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Supplementary Figures 

 

 

Supplementary Figure 1. Samples and genes sequenced in this study. All samples sequenced in 

this study using smMIPs are from the ASID network. a) Probands (n > 18K) with a primary diagnosis 

of ASD, DD, or ID were collected from 18 international cohorts. Circle size corresponds to the number 

of samples from each cohort; red numbers correspond to the cohort number in Supplementary Table 1. 

b) The numbers (after QC) differ slightly depending on the number of genes and therefore we indicate 

with an approximation sign (~). Sample overlap is indicated for three designs: NDD1 (63 genes) 

represents a design targeting 63 genes that were not yet established as high confidence; hcNDD (62 

genes) represents a design targeting genes many of which were already known; the third portion of 

the Venn represents previous published smMIP studies, where variants from 62 genes in hcNDD were 

retrieved for a combined analysis. c) The 63 genes in panel NDD1 were screened in largest number 

of 16,294 NDD patients, while the 62 genes in hcNDD were screened only in 6,211 NDD cases where 

they had not been screened before, and the same category of variants were retrieved from ~13K NDD 

cases (precise number of cases may different for each gene) for the same 62 genes in hcNDD. 
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Supplementary Figure 2. QC of samples in NDD1 and hcNDD. The histogram shows the fraction 

of smMIPs with a read depth of over 8X per individual sample. There are 1,538 samples in NDD1 (a) 

and 455 samples in hcNDD (b). Less than 70% of smMIPs with a read depth over 8X failed QC and 

were removed from downstream analyses. 
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Supplementary Figure 3. QC of genes in NDD1 and hcNDD. Box and whisker plots show the 

fraction of samples with target bases at 8X or greater coverage for genes in NDD1 with 65 genes 

sequenced in 16,294 samples (after QC) (a) and hcNDD with 62 genes sequenced in 6,211 samples 

(after QC) (b). Two genes (KCNQ2 and PAXX) in NDD1 failed QC and were removed from 

downstream analyses. For the box plots, the lower whisker indicates the lowest data point excluding 

outliers (minima), the upper whisker indicates the largest data point excluding outliers (maxima), the 

lower bound indicates the first quartile which is the median of the lower half of the dataset (25th 

percentile), the upper bound indicates the third quartile which is the median of the upper half of the 

dataset (75th percentile), and with the middle value of the dataset (50th percentile) indicates in the 

middle. 
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Supplementary Figure 4. Fraction of samples over 10X in ExAC and smMIP data. The fraction of 

samples with ≥10X read depth for ExAC (now available at https://gnomad.broadinstitute.org/) was 

retrieved for the same capture region as in smMIP sequencing. The average fraction was calculated 

per gene and plotted as the average fraction (by gene) of samples with ≥10X coverage in ExAC and 

smMIP data. Each dot represents a gene: green dots indicate the 48 genes at FDR significance in 

mutation burden analysis, and red dots indicate the two genes (KCNQ2 and PAXX) that failed QC and 

were excluded from downstream analyses. For the box plots, the lower whisker indicates the lowest 

data point excluding outliers (minima), the upper whisker indicates the largest data point excluding 

outliers (maxima), the lower bound indicates the first quartile which is the median of the lower half of 

the dataset (25th percentile), the upper bound indicates the third quartile which is the median of the 

upper half of the dataset (75th percentile), and with the middle value of the dataset (50th percentile) 

indicates in the middle.  
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Supplementary Table 1. ASID cohorts and smMIP panels sequenced in this study. 

Cohort# 
on Figure 

1a 
Cohort Location PI Cohort_ID 

Primary 
diagnosis 

NDD1 hcNDD 

All 
QC 

failed 
Post 
QC 

All 
QC 

failed 
Post 
QC 

1 Adelaide Adelaide, Australia Jozef Gecz 

Adelaide1, Adelaide2 DD 2,206 161 2,045 - - - 

Adelaide3 DD 1,440 74 1,366 1,440 105 1,335 

Adelaide4 DD 839 41 798 839 47 792 

2 ACGC Changsha, China Kun Xia ACGC ASD 2,829 317 2,512 - - - 

3 Leuven Leuven, Belgium Hilde Peeters 
Leuven1 ASD 904 24 880 864 11 853 

Leuven2 ASD 988 7 981 988 56 932 

4 AGRE Seattle, USA Raphael A Bernier AGRE ASD 1,662 52 1,610 - - - 

5 Troina Troina, Italy Corrado Romano 
Troina1, Troina2 DD 1,175 153 1,022 - - - 

Troina3, Troina4 DD 441 42 399 441 49 392 

6 Karolinska Karolinska, Sweden 
Magnus 
Nordenskjöld 

Swedish DD 1,499 142 1,357 - - - 

7 Antwerp Antwerp, Belgium R Frank Kooy Antwerp DD 900 38 862 - - - 

8 San Diego San Diego, USA Eric Courchesne 
SanDiego1 ASD 488 6 482 - - - 

SanDiego2 ASD 404 0 404 404 0 404 

9 TASC Seattle, USA Raphael A Bernier TASC ASD 737 203 534 - - - 

10 Iowa Iowa, USA Jacob J Michaelson Iowa ASD 472 4 468 472 76 396 

11 SAGE Seattle, USA Raphael A Bernier SAGE ASD - - - 388 27 361 

12 Charles Prague, Czech Republic Zdenek Sedlacek Czech ID 384 93 291 384 55 329 

13 ITAN Verona, Italy Elisabetta Trabetti ITAN ASD - - - 248 26 222 

14 Leiden Leiden, Netherlands Gijs W.E. Santen Leiden DD 210 10 200 - - - 

15 
Autism Phenome 
Project 

Davis, USA David G Amaral APP ASD 198 132 66 - - - 

16 Radboudumc Nijmegen, Netherlands Nanda Rommelse Radboud ASD - - - 112 0 112 

17 Naples Naples, Italy Nicola Brunetti-Pierri Naples ASD - - - 86 3 83 

18 Melbourne Melbourne, Australia Ingrid E Scheffer Melbourne2 ASD 56 39 17 - - - 
     Total 17,832 1,538 16,294 6,666 455 6,211 
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