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ABSTRACT
Background. The ketone bodies beta-hydroxybutyrate (BHB) and acetone are endoge-
nous products of fatty acid metabolism. Although ketone levels can be monitored by
measuring either blood BHB or breath acetone, determining the precise correlation
between these two measurement methods has been challenging. The purpose of this
study is to characterize the performance of a novel portable breath acetone meter
(PBAM) developed by Readout, Inc., to compare single versus multiple daily ketone
measurements, and to compare breath acetone (BrAce) and blood BHBmeasurements.
Methods. We conducted a 14-day prospective observational cohort study of 21 subjects
attempting to follow either a low-carbohydrate/ketogenic or a standard diet. Subjects
were asked to concurrently measure both blood BHB and BrAce five times per day and
report the results using an online data entry system.We evaluated the utility of multiple
daily measurements by calculating the coefficient of variation (CV) for each daily group
of measurements. We calculated the correlation between coincident BrAce and blood
BHBmeasurements using linear ordinary least squares regression analysis. We assessed
the ability of the BrAce measurement to accurately predict blood BHB states using
receiver operating characteristic (ROC) analysis. Finally, we calculated a daily ketone
exposure (DKE) using the area under the curve (AUC) of a ketone concentration versus
time graph and compared the DKE of BrAce and blood BHB using linear ordinary least
squares regression.
Results. BrAce and blood BHB varied throughout the day by an average of 44% and
46%, respectively. The BrAce measurement accurately predicted whether blood BHB
was greater than or less than the following thresholds: 0.3 mM (AUC= 0.898), 0.5 mM
(AUC= 0.854), 1.0mM(AUC= 0.887), and 1.5mM(AUC= 0.935). Coincident BrAce
and bloodBHBmeasurements weremoderately correlatedwithR2

= 0.57 (P < 0.0001),
similar to literature reported values. However, daily ketone exposures, or areas under
the curve, for BrAce and bloodBHBwere highly correlatedwithR2

= 0.80 (P < 0.0001).
Conclusions. The results validated the performance of the PBAM. The BrAce/BHB
correlation was similar to literature values where BrAce was measured using highly
accurate lab instruments. Additionally, BrAce measurements using the PBAM can be
used to predict blood BHB states. The relatively high daily variability of ketone levels
indicate that single blood or breath ketone measurements are often not sufficient to
assess daily ketone exposure for most users. Finally, although single coincident blood
and breath ketone measurements show only a moderate correlation, possibly due to
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the temporal lag between BrAce and blood BHB, daily ketone exposures for blood and
breath are highly correlated.

Subjects Diabetes and Endocrinology, Drugs and Devices, Nutrition, Respiratory Medicine,
Metabolic Sciences
Keywords Ketones, Breath acetone, Ketogenic diet, Medical device, Ketone monitoring,
Metabolism, Chemical sensing

INTRODUCTION
Ketone bodies (‘‘ketones’’) are endogenous products of liver fatty acid metabolism.
In humans, ketones rise from low basal levels during states of prolonged fasting or
carbohydrate restriction when low insulin levels and increased free fatty acid (FFA)
concentrations lead to an upregulation of ketogenesis. Ketones, along with FFAs, are
released into the blood and enter cells serving as alternative energy substrates to glucose.
Although all non-hepatic cells can metabolize ketones, they are particularly utilized by
the heart and the brain. Ketones also have signaling properties including inhibition of
pathways for inflammation (Youm et al., 2015) and oxidative stress (Shimazu et al., 2013).

The state in which the body derives the majority of its energy from ketone and FFA
metabolism is called ketosis. Nutritional and fasting ketosis, where ketone levels are
elevated but moderate, are physiologically distinct from diabetic ketoacidosis (DKA), an
acute pathological condition characterized by runaway ketogenesis and metabolic acidosis.
While DKA poses a risk for insulin-dependent diabetics, there is no risk associated with
nutritional and fasting ketosis.

