
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

9-15-2020 

Endogenous cyclin D1 promotes the rate of onset and magnitude Endogenous cyclin D1 promotes the rate of onset and magnitude 

of mitogenic signaling via Akt1 Ser473 phosphorylation of mitogenic signaling via Akt1 Ser473 phosphorylation 

Ke Chen 
Thomas Jefferson University 

Xuanmao Jiao 
Pennsylvania Biotechnology Center 

Agnese Di Rocco 
Pennsylvania Biotechnology Center 

Duanwen Shen 
Washington University School of Medicine in St. Louis 

Shaohua Xu 
Thomas Jefferson University 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

Recommended Citation Recommended Citation 
Chen, Ke; Jiao, Xuanmao; Di Rocco, Agnese; Shen, Duanwen; Xu, Shaohua; Ertel, Adam; Yu, Zuoren; Di 
Sante, Gabriele; Wang, Min; Li, Zhiping; Pestell, Timothy G; Casimiro, Mathew C; Skordalakes, Emmanuel; 
Achilefu, Samuel; and Pestell, Richard G, ,"Endogenous cyclin D1 promotes the rate of onset and 
magnitude of mitogenic signaling via Akt1 Ser473 phosphorylation." Cell Reports.,. . (2020). 
https://digitalcommons.wustl.edu/open_access_pubs/9602 

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been 
accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. 
For more information, please contact engeszer@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F9602&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


Authors Authors 
Ke Chen, Xuanmao Jiao, Agnese Di Rocco, Duanwen Shen, Shaohua Xu, Adam Ertel, Zuoren Yu, Gabriele 
Di Sante, Min Wang, Zhiping Li, Timothy G Pestell, Mathew C Casimiro, Emmanuel Skordalakes, Samuel 
Achilefu, and Richard G Pestell 

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/
open_access_pubs/9602 

https://digitalcommons.wustl.edu/open_access_pubs/9602
https://digitalcommons.wustl.edu/open_access_pubs/9602


Article

Endogenous Cyclin D1 Promotes the Rate of Onset
and Magnitude of Mitogenic Signaling via Akt1
Ser473 Phosphorylation

Graphical Abstract

Highlights

d Cyclin D1 enhances Akt1 activities both in vitro and in vivo

d Cyclin D1 bound to and phosphorylated Akt1 at Ser473

d Cyclin D1was required for growth factor induced Akt1 activity

d Correlation of cyclin D1 and Akt1 gene signature with breast

cancer patient outcomes

Authors

Ke Chen, Xuanmao Jiao,

Agnese Di Rocco, ...,

Emmanuel Skordalakes, Samuel Achilefu,

Richard G. Pestell

Correspondence
richard.pestell@bblumberg.org

In Brief

Chen et al. show that the rate of onset and

maximal cellular Akt1 activity induced by

mitogens was augmented by cyclin D1.

Cyclin D1 bound and phosphorylated

Akt1 at Ser473. These studies identify a

novel extranuclear function of cyclin D1 to

enhance proliferative functions via

augmenting Akt1 phosphorylation at

Ser473.

Chen et al., 2020, Cell Reports 32, 108151
September 15, 2020 ª 2020 The Author(s).
https://doi.org/10.1016/j.celrep.2020.108151 ll

mailto:richard.pestell@bblumberg.org
https://doi.org/10.1016/j.celrep.2020.108151
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108151&domain=pdf


Article

Endogenous Cyclin D1 Promotes the Rate of Onset
and Magnitude of Mitogenic Signaling via Akt1
Ser473 Phosphorylation
Ke Chen,2,9 Xuanmao Jiao,1,9 Agnese Di Rocco,1 Duanwen Shen,4 Shaohua Xu,2 Adam Ertel,2 Zuoren Yu,1,7

Gabriele Di Sante,1 Min Wang,1 Zhiping Li,1 Timothy G. Pestell,2 Mathew C. Casimiro,1,8 Emmanuel Skordalakes,3

