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Interactions between Control and Process Design under Economic Model

Predictive Control

Henrique Oyama and Helen Durand∗,a

aDepartment of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202.

Abstract

Economic model predictive control (EMPC) is a model-based control scheme that integrates process

control and economic optimization, which can potentially allow for time-varying operating policies

to maximize economic performance. The manner in which an EMPC operates a process to optimize

economics depends on the process dynamics, which are fixed by the process design. This raises

the question of how process and EMPC designs interact. Works which have addressed process and

control design interactions for steady-state operation have sought to simultaneously develop process

designs and control law parameters to find the most profitable way to operate a process that is able

to prevent process constraints from being violated and to optimize capital costs in the presence of

disturbances. Because EMPC has the potential to operate a process in a transient fashion, this work

first focuses on how EMPC and process design interact in the absence of disturbances. Using small-

scale process examples, we seek to understand the fundamental nature of the interactions between

EMPC and process design, including how these interactions can impact computational complexity

of the controller and the design procedure. We subsequently utilize the insights gained to suggest

controller design variables which might be considered as decision variables for a simultaneous process

and control design problem when disturbances are considered.

Key words: Economic model predictive control, model predictive control, process design, process
control, chemical processes
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1. Introduction

The incorporation of control design into process design decisions (Kyriakides et al. (2017);

Gutierrez et al. (2014); Sanchez-Sanchez and Ricardez-Sandoval (2013); Yuan et al. (2012); Ricardez-

Sandoval et al. (2009); Kookos and Perkins (2001); Mohideen et al. (1996a)) at the synthesis/design

stage (Skiborowski (2018); Sánchez-Sánchez and Ricardez-Sandoval (2013); Isafiade and Fraser

(2010)) of a chemical plant has been recognized as an alternative to the sequential design and

steady-state control method to enhance process profitability. The sequential approach addresses

the control problem after features of the process have been well established (i.e., control decisions

are constrained by the priority given to the process design), which may lead to more expensive or

less efficient design selection, and poor dynamic operability in the face of disturbances/uncertainties

(Flores-Tlacuahuac and Biegler (2007); Mohideen et al. (1996b); Perkins and Walsh (1996)). How-

ever, the recognition that the achievable dynamic performance of a plant is strongly coupled with

its process design (e.g., Bansal et al. (2000); Ross et al. (1999); Ziegler and Nichols (1943)) and

that profitability of operation is tied both to process design, as well as control design led to the

development of procedures for designing processes and controllers simultaneously in a manner

that meets process constraints but is optimal with respect to operating objectives such as effi-

ciency/profitability.

The conventional integration of design of processes and control can be performed sequentially

via heuristics for process synthesis or simultaneously via, for example, an optimization problem in

which the decision variables representing process and control design variables are selected based

on metrics such as economic criteria Ricardez-Sandoval et al. (2011). In the literature, evaluating

process designs from a controllability perspective has been important for analyzing their dynamic

behavior when steady-state operation is desired (Perkins and Walsh (1996); R Vinson and Geor-

gakis (2000)). Operability has also been investigated (i.e., analyzing the extent to which desired

outputs can be reached for a given set of inputs Gazzaneo and Lima (2019); Carrasco and Lima

(2017)) with respect to process intensification (Moulijn et al. (2008); Skiborowski (2018)), and si-

multaneous design of processes and controllers has been explored for the selection of regulatory
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control structures for chemical processes including ordinary Bansal et al. (2002) and reactive distil-

lation Georgiadis et al. (2002). Tractable methods for attempting to determine control and process

designs simultaneously have been a focus of the literature regarding the simultaneous design and

control problem (which can be represented as a mixed integer dynamic optimization problem in

which the optimal design is selected from a set of alternatives). Examples of methods explored

include sequential optimization problems Sakizlis et al. (2004), mixed integer nonlinear program-

ming formulations Flores-Tlacuahuac and Biegler (2005), and back-off approaches with power series

expansions Rafiei-Shishavan et al. (2017). These advances are particularly important to enhance

profitability and ensure safe operation in the context of increasingly integrated and automated

processes Pistikopoulos and Diangelakis (2016); Davis et al. (2015); Christofides et al. (2007) and

sustainable manufacturing Rafiei and Ricardez-Sandoval (2020).

The literature addressing the co-design of processes and controllers for chemical systems also

encompasses advanced control strategies (e.g., model predictive control or MPC Qin and Badg-

well (2003); Rawlings (2000)). Optimization-based approaches for designing processes and model

predictive controllers in tandem have explored, for example, including control structure selection in

the optimization problem Gutierrez et al. (2014), controllability constraints Francisco et al. (2009)

or objective function penalties Brengel and Seider (1992), a stochastic-based worst-case process

variability index in which the worst-case scenario is utilized in evaluating the process cost function

variability and constraints with a specified probability Bahakim and Ricardez-Sandoval (2014), and

an iterative decomposition framework Sanchez-Sanchez and Ricardez-Sandoval (2013).

The above integrated process and control design paradigms have traditionally been developed

under the steady-state assumption (i.e., operation at a steady-state point). However, steady-state

operation may not necessarily be the optimal operation strategy that maximizes the process eco-

nomics. Changes in energy costs and variability in product demand and feedstocks require a dynamic

process response to maintain or increase competitiveness while respecting social/environmental reg-

ulations T. Backx and Marquardt (1998). A literature review of major approaches that add forced

dynamic considerations in process design is found in Swartz and Kawajiri (2019); Baldea and Edgar

(2018). An EMPC-like policy was utilized in relating average operating costs with storage size and
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placement of energy storage units Adeodu and Chmielewski (2018). Economically optimal control

actions for simultaneous design and control in the presence of disturbances was explored in Hoff-

mann et al. (2019). Performance improvement with respect to certain cost-based metrics under

a dynamic process operating policy was achieved for periodically operated reactors Budman and

Silveston (2008); Douglas (1967); Silveston et al. (1995).

To operate processes such as those for which a periodic operating policy is more profitable than

steady-state operation, economic model predictive control (EMPC) Ellis et al. (2014); Huang et al.

(2011); Diehl et al. (2011), an optimization-based controller that incorporates an economics-based

cost function, may be used to attain optimal economic performance online. However, as processes

operated under EMPC may allow time-varying operation (which is very different from traditional

steady-state tracking controllers), an understanding of how EMPC design should inform process

design decisions (and conversely) is needed to achieve the most economically optimal integrated

design. Motivated by the above considerations, this work explores the relationship between EMPC

and process design in the absence of disturbances. Section 2 introduces some preliminaries, and

Section 3 discusses the concept of simultaneous process and control design, with focus on an EMPC

in the controller. Section 3.1 introduces a process example that is used in the remainder of the

work for examining interactions between EMPC and process design in the absence of disturbances.

Section 3.1.1 begins a series of discussions regarding co-design of processes and EMPC’s, including

exploring how process designs could be utilized in reducing computation time of decentralized

EMPC’s and the role of the prediction horizon in dictating EMPC behavior for design analyses.

Section 3.1.2 presents some additional discussion regarding the role of design, in the absence of

disturbances, in dictating aspects of the time-varying behavior which can be observed in certain

cases with EMPC, and Section 4 suggests some controller design variables for EMPC that may be

useful for considering simultaneous process and EMPC design when disturbances are considered.

Finally, Section 5 concludes the paper.
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2. Preliminaries

2.1. Notation

The Euclidean norm of a vector is indicated by | · | and the transpose of a vector x is designated

by xT . R corresponds to the set of real numbers and R+ represents the set of non-negative real

numbers. A continuous function α : [0, a) → [0,∞) is said to be of class K if it is strictly increasing

and α(0) = 0. Set subtraction is signified by x ∈ A/B := {x ∈ Rn : x ∈ A, x /∈ B}, and a level set

of a positive definite function V is denoted by Ωρ := {x ∈ Rn : V (x) ≤ ρ}.

2.2. Class of Systems

We consider the following system of first-order nonlinear ordinary differential equations:

ẋ(t) = f(x(t), u(t)) (1)

where f is a locally Lipschitz nonlinear vector function, x ∈ X ∈ Rn is the state vector, and

u ∈ U ⊂ Rm is the vector of manipulated inputs. The origin is an equilibrium point of the system

of Eq. 1 (i.e., f(0, 0) = 0). We also assume that the system of Eq. 1 is stabilizable in the sense that

there exists a control law h1(x) that can asymptotically stabilize the origin of the closed-loop system

of Eq. 1, a positive definite Lyapunov function V : Rn → R+, and functions αj(·), j = 1, . . . , 4, of

class K, such that the following inequalities are satisfied:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2)

∂V (x)

∂x
f(x, h1(x)) ≤ −α3(|x|) (3)∣∣∣∣∂V (x)

∂x

∣∣∣∣≤ α4(|x|) (4)

h1(x) ∈ U (5)

for all x ∈ D ⊂ Rn, where D is an open neighborhood of the origin. Ωρ ⊂ D ∩X is a level set of V

referred to as the stability region.
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2.3. Economic Model Predictive Control

Economic model predictive control (EMPC) is an optimization-based control design for which

the control actions are computed via the following optimization problem:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (6a)

s.t. ˙̃x(t) = f(x̃(t), u(t)) (6b)

x̃(tk) = x(tk) (6c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (6d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (6e)

where N is called the prediction horizon, and u(t) is a piecewise-constant input trajectory with N

pieces, where each piece is held constant for a sampling period with time length ∆. The economics-

based stage cost Le of Eq. 6a is evaluated throughout the prediction horizon using the future

predictions of the process states x̃ from the model of Eq. 6b (the model of Eq. 1) initialized from

the state measurement at tk (Eq. 6c). In Eq. 6a, the integration variable is represented by τ

to enable the upper and lower limits of the integral to be in terms of time instants. The process

constraints of Eqs. 6d-6e are state and input constraints, respectively. A receding or moving horizon

implementation strategy is employed, i.e., the optimization problem is solved every ∆ time units (at

each sampling time tk) such that the first of the N pieces of the input vector trajectory that is the

optimal solution is applied to the process. The optimal solution at tk is denoted by u∗(ti|tk), where

i = k, . . . , k+N−1. EMPC that incorporates a quadratic tracking objective function that takes its

minimum at the steady-state (i.e., Le = xTQx+uTRu, with Q and R as positive definite matrices),

often referred to as model predictive control (MPC), has been widely used in the process industries

Qin and Badgwell (2003); Rawlings (2000). Furthermore, mixed state and input constraints can be

added to the EMPC in Eq. 6, denoted as follows:

gz(x, u) ∈ Gz (7)

Additional constraints which can be added to the formulation in Eq. 6 to produce a dual-

mode formulation of EMPC that takes advantage of the Lyapunov-based controller h1(x), called
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Lyapunov-based EMPC (LEMPC) Heidarinejad et al. (2012), are as follows:

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρe (8a)

∂V (x(tk))

∂x
f(x(tk), u(tk)) ≤

∂V (x(tk))

∂x
f(x(tk), h1(x(tk))), if x(tk) ∈ Ωρ/Ωρe (8b)

where Ωρe ⊂ Ωρ is a subset of the stability region that makes Ωρ forward invariant under the

controller of Eqs. 6 and 8.

