping the first time point shape to all other shapes and then
computing the mean average of the distance. The yellow surface is the left ventricle in
diastolic state. The other shapes shows the contracted left ventricle toward systolic state
overlaid on the yellow surface. (b) The result of mapping the first time point surface (cyan)
to the 7th one (yellow) which has the most deformation according to the plot in (a).
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then, back to end diastolic cycle. For this study, we use five cases for each category: heart

failure with infarction, heart failure without infarction, left ventricle (LV) hypertrophy,

and healthy. Meshes with 5000 vertices are generated. 10 non-zero eigenvalues and the

corresponding eigenvectors are used for alignment. We map the surface for the end diastolic

(first time point) to all other 19 time points. Then, the mean averages of the displacements

for all the nodes are calculated and used to generate a plot of surface displacement for 19

different time points. Figure 4.9a shows the result of mapping these surfaces using our

method and the mean average plot for a sample case. The first shape close to the origin

of the axes is the diastolic shape and the rest of the shapes are the target ones. As can be

seen, the results follow the heart beating pattern. Figure 4.9b shows the overlay of the first

time point surface (cyan) to the 7th one (yellow) which has the most mean displacement

according to the average plot. The results of mapping these two surfaces are also presented

in this figure by using arrows, which connect the corresponding points and show the point-

to-point deformation mapping. One can see that our method can detect the contraction and

the tangential turning deformation of the heart.

This method can be used in different applications in cardiac study. The first appli-

cation is longitudinal study of a subject. In this study, the 3D images of the subject are

generated for more than one heart beating full cycles. Using these models, the deformation

plot for mean average of displacement can be generated. Physicians usually look at more

than one cycles to exam the abnormality of the heart. By using our method, the abnormal-

ity can be detected via the mean average plot and then using the point-to-point deformation

mapping to find out the specific abnormal time points. Therefore, the abnormal area of the

ventricle may be detected. Figure 4.10a shows three heart beating cycles and the one time

point which is marked by a red circle in the 2nd cycle showing abnormality according to its

location. As can be seen, the abnormality can be detected using our method. We detect this

abnormality by creating a bump (Figure 4.10c) on a heart surface (Figure 4.10b). Then,
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our method can generate the displacement color map and the abnormal region can be also

located (Figure 4.10d).

(a)

(b) (c) (d)

Figure 4.10: The longitudinal study for a subject using our method. By studying more than
one cycle, the abnormal beat can be detected using our method and the abnormal area of
the left ventricle can be identified. (a) shows 3 heart beat cycles and the abnormal time
point is marked by a red circle. We create this abnormality by creating a bump on a heart
surface. (b) shows the original heart. (c) shows the deformed surface. The deformed area
is marked by a red circle. (d) shows the displacement color map generated by our method
to detect the abnormal region.

The second application is the cross-subject analysis through temporal alignment.

The same time point of a heart beat cycle for two different subjects can be identified. For

instance, in one subject, the largest heart contraction may happen at the 7th time point,

but in another subject, the largest heart contraction may be detected in 8th time point. Us-

ing our method, different time points in different subjects can be aligned according to the

heart beating cycle through temporal alignment. Figure 4.11 shows this procedure. Using
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Figure 4.11: The blue and green curves show the mean average mappings for two different
cases. The black dashed curve shows the blue curve after alignment.

(a) (b) (c)

(d) (e) (f)

Figure 4.12: The result of comparing the mean average of five temporally aligned healthy
cases, to a healthy and two patient cases. In all plots, the red curves show the average plot
generated by calculating the average of five aligned healthy cases’ mean average mappings.
(a) The blue curve shows a healthy case. (b) The green curve shows a diseased heart case.
(c) The black curve shows a hypertrophy case. One can use the difference between two
curves (yellow area) to accurately distinguish the healthy from patient cases. (d), (e), and
(f) show the displacement mapping of the left ventricle from the diastolic to systolic state
for normal, diseased, and hypertrophy cases showed in (a), (b), and (c), respectively.
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this alignment, we can align different healthy cases and then use the aligned mean aver-

age mapping to generate a standard mean average mapping. This mapping can be used to

compare with normal and patient cases in order to categorize the abnormal cases from the

normal ones by using the difference indicator between this mapping and a target one. In