For decades, clinicians and researchers have deliberately induced the state of ketosis
to treat a variety of pathological conditions. The 1920s saw the first clinical use of the
ketogenic diet for the treatment of severe epilepsy (Paoli et al., 2013). More recently,
nutritional ketosis has been used as a successful therapy for the management of type-2
diabetes (McKenzie et al., 2017; Hallberg et al., 2018), metabolic syndrome (Hyde et al.,
2019) and obesity (Brehm et al., 2003; Shai et al., 2008). Evidence is emerging that the
ketogenic diet may be effective either as a primary or adjunct therapy for polycystic ovary
syndrome (Alwahab, Pantalone & Burguera, 2018), cancer (Hopkins et al., 2018), migraine
headaches (Di Lorenzo et al., 2019) and other neurological diseases (Taylor, Swerdlow &
Sullivan, 2019). Although the mechanisms behind these benefits are not well understood,
researchers have begun exploring hypotheses (Elamin et al., 2017).

In all of these clinical applications, regularlymonitoring ketone levels helps gauge patient
adherence to prescribed dietary protocols. Furthermore, for a fixed dietary protocol,
differences in basal metabolic rate, hepatic glycogen stores and other factors lead to
differences in ketone production rates across individuals (Mitchell et al., 1995). Therefore,
monitoring ketone levels helps individuals and their caregivers understand the personal
propensity for ketone production, especially in response to dietary and lifestyle changes.

There are three primary methods for measuring ketones, each of which is sensitive to
one of the three major ketone bodies: acetoacetate (AcAc), beta-hydroxybutyrate (BHB)
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Figure 1 Summary of ketone body production, metabolism and excretion.
Full-size DOI: 10.7717/peerj.9969/fig-1

and acetone. Figure 1 summarizes the production, metabolism and excretion of the three
ketone bodies and how they are interrelated. During periods of carbohydrate restriction,
acetyl-CoA derived from FFAs in the liver is diverted to produce AcAc. A portion of the
AcAc is converted to BHB, with the specific ratio determined by the redox potential (i.e.,
NADH/NAD+) of the liver mitochondria and the available supply of the catalyzing enzyme
D-beta-hydroxybutyrate dehydrogenase (3-HBDH) (Laffel, 1999).

AcAc and BHB are released into the bloodstream where they can travel to peripheral
cells and serve as metabolic substrates. Once inside the peripheral cell mitochondria, AcAc
and BHB may interconvert through the action of 3-HBDH. Intracellular AcAc can then
be converted into acetyl-CoA and used for metabolism. Excess AcAc is excreted in the
urine where it can be measured using urinary test strips via the nitroprusside reaction.
BHB is measured in the blood using a finger prick and test strip system. Circulating AcAc
spontaneously degrades via decarboxylation into acetone. Owing to its small size and
volatility, acetone diffuses freely into the airways and is exhaled in the breath. Because
acetone is a direct derivative of AcAc, accurately determining the concentration of breath
acetone (BrAce) provides a reliable indication of the depth of ketosis (Musa-Veloso, Likhodii
& Cunnane, 2002).

Studies have demonstrated that BrAce becomes elevated during states of carbohydrate
restriction, caloric restriction and fasting in diabetic and obese subjects (Freund, 1965;
Tassopoulos, Barnett & Russell Fraser, 1969). Because BrAce rises any time fatty acids
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Figure 2 (A) The PBAM developed by Readout Health; (B) performance of three calibrated PBAM’s
against a laboratory gas standard. The readings from the PBAM and the gas standard were linearly cor-
related with an R2 of 0.977. The orange line indicates the median and the box edges represent the 25th
quartile (Q1) and 75th quartile (Q3) for each gas concentration. The box width represents the interquartile
range (IQR= Q3 −Q1).The upper and lower whiskers represent the last datum less than Q3 + 1.5 ∗ IQR
and the first datum greater than Q1 − 1.5 ∗ IQR, respectively. Finally, the open circles represent data be-
yond Q3+1.5∗ IQR and Q1−1.5∗ IQR.