3. Interactions Between Process Design and EMPC Design

A topic of interest in the process systems engineering literature has been the question of how to

optimally design a process in light of the control system’s capabilities to reject disturbances and/or

track set-point changes. The EMPC presented in Eqs. 6-7, however, does not necessarily drive the

process state to an operating steady-state. This raises the question of whether there is anything

fundamentally different about how process designs and EMPC designs interact, compared to how

process designs and the designs of controllers which track steady-states interact, even in the absence

of disturbances.

First, we note a difference between steady-state tracking control and EMPC: there is not much

need to discuss how to select controller parameters and process designs together under steady-state

operation in the absence of disturbances if the process state is initialized at the steady-state, as

then the process is always maintained at the steady-state and any control law should compute

the steady-state operating policy. For EMPC, however, this is different. Even if the process is

initialized at a steady-state and the EMPC is used to control the process, it may find that a non-

steady-state operating policy is preferable to operating at the initial steady-state, meaning that even

in the absence of disturbances, there is potential that the process and controller designs interact.

For steady-state operating policies, when design and control interact, strategies for simultaneously

designing controllers and processes could be used to find the best process/controller parameter

combination.

Simultaneous process and control design techniques seek to determine process and controller de-

cision variables mathematically in a manner that allows a process to make the most profit through-

out long-term operation. When performed in an optimization-based context, this method selects
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optimal values of both discrete/integer variables (e.g., number of trays in a distillation column)

and continuous variables (e.g., controller tuning parameters or continuous process design parame-

ters such as reactor size). This simultaneous process and control design framework, incorporating

EMPC specifically in this work, would be as follows in the absence of disturbances:

min
pss,pdv ,cdv

Cost−
∫ tf

0

Re(x̂(τ), u(τ)) dτ (9a)

s.t. u(t) = u∗(tk|tk), k = 0, . . . , (tf/∆− 1), ∀ t ∈ [tk, tk+1) (9b)

˙̂x(t) = f(x̂(t), u(t), pss, pdv) (9c)

x̂(t0) = pss (9d)

x̂(t) ∈ X, ∀ t ∈ [t0, tf ) (9e)

pdv ∈ H (9f)

cdv ∈ A (9g)

pss ∈ O (9h)

f(xs, us, pss, pdv) = 0 (9i)

g1(x̂, pss, pdv, cdv) 6 0 (9j)

u∗(tk|tk) = ones(m,m(N − 1))û(tk) (9k)

û(tk) := argmin
ū(t)∈S(∆)

−
∫ tk+N

tk

Le(x̃(τ), ū(τ)) dτ (10a)

s.t. ˙̃x(t) = f(x̃(t), ū(t), pss, pdv) (10b)

x̃(tk) = x̂(tk) (10c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (10d)

ū(t) ∈ U, ∀ t ∈ [tk, tk+N) (10e)

g2(x̃, ū(t), pdv, cdv) 6 0 (10f)

In the above equations, design decision variables such as process decision variables (pdv ∈ Rnp),

controller decision variables (cdv ∈ Rnc), and a steady-state process condition (pss ∈ Rns), bounded
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in the sets H, A, and O, respectively, are solved for. With slight abuse of notation, pdv and

pss = [xs us]
T , where xs and us are steady-state values of the process states and inputs, respectively,

are used as arguments for Eq. 1 to reflect that the dynamic model of Eq. 1 can be rewritten to have

its zero value at pss (Eq. 9i). The role of pss is that an EMPC requires a state measurement at t0

to be used (Eq. 6c), and EMPC’s are typically operated around a steady-state for stability reasons

(e.g., the stability region in Eq. 8 is designed around a steady-state). Therefore, the simultaneous

process and EMPC design approach needs to assume an initial condition for the process state and

an operating steady-state around which the EMPC will operate the process, and this could be

determined via the simultaneous design procedure. In Eq. 9, Cost is the plant capital cost and Re

is the instantaneous process revenue, which in general might be defined differently than the cost

function Le in Eq. 10a. Eq. 9 solves for the design decision variables to maximize the global economic

cost function that reflects the long-term profit (defined as the time-integral of the instantaneous

revenue obtained by operating the process under EMPC, minus capital costs) in Eq. 9a. Eq. 9i

is used as the equality constraints for the identification of the economically-optimal steady-state

values (pss) to start the process under EMPC, and Eq. 9j corresponds to the inequality constraints

of combined states and design decision variables in Eq. 9. Although xs and us are entries of the

vector pss, Eq. 9i considers pss as an argument for consistency with the notation defined in this

section. The inputs computed from the EMPC are determined at every sampling time until the

end of the time of operation, tf , over which control and process design is considered, so that new

inputs are computed for Eq. 9b tf/∆ times under the receding horizon strategy of EMPC. Eq. 9b

could use the LEMPC formulation defined by Eqs. 6 and 8 if its control features are desired. The

process model is given in Eq. 9c and Eq. 10b. The constraints on the states in Eq. 9, referred to

as x̂ ∈ X, and in Eq. 10, referred to as x̃ ∈ X, are reflected by Eq. 9e and Eq. 10d, respectively,

and the constraints on the inputs in Eq. 10 (ū ∈ U) are delineated by Eq. 10e. ones(m,m(N − 1))

represents an m×m(N −1) matrix with ones in the first m positions for which the row and column

numbers are the same, and zeros elsewhere. The vector of inputs in Eq. 9k, u∗(tk|tk), defines that

the optimal control actions are the first m entries of the vector û(tk) (assumed to be all inputs for

the sampling period from tk to tk+1) obtained from the EMPC in Eq. 10. Thus, u(t) in Eq. 9 refers
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to the piecewise constant input trajectory applied to the process in a sample-and-hold fashion. x̂ is

the vector of predicted states when u is applied to the process model of Eq. 9c. Correspondingly,

x̃ is the vector of predicted states when ū is applied to the process model of Eq. 10b. Because no

disturbances/plant-model mismatch are considered in the analyses in this work, we assume that the

state predictions are made from an accurate process model. Eq. 10f represents inequality constraints

of combined states and decision variables in Eqs. 9-10. Feasibility of the EMPC’s in Eqs. 9-10 is

important for locating a process/control design combination.

The formulation of Eq. 9-10 is not a novel mathematical construct (i.e., it is a bilevel optimization

problem), and we do not in this work seek to address techniques for solving it in a computationally-

tractable manner. The goal of this work is instead to seek to elucidate how process and EMPC

designs interact in the absence of disturbances. Specifically, we conclude: 1) in the absence of

disturbances, a sequential design framework (in which an EMPC is designed before the process)

may be sufficient for obtaining appropriate process designs, unless significant simplification is being

looked for in computational complexity of the controller itself; 2) a primary advantage of designing

processes in light of EMPC designs may be that it is a way to remove steady-state thinking from

the design mentality for a controller that fundamentally may not operate a process at steady-state,

in much the same way that EMPC allows the computer to figure out the most optimal way to

operate a process given the mathematics of the optimization problem to try to prevent traditional

steady-state control objectives from fixing the achievable profits with the controller; and 3) in the

presence of disturbances, the simultaneous process and EMPC design framework may be of interest

to utilize, with an important consideration in that case being the identification of the process and

controller design decision variables. The subsequent sections utilize a simple but illustrative process

example to address these considerations.

Remark 1. The receding horizon has the potential to impact the control actions which would be

computed by the EMPC over time because as the time horizon shifts one step forward, the inputs

computed at a later sampling time may be different than they would have been if predicted at a

prior sampling time since a different part of the time of operation is in the controller’s horizon and

being constrained within the EMPC optimization problem. Including the receding horizon allows the
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control actions utilized in finding an optimal design to account for how they would be expected to be

computed in the plant.

Remark 2. We assume a nonlinear/first-principles model for the proposed EMPC formulation

rather than a data-driven model. Although this may increase computation time, there is no need

to estimate or re-identify the process models when the operating conditions change (e.g., operating

around a new steady-state throughout the search for an optimal pss) as might be required for a data-

driven model-based approach. This work also considers the case of no plant-model mismatch, such

that a first-principles model is assumed to be available.

Remark 3. The simultaneous design and control framework could allow pss, the optimal steady-

state around which operation under EMPC is enforced, to be selected. If an LEMPC is used for

the EMPC design, an important consideration is that because Ωρ in LEMPC, as well as h1 and V ,

are all selected with respect to a given steady-state, allowing pss to be a decision variable with an

LEMPC as the EMPC formulation would require special consideration to ensure that every time pss

is updated in the search for the optimal solution to Eq. 9, the regions Ωρ and Ωρe, as well as the

functions h1 and V , are updated when required.

3.1. Interactions Between Process Design and EMPC Design: Exploring a Simultaneous Process/Control
Design Framework without Disturbances

In the following sections, we consider a chemical process consisting of a continuous stirred tank

reactor (CSTR) to analyze the conditions under which, even in the absence of disturbances, the

simultaneous process/control design framework of Eqs. 9-10 would be beneficial. In the CSTR,

the reactant species A is converted to the product B (A → B) in an irreversible, second-order,

exothermic, and liquid-phase reaction. The feed to the reactor contains only the species A in an

inert solvent at concentration CA0 and temperature T0, and a jacket is used to provide or remove

heat at a rate Q. The inputs CA0 and Q, which affect the state variables T (temperature of the

CSTR) and CA (concentration of species A), are determined by an EMPC. The dynamics of the

CSTR are as follows, with process parameters listed in Table 1 (Alanqar et al. (2015)):

dCA

dt
=

F

V
(CA0 − CA)− k0e

− E
RgT C2

A (11)
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dT

dt
=

F

V
(T0 − T )− ∆Hk0

ρLCp

e
− E

RgT C2
A +

Q

ρLCpV
(12)

where Rg is the ideal gas constant, E is the reaction activation energy, ∆H is the enthalpy of

reaction, and k0 is the pre-exponential constant. The inlet/outlet volumetric flow rate F is assumed

fixed, as are the liquid density ρL, heat capacity Cp, and liquid volume V . Vectors of deviation

variables for the states and inputs from their steady-state values, CAs = 1.22 kmol/m3, Ts =

438.2 K, CA0s = 4.0 kmol/m3, and Qs = 0 kJ/h, respectively, are xT = [x1 x2] = [C̄A T̄ ], where

C̄A = CA − CAs and T̄ = T − Ts, and uT = [u1 u2] = [C̄A0 Q̄], where C̄A0 = CA0 − CA0s and

Q̄ = Q−Qs.

Table 1: Parameters for the CSTR model.

Parameter Value Unit
V 1 m3

T0 300 K
Cp 0.231 kJ/kg·K
k0 8.46× 106 m3/h·kmol
F 5 m3/h
ρL 1000 kg/m3

E 5× 104 kJ/kmol
Rg 8.314 kJ/kmol·K
∆H −1.15× 104 kJ/kmol

The structure of the remainder of this section is as follows: we first present a case study which

uses the CSTR described above but where a heat exchanger follows the CSTR (i.e., the fluid

leaving the CSTR enters a heat exchanger and is cooled in that unit). Through a hypothetical

design consideration, analyzed via four subsections, we elucidate the nature of situations in which

simultaneous design of a process and EMPC in the absence of disturbances could have value.

Subsequently, we utilize a second study in which we focus on controlling the CSTR described

above, with various EMPC formulations, to discuss (in three sub-sections) the process and control

design implications of the conditions under which time-varying operation may occur under EMPC.
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3.1.1. Study 1: Exploring a Simultaneous Process/Control Design Framework via Control of a
CSTR Followed by a Heat Exchanger

The first study analyzing whether a simultaneous approach to process and EMPC design is

beneficial even in the absence of disturbances adds a counter-current heat exchanger after the CSTR

through which the process fluid exiting the reactor flows on the hot side, as shown in Fig. 1, and is

cooled as it travels through this unit by a cooling fluid that flows on the cold side of the exchanger.