Figure 4.12, the red plot shows the standard mean average plot generated by calculating

the average of mean average mappings from temporally aligned five healthy cases. Fig-

ure 4.12a shows a healthy case in a blue curve, as compared with the standard mean average

mapping. Figure 4.12b shows a diseased case in a green curve when temporally aligned

to the standard mean average mapping and Figure 4.12c shows a LV hypertrophy case in

a black curve. Yellow area shows the difference between two curves. As can be seen, the

difference area in healthy case is much less than that in the patient cases. Using difference

area, one can accurately categorize healthy cases from patient cases. Figures 4.12d, 4.12e,

and 4.12f show the displacement mapping of the left ventricle from the diastolic to sys-

tolic state for normal, diseased, and hypertrophy cases showed in Figures 4.12a, 4.12b,

and 4.12c, respectively.

4.4.3 Application on Hand Data

In order to demonstrate that our method can be used on non-medical applications

as well, we use data of different hand gestures and create 3000 uniform vertices on the sur-

faces. Figures 4.13a, 4.13b, and 4.13c show different gestures of the hand. We employ the

shape in Figure 4.13a as the original surface and then align it to the shapes in Figures 4.13b,

and 4.13c. Figures 4.13d and 4.13e show the results of this alignment using our method.

The original and target surfaces are overlaid and the point-to-point alignment is shown us-

ing the arrows that connect the corresponding points. As can be seen, different parts of
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(a) (b) (c)

(d) (e)

Figure 4.13: The results of aligning different hand gestures. (a) shows the original surface.
(b), and (c) show the target surfaces. (d) and (e) show the results of aligning original surface
to the surfaces demonstrated in (b) and (c) respectively. The results show that our method
can detect the point-to-point correspondence between two surfaces correctly.

the hand are aligned correctly and our method can detect the point-to-point correspondence

accurately.

Note that, for searching for proper eigenvectors, in addition to sign ambiguity, there

are some cases that the order of the eigenvectors switches. In addition, by using large

number of eigenvectors, numerically it is possible for near multiplicities of eigenvectors to
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cause the eigen-spaces to split in different directions [52]. In such cases, the eigenvectors

matching becomes difficult. In our algorithm, we mainly focus on resolving the sign am-

biguities. The order switching of eigenvectors and detection of high dimensional multiple

eigenvectors will be our future research work.
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Chapter 5: 3D SHAPE REGISTRATION TASKS TO A SCALABLE

SCIENTIFIC WORKFLOW SYSTEM

5.1 Introduction

In this chapter, we employ and enhance a scientific workflow system named DATAVIEW

(www.dataview.org) to integrate our methods mentioned in previous chapters. Using this

workflow system, the user can execute all the tasks using their web browsers without in-

stalling any software such as Python or MATLAB on their computer. The user can also run

all the tasks in parallel in order to speed up the processing time for multiple cases.

5.2 Related Work

Scientific workflow systems have become a popular tool since they allow the defi-

nition algorithms and applications as a collection of functional blocks. The composition of

these blocks can be done graphically, by dragging and dropping functional modules which

are linked together with pipelines that represent inputs and outputs. Scientific workflow

systems offer users a better “picture” and understanding of how an application is designed

by making its dataflow structure explicit. Thus the workflow contains information about

what each component would do rather than how it will achieve it, along with information

about how to connect components. Somehow, scientific workflows are a representation that

may be part of formal software design documentation.

Many workflow environments have emerged over the last few years. Taverna is

a workflow editor environment developed to support “in silico” experiments for bioinfor-

maticians for the MyGrid project [34]. It facilitates converting standalone workflows into

web-services and sharing workflows manually in the myExperiment [16], an online repos-

itory of workflows that enables users the discovery and distribution of Taverna workflows.
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A new server version of Taverna is deployed using which user can run their workflows on

the server machine.

