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INVITED ARTICLE 

Identifying Which of J Independent 
Binomial Distributions Has the Largest 
Probability of Success 

Rand Wilcox 
University of Southern California 

Los Angeles, CA 

 

 
Let p1,…, pJ denote the probability of a success for J independent random variables having 

a binomial distribution and let p(1) ≤ … ≤ p(J) denote these probabilities written in ascending 

order. The goal is to make a decision about which group has the largest probability of a 

success, p(J). Let p̂1,…, p̂J denote estimates of p1,…,pJ, respectively. The strategy is to test 

J − 1 hypotheses comparing the group with the largest estimate to each of the J − 1 

remaining groups. For each of these J − 1 hypotheses that are rejected, decide that the 

group corresponding to the largest estimate has the larger probability of success. This 

approach has a power advantage over simply performing all pairwise comparisons. 

However, the more obvious methods for controlling the probability of one more Type I 

errors perform poorly for the situation at hand. A method for dealing with this is described 

and illustrated. 

 

Keywords: Binary data, binomial distribution, rank and selection, multiple 

comparisons 

 

Introduction 

Consider J independent groups and let θ1,…, θJ denote a parameter of interest. Let 

θ(1) ≤ … ≤ θ(J) in ascending order. There is interest determining which group 

corresponds to θ(J). For example, such as which group has the largest median. Let 
ˆ

j  (j = 1,…, J) denote an estimate of θj based on a random sample of size nj and 

denote the estimates written ascending order by ( ) ( )1
ˆ ˆ

J
   . The objective of 

ranking and selection methods is to determine the sample size needed to ensure that 
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( )
ˆ

J
  corresponds to θ(J). Focus on the situation where θ(1) = … = θ(J–1) and 

θ(J) – θ(J-1) = δ, where δ is a constant. This is the indifference zone approach. 

Bechhofer (1954) addressed this issue, assuming that observations are randomly 

sampled from normal distributions having a common known variance σ2 and that 

the goal is to identify the group with the largest population mean. For a variety of 

situations, the sample size can be determined so that the probability of a correct 

decision (PCD), meaning the probability that the group corresponding to θ(J) has 

the largest estimate 
( )
ˆ

J
 , is equal to some specified value, β (e.g., Bechhofer, 

Dunnett, & Sobel, 1954; Bechhofer, Kiefer, & Sobel, 1968; Dudewicz & Dalal, 

1975; Rinott, 1978; Gibbons et al., 1987; Gupta & Panchapakesan, 1987; 

Mukhopadhyay & Solanky, 1994). When dealing with means, and the variances are 

unknown, two-stage procedures are used. The goal of the first stage is to get an 

estimate of the variances, which can be used to determine the required sample size. 

Consider the special case of identifying which of J independent variables, 

each having a binomial distribution, has the largest probability of success. The goal 

is to suggest a method that does not require the specification of an indifference zone. 

The approach has obvious similarities to comparing groups to a control group. In 

particular, compare the group with the largest estimate to each of the remaining 

groups. A seemingly simple approach to controlling the familywise error rate 

(FWE), meaning the probability of one or more Type I errors, is to use the 

Bonferroni method. That is, perform each of the J – 1 tests at the α / (J – 1) so that 

FWE will be at most α. But preliminary simulations clearly indicated that the actual 

level can be substantially higher than the nominal level. This is the case when J = 4 

and n = 40. For J = 8, this approach can be unsatisfactory even with n = 100. 

Evidently, the difficulty is controlling the Type I error probability of the individual 

tests when α / (J – 1) gets too close to zero. Using improvements on the Bonferroni 

method (e.g. Hochberg, 1988; Hommel, 1988) does not eliminate this concern. 

The Proposed Approach 

Let Xj denote a random variable having a binomial distribution with probability of 

success pj. That is, for J independent groups, Xj denotes the number of successes 

associated with the jth group based on be a random sample of size nj. First consider 

the basic problem of comparing two independent binomial distributions. Numerous 

methods were proposed. Based on results reported by Wilcox (2020), a method 

derived by Kulinskaya et al. (2010) is used here, which will be called method KMS 

henceforth. Their confidence interval for p1 – p2 is given by 
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where c is the 1 – (α / 2) quantile of a standard normal distribution, 0 ≤ A ≤ 1 is 

chosen by the user, 
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and N = n1 + n2. Here, following the suggestion made by Kulinskaya et al. (2010), 

A = 0.5 is used. 

For the situations considered by Wilcox (2020), a method derived by Storer 

and Kim (1990) was found to have a power advantage over the method derived by 

Kulinskaya et al. (2010) at the expense of no confidence interval. For the situation 

at hand, however, no advantage was found using the Storer and Kim method so for 

brevity no details are provided. 

