
Journal of Modern Applied Statistical Journal of Modern Applied Statistical 

Methods Methods 

Volume 18 Issue 2 Article 1 

7-17-2020 

JMASM 52: Extremely Efficient Permutation and Bootstrap JMASM 52: Extremely Efficient Permutation and Bootstrap 

Hypothesis Tests Using R Hypothesis Tests Using R 

Christina Chatzipantsiou 
University of Crete, Greece, chatzipantsiou@gmail.com 

Marios Dimitriadis 
University of Crete, Greece, kmdimitriadis@gmail.com 

Manos Papadakis 
University of Crete, Greece, papadakm95@gmail.com 

Michail Tsagris 
University of Crete, Greece, mtsagris@yahoo.gr 

Follow this and additional works at: https://digitalcommons.wayne.edu/jmasm 

 Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical 

Theory Commons 

Recommended Citation Recommended Citation 
Chatzipantsiou, C., Dimitriadis, M., Papadakis, M., & Tsagris, M. (2019). JMASM 52: Extremely efficient 
permutation and bootstrap hypothesis tests using R. Journal of Modern Applied Statistical Methods, 
18(2), eP2898. doi: 10.22237/jmasm/1604189940 

This Algorithms and Code is brought to you for free and open access by the Open Access Journals at 
DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical 
Methods by an authorized editor of DigitalCommons@WayneState. 

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/jmasm
https://digitalcommons.wayne.edu/jmasm
https://digitalcommons.wayne.edu/jmasm/vol18
https://digitalcommons.wayne.edu/jmasm/vol18/iss2
https://digitalcommons.wayne.edu/jmasm/vol18/iss2/1
https://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol18%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol18%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol18%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol18%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol18%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods 

November 2019, Vol. 18, No. 2, eP2898. 

doi: 10.22237/jmasm/1604189940 

 
Copyright © 2020 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
doi: 10.22237/jmasm/1604189940 | Accepted: June 27, 2018; Published: July 17, 2020. 

Correspondence: Michail Tsagris, mtsagris@yahoo.gr 

 

 

 

2 

JMASM 52: Extremely Efficient 
Permutation and Bootstrap Hypothesis 
Tests Using R 

Christina Chatzipantsiou 
University of Crete 

Herakleion, Greece 

 

Manos Papadakis 
University of Crete 

Herakleion, Greece 

Marios Dimitriadis 
University of Crete 

Herakleion, Greece 

 

Michail Tsagris 
University of Crete 

Rethymnon, Greece 

 

 
Re-sampling based statistical tests are known to be computationally heavy, but reliable 

when small sample sizes are available. Despite their nice theoretical properties not much 

effort has been put to make them efficient. Computationally efficient method for 

calculating permutation-based p-values for the Pearson correlation coefficient and two 

independent samples t-test are proposed. The method is general and can be applied to other 

similar two sample mean or two mean vectors cases. 

 

Keywords: Computational efficiency, permutation, bootstrap, hypothesis testing 

 

Introduction 

Computer intensive techniques, such as MCMC, bootstrap and permutation, are 

known to require computational power. There has been too much of research effort 

on trying to make MCMC more efficient, either by means of programming or 

statistical theory. Bootstrap and permutation are on the other hand are not that 

heavy. Both of them are very useful when performing simulation studies or even 

analyzing real datasets with small sample sizes and strange shapes of distributions 

(mixtures for example), or with statistics whose distribution is not known or is too 

complex to work with. 

Two examples where the necessity for, efficient, computational statistics is 

apparent, are Bayesian networks (Neapolitan, 2003) and feature selection 

https://dx.doi.org/10.22237/jmasm/1604189940
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algorithms (Tsamardinos et al., 2003). When applied to biological data, which 

usually have a small number of observations, re-sampling techniques is an 

advisable strategy. Pearson correlation is a cornerstone in Bayesian network 

learning (Neapolitan, 2003). Welch's t-test (Welch, 1938) on the other hand is very 

frequently utilized in gene expression data to discover which genes are 

differentially expressed, or to compare between (unmatched) case control samples. 

Other cases include multivariate statistics, which involve calculation of statistical 

functions whose distribution is not known. One such example is distance 

correlation (Szekely et al., 2007). Hypothesis testing procedures for multivariate 

data require large sample sizes in order to have a valid behavior of the type I error. 

(Tsagris et al., 2017). 