Similar to Taverna, Kepler [1] provides a graphical interface with the capability of

invoking Web services. Kepler integrates disparate software components, such as merging

“R” scripts with compiled “C” code. This workflow system can be run on the server as well

which gives users the facility of running their code remotely on the server machine. For

sharing the workflows users need to export their workflows and then share it via a central

repository, the Kepler Component Repository [22]. For using all of the above platforms,

users need to install these tools on their local machines before they actually can use the

workflow system [3]. Therefore, the computers with limited resources cannot run complex

code and also the users should have the knowledge of installing the software on their com-

puters. The Galaxy platform is an open source web-based platform that allows users to

create, execute, and share their workflows in the purpose of data intensive bioinformatics

research. The benefit of using a web-based workflow system is that the only requirement

for using this platform is a web browser. They also extend the Galaxy framework to the

grid computing infrastructure for running bioinformatics applications [21]. The mentioned

workflow platforms are mostly used for field of bioinformatics [5]. Some works uses Tav-

erna [55, 32] and Kepler [62] for medical image purpose but as mentioned before these

toolkits need to be installed on the user computer. Also for sharing the workflows, the user

should upload them manually through their online repository. In [30], they implement a

workbench based workflow system for biomedical imaging in the field of FiberFlow sys-

tem purposes. For using this platform user need to install it on their computer as well. Also,

they propose to employ grids for some computation-intensive tasks but they do not use it

in their system.
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5.2.1 DATAVIEW workflow system

In this work, we employ the DATAVIEW system to integrate our methods. We

choose this system because it is web-based and flexible to be improved to integrate software

tools such as MATLAB and Python. It is implemented using Java and MySQL server. It

provides a web-based interface for uploading, and downloading the data products. Also

using the browser, the data products and the tasks that are already implemented in the

system can be employed by the user to design, save, share, and run their workflows. The

user can drag and drop the input of the workflow, the output stub and the tasks that are built

in as part of the system to design their own workflows. By connecting the data products

as inputs to the input port of the tasks; outputs of the tasks to the output stub or input

ports of other tasks, the dataflow of the workflows are specified. Figure 5.7 presents the

user interface that can be deployed to design the workflow. As can be seen, the left panel

contains the data products that are uploaded to the system. The right panel contains the

built-in tasks, and the saved workflows that can be reused again. This option is very helpful

to avoid designing the same workflow. For using DATAVIEW for our purpose, some parts

of this system needs to be enhanced which are our major contributions in this work and can

be summarized as follows:

• The software tools which are required to be used are integrated into the system.

• We supplement this platform with grid computing. This is done in order to cen-

tralize and speed up the processing power of this workflow system. Using grid we

can leverage the powerful data parallel modes of workflow enactment, execute mul-

tiple tasks simultaneously, access to the robust and fault-tolerant interface which can

handle various error conditions commonly. Also employing a secure environment of

the grid, the data and results of processing are protected with user credential. By us-
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ing this web-based workflow system which utilizes grid, different users can design,

save, share, run, and check results or error of their workflows in parallel. The two

mentioned parts are the components of the Task Manager section of the system. We

will explain these parts in more detail in the next section.

5.3 System Implementation

As mentioned before, for utilizing the web-based DATAVIEW system for our pur-

pose, we enhance and add some sections. The changes are in the following parts: the

Task Manager, and the Data Product Manager that will be described in more detail in this

Section.

5.3.1 Data Product Manager

The data products in this workflow system are mostly file type such as Analyze

format which is one of the standard formats for storing 3D medical images, 3D object files

such as obj and ply, MAT-Files which are the format for saving and reading the results

for MATLAB tool, and text files for grid processing. The text files that are used for grid

processing gives user the capability of writing the name of all input files in text file which

facilitate performing the same processing on all inputs in parallel.

When a user register the data product using the interface, the compatibility of the

data product with the structure of workflow is checked by workflow manager. In case of

being compatible, the data is transferred to the storage elements that can be grid or the

DATAVIEW server machine and is identified with a unique ID assigned by the user. The

transportation is performed with secure protocols such as sFTP. The specification of the

data like type, path and name is then saved in the database by workflow management in

an XML based language. The XML representation for a sample of the file is depicted in
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Figure 5.1: The XML presentation of the File type data product.

