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A New Two Parametric Weighted 
Generalized Entropy for Lifetime 
Distributions 

Bilal Ahmad Bhat 
University of Kashmir 

Srinagar, India 

Mirza Abdul Khaliq Baig 
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Srinagar, India 

 

 
The concept of weighted generalized entropy and its dynamic residual (version) is 

developed. The general expressions of these two uncertainty measures corresponding to 

some well-known lifetime distributions are derived. It is shown that the proposed dynamic 

entropy determines the survival function uniquely. Some significant properties and 

inequalities of this dynamic entropy are also discussed. 

 

Keywords: Shannon’s entropy, lifetime distributions, residual entropy, length-biased 

entropy, characterization results 

 

Introduction 

The notion of entropy introduced by Shannon (1948) has an important role in the 

context of information theory and also in other sciences. If X is an absolutely 

continuous non-negative r.v. having p.d.f. f(x), then the Shannon’s entropy is 

defined as 

 

 ( ) ( ) ( ) ( )
0

H f log f E log fX x x dx X



= − = −    .  (1) 

 

Throughout this article, the r.v. X and the p.d.f refer to absolutely continuous non-

negative random variable and probability density function, respectively. 

In information theory, various generalizations of (1) were proposed and, 

consequently, in this article a new two parametric generalization of this uncertainty 

measure is developed as follows: 

https://doi.org/10.22237/jmasm/1604189340
https://doi.org/10.22237/jmasm/1604189340
mailto:bilal3819md@gmail.com
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( ) ( )

( )
( ),

0

H log f , 0 , 1X x dx





 


  

  



=   
−  ,  (2) 

 

where 

 

 
( ) ( ) ( ) ( ),

1
01

limH f log fX x x dx
 





→
=

= −   

 

is the well-known basic entropy given in (1). 

As argued by Ebrahimi (1996), if a system with the lifetime X is surviving at 

time t, then the measure (1) is not suitable for ascertaining the uncertainty about the 

remaining life Xt = [X – t | X > t] of such a system. Therefore, the concept of 

residual entropy was introduced on the residual lifetime Xt = [X – t | X > t], which 

is given by 

 

 ( )
( )

( )

( )

( )

f f
H ; log

F F
t

x x
X t dx

t t



= − ,  (3) 

 

where, F̅(t) = 1 – F(t) represents the survival function (s.f.) of X. In the same way 

and on the basis of (2), the generalized entropy for the residual lifetime 

Xt = [X – t | X > t] is defined as 

 

 ( ) ( )
( )

( )

( ),

f
H ; log , 0 , 1

F
t

x
X t dx

t





 


  

  


 
  

=      −   
 

 .  (4) 

 

Shannon’s entropy provides the equal importance or weight to the occurrence 

of every event of a probabilistic experiment with respect to the goal of the 

experimenter. Sometimes it is essential to also consider the importance of the 

elementary events. Therefore, an alternative measure, known as weighted or length-

biased entropy (WE) which considers both the objective probabilities and the real 

qualitative weights of the elementary events was introduced by Belis and Guiasu 

(1968) as 
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( ) ( ) ( ) ( )

( ) ( ) ( )

w

0

0

H w f log f

f log f E log f

X x x x dx

x x x dx X X





= −

= − = −   





  (5) 

 

where the coefficient x in the integrand, which is actually the length of the observed 

r.v. X, represents the weight function w(x) or importance of the occurrence of the 

event X = x and hence introduces the existence of length-biased or weighted 

entropy. 

The weighted residual entropy or the length-biased version of (3) by 

Di Crescenzo and Longobardi (2006) is given by 

 

 ( )
( )

( )

( )

( )
w

f f
H ; log

F F
t

x x
X t x dx

t t



= − .  (6) 

 

A variety of length-biased or weighted uncertainty measures have been 

developed and applied to measuring the uncertainty corresponding to different type 

of probability distributions. For more details see Mirali and Baratpour (2017), 

Misagh et al. (2011), Kayal (2018), Misagh and Yari (2011), Nair et al. (2017), 

Nourbakhsh and Yari (2016), Shiwei and Ting-Zhu (2017), Khammar and 

Jahanshahi (2018) and Yasaei Sekeh et al. (2012). Therefore, the objective of this 

study is to develop a new two parametric weighted generalized entropy and its 

dynamic version. 

