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Figure 1. Microstructure sample 

CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

   Reliability estimation of products/materials is an important issue in current competitive 

markets. Reliability has application in various industries including agriculture [1], 

healthcare [2] and material science [3]. The goal of reliability analysis to predict failure 

time, reduce maintenance cost and operational cost. Hence, accurate reliability 

estimation is highly important. Although the proposed methodologies of the dissertation 

can be applied in many applications, we focus on reliability application in material science 

and steel.  

      In recent years, advanced high strength steel (AHSS) has received increasing 

attention in industries due to its high performance such as high strength, low weight, and 

increased safety. In particular, high strength Dual-Phase (DP) steel is the most widely 

used AHSS in the automotive industry [4]. DP steel consists of two phases, i.e. martensite 

and ferrite, where a phase is a type of particle with distinct chemical or physical properties.  

shows the microstructure of a high strength dual-phase steel sample obtained by an 

1000X optical microscope, in which black and white pixels refer to martensite and ferrite, 

respectively.  
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In material science, research has shown that steel’s microstructure has a strong influence 

on the mechanical properties of the steel, such as strength, ductility, hardness, 

toughness, and wear resistance [5, 6]. Furthermore, the microstructure effects failure time 

of the corresponding material.  

   To improve the reliability prediction of DP steel, the microstructure of the steel, which is 

termed as covariates, have to take into account. The goal of this dissertation is to model 

the covariates and develop methodologies to model effect of the covariates on failure 

time. 

1.2 Related literature 

     Covariates have topological complex and high dimensional structures. Moreover, the 

covariates have spatial properties. Modeling of spatial covariates has been studied by 

researchers in the literature. Paul [7] proposed a simple model which assumes that one 

phase is uniformly distributed spatially in another phase. Another common model 

leverages two-point correlation functions to model the material microstructure, in which 

the two-point correlation functions are defined as the probability that two pixels in the 

image share the same phase given the relative displacement of the two pixels [8-11]. This 

model captures the spatial properties of the microstructure using functional data, but the 

model parameters can be high dimensional with an infinite number of parameters. Feng 

et al [12] applied a Gaussian random field (GRF) to reconstruct two-phase composite 

materials with random morphology and model the binary image by translating a GRF to 

a binary field using a fixed threshold value. Huffer and Wu [13] showed that the method 

is stationary up to the second order, i.e. the mean and the autocorrelation matrix, in binary 

images. However, determining the threshold value is difficult in real world case studies. 
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The autologistic regression model [14] was developed to study the spatial binary data, 

and the model has been applied in multiple disciplines including ecology [15], agriculture 

[16] and image analysis [17]. An autologistic regression model assumes the probability 

that a site belongs to 0  or 1  only depends on its neighbors where neighbors are defined 

as a collection of image pixels around this site/pixel. Cross and Jain [18] showed that the 

autologistic regression model is well suited for the binary image that is relevant to the 

material microstructure modeling problem. Recently Zhang and Yang [19] proposed a 

model based on the autologistic regression model to capture the microstructure variation 

of multiple samples for the two phase materials. However, the random effect autologistic 

model selects arbitrary neighboring order to model multiple microstructure samples which 

may lead to underfitting or overfitting if low or high order of neighboring are selected, 

respectively. Moreover, estimation of the model parameters in random effect autologistic 

becomes challenging as the number of random and fixed components increases.  

   The existing statistical model are not efficient to model complex spatial data. 

Specifically, existing models consider that each point in spatial data has statistical 

dependency to points around, however, the model has certain limitation on number of 

dependencies. In order to model complex spatial data, the limitation needs to be relaxed. 

   In the reliability literature, there are many models with covariates that conduct reliability 

analysis. The existing research can be divided into two distinct types: 1) parametric 

models and 2) semi-parametric models. In the parametric models the probability 

distribution of survival times and the overall shape of the hazard function need to be 

specified. Accelerated failure time [2], Weibull regression [20] and log-logistic regression 

[21] are parametric models in the literature. Recently, a more complex parametric failure 
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model considering the image of a material is proposed [22]. The disadvantage of the 

parametric models is that the prior knowledge about probability distribution may not be 

available. 

   In semi-parametric models, there are no assumptions on hazard functions, and they 

have parametric forms concerning the effect of the covariates. The advantage of this type 

of model is that it does not require prior knowledge about the form of true hazard functions 

(which can be very complex) to assess the effect of the covariates. The proportional 

hazard model (PHM) [23] is  semi-parametric to analyze survival data [24]. The Cox model 

[24] is a well-known model based on PHM. Various models based on the Cox model have 

been  proposed to select most significant covariates [25, 26]. Sleeper et al. [27] developed 

an approach based on the Cox model to capture the effect of covariates by smooth 

nonlinear B-splines. This model, however, may have many parameters and thus can 

suffer from overfitting. Faraggi et al. [28] developed a more complex form of the Cox 

model, but the model assumptions are difficult to be satisfied in reality. Thus, it can suffer 

from overfitting when there are a limited number of samples. Furthermore, an additive 

PHM [29] was proposed to model the effects of baseline hazard function additively rather 

than multiplicatively in the Cox model. Badia et.al [30] proposed a mixed model which 

considers additive and multiplicative effects simultaneously. 

   Although semi-parametric and parametric reliability models are being successfully 

applied on survival data to predict failure times, the models have strong assumptions 

regarding covariate relationships, which make the models ineffective in the case of 

complex covariates.  
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   Furthermore, in literature, the parameters of reliability models are estimated using 

covariates and corresponding failure time (training process), and then predict failure time 

of new covariates (test process). However, if the distribution of training covariates and 

test covariates are not same, the performance of the model may be biased. This 

distribution discrepancy often neglected which may lead to inaccurate reliability 

estimation.   

1.3 Dissertation Objective 

   In this dissertation research, we study on a deep learning-based reliability model for 

complex covariates. Especially, we first model the spatial covariates by a novel statistical 

and next we study on deep learning-based reliability model to predict future failure. 

Finally, a transfer learning-based reliability model is proposed.  

The objectives of this research are listed as follows: 

a)  Develop an efficient spatial statistical approach to model complex covariates. 

b) Apply the model in (a) to extract the feature of covariates and develop a deep 

learning-based model to predict future failure time 

c) Develop a transfer learning model to predict reliability of materials/products using 

result of (a) and (b)  

1.4 Dissertation Organization 

   This dissertation consists of three main chapters, preceded by the introduction chapter 

(i.e., CHAPTER 1) and followed by a general conclusion (i.e., CHAPTER 5). Specifically, 

in CHAPTER 2 a novel spatial statistical model is proposed to model complex and high 

dimensional covariates. In CHAPTER 3, a novel deep-learning based reliability model is 
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proposed to capture complex relationship of covariates and their failure time. Finally, in 

CHAPTER 4, a novel transfer learning-based reliability model is proposed for estimate 

reliability of products/materials using failure times of other products/materials. 
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CHAPTER 2. A Penalized Autologistic Regression 

2.1 Overview  

Recently dual phase high strength steel has attracted increasing attention in the 

automotive industry due to its prominent physical and mechanical properties. 

Microstructures of dual phase high strength steel have a significant effect on the 

properties of steel, such as wear resistance and strength, so it has an important role in 

the quality of steel. Therefore, statistical modeling of the microstructures of steel is of 

great interest. However, most existing methods require many model parameters due to 

the complex topological forms of microstructures, which make these models suffer from 

overfitting and high computational time for parameter estimation. To overcome these 

challenges, a novel statistical model is proposed to characterize microstructures and 

select the most effective parameters. Furthermore, an efficient parameter estimation 

method is developed to estimate the model parameters given a microstructure sample. 

The developed method is based on a penalized pseudo log-likelihood and the accelerated 

proximal gradient. A simulation study is conducted to verify the developed methods. The 

proposed methodology is validated by a real-world example of the microstructures of high 

strength steel, and the case study shows the superior performance of the developed 

model compared with existing methods. 

2.2 Introduction 

The main goal of the chapter to develop a statistical approach to model complex and high 

dimensional structure of covariate. The covariate is factor that effect the failure time. 

Existing methodologies to model complex spatial covariates have limitation on number of 

parameters to model the spatial data efficiently. To overcome the challenge, we proposed 
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a novel statistical model. The model can be used to reduce dimension of spatial data 

efficiently. 

   The motivation of this chapter is in the quality control of DP steel. Common quality 

control methods for steel manufacturing are traditionally based on appearance of the 

steels. However, research has shown that the microstructure of the steel plays an 

important role in mechanical properties. New statistical-based quality control methods  

[11, 19] require accurate microstructure quantifications. Our proposed model can be used 

for proper and accurate microstructure quantification within a class of steel or among 

different steel classes. Furthermore, another application of the proposed model in 

material science is enhancing the design and discovery of novel steels. Steel properties 

depend on grain size, location and orientation, which makes the number of possible 

configurations exponential and very costly to synthesize [31]. Moreover, human error is 

involved in the process. To overcome these challenges our proposed model can be 

utilized to design the desired steel properties efficiently by choosing the proper 

configuration of grains. Also, the proposed model can be used for microstructure 

reconstruction. 

This chapter is organized as follows: After the introduction, Section 2.3 proposes the 

novel penalized autologistic regression model. Section 2.4 develops the parameter 

estimation method. Section 2.5 reports on simulation studies conducted to verify the 

proposed methodology, and Section 2.6 provides a real-world example of high strength 

dual-phase steel to illustrate the performance of the developed model. Finally, the chapter 

is concluded in Section 2.7. 
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2.3 Model description  

     In this study, the microstructure of two-phase materials is represented by a binary 

lattice denoted by X , which is assumed to have a dimension of d d× . Let {0,1}ix ∈  

denote the observed value at the thi  site on a binary lattice, 1,...,i n= , where n d d= × . 

Let ( )N i  denote the collection of sites that are spatial neighbors of site i  for a given 

neighborhood structure, and {0,1}, ( )jx j N i∈ ∈  represents the observed value of the thj  

neighbor of site i . The cardinality of ( )N i  is p , i.e., | ( ) |N i p= .  

 2.3.1 Introduction to the autologistic regression model 

The autologistic regression model [32] has been widely used in the literature to study 

binary spatial data and is applied in multiple domains, including ecology, agriculture, 

epidemiology, and image analysis. The model assumes the probability that a site belongs 

to a phase only depending on its neighbors. This model property can be seen essentially 

as a Markov property in the Markov random field model.  

    Specifically, for the classical autologistic model, the conditional distribution of the site 

i  depending on its neighbors ( )N i  is defined as follows: 

)
( )

exp( )
( | : )

1 exp(

i
i i j j

x
p X x X x N ij

η

η
= = ∈ =

+
                      (1) 

0 ( )j N i j jxη λ λ
∈

= +∑  

where , {0,..., }j j pλ ∈  is the model parameters.  

To estimate the model parameters, the likelihood function of the classical autologistic 

regression model is given as follows [32] : 
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0

( )

1 1
( | ) exp [ ( )]

( ) 2
i j j

j N

i

i i

l x x x
c

λ λ
∈

 
= + 

 
∑ ∑λ X

λ
                                          (2)    

 where 
0 1 2{ , , ,..., }pλ λ λ λ=λ , X  is the binary lattice, and ( )c λ  is a normalizing function 

which is called the partition function.  

2.3.2 A novel penalized autologistic regression model 

    The autologistic regression model incorporates spatial autocorrelation by considering 

the relationship between sites and their neighbors. The definition of order of neighboring 

is flexible in different contents [33]. As shown in Figure 2, the first order neighbors of site 

i  are defined as {8,12,13,17}( )N i = , the second order neighbors are defined as 

{7,8,9,12,13,16,17,18} , the third order neighbors are defined as 

{3,7,8,9,11,12,13,14,16,17,18,22} , and the fourth order neighbors are defined as

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}.  

