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ARTICLE

Antibodies targeting epitopes on the cell-surface
form of NS1 protect against Zika virus infection
during pregnancy
Alex W. Wessel 1, Nurgun Kose2,3, Robin G. Bombardi3, Vicky Roy 4, Warangkana Chantima5,

Juthathip Mongkolsapaya 5,6, Melissa A. Edeling1, Christopher A. Nelson1, Irene Bosch7, Galit Alter 4,

Gavin R. Screaton 5, David H. Fremont 1,8,9,10, James E. Crowe Jr 2,3 & Michael S. Diamond 1,8,10,11✉

There are no licensed therapeutics or vaccines available against Zika virus (ZIKV) to coun-

teract its potential for congenital disease. Antibody-based countermeasures targeting the

ZIKV envelope protein have been hampered by concerns for cross-reactive responses that

induce antibody-dependent enhancement (ADE) of heterologous flavivirus infection. Non-

structural protein 1 (NS1) is a membrane-associated and secreted glycoprotein that functions

in flavivirus replication and immune evasion but is absent from the virion. Although some

studies suggest that antibodies against ZIKV NS1 are protective, their activity during con-

genital infection is unknown. Here we develop mouse and human anti-NS1 monoclonal

antibodies that protect against ZIKV in both non-pregnant and pregnant mice. Avidity of

antibody binding to cell-surface NS1 along with Fc effector functions engagement correlate

with protection in vivo. Protective mAbs map to exposed epitopes in the wing domain and

loop face of the β-platform. Anti-NS1 antibodies provide an alternative strategy for protection

against congenital ZIKV infection without causing ADE.
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Zika virus (ZIKV) is an arthropod-transmitted flavivirus
that historically caused sporadic human infections in
Africa and Asia after its discovery in 19471. However, its

recent dissemination to Oceania and the Americas drew global
attention due to its association with new and severe clinical
manifestations2. Whereas most ZIKV infections are asympto-
matic or present as a mild febrile illness, the epidemic in French
Polynesia established a linkage to severe neurological complica-
tions including Guillain-Barré syndrome3–5. In Brazil and other
countries of the Americas, infection during pregnancy caused
microcephaly and other congenital malformations6,7. Although
the epidemic has waned, the potential for re-emergence of ZIKV
poses a significant threat to public health. Nonetheless, there are
no approved vaccine or therapeutic countermeasures.

ZIKV is related closely to other pathogenic flaviviruses,
including the four serotypes of dengue (DENV), West Nile
(WNV), Japanese encephalitis (JEV), yellow fever (YFV), and
tick-borne encephalitis (TBEV) viruses. Flavivirus NS1 is a highly
conserved 48 kDa glycoprotein that dimerizes upon translocation
into the endoplasmic reticulum, where it fulfills a scaffolding
function in viral RNA replication8–10. NS1 also is expressed on
the plasma membrane of infected cells as a dimer11,12 and is
secreted into the extracellular space as a soluble hexamer13. The
cell surface and soluble forms of NS1 modulate host immunity
through interactions with complement proteins14–17 and possibly
Toll-like receptors (TLRs)18,19. Soluble NS1 accumulates in the
serum of flavivirus-infected human subjects20–22, which report-
edly enhances infectivity of virus transmitted to mosquito vectors
during a blood meal23,24. Soluble NS1 also can bind back to the
surface of uninfected or infected cells, and this activity may
impact endothelial integrity and permeability at blood-tissue
barriers25–28. The significance of these findings to pathogenesis,
however, remains uncertain13.

NS1 is comprised of three distinct domains: an N-terminal β-
roll domain (residues 1–29), a wing domain (residues 30–180),
and a β-platform domain (residues 181–352), which has two
faces, one of β-strands and a second largely composed of an
extended loop, termed the spaghetti loop (residues 219–272)29,30.
Following translation in the ER, NS1 dimerizes via intertwining of
the β-roll domains from two protomers. The dimer creates a
surface for membrane interaction via conserved hydrophobic
residues within the β-roll domain and flexible loop (residues
108–129) and “greasy finger” (residues 159–163) regions of the
wing domain29,31,32. This hydrophobic surface also facilitates
trimerization of dimers into the NS1 hexamer, which contains an
inner hydrophobic channel that is rich in lipids33. Other regions
of the wing and β-platform domains contribute to forming the
electrostatic exterior surface of the hexamer and the membrane-
distal surface of the dimer.

Monoclonal antibodies (mAbs) against NS1 can confer pro-
tection against WNV, JEV, and YFV in animal models34–36.
Passive transfer of a single NS1-specific human mAb or poly-
clonal antibodies elicited by an NS1 DNA vaccine protected
against lethal ZIKV challenge in Stat2−/− mice37,38. Although
anti-NS1 mAbs have been developed against multiple flaviviruses,
few studies have mapped their epitopes or defined the mechan-
isms of action. Here we generate murine and human mAbs
against ZIKV NS1 and assess their efficacy in vivo in immuno-
competent human STAT2 knock-in (hSTAT2 KI) and immu-
nocompromised wild-type mice39. Four murine mAbs (Z11, Z15,
Z17, and Z18) and three human mAbs (749-A4, ZIKV-231, and
ZIKV-292) confer protection against ZIKV in non-pregnant mice
by limiting viral infection. A subset of these mAbs also confer
protection to the developing fetus following virus inoculation of
pregnant mice. Protection in vivo by anti-NS1 mAbs correlates
with strength and density of binding to NS1 on the cell surface

and depends on Fc interactions, as a variant antibody that cannot
engage Fc-γ receptors or complement loses protective activity.
Mapping analyses reveals that the protective mAbs bind to one of
two epitopes: (i) the exposed hydrophilic surface of the wing
domain or (ii) the C-terminal tip of the loop face of the β-
platform domain. Our findings suggest that antibodies recog-
nizing epitopes that are accessible on cell surface forms of NS1
confer protection against ZIKV in vivo, including during
pregnancy.

Results
Generation of anti-ZIKV NS1 mAbs. To generate murine mAbs
against NS1, we inoculated and boosted BALB/c mice with a
mouse-adapted variant of ZIKV Dakar 41525 (Senegal, 1984)39.
To focus the humoral response on NS1, we also boosted mice two
additional times with adjuvanted recombinant full-length ZIKV
NS1 protein. We isolated 42 hybridomas that secreted NS1-
binding mAbs as determined by enzyme-linked immunosorbent
assay (ELISA) with recombinant NS1 protein and flow cytometry
of ZIKV-infected cells (Supplementary Table 1). Ten antibodies
of the IgG2a subclass were prioritized given prior evidence of the
protective activity of anti-WNV NS1 mAbs of this isotype35. One
IgG2a mAb, Z21, displayed weak binding to ZIKV NS1 and was
not studied further.

We separately generated human mAbs against ZIKV NS1 from
B cells of subjects who had been infected with ZIKV40. We
isolated 22 human mAbs that bound to ZIKV NS1 protein by
ELISA. Initially, we tested the human mAbs in a stringent, lethal
challenge model of ZIKV in immunocompromised mice41. Two
of the 22 human mAbs, ZIKV-231 and ZIKV-292, conferred
some protection against lethality (12% and 40% survival,
respectively, compared to 0% of controls) and were prioritized
for further testing. One additional human IgG1, 749-A4, was
isolated from a DENV-immune subject and was prioritized,
because it cross-reacted with ZIKV NS1.