With a focus on univariate statistics, Neto (2015a) proposed a vectorized 

function in R (R Core Team, 2017), as an alternative to the “for” function, to speed 

up the calculation of the bootstrap p-value of the hypothesis test of zero correlation. 

Comparing this permutation approach with other bootstrap functions available in 

other R packages indicated there were dramatic reduction in execution runtime. 

Neto (2015a) extended the bootstrap version of the two sample Welch's t-test, 

among others. 

Similarly, a method is proposed here for a fast bootstrap or permutation-based 

p-value calculation. The method is efficient even for a large number of 

permutations or bootstrap samples (high CPU to data-size ratio tasks). It 

outperforms Neto's (2015a) vectorization method, showcasing a notable reduction 

in execution time even by an order of magnitude in some cases (Figure 3). The 

focus here is on Pearson correlation and two independent samples t-test. However, 

due to the method being simple, it is also extended to the James multivariate version 

of the t-test (James, 1954). 

Bootstrap or Permutation Calibration 

Pearson Correlation Coefficient 

Given a sample n of paired observations (xi, yi), i = 1,…, n, the sample Pearson 

correlation coefficient is calculated as 
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In order to test whether the true correlation, ρ, is equal to 0, the relevant test statistic 

is given by 

 
1
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− 
.  (2) 

 

If ρ = 0, Ζ ~ Ν(0, 1) asymptotically, and for small n, Ν(0, 1) can be substituted by 

tn–3. 

Welch’s t-Test 

The two independent samples t-test is used to check whether the means of two 

populations, out of which the samples have been drawn are equal (null hypothesis). 

The main and rather strong assumption is that the variances are the same. Welch 

(1938) proposed an alternative to the t-test for the case of unequal variances, whose 

test statistic is given by 
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where x̅1 and x̅2 are the two sample means, 2

1s  and 2

2s  are the two sample variances, 

and n1 and n2 are the two sample sizes. The test statistic (3) is compared against a t 

distribution with some properly estimated degrees of freedom (Satterthwaite, 1946; 

Welch, 1947). 

James Multivariate t-Test 

Also consider the multivariate two independent samples t-test, namely the James 

test (James, 1954), which is the analogue of Welch's t-test. Similarly to Welch's 

t-test, James test makes no assumptions about the covariance matrices of the two 

populations from which the samples were sampled. The test statistic for two 

d-dimensional samples is 
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where X̅1 and X̅2 are the two sample mean vectors, 2

1S  and 2

2S  are the two sample 

covariance matrices, and n1 and n2 are the two sample sizes. The test statistic (4) is 

compared against a corrected X2 distribution (James, 1954). 

Permutation- and Bootstrap-Based p-Values 

As can be seen in (1), Pearson correlation coefficient is a function of two vectors 

of paired observations. The usual permutation-based p-value reorders the values of 

x or of y, thus changing the pairs (Legendre & Legendre, 2012; Berry et al., 2016). 

For every reordering of the values, (2) is calculated. This method is implemented 

in R by using a “for” loop. Vectorization is a faster alternative, if the number of 

permutations is the most used in practice, 999, otherwise if this number is 9999 a 

“for” loop might be a better option, for R, because of larger memory requirements 

and the need to handle matrices efficiently. 

In the context of Bayesian network learning (Neapolitan, 2003), Tsamardinos 

and Borboudakis (2010) suggested a different approach with high computational 

savings with the G2 test of independence for categorical data. Instead of permuting 

the data B (e.g. 999 times) times, they calculated the test statistic using 100 

permutations. Their average is used as an estimator of the degrees of freedom of 

the x2 distribution. They also suggest performing half of the permutations and 

estimate the probability of having a p-value less than the given significance level. 

Similarly, it is possible to stop the permutations once the proportion of times the 

permuted test statistic value exceeds the significance level. 

Neto's Vectorized Bootstrap p-Value 

Neto (2015a) proposed a computationally less heavy calculation of the p-value 

when using non-parametric bootstrap. Let in  represent the number of times 

observation xi is selected in the bootstrap sample X* and i iw n N = , where N is the 

sample size. Then, the category counts, ( )1 , , Nn n  =n  of the bootstrap sample x* 

are distributed according to the multinomial distribution 

 

 ( )* * 1Multinomial , NN N N −= n w J ,  (5) 

 

where JN = (1,…, 1)T is the unit vector of size N. 