Full-size DOI: 10.7717/peerj.9969/fig-2

are metabolized to meet energy demands, several studies have found a strong correlation
between the specific BrAce concentration and the rate of body fat loss (Kundu, 1990;Kundu
et al., 1993; Landini, Cranley & McIntyre, 2007). Other studies have concurrently measured
both BrAce and blood BHB and have found correlation coefficients (R2) ranging from
0.54–0.94 with a weighted mean of R2

= 0.64 (n= 506) (Anderson, 2015; Musa-Veloso et
al., 2006; Tassopoulos, Barnett & Russell Fraser, 1969;Rooth & Carlstrm, 1970;Musa-Veloso,
Likhodii & Cunnane, 2002; Prabhakar et al., 2014;Qiao et al., 2014;Güntner et al., 2018). In
the majority of these studies, BrAce was measured using laboratory methods including gas
chromatography (GC-MS/FID) and selected-ion flow-tube mass spectrometry (SIFT-MS).
Although these diagnostic tools are highly sensitive and selective, their size, cost and
training requirements prevent their use as personal monitoring devices.

An alternative solution for portable BrAce monitoring is based on chemoresistive metal
oxide semiconductor (MOS) sensors. A well designedMOS sensor system can enable highly
accurate BrAcemonitoring in a handheld device. Because of the portability and noninvasive
nature of such a device, simple, user-friendly high-frequency ketone monitoring becomes
feasible. Until now, however, the accuracy of portable BrAce monitors has been limited by
overly simplistic device design and the absence of an appropriate breath sampling method.

Readout Health has developed a high-resolution portable breath acetone meter (PBAM)
for ketosis monitoring (Fig. 2A). The PBAM contains a MOS sensor that is highly selective
to acetone over the most common interfering analytes in breath (e.g., hydrogen, alcohols).
Because acetone exchange occurs primarily in the lung airways, the concentration of
breath acetone increases with exhaled breath volume (Anderson, Lamm & Hlastala, 2006;
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Anderson & Hlastala, 2007). The PBAM, therefore, relies on a modified vital capacity
maneuver using a pressure sensor and pump to selectively sample only the latter portion
of the exhalation where the concentration of acetone is highest and most repeatable. The
breathing maneuver consists of a normal inhalation and a prolonged, moderate-force
exhalation. The device monitors the user’s exhalation and begins sampling when the
airflow drops below a threshold (Ratto & Ratto, 2020). Lastly, the PBAM sensor is housed
inside a sealed flow cell, which eliminates the confounding effect of ambient air mixing
with the breath sample during a measurement.

The PBAM reports BrAce results in units of parts per million (ppm). Each PBAM is
individually calibrated using NIST-certified laboratory gas standards (20.9% oxygen in
nitrogen) at acetone concentrations of 0 (ambient air), 5 and 20 ppm. Interpolating between
these three concentrations generates a curve of acetone concentration (ppm) versus device
sensor response. This curve is used to calculate acetone concentration from the device
sensor response over the range 0–45 ppm. After calibration, each PBAM is exposed to
the lab acetone standards a second time and screened for accuracy. Figure 2B shows
the performance of three calibrated PBAMs upon repeated exposure to the laboratory
acetone standards. The results demonstrate high accuracy and repeatability after individual
calibration. The calibration relationship for individual devices persists for six months after
initial calibration under conditions of use.

The purpose of this clinical study is to characterize the PBAM and to compare BrAce
measurements from the PBAM to blood BHB. In addition, we investigate the utility of a
single daily ketone measurement compared to multiple daily measurements. Finally, we
introduce the concept of daily ketone exposure (DKE) and compare DKE for BrAce and
blood BHB.

MATERIALS & METHODS
Design and subjects
We conducted a 14-day prospective observational cohort study of 21 subjects attempting
to follow a low-carbohydrate/ketogenic or standard diet. Both male and female subjects
over the age of 18 and from all ethnic groups were considered for both cohorts of the
study. Subjects were recruited based on the diet they were following prior to the study.
Therefore, none were asked to make dietary changes. Subjects were recruited with printed
advertisements and word of mouth and were evaluated via email or phone. The duration
of the recruitment period was 6 weeks.

Candidates with type 1 diabetes, insulin-dependent type 2 diabetes or a history of diabetic
ketoacidosis (DKA) were excluded as well as those taking warfarin (blood thinners),
sodium-glucose cotransporter-2 (SGLT2) inhibitors and disulfiram. One subject had
type-2 diabetes but was not insulin dependent.