We first present the heat exchanger model and some of the controller constraints, and then present

four sub-sections that analyze the benefits and limitations of a simultaneous design approach for

this process from different perspectives. Under the assumptions presented in Ogunnaike and Ray

(1994); Baldea and Touretzky (2013), the dynamics of the heat exchanger unit are described by the

following system of partial differential equations:

∂TH

∂t
= −vH

∂TH

∂z
+

hAs

ρLAHCp

(TC − TH) (13)

∂TC

∂t
= vC

∂TC

∂z
+

hAs

ρCACCpC

(TH − TC) (14)

In these equations, TH is the temperature on the hot side of the counter-current heat exchanger,

and TC is the temperature on the cold side. z represents the distance down the heat exchanger (z

= 0 at the outlet of the CSTR, and z = L = 2.5 m at the inlet of the cold side/outlet of the hot

side), as shown in Fig. 2. h represents a heat transfer coefficient for the heat transfer between the

hot and cold sides through the fluid-solid interfaces of the heat exchanger. As is the heat exchange

surface area per unit length. ρC and ρL are the densities of the cold and hot fluids, respectively,

and AH and AC are the cross-sectional areas through which fluid flows on the hot and cold sides.

vH and vC represent the magnitudes of the velocities of the fluid flow (calculated as the volumetric

flow rate divided by the cross-sectional area) on the hot and the cold sides, respectively, with the

assumption that there is no radial variation in the velocity. CpC and Cp are the heat capacities of

the cold and hot fluids, respectively. The heat exchanger model parameters are listed in Table 2.

The design values assume that the cross-sectional areas of the inner and outer tubes are 0.0082 m2

and 0.1 m2, respectively, that the length of the heat exchanger is L = 2.5 m, that the cooling fluid

density and heat capacity are those of water (ρC = 1000 kg/m3 and CpC = 4.18 kJ/kg·K), and that
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CSTR

HX

controlled by EMPC

Figure 1: Illustrative chemical process example, where the dashed line represents the system that is controlled by
EMPC and “HX” stands for the “heat exchanger”.

z=0 z=L

Hot side inlet

Cold side outlet

Hot side oulet

Cold side intlet

Figure 2: Counter-current heat exchanger.

the heat transfer coefficient is 1080 kJ/h·m2·K.

We note that the model above (Eqs. 13-14) is a system of partial differential equations instead

of first-order nonlinear ordinary differential equations represented by Eq. 1. However, the profiles

for TC and TH from Eqs. 13-14 can be approximated using the method of lines and discretizing the

right-hand side of both partial differential equations in space using finite differences. This forms a

system of ordinary differential equations for determining the values of TC and TH at every spatial

node of the discretized spatial domain of the heat exchanger, making the system of Eqs. 11-12

combined with approximation of the temperature profiles from Eqs. 13-14 a system of the form of

Eq. 1.

For this study, the manipulated inputs of the CSTR are adjusted using an EMPC with the

control objective being to maximize the production rate of B so that CA0 and Q are computed to

14



Table 2: Parameters for the heat exchanger model.

Parameter Value Unit
vH 608 m/h
h 1080 kJ/h·m2·K
As 0.3214 m
ρC 1000 kg/m3

AC 0.1 m2

AH 0.00822 m2

CpC 4.18 kJ/kg·K

maximize the following objective function:∫ tk+N

tk

Le dτ =

∫ tk+N

tk

[k0e
− E

RT (τ)CA(τ)
2]dτ (15)

In addition, the manipulated input constraints of Eq. 6e were added based on physical requirements

(0.5 ≤ CA0 ≤ 7.5 kmol/m3 and −5.0× 105 ≤ Q ≤ 5.0× 105 kJ/h).

We now modify the above heat exchanger and EMPC system to explore whether simultaneous

determination of process and EMPC parameters may be valuable even in the absence of distur-

bances. Specifically, we adjust the value of vc and the EMPC design in the following sections to:

A) explore vc as a process design variable and demonstrate that simultaneous design of the process

and EMPC might be valuable in the case that a decentralized control structure is desired to reduce

computation time; B) demonstrate that a sequential strategy for determining the process and con-

trol designs (in which the EMPC is designed first to incorporate all hard process constraints and

the process design is subsequently tuned with knowledge of how that impacts the inputs computed

by the EMPC) would be expected to be sufficient for designing a process with a centralized EMPC

in the absence of disturbances; C) demonstrate generality of the prior conclusions; and D) provide

guidelines for the prediction horizon and sampling period length used in a simultaneous process and

EMPC design framework.

3.1.1.1. CSTR and Heat Exchanger Analysis A: Process Design and Controller Computational

Complexity. The EMPC described in the above section was used to control the CSTR with Lyapunov-

based stability constraints of the form in Eq. 8, designed using a Lyapunov function V = xTPx,
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where P = [1200 5; 5 0.1], and based on x, rather than the states of the full chemical process ex-

ample because the process states of the CSTR are tied to the heat exchanger temperature profile.

Specifically, the fluid temperature exiting the CSTR corresponds to the heat exchanger hot side

inlet temperature and, therefore, driving the process states of the reactor to a steady-state will ac-

cordingly determine the steady-state temperature profile to be reached in the heat exchanger. The

Lyapunov-based controller h1(x) = [h1,1(x) h1,2(x)]
T was developed such that its first component

(corresponding to the inlet concentration) was set to h1,1(x) = 0 kmol/m3 for simplicity and its

second component (corresponding to the heat rate input) was designed using Sontag’s formula (Lin

and Sontag (1991)):

h1,2(x) =

−
Lf̃V+

√
Lf̃V

2+Lg̃2
V 4

Lg̃2
V

, if Lg̃2V ̸= 0

0, if Lg̃2V = 0
(16)

where the matrix-valued function that multiplies the input vector in the deviation variable form of

Eqs. 11-12 is represented by g̃ (the term g̃2 constitutes its second column) in Eq. 16, and f̃ denotes

the vector-valued function that is only related to the states in the deviation variable form of the

CSTR model (Eqs. 11-12). The Lie derivatives of V with respect to f̃ and g̃2 are represented by

Lf̃V and Lg̃2V , respectively. The upper limit of the Lyapunov function was selected to be ρ = 300

so that large changes in T would still maintain x within the allowable operating region Ωρ, ρe was

arbitrarily set to 75% of ρ, and the prediction horizon and sampling period were set to N = 10

and ∆ = 0.01 h, respectively. The simulations were performed for one hour of operation using

MATLAB and the function fmincon, with the process states initialized from xinit = [0 kmol/m3

0 K]T and an integration step of 10−5 h using the Explicit Euler numerical integration method for

the process and for making state predictions within the EMPC. The simulations were performed

using a Lenovo model 80XN x64-based ideapad 320 with an Intel(R) Core(TM) i7-7500U CPU at

2.70 GHz, 2904 Mhz, running Windows 10 Enterprise, in MATLAB R2016b. In the optimization

problem, the value of u2 was scaled down by 107 to address its larger order of magnitude compared

to the other terms.

The resulting trajectories of the states and inputs of the CSTR under the EMPC described above

are shown in Figs. 3-4 (the initial guess for the decision variables was the steady-state values of the
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Figure 3: States over one hour of operation for the process of Eqs. 11-12 under the EMPC with Lyapunov-based
constraint and input bounds, and optimizing the objective function in Eq. 15.

inputs at each sampling time, with forward finite differences for gradient estimation by fmincon),

where the temperature of the stream exiting the CSTR reaches approximately 490.2 K and then

remains at this value to maximize profit within the stability region. As the temperature of the fluid

in the heat exchanger rises, the temperature of the fluid leaving the cold side of the heat exchanger

also rises, and the amount by which it rises depends on the flow rate vc of the fluid in the cold side

of the heat exchanger.

The specific manner in which the value of vc impacts the temperature out of the heat exchanger

on the cold side can be examined via simulations. We first simulate the heat exchanger over time

when vC = 50 m/h and the heat exchanger hot side temperature at the z = 0 position is given by

the temperature profile from the CSTR under EMPC (Fig. 3). Each side of the heat exchanger was

simulated using the method of lines with 19 interior nodes and two boundary nodes in implementing

the boundary conditions to solve Eqs. 13-14. At the boundaries z = 0 and at z = L, the forward

finite difference and the backward finite difference were implemented, respectively; and between z

= 0 and z = L, the centered finite difference method was applied. The boundary conditions are
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Figure 4: Inputs over one hour of operation for the process of Eqs. 11-12 under the EMPC with Lyapunov-based
constraint and input bounds, and optimizing the objective function in Eq. 15.

as follows: the heat exchanger hot side inlet temperature is equal to the temperature of the fluid

exiting the CSTR under EMPC (i.e., TH = T at z = 0) and the heat exchanger cold side inlet

temperature is set to 273 K (i.e., TC = 273 K at z = L). To compute the temporal variation in the

resulting 21 nodes for each side of the heat exchanger, an integration step of 10−5 h was applied. The

simulated CSTR in Fig. 3 was presumed to be initially operated at a steady-state corresponding

to CAs = 1.22 kmol/m3 and Ts = 438.2 K and, thus, the heat exchanger is also assumed to be

initialized from the steady-state which results when TH = Ts at z = 0 and TC = 273 K at z = L.

These heat exchanger hot and cold side initial temperature profiles were obtained by setting the

time derivatives of TH and TC in Eqs. 13-14 to 0, and discretizing the spatial domain via finite

differences with 19 interior nodes and two boundary nodes (for the interior nodes, centered finite

difference approximations were applied; and at z = 0 and z = L positions, forward and backward

finite differences were implemented, respectively), resulting in a system of linear algebraic equations

that are then solved in MATLAB using the “\” operator. Fig. 5 (top plot) shows the heat exchanger

hot and cold side steady-state temperature profiles.
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Figure 5: Steady-state temperature profile of the heat exchanger using vC = 50 m/h (top plot) and using vC = 10
m/h (bottom plot), where the solid line represents the temperature profile along the hot side of the heat exchanger
and the dashed line represents the temperature profile along the cold side.

The hot and cold side temperature profiles at the z = 0 position of this heat exchanger over

time are presented in Fig. 6. We can observe that although there is a large temperature change

on the hot side of the heat exchanger (about 50 K) due to the control of the CSTR using EMPC

to maximize the production rate of B over one hour of operation, there is only a small change in

temperature on the cold side (less than 2 K) over time. This indicates that a process design decision

has impacted the effect of the EMPC’s control actions on the cold side of the heat exchanger (the

change in the temperature on the cold side of the heat exchanger was related to the cooling fluid

flow rate).