We evaluated 10 murine IgG2a and all 23 human IgG mAbs
for more extensive cross-reactivity with NS1 proteins of ZIKV,
DENV serotype 2 (DENV2), WNV, JEV, TBEV, and YFV
(Supplementary Table 2). All of the murine IgG2a and 20 of the
23 human IgG mAbs were ZIKV-specific, whereas human mAbs
ZIKV-240 and ZIKV-315 demonstrated weak reactivity with JEV
and DENV2, respectively. However, human mAb 749-A4 bound
to ZIKV, DENV2, WNV, and JEV NS1, but not to TBEV or YFV
NS1. In comparison, 9NS1, a previously generated mouse IgG1
mAb against WNV NS135, recognized all six flavivirus NS1
proteins tested.

We performed an ELISA-based binding assay to define
competition groups for the 10 murine IgG2a and 3 prioritized
human IgG1 mAbs (Supplementary Tables 2 and 3). The
mAbs segregated into five competition groups: group A, Z12,
Z13, and Z19; group B, Z11, Z15, Z18, and ZIKV-292; group C,
Z17, ZIKV-231, and 749-A4; group D, Z14 and Z16; and group
E, Z20.

Protection by anti-ZIKV NS1 mAbs in immunocompetent and
immunocompromised mice. We tested the efficacy of anti-NS1
mAbs against ZIKV in immunocompetent, male and female
hSTAT2 KI mice. These animals support infection, because ZIKV
can antagonize human STAT2 but not mouse Stat239. The
hSTAT2 KI mouse model is more typical of moderate human
infection and does not support the severe ZIKV disease seen with
immunocompromised mice: 3-week-old infected mice have lim-
ited lethality and fetuses from infected pregnant mice sustain high
levels of ZIKV but do not develop microcephaly or fetal
demise7,39,41. Three- to 4-week-old mice received a single 200 μg
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dose (~10mg/kg) of anti-ZIKV NS1 or isotype control mAb via
intraperitoneal injection concurrently with subcutaneous inocu-
lation of ZIKV in the foot. Whereas murine mAbs Z12, Z13, Z14,
Z16, and Z20 failed to diminish viral burden in the spleen or
brain at 9 days post-infection (dpi), Z11, Z15, Z18, and Z17
reduced ZIKV infection in both tissues, with several animals
having viral RNA levels below the limit of detection (Fig. 1a, b).
Human mAbs 749-A4 and ZIKV-231 conferred similar reduc-
tions in viral burden in the spleen and brain, whereas ZIKV-292
protected only in the brain (Fig. 1c, d). No mAb treatment

completely protected, as viral RNA breakthrough was observed in
a subset of animals.

Previous studies with some anti-WNV and anti-YFV NS1
mAbs showed that Fc effector functions were required for optimal
protection34,35. To test for effects on protection against ZIKV, we
engineered leucine (L) to alanine (A) substitutions at residues 234
and 235 (LALA) for three of the human mAbs (ZIKV-231, ZIKV-
292, and 749-A4) and confirmed diminished binding to FcγRs by
direct ELISA (Supplementary Fig. 1a). When hSTAT2 KI mice
were administered the anti-NS1 mAb IgG-LALA variants and
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inoculated with ZIKV, we observed no protection in the brain
compared to the isotype control mAb-treated mice, consistent
with a contribution of Fc effector functions (Fig. 1d).

For a subset of the mAbs that protected in hSTAT2 KI mice,
we assessed their ability to prevent lethal ZIKV infection using a
more stringent immunocompromised mouse model39,41. Four- to
5-week-old C57BL/6J mice were administered 1 mg of anti-
Ifnar1-blocking mAb and 500 μg (~25 mg/kg) of anti-ZIKV NS1
or isotype control mAb via intraperitoneal injection. The
following day, mice were inoculated with ZIKV via subcutaneous
injection in the foot, and lethality and weights were recorded for
21 days. Of the three murine IgG2a mAbs tested, Z17 significantly
protected against ZIKV-mediated lethality and weight loss
(Fig. 1e, f). Although Z15 and Z18 conferred partial protection
against lethality, these results did not attain statistical significance
(Z15, p= 0.052; Z18, p= 0.089). Of the two human IgG1 mAbs
tested in this model, both 749-A4 and ZIKV-292 prevented
lethality, but only 749-A4 limited weight loss (Fig. 1g, h).

Antibody protection in pregnant mice. We tested whether anti-
NS1 mAbs could protect against ZIKV during pregnancy. We
used hSTAT2 KI mice, in which ZIKV infection during preg-
nancy results in transmission to the fetal brain without fetal
demise39. For the murine mAbs, we focused efforts on testing Z15
(group B) and Z17 (group C), given their protection in young
hSTAT2 KI mice and distinct competition groups (Fig. 2a–c). We
tested two human mAbs: ZIKV-292 from competition group B
and 749-A4 from group C (Fig. 2d–f). After mating adult male
and female hSTAT2 KI mice, at embryo day (E)6.5, females were
inoculated subcutaneously with ZIKV and concurrently admi-
nistered 250 μg of anti-NS1 or isotype control mAb via intra-
peritoneal injection. Pregnant dams were euthanized on E13.5,
and viral RNA levels were measured in the maternal spleen, the
fetal-derived placenta, and fetal head. Despite conferring pro-
tection in non-pregnant, young hSTAT2 KI mice, murine mAb
Z15 did not reduce viral burden in maternal or fetal tissues
(Fig. 2a–c). Administration of mAb Z17, however, markedly
reduced ZIKV infection in the placenta and fetal head (Fig. 2b, c).
To determine whether a combination of mAbs from different
competition groups could enhance protection during pregnancy,
we administered pregnant mice a cocktail of Z15 (125 μg) and
Z17 (125 μg) mAbs. Treatment with the mAb cocktail trended
toward greater reduction in ZIKV titers in the placenta and fetal
head compared to treatment with Z17 alone (51% vs. 21% of
samples at the limit of detection in the fetal head), although this
difference did not attain statistical significance.

Treatment of pregnant dams with human mAb ZIKV-292
(group B) also reduced viral burden in the placenta and fetal head
(Fig. 2d–f). Group C mAb 749-A4 conferred a small yet
statistically significant reduction of virus in these tissues as well.
Notably, the protective effect of 749-A4 was lost when an IgG-
LALA variant was used, which suggests a role for Fc effector
functions in anti-NS1 antibody-mediated protection during
pregnancy.