Figure 5.1. As the file is registered in the database, file name, path, user given name, type

of the file, the location, and the storage type of the file is saved in the database. This will

be helpful for addressing the file in implementation section.

5.3.2 Task Manager

The tasks in this work are mostly script-based tasks. The scripts can be located

in the DATAVIEW server machine or in the grid. The tasks are saved in the database in

the XML format. The XML presentation of the script based tasks contains some features

including the specification of input and output ports, the location of the script, the specifica-

tion of the host on which the script is executed on it. A template of the task representation

can be seen in Figure 5.2.

Based on the specification of the workflow, tasks can be executed at the DATAVIEW

server, or in a grid node. The scripts are designed in a way that it generates an error text

file in case any error occurs during running the task. After the completion of the task, the

task manager checks the error text file. If no error exists in the text file, results will be

generated in the corresponding ports and the specification of the result files will be saved

in the database. Otherwise, for each output port, the corresponding error will be generated.

For grid-based workflow tasks, we employ the Wayne State grid. This infrastructure utilizes
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Figure 5.2: The XML presentation of the task.

the PBS Pro software for full-featured workload management and job scheduling. The

processing of running job on grid is depicted in Figure 5.3.

The input of the tasks can either be the file that is uploaded on the grid by user or the

output files of other tasks. Using the input files and the task specification, the workflow task
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Figure 5.3: The procedure of submitting a job to the grid, check the status of the job and
check the error and output files. This part is the new implementation for task manager and
data product section for the purpose of submitting a job to the grid environment.

manager submits the task to a grid node and gets a unique job ID. This ID will be held for

future reference and monitoring the status of the job. The task manager periodically polls

the jobs for their status, until either the job is completed, or an error is generated. It should

be mentioned that as can be seen in Figure 5.2, we design a parameter in the specification

of grid-based workflow tasks using which the approximate time for executing the task is

defined. This option is very helpful especially for the tasks that may take a long time to be

executed. Using this option, the task manager waits for the time specified and then checks

the status of the task periodically until the completion of the job. After the completion of

the job, the task manager copies the error and output text file generated by the job to the

DATAVIEW server machine using the sFTP protocol and check the error text. In case of

the completion of the task without any error the output files specification are exported from
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Figure 5.4: The invocation procedure for running the code in grid.

output text file. The name of the files and their locations are sent to the database to register

them as a data product. These data products can be used for next tasks or as outputs of

the whole system. It should be mentioned that only the text files contains the name of the

output files is transferred to the DATAVIEW server machine not the actual files. This helps

the efficiency of the processing.

The invocation flow for running the tasks in grid using the workflow system can

be described as follows and depicted in Figure 5.5. The input files are uploaded to the

system by user and the path of files is saved in the database. When a workflow is designed

and run, the workflow manager which is implemented in Java, load the specification of the

data products from the database. These data products are the input files of the workflow

designed by the user. The workflow system also contains some pre-built tasks which are

implemented before and the user deploys them for designing and running their workflow.

The specification of the tasks is also uploaded from the database.
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Therefore, in the first step, the location of the scripts for running the task is up-

loaded from the database to the system. Then the script using the designed data products

as arguments is called by Java. This script is located on the server machine and it calls a

job script on a grid machine using the assigned data product.

In the second step, as the name and address of the script and the arguments which

are the specification of data products are already exported from the database in previous

section, these data will be pushed to the script located on the DATAVIEW server machine.

In the third step, using the ssh method we employ the qsub command to run a job

in a grid environment. The job script as can be seen in the third rectangle is a PBS script

that explains some specification of the jobs. These specifications are:

- The name of the queue using which the job will run.

- The number of the cpus and nodes that job would use to run the code.

- The path of the output folder and error folder. These folders would be used to

copy the output and error text file that the grid generates automatically while running the

code.

- email of the algorithm developer who runs the job to report the completion of the

job.

Some other options can be specified in the job script that we did not use in this work

and can be read in the PBS help file for more information. In addition to the specification

mentioned above, the PBS script specifies the name of the script which contains the codes

for executing the job. It also determines the data path.