Subjects were asked to monitor their blood and breath ketones five times per day. The
purpose of the two cohorts was to generate the broadest range of ketone values across the
entire group. In addition to the standard diet (high-carbohydrate) subjects, several subjects
in the ketogenic/low-carb diet arm failed to achieve elevated ketone levels and thus served
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Figure 3 Flow chart of participants in each stage of the study.
Full-size DOI: 10.7717/peerj.9969/fig-3

Table 1 Descriptive data of the 21 subjects in the ketogenic/low-carb and standard diet arms.

Gender Age

Cohort n Male Female Mean SD

Ketogenic/Low-carb 19 21% 79% 43.6 14.4
Standard mixed 2 0% 100% 43 21.2

as additional sources of low ketone data. Table 1 describes the gender and age distributions
of the study subjects, and Fig. 3 shows the study flow.

Procedure
All subjects were provided with a PBAM device (BIOSENSE, Readout, Inc.) and a blood
ketone meter (Precision Xtra, Abbott Laboratories, Inc.) with test strips and supplies.
BIOSENSE is an FDA registered Class Imedical device. The Precision Xtra is a commercially
available FDA cleared device, and the lancets and alcohol swabs are commercially available
medical supplies. Verbal and written study instructions and in-person training on the use
of both devices was provided during an initial visit. Subjects were instructed to measure
their ketones five times per day every day for two weeks at the following times:
1. First thing in the morning (5–9am)
2. Right before lunch (11am–12pm)
3. Approximately 2 h after lunch (2–4pm)
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4. In the evening before dinner (5–7pm)
5. In the evening after dinner (8–10pm)
At each of the scheduled times, subjects were instructed to take three back-to-back

breath ketone measurements and one blood ketone measurement. Additional breath
ketone measurements at other time points during the day were permitted at the subject’s
discretion. Subjects were provided with an online form to manually enter their blood and
breath ketone values after each measurement session. Because subjects were permitted to
select their start date within a 2 week window, the duration of the data collection period
was 4 weeks.

Subject were selected according to the diet they were following before the study period,
and, therefore, they were not provided with formal dietary guidance. Subjects in the
ketogenic diet arm were encouraged to maintain ketone levels at or above 0.5 millimolar
(mM) blood BHB, while subjects in the standard mixed cohort were instructed not to
adjust their diet based on their ketone readings. This instruction was to prevent behavior
change due to non-ketogenic subjects becoming motivated to increase their ketone levels.

Ethics
This study was approved by the Western Institutional Review Board (Study Number:
1265848) and registered with clinicaltrials.gov (NCT04130724).

Only subjects who had the capacity to provide informed consent were enrolled.
The objectives of the study, all experimental procedures, all of the requirements for
participation, and any possible discomforts, risks and benefits of participation were clearly
explained in writing and orally, in lay terms, to each subject. After all questions were
answered, and the subjects were informed orally and in writing that they were free to
withdraw from the study at any time with no bias or prejudice, written informed consent
was obtained.

Statistical analyses
A single daily ketone measurement was compared to multiple daily measurements by
calculating the coefficient of variation (CV) for each daily group of measurements for each
subject. The magnitude of CV represented the amount of variability in ketone levels during
the course of a single day and, by extension, the utility of relying on a single daily ketone
measurement to characterize ketosis levels.

The relationship between BrAce and blood BHB was evaluated using several methods.
First, a linear ordinary least squares regression analysis was performed to determine the
point-by-point correlation between BrAce and blood BHB. A one-sided t-statistic was used
to test the null hypothesis that the slope of the regression line was zero. The p-value cutoff
for significance was 0.05. Second, a receiver operating characteristic (ROC) analysis was
performed to determine the ability of BrAce to predict membership in groups defined by
standard blood BHB cutoffs. Example cutoff points were blood BHB values of 0.3 mM
(slightly elevated ketones), 0.5 mM (onset of nutritional ketosis), 1.0 and 1.5 mM (higher
levels of nutritional ketosis). Sensitivity and specificity of the BrAce test were computed for
each blood BHB cutoff. Third, the daily ketone exposure, represented by the area under the
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Figure 4 Coefficients of variation (CVs) for each group of daily measurements across all subject-days
(n = 248) for BrAce (A) and blood BHB (B). The mean CV (µ) was 43.8% and 45.9% for BrAce and
blood BHB, respectively. The similar distributions also imply that BrAce measurements from the PBAM
are accurately reflecting the variability in blood BHB.