    In the literature, the existing autologistic regression models generally consider 

neighboring up to the second order to avoid computational complexity [16]. High order of 

neighboring can significantly increase the number of model parameters, making the 

model suffer from overfitting and computationally difficult. 
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Figure 2. A microstructure image with 24 neighbors 

    To overcome the aforementioned challenges, we propose a novel penalized 

autologistic model to select the most relevant parameters so that high order of 

neighboring can be incorporated. The model is formulated as follows:      

(

0

)

1 1
max exp [ ( )]

( ) 2 N

i j i j

i j i

x x x
c

λ λ
∈

 
+ 

 
∑ ∑λ

λ
                                              (3) 

Subject to 
(

0

)

| |
N i

j

j

λ λ α
∈

+ ≤∑  

where 0α ≥  is a tuning parameter, and { }, 0,1,...,i i pλ= =λ  are model parameters. 

    The proposed model selects only relevant parameters so that it is effective for high 

dimension data. The constraint 
(

0

)

| |
N i

j

j

λ λ α
∈

+ ≤∑  in model (3) encourages the autologistic 

regression model so that some of the parameters become zero. The tuning parameter α  

controls the amount of shrinkage. The proposed model is able to simultaneously perform 

variable selection and parameter estimations.  

i   
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    In model (3), the introduced constraint makes the optimization problem difficult. It is 

convenient to consider the Lagrangian form of the optimization problem (3) [34] which is 

as follows: 

0

)

0

( ( )

1 1
max exp [ ( )] ( | |)

( ) 2 N i N i

i j i j j

i j j

x x x
c

λ λ β λ λ
∈ ∈

 
+ − + 

 
∑ ∑ ∑λ

λ
                        (4) 

where β  is a tuning parameter. Equations (3) and (4) are equivalent in a sense that for 

0β ≥  there exists 0α ≥ , which results in the same solutions for the two equations. 

The proposed penalized autologistic regression model (4) is a generalization of two 

classical models.  

1) The proposed model generalizes the penalized logistic regression [35]. Specifically, 

our proposed model considers the neighbor of each site (i.e., auto-logistic model type), 

while the penalized logistic regression does not.  

2) The proposed model is a generalization of the autologistic regression model. When 

0β =  in (4), the proposed model degenerates to the likelihood function of the classical 

autologistic regression model. 

To ensure that all sites have the same number of neighbors, we assume that the left 

top corner is connected with the right bottom corner and the right top corner is connected 

with the left bottom corner. In addition, the leftmost column is connected with the rightmost 

column, and the first row is connected with the last row. 

2.4 Parameter estimation method 

    Given the model presented in the previous section, there are some challenges in model 

parameter estimation. In Section 2.4.1, we first develop the penalized pseudo-log 
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likelihood to overcome the challenge of dealing with the intractable computation of 

constant ( )c λ  in the likelihood function (4). The next challenge is that traditional 

optimization methods are inefficient if not impossible to estimate model parameters. To 

overcome this challenge, we develop both an exact and an approximate algorithm based 

on the accelerated proximal gradient to estimate the model parameters. The developed 

exact and approximate methods are detailed in sections 2.4.2 and 2.4.3, respectively.  

2.4.1 Penalized pseudo-log likelihood 

   The first challenge in model parameter estimation is dealing with the intractable 

computation of the constant ( )c λ  in equation (4). Given a d d×  microstructure image, we 

have to enumerate all 2d d×  possible realizations of the image to calculate the 

normalization constant 1( )c −
λ . To overcome this challenge, we adopt the 

pseudolikelihood approximation [14], in the autologistic regression framework and 

develop a penalized pseudo-log likelihood (PPLL) function as follows: 

  (

0

(

0

( )0

)

)

1

exp( ( ))

log ( | |)
1 exp( )

i j jn
j

PPLL j

i

N i

N i

N

jj

j i

j

x x

l
x

λ λ

β λ λ
λ λ

∈

= ∈

∈

+

= − +
+ +

∑
∑ ∑

∑
                              (5) 

where β  is a tuning parameter. Note that if 0β = , then (5) converts to a traditional 

pseudo-log likelihood function. To estimate the model parameters λ , PPLLl  in (5) needs 

to be maximized.  

    2.4.2 Accelerated proximal gradient 

    As function (5) is not differentiable, the classical derivative-based optimization methods 

are not applicable. In addition, the classical non-derivative-based optimization methods 
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are not efficient to optimize equation (5). In this chapter, we develop a model parameter 

estimation method based on the accelerated proximal gradient framework [36]. 

    The accelerated proximal gradient is a framework to solve optimization problems with 

a non- differentiable objective function. To utilize the framework, the objective function 

needs to satisfy two assumptions: 1) the objective function is a summation of a 

differentiable convex function ( )f λ  and a non-differentiable convex function ( )g λ , and 2) 

the differentiable part of objective function ( )f λ  needs to be a Lipschitz continuous 

gradient. 

    Specifically, a function is a Lipschitz continuous gradient when there is a constant L  

that for every 1, ,p+∈α θ R  the following inequality holds 

|| ( ) ( ) || || ||f f L∇ − ∇ ≤ −α θ α θ                                              (6) 

where || . ||  is L2-norm, and ( )f∇ λ  is the gradient function.  

2.4.2.1 Analytical solution 

    To apply the accelerated proximal gradient framework, the two aforementioned 

assumptions need to be satisfied. In this section we show that the optimization problem 

(5) satisfies both assumptions.  

    Following the maximum likelihood framework, to estimate model parameters, the PPLLl  

function in (5) needs to be maximized. This is equivalent to minimizing PPLLl− . Since the 

proximal gradient method focuses on minimization problems, we consider PPLLl−  to be 

minimized. PPLLl−  is a summation of the two separate functions, i.e., ( ) ( )f g+λ λ  which is 

formulated as follows: 
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(

0

1

(

)

1
0

)

exp( ( ))

( ) log , ( ) || ||

1 exp( )

i

N i

j jn
j

i
j

N i

j

j

x x

f g

x

λ λ

β

λ λ

∈

=

∈

 
+ 

 = − =
 

+ + 
 

∑
∑

∑
λ λ λ                                  (7) 

where ( )f λ  is a convex differentiable function and ( )g λ  is a convex and non-

differentiable function. The following Proposition 1 shows that the second assumption is 

satisfied, and the proof of Proposition 1 is given in Appendix A. 

Proposition 1: ( )f λ  in equation (7) is a Lipschitz continuous gradient with 

( 1)L c p n= + , given a d d×  microstructure sample image and 2n d= , and c  is a 

constant larger than 1, i.e., 1c > . 

As both assumptions are satisfied, we develop a proximal gradient method to 

optimize the objective function through an iterative algorithm. At each iteration, the model 

parameter is updated by  

1 1 1 1 2

1arg min ( ) , ( ( ) || || || ||
2

m m m m mL
f f β− − − − 

= + < − ∇ > + − + 
 

λλ λ λ λ λ λ λ λ                        (8) 

where super-indices ( )m  denotes the iteration number, .< >  is the inner product 

operator, and 1|| . ||  is the L1-norm. However, the computational time of the parameter 

estimation method is high especially when the data dimension is high and high order of 

neighboring is considered. Furthermore, due to the complexity of the formula (8), the 

method needs additional time for a root-finding algorithm. In the next section we develop 

an approximated solution for (8) which takes less computational time. 
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2.4.2.2 Approximation solution 

    The analytical solution developed in the previous section can obtain the exact optimal 

solution. The computation time of the developed method, however, increases with the 

increment of the sample size. When the sample size is large, it may take too much time 

to obtain the analytical solution through the iterative method. We develop an 

approximation method to estimate the model parameters, which accelerates the 

optimization process.  

The following Proposition 2 provides an approximated solution of the thm  iteration in (8), 

i.e., 0 1{ , ,..., }m m m m

pλ λ λ=λ .The detailed proof of Proposition 2 is listed in Appendix B.  

Proposition 2: The approximated closed form solution of each iteration m  of (8) can be 

calculated as follows: 

1 1

( ) ( )
( ) ( )

sgn | |
2 2 2 2 2

n n

m mi j j i j j
j jm i i

j

x x x x x x

L L L

λ λ β
λ

−1 −1

= =

+

  
− −  

  = + + −
  
  
  

∑ ∑
 

where 
m

jλ  is the thj  model parameters in the thm  iteration, sgn(.)  is a sign function, 

max(0, )x x+ =  and 1jx =  for 0j = .  

The proposed optimization algorithm based on the accelerated proximal gradient 

algorithm and utilizing Proposition 2 to solve (8) is summarized in Algorithm 1 below: 
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 Algorithm 1 

1. Initialization of algorithm parameters; error size ε , iteration counter 1m = , 

Lipschitz continuous gradient constant 
2( 1)L c p d= + , model parameters 

initialization (0)

jλ , auxiliary variable 0 0 0 0

0 1{ ,..., }ky y y= =y 1     

2. In each iteration, update 

1 1

( ) ( )
( ) ( )

sgn | |
2 2 2 2 2

n n

m mi j j i j j
j jm i i

j

x x x x x x

L L L

λ λ β
λ

−1 −1

= =

+

  
− −  

  = + + −
  
  
  

∑ ∑
  

3. Update 1 1 2( ),m m m m

j j j jy mλ λ λ− − −= + −  and 1m m= +  

4. If 2 1| |m m

j j
λ λ ε− −− >  then go to step 2 

Else stop. 

 

     The time complexity of the proposed algorithm is less than the analytical solution 

because fewer operations are needed to compute the solution and the root-finding 

algorithm is no longer needed. The convergence rate of Algorithm 1 is 
2

1
( )O
M

, where M  

is the maximum iteration of the algorithm. The proof of the convergence rate of Algorithm 

1 is listed in Appendix C. In Algorithm 1, the tuning parameter β  needs to be estimated. 

In this chapter, we apply the K -fold cross validation method that is widely used in the 

literature [37]. Based on the K -fold cross validation, we developed Algorithm 2 below to 

obtain the optimum tuning parameter β .   
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Algorithm 2: 

1.  Initialize the input with the microstructure image data consisting of n  pixels divided 

into the K  subsample. 

1. The estimated parameters are obtained as a function of the tuning parameter [0, ]Lβ ∈  

using Algorithm 1 described above, while omitting the 
thi  fold, where 1,...,i K= . 

3. The fitted model is used to predict the values of the omitted 
thi  subsample, and the 

prediction error is computed against each choice of the tuning parameter using the 

following formula 

1

1
log ( 1| : ( )) (1 ) log ( 0 | : ( ))

n

i i j j i i j j

i

Error x p X X x j N i x p X X x j N i
n =

= − = = ∈ + − = = ∈∑ (9)                                      

4.    The tuning parameter is chosen as the value of β  which minimizes the error term in 

(9). 

  Equation (9) measures the average sum of the value of each pixel multiplied by the 

probability of having the value (0 / 1)  predicted by the proposed model. Specifically, if a 

pixel has a value of 1iX = , then the right summand becomes 0 , and the left summand 

remains in place. On the other hand, if a pixel has the value of 0iX = , then the right 

summand with the term remains in place, but the left summand becomes 0. 

When the sample size is not large, the leave-on-out method can be used. Leave-one-

out is a type of K-fold cross validation when K n= , where n  is the number of pixels in 
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the microstructure. In this study, for the 
thi  subsample that is obtained by omitting the 

thi  

site, the model is fitted by using the subsample data and estimate error (9).  

2.5 Simulation study  

    A simulation study is performed to illustrate the performance of the proposed parameter 

estimation method developed in Section 3. In the simulation study, we generate a sample 

microstructure according to the proposed penalized autologistic regression model. To 

simulate the microstructure sample, we first generate sample parameters 

{ }, 0,...,i i pλ= =λ  from the standard normal distribution and normalize them into the 

range of [ 1,0]− . In this study, the neighbor set ( )N i  of the thi  pixel contains 24 neighbors, 

thus 0 1 2 24[ , , ,..., ]λ λ λ λ=λ . We assume the microstructures are non-homogeneous so that 

all the parameters may have different values. To demonstrate the generalization of the 

proposed methods, an arbitrary λ  is used in the simulation study. Additionally, some of 

the parameter values including 0λ  are set as zeros.  