As an example, Neto (2015a) described the case of the sample mean 
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1. Draw B bootstrap count vectors n* from (5) using the command 

“rmultinom” in R. 

2. Divide n* by N to obtain the N × B bootstrap weights matrix W*. 

3. Generate the vector of bootstrap means as T

boot
ˆ =θ x W . 

 

For the case of the Pearson correlation coefficient, the vector with the bootstrap 

correlations is given by 

 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

T T T

T 2 T 2
2 T 2 T

  

   

 − 
=

−  −

x y W x W y W
r

x W x W y W y W

  (6) 

 

where x ∙ y = (x1y1,…, xnyn)
T is the element-wise multiplication of two vectors. 

Efficient Calculation of the Permutation and Bootstrap p-Values 

This efficient permutation and bootstrap based p-values, unlike the former 

strategies, performs nearly all B permutations. It is currently developed for the 

Pearson correlation and Welch's t-test. For the Pearson correlation (permutation 

case) it reorders the values of each vector  B  times, where [.] denotes the 

rounding operation. The same idea is used for Welch's t-test (bootstrap case), but 

with the difference that, for each vector,  B  bootstrap samples are taken. The 

process is similar for the James test. We create  B  samples from each sample 

and store their mean vectors and covariance matrices. The test statistic is then 

calculated for all  
2

B B  combinations of the permuted or bootstrap samples. 

This results in substantial computational gains and the extra benefit is that similar 

ideas can be used in other settings, for example in calculating the permutation 

p-value of the distance correlation (Szekely et al., 2007). 

Time Comparisons and Statistical Validation 

For the Pearson correlation and Welch's t-test scenarios, the sample sizes ranged 

from 10 to 300 in steps of 10 and 5 different numbers of permutations or bootstrap 

samples B = (999, 4999, 9999, 14999, 19999). For each combination (180 in total), 

vectors were sampled 10 times and the elapsed time was estimated using the 

package “microbenchmark” (Mersmann, 2015) with 100 repetitions; Neto’s 

vectorized bootstrap R code is available via Neto (2015b). For the James test, the 
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sample sizes ranged from 10 up to 100 and the bootstrap samples were B = (999, 

4999). 
 
 

 
 (a) B = 999 (b) B = 9,999 

 
 (c) B = 4,999 (d) B = 19,999 
 
Figure 1. Correlation coefficient; speed-up factors of some standard methods against the 
new version; higher numbers indicate higher computational cost; the green line is with 
"replicate" while the red line is with "for" 
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Vectorized Bootstrap Versus Efficient Permutation of Pearson 

Correlation Coefficient 

The computational times of the proposed method versus using two functions with 

a “for” loop was compared in R using the command “replicate.” The relative 

performance improvements in terms of runtime are compiled in Figure 1. 
 
 

 
 (a) (b) 

 
(c) 

 
Figure 2. Correlation coefficient; (a) speed-up factors of the asymptotic p-value versus 
the permutation p-value; this is an estimate of how much slower the permutation p-value 
is, relative to the asymptotic p-value; (b) speed up factor of the vectorized bootstrap 
(Neto, 2015a) versus our permutation implementation; numbers greater than 1 indicate 
that our version is faster; (c) speed up factor of the C++ implementation versus the R 
implementation; this is an estimate of how slower R is in comparison to C++ for this 
method 
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 (a) (b) 
 
Figure 3. Welch's test; (a) speed-up factors of the asymptotic p-value versus the 
permutation p-value; this is an estimate of how much slower the permutation p-value is 
relative to the asymptotic p-value; the built-in command “t.test” was used; (b) speed up 
factor of the vectorized bootstrap (Neto, 2015a) versus our bootstrap implementation; this 
is an estimate of how much slower Neto's permutation method is, in comparison to our 
permutation method 
 
 

The speed-up factor of the asymptotic p-value versus the permutation-based 

p-value was also estimated. As shown in Figure 2a, when B = 999 and B = 4,999 

the permutation p-value was less than B  times slower even for large sample sizes. 

The same was true for larger values of B but for sample sizes less than 150 or 200. 

As noted in Figure 2b, the number of times Neto's bootstrap implementation 

(Neto, 2015a) is slower than our proposed permutation method. The execution 

speed differences were estimated between the R and C++ implementations. As 

shown in Figure 2c, for small sample sizes, C++ is two to three times faster, but as 

the sample size grows, the computational cost becomes the same. 