Full-size DOI: 10.7717/peerj.9969/fig-4

curve (AUC) on a ketone concentration versus time graph, was calculated for blood and
breath, and the relationship was characterized via linear ordinary least squares regression.
For calculations involving cumulative daily metrics like the coefficient of variation (CV) or
daily ketone exposure, only days with four or fivemeasurements were considered. Statistical
analyses were performed using standard Python libraries (e.g., NumPy, Pandas).

RESULTS
Subjects were adherent to the measurement protocol at a rate of 100%, 93% and 63% for
three, four and five measurements per day, respectively. Data from 2 of the 21 subjects
were discarded because of PBAM device malfunction and improper device use. The results
presented in this section represent data from the remaining 19 subjects.

To assess the daily variability of ketone concentration at the group level, coefficients
of variation (CVs) were calculated by dividing the standard deviation by the mean for
each subject-day. Figure 4 shows the probability distribution functions (PDFs) for the
daily BrAce and blood BHB CVs. On average, BrAce and blood BHB fluctuate by 43.8%
and 45.9%, respectively. In other words, on any given day, a randomly selected single
measurement will differ from the time-weighted average by almost 50%. This relatively
large variability demonstrates the utility of taking several ketone measurements per day,
using either BrAce or blood BHB, in order to capture the full picture of daily ketone
dynamics. Furthermore, the similarity of the breath and blood CV distributions in Fig. 4
suggests that the observed variability in BrAce was due to physiological ketone changes and
not merely changes in the subjects’ breathing patterns frommeasurement to measurement.

Linear regression was used to determine the correlation between pairs of coincident
BrAce and blood BHB measurements. Figure 5 shows the correlation between coincident
BrAce and blood BHB measurements (n= 1,214). The strength of this correlation
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Figure 5 Correlation of coincident BrAce and blood BHBmeasurements (n = 1,214). The gray and
black dots represent individual and multiple overlapping data points, respectively. BrAce and blood BHB
are linearly correlated with R2

= 0.57 (P < 0.0001). This correlation coefficient is similar to literature re-
ported values whose weighted mean is 0.64.

Full-size DOI: 10.7717/peerj.9969/fig-5

is moderate (R2
= 0.57) and similar to literature reported values. The grid-like data

distribution in Fig. 5 is caused by the finite measurement step size of the two ketone meters
(0.5 ppm for the PBAM and 0.1mM for the blood ketone meter). As a result, there are
many overlapping data points in Fig. 5, particularly at low ketone levels.

Next, a receiver operating characteristic (ROC) analysis was performed to determine
the diagnostic ability of the PBAM compared to blood BHB, which was treated as the gold
standard. For a given BHB threshold T , the BrAce measurement was evaluated to either
correctly or incorrectly predict membership in the classes BHB≤T and BHB>T . Correct
prediction led to a true positive (TP) result while incorrect prediction led to a false positive
(FP) result. Performing this analysis for a variety of BrAce levels generated a family of
(FP,TP) ordered pairs, which formed an ROC curve (Fig. 6).

Ideal classifiers have high TP and low FP rates, which represent data in the upper
left quadrant of Fig. 6. Classifier quality is typically quantified using the area under the
curve (AUC), with AUCs of 1 and 0.5 representing a perfect and a random classifier,
respectively. The AUCs in Fig. 6 are in the range 0.85–0.94, which demonstrates that
the PBAM measurement is either a good or an excellent classifier of blood BHB states
depending upon the specific BHB threshold.

Finally, the daily ketone exposure (DKE) for BrAce and blood BHB was calculated and
compared. The concept of DKE is borrowed from pharmacology, where the total drug
exposure is defined as the area under the curve (AUC) on a concentration versus time graph
(Saha, 2018). Analogously, the DKE is calculated from the AUC on a ketone concentration
versus time graph. While a single ketone measurement represents the instantaneous
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Figure 6 Receiver operating characteristic (ROC) curves characterizing the classification performance
of the PBAMBrAce measurement using blood BHB as a standard. AUC calculations indicate that the
PBAMmeasurement is an excellent classifier (AUC ≥ 0.90) of BHB states with 0.3 mM and 1.5 mM
thresholds and a good classifier (AUC ≥ 0.80) for 0.5 mM and 1.0 mM thresholds.