In contrast, when vC = 10 m/h with all other process parameters defined according to Tables 1-2

and the same hot side temperature at the z = 0 position from the CSTR under EMPC (Fig. 3),

changes in the temperature on the hot side of the heat exchanger have a greater effect on the outlet

temperature of the heat exchanger cold side. Here, the initial steady-state of the CSTR establishes

the initial steady-state profile in the heat exchanger in the bottom plot of Fig. 5 (different from

that in the top plot of Fig. 5 when vC = 50 m/h). Starting from this initial steady-state condition,
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Figure 6: Hot side and cold side temperature profiles of the heat exchanger at the z = 0 position over time using vC
= 50 m/h and with the same inputs from EMPC as used to generate Fig. 3.

with the same temperature profile from the CSTR under the EMPC at the inlet of the hot side

of the heat exchanger as in Fig. 6, the cold side temperature profile at the z = 0 position over

one hour of operation in Fig. 7 was obtained using the method of lines using vC = 10 m/h. The

lag in the change in temperature on the cold side compared to that on the hot side and the small

temperature oscillation observed around 0.3 - 0.5 h on the cold side in Fig. 7 occurs due to a

combination of process design parameters (the cooling fluid selection, cooling fluid flow rate, and

the counter-current nature of the flow). Specifically, the larger cooling fluid heat capacity on the

cold side compared to the hot side causes a larger amount of heat to be absorbed by the material on

the cold side in order to change its temperature than on the hot side (and, therefore, the response

of the cold side temperature to a change in temperature on the hot side is “delayed” in Fig. 7).

Additionally, with the lower cooling fluid flow rate than in the bottom plot of Fig. 6, the impact

of the peak in the temperature profile in the hot side of the heat exchanger in Fig. 6 has a greater

impact on the cold side temperature profile than when vc = 50 m/h, and the fluid on the cold

side takes a longer period of time to traverse the heat exchanger than in the bottom plot of Fig. 6.
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Figure 7: Cold side temperature profile of the heat exchanger at the z = 0 position over time using vC = 10 m/h
and with the same inputs from EMPC as used to generate Fig. 3.

Because the flow is counter-current, these effects combine to create the temperature profile shown

in Fig. 7. As expected, a more significant difference in temperature on the cold side compared to

the initial steady-state value (about 7 K) than that which was previously observed in the bottom

plot of Fig. 6 compared to the initial steady-state in that figure is noted due to the smaller cooling

fluid flow rate, which requires more heat to be absorbed by the material on the cold side for the

same temperature increase on the hot side.

The above results suggest that the process design itself might be used to attempt to lower

computation time of the EMPC; specifically, consider a conceptual example in which to meet plant

operating objectives, the temperature leaving the cold side of the heat exchanger should be no more

than 2 K above the steady-state temperature in that heat exchanger if the CSTR is operated at

steady-state (the initial steady-state value is 277.8 K and 295.8 K at z = 0 for the cases where vC

= 50 m/h and vC = 10 m/h, respectively, as depicted in Fig. 6 and Fig. 7). According to Fig. 6,

the heat exchanger with vC = 50 m/h can satisfy this requirement under the EMPC used to obtain
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the temperature profile in Fig. 3; in contrast, from Fig. 7 when vC = 10 m/h, the 2 K requirement

is violated if that EMPC is implemented. Additional constraints would be required for the EMPC

in Fig. 7 to keep the temperature on the cold side within 2 K of its initial steady-state value. To

demonstrate the effect of this, we add a hard constraint on the heat exchanger cold side temperature

in the EMPC formulation described above (Eq. 6d) that allows a maximum change of 2 K from its

steady-state operation value (Fig. 5; i.e., 293.8 ≤ TC ≤ 297.8 K) for the process design with vC

= 10 m/h. The heat exchanger model developed using the discretization of the spatial derivatives

of TH and TC from Eqs. 13-14 was also included in the EMPC formulation (Eq. 6b) to enable the

controller to be aware of the dynamics of the CSTR and heat exchanger (which adds arithmetic

operations to each evaluation of the constraints of the optimization problem). The simulations were

initialized from the steady-state of the CSTR-heat exchanger system with CA = CAs, T = Ts and

the heat exchanger initial temperature profile in the bottom plot of Fig. 5. The hard constraint on

the heat exchanger cold side temperature was enforced at every integration step. The initial guesses

for the decision variables were at the upper bounds of CA0 for that input, and 107 times greater than

the upper bound for Q for that input, at each sampling time, unless fmincon did not identify a local

minimum after the problem solved once at a sampling time, in which case the optimization problem

was re-solved with the solution obtained from the first attempt as the initial guess. Centered finite

differences were used for gradient estimation by fmincon.

The heat exchanger hot and cold side temperature profiles at the z = 0 position over one hour

of operation using vC = 10 m/h and with control actions computed by this EMPC are delineated

in Fig. 8. The variations in TH over time toward the beginning of the time of operation in Fig. 8 (in

the top plot) reflect the manner in which the EMPC operates the process to optimize profit while

ensuring the process state constraints are met. In the bottom plot, the somewhat delayed oscillatory

response in the heat exchanger cold side temperature profile is due to the combined design factors

of cooling fluid selection and cooling fluid flow rate. The maximum and minimum temperatures

of the cold side of the heat exchanger at the z = 0 reached over one hour of operation were TC =

296.6 K and TC = 295.6 K, respectively. While the temperature requirement on the cold side of

the heat exchanger was respected, the time-averaged production rate of B in the reactor under this
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EMPC with the hard constraint on the heat exchanger cold side temperature was 29.0 kmol/h·m3,

which is lower than the 33.2 kmol/h·m3 achieved in the previous case with no additional constraint.

Although it was not checked whether either profit value is a global optimum, this result indicates

the general concept that if certain process designs would require additional constraints to be added

to an EMPC to ensure that design requirements are met, such designs may reduce the feasible

region of operation for the EMPC and thus may potentially lower economic performance from the

controller compared to the case that no constraints are required. This indicates that the selection of

the process design may determine how flexibly the EMPC can operate the process, which impacts

the achievable economic performance of the plant. Furthermore, the need to include the discretized

dynamic model of the heat exchanger, requiring the integration of many more states than in the case

that this model is not included, in order to enforce the required constraint can increase controller

computation time. This section demonstrates that because the EMPC may operate a process at

the boundaries of the process constraints to optimize profits, either the EMPC must include all

process constraints (which can add complexity to the controller) or the design must ensure that

if those constraints are not included, hard process design requirements could be met even with

the potential for the controller to operate the process at the limits of the feasible set. This is a

manner in which process design and EMPC interact, and which may indicate a potential benefit

of simultaneous process and EMPC design even in the absence of disturbances. However, it would

only be expected to have significant benefits if the time that it takes to compute the solution for the

EMPC was significantly long compared to the timescale on which the states evolve. The example

above is meant to be illustrative of the computational complexity concept, but no computation

times are reported given that it is a small-scale example and no attempt was made to optimize the

codes for speed.

Remark 4. The type of EMPC implemented in the process was the Lyapunov-based EMPC de-

scribed by Eqs. 6 and 8. However, the result that the process design may impact EMPC design

(by, for example, requiring additional constraints to be added in the controller to ensure that design

requirements are met for certain designs and potentially thereby reducing profit under EMPC or

changing computation time) is a general conclusion tied to the foundations of optimization-based
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Figure 8: Hot side temperature profile (top plot) and cold side temperature profile (bottom plot) of the heat exchanger
at z = 0 position over time using vC = 10 m/h and with inputs from EMPC with the hard constraint on the cold
side temperature applied to the CSTR.

control and process design, and is therefore not restricted to a certain EMPC formulation. Concep-

tually, EMPC formulations share the same structure presented in Eq. 6 but differ from one another

in the way constraints are defined and enforced throughout the time of operation. In this exam-

ple, the process state was driven towards the boundary of the stability region and remained there

in Fig. 6. Lyapunov-based stability constraints (Eq. 8) are beneficial in this case as they provide

a clear region within which the closed-loop state must stay (though in Fig. 6, the behavior of the

process under the EMPC suggests that greater profits are made with respect to Eq. 6a at a different

steady-state further from the steady-state (CAs, Ts) around which the stability region was designed

(i.e., the steady-state around which the stability region was designed is not the economically-optimal

steady-state in the above example)).

3.1.1.2. CSTR and Heat Exchanger Analysis B: Sequential Versus Simultaneous Design Frame-

works. The above example suggests that designing a process and an EMPC at the same time might

be beneficial in the case that a decentralized control design is being used. Specifically, the above

section suggests that one way of reducing computational complexity of the control design may be
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to attempt to take advantage of the design itself to reduce the need to make the controller aware

of process constraints or of the models of other parts of the process. Then, the controller can

include another constraint (to be referred to as a “pseudo” constraint below since it is not fully

representative of the quantity which it is desired to constrain) which can be tuned to ensure that

the desired process constraint is met. This section demonstrates this concept by showing how this

might be done for the above example, and then compares the concept with sequentially designing

the process and controller (i.e., designing the controller before the process, and finding an optimal

process design in light of the control strategy) in the absence of disturbances.

To demonstrate how a simultaneous process/EMPC design approach may be undertaken to

reduce EMPC computational complexity using a “pseudo” constraint, we consider the same system

of a CSTR followed by a counter-current heat exchanger presented in Section 3.1.1.1 but in which the

cooling fluid heat capacity (CpC) is 0.8 kJ/kg·K. For the CSTR under consideration, we consider

that the goal of the simultaneous process design and control approach is to select process and

controller design parameters to maximize the revenue minus capital costs while meeting operating

requirements (defined as a need to keep the outlet temperature of the cold side of the heat exchanger

no more than 2 K above its initial temperature for a given value of vC if the CSTR is operated at

the steady-state CAs = 1.22 kmol/m3, Ts = 438.2 K, CA0s = 4 kmol/m3, and Qs = 0 kJ/h).

To determine decision variables and constraints to use in a simultaneous EMPC and process

design framework, we note that it is expected that changes in the value of vC could impact the capital

cost of the system as well as the process design constraint, and therefore the process decision variable

pdv in the simultaneous process and EMPC design approach was selected to be vC . Specifically, the

process design constraint is that the difference between the maximum temperature achieved on the

cold side of the heat exchanger (TC,max, corresponding to TC when z=0) and the initial steady-state

value at z=0 (TCs) must be below a heat exchanger cold side temperature requirement (where the

values of the steady-state temperature at the z=0 position on the hot and cold sides of the heat

exchanger, denoted by THs and TCs, respectively, change based on the value of vC). We defined this

operating requirement to be TCs − 2 ≤ TC,max ≤ TCs + 2. For this requirement, higher values of vc

would prevent the temperature of the cold side of the heat exchanger from varying as much down
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its length for larger values of the temperature of the stream at the heat exchanger inlet. Here, we

consider the cold side fluid flow rate to be a design decision in the sense that we are seeking to

design a process that has that fluid flow rate (i.e., it is not available to be manipulated by EMPC

to take any value in its bounds to optimize profit, but the process is being designed to keep that

fluid flow rate at its design value; if the cold side fluid flow rate was used as a decision variable

by the EMPC, then another process design decision variable would need to be selected to analyze

process and EMPC design interactions, but this is not done here for simplicity).

To make the EMPC fully aware of the constraint on the temperature on the cold side of the

heat exchanger would require that the heat exchanger model of Eqs. 13-14 be solved within the

EMPC. This introduces a number of states to represent the discretized form of these equations,

which would need to be numerically integrated with an integration step smaller than that of the

CSTR alone if the Explicit Euler numerical integration method is used. Though other numerical

methods could be used to work with this system as well, we explore the concept of eliminating the

need to account for the heat exchanger solution in the EMPC by instead placing a bound on the

temperature of the fluid entering the heat exchanger on the hot side. This can be represented as a

bound on the temperature of the fluid in the CSTR and therefore is able to be placed within the

EMPC without the simulation of the heat exchanger explicitly within the controller. Because the

value of Eq. 15 (representative of revenue over the prediction horizon) increases as the temperature

at the CSTR outlet increases (reflected in Fig. 6), but it also increases the outlet temperature of

the cold side of the heat exchanger (thereby impacting how close the operating requirements on

the cold side outlet temperature described above come to being violated), it was anticipated that

the simultaneous process and EMPC design for this example should contain a decision variable

reflecting the upper bound on the temperature in the CSTR that is used by the EMPC (Tub, which

was allowed to be selected within the range 470 6 Tub 6 500 K; this constraint acts as the “pseudo”

constraint since it is not a direct bound on the 2 K operating requirement, but through tuning via

the simultaneous process and EMPC design approach, may be able to ensure that that requirement

is met). Therefore, cdv = Tub.