Weighted Generalized Entropy 

Consider the weighted version of GE (2) which leads to the weighted generalized 

entropy (WGE). The general expressions of this WGE corresponding to some 

particular lifetime distributions are now considered. Analogous to WE (5) and on 

the basis of (2), the WGE is given by 

 

 ( ) ( )
( )

( )( )w

,

0

H log f , 0 , 1X x x dx



 


  

  

 
=    

−  
   (7) 

 

where the coefficient x is defined in (5). 
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Remark 1. A new way of expressing 
( ) ( )w

,
H X

 
 is as follows: 

 

 

( ) ( )
( )

( )( )

( )
( )

w

,

0

1

H log f

log E f

a

a
X x x dx

X X




 



 

  



  



−

=
−

 
=   −  


  

 

The following example exhibits the comparison of GE (2) with its weighted version 

(7). 

 

Example 1. Let the two r.v.s X and Y be distributed as follows: 

 

 ( ) ( )
( )

1 1
, 0 2 2 , 0 2

f and f2 2

0, otherwise 0, otherwise
X Y

x x y y
x y

 
  −   

= = 
 
 

  

 
 
Table 1. Comparison between GE and WGE 
 

α β H(α,β)(X) H(α,β)(Y) ( ) ( )w

,
H

α β
X  ( ) ( )w

,
H

α β
Y  

0.4 1.2 0.169 0.169 0.172 0.121 
 1.4 0.126 0.126 0.125 0.098 
 1.6 0.098 0.098 0.096 0.080 
 1.8 0.078 0.078 0.761 0.066 
 2.0 0.064 0.064 0.062 0.056 
      

0.6 1.3 0.207 0.207 0.237 0.097 
 1.5 0.159 0.159 0.170 0.095 
 1.7 0.125 0.125 0.130 0.086 
 1.9 0.102 0.102 0.103 0.075 
 2.1 0.084 0.084 0.084 0.065 

      

0.8 1.6 0.180 0.180 0.217 0.066 
 1.8 0.145 0.145 0.162 0.074 
 2.0 0.119 0.119 0.128 0.071 
 2.2 0.099 0.099 0.104 0.066 
 2.4 0.084 0.084 0.086 0.060 
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Table 1 (continued). 
 

α β H(α,β)(X) H(α,β)(Y) ( ) ( )w

,
H

α β
X  ( ) ( )w

,
H

α β
Y  

1.2 2.5 0.111 0.111 0.130 0.047 
 2.6 0.145 0.145 0.118 0.048 
 2.7 0.119 0.119 0.108 0.049 
 2.8 0.099 0.099 0.099 0.049 
 2.9 0.084 0.084 0.092 0.048 
      

1.4 3.0 0.090 0.090 0.104 0.041 
 3.2 0.080 0.080 0.089 0.042 
 3.4 0.072 0.072 0.078 0.041 
 3.6 0.064 0.064 0.068 0.040 
 3.8 0.058 0.058 0.061 0.038 
      

1.6 3.2 0.090 0.090 0.108 0.033 
 3.4 0.080 0.080 0.093 0.036 
 3.6 0.072 0.072 0.081 0.037 
 3.8 0.065 0.065 0.072 0.037 

  4.0 0.059 0.059 0.064 0.036 

 
 

In Table 1, corresponding to the above distributions, we examine that for different 

possible values of the parameters α and β, even though the GE of the r.v. X is same 

as that of Y, but their WGEs are not identical. 
 

Proposition 1. For m > 0, the following equality holds: 

 

 ( ) ( )
( ) ( ) ( )w w

, ,
H log HmX m X

   



  
= +

−
.  