Samuel Achilefu,4,5,6 and Richard G. Pestell1,3,10,*
1Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center,

Wynnewood, PA 19096, USA
2Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th

Street, Philadelphia, PA 19107, USA
3The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
4Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
5Department of Radiology, Washington University, St. Louis, MO 63110, USA
6Departments of Biochemistry & Molecular Biophysics, Washington University, St. Louis, MO 63110, USA
7Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
8Abraham Baldwin Agricultural College, Department of Science and Mathematics, Box 15, 2802 Moore Highway, Tifton, GA 31794, USA
9These authors contributed equally
10Lead Contact

*Correspondence: richard.pestell@bblumberg.org
https://doi.org/10.1016/j.celrep.2020.108151

SUMMARY

Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates RB and functions as a collab-
orative nuclear oncogene. The serine threonine kinase Akt plays a pivotal role in the control of cellular meta-
bolism, survival, and mitogenic signaling. Herein, Akt1-mediated phosphorylation of downstream substrates
in the mammary gland is reduced by cyclin D1 genetic deletion and is induced by mammary-gland-targeted
cyclin D1 overexpression. Cyclin D1 is associated with Akt1 and augments the rate of onset and maximal
cellular Akt1 activity induced by mitogens. Cyclin D1 is identified in a cytoplasmic-membrane-associated
pool, and cytoplasmic-membrane-localized cyclin D1—but not nuclear-localized cyclin D1—recapitulates
Akt1 transcriptional function. These studies identify a novel extranuclear function of cyclin D1 to enhance
proliferative functions via augmenting Akt1 phosphorylation at Ser473.

INTRODUCTION

The cell survival oncoprotein Akt, also known as protein kinase

B, conveys distinct pathophysiological processes promoting

cellular survival, proliferation, growth, and migration (Hers

et al., 2011). Akt is frequently hyperactivated in human cancers.

Inmammalian cells, oncogenic stimuli and growth factors induce

Akt kinase activity to promote anti-apoptotic signaling. Three

separate genes encode the major isoforms of Akt (Akt1/PKB,

Akt2/PKB, and Akt3/PKB). The phosphatase that negatively reg-

ulates Akt, the tumor suppressor gene PTEN, is frequently

deleted or mutated in human cancer, resulting in constitutive

activation of Akt1 kinase.

Akt activation occurs through a complex, multistep, phos-

phorylation-dependent mechanism that is incompletely under-

stood (Manning and Cantley, 2007). Akt is phosphorylated in

response to growth factor signaling by phosphoinositide-depen-

dent kinase (PDK1) in the activation loop (Thr308) (Dibble and

Cantley, 2015) and by mammalian target of rapamycin complex

2 (mTORC2) in the C-terminal hydrophobic motif (Ser473) (Sar-

bassov et al., 2005). Reflecting the diverse cellular contexts in

which AKT plays a role, Akt S473 phosphorylation is enhanced

by many signaling pathways, including IKKa (Dan et al., 2016);

the serine threonine kinase integrin-linked kinase (ILK) (McDo-

nald et al., 2008); members of the phosphatidylinositol 3-kinase

(PI3K)-related kinase (PIKK) family, including DNA-dependent

protein kinase catalytic subunit (DNA-PKc) (Bozulic et al.,

2008), mitogen-activated protein kinase-activated protein ki-

nase 2, (p38) (Kim et al., 2008), protein kinase CbII (PKCbII) (Ka-

wakami et al., 2004); ataxia-telangiectasia mutant; and ataxia-

telangiectasia and Rad3 related (Halaby et al., 2008). BSD-

domain-containing signal transducer and Akt interactor (BSTA)

also promote phosphorylation of Akt1 at Ser473 (Yao et al.,

2013). The priming phosphorylation by Akt1-pS477/pT479 is

mediated by Cdk2/cyclin A, mTORC2, or DNA-dependent pro-

tein kinase (DNA-PK) under cell-cycle progression, growth factor

stimulation, or DNA-damaging conditions, respectively (Liu et al.,

2014). Akt activity fluctuates across the cell cycle (Liu et al.,

Cell Reports 32, 108151, September 15, 2020 ª 2020 The Author(s). 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ll
OPEN ACCESS

mailto:richard.pestell@bblumberg.org
https://doi.org/10.1016/j.celrep.2020.108151
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108151&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