    Next, given the parameters λ , we develop an algorithm to generate a microstructure’s 

image inspired by the procedure proposed by Cross and Jain [18]. The main idea behind 

the simulation algorithm is to increase the likelihood of the image’s realization by 

repeatedly exchanging two randomly chosen pixel values. Specifically, we randomly 

choose two sites and reverse their values. The exchange is accepted if the new image 

gets a higher pseudo-likelihood value. The details of the simulation process are described 

in Algorithm 3, which is shown in Appendix D.  

    Based on Algorithm 3, we generate a binary matrix, with a sample size of 100 100× , 

by using the given parameter λ . Next, we apply Algorithm 1 to estimate the model 
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parameters, where the initial parameters are set as $0 [0,0,...,0]=λ , and the error size is 

set as 0.001ε = .  

     When applying Algorithm 2, the tuning parameter β  is obtained as 50β = . Based on 

Algorithm 1, the model parameters are obtained and compared with true values to access 

the performance of the proposed method.  

   Table 1 represents the estimated model parameter and the true values of the 

parameters. As shown in Table 1, the estimated parameters and the true values of the 

parameter are close, which demonstrates the performance of the proposed method. 

Additionally, the 0λ  is estimated as zero.  
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Table 1. True values and estimated model parameters 

Parameters 
True 

value 
Estimation 

Parameters True 

values 

Estimation 

1λ  -0.08 -0.091 13λ  -0.09 -0.091 

2λ  -0.04 -0.056 14λ  -0.2 -0.273 

3λ  -0.06 -0.075 15λ  -0.001 -0.003 

4λ  -0.12 -0.184 16λ  0 0 

5λ  -0.28 -0.34 17λ  0 0 

6λ  -0.035 -0.047 18λ  -0.06 -0.085 

7λ  0 -0.003 19λ  -0.2 -0.258 

8λ  0 0 20λ  0 0 

9λ  -0.1 -0.127 21λ  0 0 

10λ  -0.2 -0.303 22λ  0 0 

11λ  -0.01 -0.018 23λ  -0.07 -0.090 

12λ  0 0 24λ  -0.2 -0.258 
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The following Figure 3 shows the convergence of a randomly selected parameter, 6λ . As 

can be seen from Figure 3, the developed algorithm converges to the true value after 

around the 13th  iteration. Other parameters converge quickly as well.  

 

 

 

 

 

 

     

 

 

 

Furthermore, we investigate the effect of sample size on the accuracy of the proposed 

method. To measure the performance of the developed method, we calculate the root 

mean square error (RMSE) [38], which is defined as follows: 

 2

0

( )

1

p

i i

iRMSE
p

λ λ
=

−

=
+

∑
                                                     (10) 

where $ iλ  and iλ  are the thi estimated model parameter and the true value of the 

parameter, respectively, and 1p +  is the cardinality of 
0 1 2{ , , ,..., }pλ λ λ λ=λ .  
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    The following Figure 4 shows the RMSE for different sample sizes. It can be seen in 

Figure 4 that the value of RMSE decreases as the size of the samples increases.    

 

 

 

 

 

 

 

 

     

 

Moreover, in order to analyze how many neighbors are falsely included or excluded during 

the parameter estimation methodology, we randomly generate 100  microstructure 

images with the dimensions 100 100×  using Algorithm 3 and estimate model parameters 

based on Algorithm 1. Figure 5 shows the distribution of the false positive and false 

negative estimated parameters. Traditional autologistic regression estimates non-zero 

parameters in our simulation study, as no penalty term is involved in the model. Hence, 

the probability of a false negative for the 9 zero-value parameters is 1.     
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Figure 4.  Sample size vs parameter estimations 
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Figure 5. Distribution of false positive (left) and false negative (right) 

Furthermore, we compare the computational time of the developed penalized autologistic 

regression model to the classical autologistic regression model in Figure 6. In the figure, 

the blue line shows the computation time of the classical autologistic regression model; 

the green and the red lines represent the computation time of the developed analytical 

method and the approximate method for the proposed penalized autologistic regression 

model, respectively. As shown in Figure 6, when the size of the sample is large, it is 

intractable to estimate the model parameters for the classical autologistic regression 

model, while our developed methods can significantly reduce the computational time of 

model parameter estimation. 
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   To further analyze model accuracy, we compare estimated model parameters using 

penalized autologistic and traditional autologistic with second order of neighboring using 

their corresponding RMSE. Table 2 shows the RMSE of the penalized autologistic 

regression is less than that of the autologistic regression method. Thus, we can conclude 

that our proposed model outperforms the traditional model. 

Table 2 Model fitting comparison 

Model RMSE 

Penalized autologistic regression 0.10 

Autologistic regression 0.37 
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Figure 7. Two microstructure samples, a sample of DP780 (left) and a sample of DP980 (right) 

2.6 Case study  

We applied our proposed model to the microstructure images of samples of DP high 

strength steel, which is widely used in the automotive industry due to its excellent 

performance. The steel samples are prepared through several processing steps including 

grinding, etching and polishing. After preparation, the microstructures of the steel samples 

are obtained by using a microscope with a 1000X magnification.  

We obtained 22 microstructure images of two types of DP steel, which are termed as 

DP780 and DP980, provided by our industrial partners. The image dataset includes 11 

microstructure samples of DP780 steel and 11 microstructure samples of DP980.  

Figure 7 shows the DP780 and a DP980 microstructures used in the case study. It can 

be seen in Figure 7 that the spatial distributions of the two phases are different in DP780 

and DP980 microstructures.     

        

 

 

 

 

 

 

 

        One application of our proposed model is material classification from their 

microstructure images without any prior knowledge. However, it is a challenging task due 

to the large product variation that can appear across different manufacturers or different 
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batches from a manufacturer, resulting in variations on their microstructure. Irani and 

Taheri [39] showed that the product variations in the steel manufacturing process happen 

due to high variations of process parameters, e.g., heating energy and cooling speed. 

The product variations are physically presented on their microstructure. The sample 

variation, including both the variation of the mechanical and physical properties due to 

variation in the microstructures in the steel manufacturing process, is widely 

acknowledged and studied in the steel industry. Therefore, automatically classifying 

different types of steel products that exhibit variation is a challenging task. 

    In the case study, we investigate the problem of classifying two types of DP steel, i.e., 

DP780 and DP980, based on their microstructures. There is a large body of research in 

material science that characterizes and classifies material based on optical and electron 

imaging [40]. Despite the existing material variations, our proposed model is able to 

characterize materials based on their microstructure images considering their spatial 

properties in different phases.  

    The framework of classifying two types of microstructure samples consists of two steps. 

In the first step, features are extracted using a feature extraction method. In the second 

step, a classification method is used to classify microstructure images based on the 

extracted features.   

    In this chapter, parameters of the proposed penalized autologistic regression model 

can be used as features, based on which a classification technique is employed to classify 

two different types of DPs. The proposed model with the fourth order of neighboring is 

considered for the case study, and the model parameters are 0 2 24[ , ,..., ]λ λ λ=λ . In this 

case, we assume that the steel is non-homogeneous so that the values of the model 
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parameters iλ  for different neighbors are different. We estimate each 
jλ  corresponding 

to the thj  neighbor for 1,..., 24j =  and 0λ , based on Algorithm 1. The following Table 3 

shows the model parameters of both a DP780 sample and a DP980 sample. In Table 3, 

some of the model parameters’ values are zeros, which indicates that the parameters are 

unimportant in representing the underlying structure of the microstructure. Moreover, 

0 0.044λ = −  for case of DP980 and 0 0.078λ = −  for case of DP780.  

Table 3. Predicted parameters 

Parameters DP780 DP980 Parameters DP780 DP980 Parameters DP780 DP980 

1λ  -0.008 -0.010 9λ  0 0 17λ  0 0 

2λ  -0.004 -0.005 10λ  -0.004 -0.007 18λ  0 0 

3λ  -0.001 0.003 11λ  -0.004 -0.005 19λ  -0.005 -0.006 

4λ  -0.002 -0.006 12λ  0 0 20λ  -0.006 -0.010 

5λ  -0.006 -0.010 13λ  0 0 21λ  -0.003 -0.005 

6λ  -0.005 -0.007 14λ  -0.003 -0.006 22λ  -0.002 -0.003 

7λ  0 0 15λ  -0.004 -0.007 23λ  -0.004 -0.005 

8λ  0 0 16λ  0 0 24λ  -0.008 -0.010 

 

After obtaining the estimated model parameters, the next step is to use an unsupervised 

classification method to classify the images. We use the k-means method [41], which is 

a classification method commonly used in the literature. The k-means method partitions 

m  observations to k clusters in which each observation belongs to a cluster with the 

nearest mean. For our case, we set 22m =  and 2k = .  
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     We applied the proposed model, the classical autologistic regression model, and the 

Gray Level Co-occurrence (GLC) method [42], to extract the features from the 

microstructure images and compared their performance by applying the k-means method 

in the second step. The GLC method that extracts image textural features including 

inertia, homogeneity, entropy and energy is the feature extraction method most commonly 

used in the literature [43].  

      Table 4 shows the classification accuracy (i.e., the percent of correct classification) of 

the k-means method with different feature extraction methods. As shown in Table 4, the 

classification method with features extracted by using the proposed penalize autologistic 

regression outperforms the classical autologistic regression model and the GLC method. 

The k-means method with our proposed model is able to classify all microstructure 

images correctly.  

Table 4. Performance comparison of proposed model to the existing methods 

 

Feature extraction method 
Classification accuracy  

of k-means method (%) 

Classical autologistic regression 10% 

GLC  50% 

Penalize autologistic regression 100% 

 

    2.7 Conclusion  

    In this chapter, we proposed a novel penalized autologistic regression model to 

characterize dual phase microstructures. We further developed a penalized maximum 
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pseudo log-likelihood method to estimate model parameters given microstructure 

samples. Furthermore, the traditional optimization methods cannot be directly applied to 

estimate model parameters due to their computational inefficiency especially when the 

numbers of neighbors are large. Hence, we developed efficient optimization methods to 

estimate the model parameters. We conducted a simulation study to verify the proposed 

parameter estimation method. As a real-world case study, we performed parameter 

estimation on a dataset of microstructures images. The dataset contained two different 

types of DP steel microstructures. We used the estimated parameters of the 

microstructure combined with a classification method to classify different types of high 

strength DP steel based on their microstructures. The classification results based on the 

proposed model outperformed the existing methods.  

As a future research topic, study of a penalized multi-phase model which considers 

more than two phases would be interesting. The proposed regularized autologistic 

regression model will be extended to materials with more than two phases. 
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Chapter3. Deep Learning-Based Reliability Method for Complex Survival Data 

 

3.1 Overview  

   Reliability of products is a critical issue as it has as high economic impacts, especially 

in current competitive markets. In modern applications, the complex and high dimensional 

data of products are collected which can be used for reliability analysis and the failure 

prediction. The existing reliability approaches, however, cannot efficiently model complex 

covariates and their effects on the time-to-failure of products. In this chapter, we propose 

a novel deep learning-based reliability approach to model the complex relationship of 

covariates and product failure. To estimate model parameters, neither the traditional deep 

learning parameter estimation method nor the maximum likelihood estimation method is 

applicable. To overcome this difficulty, a new model parameter estimation method is 

developed based on the partial likelihood framework. Furthermore, as there are often only 

a limited number of samples for real-world reliability problems, a new penalized partial 

likelihood estimation method is developed for this special circumstance. The developed 

method is capable of estimating model parameters for censored reliability data. A 

simulation study is conducted to verify the developed methods. The proposed method is 

justified by a real-world case study of the reliability analysis of materials. The case study 

shows that the proposed model outperforms the existing ones. 