Full-size DOI: 10.7717/peerj.9969/fig-6

concentration of ketones in the body, DKE represents an individual’s cumulative exposure
to ketones during a single day.

Figure 7 shows the correlation between DKEs for BrAce and blood BHB (n= 248).
Breath and blood DKEs were highly correlated with R2

= 0.80, which implies that PBAM
and blood BHB measurements provide similar indications of overall ketone exposure if
multiple measurements are taken each day.

DISCUSSION
The relatively large variability in daily ketone levels (Fig. 4) could be caused by a variety
of factors. First, ketone levels are strongly affected by dietary macronutrient composition,
with a lower ratio of carbohydrate to fat tending to cause an increase in both BrAce and
blood BHB. In addition, ketone levels increase during periods of caloric restriction (Kundu
et al., 1993) or fasting (Freund, 1965). Conversely, it has been shown that for subjects on a
calorie restricted diet, eating a high carbohydrate snack causes a precipitous drop in BrAce
1–3 h after the snack is consumed (Kundu, 1990). Although our study did not include
dietary tracking, it is likely that daily ketone variability was caused in part by the specific
macronutrient content of each individual meal.

Second, vigorous or prolonged exercise can cause an increase in ketone levels in the
hours following exercise (Yamai et al., 2009). The rapid depletion of muscle glycogen
during exercise and the resulting upregulation of ketogenesis to meet ongoing energy
demands can lead to a two-fold increase in ketone levels over the period of several hours
(King et al., 2009). Several subjects in the ketogenic/low-carb arm of our study were long
distance endurance athletes who reported this pattern when comparing their exercise and

Suntrup III et al. (2020), PeerJ, DOI 10.7717/peerj.9969 10/17

https://peerj.com
https://doi.org/10.7717/peerj.9969/fig-6
http://dx.doi.org/10.7717/peerj.9969


Figure 7 Correlation between daily ketone exposures (DKEs) as measured by BrAce and blood BHB.
Each data point represents one subject-day during the trial. The gray and black dots represent individual
and multiple overlapping data points, respectively. Blood and breath DKEs were highly correlated (R2

=

0.80, P < 0.0001, n= 248).
Full-size DOI: 10.7717/peerj.9969/fig-7

ketone logs. In the majority of subject-days, a single daily ketone measurement could not
capture this behavior.

Finally, hormones play a role in regulating ketone production, particularly insulin,
glucagon and cortisol, which affect the release of FFA from adipose tissue (Alberti et al.,
1978). Anecdotally, trial participants frequently observed a drop in BrAce levels upon
waking, which may be attributable to increased cortisol levels in the morning and the
attendant increase in blood glucose.

The point-by-point correlation between BrAce and blood BHB is moderate (R2
∼ 0.6)

both in this study and in previously published studies. This result serves to validate the
measurement performance of the PBAM as it produces BrAce/BHB correlation results that
are comparable with the laboratory mass spectrometer based tools used in the literature.
Furthermore, ROC analysis indicates that BrAce measurements from the PBAM can be
used to predict whether blood BHB is above or below a certain threshold (Fig. 6). The
performance of the PBAM as a blood BHB classifier is either good or excellent depending
upon the BHB threshold value.

There are multiple factors that may impact the comparison of BrAce and blood BHB,
both in the point-by-point correlation and in the ROC analysis. First, the gold standard
blood BHB measurement is a laboratory plasma, rather than a point-of-care (POC), test.
In fact, a recent study has shown that ketone measurements from POC blood meters often
differ from laboratory plasma BHB tests by 0.2 mM (Norgren et al., 2020). This same study
also demonstrated that results from the POC blood meter were dependent upon whether
the sample was derived from capillary or venous blood, with venous blood results matching
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Figure 8 Examples of the temporal lag between blood BHB and BrAce. Both example days (A and B)
demonstrate a lag of approximately 4 h between peak concentrations of blood BHB and BrAce. This time
lag effectively decreases the point-to-point correlation coefficient.