(legend on next page)

2 Cell Reports 32, 108151, September 15, 2020

Article
ll

OPEN ACCESS



2014). Under cell-cycle conditions, the cyclin A/cdk2 priming

phosphorylation becomesmore important and is, therefore, rela-

tively mTORC2/Rictor independent (Liu et al., 2014). These

distinct signaling cascades play differing roles under different

physiological perturbations. For example, inactivation of

mTORC2 by depleting Rictor led to a more dramatic reduction

of Akt1-pS477/pT479 in response to insulin than under synchro-

nized cell-cycle conditions. Furthermore, the cyclin A/cdk2-

mediated priming of S477/479 was considered to be important

in cellular transformation (Liu et al., 2014).

Downstream substrates of Akt1 coordinating the pro-survival

functions include tuberous sclerosis (TSC), gene 2, which dis-

rupts the TSC1/TSC2 complex, thereby derepressing mTOR

(mammalian target of rapamycin). Additional Akt substrates

include BAD, MDM2, Huntington, Arfaptin2, and Forkhead

Ligand 1 (FKHR-L1) (Datta et al., 1999; Hay, 2005). The pro-pro-

liferative and pro-survival functions of Akt1 involve caspase-9,

BAD, IKb kinase a, and a GSK3b/cyclin D1 pathway. Akt hyper-

activation contributes to human cancer correlating with poor

prognosis and therapy resistance (Manning and Cantley, 2007;

Yuan and Cantley, 2008), and genetic deletion demonstrated

that Akt1 is required for ErbB2-induced breast cancer progres-

sion and tumor metastases in vivo (Ju et al., 2007). Maximal acti-

vation of Akt requires phosphorylation on the carboxy-terminal

site S473 by mTORC2 (Hresko and Mueckler, 2005; Dibble and

Cantley, 2015). Activity of mTORC2 is determined, in part, by

the abundance of its components, including mTOR, regulatory

associated protein of mTOR (Raptor), mammalian lethal with

SEC13 protein 8 (mLST8), 40-kDa proline-rich Akt substrate

(PRAS40), DEP-domain-containing mTOR interacting protein

(DEPTOR), and Sin1 (Sabatini, 2017; Dibble and Cantley,

2015). Rictor and Sin1 are specific components for the mTORC2

kinase complex.

Downstream targets of Akt promoting cellular proliferation

include cyclin D1 (Albanese et al., 2003), the regulatory subunit

of the holoenzyme that phosphorylates and inactivates the RB

and NRF1 proteins (Sherr, 1993; Wang et al., 2006). Phosphory-

lation of RB promotes DNA synthesis, whereas phosphorylation

of NRF1 restrains mitochondrial metabolism. The promotion of

DNA synthesis and reduction in mitochondrial metabolism re-

flects a triage function of cyclinD1bywhichmetabolic substrates

enhance theWarburg effect (Sakamaki et al., 2006) as frequently

observed in cancer (Ward and Thompson, 2012; Finley et al.,

2013). In genetic deletion studies, the phenotype of the cyclin

D1�/� (Sicinski et al., 1995) and Akt1�/� mice (Chen et al.,

2001; LaRocca et al., 2011) revealed several common features,

including defective mammary gland development. In addition to

a kinase function, cyclin D1 conveys distinct noncanonical func-

tions (Pestell, 2013), including a nuclear function promoting tran-

scription factor activity, often in the context of local chromatin,

wherein distinct enzyme complexes are recruited to target tran-

scription factor binding sites (Bienvenu et al., 2010; Fu et al.,

2005;Casimiro et al., 2012), as reviewed in (Casimiro et al., 2014).