Avidity for cell surface NS1 correlates with protection. Given
the Fc effector function-dependence of protection of some of our
mAbs, we hypothesized that protective anti-ZIKV NS1 mAbs
would recognize cell surface forms of NS1 to enable antibody-
dependent immune cell clearance of virus-infected cells. We
evaluated this idea using a flow cytometric assay with intact,
ZIKV-infected cells. Murine mAbs Z11, Z15, and Z18, which
protected against ZIKV in non-pregnant hSTAT2 KI mice, bound
avidly to the surface of infected cells (half maximal effective
concentration (EC50): Z11, 2.2 ng/mL; Z15, 1.5 ng/mL; Z18,
1.5 ng/mL; Fig. 3a, b and Supplementary Table 2). Murine mAb
Z17, which also protected in vivo, bound slightly less avidly than
Z15 and Z18 (EC50 of 18.4 ng/mL) but greater than non-
protective murine mAbs Z12, Z13, and Z19 (EC50: Z12, 29.2 ng/
mL; Z13, 105.7 ng/mL; Z19, 66.2 ng/mL). As Fc effector function-
dependent protection likely requires antibody cross-linking to
low-affinity Fc-γ receptors, which depends on both the strength
of mAb binding to target antigens and the number of sites
bound42–46, we examined the density of mAb binding to the cell
surface using the mean fluorescence intensity. Antibody-binding
density was substantially lower for the non-protective mAbs
compared to the protective mAbs Z11, Z15, Z18, and Z17
(Fig. 3c). The non-protective murine mAbs had reduced avidity
and density of binding (Z14), or did not show binding to NS1 on
the surface of infected cells (Z16 and Z20). The human mAbs
ZIKV-231, ZIKV-292, and 749-A4 bound to NS1 on the cell
surface NS1 to a similar extent as mAb Z17 (EC50 of 3.9, 3.4, and
14.6 ng/mL, respectively; Fig. 3e, f). Despite their differential
binding patterns to NS1 on the cell surface, all murine and
human mAbs, except for Z19 and Z21, bound strongly to solid-
phase, hexameric ZIKV NS1 in an ELISA (Fig. 3d, g).

Effector functions of anti-NS1 mAbs. To begin to understand
potential Fc effector mechanisms of protection, we assessed the
activity of a subset of our anti-ZIKV NS1 mAbs using in vitro
effector function assays. To assess antibody-dependent comple-
ment deposition, we coupled beads to recombinant ZIKV NS1,

Fig. 1 Protection by anti-ZIKV NS1 mAbs in non-pregnant mice. Three- to 4-week-old male and female hSTAT2 KI mice were administered 200 μg of the
indicated murine (a, b) or human (c, d) mAbs and inoculated subcutaneously with 105 FFU of ZIKV. Viral burden was assessed at 9 dpi in the spleen (a, c)
and brain (b, d). a, b Isotype control, n= 33; Z12, n= 8; Z13, n= 10; Z11, n= 10; Z15, n= 10; Z17, n= 9; Z18, n= 15; Z14, n= 10; Z16, n= 10; Z20, n= 9.
c, d Isotype control, n= 27; 749-A4, n= 11; 749-A4 LALA, n= 11; ZIKV-231, n= 11; ZIKV-231 LALA, n= 11; ZIKV-292, n= 15; ZIKV-292 LALA, n= 11. Data
are pooled from at least two experiments (Kruskal–Wallis one-way ANOVA with Dunn’s post-test comparison between the indicated groups; *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001; a Z11, p= 0.002; b Z11, p= 0.015; Z15, p= 0.006; Z17, p= 0.003; c isotype vs. 749-A4, p= 0.0001; ZIKV-231 vs.
ZIKV-231 LALA, p= 0.004; d isotype vs. ZIKV-231, p= 0.039; isotype vs. ZIKV-292, p= 0.012; isotype vs. 749-A4, p= 0.013; ZIKV-231 vs. ZIKV-231
LALA, p= 0.004; ZIKV-292 vs. ZIKV-292 LALA, p= 0.003; 749-A4 vs. 749-A4 LALA, p= 0.013). Dotted lines denote the limit of detection (LOD) of the
assay. e–h Four- to 5-week-old male C57BL/6J mice administered 1 mg of an anti-Ifnar1-blocking mAb and 500 μg of the indicated murine (e, f) or human
(g, h) mAbs. The following day, mice were inoculated subcutaneously with ZIKV and mortality (e, g) and weights (f, h) were tracked. Data are
representative of two experiments and survival analysis was performed using the Mantel–Cox log-rank test with Bonferroni correction compared to the
isotype group (e isotype, n= 13; Z15, n= 14, p= 0.052; Z17, n= 14, p= 0.018; Z18, n= 14, p= 0.089; g: isotype, n= 16; ZIKV-292, n= 16, p= 0.026; 749-
A4, n= 16, p < 0.002). In the figure: *p < 0.05, **p < 0.01. Weights were analyzed by two-way ANOVA with Dunnett’s post-test comparison to isotype-
treated animals (*p < 0.05; f Z15: day 10, p= 0.037; Z17: day 8, p= 0.037; day 9, p= 0.009; day 10, p= 0.002; day 11, p= 0.006; h 749-A4: day 9, p=
0.014; day 10, p= 0.005; ZIKV-292: day 16, p= 0.045; day 18, p= 0.037; day 20, p= 0.027); error bars represent the mean values ± SD. Source data are
provided as a Source Data file for Figs. 1f, h.
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added anti-NS1 mAbs, and measured complement (C3b)
deposition. Among the anti-NS1 mAbs tested, Z17, ZIKV-292,
and 749-A4 promoted complement (C3b) deposition (Supple-
mentary Fig. 1b). All of the mAbs tested also promoted inter-
nalization of NS1 antigen-coated beads by neutrophils or
monocytes (Supplementary Fig. 1c, d).

Protective mAbs bind to distinct epitopes in NS1. To begin to
understand the basis for differential recognition of cell surface
NS1 and protection in vivo, we mapped the epitopes of the anti-
ZIKV NS1 mAbs. We localized NS1-binding sites critical for mAb
recognition using (i) alanine-scanning mutagenesis and (ii)
structure-guided charge-reversal mutagenesis47.

“Shotgun mutagenesis”47 was performed by substituting each
residue of NS1 with alanine. Pre-existing alanine residues were
substituted with serine and the invariant cysteine residues were
not changed given their requirement in NS1 folding31. We
assessed binding of anti-ZIKV NS1 mAbs to each mutant NS1
protein using a flow cytometric assay that compared staining of
wild-type and mutant plasmid-transfected cells. Residues were

deemed critical for mAb binding if a substitution resulted in
<25% binding relative to that of WT NS1 but did not affect
recognition by an oligoclonal pool of nine anti-NS1 mAbs. After
evaluating the library of 340 mutants (Supplementary Data 1),
we found that alanine substitution at three residues (R40, N82,
and W115) within or structurally proximal to the wing domain
flexible loop (residues 108–129) caused loss-of-binding of the
non-protective group A mAbs, Z12 and Z13 (Fig. 4a). Sequen-
cing of the variable heavy and light-chain regions revealed these
two mAbs are related clonally, consistent with their shared
binding patterns (Supplementary Table 4). The group A mAb
Z19 also showed loss-of-binding with alanine substitutions at
residues R40, N82, and W115, and mutation at residue R40
resulted in diminished binding of the non-protective group E
mAb Z20. The protective group C mAbs mapped to residues on
the exposed loop face of the β-platform domain (residues
181–352) (Fig. 4b). Human mAb ZIKV-231 mapped to residue
K265 within the spaghetti loop (residues 219–272) and to residue
R314 at the C-terminal tip of the β-platform domain (278–352),
whereas Z17 and 749-A4 mapped to residues exclusively at the
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Fig. 2 Protection by anti-ZIKV NS1 mAbs in pregnant hSTAT2 KI mice. Eight- to 16-week-old hSTAT2 KI female and male mice were mated. On E6.5,
plugged females were administered 250 μg of the indicated murine (a–c) or human (d–f) mAbs and inoculated subcutaneously with 106 FFU of ZIKV. For
experiments with antibody cocktail treatment, mice received 125 μg of each mAb. Viral burden was assessed on E13.5 in maternal spleen (a, d), placenta
(b, e), and fetal head (c, f). Viral burden data for the maternal spleen includes mice that were plugged but did not become pregnant. For each pregnant
dam, five placentas and fetal heads were evaluated unless the total number of fetuses was less than 5. a Isotype, n= 16; Z15, n= 4; Z17, n= 6; Z15+ Z17,
n= 7. b, c Isotype, n= 61; Z15 n= 20; Z17, n= 28; Z15+ Z17, n= 35. d Isotype, n= 9; ZIKV-292, n= 4; 749-A4 and 749-A4 LALA, n= 5. e, f Isotype, n=
45; ZIKV-292, n= 26; 749-A4, n= 20; 749-A4 LALA, n= 25. Data are pooled from at least three experiments (Kruskal–Wallis one-way ANOVA with
Dunn’s post-test comparison between the indicated groups; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; a isotype vs. Z15+ Z17, p= 0.010; b isotype
vs. Z17, p= 0.0006; isotype vs. Z15+ Z17, p < 0.0001; c isotype vs. Z17, p < 0.0001; isotype vs. Z15+ Z17, p < 0.0001; d isotype vs. ZIKV-292, p= 0.048;
e isotype vs. ZIKV-292, p < 0.0001; isotype vs. 749-A4, p= 0.004; f isotype vs. ZIKV-292, p < 0.0001; isotype vs. 749-A4, p= 0.0003; 749-A4 vs. 749-
A4 LALA, p= 0.002). Dotted lines denote the LOD.
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C-terminal tip of the β-platform (e.g., E289 and R338). For
unclear reasons, we were unable to map the epitopes of the
protective group B and non-protective group D mAbs using this
approach.