 

In Table 2, consider the general expressions of WGE for some particular 

probability distributions. Also, note that 

 

 
( )

( ) 1, , and Γ , e , , 0b ax b

z

r m b az a x dx a b
 

   



− −= = = 
−    

 

is an upper incomplete gamma function. 
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Table 2. The expressions of WGE for some lifetime distributions 
 

Distribution f(x) x ( ) ( )w

,
H

α β
X

 

Uniform 
1

-b a
 a < x < b 

( )( )

 
 
 

+1 +1
-

log
+1 -

m m

m

b a
r

m b a
 

Exponential -
e

μx
μ  

x ≥ 0, 
μ > 0 

( )

( )

 
 
 

+1

Γ +1
log

m

m
r

μ m
 

Gamma 
( )

- -11
e

Γ

x b
x

b
 

0 < x < ∞, 
b > 0 

( )

( ) ( )( )

 
 
 

+1

Γ +1
log

Γ
bm m

bm
r

m b
 

Beta 
( )

( )
-1-11

1-
B ,

ba
x x

a b
 

0 < x < 1, 
a, b > 0 

( )( )

( )( )

 
 
 

B +1, -1 +1
log

B
m

ma m b
r

a,b
 

Lomax 
( )

+1

1+
μ

μ

x
 x ≥ 0, 

μ > 0 

( ) ( )

( )( )

 
 
 

m
μ m mμ

r
m μ

Γ +1 Γ -1
log

Γ 1+
, mμ > 1 

Weibull 
( )-

-1
e

x b

a

a
 

x > b, 
a, b > 0 ( )  

  +1
+ log Γ +1,

m

b a b
r m m m

a m a
 

Pareto 
+1

μ

μ

μλ

x
 

x ≥ λ, μ > 0, 
λ > 0 

 
 
 

log -1
- 1

m
λμ

r
mμ

, mμ > 1 

 

Note: ( ) ( )
( ) ( )

( )


1 -1-1

0

Γ Γ
B , = 1- =

Γ +

ba a b
a b x x dx

a b

 a, b > 0 and Γ(a) is the gamma function 

Weighted Generalized Residual Entropy (WGRE) 

Consider the dynamic (residual) version of WGE (7) and also focus on a 

characterization result which shows that this dynamic measure determines the 

survival function uniquely. 

 

Definition 1. Analogous to (6), the dynamic (residual) version of (7) is given by 

 

 ( ) ( )
( )

( )

( )
w

,

f
H ; log , 0 , 1

F
t

x
X t x dx

t





 


  

  


 
  

=      −   
 

 .  (8) 

 

Obviously, when t = 0, (8) reduces to (7). 

An alternative way of expressing (8) is obtained in the following theorem: 
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Theorem 1. For all t > 0, we have 

 

 

( ) ( )
( )

( )
( ) ( )

( )

( )

( )
( ) ( )

w

, ,

1

,

H ; log exp H ;

F
exp H ;

F
t

X t t X t

z
z X z dz

t





   


 


 

  

   

  

 


−

 − 
=   

−   


  −  

+      
   



  (9) 

 

Proof.  

 

 

( )

( )

( )

( )

( )

( )

( )

( )
( )

( )

1

0

1 1

0

1

f f

F F

f

F

f 1
f

F
F

x

t t

t x

t t

t z t x z

x x
x dx z dz dx

t t

x
z dz z dz dx

t

x
t dx z x dx dz

t
t

 
 



  
 


  
  

















 
−


− −

  
−

= =

    
=         

    

   
= +    

    

 
    

= +        
    

 

  

  

  

  (10) 

 

From (4), 

 

 
( )

( )

( )
( ) ( ),

f
exp H ;

F
t

x
dx X t

t





 

  



   − 
=    

  
   (11) 

 

and 

 

 ( ) ( )
( )

( ) ( ),
f F exp H ;

t

x dx t X t

 

 

 

  



 − 
=  

 
 .  (12) 

 

Therefore, by using (10), (11), and (12) in (8), the desired result is obtained. 