Evidence for an extranuclear function of cyclin D1 includes the

location of cyclin D1 and related cell-cycle proteins in the cyto-

plasmic membrane (Fusté et al., 2016), the association of cyclin

D1 with cytoplasmic membrane proteins (Zhong et al., 2010;

Meng et al., 2011; Fusté et al., 2016), and evidence for an extra-

nuclear function of cyclin D1 in estrogen (estradiol, or E2)

signaling (Li et al., 2014). Cyclin D1 has been shown to bind cyto-

plasmic-membrane-associated protein PACSIN 2 (protein ki-

nase C [PKC] and casein kinase substrate in neurons protein 2)

(Meng et al., 2011) and Filamin A (Zhong et al., 2010) and co-lo-

calizes in the cell membrane with paxillin (Fusté et al., 2016).

Furthermore, cyclin D1 promotes cellular migration, in part

through interacting with Rho GTPase (Li et al., 2006b). Cyclin

D1 is required for both estrogen- and androgen-dependent

gene expression and function in vivo (Ju et al., 2014; Li et al.,

2014), including the estrogen-dependent attenuation of the

DNA damage response. In prior studies, estrogen dendrimers

that were functionally excluded from the nucleus determined cy-

clin D1-dependent estrogen signaling (Li et al., 2014), suggesting

that the estrogen-dependent attenuation of the DNA damage

response involves an extranuclear pool of cyclin D1 (Di Sante

et al., 2017). In this study, we identified a novel extranuclear func-

tion of cyclin D1 to enhance proliferative functions via augment-

ing phosphorylation of Akt1 at Ser473 and established that cyto-

plasmic localized cyclin D1, but not nuclear localized cyclin D1,

recapitulates Akt1 transcriptional signal transduction function.

RESULTS

Cyclin D1 Augments Akt Activity In Vivo

In recent studies, transient expression of a cyclin D1 cDNA at

physiological levels was sufficient to promote proliferative

signaling and gene expression associated with metabolism, ri-

bosomal biogenesis, and mitogenesis (Casimiro et al., 2012). In

order to determine at a higher level of resolution themechanisms

by which cyclin D1 expression induced mitogenic signaling, we

examined proliferative kinase activity in the mammary gland of

transgenic mice in which either the cyclin D1 cDNA (Casimiro

et al., 2012) or a point mutant of the cyclin D1 cDNA K112E (cy-

clin D1KE) (Casimiro et al., 2015) was intercrossed with MMTV-

RtTA mice to ensure doxycycline-inducible expression of cyclin

D1 in the mammary gland of mice (Figure 1A). The cyclin D1

cDNA K112E (cyclin D1KE) generates a mutation previously

shown to convey reduced ability to phosphorylate RB (Casimiro

et al., 2015; Baker et al., 2005). Animals were treated for 14 days,

Figure 1. Cyclin D1 Augments Akt1 Activity In Vivo

(A) Transgenic mice expressing a doxycycline-inducible cyclin D1WT and cyclin D1KE mutant cDNA targeted to the mammary gland byMMTV-RtTA were treated

with doxycycline for 14 days and immunohistochemical analysis was conducted for phosphorylated targets of Akt1.

(B–D) Representative immunohistochemistry (IHC) results are shown, and quantitative data are indicated as mean ± SEM at the right of the panels. IHC was

conducted for (B) cyclin D1 cDNA (FLAG), (C) phospho-Akt1 Ser473, and (D) Akt1.

(E) The cyclin D1fl/flmice were intercrossed with ROSA26-ER-Cre, and themice treatedwith tamoxifen for 5 days. Immunohistochemical staining of themammary

epithelium was conducted.

(F–H) Immunohistochemical staining of the mammary gland for cyclin D1 and Akt1 or to downstream Akt signaling substrates.