Consider the goal of making a decision about which group has the largest 

probability of success. Let p̂j = Xj / nj (j = 1,…, J). Put these estimates in ascending 

order yielding p̂(1) ≤ … ≤ p̂(J). Let pπ(j) denote the probability of success associated 

with p̂(j). The basic idea is to test 

 

 
( ) ( )0 π π

H :
j J

p p=   (2) 

 

for each j, j = 1,…, J – 1. For each j for which (2) is rejected, decide that the group 

corresponding to p̂(J) has a higher probability of success. If all J – 1 hypotheses are 

rejected, decide that the group corresponding to p̂(J) is the group with the largest 

probability of success, p(J). Otherwise no decision is made. 

Consider p1 = … = pJ = p and testing (2) for each j < J. Let Pj denote the p-

value based on the KMS method and suppose the jth hypothesis is rejected if Pj ≤ cj. 

Consider the goal of choosing cj so that the probability of a Type I error is 0.05. A 

simulation based on 5000 replications was used to determine cj when J = 4, p = 0.5, 

and n = 35. The result was (c3, c2, c1) = (0.094, 0.0345, 0.006). So, in particular, 
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when comparing the group with the largest estimate to the group with the second 

largest estimate, to achieve a Type I error probability equal to 0.05, reject when the 

p-value is less than or equal to 0.094. When comparing the group with the largest 

estimate to the group with the third largest estimate, reject if the p-value is less than 

or equal to 0.0345. For the same situation except now p = 0.1, the result was 

(c3, c2, c1) = (0.122, 0.051, 0.011). 

The difficulty, of course, is p is not known and there is the additional issue of 

controlling FWE. An outline of the proposed strategy is as follows. First, estimate 

p assuming p1 = … = pJ = p. Based on this estimate of p and the sample sizes, use 

a simulation to estimate the critical p-values (cJ–1,…, c1) so that the Type I error 

probability for each individual test is α. Finally, replace the critical p-values with 

(dJ–1,…, d1) = f(cJ–1,…, c1), where the constant f is chosen so that FWE is equal to 

α. That is, reject the jth hypothesis if the corresponding p-value is less than or equal 

dj. A simple choice for f is f = 1 / (J – 1). That is, use the Bonferroni method. Here, 

however, a refinement of this approach is used. 

Let p̂ = Σ Xj / Σ nj be the estimate of p. The critical p-values (cJ–1,…, c1) are 

determined by first generating Yj successes (j = 1,…, J) when the probability of 

success is p̂ and the sample size is nj. Next, compute a p-value for each j, and repeat 

this B times. This results in a B-by-(J – 1) matrix of p-values, P. The columns of P 

yield estimates of cJ–1,…, c1. The value of cj is estimated via some quantile 

estimator applied to the jth column. That is, the estimated α quantile is the estimate 

of cj. Moreover, this matrix of p-values can be used to determine f such that 

 

 ( )1 1 1 1P , , J Jp d p d − −   = .  (3) 

 

Critical p-values can estimated in a manner that takes into account their multivariate 

distribution. 

Given a value for f, let Ci be equal to one if for the ith row of P it is 

simultaneously the case that Pi,j ≤ dj for each j = 1,…, J – 1; otherwise Ci = 0. Let 

D = Σ Ci, where the estimate of FWE is D / B. An approximate way of controlling 

FWE is to choose f such that D / B is equal to some specified value, α. Here, the R 

function optim was used to estimate f using the Brent method. This will be called 

method ECP henceforth. 

There is a variation of method ECP that deserves consideration. Proceed as 

just described, but rather than estimate (cJ–1,…, c1) based on the matrix of p-values, 

simply set c1 = … = cJ–1 = α and then determine f satisfying (3). This will be called 

method EQA. 
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It might seem the matrix P can be used to compute a type of p-value that 

quantifies the strength of the empirical evidence that a decision can be made about 

which group has the largest probability of success. Let Pi denote the ith row of P. 

Define the indicator function I(Pi) = 1 if Pij ≤ pj for each j = 1,…, J – 1; otherwise 

I(Pi) = 0. Then a type of p-value is 

 

 
1

iI
L
   (4) 

 

However, in terms of controlling the probability of one or more Type I errors, 

simulations indicate that using this p-value is unsatisfactory. A more satisfactory 

approach is to compute the dj values for α = 0.001(0.001)0.1(0.01)0.99 and then 

determine the smallest α value for which all J – 1 hypotheses are rejected. 

Results 

Simulations were used to study the small sample properties of methods ECP and 

EQA. Table 1 reports the estimate of one or more Type I errors when the goal is to 

have FWE equal to 0.05 and the J groups have a common probability of success, p. 

The choices for p were 0.10, 0.15, 0.20, 0.30, 0.40, and 0.50. Table 1 shows the 

results for a common sample size of n = 20 and 40, and J = 4 groups. Also shown 

are results for eight groups and n = 20. The estimates are based on 2000 replications. 