3.2 Introduction 

   Reliability estimation of products has crucial applications in various industries, 

particularly in current competitive markets, as it has high economic impacts. Hence, 

reliability analysis and failure prediction are receiving increasing attention. Reliability 
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models based on lifetime data have been developed for different modern applications. 

These models are able to predict failure by incorporating the influence of covariates on 

time-to-failure. The covariates are factors that affect the subjects’ lifetime.  

   With the development of sensor technologies, high dimensional and more complex data 

can now be collected. These data can be used as covariates to predict the lifetime more 

precisely. For example, the advanced optical microscope can produce complex and high 

dimensional images for the material surface factors that affect materials’ lifetime. 

Magnetic resonance imaging (MRI) and electronic health record (EHR) are highly 

complex covariates for patients’ survival time. Existing reliability models, however, cannot 

efficiently model the effects of complex covariates on failure time. This chapter focuses 

on developing a novel reliability model to overcome this challenge.  

To overcome existing models’ limitations, we propose a semi-parametric deep learning-

based reliability model in this chapter. The proposed model is an extension of the Cox 

model, and the same extension can be applied to other semi-parametric models. Unlike 

PHM, the proposed model does not assume a specific relationship between covariates 

and time-to-failure; rather, a deep artificial neural network (ANN) is trained to learn the 

complex and nonlinear relationship. Deep ANN includes representation of the learning 

algorithms that transform raw data to higher-level abstraction through a deep ANN 

containing a multi-level architecture. ANN is a parametrical model inspired by biology. 

The effectiveness of the model has been examined empirically and successfully applied 

in many fields including pattern recognition [44], classification [45] and regression [46]. In 

this chapter, multilayer perceptron (MLP), which is the most common class of ANN, is 

used. In MLP all connections between layers are in one direction and have real valued 
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weights. The output of each neuron is computed in a two-step process: first. a weighted 

sum of the input of each neuron is calculated; next, an activation function is applied to the 

value of the summation function to trigger the output of the neuron. The most common 

activation function is the sigmoid function [47],  

   In this chapter, we develop a reliability model based on that of MLP, whose advantages 

over traditional models are as follows: 1) the does not assume any specific distribution 

for the data, 2) the model is able to approximate any function with an arbitrary error, and 

3) the model is  nonlinear, which makes it suitable to model a complex relationship among 

covariates and failure time in real-world data. The model parameters, which are the 

weights of MLP, are estimated by minimizing a loss function.  

In this chapter, the traditional MLP model parameter estimation methods cannot be 

directly applied because there is no access to the output value of MLP. To overcome this 

challenge, we develop a model parameter estimation method based on the partial 

likelihood to estimate the parameters of MLP. In addition, the model parameter estimation 

method may suffer from overfitting when there are only a few samples available to 

estimate the parameters of MLP, which is a common situation in real-world reliability 

problems. To overcome this difficulty, we develop a model parameter estimation method 

based on the penalized partial likelihood estimation method. The developed method can 

estimate the parameters of MLP with right censored survival data. The proposed model 

is verified and illustrated by simulation and a real-world case study. 

The chapter is organized as follows: After the introduction, 3.3 proposes the novel deep 

learning-based reliability model. 3.4 develops the parameter estimation method. Section 

3.5 implements simulation studies to verify the proposed method, and in Section 3.6 a 
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real-world case study is conducted to show the performance of the developed model. 

Finally, the chapter is summarized in Section 3.7. 

3.3 Reliability model 

   We introduce the definition and the traditional Cox model in Section 3.3.1. The newly 

proposed reliability model based on MLP is presented in Section 3.3.2. 

3.3.1 Introduction of the traditional Cox model 

    In reliability analysis, the hazard function ( )h t  for failure time T  is the probability that 

a subject fails during a small time interval given that the subject has not failed up to the 

beginning of the interval time. Let 1 2{ , ,..., }px x x=x  denote the covariates which are 

associated to a time-to-failure 0t ≥ ; the Cox model is formulated as follows: 

0( | ) ( )exp( )Th t h t=x xα                                               (11)                                          

where 
0 ( )h t  is the baseline hazard (11) function - the hazard function when 0=x , 

1{ ,.., }pα α=α  is the unknown regression coefficients that need to be estimated (model 

parameters), and T
α  in (11) denotes vector transpose of α. The Cox model imposes a 

regression-type structure on the hazard function that is the product of two components. 

The first component 
0 ( )h t  captures the effect of failure time, and the second component 

exp( )Txα  expresses the effect of the covariates associated with failure time. The 

covariates which do not depend on time can be variables such as heat, pressure, 

contamination, etc.  
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  3.3.2 A novel deep learning-based reliability model  

    Although the Cox model is widely applied for reliability analysis and failure prediction, 

the model assumes that the link function has an exponential form and the covariates 

1 2{ , ,..., }px x x=x  have a linear combination in (11) which may not be sufficient to model 

the complex relationships of covariate on time-to-failure. Moreover, the model assumes 

an exponential link function which may not be satisfied in reality. In this study, we extend 

the traditional Cox model to a more complex function. The proposed model is formulated 

as follows:   

0( | ) ( ) ( | )h t h t g=x x θ                                                   (12) 

where θ  is the model parameter, 
0 ( )h t  is a baseline hazard function (when =x 0 ) which 

has a positive value depending on time t . ( | )g x θ  is a function that determines the effect 

of the covariates on time-to-failure. Moreover, ( | )g x θ  has two properties: 1) (0 | ) 1g =θ ; 

and 2) ( | )g x θ  has non-negative values.  

   The proposed model (12) is a generalization of the traditional Cox model,  as the 

function exp( )T
xα  is a special case of ( | )g x θ . ( | )g x θ  in the proposed model is a universal 

function that represents a complex nonlinear relationship. In the proposed model, function 

( | )g x θ  is represented by an MLP. MLP universal approximation theory [48] shows that 

an MLP with a sigmoid activation function can approximate the nonlinear and complex 

function of ( | )g x θ  with certain error. Figure 8 illustrates a generic MLP with z  hidden 

layers and one output layer to estimate the function of ( | )g x θ . 
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Figure 8. Structure of MLP with z  hidden layers 

In Figure 8, 1 2{ , ,..., }px x x=x  is the input layer. The neural network has z  hidden layer 

with , 1,...km k z=  nodes in each hidden layer. ,i jh  is the thj  node in the th
i  hidden layer 

and ( | )g x θ  is the output node. Each ,i jh  is a neuron whose input is a weighted connection 

from the previous layer. The output of each neuron ,i jh  is formulated as follows:    
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                           (13)         

where f  represents the sigmoid activation function which is used as the activation 

function. , , 1,...,t

i jw t z=  is the parameter (weight) that connect the th
i  neuron in the 

( 1) tht −  layer to the thj  neuron in the th
t  layer, and 

O

iw  denotes the parameters that 

connect the th
i  neuron in the last hidden layer to the output layer. ,0, 1,...,th t z=  and 0x  

denote the bias neuron and 0,

t

jw  is bias parameters. The value of biased neurons is 1. 
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The bias allows for more variation which eventually causes richer representation of the 

input space to the learning model. 

3.3.3 Properties of the proposed model   

Based on the proposed deep learning-based reliability, the survival probability function 

( | )S t x  representing the probability of surviving at least t time units and the probability 

density function (PDF) can be derived as follows:  

( )

( | )

0 0

0

( | )

0 0

( | ) exp ( | ) ( ) ( )

( | , ) ( ) ( ) ( | )

t

g

g

S t g h s ds S t

f t h t S t g

 
= − = 

 

=

∫
x θ

x θ

x x θ

x θ x θ

                                   (14)                               

where 
0 0

0

( ) exp ( )

t

S t h s ds
 

= − 
 
∫  is the baseline survival function. 

   The proposed model is a semi-parametric model as all the instances share the same 

baseline hazard function, and the model parameter estimation is independent of the form 

of 
0 ( )h t . Moreover, the model is a proportional hazard model since the hazard ratio (HR) 

is the same in all time points, where HR is defined as the hazard function of a sample’s 

covariate 
ix  divided by a the hazard function of a different sample’s covariate 

jx : 

( )

( )
0

0

( ) ( | )( | ) ( | )

( | ) ( | )( ) ( | )

ii i

j jj

h t gh t g

h t gh t g
= =

x θx x θ

x x θx θ
                                 (15)                                    

In the literature the Cox-Snell residual [49] is generally applied to assess the performance 

of the Cox model on data ( , ), 1,..,j jt j N=x . The following Proposition 3 calculates the 

generalized Cox-Snell residual of the proposed model and assesses the performance of 

the proposed model. The proof of Proposition 3 is provided in Appendix E. 
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Proposition 3: The generalized Cox-Snell residual of the thj  sample is formulated as 

follows: 

 
0( ) ( ) ( | ), 1,...,j j jH t H t g j N= =x θ                                       (16)                               

where  0 ( )jH t  is the Breslow estimation of the baseline cumulative hazard function and is 

calculated as follows: 


0

1
( )

( | )i

i

t t
j

j R

H t

g≤

∈

=∑
∑ x θ

                                             (17)                                

If the newly proposed deep learning-based reliability model fits the data well, then the 

generalized Cox-Snell residual follows an exponential distribution with 1µ = . 

   Whether the generalized Cox-Snell residuals proposed in Proposition 3 follows 

exponential distribution can be verified by using the Kolmogorov-Smirnov test [50], which 

is a nonparametric test that compares a sample with a reference probability distribution. 

3.4 Parameter estimation 

   Given the proposed model in the previous section, there are several challenges to 

estimate model parameters. First, since the baseline hazard function in (12) is not 

defined, the maximum likelihood estimation (MLE) cannot apply directly. Second, 

traditional MLP loss functions based on ordinary least square (OLS) are not applicable, 

as there is no access to the true values of ( | )g x θ  during the training process. To 

overcome this challenge, a novel method based on the partial likelihood framework [51] 

is developed in section 3.3.1. Third, when there are few samples, which generally is the 

case with reliability problems, the parameter estimation method can suffer from 
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overfitting. To overcome this challenge, we develop the penalized partial likelihood in 

Section 3.4.2.  

3.4.1 Loss function of MLP 

       To estimate the model parameters of the MLP, we use a loss function based on the 

partial likelihood function. We first formulate the conditional probability of the th
i  sample’s 

covariate ix  as follows: 

( | )
( | )

( | )
i

T

i
i i T

j

j R

g
p t

g
∈

=
∑

x θ
x

x θ
                                                (18)                                               

where iR  consists of samples that their failure times are larger that it . This conditional 

probability only depends on the order in subjects that experience failure events. By 

assuming that the failure times of samples are independent, we can estimate the 

parameters of the MLP by maximizing the following log-partial likelihood function using 

(18): 

( )
1

( ) log ( | ) log ( | )

. . ( | ) 0 ,

(0, ) 1

i

N

i j

i j R

i i

g g

s t g

g

= ∈

 
 = −  

 

≥ ∀

= ∀

∑ ∑θ x θ x θ

x θ θ x

θ θ

l

                                      (19) 

The constraints of (19) are due to the aforementioned two properties of ( , )g x θ . The 

format of ( , )g x θ  depends on the number of hidden layers of MLP, and the chosen 

activation function is formulated in (13). 
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   The number of hidden layers and the number of neurons in each hidden layer depend 

on the input layer, the number of training samples and complexity of MLP network. 

General methods for determining the number of hidden neuron units are that it should be 

less than twice the size of the input layer [52].  

3.4.2 Penalized partial likelihood estimation 

In the case of small sample size, we develop a maximum penalized log-partial likelihood 

method to estimate the parameters of the MLP. Specifically, a penalty term is added to 

equation (19) so that  MLP’s loss function selects only the important weights to be 

estimated. The penalized log-partial likelihood loss function is formulated as follows: 

  

1

( ) log[ ( | )] log ( | )

. . ( | ) 0 ,

(0 | ) 1

|| ||

i

N

p i j

i j R

i i

g g

s t g

g

δ

= ∈

 
 = − −  

 

≥ ∀

= ∀

≤

∑ ∑θ x θ x θ

x θ θ x

θ θ

θ

l

                                     (20) 

where 0δ ≥  is a tuning parameter, and { }iθ=θ , 1, 2,...,i k=  are model parameters. 