A previous study identified immunodominant B-cell epitopes
in DENV NS1 for mice and humans48. Using these epitope
regions as guides, we engineered charge-reversal mutants

(Supplementary Table 5) at solvent-exposed and adjacent
residues predicted by the ZIKV NS1 atomic model31. We
examined binding to these mutants as an alternative approach
for mapping the anti-ZIKV NS1 mAbs in competition groups B
(Z11, Z15, Z18, and ZIKV-292) and D (Z14). The protective
group B murine mAbs mapped to residues clustered on the
membrane-distal, charged surface of the wing domain: Z15: K146;
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Fig. 3 Binding properties of anti-ZIKV NS1 mAbs. Binding to NS1 by anti-NS1 mAbs. Binding to cell surface-associated NS1 was assessed by flow
cytometry following staining at 4 °C of live, ZIKV-infected Vero cells with serial dilutions of murine (a–c) or human (e, f) mAbs. a Representative flow
cytometry plots showing binding of anti-NS1 mAbs to NS1 on the cell surface. A minimum of 5000 cells was collected per sample. The percentage of cells
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Z11 and Z18: Q102; and ZIKV-292: P101 and L177/E178
(Fig. 4c). The non-protective group D mAb, Z14, mapped to
two residues (G305 and V307) on the membrane-facing surface
of the β-platform domain (Fig. 4d). This approach also identified
key residues for binding of group C mAbs: Z17: T290; ZIKV-231:
T293 (Fig. 4d and Supplementary Table 5).

Mutated residues that resulted in loss of Ab binding were
mapped onto the ZIKV NS1 crystal (Fig. 4e, top view; Fig. 4f, side
view) and secondary structures (Fig. 4g). The mAb competition
groups localize to distinct epitopes. The non-protective mAbs
(groups A, D, and E) map to the membrane-facing surface of
the dimer including the wing flexible loop and β-strand face of
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the β-platform. The protective mAbs (groups B and C) map to
the membrane-distal, accessible surface of the dimer including the
charged surface of the wing domain and the loop face of the β-
platform.

Discussion
We examined the protective efficacy of newly generated mAbs
targeting ZIKV NS1 in vivo. We identified four murine (Z11, Z15,
Z18, and Z17) and three human mAbs (ZIKV-292, ZIKV-231,
and 749-A4), which conferred protection against ZIKV in non-
pregnant hSTAT2 KI mice, whereas five other murine mAbs
(Z12, Z13, Z14, Z16, and Z20) did not show this activity. Three of
the mAbs tested (Z17, ZIKV-292, and 749-A4) also protected
against lethal ZIKV challenge in immunocompromised mice and
reduced viral infection in the fetuses of pregnant mice. Whereas
all mAbs recognize the soluble NS1 hexamer relatively equiva-
lently, the protective and non-protective groups of antibodies
differentially bind to cell surface NS1, which is believed to be
expressed as a dimer29,49,50. The protective mAbs bind avidly and
at high site density to cell surface NS1 and map to two accessible
regions on the membrane-distal surface of the dimer: the wing
domain and the loop face of the β-platform. In contrast, the non-
protective mAbs bind relatively poorly to cell surface NS1 and
map to less accessible epitopes near the hydrophobic, membrane-
facing surface of the NS1 dimer.

A prior study suggested that protection against lethal WNV
infection by anti-NS1 mAbs correlated with recognition of NS1
on the surface of infected cells51. Our data suggest that avid and
high-density binding to cell surface NS1 is a determinant of
protection for anti-NS1 antibodies. Structural studies suggest that
dimeric NS1 interacts with the cell membrane through the
hydrophobic β-roll domain, the flexible loop, and greasy finger of
the wing domain29,31. These regions on the cell surface form of
NS1 may be relatively inaccessible for antibody binding, which
could explain why group A mAbs (Z12 and Z13; flexible loop)
bound poorly and do not protect. The membrane-distal surfaces
of the dimer, which should be accessible on cell surface forms of
NS1, include the charged surface of the wing domain and the loop
face of the β-platform domain. These regions are recognized
efficiently by group B (wing) and C (loop face) mAbs, which
protect against ZIKV infection in vivo.

The protective group C mAbs (Z17, ZIKV-231, and 749-A4)
map to residues within the C-terminal region of the β-platform,
which contains conserved sequences in flaviviruses. One epitope
within the β-platform of NS1 has been described structurally. The
WNV NS1-specific mAb, 22NS1, which protects against WNV
challenge, contacts residues within an elongated loop that

connects the fourth and fifth β-strand of the β-platform (spaghetti
loop) as well as the C-terminal tip residues (Fig. 4g)30. Two of our
group C mAbs bind epitopes that share contact residues with
22NS1. ZIKV-231 maps to two C-terminal tip residues, which are
structurally equivalent to 22NS1 epitope contacts (T293 and
R314), and the third ZIKV-231 residue we identified (K265) is
located within the spaghetti loop proximal to the 22NS1 epitope.
We also identified two C-terminal tip epitope residues for the
broadly NS1 reactive 749-A4 mAb (E289 and R314), and both of
these are conserved in WNV and contacted by 22NS1. Murine
mAb 9NS1, which was isolated against WNV35, cross-reacts with
all tested flavivirus NS1 proteins and also maps to conserved
residues at the C-terminal tip. Thus, it is possible that other mAbs
binding this C-terminal epitope could provide cross-protection
against other flaviviruses, although this warrants further exam-
ination. Whereas we observed a protective effect against ZIKV
following passive administration of group C mAbs, some anti-
DENV NS1 antibodies that bind C-terminal epitopes (particularly
residues 305–330) reportedly react with human endothelial cells,
platelets, and plasminogen, and are speculated to contribute to
pathogenesis52–54.