In Table 3, consider the general expressions of WGRE corresponding to some 

particular lifetime distributions. 
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Table 3. WGRE of some lifetime distributions 
 

Distribution f(x) x ( ) ( )w

,
H ;

α β
X t

 

Uniform 
1

-b a
 a < x < b 

( )( )

 
 
 

+1 +1
-

log
+1 -

m m

m

b t
r

m b t
 

Exponential -
e

μx
μ  x ≥ 0, μ > 0 

( )

( )

 
 
 

+1

Γ +1,
+ log

m

m mtμ
r mtμ

μ m
 

Gamma 
( )

- -11
e

Γ

x μ
x

μ
 0 < x < ∞, μ > 0 

( )

( ) ( ) ( )( )

 
 
 

+1

Γ +1,
log

Γ - γ ,
mμ m

mμ mt
r

m μ μ t
 

Weibull 

 
 
 

-
-1

e

x λ

μ

μ
 x > λ, λ, μ > 0 

  
    

 
 
  

m

t
μ m m

t μ
r m

μ m
+1

Γ +1,

+ log  

Pareto 
+1

μ

μ

μλ

x
 x ≥ λ, μ > 0, λ > 0 

 
 
 

log -1
- 1

m
μ t

r
mμ

, mμ > 1 

 

Note: ( )



- -1

Γ = e
b au b

y
b,ay a u du , a, b > 0, and ( ) 

- -1

0
γ = e

yb au b
b,ay a u du , a, b > 0, are the upper and 

lower incomplete gamma functions; m = α / β, r = α / β(β – α) 

 
 

Corresponding to a well-known lifetime exponential distribution, consider the 

monotonic behavior of WGRE (8) with respect to parameters α and β. 

For exponential distribution with f(x) = μe–μx, x ≥ 0, μ > 0, 

 

 
( ) ( )

( )

( )
w

, 1

Γ 1,
H ; log

m

m mt
X t r mt

m
 





+

 + 
= + 

  

,  (13) 

 

where 

 

 
( )

andr m
 

   
= =

−
.  

 

The graphical behavior of (13) is exhibited in Figure 1. 
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Figure 1. ( ) ( )w

,
H ;

α β
X t  plot of Exponential distribution with respect to α and β 

 

 

It is clear from Figure 1 that 
( ) ( )w

,
H ;X t

 
 is monotone with respect to both α and β. 

The following theorem proves that 
( ) ( )w

,
H ;X t

 
 characterizes F̅(t) uniquely: 

 

Theorem 2. Let 
( ) ( )w

,
H ; 0 , 1X t

 
        and F̅(t) be the WGRE and 

s.f. of a r.v. X. Assume that 
( ) ( )w

,
H ;X t

 
 is increasing in t, then 

( ) ( )w

,
H ;X t

 
 

determines F̅(t) uniquely. 

 

Proof. From (8), 

 

 
( )

( ) ( )
( )

( )
w

,

f
exp H ;

F
t

x
X t x dx

t





 

  



  − 
=     

   
 .  (14) 

 

Differentiating (14) w.r.t. t, obtain 

 

 
( )

( ) ( ) ( )
( )

( )
( )( )w

F F,

f
exp H ; λ λ

F
t

x
X t t x dx t t

t t






 

   

 

  − 
= −        

 ,  (15) 

 

where λF(t) = f(t) / F̅(t) is the failure rate of X. Using (14), we can rewrite (15) as 

 



BHAT & BAIG 

11 

 

( )
( ) ( )

( )
( )

( ) ( ) ( )( )

,

,

exp ;

exp ;

w

w

F F

H X t
t

t H X t t t

 




 

  



  
 

 

− 
 

  

− 
= − 

 

  (16) 

 

Rearranging (9), 

 

 

( )
( ) ( )

( )
( ) ( )

( )

( )

( )
( ) ( )

,

,

1

,

exp ;

exp H ;

F
exp H ;

F

w

t

H X t

t X t

z
z X z dz

t

 





 


 


 

  



  



  

 


−

− 
 
 

− 
=  

 

  − 
+     

  


  (17) 

 

Differentiating (17) w.r.t. t, 

 

 

( )
( ) ( )

( )
( ) ( )

( )
( )

( )

( )
( ) ( )

,

,

2
1

F ,

exp ;

exp H ;

F
λ exp H ;

F

w

X

Xt

H X t
t

t X t
t

z
t z X z dz

t

 





 


 


 

  



  



  

 


−

− 
 

  

− 
=  

  

  −  
+       
    



  (18) 