    The developed method selects only the effective parameters of the developed model. 

The constraint || || δ≤θ  in (20) encourages some of the model parameters to become 

zero. The tuning parameter δ controls the amount of shrinkage (complexity of the model). 

The proposed model can simultaneously perform variable selection and parameter 

estimations.  An equivalent and convenient form of (20) using the Lagrangian multiplier 

is formulated as follows: 
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                     (21) 

where β  is a tuning parameter and || .|| is norm 1. Equations (20) and (21) are equivalent 

in a sense that for 0β ≥  there exists 0δ ≥ , which results in the same solutions for the 

two equations. In this study, the tuning parameter β   in equation (21) is estimated by the 

K  -fold cross validation method [53] that is widely used in the literature. 

   Traditional derivative-based optimization methods are not applicable to solve (21) due 

to the non-differentiable part of the objective function || ||β θ . In this study, a heuristic 

method, particle swarm optimization (PSO) [54] is chosen to solve (21). The PSO is a 

computational approach that optimizes problems by iterative attempts to improve 

candidate solutions for a given quality metric. It solves the problem by proposing a set of 

candidate solutions (here referred to as particles) based on simple mathematical formulas 

on the position and the velocity of the particles and moving them in the search space. The 

motion of each particle is affected by its locally best-known position and is directed to the 

most famous locations in the search space, which are updated as other particles find a 

better position. This is expected to push the swarm to the best solution. 

   The developed method can be extended to include censored data. Let D  denote the 

indexes of subjects having failure times, and let S  denote the indexes of the subject that 

are right censored at time *
t  with {1, 2, ..., }D S N∪ = . The penalized log-partial likelihood 

method including right censored survival time is formulated as follows: 
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                         (22) 

where iδ   if the thi   subject’s survival time is right censored and otherwise 1iδ = . The loss 

function introduced in (22) allows to estimate parameters of MLP in present of right 

censored survival data. 

3.5 Simulation Study 

   In the simulation study we first generate a set of samples and failure times. Specifically, 

we generate samples consisting of covariates ix  which are drawn randomly from a 

standard normal distribution, and the covariates are chosen to have 4 elements, i.e. 

, 4p

i R p∈ =x . Furthermore, ( | )g x θ  is chosen to be a complex function which satisfies 

the aforementioned properties in Section 3.2, i.e., ( | ) 1g =0 θ  and ( | ) 0g ≥x θ . The function 

is formulated as follows: 

2 4

1 3

1 0

( | )
| sin( ) cos( ) | 0i j

i j

g
x x

= =

=


= 
+ ≠


∑ ∑

x

x θ
x

                                 (23) 

where | . |  denotes the absolute value and jx  represents the thj  component of a sample. 

In this simulation study, we consider the Weibull lifetime distribution, which is commonly 

used in the reliability field [55]. Based on the Weibull lifetime distribution, the simulated 

failure time can be computed using inverse cumulative density probability function as 

follows: 
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                                                   (24)                      

where , 0λ α >  are the scalar and shape parameters of Weibull distribution, 

respectively. Hence, the corresponding hazard function can be formulated as follows: 

( ) 1

0( | ) ( | ) ( ) ( | )
d

h t g H t t g
dt

αλα −= =x x θ x θ                        (25) 

In this study scalar and shape parameters are chosen to be 0.5λ α= = . We generate 

( | )ig x θ  by random 100 covariates using equation (23), their corresponding time-to-

failures using equation (24),  and the corresponding hazard function using equation (25) 

   We consider two scenarios where sample sizes are large and small to illustrate the 

performance of partial likelihood and the penalized likelihood estimation method. For the 

first scenario (large sample size), we randomly select 50  samples to train with the 

corresponding time-to-failures. We apply the proposed MLP with 2 hidden layers of 2 

neurons in the first and second layers. Then we minimize equations (19) and (21) to 

estimate the model parameters, i.e., the training process. Next, we evaluate the 

performance of the trained model on the remaining 50  covariates with the corresponding 

time-to-failures, i.e., the testing process.  

    To analyze the accuracy of the model, we compute the mean absolute error (MAE) [54] 

for the models of the 50  covariate test set. A Smaller ME indicates better performance. 

The formulation of MAE is given as follows: 

1
| ( | ) ( | ) |

i i

i

MAE g g
N

= −∑ x θ x θ                                          (26)                                              
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where N  is the test set size;  ( | )ig x θ is the estimated function of ( | )ig x θ  for the thi  

sample and | . |  represents absolute value.  

   Table 5 shows that the MAE values of our proposed model with the partial likelihood 

parameter estimation method (named Deep Learning-Partial) and the penalized 

likelihood parameter estimation method (named Deep Learning-Penalized) are smaller 

than that of the traditional Cox model, indicating that our proposed model outperforms the 

Cox model. In addition, the table shows that the Deep Learning-Partial has the best 

performance for failure data with large sample size. 

Table 5. Performance of proposed models and Cox model on large sample size 

Method MAE 

Deep Learning-Penalized 0.38 

Deep learning-Partial 0.21 

Cox model 0.52 
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Furthermore, we computed the MAE for different training set sizes and measured the 

performance of the trained Deep Learning-Partial model on the test set with 50  samples. 

As shown in Figure 9 as training set size increases, the value of MAE decreases.  

 

Figure 9. MAE vs training set size 

Figure 10 shows the true hazard function, the estimated hazard functions of the Cox 

model, and that of our proposed deep learning-based reliability model whose model 

parameters are estimated by the partial likelihood method given a randomly selected 

covariate. As the figure shows, the estimated hazard function of our proposed model is 

very close to the true hazard function, and it outperforms the Cox model.   
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Figure 10. Hazard function vs time 

   For the second senario, we consider a small sample size. Specifically, we randomly 

select 25  samples to train and test the model by randomly selecting 25  samples. We 

apply the proposed model with Deep Learning-Partial, Deep Learning-Penalized and the 

traditional Cox model. The same MLP structure is used as explained in the first scenario. 

Table 6 shows the performance of the three models. As the table shows, the Deep 

Learning-Penalized has the best performance when a small sample size is available.  

Table 6. Performance of proposed models and Cox model on small sample size 

Method MAE 

Deep Learning-Penalized 0.27 

Deep Learning-Partial 0.32 

Cox model 0.48 
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   To measure the effect of model complexity on prediction accuracy, we evaluated the 

performance of the proposed model for different values of β . The parameter β   controls 

the model complexity. A small β  makes the model more complex, and a larger β  makes 

the model less complex. It has been shown in the literature that when a complex model 

is learned the training data’s noise and suffers from overfitting. Similarly, a very simple 

model is not capable of  modeling complex data, and the model suffers from underfitting 

[56]. A model that suffers from overfitting or underfitting has poor performance on a test 

set. Hence, choosing the right complexity is important in model performance. 

 

Figure 11. Effect of tuning parameter on the accuracy of the model 

Figure 11 shows the performance of the Deep Learning-Partial model when a large 

sample size is available to estimate model parameters with different values of β  (model 
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complexity). In case of small sample size, the Deep Learning-Penalized Partial model 

with different values of β  has a similar trend. 

 3.6 Case Study 

 We apply our proposed model to DP steels to capture the complex effect of their 

microstructure.  

We obtained 20  microstructure images of DP steel, which is called DP780, with the 

corresponding failure time, , 1,.., 20it i = . A tensile test was conducted using the Instron 

8801 testing machine to obtain the steel samples’ failure times. The microstructure 

images are obtained using a microscope with a 1000X  magnification after the steel sample 

was prepared with several preprocessing steps including grinding, chemical etching, and 

polishing. Moreover, the size of each microstructure image was 100 100× . To apply our 

proposed model to the dataset, first we reduced the dimensions of the images by applying 

autologistic regression to extract the covariates [57].  

   Autologistic regression was developed to study the spatial binary data, and the model 

has been applied in multiple disciplines including ecology [15], agriculture [16] and image 

analysis [17]. An autologistic regression model assumes that the probability that a site 

belongs to 0 or 1 depends only on its neighbors, where neighbors are defined as a 

collection of image pixels around this site/pixel. Cross et.al [18] showed that the 

autologistic regression model is well suited for the binary image, which is relevant to the 

material microstructure modeling problem in this chapter. 

 In this study, we applied autologistic regression with two neighboring orders to 

characterize microstructures. The corresponding autologistic regression model considers 
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8 connecting neighbors { , , , , , , , }u d l r ur ul dr dla a a a a a a a [19]. Furthermore, we assume the DP 

AHSS materials are homogeneous and the microstructure images are anisotropic. Based 

on the assumptions { , },{ , },{ , }u d l r ur ula a a a a a  and { , }dr dla a  share their coefficients [19]. 

Hence, 5 covariates (coefficients) of each image were obtained including an intercept, 

i.e., 5 , 1,..., 20.i R i∈ =x Table 7 shows the value of each covariate in a randomly selected 

microstructure image, i.e. 1 2 3, ,x x x  and 4x . The value of intercept parameter is 0x =-0.0799   

Table 7: Extracted covariates of a microstructure using autologistic regression 

Covariates Values Covariates Values 

1x  -0.0035 3x  -0.0051 

2x  -0.008 4x  -0.0065 

 

Next, we applied our proposed MLP with 2 hidden layers of 2 neurons and 1 neuron of 

output. We trained the MLP using the penalized partial likelihood estimation method to 

predict the future hazard function. Also, we analyzed the proposed model to verify that 

the data fits the model using Proposition 1. Specifically, the Kolmogorov-Smirnov test 

verifies that the generalized Cox-Snell residuals follow exponential distribution. 

Specifically, the p-value of the test is 0.99, which shows that samples are drawn from 

exponential distribution. Therefore, the proposed model fits the data. The estimated 

model parameters (weights of MLP) are shown in Table 8 (the values include 10
10

− ) 
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Table 8. Estimated model parameters 

Parameters Values Parameters Values 

1

11w  0.1 1

42w  0 

1

21w  0.2 1

52w  0 

1

31w  0.1 2

11w  -0.1 

1

41w  0 2

21w  0 

1

51w  -0.1 2

12w  -0.3 

1

12w  -0.1 2

22w  -0.1 

1

22w  0 
11

Ow  0 

1

32w  0 
21

Ow  0 

 

As the table shows some of the estimated weights are zero, which makes the MLP sparse 

and prevents the model from overfitting when number of training set is not very large.  

   Furthermore, to analysis the computational time and convergence of the developed 

method, Figure 12 represents the convergence rate of three randomly selected MLP’s 

weights 
1 1 2

21 51 22( , , )w w w  (shown in different colors i.e. blue, red and black) which are 

estimated by the developed method. As it can be seen from the Figure 6, the parameters 
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converge in the 250
th  iteration. The other parameters converge at a similar number of 

iterations.    

 

Figure 12. Convergence rate of parameters 

   To further analyze and demonstrate the advantage of our proposed model in terms of 

failure prediction, we compared the results of our model with existing models. Specifically, 

we used the Akaike’s information criterion (AIC) to measure model fitting. AIC is 

formulated as follows: 

2(log ) 2*AIC lik p= − +                                              (27)                                                

where p  is the number of parameters.  

   A model fits the data  best by minimum AIC [58]. As it is shown in Table 9, our proposed 

model has superior performance over the traditional Cox model. 
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Table 9. AIC measurement of Cox model vs deep learning-based reliability model 

Model AIC 

Cox model 133.5 

Deep Learning-Penalized  100.7 

3.7 Summary 

   Modern sensors technologies produce complex covariates coupled with failure times. 