As an addition to the simulation study described above, a comparison of the 

Welch's t-test on was conducted with a real gene-expression dataset containing 40 

rows (observations) and 54,4675 columns (probesets). The dataset has the 

GSE15913 accession number in the GEO platform and can be downloaded from 

BioDataome (Lakiotaki et al., 2018). This dataset was chosen because it contains 

few samples. Bootstrap is mainly designed for small sample sized data for ensuring 

the correctness of tests, for example that the nominal selected significance level is 

close to the actual size of the test. We estimated the time required to perform 

bootstrap Welch's t-test for all columns. The average over 10 repetitions, using a 
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“for” loop to traverse the whole matrix, four our method was 6 seconds, whereas 

for Neto's (2015a) permutation method was 116 seconds (19 times slower). 

Ordinary Bootstrap Versus Efficient Bootstrap for James Test 

James multivariate version of the Welch's t-test was also examined. The rationale 

behind the application of our method for this test is similar to the ones previously 

described in this work. Presented in Figure 4 are the speed-up factors between the 

ordinary bootstrap procedure and our proposed efficient bootstrap procedure. 

The R code for both cases appears in the Appendix. One can be seen, the 

number of “for” loops is more than the usual bootstrap implementation. The 

difference though lies in the number of calculations. In the ordinary bootstrap 

implementation, 2B covariance matrices are calculated, B for each sample. Using 

the efficient method, only  2 B  covariance matrices are calculated. The 

computational cost does not reduce by  B , because more “for” loops were used 

and there were other heavy operations which cannot be avoided, such as inversion 

of covariance matrices. The number of inversions is  
2

B B , and hence time is 

consumed there as well. 
 
 

 
 
Table 4. James test; speed-up factors of the efficient versus the ordinary permutation 
bootstrap for the James test; this is an estimate of how much slower the ordinary 
bootstrap is, relative to our efficient bootstrap 
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Statistical Validation in Terms of Type I and Type II Errors 

For both the correlation and Welch's t-test, data were generated under the H0 

hypotheses, of no correlation and equal means respectively. As shown in Figure 5, 

the quantiles of the true distribution were accurately estimated by the proposed 

method for the correlation and the Welch's t-test. Estimations for the James test at 

this point were not calculated; Tsagris et al. (2017) compared many hypothesis 

testing procedures with and without bootstrap calibration and have highlighted the 

importance of the bootstrap calibration in the multivariate case. 
 
 

 
 (a) (b) 

 
 (c) (d) 
 
Figure 5. Estimated quantiles of the distribution of the test statistic under the null 
hypothesis; (a) and (b) refer to the correlation coefficient, while (c) and (d) refer to 
Welch's t-test 
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Conclusion 

An efficient methodology was presented to obtain permutation-based p-values for 

the Pearson correlation coefficient, the two-sample t-test and extended it the two-

sample multivariate t-test (James test). Another case where this method can be 

applied is for the distance correlation, where the p-value is estimated via 

permutations (Szekely et al., 2007). In (Bayesian) network construction, when 

partial correlation and partial distance correlations are employed, this method could 

help speed-up the process significantly. These methods are provided in the R 

package "Rfast" (Papadakis et al., 2018), as the functions ‘permcor’ and ‘boot.ttest2’ 

for the Pearson correlation and Welch t-test, respectively. The relative R code is 

also included in the Appendix. 
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Appendix 

library(Rfast)  ## necessary package to load 

### Permutations for correlation coefficient 

permcor <- function(x, y, R = 999) { 

  n <- length(x)    ;    m1 <- sum(x)    ;    m12 <- sum(x^2) 

  m2 <- sum(y)    ;    m22 <- sum(y^2)    ;    up <-  m1 * m2 / n 

  down <- sqrt( (m12 - m1^2 / n) * (m22 - m2^2 / n) ) 

  r <- ( sum(x * y) - up) / down 

  test <- log( (1 + r) / (1 - r) )  ## the test statistic 

  B <- round( sqrt(R) )    ;    xp <- matrix(0, n, B)    ;    yp 

<- matrix(0, n, B) 

  for (i in 1:B) { 

     xp[, i] <- sample(x, n)      ;      yp[, i] <- sample(y, n) 

  } 

  sxy <- crossprod(xp, yp)     ;      rb <- (sxy - up) / down 

  tb <- log( (1 + rb) / (1 - rb) ) 

  pvalue <- ( sum( abs(tb) > abs(test) ) + 1 ) / (B^2 + 1)  ## p-

value 

  res <- c( r, pvalue ) 

  names(res) <- c('correlation', 'p-value') 

  res 

} 

 