The wing domain, particularly within residues 101–130, con-
tains immunodominant B-cell epitopes for DENV NS1 in mice
and humans48. The group A (Z12, Z13, and Z19), group B (Z11,
Z15, Z18, and ZIKV-292), and group E (Z20) mAbs map to these
residues, although to distinct regions. The protective group B
mAbs map to the membrane-distal, hydrophilic surface of the
wing domain, whereas the non-protective group A mAbs map to
the hydrophobic flexible loop (W115) of the wing domain. A
previously generated murine mAb against WNV NS1, 16NS1,
also maps to residues (W118 and I122) within the flexible loop36.
The flexible loop (residues 108–129) was disordered in the WNV
and DENV NS1 crystal structures, but stabilized in the ZIKV
NS1 structure31,32. This region is believed to facilitate membrane
association with the distal end of the wing domain via conserved
hydrophobic residues. MAb 16NS1 protected mice against lethal
WNV challenge35, whereas Z12 and Z13 failed to inhibit ZIKV
infection. Although further studies with a larger panel of mAbs
that map to this particular epitope are warranted, we speculate
that the flexible wing domain hydrophobic loops of ZIKV and
WNV NS1 may interact differently with membranes, thereby
modulating their unique antibody epitope accessibilities. More-
over, structural studies that achieve atomic-level resolution of
mAb bound to NS1 may help to identify further how protective
and non-protective mAbs engage NS1.

We evaluated a combination of two mouse mAbs (Z15 and
Z17) during pregnancy, to determine whether concurrent

Fig. 4 Epitope mapping of anti-ZIKV NS1 mAbs. Critical binding residues were mapped using a, b an alanine-scanning library and c, d targeted charge-
reversal mutants. 293T cells were transfected with plasmids encoding ZIKV NS1 and the mAb reactivity to each mutant relative to WT NS1 was measured
by flow cytometry. For each mutant, the relative mAb reactivity was normalized to the relative reactivity of an oligoclonal staining cocktail. Critical residues
were defined as those mutants with <25% binding compared to WT NS1. Data are shown for critical residues in the wing (a, c) and β-platform (b, d)
domains. A minimum of 5000 cells was collected for each sample. Data are the average of three experiments (error bars represent the mean ± SD) and
were analyzed by two-way ANOVA with Holm–Sidak’s multiple comparison of each mutant to a V84A, b P341A, c R99E, or d T209K. Superscript letters
indicate significance: a, p < 0.01; b, p < 0.001; c, p < 0.0001 (Z12: LE177/178RR, p= 0.009; Z13: LE177/178RR, p= 0.002; Z18: G305K, p= 0.007; V307R,
p= 0.007; Z19: Q102W, p= 0.007; Z20: N82A, p= 0.0002; 749-A4: T293K, p= 0.0068). e, f Mapping of critical residues for anti-NS1 mAbs onto the
crystal structure of the ZIKV NS1 dimer (PDB 5K6K) in top view (e) or side view (f). Critical residues are indicated by spheres and are color-coded
according to mAb panel in a–d. In each structure, one monomer is gray and one is color-coded by domain (blue, β-roll; yellow, wing; red, β-platform;
orange, connector subdomain and greasy finger). This figure was prepared using PyMOL. g Secondary structure representation of epitopes in ZIKV NS1 as
defined by alanine-scanning (circles) and charge-reversal mutagenesis (squares). Sequence alignment is shown for ZIKV (H/PF/2013), DENV2 (Thailand/
16681/84), WNV (NY99), and YFV (17D); red shading indicates 100% sequence conservation. Colored bars above the alignment indicate domains: β-roll
(blue, 1–29); wing (yellow, 30–180) with connector subdomain (orange); β-platform (red, 181–352). The dashed line above the alignment indicates the wing
flexible loop (108–129). The corresponding contact residues of 22NS1, an anti-WNV NS1 mAb, which were determined by X-ray crystallography30, are
shown underlined in the alignment for comparison. This figure was prepared using ESPript 3.079. Source data are provided as a Source Data file for a–d.
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targeting of more than one epitope could enhance protection, as
there is precedence for this approach in antiviral antibody
therapies55–57. This combination trended toward reducing viral
infection in fetal heads, although it did not attain statistical sig-
nificance. We evaluated a second combination of human anti-
bodies that bound distinct epitopes (ZIKV-292 and 749-A4)
during pregnancy as well, but did not observe greater protection.
In the future, additional two- or even three-antibody combina-
tions could be tried in this model.

Passive transfer of NS1-specific mAbs can protect mice from
lethal challenge with WNV, JEV, or YFV34–36. The mechanism of
protection for many of the anti-WNV NS1 mAbs was Fc-
dependent, as it was lost in mice lacking Fc-γ receptors or C1q35.
Analogously, an anti-YFV NS1 antibody mediated antiviral pro-
tection in mice when using IgG2a, but not IgG1 isotype switch
variants or cleaved F(ab′)2 fragments34. More recently, passive
transfer of a single human anti-ZIKV NS1 mAb (AA12) protected
Stat2−/− mice against lethal challenge with ZIKV37,38, although
epitope mapping data were not provided. Similar to our data,
protection was Fc-dependent, as determined with loss-of-function
mutations in the Fc region58. To test Fc-dependent protection by
the human mAbs, we generated Fc region LALA variants, which
have reduced binding to Fc-γ receptors and complement.
Although we observed loss of protection in the hSTAT2 KI mice
using the Fc region LALA variants, the effect might be greater with
LALA-PG or other mutations that more completely eliminate
binding to Fc receptors and complement58. Given that ZIKV-
infected cells express high levels of NS1 on the plasma membrane,
NS1-specific antibodies that bind avidly and with high site density
may promote clearance of infected cells via cross-linking and
promoting Fc-mediated effector functions. The specific effector
functions of a mAb might explain differences we observed in
protection between non-pregnant and pregnant mice. Mouse mAb
Z17 protects in both mouse models, whereas Z15 protects only in
non-pregnant mice. Given that Z17 induces more complement
deposition than Z15 in Fc effector function assays, complement-
dependent cytolysis or opsonization might contribute to antibody-
mediated protection of the fetus against ZIKV. Indeed, human
mAbs ZIKV-292 and 749-A4, which protected in pregnancy, also
promoted complement deposition. We cannot exclude the possi-
bility that antibodies also may protect by targeting the secreted
form of NS1 and blocking its potential effects on immune evasion
and pathogenesis13,18,19,26–28. Indeed, soluble ZIKV NS1 protein
may promote placental dysfunction and permeability through
modulation of glycosaminoglycan expression on chorionic villi28.

Most antibody-based therapeutic or vaccine strategies against
ZIKV have focused on generating neutralizing antibodies against
the viral envelope protein, which indeed protect in different
animal models40,59,60. However, pre-existing anti-envelope pro-
tein antibodies reportedly can augment both ZIKV and DENV
infection, a phenomenon termed ADE61,62. NS1-targeted vac-
cines have been developed as an alternative to envelope protein-
targeted strategies to avoid ADE, because NS1 is absent from the
virion. Indeed, NS1-based vaccines can protect mice against lethal
YFV, TBEV, and ZIKV infections63–67. Whether any of these
vaccine candidates can protect the developing fetus from ZIKV,
however, remains to be tested. Given that several anti-NS1 mAbs
limited ZIKV infection in the placenta and fetus, NS1-targeted
vaccines or antibody-based therapies might confer protection
during pregnancy, without the risk of immune enhancement of
homologous or heterologous flavivirus infection.