In this chapter, we proposed a novel deep leaning-based survival model to capture the 

effects of complex covariates on a material’s failure. The proposed model is a 

generalization of the Cox model that traditionally assumes that linear combination of 

covariates and an exponential link function. In the proposed deep leaning-based reliability 

model, the assumptions are relaxed to be more flexible using MLP. To estimate model 

parameters, neither traditional MLP training methodology nor maximum likelihood 

estimation is applicable. To overcome this challenge, we developed a partial likelihood-

based method to estimate the parameters of MLP. Also, we developed a penalized partial 

likelihood-based method to overcome the overfitting problem when the number of 

samples is small, which generally appears in reliability problems. Furthermore, a model 

parameter estimation was developed to train MLP with right censored survival data. A 

simulation study and a case study were implemented to verify the proposed methodology 

and superior performance compared with the tradition model. 

As a future research topic, a study to generalizes the Cox model with time dependent 

covariates and directly apply ANN to estimate hazard function would be interesting. 
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Chapter 4. Transfer Learning-based Reliability Model with Complex Survival Data 

4.1 Overview 

Estimating the reliability of products has high priority in the current competitive market. 

Existing reliability models require failure times of the products to estimate model 

parameters and predict future failure times. However, obtaining the failure time of new 

products can be costly and time consuming in real-world applications, especially with high 

quality and reliable products. To overcome this challenge, we propose a semi-parametric 

transfer learning-based reliability model to utilize the covariates and failure time of similar 

products whose failure times are accessible. There are several challenges to estimate 

model parameters.  First, the covariates have complex effects on failure time; second, the 

distribution of the covariates of new products are different from that of similar products or 

materials. To overcome these difficulties, we develop a parameter estimation method 

based on deep learning. Specifically, the developed method is based on a two-level 

autoencoder to transfer the covariates to a new distribution space by minimizing the 

distribution distance between the hidden layers of the autoencoders. Furthermore, a deep 

learning network is developed to capture the complex effect of the transferred covariates 

on failure times. A simulation study is conducted to verify the developed method. The 

proposed method is justified by a real-world case study of the reliability analysis of 

materials. The case study shows that the proposed model outperforms the existing ones. 

4.2 Introduction 

      The reliability estimation of products is currently gaining increasing attention since it 

has a high impact in various applications. Reliability models can quantify product quality 

in mechanical applications or efficiency of a new treatment in healthcare applications. 
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   Existing reliability models rely on failure time information to predict future failure time. 

However, obtaining failure time information is costly and time consuming. In mechanical 

applications, for example, to generate failure time, materials or products have to run costly 

tests for a long period of time. The issue is especially attracting increasing attention with 

high quality products available today. This chapter focuses on developing a novel 

reliability model to overcome this challenge by utilizing the failure time of similar subjects 

of interest. 

   Domain adaptation is used in problems when there is data from two related domains 

but under different distributions. Domain differences are the main obstacles to adoptable 

cross-domain predictive model. Our goal is to utilize the failure information from some 

existing material (source) and predict the failure time of a new set of materials (target).   

   Covariate-based reliability models traditionally estimate model parameters by source 

data, and then the target data is directly applied to predict failure time. The methods work 

well when the source and target data are from the same domain or follow the same 

distribution. However, in reality, source and target data are from different domains or 

distribution, and a domain shift (domain adoption) is needed. 

   In the area of domain adoption, there are two different types: 1) unsupervised domain 

adoption and 2) semi-supervised domain adoption. In unsupervised domain adoption, 

there is no available respond variable, and in semi-supervised domain adoption there are 

few respond variables available. John Blitzer [59] proposed a structural correspondence 

learning method that uses a pivot feature from the source and target to find the 

correspondence among the features. Daumé [60] proposed a heuristic kernel method to 
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adopt a target domain. A dimension reduction based model was introduced [61] to reduce 

the divergence between the source and target domain.  

   Although these reliability models have been successfully applied to predict failure time, 

there is no research on predictive failure time when there is no failure time information 

available for an object of interest. We propose a transfer learning-based reliability model 

that is an extension of the Cox model, and the same extension can be applied to other 

reliability models. Specifically, the proposed model is based on deep learning to transfer 

the source and target domains to a new destitution space such that the transferred 

covariates have the same distribution. A novel loss function is developed to estimate the 

model parameters.     

   Deep learning is a powerful method used in many applications. Deep learning uses a 

hierarchical architecture with non-linear units to capture the high-level information in 

observations. Deep learning is a suitable method for domain adoption and transfer 

learning [62, 63]. Fine-tuning deep neural network (DNN) architectures is popular in  semi-

supervised domain adoption [64]. To adopt the domain, Oquab et.al [65] proposed to train 

a DNN on a source domain and freeze part of the DNN’s weights and add some layers to 

adopt it to a new (target) domain. Chu et al [66] explored the performance of fine-tuning 

DNN architectures across multiple target sets. Their main assumption is that the internal 

layers of the DNN can act as a generic extractor of mid-level image representation, which 

can be pre-trained on a source, but in reality, this assumption may not be true.  

Furthermore, Chen and Chien [67] proposed deep semi-supervised learning for domain 

adoption by introducing a multi task objective function, and Glorot  et.al [68] proposed an 

unsupervised domain adoption method for sentiment classification. 
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   In this chapter, we use autoencoder [69] to minimize distribution discrepancy by   

transferring the distributions of source and target domains to a new distribution space. 

An autoencoder is a type of deep learning which is used to learn efficient data coding in 

an unsupervised manner. An autoencoder learns to encode data from the input layer into 

a short code and then decode that code into something that closely matches the original 

data. 

This chapter is organized as follows: After the introduction, Section 4.3 proposes our 

novel transfer learning-based reliability model. Section 4.4 develops the parameter 

estimation method. Section 4.5 reports on simulation studies conducted to verify the 

proposed methodology, and Section 4.6 provides a real-world example of high strength 

dual-phase steel to illustrate the performance of the developed model. Finally, the chapter 

is concluded in Section 4.7. 

4.3 Methodology 

We proposed a new adopted DNN for unsupervised domain adoption to predict failure 

time. The proposed model maps between source tasks to the target task. Let ( , )s sx y  

denote the source domain information; s px R∈  is the covariate of the source domain, and 

sy  is its corresponding failure time. Furthermore, ( , )t tx y  denote the target domain 

information; t px R∈  is the covariate of target sample with unknown failure time. The 

proposed model is an extension of the traditional Cox model to include domain adoption. 

The proposed model is formulated as follows:   

0( | ) ( ) ( , , )t t s s th y x h y g x x= θ                                                (28)                                                 
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where θ is the model parameter, and 0 ( )sh y  is a baseline hazard function when =x 0 . 

The baseline function is a positive value depending on time sy . ( , , )s tg x x θ  is a function 

of the source covariates that are adopted by the target  samples t
x . The function 

determines the effect of the covarriates on failure time. Moreover, ( , , )s tg x x θ  in (28) have 

two properties: 1) ( 0, 0, ) 1s tg x x= = =θ  and 2) ( , , )s tg x x θ  has non-negative values.  

   The proposed model is a semi-parametric model as all the instances share the same 

baseline hazard function, and the model parameter estimation is independent of the form 

of 0 ( )h t . Moreover, the model is a proportional hazard model since the hazard ratio (HR) 

is the same in all time points, where HR is defined as the hazard function of a sample’s 

covariate 
t

ix  divided by a the hazard function of a different sample’s covariate 
t

jx : 

0

0

( | ) ( ) ( , , ) ( , , )

( | ) ( ) ( , , ) ( , , )

t t s s t s t

i i i i i i i

t t s s t s t

j j j j j j j

h y x h y g x x g x x

h y x h y g x x g x x
= =

θ θ

θ θ
                            (29) 

4.4 Parameter estimation  

   Given the proposed model in the previous section, there are several challenges to 

estimate model parameters. 1) ( , , )s tg x x θ ,  which reflects the effect of covariates on failure 

times, has a complex form; and 2) distributions of the target and source are different, 

which can affect the performance of prediction. To overcome these challenges, we 

developed a deep learning domain adoption framework based on an autoencoder and 

MLP to minimize the distribution distance of the source and target domains and estimate 

model parameters. Specifically, the framework consists of two level autoencoders whose 

inputs are source and domain covariates, and the outputs are transferred covariates with 
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minimum distribution distance of the domain and target domains. Figure 13 illustrates the 

detailed structure of the proposed framework.  

   To estimate the parameter of the proposed framework, we developed the new loss 

function, formulated as follows: 

$ $ $ $2 2

2 2 , ,

1 1 1 1

|| || || || ( , ) ( , )
N N N zs t s t

s t t s
i i i ii i i k i k

i i i k

MMD h h MMD
= = = =

 
− + − + + 

 
∑ ∑ ∑ ∑x x x x x x        (30) 

where s

ix  and t

ix  are the thi  sample of the source and target domain, respectively. $
s

ix , 

$
t

ix  are denoted as the corresponding predictions. ,

t

i kh  and ,

s

i kh  denote the thk  hidden 

layer of the autoencoders of the source and target domain, respectively. Furthermore, 

MMD represents the maximum mean discrepancy. MMD is a statistical test to determine 

if two samples are drawn from different distributions. The test statistic is the largest 

difference in expectations over functions in the unit ball of a reproducing kernel Hilbert 

space (RKHS). MMD is empirically computed as follows:  

/2
2

1

2
( , ) ( )

N

i

i

MMD s t h z
N =

= ∑                                           (31) 

where h  is an operator defined on a quad-tuple as follows: 

2 1 2 2 1 2

2 1 2 2 2 1

( ) ( , ) ( , )

( , ) ( , )

s s t t

i i i j j

s t t t

i j i j

h z k x x k x x

k x x k x x

− −

− −

= +

− −
                                       (32) 

where 
2 1 2 2 1 2

{ , , , }
i i j j

s s t t

iz x x x x
− −

=  and 1 1{ ,..., }, { ,..., }s s t t

n ns x x t x x= = . Furthermore (.,.)k  is a 

kernel function. MMD has a range between 0 and 1. When the distribution of two samples 

s and t  are identical, the statistic is equal to zero; MMD=0.  
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   $
s

ix  and $
t

ix  in (30) are transferred covariates which have close distribution. Next, the 

transferred source covariates and their corresponding failure times are applied to the 

proposed deep learning-based reliability model introduced in Chapter 3 to capture the 

complex effect of the covariates on failure times. The loss function to estimate the 

parameters of the MLP is based on the partial likelihood function. The loss function is 

formulated as follows: 

$( ) $

$

$

1

( ) log ( , ) log ( , ) || ||

. . ( , ) 0 ,

( 0, ) 1

i

N s s

i ip

i j R

s
s

i i

s

i

g x g x

s t g x

g x

λ
= ∈

  = − − +    

≥ ∀

= = ∀

∑ ∑θ θ θ θ

θ θ x

θ θ

l

                        (33) 
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Figure 13. Structure of domain adoption 

4.5 Simulation 

      In the simulation study we first generate two sets of samples with different 

distributions and failure times. Specifically, we generate samples consisting of two sets 

of covariates , 1,...,100s

i i =x  and , 1,...,100t

j j =x  which are drawn randomly from  normal 

distributions with ~ ( 1, 2), ~ ( 2, 3).s s s t t t

i iN Nµ σ µ σ= = = =x x The covariates are chosen 

to have 4 elements, i.e. 4,s t

i j R∈x x . Furthermore, ( | )g x θ  is chosen to be a function which 
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satisfies the proposed properties in Chapter 3 [70] i.e., ( 0, ) ( 0, ) 1s t

ig x g x= = = =θ θ  and 

( , ), ( , ) 0s tg x g x ≥θ θ . The functions are formulated as follows: 

4

1

1 0

( | ) ( | )
| sin( ) | 0

s

s t

s

i

i

g g
x

=

 =


= = 
≠


∑

x

x θ x θ
x

                                           (34) 

where | . |  represents the absolute value and ix  represents the th
i  component of a source 

and target sample. In this simulation study, we choose the Weibull lifetime distribution, 

which is commonly used in the reliability literature [55]. Based on the Weibull lifetime 

distribution, the simulated failure time and hazard function can be obtained using the 

inverse cumulative density probability function as follows: 

( )
1/

1

0

log( )
, ( | ) ( | ) ( ) ( | )

( , )

U d
T h t g H t t g

g dt

α

αλα
λ

− 
= − = = 
 

x x θ x θ
x θ

                            (35) 

                                             

where , 0λ α >  are the scalar and shape parameters of the Weibull distribution, 

respectively. We chose the Weibull distribution’s parameter to be 0.5, 0.5λ α= = .  