In the forth step, The data and the scripts are copied to a temporary folder by grid

and the script would be executed and the results will be copied back in the folder specified

in the job script. After completing the job, the PBS script checks the availability of the

results and in case of not generating the results, an error text generated that will be returned

to the DATAVIEW server machine. Also, the path and the name of the output files are
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returned to the server machine as a text file. In addition to these error files, the error text

file that depicts the error of the tools is generated automatically in the grid error folder.

This folder is specified in the grid PBS script as mentioned before.

For integrating MATLAB and Python in our system, the bash script file on grid call

the MATLAB or Python function. The input arguments, which are pushed to this script

from previous script, are integrated in the function. Figure 5.5 shows a sample workflow

of the codes for MATLAB jobs.

Figure 5.5: The procedure for running MATLAB code in grid.

For running the tasks in the grid environment, we implemented a new technique

using which up to 64 task runs can be executed in parallel for one single task. For instance,

64 Registration task instances can be run in parallel in one unique job. The maximum

number of the cores in Wayne Grid nodes is 64. That is the reason that we can run at most
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64 tasks in parallel. This technique is helpful in running the same task for 64 different cases

in parallel. If we run these tasks in separate jobs, the system is required to wait for each

job in queue and thus the performance of the processing would decrease considerably. In

this kind of processing, the input names are written in a text file and the output names are

generated as a text file too in which the name of the result files and the path of them are

specified. Output files are also generated and registered to the database. The intermediate

data are saved for both grid and DATAVIEW server based primitive workflows for fault and

error monitoring. In case of error detection, the intermediate results can be employed to

check the reason of raising the error.

5.4 Experimental Study

The workflow processing for the our methods are depicted in Figure 5.6. The green

rectangles are the inputs of the workflow that are uploaded to the platform. The blue rect-

angles are the actors or tasks that execute on the input data products. The yellow rectangles

are the outputs of the workflow. The formats of the input data products are text files which

has the names of the input images. The second layer includes actors for calculating the

spectrum of the shape. The third layer include the actor that perform our method and

generate MATLAB file that will be used to visualize the deformation of the shape. The

last yellow layer is the results of the processing as a MATLAB file and also an error file

that shows the error generated from executing the job. The two actor layers are written in

Python.

The designed platform can execute more complicated workflows. Figure 5.7 shows

different type of registration for 2D images for medical purposes. In order to do this work-

flow, we integrated BET skull striping [53] for skull striping, FREESURFER [42] for seg-

mentation of different structures of 2D images, FLIRT [19] for registration, and MATLAB
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Figure 5.6: The scientific workflow for our method running on grid in parallel. The input
and output files are text files. The tasks can be run for up to 64 cases in parallel. The green
rectangles are the inputs of the workflow. They can be selected from the left panel of the
platform. The blue rectangles are the task agents which can be dragged and dropped from
the right panel of the platform. The yellow rectangles are the outputs of the workflow. They
can be chosen from the left side as output stub and renamed by users.

for feature extraction tasks. By employing different type of tools for different tasks, we can

compare their results and choose the best one for each task.
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Figure 5.7: A more complicated sample of workflow for epilepsy diagnosis.
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Chapter 6: CONCLUSION

In this work, we have introduced two new method based on our developed spectrum

variation theorems for localizing and quantifying deformations and finding the point to

point correspondence between two surface shapes. We have also, integrated these methods

in a workflow system called DataView system to give the users the capability of running

their codes using their web-browsers. The main contributions include:

• We have proved that the eigenvalues of the spectrum constitute an analytic function

of a scale function defined on the Riemann metric. The deformation is an integral of

the derivative of the scale function. The theorem applies both continuous analytic and

discrete cases, therefore, warrants an algorithm to align the shape spectra of discrete

shapes represented with triangle meshes. Given two closed triangle meshes, the spec-

tra can be aligned from one to another with a scale function defined on each vertex.

Our extensive experiment results have demonstrated that the proposed method can

detect the global and local deformation of shapes. Our applications to real epilepsy

and Alzheimer data have shown its potential in clinical diagnosis. Furthermore, the

comparisons to non-rigid ICP method and voxel-based method have indicated that

our method has more advantages.