Full-size DOI: 10.7717/peerj.9969/fig-8

laboratory plasma tests more closely. These factors may have influenced our study results,
which relied on a POC capillary blood meter to gather frequent measurements.

The second factor affecting the BrAce/BHB comparison is the indirect physiological
relationship between BrAce and blood BHB. BrAce is not a direct proxy for BHB.
Rather, since BrAce is produced directly from AcAc via spontaneous (i.e., unregulated)
decarboxylation, the correlation between BrAce and AcAc is higher than that of BrAce and
BHB (Musa-Veloso, Likhodii & Cunnane, 2002; Rooth & Carlstrm, 1970). AcAc and BHB,
on the other hand, are related through an enzymatically controlled and reversible redox
reaction with their relative ratio determined by the mitochondrial redox potential (i.e.,
NADH/NAD+). Since the redox state of the mitochondria is influenced by the energy
demands of the body, so too is the instantaneous ratio of AcAc to BHB, and by extension
BrAce to BHB. Furthermore, there is evidence that the ratio of AcAc/BHB depends on
the overall depth of ketosis (Laffel, 1999). Therefore, there is not always a predictable
one-to-one relationship between changes in BrAce and changes in BHB.

The indirect physiological relationship between BrAce and blood BHB also gives rise to
interesting temporal dynamics, which in turn affect the correlation andROC analysis.While
BrAce and blood BHB typically changed at similar rates, the concentration extrema were
often offset in time. Figure 8 shows example ketone traces from two different subject-days,
which demonstrate peak concentrations of blood BHB occurring approximately 4 h prior
to peak concentrations of BrAce. This behavior was evident in 73% of the trial subjects with
temporal offsets ranging from 1–5 h. The remaining subjects showed primarily coincident
changes in BrAce and BHB. This temporal offset causes a decrease in the point-by-point
correlation coefficient and in the predictive power of the PBAM classifier. Although a time
shifted analysis is possible, the variability in the time lag requires that a characteristic time
shift be calculated for each subject-day. Because each subject-day contains a small number
of data points (4–5), the accuracy and practical utility of such an analysis is limited.
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The physiological and biochemical causes of this temporal lag between BrAce and
blood BHB are not well understood. However, the processes pictured in Fig. 1 can inform a
hypothesis. If AcAc is converted to BHB before it has a chance to degrade into acetone, BHB
would rise prior to BrAce. As AcAc production continues, either the redox potential and/or
the supply of converting enzyme may drop, which would limit additional conversion of
AcAc to BHB. The concentration of AcAc would then rise with a portion degrading into
acetone and causing an increase in BrAce. In this case the time lag between BHB and BrAce
may be an indication of the availability of converting enzyme or the redox potential of the
mitochondria.

Point-by-point comparisons of blood and breath are strongly affected by the dynamics
of ketone interconversion described above. By contrast, the daily ketone exposure (DKE) is
a cumulative daily metric that is less sensitive to such temporal offsets. The high correlation
seen in Fig. 7 suggests that while instantaneous changes in BrAce and BHB may not always
occur simultaneously, the cumulative daily exposure to acetone can be used to predict the
daily exposure to BHB and vice versa. Note that while the DKE comparison improves the
correlation suppression due to temporal effects, the variable ratio of AcAc/BHB and the
limitations of the POC blood test will ensure that the DKE correlation R2 is less than 1.

CONCLUSION
These results demonstrate that the PBAM can be used to accurately and noninvasively
determine ketosis levels in individuals. The relatively high variability in both BHB and
BrAce suggests that single daily measurements are often not sufficient to fully characterize
daily ketone exposure. The single time measure correlation between blood BHB and BrAce
is moderate and similar to literature values. Furthermore, the PBAM can be used as a
diagnostic tool to accurately classify blood BHB states. The PBAM can also be used as a
tool to explore the time dynamics that govern changes in BrAce and blood BHB. Those
dynamics can be understood by considering the time scales of the interconversion processes
that occur between the three ketone bodies. Finally, the daily exposures to BrAce and blood
BHB are highly correlated, indicating that the cumulative ketone dose as measured by
acetone or BHB are similar.
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