   Next, we apply the proposed model to estimate the reliability of the target domain. 

Specifically, the parameters of the model are estimated by 100 samples of a source’s 

covariate with corresponding failure times and 100 samples of a target’s covariates with 

corresponding failure times. We chose a single layer autoloader with two neurons. Also, 

the MLP with two hidden layers of two neurons are chosen.    
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 Table 10 shows the values of a source and target covariates and their corresponding 

transferred values after applying the developed two-level autoencoder. 

Table 10. Values of sources and target domains and their transferred values. 

sx   1.7284 2.5667 3.1544 -0.0080 

tx   0.9772 3.8489 -2.2507 2.5875 

$
s

x   
0 0.0042` 0.4882 0 

$
t

x   
0.9880 0 0.9896 0 

   To analyze the accuracy of the model, we compute the mean square error (MSE) [54] 

for the models of the 100  samples of the target’s covariate. A smaller MSE indicates better 

performance. MSE is formulated as follows: 

$  $( )
21

( , ) ( , )
t t

i

MSE g g
N

= −∑ x θ x θ                                   (36) 

where N  is the test set size;  $( , )
t

g x θ  is the estimated function of 
$( , )

t

g x θ  for the thi  sample 

of target. Table 11 shows the MSE of the proposed model and the deep learning reliability 

model. 

Table 11. Model performance 

Method MSE 

Deep Learning reliability model 0.409 

Transfer learning reliability model 0.164 
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In addition, the estimated parameters of MLP are given in Table 12. As the table shows, 

some of the parameters are zero. 

Table 12. Model parameters 

Parameters Values Parameters Values 

1

11w  0.0752 1

42w  2.9266 

1

21w  0 1

52w  0 

1

31w  -3.1610 2

11w  -0.0764 

1

41w  0. 2

21w  0 

1

51w  0.1650 2

12w  -5.3866 

1

12w  0 2

22w  0 

1

22w  -0.5198 
11

Ow  3.6536 

1

32w  0 
21

Ow  5.0551 

4.6 Case study 

      We applied our proposed model to DP steel. Specifically, for source domain, we 

obtained 20  microstructure images of a particular class of  DP steel, DP780, with the 

corresponding failure time, , 1,.., 20s

it i = , and 20  microstructure images of another class 

of DP steel, DP980, were chosen for the target domain. The size of each microstructure 

image is 100 100× . Moreover, DP780 microstructure distribution is different from that of 

DP980. Figure 6 represents two samples of the DP780 and DP980 microstructures. The 

goal of the case chapter was to estimate the reliability of DP 980 by using the information 

of the source domain, (i.e. DP780). We first reduced the dimensions of the DP780 and 
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D980 microstructure images by applying autologistic regression to extract the covariates 

[57].  

   In this chapter, we applied autologistic regression with two neighboring orders to 

characterize the microstructures. The corresponding autologistic regression model 

considers 8 connecting neighbors { , , , , , , , }u d l r ur ul dr dla a a a a a a a [19]. Furthermore, we 

assume the DP AHSS materials are homogeneous and the microstructure images are 

anisotropic based on the assumption that { , },{ , },{ , }u d l r ur ula a a a a a  and { , }dr dla a  share 

their coefficients [19]. Hence, 5 covariates (coefficients) of each image were obtained 

including an intercept, i.e., 5, , , 1,..., 20.s t

i j R i j∈ =x x  Next, we applied the proposed 

methodology to the dataset. We minimized the distribution distance of the DP780 and 

DP980 samples by transferring them to a new distribution space via the proposed two-

level autoencoder. Table 13 shows the value of each covariate in a randomly selected 

microstructure image of source (DP780) and target (DP980) domains, i.e. 1 2 3 4, , ,s s s sx x x x

and 1 2 3 4, , ,t t t tx x x x , and their corresponding transferred covariate i.e. $ $ $ $
1 2 3 4, , ,

s s s s

x x x x  and 

$ $ $ $
1 2 3 4, , ,

t t t t

x x x x .  
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Table 13: source and target covariates with corresponding transferred covariates 

0

sx  -0.0799 $
0

s

x  0.9717 

1

sx  -0.0035 $
1

s

x  0.9548 

2

sx  -0.008 $
2

s

x  0.9946 

3

sx  -0.0051 $
3

s

x  0.9811 

4

sx  -0.0065 $
4

s

x  0.9299 

0

tx  -0.0613 $
0

t

x  0.9538 

1

tx  -0.0037 $
1

t

x  0.9819 

2

tx  -0.0072 $
2

t

x  0.9897 

2

tx  -0.0051 $
2

t

x  0.9933 

4

tx  -0.0073 $
4

t

x  0.9921 

 

   Next, the transferred covariates of DP780  used to train the developed MLP by 

minimizing the proposed loss function (33) to predict the hazard function of the DP980 

samples. 

   The estimated model parameters of MLP are shown in Table 14. 
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Table 14. Model parameters 

Parameters Values Parameters Values 

1

11w  0.0010 1

42w  0.0030 

1

21w  0.0160 1

52w  -0.0030 

1

31w  0.0070 2

11w  -0.0130 

1

41w  -0.0020 2

21w  0.0070 

1

51w  0.0030 2

12w  0 

1

12w  -0.0160 2

22w  0.0020 

1

22w  -0.0040 
11

Ow  0 

1

32w  0.0040 
21

Ow  -0.0030 

 

  To further analyze and demonstrate the advantage of our proposed model, we 

compared the results of our model with existing models. We compared the model’s 

performance with that of the deep learning-based reliability model and the Cox model. 

The parameters of the models were estimated by the source domain data, and then we 

applied the target’s covariates to estimate the reliability. We used AIC to measure the 

model fitting. As it is shown in Table 15, our proposed model has superior performance 

over the deep learning reliability model. 
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Table 15. Comparing performance of models 

Model AIC 

Cox Model 60.28 

Deep Learning reliability model 62.20 

Transfer learning reliability model 58.2 

4.7 Conclusion  

   Reliability estimation is an important issue in the current competitive market. However, 

obtaining failure time for products or materials is a costly and time-consuming process, 

especially with today’s high-quality products or materials. We propose a semi-parametric 

transfer learning-based reliability method to utilize the failure times and covariates of 

similar products or materials. Traditional reliability models are not efficient when the 

distribution of training and test covariates are not the same. To overcome these 

challenges, we propose two-level autoencoders to transfer the source and target domains 

to a new distribution space. The distribution discrepancy of the source and target 

domains’ covariates in the new space is minimized. A novel loss function is developed to 

estimate the parameters of the two-level autoencoders. Moreover, a deep learning-based 

reliability model is used to capture the effect of the transferred covariates on failure time. 

Simulation studies and a case study were implemented to verify the proposed 

methodology and superior performance compared with the tradition model. 

As future research topics, studies on a semi-supervised transfer learning-based reliability 

model and a transfer learning-based reliability model for time dependent covariates would 

be interesting. 
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Chapter 5. GENREAL CONCLUSION 

Modern technologies generate covariates which can be utilized to improve failure time 

prediction. The covariates generally are high dimensional and topologically complex. We 

focus on incorporating the challenging covariates into reliability models. Although the 

failure time of advanced high strength steel is chosen to illustrate the proposed model 

and develop methods, the methodologies may be applicable to other materials or 

products.  

   Studies show that microstructure strongly affects a material’s physical properties 

including failure time. Without incorporating the microstructure as covariates, the reliability 

estimation of the materials may not be accurate. 

   In this dissertation, we focus on incorporating a microstructure to improve the reliability 

prediction accuracy of materials by developing a statistical approach to model the 

complex structure of a microstructure, a deep learning reliability model to capture the 

complex effect of the microstructures on the failure time of the materials, and a transfer 

learning model to utilize the failure time of a type of covariate to predict the reliability of 

another type of covariate.  

   In CHAPTER 2, we propose a statistical method to reduce the dimension and 

complexity of a covariate. The proposed model considers the spatial properties of 

covariates, but unlike traditional dimension reduction models, orientation does not affect 

the performance of the model. Specifically, we propose a penalized autologistic 

regression model that includes the parameter selection process by removing the 

redundant or irrelevant model parameters (or neighbors). As a result, a high order of 

neighboring can be applied to model complex covariates. The model selection process 
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that selects the most appropriate parameters (or neighbor structure) can be automatically 

implemented during the model parameter estimation process. A maximum likelihood 

estimation method can be developed to estimate the model parameters. However, the 

likelihood function has a complex form which makes the parameter estimation time 

consuming. We develop a penalized pseudo log-likelihood function to tackle the 

challenge. When the size of the sample is large, applying classical optimization methods 

to maximize the penalized pseudo log-likelihood function still takes much time. To 

overcome this difficulty, we developed a new approximated accelerated proximal gradient 

method. The developed methodologies are verified and demonstrated through designed 

physical experiments. The methods are also applicable to all binary images to extract 

certain patterns.  

   In CHAPTER 3, we propose a novel deep learning-based reliability model by 

considering complex covariates. The proposed model is a semi-parametric and 

proportional hazard model. The model captures the complex relationship between 

covariates and failure time, unlike traditional reliability models which are inefficient due to 

their underlying assumptions.  

   To estimate model parameters, since the baseline hazard function is not defined, MLE 

cannot be applied directly. Moreover, the traditional OLS loss function of MLP is not 

applicable, as there is no access to the true values of the output during the training 

process. To overcome the challenge, a novel method based on the partial likelihood 

framework is developed. Furthermore, when there are few samples available, which 

generally appears in reliability problems, the method may suffer from overfitting. To 

overcome this challenge, we develop a loss function based on penalized partial likelihood.  
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The developed model can overcome the challenge of right censored failure data. The 

aforementioned methods are illustrated using both simulation studies and designed 

physical experiments on advanced high strength steel. Results shows improvement in 

reliability prediction compared to traditional reliability models  

   In CHAPTER 4, we develop a transfer learning-based reliability model. The proposed 

model predicts the reliability of a subject by utilizing the covariate and failure time of 

similar subjects. Specifically, the proposed model consists of a two-level autoencoder to 

minimize the distribution of covariates of subjects of interest and similar subjects to 

improve the performance of the model.  

   To estimate the e parameters of the model, we develop a novel loss function for the 

two-level autoencoder. Furthermore, the MMD statistic is used to minimize the distribution 

of each layer. A simulation study is conducted to verify the developed methods. Moreover, 

physical experiments on advanced high strength steel are conducted to demonstrate the 

proposed model. Results show that accuracy of failure time predictions are improved by 

the proposed transfer learning-based reliability method compare with traditional reliability 

models. 
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Appendix A. Proof of Proposition 1  

Assume that the given microstructure has n pixels, and we consider a model with the p  

order of neighboring system. ( )f λ in (7) is a Lipschitz continuous gradient. If (6) holds for 

a constant L and 
1

0 0[ ,.. ], [ ,... ] p

p pα α θ θ += = ∈α θ  . Additionally, for notation simplification, 

we define , {0,1}, ( )i jz j N i∈ ∈  to represent the 
thj neighbor of site i. So ( )f λ  in (7) can be 

rewrite as follows 

,

0

1

,

0

exp( )

( ) log

1 exp( )

p

i j i jn
j

p
i

j i j

j

x z

f

z

λ

λ

=

=

=

 
 
 = −
 

+ 
 

∑
∑

∑
λ                                                      (37) 

where ,0 1iz = . The gradient of ( )f λ  is defined as
0

( ) ,...,
k

f f
f

λ λ

∂ ∂
∇ =< >

∂ ∂
λ . The partial 

differential can be expressed as follows: 

1, 1, , ,

0 0

1 1, ,

1, ,

0 0

exp( ) exp( )

...