 

From (16) and (18), 

 

 

( )
( )

( )

( )
( ) ( )

( )
( ) ( ) ( )( )

( )
( ) ( )

1

F ,

w

F, ,

F
0 λ exp H ;

F

exp H ; λ exp H ;

X

Xt

z
t z X z dz

t

X t t t t X t
t











 




   

   

  

     

 


−


  − 

=     
  

− −   
− + +   
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Hence, for fixed t > 0, λF(t) is a solution of ψ(xt) = 0, where 

 

 

( )
( )

( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

1

,

w

, ,

F
ψ exp H ;

F

exp H ; exp H ;

X

t t t

Xt

z
x t x x z X z dz

t

X t t X t
t








  
 

 

   

   

  

     

 


−


  − 

= +     
  

− −   
− +   

   


  

 

Differentiating both sides w.r.t. xt, 

 

 

( )
( )

( )

( )
( ) ( )

( )
( ) ( )

1 1

,

w

,

F
ψ exp H ;

F

exp H ;

X

t

Xt

z
x t x z X z dz

t

X t





  
 

 

 

    

   

  




− −


  −  = +     

  

− 
−  

 


  

 

Now, ψ′(xt) = 0 gives 

 

 

( )
( ) ( )

( )

( )

( )
( ) ( )

w

,

1

,

0

exp H ;

F
exp H ;

F

 (say)

t

X

Xt

x t X t

z
z X z dz

t

x








 


  


 

  



  

 

−

−


−

 − 
=   

  


  −  

−      
   

=

   

 

Also, 

 

 ( )
2

ψ 1tx t x

 

  

 

− 
 = − 

 
.  

 

For 0 < α < β, β ≥ 1, ψ″(xt) < 0. Thus ψ(xt) attains maximum at (x0). Also, ψ(0) > 0 

and ψ(∞) = –∞. Further, ψ(xt) increases for 0 < xt < x0 and decreases for xt > x0. 
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The unique solution to ψ(xt) = 0 is given by xt = λF(t). Thus, 
( ) ( )w

,
H ;X t

 
 uniquely 

determines λF(t), which in turns determines F̅(t). 

Properties and Inequalities of WGRE 

Definition 2. A r.v. X is said to be smaller than the other r.v. Y in WGRE (denoted 

by 
WGRE

X Y  if 

 

 
( ) ( ) ( ) ( )w w

, ,
H ; H ; , 0X t Y t t

   
   .  

 

Definition 3. A survival function F̅ is said to have increasing (decreasing) WGRE 

of order α and type β denoted by IWGRE (DWGRE) if 
( ) ( )w

,
H ;X t

 
 is increasing 

(decreasing) in t, t > 0. 

 

Theorem 3. Let F̅ be an IWGRE (DWGRE) and β > α, then 

 

 ( ) ( )

( )
( ) ( )w

,

F

exp H ;

λ

X t

t

t



 

 





  






− − 
  

   
 
 
  

  

 

Proof. From (8), 

 

 
( )

( ) ( ) ( ) ( )
( )

( ) ( )
1w w

F F, ,
H ; λ λ exp H ;X t t t t X t

t

 
 

   

     

  

− − − 
= − −  

    

.  

 

Because F̅ is IWGRE (DWGRE) and β > α, 

 

 ( ) ( )
( )

( ) ( ) ( )
1

w

F F ,
λ λ exp H ; 0t t t X t

 

 

 

  

 

− − 
− −    

   

  

 

which leads to 
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 ( ) ( )

( )
( ) ( )w

,

F

exp H ;

λ

X t

t

t



 

 





  






− − 
  

   
 
 
  

.  

 

Example 2. Let X be a r.v. with f(x) = μe–θx, x > 0, θ > 0, then from Table 3, 

 

 ( ) ( )
( )

w

,

Γ 1,

H ;

Γ 1,

t

X t
t

t
 

 


  


     


 

  
 +  

   = +
  −  

+  
  

.  

 

Therefore, if β > α, F̅ is IWGRE. 