In summary, we defined a panel of anti-NS1 mAbs that limit
ZIKV infection in non-pregnant and pregnant mice and estab-
lished functional correlates of protection: binding to cell surface
forms of NS1 and engagement of Fc receptors by mAbs. One
limitation of this study is that it does not assess protection in a

model of ZIKV-induced fetal demise. To achieve such extensive
disease in mice requires the use of highly immunocompromised
animals where ZIKV disseminates widely and replicates to high
titer39,68. Anti-NS1 mAbs could be developed alone or in com-
bination with anti-envelope protein antibodies (the latter possibly
engineered to lack Fc interactions to avoid ADE) for prevention
against ZIKV infection and congenital disease. Our studies sug-
gest that NS1-specific antibodies recognizing antigenic sites in the
charged surface of the wing domain and C-terminal end of the β-
platform domain loop face optimally mediate protection in vivo,
because they are accessible in the cell surface-associated form of
dimeric NS1. Vaccines targeting these epitopes may induce the
most protective NS1-specific antibodies. Future studies that elu-
cidate the atomic structures of protective mAbs bound to NS1
may refine antigen engineering strategies for rational NS1 vaccine
design.

Methods
Ethics statement. All animal procedures were carried out in accordance with the
recommendations in the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health. The protocols were approved by the Institutional
Animal Care and Use Committee at the Washington University School of Medicine
(assurance number A3381-01). To minimize animal discomfort and suffering,
injections were performed under anesthesia that was induced and maintained with
ketamine hydrochloride and xylazine. All human anti-ZIKV mAbs, except for 749-
A4, were isolated from the blood of subject 97340,69, who had a history of ZIKV
(African lineage strain) infection. Blood samples were collected by the Vanderbilt
Clinical Trials Center following written informed consent using a protocol
approved by the Vanderbilt University Medical Center Institutional Review Board.
Human mAb 749-A4 was isolated after written informed consent, from blood
collected from an in-patient who tested positive for DENV by reverse-transcriptase
PCR (RT-PCR) at the Hospital for Tropical Diseases70. The study protocol was
approved by the Scientific and Ethical Committee of the Hospital for Tropical
Diseases, the Oxford Tropical Research Ethical Committee, and the Riverside
Ethics Committee in the UK.

Cells. Vero, HEK293T, and C6/36 cells (all from American Type Culture Collec-
tion, ATCC) were propagated in Dulbecco’s modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS), 1 mM sodium pyruvate, and
10 mM HEPES, pH 7.3. Hybridoma cells were grown in Isocove’s modified Eagle
Medium supplemented with 20% FBS (Hyclone), 1 mM sodium pyruvate, and
100 U/mL of penicillin and streptomycin.

Viruses. The mouse-adapted variant of ZIKV strain Dakar 41525 (Senegal, 1984)
has been described39. Virus stocks were propagated in C6/36 or Vero cells and
titered by focus-forming assay71.

Purification of NS1 domain (D)II/III protein. A ZIKV NS1 C-terminal construct
was engineered, expressed, and purified essentially as described for WNV and
DENV NS130. Briefly, residues 966–1148 of the ZIKV strain H/PF/2013 poly-
protein (residues 172–352 of ZIKV NS1) were cloned into the NheI and NotI
restriction sites of pET21a for expression in BL21 (DE3) codon plus Escherichia coli
cells by autoinduction72. Inclusion bodies (200–300 mg) were denatured in 7M
guanidinium hydrochloride and 30 mM β-mercapthanol for 1 h at 37 °C, cen-
trifuged for 10 min at 4 °C, and diluted to 2M guanidinium hydrocloride in 50 mM
sodium acetate pH 5.2. The supernatant was filtered and refolded by rapid, serial
dilution (1 mL injections, hourly) in 1 L of refolding buffer (400 mM L-arginine,
100 mM Tris-base pH 8.3, 2 mM EDTA, 0.5 mM oxidized glutathione, 5 mM
reduced glutathione, and 0.2 mM phenylmethanesulfonyl fluoride) at 4 °C. The
recombinant protein was concentrated using a stirred cell concentrator with YM10
membrane (Millipore), centrifuged to remove aggregates, and purified on a S-75
size-exclusion chromatography column equilibrated in 20 mM HEPES pH 7.4,
150 mM NaCl, and 0.01% NaN3.

Antibody generation. (i) Mouse mAbs: Six-week-old female BALB/c mice were
primed and boosted 3 weeks later with 106 focus-forming units (FFU) of ZIKV
following administration of 1 mg of an Ifnar1-blocking mAb (clone MAR1-5A3;
Leinco I-401)73. At 6 weeks after initial infection, mice were boosted with 25 μg of
recombinant ZIKV NS1 protein (Native Antigen) mixed 1 : 1 with Freund’s
Incomplete Adjuvant. Mice were given a final pre-fusion boost with 25 μg of ZIKV
NS1 protein in phosphate-buffered saline (PBS) at 10 weeks after initial infection.
Three days later, splenocytes were collected and fused with P3X63 Ag8.653 mye-
loma cells to generate hybridomas74. Supernatants were screened for antibody
binding to ZIKV-infected cells by flow cytometry or to recombinant ZIKV NS1
protein by ELISA. Briefly, ZIKV-infected C6/36 cells (multiplicity of infection
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(MOI) of 0.1, 3 dpi) were fixed with 4% paraformaldehyde (PFA), permeabilized in
PBS, 0.1% saponin, 0.1% bovine serum albumin (BSA), and then incubated with
hybridoma culture supernatants supplemented with 0.1% saponin. Anti-NS1 mAbs
were detected using Alexa Fluor 647-conjugated goat anti-mouse IgG (1 : 2000
dilution; Thermo Fisher). For screening by direct ELISA, recombinant ZIKV NS1
(0.4 μg/ml; Native Antigen) was immobilized onto MaxiSorp 96-well plates
(Thermo Fisher) overnight at 4 °C in 50 μl of sodium bicarbonate buffer, pH 9.3.
Subsequently, plates were washed four times with PBS and blocked with ELISA
buffer (PBS, 1% BSA, and 0.05% Tween 20) for 1 h at 37 °C. Plates then were
incubated with undiluted hybridoma culture supernatants for 1 h at room tem-
perature. After washing four times with ELISA buffer, plates were incubated with
biotinylated anti-mouse IgG (H+ L; 1 : 2000 dilution; Jackson ImmunoResearch)
for 30 min. Plates were washed again and incubated with streptavidin-conjugated
horseradish peroxidase (1 : 625 dilution; Vector Laboratories) for 30 min. After a
final wash series, plates were developed using 3,3’,5,5’-tetramethylbenzidine sub-
strate (Agilent). The reaction was stopped using 2 N H2SO4 and absorbance at
450 nm was read with a TriStar Microplate Reader (Berthold Technologies) to
detect anti-NS1 antibodies. Positive hybridomas were cloned by limiting dilution
and selected mAbs were purified by a commercial source (Bio X Cell). (ii) Human
mAbs: Human mAbs were generated two ways as follows: (a) MAbs ZIKV-231 and
ZIKV-292: the ZIKV-immune human donors were described previously40,69.
Peripheral blood mononuclear cells (PBMCs) from heparinized blood were isolated
using Ficoll-Histopaque and density gradient centrifugation. Ten million PBMCs
were cultured in 384-well plates (Nunc) using culture medium (ClonaCell-HY
medium A; StemCell Technologies) supplemented with 8 μg/mL of the TLR agonist
CpG (phosphorothioate-modified oligodeoxynucleotide ZOEZOEZZZZZOEE-
ZOEZZZT; Invitrogen), 3 μg/mL of Chk2 inhibitor (Sigma), 1 μg/mL of cyclos-
porine (Sigma), and clarified supernatants from cultures of B95.8 cells (ATCC)
containing Epstein–Barr virus. After 7 days, cells from each 384-well culture plate
were expanded into four 96-well culture plates (Falcon) using ClonaCell-HY
medium A containing 8 μg/mL of CpG, 3 μg/mL of Chk2 inhibitor, and 107 irra-
diated heterologous human PBMCs (Nashville Red Cross), and cultured for an
additional 4 days. Supernatants were screened by ELISA for reactivity with ZIKV
NS1. Hybridoma cell lines were cloned by single-cell flow cytometric sorting in a
sterile FACSAria III cytometer (BD Biosciences). (b) MAb 749-A4: 749-A4 was
generated from plasmablasts during acute DENV infection70,75. PBMCs were
stained with anti-CD3 (1 : 20; BD Pharmingen 345766), anti-CD19 (1 : 50; Dako
R0808), anti-CD20 (1 : 20; BD Pharmingen 345794), anti-CD27 (1 : 20; BD Phar-
mingen 555440), anti-CD38 (1 : 20; BD Pharmingen 555462), and plasmablasts
were single-cell sorted into 96-well plates containing RNase inhibitor (Promega) by
gating on CD19+, CD3−, CD20lo to CD20−, CD27hi, and CD38hi by RT-PCR
(Qiagen). Nested PCR (Qiagen) was performed to amplify genes encoding γ-chain,
λ-chain, and κ-chain with “cocktails” of primers specific for human IgG (Supple-
mentary Data 2)75. PCR products encoding heavy- and light-chain genes were
digested with the appropriate restriction endonuclease(s) and cloned into expres-
sion vectors for human IgG1 or Ig κ-chain or λ-chain (gift from H. Wardemann)76.
For the expression of antibodies, plasmids encoding heavy and light chains were
co-transfected into 293T cells using the polyethylenimine method77.