Although the seriousness of a Type I error can depend on the situation, Bradley 

(1978) suggests that as a general guide, when testing at the 0.05 level, the actual 

level should be between 0.025 and 0.075. As can be seen, the estimates for ECP 
 
 
Table 1. Estimates of the FWE rate when testing at the 0.05 level 
 

J n p ECP EQA p ECP EQA 

4 20 0.10 0.051 0.038 0.3 0.046 0.055 
 20 0.15 0.054 0.048 0.4 0.051 0.049 
 20 0.20 0.061 0.053 0.5 0.053 0.042 
        

 40 0.10 0.054 0.054 0.3 0.050 0.051 
 40 0.15 0.052 0.048 0.4 0.046 0.049 
 40 0.20 0.050 0.053 0.5 0.045 0.042 
        

8 20 0.10 0.049 0.054 0.3 0.047 0.056 
 20 0.15 0.057 0.051 0.4 0.048 0.049 
 20 0.20 0.053 0.054 0.5 0.053 0.104 
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range between 0.045 and 0.061. For n = 40 and J = 4, the estimates ranged between 

0.045 and 0.054. Even for n = 20 and J = 8, control over FWE is very good. That 

is, all indications are that for method ECP, Bradley’s criterion is met. For method 

EQA and J = 4, no estimate exceeds 0.055 and the lowest estimate of 0.038. 

However, for J = 8, the estimate when p = 0.5 is 0.104, and it is 0.11 when using 

the Bonferroni method, both of which are unsatisfactory based on Bradley’s 

criterion. Increasing the sample sizes to 40, the estimate was 0.086 using EQA. 

Some additional simulations were run with n = 10. The FWE decreases from those 

values in Table 1. 

A few simulations were conducted comparing the power of ECP versus and 

EQA. By power is meant the probability that all J – 1 hypotheses are rejected when 

p(J) > p(J–1). First consider J = 4, n = 20, p1 = p2 = p3 = 0.2, and p4 = 0.5. The power 

for method ECP was estimated to be 0.605 and for method EQA it was 0.502. For 

p1 = 0.5, p2 = 0.6, p3 = 0.7, and p4 = 0.8, methods ECP and EQA have power 0.368 

and 0.387, respectively. ECP does not dominate, but all indications are that 

generally ECP is better than EQA. 

An Illustration 

Methods ECP and EQA are illustrated using data from the Well Elderly II study 

(Clark et al., 2012), which was generally aimed at improving the physical and 

mental well-being of older adults. A portion of this study measured depressive 

symptoms (CESD) before intervention. Here, the focus is on CESD measures for 

five groups based on education: less than high school, high school graduate, some 

college or technical school, four years of college completed and post-graduate study. 

The sample sizes are 136, 89, 158, 48, and 29, respectively. CESD scores greater 

than 15 are considered an indication of mild depression or worse. The focus here is 

on the probability of mild depression or worse. The estimates for these five groups 

were 0.485, 0.326, 0.297, 0.271, and 0.241, respectively. So, the highest estimate 

occurred for the first group. Using method ECP, the results indicated that group 1 

has a higher probability than groups 2, 3 and 4 when testing at the 0.05 level. The 

p-values comparing group 1 to groups 2-5 were 0.018, 0.002, 0.009, and 0.014, and 

the corresponding critical p-values were 0.0808, 0.0337, 0.0139, and 0.0040, 

respectively. So, no decision can be made regarding group 5. The p-value 

associated with making a decision about which group has the highest probability is 

0.0776. EQA rejects for group 3 only. 
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Conclusion 

All indications are that method ECP performs relatively well. Method EQA might 

seem like the more natural way to proceed, generally it competes reasonably well 

with method ECP, but situations were found where ECP offers a clear advantage 

and no situation was found where the reverse is true. Of course, in some situations, 

all pairwise comparisons might be more relevant rather than determining which 

group has the highest probability. But if making a decision about which has the 

highest probability is the main goal, it is evident that method ECP offers an 

advantage in power simply because FWE is being controlled for a smaller number 

of hypotheses. 

The ranking and selection literature deals with a range of issues related to this 

paper. For example, determine which of J dependent groups has the largest mean, 

or which has the smallest variance. Which cell of a multinomial distribution has the 

largest probability? The notion of an indifference plays a crucial role in these classic 

techniques. Thanks to modern computing power, it might be possible to address 

these issues in new and interesting ways. 

Finally, the R function bin.best.PV applies method ECP and is stored in the 

file Rallfun-v37, which can be downloaded from 

https://dornsife.usc.edu/cf/labs/wilcox/wilcox-faculty-display.cfm. Included is a p-

value based on the strategy of computing computes the dj values for 

α = 0.001(0.001)0.1(0.01)0.99 and then determining the smallest α value for which 

all J – 1 hypotheses are rejected. This quantifies the strength of decision about 

which group has the largest trimmed mean. However, it does not reflect the 

probability that that a correct decision was made. 
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