 

Theorem 4. If the r.v. X has 

 

(I) IWGRE, then 
( ) ( )w

,
H ;X t

 
 obtains a lower bound as follows: 

 

 ( ) ( )
( )

( )

( )

1

F
w

,

F

1 m

H ; log
m

t
t tX t

t







 

 

   

− 
  +     −   

  
 

.  

 

(II) DWBGRE, then 
( ) ( )w

,
H ;X t

 
 obtains an upper bound as follows: 

 

 ( ) ( )
( )

( )

( )

1

F
w

,

F

1 m

H ; log
m

t
t tX t

t







 

 

   

− 
  +     −   

  
 

.  

 

Proof. From (8), 
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( )

( ) ( ) ( ) ( )( )
( )

( ) ( )w w

F F, ,
H ; λ λ exp H ;X t t t t X t

t




   

     

  

 − − 
= − −  

    

.  

 

Substituting 

 

 ( )
( )

( )

F

F

F

1 m

λ
m

t
tt

t


+
= ,  

 

where mF(t) is the mean residual life function of X, 

 

 

( ) ( )
( )

( )

( )

( )

( )

( )
( ) ( )

F
w

,

F

F
w

,

F

1 m

H ;
m

1 m

exp H ;
m

t
tX t

t t

t
tt X t

t

 








 

 

   

  



  
+    =       −    

  


  +  − − −   

   
  

  

 

Because 
( ) ( )w

,
H ;X t

 
 is increasing w.r.t. t, 

 

 ( ) ( )
( )

( )

( )

1

F
w

,

F

1 m

H ; log
m

t
t tX t

t







 

 

   

− 
  +     −   

  
 

.  

 

The proof of (II) is similar. 

 

Theorem 5. Let X be the lifetime of a system with p.d.f. f(x) and s.f. F̅(x), t > 0, 

then 
( ) ( )w

,
H ;X t

 
 attains a lower bound of as follows: 

 



TWO PARAMETRIC ENTROPY FOR LIFETIME DISTRIBUTIONS 

16 

 ( ) ( )
( )

( )

( )
( )

2
w

, 2 2

f
H ; log H ;

F
t

x
X t x dx X t

t
 

 

   



 +
−  .  

 

Proof. From the log-sum inequality, 

 

 

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )
( )

( ) ( )w

,

f
f

f log f log

f f

F F

F log F H ;

t

t t

t

x dx
x

x dx x dx

x x
x x dx

t t

t t X t

 

 

 

  





 



 
 
  
   
      

    
    

− 
= − 

 


 


  (19) 

 

where (19) is obtained from (8). 

The L.H.S. of (19) leads to 

 

 ( ) ( ) ( ) ( ) ( )1 f log f f log F log F
t t

x x dx x x dx t t
  

  

 
 
− − + 

 
  .  (20) 

 

Substituting (20) in (19) leads to the desired result. 

Consider a lemma which will be very useful in proving some of the theorems 

in the section. 

 

Lemma 1. Let X be a r.v. and define Z = aX, where a > 0 is a constant, then the 

following equality holds: 

 

 ( ) ( )
( ) ( )

w w

, ,
H ; log H ;

t
Z t a X

a
   



  

 
= +  

−  
.  

 

Proof.  

 ( ) ( )
( ) ( )

w

,

f

H ; log
Pr

t

z
z

a
Z t dz

a Z t





 



  



  
  
  =

−  
 
 

 .  
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Setting Z = aX, a strictly increasing function of X, 

 

 
( ) ( )

( )

( )w

,

f
H ; log

Ft

a

x
Z t a x dx

t

a





 



  



 
  
  
 =  

−      
   
 

 .  

 

By using (8), the desired result is obtained. 

 

Theorem 6. Let X and Y be two r.v.s. Define Z1 = a1X and Z2 = a2Y, a1, a2 > 0. 

Let 
WGRE

X Y  and a1 ≤ a2; then 
WGRE

1 2Z Z . 