### Ordinary bootstrap for James test 

james <- function(y1, y2, R = 999) { 

  p <- dim(y1)[2]     ;   n1 <- dim(y1)[1]     ;    n2 <- 

dim(y2)[1] 

  ybar1 <- Rfast::colmeans(y1)    ;    ybar2 <- 

Rfast::colmeans(y2) 

  dbar <- ybar2 - ybar1    ;    A1 <- Rfast::cova(y1)/n1    ;    

A2 <- Rfast::cova(y2)/n2 

  test <- as.vector( dbar %*% solve(A1 + A2, dbar ) ) 

  a1inv <- Rfast::spdinv(A1)       ;        a2inv <- 

Rfast::spdinv(A2) 

  mc <- solve( a1inv + a2inv, a1inv %*% ybar1 + a2inv %*% ybar2 ) 

  mc1 <-  - ybar1 + mc           ;        mc2 <-  - ybar2 + mc 
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  x1 <- Rfast::eachrow(y1, mc1, oper = "+") 

  x2 <- Rfast::eachrow(y2, mc2, oper = "+" ) 

  tb <- numeric(R) 

  for (i in 1:R) { 

    b1 <- sample(1:n1, n1, replace = TRUE)    ;    b2 <- 

sample(1:n2, n2, replace = TRUE) 

    xb1 <- x1[b1, ]     ;      xb2 <- x2[b2, ] 

    db <- Rfast::colmeans(xb1) - Rfast::colmeans(xb2) 

    Vb <- Rfast::cova(xb1) / n1 + Rfast::cova(xb2) / n2 

    tb[i] <- sum( db %*% solve(Vb, db ) ) 

  } 

  ( sum(tb > test) + 1 ) / (R + 1) 

} 

 

## Efficient bootstrap for James test 

boot.james <- function(y1, y2, R = 999) { 

  p <- dim(y1)[2]    ;    n1 <- dim(y1)[1]    ;    n2 <- 

dim(y2)[1] 

  ybar2 <- Rfast::colmeans(y2)      ;      ybar1 <- 

Rfast::colmeans(y1) 

  dbar <- ybar2 - ybar1    ;     A1 <- Rfast::cova(y1)/n1      ;     

A2 <- Rfast::cova(y2)/n2 

  test <- as.vector( dbar %*% solve(A1 + A2, dbar ) ) 

  a1inv <- Rfast::spdinv(A1)      ;      a2inv <- 

Rfast::spdinv(A2) 

  mc <- solve( a1inv + a2inv, a1inv %*% ybar1 + a2inv %*% ybar2 ) 

  mc1 <-  - ybar1 + mc       ;       mc2 <-  - ybar2 + mc 

  x1 <- Rfast::eachrow(y1, mc1, oper = "+")     ;       x2 <- 

Rfast::eachrow(y2, mc2, oper = "+" ) 

  B <- round( sqrt(R) )      ;       tb <- matrix(0, B, B)      ;    

bm1 <- bm2 <- matrix(nrow = B, ncol = p) 

  vb1 <- vector("list", B)     ;      vb2 <- vector("list", B) 

  tb <- matrix(0, B, B)    ;     sqn1 <- sqrt(n1)     ;     sqn2 

<- sqrt(n2) 

  for (i in 1:B) { 

    b1 <- sample(1:n1, n1, replace = TRUE)   ;     b2 <- 

sample(1:n2, n2, replace = TRUE) 

    yb1 <- x1[b1, ]    ;   yb2 <- x2[b2, ] 
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    bm1[i, ] <- Rfast::colmeans(yb1)      ;         bm2[i, ] <- 

Rfast::colmeans(yb2) 

    vb1[[ i ]] <- (crossprod(yb1) - tcrossprod( sqn1 * 

bm1[i, ]) ) / n1 

    vb2[[ i ]] <- (crossprod(yb2) - tcrossprod( sqn2 * 

bm2[i, ]) ) / n2 

  } 

  for (i in 1:B) { 

    for (j in 1:B) { 

      vb <- vb1[[ i ]] + vb2[[ j ]]       ;      db <- bm1[i, ] - 

bm2[j, ] 

      tb[i, j] <- db %*% solve(vb, db) 

    } 

  } 

  ( sum(tb > test) + 1 ) / (B^2 + 1) 

} 
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