Mouse experiments. Most antibody protection studies were performed using
hSTAT2 KI mice39. For non-pregnancy studies, 3- to 4-week-old male and female
hSTAT2 KI mice were administered 200 μg of mAb (anti-NS1 or isotype control
mAb) via intraperitoneal injection and then immediately inoculated sub-
cutaneously in the footpad with 105 FFU of ZIKV in a 50 μL volume. Serum
samples were obtained at 3 dpi via facial vein puncture and tissues were collected at
9 dpi following perfusion with 20 mL of PBS. For pregnancy studies, 8- to 16-week-
old female hSTAT2 KI mice were paired with male hSTAT2 KI mice and checked
each morning for a copulation plug; this day was defined as E0.5. On E6.5, plugged
mice were administered 250 μg of mAb (anti-NS1 or isotype control mAb) via
intraperitoneal injection and then immediately inoculated subcutaneously in the
footpad with 106 FFU of ZIKV in a 50 μL volume. Mice were euthanized on E13.5
and the maternal spleen, placentas, and fetal heads were collected. For antibody
cocktail treatments, mice received 125 μg of each antibody.

To assess antibody-mediated protection against lethal ZIKV infection, 4- to 5-
week-old C57BL/6J mice were administered 1 mg of anti-Ifnar1-blocking mAb
(MAR1-5A3) and 500 μg of anti-NS1 or isotype control mAb via intraperitoneal
injection39. The following day, mice were inoculated subcutaneously in the footpad
with 103 FFU of ZIKV in a 50 µL volume. Lethality and weights were tracked for
21 days, at which point surviving mice were euthanized.

Viral burden analysis. Organs were weighed and homogenized by bead dis-
sociation using a MagNA Lyzer (Roche) in a volume of DMEM containing 2% FBS.
Viral RNA was isolated from tissue homogenates using the RNeasy Mini kit
(Qiagen), as per the manufacturer’s instructions. ZIKV RNA levels were deter-
mined by TaqMan one-step quantitative RT-PCR (forward primer: 5′-TTCGGAC
AGCCGTTGTCCAACACAAG-3′; reverse primer: 5′-CCACCAATGTTCTCTTG
CAGACATATTG-3′; probe: 5′-56-FAM/AGCCTACCT/ZEN/TGACAAGCAGT
C/3IABkFQ-3′)39. To calculate FFU equivalents from RNA levels, an RNA stan-
dard curve was generated from a defined viral stock.

Antibody domain mapping and cross-reactivity analysis. Recombinant NS1
proteins (0.4 μg/mL) were immobilized onto MaxiSorp 96-well plates (Thermo
Fisher) overnight in 50 μL of sodium bicarbonate buffer, pH 9.3. For mAb domain
mapping, full-length ZIKV NS1 (residues 1–352) or ZIKV NS1 DII/III (residues
172–352)35 was immobilized. For determination of cross-reactivity, ZIKV, DENV2,
WNV, JEV, TBEV, or YFV NS1 proteins (all from Native Antigen) were adsorbed
to wells of MaxiSorp microtiter plates overnight at 4 °C. Subsequently, plates were
washed four times with PBS and blocked with ELISA buffer (PBS, 1% BSA, and
0.05% Tween 20) for 1 h at 37 °C. Plates then were incubated with anti-NS1 or
isotype control mAbs diluted in ELISA buffer for 1 h at room temperature. After
washing four times with ELISA buffer, plates were incubated with biotinylated
goat anti-human or goat anti-mouse IgG (H+ L; 1:2000 dilution; Jackson
ImmunoResearch) for 30 min. Plates were washed again and incubated with
streptavidin-conjugated horseradish peroxidase (1:625 dilution; Vector Labora-
tories) for 30 min. After a final wash series, plates were developed using 3,3′,5,5′-
tetramethylbenzidine substrate (Agilent). The reaction was stopped using 2 N
H2SO4 and absorbance at 450 nm was read with a TriStar Microplate Reader
(Berthold Technologies).

Antibody binding to NS1 on the cell surface. Vero cells were inoculated with
ZIKV at an MOI of 1. After 24 h, the cells were washed in PBS, detached after
incubation in 10 mM EDTA in PBS for 15 min at 37 °C, and then washed again in
chilled PBS, 4 mM EDTA, 0.4% BSA (fluorescence-activated cell sorting (FACS)
buffer). The cells then were incubated with serial dilutions (20 μg/mL to 2 pg/mL)
of each anti-NS1 or an isotype control mAb for 1 h at 4 °C. After washing in FACS
buffer, cells were stained with Fixable Viability Dye eFluor 506 (eBioscience) and
Alexa Fluor 647 conjugated to goat anti-human or anti-mouse IgG (Thermo
Fisher). Cells were washed before fixing in 4% PFA in PBS for 10 min and then
processed on a MACSQuant Analyzer (Miltenyi Biotec) using FlowJo software.
After gating on live cells, the percent reactivity to cell surface-expressed NS1 was
determined and plotted for each dilution of mAb (Supplementary Fig. 2a). The
EC50 of binding value was calculated using a 4-parameter logistic curve.