 

Proof. Suppose 
( ) ( )w

,
H ;X t

 
 is decreasing in t. Now, 

WGRE

X Y  implies 

 

 ( ) ( )
w w

, ,

2 2

H ; H ;
t t

X Y
a a

   

   
   

   
.  (21) 

 

Because t / a1 ≥ t / a2, 

 

 ( ) ( )
w w

, ,

1 2

H ; H ;
t t

X X
a a

   

   
   

   
.  (22) 

 

Combining (21) and (22), 

 

 ( ) ( )
w w

, ,

1 2

H ; H ;
t t

X Y
a a

   

   
   

   
.  (23) 

 

Using Lemma 1 in (23), 
WGRE

1 2Z Z . 

 

Theorem 7. For the r.v. X having support (0, m], p.d.f. f(x) and s.f. F̅(t), t > 0, 

then the following upper bound of 
( ) ( )w

,
H ;X t

 
 holds: 
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 ( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )w

,

f
log

F
H ; log

f

F

m

t

b

t

x f x
x x dx

t F t
X t m t

x
x dx

t

 

 

  





  

 
    
    
     + −

−  
 

  
   





.  

 

Proof. From log-sum inequality and (8), 

 

 

( )

( )

( )

( )

( )

( )

( )( )

( )( )

( )

( )

( )
( ) ( ) ( )w

,

f
f f

log log
F F

F

f
H ; log

F

m

m m

t

m

t t

t

m

t

x x dx
x f x x

x x dx x dx
t F t t

t dx

x
x dx X t m t

t


   
  









 

  



 
 

                   
     

 
 

  − 
= − −    

  


 





  

 

After simplification, the proof is obvious. 

 

Proposition 2. For the r.v. X having WGRE 
( ) ( )w

,
H ;X t

 
, 

 

 ( ) ( )
( )

( )

( )
w

,

f
H ; 1

F
t

x
X t x dx

t





 



  


 
  

 −   −    

 .  

 

Proof. Since, for every positive x ∈ ℝ, log x ≤ x – 1, 

 

 

( ) ( )
( )

( )

( )

( )

( )

( )

w

,

f
H ; log

F

f
1

F

t

t

x
X t x dx

t

x
x dx

t





 







  



  





 
=   −  

 
  

 −   −    
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Theorem 8. Let X be IWGRE (DWGRE) and define Z = aX, where a > 0 is a 

constant. Then Z is IWGRE (DWGRE). 

 

Proof. Because X is IWGRE (DWGRE), 

 

 ( ) ( ) ( )w

,
H ; 0X t

t
 


 


.  

 

By applying Lemma 1, it follows that Z is IWGRE (DWGRE). 

Finally, for Pareto distribution, consider the general expressions of all the 

uncertainty measures that are mentioned in this article. 
 
 
Table 4. Expressions of different entropies with respect to Pareto distribution 
 

f(x) 
+1

μ

μ

μλ

x
, x ≥ λ, λ > 0, μ > 0 

Monotonicity 

H(X) 
1

1+ + log
λ

μ μ
 -- 

Hw(X) 
( )

( ) 
  

2
1+ + - 1 log

- 1

λμ λ
μ μ

μμ
, μ > 1 -- 

H(X; t) 
1

1+ + log
t

μ μ
 Increasing in t 

Hw(X; t) 
( )

( ) 
  

2
1+ + - 1 log

- 1

μt t
μ μ

μμ
, μ > 1 Increasing in t 

H(α,β)(X) 
( )( )

 
 
 

log
+1 -

m

m

βλμ
r

λ α μ β
, m(μ + 1) > 1 -- 

H(α,β)(X; t) 
( )

 
 
 

1-

log
+1 -1

m m
μ t

r
m μ

, m(μ + 1) > 1 Increasing in t 

( ) ( )w

,
H

α β
X  

 
 
 

log
-1

m
λμ

r
mμ

, mμ > 1 -- 

( ) ( )w

,
H ;

α β
X t  

 
 
 

log
-1

m
tμ

r
mμ

, mμ > 1 Increasing in t 

 

Note: m = α / β, r = α / β(β – α) 
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Conclusion 

A weighted generalized entropy of order α and type β and its dynamic (residual) 

version were developed. The expressions of these measures were considered for 

some particular lifetime distributions. The proposed dynamic measure 

characterizes the distribution function uniquely. The various significant properties 

and inequalities of the dynamic measure were explored. 
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