To develop the objective function of Eq. 9, both the capital cost term Cost and the instantaneous
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revenue Re must be defined for this example. We will analyze a case in which the capital cost in

Eq. 9a is formulated as follows:

Cost = 0.00671((31.1329vCAC − 600.87)2 + (31.1329vCAC − 600.87)) + 201.34 (17)

This equation was selected to cause the capital cost (Cost) in Eq. 9a to have a parabolic behavior

and be on the same order of magnitude as the revenue in the 0.5 h of operation. This cost function

was numerically selected for the purposes of analyzing the proposed framework. Re in Eq. 9a

was set to be Le in Eq. 15, but scaled by a factor of 27.56 assumed to convert the value of Le to

currency units ($) such that both terms in the global economic cost function of Eq. 9a have the same

units. The prediction horizon and sampling period in Eq. 10 were set to N = 2 and ∆ = 0.01 h,

respectively.

The explicit Euler numerical integration method was applied to simulate the CSTR in Eqs. 11-

12 with an integration step of 10−4 h in both Eqs. 9 and 10. The method of lines described in

Section 3.1.1 with 19 interior nodes and 2 boundary nodes for the spatial integration, with the

Explicit Euler numerical integration method using an integration step of 10−6 h, was implemented

to make predictions for the heat exchanger states in Eq. 9. The piecewise constant input trajectory

is obtained from Eq. 10 and applied to Eq. 9 to evaluate the global objective function under a given

combination of design decision variables. No Lyapunov-based stability constraints were applied.

Conceptually, the formulation of Eqs. 9-10 for this example is as follows:

min
vC ,Tub

Cost− 27.56

∫ tf=0.5h

0

[k0e
− E

RT̂ (τ) ĈA(τ)
2] dτ (18a)

s.t. [CA0(t) Q(t)]T = [C∗
A0(tk|tk) Q∗(tk|tk)]T , k = 0, . . . , (tf/∆− 1),∀ t ∈ [tk, tk+1) (18b)

dĈA

dt
=

F

V
(CA0 − ĈA)− k0e

− E
RgT̂ Ĉ2

A (18c)

dT̂

dt
=

F

V
(T0 − T̂ )− ∆Hk0

ρLCp

e
− E

RgT̂ Ĉ2
A +

Q

ρLCpV
(18d)

∂T̂H

∂t
= −vH

∂T̂H

∂z
+

hAs

ρLAHCp

(T̂C − T̂H) (18e)

∂T̂C

∂t
= vC

∂T̂C

∂z
+

hAs

ρCACCpC

(T̂H − T̂C) (18f)

ĈA(t0 = 0) = CAs (18g)
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T̂ (t0 = 0) = Ts (18h)

T̂H(z, t0 = 0) = THs(z) (18i)

T̂C(z, t0 = 0) = TCs(z) (18j)

TCs − 2 ≤ TC,max ≤ TCs + 2 (18k)

470 K ≤ Tub ≤ 500 K (18l)

180 m/h ≤ vC ≤ 220 m/h (18m)[
C∗

A0(tk|tk)
Q∗(tk|tk)

]
= ones(m,m(N − 1))

[
ĈA0(tk)

Q̂(tk)

]
(18n)

[ĈA0(tk) Q̂(tk)] = argmin
C̄A0(t),Q̄(t)∈S(∆)

−
∫ tk+N

tk

[k0e
− E

RT̃ (τ) C̃A(τ)
2] dτ (19a)

s.t.
dC̃A

dt
=

F

V
(C̄A0 − C̃A)− k0e

− E
RgT̃ C̃A

2
(19b)

dT̃

dt
=

F

V
(T0 − T̃ )− ∆Hk0

ρLCp

e
− E

RgT̃ C̃A
2
+

Q̄

ρLCpV
(19c)

C̃A(tk) = ĈA(tk) (19d)

T̃ (tk) = T̂ (tk) (19e)

T̃ (t) ≤ Tub, ∀ t ∈ [tk, tk+N) (19f)

0.5 kmol/m3 ≤ C̄A0 ≤ 7.5 kmol/m3 (19g)

− 5.0× 105 kJ/h ≤ Q̄ ≤ 5.0× 105 kJ/h (19h)

The constraint of Eq. 19f is enforced at every integration step. In Eqs. 18i and 18j, T̂H(z, t0) = THs(z)

and T̂C(z, t0) = TCs(z) represent that the initial values of the hot and cold side temperature profiles,

respectively, at z = 0 are set to the steady-state values which correspond to the hot side inlet taking

the value of Ts, and the cold-side outlet temperature then being set by solving for the steady-state

of Eqs. 13-14 with TC at z = L set to 273 K, and with the value of vC being tested as a possible

optimal solution to Eq. 18.

To obtain insights into the interactions between process and EMPC design but with reasonable

computational complexity, we do not attempt to rigorously solve the simultaneous design and control

algorithm in Eqs. 18-19, but instead attempt to gain insights into factors that are expected to play
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a role in the formulation and effectiveness of that methodology by discretizing the allowable range

of values of the decision variables using unitary increments for Tub and vC , and assessing the global

cost function for those combinations of Tub and vC . Specifically, we discretize the two decision

variables, vC and Tub, in increments of 1 over their allowable ranges (between 470 K and 500 K

for Tub and 180 m/h and 220 m/h for vC). For each resulting vC-Tub combination, we evaluated

the global cost function (Eq. 18a) when EMPC was implemented in each process system designed

with the combination of decision variables, and tf was set to 0.5 h with CA and T initialized from

CAs and Ts. fmincon was utilized to solve the EMPC for each Tub and vC combination explored

on a desktop Intel(R) Xeon(R) CPU E-3 1240 v5 at 3.50GHz, with a 64-bit operating system with

an x64-based processor running Windows 10 Enterprise, in MATLAB R2016a. In the optimization

problem, the value of Q was scaled down by 107 to address its larger order of magnitude compared

to the other terms in the process model, and the initial guess for the control actions from the

EMPC was the steady-state value of the inputs at each sampling time, unless fmincon identified a

potential local minimum, in which case the optimization problem was re-solved with the solution

obtained from the first attempt as the initial guess. Notably, no attempt was made to make the

control actions computed by fmincon global solutions at any sampling time for any combination of

decision variables of Eq. 18. To prevent high computation times, short prediction horizons (N = 2)

were used. Though this implementation may not find the global optimal solution and the time of

operation considered is much shorter than a plant’s life, these simplifications allowed insights into

design-control interactions under EMPC to be obtained with reduced computation time.

The best values of the decision variables among those tested via the approach used for analyzing

characteristics of the feasible solution space for this example with N = 2 (i.e., checking for the

best values of Tub and vC among values within the discretized ranges of these variables as described

above), over 0.5 h of operation using MATLAB, were Tub =490 K and vC =195 m/h. The trajectories

of the states and inputs of the CSTR under the EMPC with these values of the design parameters

are depicted in Figs. 9-10, with the process states initialized from their initial steady-state values.

As shown in Fig. 9, the outlet temperature of the CSTR reaches approximately 490 K and then it

remains at this value to maximize the process profit. The hot and cold side temperature profiles at
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Figure 9: States over 0.5 h of operation for the process of Eqs. 11-12 under the EMPC designed using the simultaneous
process and EMPC design approach with the global objective function based on Eq. 17.

the z = 0 position of the heat exchanger over time are presented in Fig. 11. We can observe that

the design constraint was met as the initial heat exchanger cold side temperature was 279.37 K and

the maximum temperature achieved on the cold side was 281.36 K (i.e., a 1.99 K difference from the

initial steady-state value, which is below the heat exchanger cold side temperature requirement).

These results indicate that the best feasible solution among those tested for the EMPC-process

design combination coming from the simultaneous process and EMPC design approach allowed the

design constraints to be met with only the Tub constraint in the EMPC, while maximizing the profit.

The values of vC and Tub that gave the largest value for the global objective function among

those tested are not at the bounds of either decision variable. Though this problem was not

solved to global optimality so that this vC − Tub combination is not necessarily globally optimal,

it highlights the concept that the greatest utility of the simultaneous process and EMPC design

approach would be expected to be in cases where a trade-off exists that causes the optimal values

of the decision variables to not easily be known a priori. The objective function of Eq. 17 was

designed to potentially have such a trade-off because according to Eq. 17, the capital cost term
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Figure 10: Inputs over 0.5 h of operation for the process of Eqs. 11-12 under the EMPC designed using the simulta-
neous process and EMPC design approach with the global objective function based on Eq. 17.
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Figure 11: Hot and cold side temperature profiles of the heat exchanger at the z = 0 position over time and with
control actions for the CSTR from EMPC designed using the simultaneous process and EMPC design approach with
the global objective function based on Eq. 17.
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has a parabolic behavior (it has the minimum cost value around vC = 193 m/h), but the revenue

term relies on both vC (which sets the steady-state hot and cold side temperature profiles in the

heat exchanger) and Tub (as vC increases, the temperature at which the CSTR can be operated

increases and, consequently, the production rate of species B becomes greater) and can potentially

be increased more than the capital cost term as vC rises.

However, a simultaneous design framework is not guaranteed to give values of the design param-

eters that are not intuitive/not at the bounds of the design parameters. For example, we can explore

the simultaneous design and control problem with an alternative objective function as follows:

Cost = 5.71× 10−5exp(12.1656 + 0.0862[ln(31.11vCAC)]
2) (20)

This equation is a modified correlation of a pump purchase cost equation from Seider et al. (2017),

where the modifications were selected to cause the capital cost (Cost) in Eq. 18a to be close to the

same order of magnitude as the revenue in the 0.5 h of operation. With this objective function, with

the discretization of the decision variables Tub and vC using unitary increments within their bounds

and after performing a simulation for 0.5 h of operation for each Tub and vC pair, the resulting

best combination of decision variables among the feasible solutions tested was vC = 180 m/h and

Tub = 486 K, using MATLAB R2016a on a desktop Intel(R) Xeon(R) CPU E-3 1240 v5. For the

process simulated with this vC − Tub combination (in MATLAB R2017b on an Intel(R) Core(TM)

i7-7500U CPU at 2.70GHz, 2.90GHz, with 16.0 GB of memory and a 64-bit operating system with

an x64-based processor running Windows 10 Enterprise), the design constraint was met as the initial

heat exchanger cold side temperature was 279.89 K and the maximum temperature achieved on the

cold side was 281.88 K. In this case, vC is at its lower bound partially due to the objective function

formulation and the manner in which it depends on vC . Due to the EMPC design, for a given vC ,

Tub should be the highest value possible that will cause all the process predictions over the time

of operation to be within the allowable region in which the heat exchanger cold side temperature

requirement is respected. Though again global optimality was not searched for, the same set of

potential vC −Tub combinations were tested with Eq. 17 as with Eq. 20, and the difference in which

of these was optimal for a given objective function highlights that different objective functions can
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give different optimal solutions and that with some objective functions, the best design decision

may be evident from process knowledge without using a simultaneous design and control approach.