1 exp( ) 1 exp( )

p p

j j j n j j n j

j j

j n n jp p

j j j n j

j

j

j

z z z z

x z x z

z z

f
λ λ

λ λ
λ

= =

= =

∂
× ×

= − + + − +

+ +
∂

∑ ∑

∑ ∑
                            (38) 

By inserting (38) into (6), we obtain the following equation: 
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1,0 1, ,0 ,

0 02

1 1,0 ,0

1, ,

0 0

1,0 1, ,0 ,

0 0

1 1,0 ,0

1,

0

exp( ) exp( )

|| ( ) ( ) || [ ...

1 exp( ) 1 exp( )

exp( ) exp( )

( ...

1 exp( ) 1
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j j

n np p

j j j n j

j j

p p

j j n j n j

j j
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j j
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z z z z

f f x z x z

z z

z z z z

x z x z

z

α α

α α

θ θ

θ
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− + + − +

+ +

∑ ∑

∑ ∑

∑ ∑

∑

α θ
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0 0
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0 0
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0
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0

)] ....
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exp( ) exp( )
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1 exp( ) 1 exp( )

exp( ) exp(
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1 exp( )

p

j n j

j

p p
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j j
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j j j n j

j j

p
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j
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j j
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z z z z

x z x z

z z

z z z z
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z

θ

α α

α α

θ θ
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=
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+ +
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− + + − +
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∑
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0 2

,

0
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1 exp( )

p

j

p

j n j

j

zθ

=

=

+

∑

∑                                                   

(39) 

As ,i jz  is a binary variable, the maximum of (39) happens when , 1i jz = ,

{1, 2, ..., }, {0,1, ..., }i n j p∈ ∈ . By replacing all ,i jz  with 1 and ix  with 1c > , the maximum 

value of (39) is represented as follows.  
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(40) 

For 1c > . Based on (40) and the definition of Lipschitz continuous, in order to prove 

Proposition 1 the following inequality has to hold 

2

0 02 2 2 2

0 0

exp( ) exp( )

( 1) ( 1) || ||

1 exp( ) 1 exp( )

p p

j j

j j

p p

j j

j j
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α θ               (41) 

Since 0

0
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0 1
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=
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≤ ≤
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0 1
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, therefore: 
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Since || || 0− ≥α θ , to prove Proposition 1, it is sufficient to show that for those values of 

1

0 0[ ,.. ], [ ,... ] ,p

p pα α θ θ += = ∈α θ   (42) is non-negative and the following holds: 

 

(43) 

 

|| || 1− ≤α θ  if and only if | | 1i iα θ− ≤  for all {0, ..., }i p∈ . Assume that | | 1i i iα θ ε− = ≤  for all 

{0, ..., }i p∈  and min{ }iε ε= .    

' '

0

|| || ( 1) || ||
p

i

i

pε ε
=

− = ≥ + = −∑α θ α θ                                             (44) 

where 
' '

0, { ,..., }pα ε α ε= = + +α α θ   

Based on (43) and (44), the following inequality needs to be proved. 

0 0

1 1
( 1)

1 exp( ) 1 exp( )
p p

j j

j j

p ε

α α ε
= =

− ≤ +

+ + +∑ ∑
                                (45) 

Note that we know that the left-hand side is always non-negative. We can rewrite the left 

hand side of (45) as follows 

0 0

0 0

exp( ) exp( )

0 || || 1
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p p

j j

j j

p p

j j
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1 1
( 1)

1 exp( ) 1 exp(( 1) ) exp( )
p p

j j

j j

p

p

ε

α ε α
= =

− ≤ +

+ + + ×∑ ∑
                             (46) 

By considering 
0

exp( ), ( 1)
p

j

j

x y pα ε
=

= = +∑ , we can rewrite (46) as follows: 

1 1
( , )

1 1 exp( )
z x y y

x y x
= − ≤

+ + ×
                                        (47) 

where ( , )z x y  is a continuous and non-decreasing function for fixed x and the desired 

domain 0 1y≤ ≤ . Furthermore, ( , )z x y  has maximum values when 0 1x≤ ≤  and 0 1y≤ ≤ ; 

however, for those values ( 1)p ε+  is much larger than ( , )z x y . 

Appendix B. Proof of Proposition 2 

The first Karush–Kuhn–Tucker (KKT) condition of (8) can be expressed as follows 

( )1 1 1 1 2( ) , ( ( ) || || ) 0
2

m m m mL
f f β− − − − 

∇ +∇ < − ∇ > +∇ − + = 
 

λ λ λ λ λ λ g                      (48) 

where || . || is a L2-norm, .< > is inner product, and L  is the constant obtained from 

Proposition 1. 

Based on the notation defined in Proposition 1, we first evaluate each term in (48). Since 

1( )mf −λ  is not dependent on λ, 
1( ) 0mf −∇ =λ . The next term in (48) is 

1 1, ( ( )m mf− −< − ∇ >λ λ λ  that can be expressed as follows using (38) 
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where ,0 1, 1,...,iz i n= = . The derivative of (49) is: 
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1 2|| ||
2

mL −−λ λ  in (48) can be expressed as follows  
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where I is the identity matrix. In vector space given 
1 1, k kA R B R+ +∈ ∈  , then T TA B B A× = ×  

where ,T TA B  represent transpose of ,A B , respectively. Using the matrix transpose 

property, we rewrite (51) as follows:   
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|| || ( ) ( )
2 2

p p
m m T m m

j j j

j j

L L
L Lλ λ λ− − − −

= =

− = − +∑ ∑λ λ λ λ                             (52) 
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 Furthermore, the derivative of the above term can be expressed as follows 
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Note that the approximation 
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+ ≈∑ ∑  is always true since the 

model has many parameters and some of the model parameters are zero which makes
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Moreover, (54) can be reformulated as 

1 1, 1, , ,... ( )

2 2 2

m

j j n n j n j j j

j

x z z x z z g

L L

β λ
λ

−1− + − ×
= − +                                             (55) 

We consider two cases for the solution. First, if 0jλ =  then  

1 1, 1, , ,... ( ) [ , ]m
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Second, if 0jλ ≠  then 
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The final solution can be in the compact form of: 
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where sgn(.)  is a sign function and max(0, )x x+ = .   

 

Appendix C. Proof of convergence of Algorithm 1 

Let 
'( )jG λ  represents solution of (48) with the approximate and 

' *( )jG λ  represent the 

solution without approximate. In our case, the following inequality always holds:  

' * '( ) ( )j jG G nλ λ− ≤ −                                              (58) 

By replacing (58) with their corresponding functions, we have the following inequality    

*

2
j j

n

L
λ λ≤ +                                                     (59) 

where 
*,j jλ λ  is the parameter estimation corresponding with 

' *( ), '( )j jG Gλ λ , 

respectively. Furthermore, let ( )G λ  represents sum of ( )f λ  and ( )g λ , i.e., 

( ) ( ) ( )G f g= +λ λ λ . By plugging (59) into ( )G λ , we have the following  

 *( ) ( 1)
( ) ( )

2

m m p n n
G G c

L L
β

+
≤ + + +λ λ                                             (60) 

where 1c ≥  is a constant. [71] showed the following inequality holds 

*( ) 0 2

22

2
( ) || ||

( 1)

mG G
M L

+ +− ≤ −
+

λ λ λ                                       (61) 

where min ( )G G+ =
λ
λ , argmin ( )G+ =

λ
λ λ  and M  is the maximum iteration. By plugging 

(60) into (61), we have the following inequality   
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The last inequality shows that ( )mG G+−λ  decreases as fast as 
2

1
( )O

M
.   

Appendix D. Algorithm for reconstruction of a microstructure  

 

    Algorithm 3: 

    Given a fraction parameter f , the model parameters 0 2{ , ,..., }pλ λ λ , initial temperature

1T , cooling rate α , maximum iteration nt , and the size of sample d d×   

1. Initialize the lattice X  according to f   

2. For i  in 1: nt   

3. Randomly select two pixels lX  and 'l
X    

4. Assign ' =X X    

5. ' =X  Switch value of lX , 'l
X  in '

X  

6. If 
'( ) ( )PPLL PPLLl l<X X  then '

 =X X    

 Else set '
 =X X  with probability of ( )'

exp [ ( ) ( )] /PPLL PPLL il l T− −X X   

7. 1i iT Tα+ =  and go to step 2  
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Appendix E.  Proof of Proposition 3:  

If random variable time-to-failure T  has survival function ( )S t , then the transfer random 

variable follows uniform distribution on [0,1]  [72]     

( ) ~ [0,1]S T Uniform                                                        (63)                                                             

Consequently, the cumulative hazard function follows exponential function with model 

parameter 1µ =  [72] 

( ) log ( ) ~ xp(1)H T S T E= −                                               (64)                                                      

Furthermore, the cumulative hazard function of the proposed model in (12) is calculated 

as follow  

 $ ( ) 

 

( | )

0 0

0 0

0

( ) log( ( )) log ( ) ( | ) log( ( ))

( | ) ( ) ( | ) ( )

g

t

H t S t S t g S t

g h s ds g H t

= − = − = −

= =∫

x θ
x θ

x θ x θ
          (65) 

Where  0( )H t   is the Breslow estimator introduced in  [73]. 
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ABSTRACT 

DEEP LEARNING BASED RELIABILITY MODELS FOR HIGH DIMENSIONAL DATA 

by 

MOHAMMAD AMINISHARIFABAD 
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Advisor: Dr. Qingyu Yang 

Major: Industrial Engineering 

Degree: Doctor of Philosophy 

   The reliability estimation of products has crucial applications in various industries, 

particularly in current competitive markets, as it has high economic impacts. Hence, 

reliability analysis and failure prediction are receiving increasing attention. Reliability 

models based on lifetime data have been developed for different modern applications. 

These models are able to predict failure by incorporating the influence of covariates on 

time-to-failure. The covariates are factors that affect the subjects’ lifetime.  

   Modern technologies generate covariates which can be utilized to improve failure time 

prediction. However, there are several challenges to incorporate the covariates into 

reliability models. First, the covariates generally are high dimensional and topologically 

complex. Second, the existing reliability models are not efficient in modeling the effect on 

the complex covariates on failure time. Third, failure time information may not be available 

for all covariates, as collecting such information is a costly and time-consuming process.  

   To overcome the first challenge, we propose a statistical approach to model the 

complex data. The proposed model generalizes penalized logistic regression to capture 

the spatial properties of the data. An efficient parameter estimation method is developed 
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to make the model practical in case of large sample sizes. To tackle the second challenge, 

a deep learning-based reliability model is proposed. The model can capture the complex 

effect of the data on failure time. A novel loss function based on the partial likelihood 

function is developed to train the deep learning model. Furthermore, to overcome the third 

difficulty, we proposed a transfer learning-based reliability model to estimate failure time 

based on the failure time of similar covariates. The proposed model is based on a two-

level autoencoder to minimize the distribution distance of covariates. A new parameter 

estimation method is developed to estimate the parameter of the proposed two-level 

autoencoder model.  

   Various simulation studies are conducted to demonstrate the proposed models. The 

results show that the proposed models outperformed the traditional statistical and 

reliability models. Moreover, physical experiments on advanced high strength steel are 

designed to demonstrate the proposed model. As microstructure images of the steels 

affect the failure time of the steel, the images are considered as covariates. The results 

show that the proposed models predict the failure time and hazard function of the 

materials more accurately than existing reliability models. 
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