• We have introduced a new method based on shape spectrum to find the point-to-point

correspondence between two surfaces undergoing global and local deformations. We

employ both eigenvalues and eigenvectors of the surfaces in the alignment. Our

method can localize the non-isometric deformation of the surface and find the dis-

placement map for all the vertices. Because we use certain feature points instead

of all the vertices to align the eigenvectors, our method is considerably more effi-

cient than existing methods. We have applied our method to both synthetic and real

data, and the results confirm the advantage and accuracy of our method. We have
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also compared our method with ICP and an spectral-based methods and showed the

advantages of our method over them.

• We employed and enhanced a web-based scientific workflow system named DATAVIEW

to integrate our methods. We also extend this system to utilize grid for processing

the data in parallel and thus speed up the performance of the system. For imple-

menting the extension parts we added some sections to the data product and task

manager part of the system. Using this workflow system, users can design, save, run,

and share their workflow using their web-browsers without the need of installing any

software and regardless of the power of their computers. Using Grid the same task

can be executed on up to 64 different cases which will increase the performance of

the system enormously. Another benefit of this system is that the same tasks can be

implemented using different tools and the results of them can be compared for further

decision making.
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Morphometric analysis of 3D surface objects are very important in many biomedi-

cal applications and clinical diagnoses. Its critical step lies in shape comparison and regis-

tration. Considering that the deformations of most organs such as heart or brain structures

are non-isometric, it is very difficult to find the correspondence between the shapes before

and after deformation, and therefore, very challenging for diagnosis purposes.

To solve these challenges, we propose two spectral based methods. The first method

employs the variation of the eigenvalues of the Laplace-Beltrami operator of the shape

and optimize a quadratic equation in order to minimize the distance between two shapes’

eigenvalues. This method can determine multi-scale, non-isometric deformations through

the variation of Laplace-Beltrami spectrum of two shapes. Given two triangle meshes, the

spectra can be varied from one to another with a scale function defined on each vertex.

The variation is expressed as a linear interpolation of eigenvalues of the two shapes. In

each iteration step, a quadratic programming problem is constructed, based on our derived

spectrum variation theorem and smoothness energy constraint, to compute the spectrum

variation. The derivative of the scale function is the solution of such a problem. Therefore,

the final scale function can be solved by integral of the result from each step, which, in
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turn, quantitatively describes non-isometric deformations between two shapes. However,

this method can not find the point to point correspondence between two shapes.

Our second method, extends the first method and uses some feature points generated

from the eigenvectors of two shapes to minimize the difference between two eigenvectors

of the shapes in addition to their eigenvalues. In order to register two surfaces, we map

both eigenvalues and eigenvectors of the Laplace-Beltrami of the shapes by optimizing

an energy function. The function is defined by the integration of a smooth term to align

the eigenvalues and a distance term between the eigenvectors at feature points to align the

eigenvectors. The feature points are generated using the static points of certain eigenvec-

tors of the surfaces. By using both the eigenvalues and the eigenvectors on these feature

points, the computational efficiency is improved considerably without losing the accuracy

in comparison to the approaches that use the eigenvectors for all vertices. The variation of

the shape is expressed using a scale function defined at each vertex. Consequently, the total

energy function to align the two given surfaces can be defined using the linear interpolation

of the scale function derivatives. Through the optimization the energy function, the scale

function can be solved and the alignment is achieved. After the alignment, the eigenvectors

can be employed to calculate the point to point correspondence of the surfaces. Therefore,

the proposed method can accurately define the displacement of the vertices. For both meth-

ods, we evaluate them by conducting some experiments on synthetic and real data using

hippocampus and heart data. These experiments demonstrate the advantages and accuracy

of our methods.

We then integrate our methods to a workflow system named DataView. Using this

workflow system, users can design, save, run, and share their workflow using their web-

browsers without the need of installing any software and regardless of the power of their

computers. We have also integrated Grid to this system therefore the same task can be
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executed on up to 64 different cases which will increase the performance of the system

enormously.
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