Both in testing multiple values of vc − Tub and simulating the process with the best among those

tested, Q was scaled down by 107, and the initial guess for the control actions from the EMPC was

the steady-state value of the inputs at each sampling time, unless fmincon did not identify a local

minimum after the problem solved once at a sampling time so that then the optimization problem

was re-solved with the solution obtained from the first attempt as the initial guess.

Though the results above indicate that there may be some benefit in some circumstances to

seeking to find the solution to a simultaneous design and control problem even in the absence of

disturbances in the case that a decentralized EMPC is desired to be designed (here, for example, a

constraint in the controller is being designed not with respect to hard bounds on process physics

or safety objectives, but as a surrogate meant to represent some other hard process constraint

approximately in the control design to reduce the controller computation time), the formulation

of EMPC offers great power for including all process knowledge. Specifically, like steady-state

tracking MPC, it can account for process constraints explicitly in the control design, but unlike

tracking MPC, it is also fully aware of a description of the process economics (MPC is aware of an

objective function that can be tuned to be the best representation of the process economics possible,

but is not fundamentally representative of the process economics in many cases). This fact means

that, whereas traditional steady-state tracking control designs must be developed after a process

design is determined (because they contain parameters that have to be tuned to achieve the best

economics for a given process design) or at best be determined at the same time as the process

parameters, centralized EMPC, in the absence of disturbances, is best designed to be as flexible

as possible (but with constraints imposed by physical or safety limitations) before the process

and then used to guide the process design by simulating various process designs under the EMPC

aware of the various process models as they are updated to see which process dynamics provide the

EMPC the greatest flexibility to optimize economics within the constraints. This also means that a

primary benefit of considering EMPC in a sequential design and control framework in the absence

of disturbances is that it offers an automated framework for removing a steady-state mentality from
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design considerations, but still allows the possibility that the design found is one which corresponds

to the controller driving the closed-loop state to a steady-state. This indicates that whereas process

design has traditionally come before control design, we here suggest control design before process

design in the absence of disturbances due to the special character of EMPC.

Remark 5. Because the focus of this work is on elucidating the relationships between process and

EMPC design in the absence of disturbances, rather than on developing novel algorithms for solving

that problem efficiently, computation time reduction techniques would be needed to be investigated

for cases where the simultaneous design of process and control is advantageous. Given our focus,

no attempt was made to use an efficient optimization method/software or to optimize the codes in

this work. Even the method used in determining values of vC and Tub that would be most profitable

in a simultaneous design and control framework did not solve the bilevel optimization problem, but

instead discretized (in a relatively coarse fashion) the decision variables to evaluate the objective

function at a number of vC-Tub combinations, which we recognize is not an efficient method to solve

this problem.

Remark 6. Though a short prediction horizon of N = 2 was used in the simultaneous design and

control framework, the state and input trajectories under EMPC when Tub is 490 K with N = 2 and

N = 5 and with the EMPC formulated according to Eq. 19 were almost overlaid. In cases where

the input trajectories under the control laws which are available to be selected while searching for a

simultaneous design and control strategy are similar with different prediction horizons, it is possible

that changing the prediction horizon may not change the optimal design.

Remark 7. In this example, no lower bound was imposed on the temperature in the CSTR in the

EMPC because it was known that the EMPC would increase temperature above the initial value in

order to maximize the objective function of Eq. 15.

Remark 8. Other process design variables besides vC (e.g., reactor volume or heat exchanger area)

could have been examined. These changes would be expected to impact profits and could lead to

optimal designs with different design parameters than were used in the simulations in this work. As

design parameters are changed, they can impact the steady-state for the CSTR to operate around; for
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LEMPC, this could require a new stability region, Lyapunov function, and Lyapunov-based controller

to be designed each time the design parameters are adjusted. For other EMPC formulations, another

aspect of the controller might need to be adjusted (e.g., the terminal steady-state condition would

need to be updated for a terminal equality constraint EMPC).

3.1.1.3. CSTR and Heat Exchanger Analysis C: Controller Computational Complexity for Other

EMPC Formulations via Simultaneous Process/Control Design. In the above sections, the simulta-

neous design and control framework was analyzed for a transient that lasts for a very small fraction

of the time of plant operation in the absence of disturbances. Therefore, though the above sections

demonstrated that there may be potential for benefits for a simultaneous process and EMPC design

framework for computation time reduction of the EMPC if a process operates in a transient fashion

for a short period of time, it did not provide an example that indicated that similar conclusions

might hold when the transients last longer.

To force the process in Section 3.1.1.1 (i.e., CpC is again 4.18 kJ/kg·K) to operate in a transient

fashion for a longer period of time to examine this case, we can consider a limit on the time-averaged

amount of reactant fed to the reactor in one hour of operation. Eq. 21 reflects this economics-oriented

constraint, which we will seek to approximately satisfy:

1

1 h

∫ t=1 h

t=0 h

u1(τ)dτ = 0 kmol/m3 (21)

Since the EMPC using the process model of Eqs. 11-12, the Lyapunov-based stability constraints

of Eqs. 8a-8b, and the bounds on the inputs (0.5 ≤ CA0 ≤ 7.5 kmol/m3 and −5.0 × 105 ≤ Q ≤

5.0×105 kJ/h) is not guaranteed to be feasible with Eq. 21, the constraint of Eq. 21 was implemented

using slack variables, s1 and s2, as in Durand (2019):

s1 ≥
k−1∑
i=0

(u∗
1(ti|ti)) +

k+Nk∑
i=k

(u1(ti|tk))− 3.5δ(100− tk
∆

−N) (22)

s2 ≥−
k−1∑
i=0

(u∗
1(ti|ti))−

k+Nk∑
i=k

(u1(ti|tk))− 3.5δ(100− tk
∆

−N) (23)

where Nk = N and δ = 1 for tk < 0.9 h, and δ = 0 and Nk is set to the number of sampling periods

remaining in the operating period of one hour when tk ≥ 0.9 h. The upper and lower bounds of s1
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and s2 were 2 × 1019 and -2 × 1019, respectively, and the initial guess for these decision variables

provided to fmincon was 0 at each sampling time. The objective function of the EMPC to be

minimized with the slack variables is presented below:∫ tk+N

tk

[
−k0e

− E
RgT (τ)CA(τ)

2
]
dτ + 100(s21 + s22) (24)

The weight coefficient of 100 given to the slack variable term was chosen to attempt to drive the

slack variables toward zero to prevent violations of the material constraint of Eq. 21 while avoiding

significant reduction of the profit defined by the objective function of Eq. 24. Simulations of the

process of Eqs. 11-13 with vC = 50 m/h were performed, initialized from CA = CAs, T = Ts, and

the heat exchanger initial temperature profile in Fig. 5 (top plot), for 10 h of operation. The hot

and cold side temperature profiles of the heat exchanger at the z = 0 position over 10 h of operation

under this EMPC are depicted in Fig. 12. These plots were generated in MATLAB R2016b on a

Lenovo model 80XN x64-based ideapad 320 using fmincon with Q scaled down by 107, the centered

finite difference method utilized by fmincon, and the initial guess of the decision variables being

their steady-state unless a local minimum was not located, in which case the solution that was not

a local minimum became the initial guess.

The time-averaged amount of material fed to the reactor in each hour of operation was 0.4

kmol/m3, slightly above the desired value of 0 kmol/m3 from Eq. 21. It can be seen in Fig. 12 that

the temperature on the hot side of the heat exchanger reaches its maximum at 491.7 K and remains

again around 490 K for about 0.4 h in each operating period to maximize the reaction rate in the

CSTR. After this, the temperature drops to a minimum around 406 K, remains there for about 0.4

h and then increases to reduce the violation of the material restriction imposed by Eq. 21.

In terms of the impact of this material constraint on the process design procedure without

disturbances, we note that the heat exchanger cold side temperature profile follows a behavior

qualitatively similar to the hot side temperature profile, but the temperature change is less than 2

K from its initial value at the z = 0 position (277.8 K), as observed in Fig. 12. Despite the variation

in TH over time, the temperature variation on the cold side of the heat exchanger was relatively

small for this cooling fluid flow rate. If instead the temperature profile in the top plot of Fig. 12 is
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Figure 12: Hot side temperature profile of the heat exchanger at the z = 0 position over time and with inputs from
EMPC with the material constraint applied to the CSTR (top plot) and cold side temperature profile of the heat
exchanger at the z = 0 position over time using vC = 50 m/h and with vC = 10 m/h with inputs from EMPC with
the material constraint applied to the CSTR (bottom plot).

used as the hot side inlet temperature for the heat exchanger when vC = 10 m/h (initialized from

the steady-state temperature profile in the bottom plot of Fig. 5), the cold side temperature profile

at the z = 0 position over one hour of operation is shown in Fig. 12 (in the bottom plot). The

heat exchanger cold side temperature profile shows a temperature change of more than 2 K from

its initial value at the z = 0 position (295.8 K), as shown in Fig. 12. As for Figs. 6 and 7, we again

conclude that even with this different operating policy computed by the EMPC (Fig. 6 compared

to Fig. 12), the process design may impact the constraints required in the EMPC. These results

indicate that both for vc = 50 m/h and vc = 10 m/h, the temperature on the hot side of the heat

exchanger is brought to an upper bound for a period of time under the material constraint (due to

the objective function being maximized at a point in the stability region with a temperature higher

than that at the initial condition), but then as the constraint changes over time, it eventually forces

the closed-loop state to leave that optimal operating point. Here, then, the value of Tub would still

need to be designed for the worst-case steady-state that the process sees over time (i.e., the value of
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Tub should be that which ensures that the temperature of the cold fluid leaving the heat exchanger

at a steady-state temperature coming in to the hot side of the heat exchanger is not greater than

the 2 K requirement). This implies that time-varying operation may not necessarily result in a

different set of design parameters than if the closed-loop state was driven to a steady-state value in

the stability region.

3.1.1.4. CSTR and Heat Exchanger Analysis D: EMPC Prediction Horizon and Simultaneous Pro-

cess/Control Design. Section 3.1.1.2 hinted at the implications of the prediction horizon length

for the simultaneous process and EMPC design problem; in this section, we discuss its role more

explicitly. First, it may be beneficial to perform a process design selection with an EMPC with a

prediction horizon and sampling period which give equivalent input trajectories to those from the

EMPC with the prediction horizon and sampling period planned to be utilized, as different predic-

tion horizons and sampling periods may create different profits and even a different character of

the trajectories of the states under the computed inputs. Depending on the prediction horizon and

dynamics, it may be possible to achieve such trajectories while predicting for a shorter time into the

future than is planned in the EMPC to be utilized, such that EMPC’s with shorter times of predic-

tion could be utilized in place of those with longer prediction horizons in the simultaneous process

and EMPC design framework to reduce computation time of that framework. However, changing

the prediction horizon or sampling period from that planned in practice for the simultaneous design

problem would need to be done with care.

For example, the prediction horizon can have a significant impact on some designs, for certain

EMPC formulations. To see this, consider that a terminal steady-state constraint Rawlings et al.