Antibody competition ELISA. Anti-NS1 mAbs were conjugated to biotin using a
sulfo-NHS-biotin kit (Thermo Scientific). MaxiSorp 96-well plates were coated
with ZIKV NS1 protein, washed, and blocked as described above. Plates then were
incubated with unmodified anti-NS1 mAbs at 10 μg/mL for 1 h at room tem-
perature. Without washing, biotinylated mAbs were added to the plates at pre-
optimized concentrations and incubated for 10 min at room temperature. Plates
then were washed four times in PBS, 0.05% Tween 20, and incubated with
streptavidin-conjugated horseradish peroxidase (1 : 625 dilution) for 30 min. After
washing, plates were developed and absorbance was read as described above.

FcγR I ELISA. MaxiSorp 96-well plates were coated overnight with 50 μL of
recombinant human FcγR I (CD64) protein (1 μg/mL; R&D Systems), washed, and
blocked as described above. Serial dilutions of the anti-NS1 human antibodies (WT
and LALA variants) in ELISA buffer were added to the plates and incubated for 1 h
at room temperature. Subsequently, plates were washed four times and incubated
with biotin-conjugated goat anti-human IgG (H+ L; 1 : 2000 dilution; Thermo
Fisher) for 45 min. Plates then were washed and incubated with streptavidin-
conjugated horseradish peroxidase (1 : 625 dilution) for 30 min. After a final wash
series, plates were developed and absorbance was read as described above.

Alanine-scanning mutagenesis and epitope mapping. Epitope mapping was
performed using alanine-scanning mutagenesis47. A mammalian expression vector
(pFM-A1.2) was constructed to encode full-length ZIKV NS1 (strain H/PF/2013),
preceded by the native signal sequence (last 25 amino acids of envelope protein)
and followed in frame with a hexahistidine affinity tag. The pFM-A1.2 expression
vector was subjected to site-directed mutagenesis (GENEWIZ) to generate a library
of 340 total mutants. Non-alanine codons were mutated to alanine, alanine codons
were mutated to serine, and cysteine codons were not changed. HEK293T cells
were transfected with each mutant construct by using Lipofectamine 3000 (Thermo
Fisher) and incubated at 37 °C for 1 day to allow for protein expression. Cells were
fixed, permeabilized, and incubated with individual mAbs or an oligoclonal cocktail
of anti-NS1 mAbs (Z2, Z4, Z11, Z12, Z14, Z15, Z17, Z18, 130.99) as a control for
NS1 protein expression. Data for binding of mouse mAb 130.99 to recombinant
and cell surface forms of NS1 is in Supplementary Fig. 3 and its competition ELISA
data are included in Supplementary Table 3. Anti-NS1 mAb binding was detected
using Alexa Fluor 647 conjugated to goat anti-human or goat anti-mouse IgG (1 :
2000 dilution; Thermo Fisher). Flow cytometry was performed on a MACSQuant
Analyzer (Miltenyi Biotec) and analyzed using FlowJo software (Supplementary
Fig. 2b). Based on previously published criteria78, critical binding residues for each
mAb were defined as alanine mutants with <25% reactivity relative to WT protein.
Mutants with <70% binding (compared to WT) of the oligoclonal antibody pool
were considered poorly expressed and excluded from further analysis. Additional
structure-guided charge-reversal mutants were generated (GENEWIZ) and asses-
sed for binding to individual mAbs or the oligoclonal cocktail. The following mAbs
were mapped using the entire alanine-scanning library and all charge-reversal
mutants: Z12, Z13, Z14, Z15, Z17, Z18, ZIKV-231, ZIKV-292, and 749-A4. The
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other mAbs (Z11, Z19, and Z20) were mapped using the mutants identified as part
of epitopes for the former set of mAbs.

Antibody-dependent complement deposition. Recombinant ZIKV NS1 protein
(Native Antigen) was biotinylated and coupled to red fluorescent Neutravidin
beads (Life Technologies) and then incubated with serial dilutions of anti-NS1
mAbs for 2 h at 37 °C to allow for binding. Freshly reconstituted guinea pig
complement (Cedarlane Labs) was diluted 1 : 10 in veronal buffer containing 0.1%
gelatin (Boston Bioproducts), which then was incubated with the antibody-bead
complexes for 20 min at 37 °C. After washing in 15 mM EDTA in PBS, the com-
plexes were stained with a fluorescein isothiocyanate (FITC)-conjugated anti-
guinea pig C3b antibody (1 : 100; MP Biomedicals 0855385) for 15 min at room
temperature. Complement deposition was detected using an IntelliCyt iQue
Screener Plus or a 3 L Stratedigm S1300EXI flow cytometer, and the median
fluorescent intensity of FITC was measured for all beads using FlowJo software.

Antibody-dependent neutrophil and cellular phagocytosis. Recombinant ZIKV
NS1 protein (Native Antigen) was biotinylated and conjugated to streptavidin-
coated Alexa Fluor 488 beads. NS1-coated beads were incubated with serial dilu-
tions of mAbs (5–0.0016 μg/mL) in cell culture medium for 2 h at 37 °C. For the
neutrophil phagocytosis assays, bone marrow cells from C57BL/6 mice were col-
lected, washed with PBS, and aliquoted into 96-well plates (5.0 × 104 cells per well).
The bead–antibody complexes were added to cells and incubated for 1 h at 37 °C.
After washing, cells were stained with the following antibodies: CD11b APC (1:20;
clone M1/70; BioLegend 101212), CD11c APC/Cy7 (1:20; clone N418; BioLegend
117324), Ly6G Pacific Blue (1:20; clone 1A8; BioLegend 127612), Ly6C BV605 (1 :
20; clone HK1.4; BioLegend 128036), and CD3 PE/Cy7 (1:20; clone 17A2; Bio-
Legend 100220). Cells were fixed with 4% PFA, processed on an IntelliCyt iQue
Screener Plus flow cytometer, and analyzed using FlowJo software. Neutrophils
were defined as CD3− and CD11c− cells that were Ly6C−, CD11b+, and Ly6G+

(Supplementary Fig. 2c). The neutrophil phagocytosis score was determined using
the following calculation: (% Alexa Fluor 488+ cells) × (geometric mean fluorescent
intensity of Alexa Fluor 488+ cells)/10,000.

For the cellular phagocytosis assays, J774A.1 (ATCC TIB-67) murine monocytic
cells were incubated with the NS1-coated bead–antibody complexes for 1 h 37 °C.
Cells were washed in 5 mM EDTA PBS, fixed with 4% PFA, and analyzed on an
IntelliCyt iQue Screener Plus or a 3 L Stratedigm S1300EXI flow cytometer. The
cellular phagocytic score was calculated as described for the neutrophil
phagocytosis assays.

Statistical analysis. The statistical tests for each data set are indicated in the
respective legends and were performed using GraphPad Prism software. Viral
burden data were analyzed by a Kruskal–Wallis test with Dunn’s post test, survival
analyses were performed using a Mantel–Cox log-rank test with Bonferroni cor-
rection, weight loss data were analyzed by two-way analysis of variance (ANOVA)
with Dunnett’s post test, and epitope mapping data were analyzed by two-way
ANOVA with Holm–Sidak’s post test. Statistical significance was defined as p < 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its Supplementary Information, or from the corresponding author upon
request. Hybridomas or purified antibodies will be made available under an MTA with
Washington University or Vanderbilt University. Source data are provided with
this paper.
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