(2012); Mayne et al. (2000) is added to the EMPC in Section 3.1.1.2 to enforce that the heat

exchanger hot side temperature at the hot side inlet must be at the initial steady-state value (Ts)

at the end of the prediction horizon (i.e., T (tk+N) = Ts). Then, with smaller prediction horizons,

this constraint maintains the temperature of the CSTR closer to the initial steady-state condition

whereas with a larger prediction horizon, the controller has more flexibility to compute control

actions that would maximize the profit and meet operating requirements while still meeting the
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terminal constraint. The result of this is that an EMPC policy with a larger N would drive the

temperature of the CSTR further from the initial steady-state to achieve higher profit, so that with

the shorter prediction horizon, the temperature in the EMPC never goes far above its steady-state

value.

To see this, we can return to the process in Section 3.1.1.2 (i.e., CpC = 0.8 kJ/kg·K), using the

simultaneous process and EMPC design procedure as in Eqs. 18-19, with Cost defined by Eq. 17, but

where a terminal constraint is added to the EMPC in Eq. 19. Using the same discretization of the

vC and Tub ranges as in Section 3.1.1.2, the most profitable design among those tested when N = 2

was vc = 193 m/h with Tub = 498 K (though various other designs gave approximately the same

profit, indicating that due to the shortness of the prediction horizon combined with the terminal

constraint, the control actions did not change much as Tub changed for many values of Tub, so that

many values of Tub caused the closed-loop state to give approximately the same profitability when

vc was 193 m/h), whereas when N = 5, it was Tub = 490 K and vc = 195 m/h (the simulations

with N = 2 were run in MATLAB R2016a, whereas the simulations with N = 5 were run in

MATLAB R2018a, on an Intel(R) Xeon(R) CPU E-3 1240 v5, both with Q scaled by 107, centered

finite differences in fmincon, and initial guesses at the steady-state unless a solution that was not

necessarily a local minimum had to be re-used as the initial guess for re-solving the optimization

problem). A simulation of the process with the most profitable designs among those tested for each

prediction horizon (performed in MATLAB R2016b on a Lenovo model 80XN x64-based ideapad

320 with an Intel(R) Core(TM) i7-7500U CPU) indicated that when N = 2, the short prediction

horizon caused the maximum temperature reached in the CSTR to be 455.83 K, whereas for N = 5,

the maximum temperature reached was 490 K. The terminal constraint therefore also restricted the

heat exchanger cold side temperature changes when N = 2, but with N = 5, the same best design

decisions (Tub =490 K and vC =195 m/h) as the case for EMPC without the terminal constraint

were identified due to the fact that this EMPC design had greater freedom to compute inputs to the

process that maximize the profit compared to the EMPC formulated using the terminal equality

constraint with a smaller prediction horizon. These results highlight that there may be benefit

in employing a receding horizon in a simultaneous EMPC and process design framework for some
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cases, with the purpose of ensuring that the characteristics of process operation under the expected

controller implementation are captured by the simultaneous design and control framework, and

also highlight that there is not necessarily a single value of controller design variables which will be

optimal for the process.

3.1.2. Study 2: Exploring Conditions for Time-Varying Operation Under EMPC

The results above suggest, though discussed with respect to their potential implications for rela-

tionships between time-varying operation and design by evaluating controller behavior in combina-

tion with process design over a short timescale, that there may be times that an optimal steady-state

analysis may be sufficient for designing an EMPC and process. Specifically, based on Fig. 6, it is

expected that after 0.5 h, the profit is dominated by the instantaneous revenue at the final temper-

ature which the CSTR reaches. If there are no disturbances such that the CSTR temperature is

then kept at the value that it reaches for all future times by the EMPC, the transient behavior in

the first 0.5 h of the simulation would not play a role in the selection of the values of vC and Tub.

Potentially, therefore, if long-term operation had been considered as would be typical in practice

(though this example did not consider that to focus on the time-varying aspect of the problem,

which was considered to be more informative for elucidating potential interactions between EMPC

and process design), this problem could have been explored as a steady-state optimization problem,

where the optimal steady-state values of Q and CA0 could have been searched for, as well as the

optimal value of vC , to optimize the objective function of Eq. 18a. The value of T reached at this

optimal condition (which is the steady-state value of T corresponding to the selected steady-state

Q, CA0 and vC) where the design constraint was not violated could then have been considered as

Tub in the EMPC formulation. This result implies that for some processes under EMPC, the details

of the EMPC formulation may not be required in an optimization-based process/EMPC design

procedure. Furthermore, if the capital cost is far less than the revenue over the time of operation,

it may be sufficient to select the design variables based on their impact on the controller’s ability

to optimize revenue only, subject to design constraints.

Though the above section clarifies potential relationships between EMPC and process design in

the case where the process transient is noticeable, it begs the question of whether there are expected
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to be cases when steady-state operation would not be the optimal operating strategy under EMPC

in the absence of disturbances (i.e., it is reasonable to ask whether the relationships between design

and EMPC developed in the prior section for a case where the process transients mattered to the

conclusions would be meaningful from a long-term process and control design perspective). This

section seeks to address this question by again referring to the CSTR from Section 3.1. However,

this section will explore the question using EMPC’s with different control laws. In the sections

below, these EMPC’s are used to examine potential design implications of the conclusion that in

the absence of disturbances, an EMPC may in many cases pursue operation at an economically-

optimal steady-state unless one of the following factors prevents it from doing so: A) short prediction

horizon and sampling period lengths leading to myopic EMPC behavior; B) an objective function

which changes; C) constraints which vary over time so that the closed-loop state can sometimes

access higher-profit regions of state-space without violating the constraints, but cannot do so for

all times, or the closed-loop state otherwise cannot remain at a location within the feasible set

corresponding to the highest profit for all times but which can be reached during operation.

3.1.2.1. Time-Varying Operation and Design Analysis A: Sampling Period and Prediction Horizon.

One factor which can cause an EMPC to not locate a steady-state operating condition corresponding

to the greatest profit within the feasible set would be if it does not predict far enough into the future

(i.e., the combination of the prediction horizon and sampling period do not allow the EMPC to

see how it could reach the best operating point in the feasible region, so that it has difficulty

to locate such a point). In addition, it may be possible that if an EMPC is desired to be used

but the prediction horizon is too short, a traditional MPC may out-perform the EMPC for that

same prediction horizon; therefore, if there are significant computational limitations known at the

design stage, it may be necessary before seeking to find the optimal design to compare the EMPC

performance with the prediction horizon and sampling period length which can be used with the

available computational power with a steady-state tracking controller with the same computation

time to verify which is more profitable before selecting a controller with which to explore process

design.
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3.1.2.2. Time-Varying Operation and Design Analysis B: Objective Function Change Timescale.

In this section, we discuss the implications for process design of the use of EMPC in cases where

the objective function is time-varying. In such cases, it is possible that EMPC may out-perform a

traditional tracking MPC (e.g., Ellis and Christofides (2014)) due to its ability to account explicitly

for profits as the cost function changes, without being forced to track a steady-state, particularly

if the changes in the objective function occur before or shortly after the closed-loop state shows

steady-state behavior with respect to a given objective function (i.e., the controller operates in a

transient fashion during a significant fraction of the time of operation). When the objective function

is time-varying, changes in the process design can change the character of the trajectories which an

EMPC would compute. To demonstrate this, we again consider the system of Eqs. 11-12, but this

time under an EMPC with the following objective function:∫ tk+N

tk

[10k0e
− E

RT (τ)CA(τ)
2 − A(τ)CA0(τ)] dτ (25)

where the first term represents revenue, and the second reflects operating costs (considered to

be related to costs of feedstock). A is either 0 or 100. For the process in Section 3.1, different

economically-optimal steady-states are associated with each value of A in Eq. 25. Specifically,

fmincon was utilized to locate a (locally) economically optimal steady-state with respect to the

stage cost of Eq. 25 for A = 0 and for A = 100. The steady-state optimization problem was

defined by maximizing Eq. 25 subject to the requirement that the steady-state dynamic model of

Eqs. 11-12 must be satisfied, with the inputs within the input bounds, and CA and T within bounds

as well. Specifically, fmincon was utilized with the initial guesses of the decision variables (which

are steady-state values of CA, T , CA0 and Q) being CAs, Ts, CA0s, and Qs from Section 3.1, lower

bounds on the values of these decision variables as 0.5 kmol/m3, −5 × 105 kJ/h, 0 kmol/m3, and

5 K, respectively, and upper bounds on these decision variables of 7.5 kmol/m3, 5 × 105 kJ/h, 5

kmol/m3, and 495 K. The problem was solved in MATLAB R2016a on a desktop Intel(R) Xeon(R)

CPU E-3 1240 v5. The optimal steady-state when A = 0 is CA1s = 0.86 kmol/m3, T1s = 495.00 K,

CA01s = 7.50 kmol/m3, and Q1s = −156.11 MJ/h, and the optimal steady-state when A = 100 is

CA2s = 0.19 kmol/m3, T2s = 495 K, CA02s = 0.50 kmol/m3, and Q2s = 207.23 MJ/h.
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To demonstrate an interaction between process design and EMPC behavior, an EMPC was

developed that optimizes the objective function in Eq. 25, subject to the constraint T ≤ 495 K

(enforced at the end of every integration step), as well as the bounds on the inputs (0.5 ≤ CA0 ≤

7.5 kmol/m3 and−5.0×105 ≤ Q ≤ 5.0×105 kJ/h). The model of Eqs. 11-12 was integrated using the

Explicit Euler numerical integration method, with an integration step of 10−4 h. The optimization

problems were solved using Ipopt Wächter and Biegler (2006) with automatic differentiation using

ADOL-C Walther and Griewank (2009) on a desktop Intel(R) Xeon(R) CPU E-3 1240 v5 and with

an Ipopt tolerance of 10−6. Figs. 13-14 show the state and input trajectories of the process under

the EMPC with A switching between 0 and 100 every 0.2 h. Each time A switches, the EMPC

begins to track a new steady-state. To see the impact of process design on the EMPC’s behavior,

we consider also a case where the process design from Section 3.1 is modified so that F = 1 m3/h

and V = 5 m3. In this case, the optimal steady-states for the steady-state optimization problem

determined from fmincon occur for A = 0 at CA1s = 0.18 kmol/m3, T1s = 495.00 K, CA01s = 7.50

kmol/m3, and Q1s = −39.13 MJ/h and for A = 100 at CA2s = 0.05 kmol/m3, T2s = 495 K,

CA02s = 0.50 kmol/m3, and Q2s = 39.81 MJ/h. From Figs. 13-14, it can be seen that changing the

process design significantly impacted the EMPC’s behavior by causing it to drive the closed-loop

state to different economically-optimal steady-states than before over time. This highlights the

concept of a sequential design framework described above, where the EMPC is designed before the

process, and then changes in the process design are used by the EMPC to compute economically-

optimal trajectories, but compared to designing, for example, an MPC to economically optimize

process operation with each design, a benefit of using EMPC here is that it was not necessary to

re-determine the steady-state each time that the process design changed (though this would not be

the case for all EMPC designs, as many are designed around a steady-state), or to tune weighting

matrices in an objective function. Rather, the EMPC was able to locate the economically-optimal

trajectories for each design itself.

Another observation that can be made regarding the change in the design in Figs. 13-14 is that

the design with F = 1 m3/h has a lessened magnitude of variation in the concentration between

changes in A because for that design, the optimal steady-states corresponding to each value of
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Figure 13: State trajectories under EMPC with the objective function of Eq. 25 where A changes every 0.2 h and
either the process design with F = 5 m3/h and V = 1 m3 is used (labeled with “F = 5” on the legend) or the design
with F = 1 m3/h and V = 5 m3 is used (labeled with “F = 1” on the legend).
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A have values of CA that are not as far apart from one another as when F = 5 m3/h. This

again suggests a potential use of a simultaneous process and EMPC design framework. Specifically,

it suggests that the design with F = 1 m3/h may create less significant variations over time in

concentration for processes further downstream, while still optimizing economics as the feedstock

cost changes over time, than if the design with F = 5 m3/h was chosen, which could be beneficial if

it is desired to not account for the downstream process design and constraints for that part of the

process in the EMPC. However, the total profit over 1 h of operation with F = 5 m3/h is higher

than that when F = 1 m3/h; specifically, when F = 5 m3/h, the time integral of the stage cost

of Eq. 25 over 1 h of operation is 187.53, whereas with F = 1 m3/h, it is -0.51 (reflecting profit

losses). Finally, the consistent transient behavior with F = 1 m3/h illustrates the concept that an

EMPC may be considered for processes that do not consistently operate at steady-state, so that

simulating the process behavior under the EMPC (rather than assuming that steady-state behavior

will be achieved and determining the best designs for handling steady-states of operation) may be

important for understanding the nature of the state trajectories and profits under different design

scenarios under this type of controller.

3.2. Time-Varying Operation and Design Analysis C: Prevention of Optimal Steady-State Behavior

We here discuss further the simulation in Section 3.1.1.3 to demonstrate the concept that if

at some point in time, the feasible region includes an optimal operating condition at which the

closed-loop state cannot remain for all later times, this could be a case where EMPC may be

utilized to attempt to optimize profits over time. For example, the EMPC designs in Section 3.1.1.1

created temperature profiles at the z = 0 position on the heat exchanger hot side that, after an

initial transient, became an approximately constant value (Fig. 6). However, in Section 3.1.1.3,

a time-varying operating condition was set up using the material constraint. In summary, in this

example, a process constraint caused a different character of the trajectories under EMPC than

if that constraint was not present. Potentially, there could be designs where the dynamics of the

process itself prevent the closed-loop state from staying at a given state in the feasible set for all

times (e.g., if a system experiences switches in its dynamic model after certain conditions are met

which could be met during operation). However, we can also tie a constraint such as the material
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constraint to the process dynamics more directly as well. Specifically, if a process is being designed

for a future of operation under EMPC, it is possible to determine, by trading off operating costs

(including, for example, feedstock cost) and capital costs (including storage vessels for the feedstock,

for example) with revenue under EMPC, what the upper bound on the amount of available material

should be. In such a process, initially, the feasible set could be set based on safety criteria; then,

a material constraint could be added where the upper bound Mub on the feedstock is a decision

variable for a simultaneous design and control problem in which the optimization problem of Eq. 9

is seeking to find the process design variables and the controller decision variable Mub that optimize

the profits over time, including capital and operating costs when compared with revenue. If the

feedstock storage facilities are cheap and do not need to be considered at the design stage in order to

find the optimal process design, it would be possible to perform a sequential design in which there

is no upper bound on the feedstock and the EMPC is allowed to cause the process to operate at

any optimal operating condition in the safety-based feasible set, regardless of how much feedstock

it uses (depending on the other constraints, this could be an optimal steady-state condition).

Remark 9. The type of constraint examined in this section has been a primary motivator for the

consideration of time-varying operation in the literature (e.g., Lee and Bailey (1980)). The above

analysis highlights that considering feedstock constraints or other constraints which vary over time

and restrict the feasible region may be beneficial at the design stage for attempting to evaluate

whether time-varying operation of a process caused by such a constraint in the controller (and the

subsequently less intuitive control designs and control actions) is more profitable than operating at

a steady-state with more feedstock use allowed.

4. Simultaneous Process and EMPC Design: Suggestions for Decision Variables in the
Presence of Disturbances

The results of the prior sections focused on the absence of disturbances; in this section, we use

the insights gained above to suggest which decision variables of an EMPC might be reasonable to

look at in the presence of disturbances. First, we note that the prediction horizon and sampling

period may play a role in achieving the highest profitability of the process in the presence of
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disturbances, impacting the choice of the optimal process inputs, where different inputs acting on

the same nonlinear process can produce different profits and degrees of constraint satisfaction. This

highlights that N and/or ∆ might be candidate controller decision variables in a simultaneous

process and EMPC design framework in the presence of disturbances if a bound was placed on

the allowable computation time of the controller. As for other simultaneous process and design

works Yuan et al. (2012), control law factors influencing the satisfaction of constraints within the

EMPC could serve as decision variables of the control law formulation. Potentially, these could have

a character similar to that in Section 3.1.1.2, where to ensure that the process design requirement

was met, a constraint was added to the controller that was used to attempt to ensure that the

process design constraint was met at all times. In the presence of disturbances, a similar concept

could be explored, where a controller parameter that impacts how close the closed-loop state comes

under the computed control actions in the presence of disturbances to violating process constraints

could be introduced and tuned to attempt to still allow the EMPC to have the greatest flexibility

to make profit while ensuring that even in the presence of disturbances, process constraints would

not be violated with the resulting control law. It is noted that this thinking is a departure from

the sequential framework suggested in this paper without disturbances for EMPC and process

design. Specifically, in the absence of disturbances, it was suggested that EMPC be equipped with

complete knowledge of the process such that it is not necessary to have any type of “pseudo”

constraint with a controller design variable being tuned by a simultaneous process and EMPC

design algorithm because EMPC has the flexibility to be made aware of any objective function,

model, and constraints of the process. The “pseudo” constraint was utilized when it was desired to

not make the controller aware of the details of the whole process. In the presence of disturbances,

however, EMPC no longer fully has this power; there are aspects of the process that are considered

to be unknown, such that even the power of the controller to incorporate the model, constraints,

and objective function does not overcome the potential need to tune parameters of the controller

that can impact whether constraints of the process could be violated.

A consideration in this regard is that the EMPC could itself become infeasible if it includes hard

constraints in the presence of disturbances. One idea could be to attempt to enforce a constraint
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via soft constraints, and then to use the simultaneous control and process design framework to tune

the bound utilized in setting the soft constraint appropriately. This is exemplified by returning once

again to the process and controller in Section 3.1.1.2, but this time in the presence of disturbances,

so that instead of enforcing a hard upper bound on temperature (to avoid potential infeasibility of

the hard constraint in the controller), a soft constraint is imposed. Specifically, the decision variable

sd is introduced, and the objective function becomes Eq. 15 multiplied by 27.56 plus 10s2d. The

temperature constraint is modified to be T − Tub ≤ sd. Bounded Gaussian white noise is added to

the process model of Eqs. 11-12, with w1 added to the right-hand side of Eq. 11 and w2 added to

the right-hand side of Eq. 12, with a standard deviation for w1 of 30, and a standard deviation for

w2 of 3200 (|w1| ≤ 90 kmol/m3 h and |w2| ≤ 9600 K/h). The function randn, seeded with rng,

was utilized to generate the numbers, and then they were clipped at their bounds if the number

generated exceeded its bound (simulations were run in MATLAB R2016b on a Lenovo model 80XN

x64-based ideapad 320). In this case, with the seed of 10 to rng and Tub = 490 K, the maximum

temperature reached on the cold side of the heat exchanger in 0.5 h of operation was 2.1478 K

above the initial steady-state value, which would violate the assumed 2 K temperature constraint

but allowed a profit of 453.40 to be obtained. In contrast, if Tub is decreased to 480 K, for the same

disturbance trajectories, the maximum temperature reached on the cold side of the heat exchanger is

only 1.77 K above the steady-state value, but the profit is reduced to 445.33. The tradeoff between

meeting the temperature constraint and enhancing profits, under all possible realizations of the

disturbances, and considering how the design of the process impacts the disturbance magnitude in

the CSTR, could be optimized via a simultaneous process and EMPC design framework.

Stability theory for EMPC in the presence of disturbances may also be used to help to select

controller design variables that are impacted by the magnitude of the disturbances, but which

also impact profitability. For example, for LEMPC, the value of ρe should be made smaller when

disturbances are larger to guarantee that the closed-loop state is maintained in Ωρ Heidarinejad

et al. (2012). However, larger values of ρe may enhance profits by making the region Ωρe , within

which the economics-based objective function is optimized (Eq. 8a), larger. A value of ρe that would

guarantee closed-loop stability can be defined in terms of a number of functions and parameters
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that are difficult to determine in practice Heidarinejad et al. (2012); a simultaneous process and

control design framework could provide a means for tuning ρe, and for assessing how process designs

would impact the conservatism of that parameter and therefore the profitability of the EMPC of

Eqs. 6 and 8. Therefore, ρe is a potential control design decision variable for LEMPC that could

be adjusted in the presence of disturbances. Potentially, a simultaneous control and process design

framework could help industrial practitioners to address the question of how to operate as close

to the limits of safe operation, when that is most profitable, as possible, without losing safety. It

may provide a means for addressing how to design EMPC’s to respect both safety and profitability

objectives, even with uncertainty.

5. Conclusions

This work aimed to provide a preliminary investigation into how controller and process design

decisions interact under an EMPC operating policy and to show whether or not a simultaneous

process and EMPC design framework is necessary for processes in the absence of disturbances. In

particular, we noted that for processes operated under EMPC in the absence of disturbances, a

sequential approach for designing processes and EMPC may be adequate for achieving the most

profitable design due to the EMPC capability to directly optimize the process economics on-line

(i.e., there is no need to tune controller decision variables to better reflect process economics unless

an attempt is being made to utilize the design and auxiliary constraints in the controller to reduce

the need to incorporate as much information about the design in the control law (which has the

potential to increase computation time)). We discussed how design is related to the major factors

which affect whether an EMPC promotes time-varying or steady-state operation in the absence of

disturbances, and suggested several controller design variables which could be decision variables for

a simultaneous process and EMPC design framework in the presence of disturbances.

Challenges that could be explored for simultaneous design and control for EMPC, in the pres-

ence of disturbances, in the future include: 1) Utilizing imperfect models when making the design

decisions. Appropriate process models (e.g., first-principles model) must be available to allow an

effective assessment of the impact of process and controller decision variables on overall performance
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and operating requirements. At the design stage, data for modeling purposes may not be sufficient.

2) Making the simultaneous design and control framework tractable. It may be challenging to solve

a bilevel optimization problem to global optimality for a large design search space, especially if the

prediction horizon and therefore the long-term dynamic behavior of the process under EMPC is

taken into account.

Overall, the results suggest that the major benefit of considering the implications of process

design for EMPC design, and vice versa, are that a framework for addressing both designs at once

may help to relieve a steady-state mentality in the design process. The analysis above for the

simultaneous design problem in the absence of disturbances bears many similarities to the general

discussion about whether EMPC will actually operate a process in a steady-state fashion; the major

claims in the literature have been that even if it does so, part of the benefit of using such a general

controller is that it reduces the human guesswork in trying to figure out whether steady-state

or time-varying operation will be most suitable a priori, and relies on an optimization algorithm

to figure out the optimal situation. The use of an appropriately formulated EMPC and process

co-design framework can similarly aid in figuring out what the optimal way to design a process

for operation under EMPC is. It may help to identify new use cases where EMPC out-performs

steady-state operation in ways that had not previously been considered, and may also be used in

comparing designs and expected behavior and profitability under the design under both EMPC and

under MPC.
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