The data are indicated as semiquantitative data, as mean ± SEM for the relative abundance of proteins.
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and analysis of Akt1 and Akt1 Ser473 was conducted by immu-

nohistochemistry (IHC) using an Akt1 isoform-specific antibody

(Figure 1; Figure S1). The presence of the cyclin D1 transgene

was confirmed by IHC to the amino-terminal FLAG epitope of

the cyclin D1 cDNA in both the nucleus and cytoplasm (Fig-

ure 1B). Induction of the cyclin D1 transgene was associated

with increased phosphorylation of Akt1 Ser473, which was

seen in both the nucleus and cytoplasm, without a change in

Akt1 abundance. Consistent with cyclin D1-mediated activation

of Akt1, several downstream targets of Akt were measured in the

mammary epithelial cell of the mammary gland in the bi-trans-

genic mice after induction of the cyclin D1 transgene by doxycy-

cline (TSC2 Ser939, FKHR Ser319, and BAD Ser136) (Figures

S1B –S1E).

In order to determine whether endogenous cyclin D1 main-

tains Akt1 activity in the mammary gland in vivo, cyclin D1fl/fl

mice were intercrossed with ROSA26-ER-Cre mice and

analyzed after 5 days of tamoxifen treatment used to induce

Cre expression and to thereby delete cyclin D1 gene expression

(Figure 1E). Consistent with the induction of Akt1 activity upon

transgenic expression of cyclin D1, Cre-mediated deletion of

the cyclin D1 gene reduced cyclin D1 protein abundance (Fig-

ure 1F) and reduced Akt1 activity, as evidenced by reduced

phosphorylation of Akt1 (pAkt Ser473) and its substrates

(pTSC2 Ser939 and pFKHR Ser319), without altering the abun-

dance of the substrates (Akt1 and TSC2) (Figures S2B–S2D).

As recent studies had demonstrated that cyclin A2 can induce

Akt1 activity (Liu et al., 2014), we examined cyclin A2 levels in

the mammary gland of mice in which cyclin D1 was either over-

expressed or reduced in abundance. Cyclin A2 levels were un-

changed by cyclin D1 expression, whereas Akt1 Ser473 phos-

phorylation was increased (Figures S3A and S3B). Induction of

the cyclin D1KE cDNA did not induce pAkt1 Ser473 (Figures

S3C and S3D). In the cyclin D1�/� mammary gland, cyclin A2

levels were unchanged, although pAkt Ser473 levels were

reduced (Figures S3E–S3H).

As a form of control for Akt1, we examined the activity of Akt

and its substrates in vivo. We examined the mammary gland of

mice deleted of theAkt1 gene (Ju et al., 2007). A similar reduction

in pTSC2 Ser939, pFKHR Ser319, and pBad Ser136 was

observed upon Akt1 gene deletion (Figure S4). We considered

the possibility that cyclin D1 may indirectly induce pAkt1

Ser473 via regulating expression of mTORC2 components.

The abundance of themTORC2 components in theMMTV-cyclin

D1 mammary tumors were unchanged by prolonged expression

of cyclin D1 (Figures S5A and S5B). Acute induction of cyclin D1

for 1 week using the rtTA cyclin D1 transgenics, compared with

control mice, demonstrated no significant change in the abun-

dance of the mTORC2 components (Figures S5C and S5D). Cy-

clin D1�/� 3T3 cells transduced with an expression vector en-

coding cyclin D1 or a control expression vector showed no

change in abundance of mTORC2 components (Figure S5E).

Rictor abundance was assessed by IHC in the mammary gland

of transgenic mice and showed no alteration with the acute in-

duction of either the wild-type (WT) cyclin D1 (or cyclin D1WT)

or point mutation of the lysine residue K112 (cyclin D1KE) trans-

gene (Figure S5F) or upon chronic deletion in cyclin D1+/+ versus

cyclin D1�/� mammary epithelium (Figure S5G).

Cyclin D1/CDK Phosphorylation of Akt1
In order to examine a potential role for cyclin D1 in directly phos-

phorylatingAkt1,MCF-7cellswere transducedwithanexpression

vector encoding the amino-terminal FLAG-tagged cyclin D1

expression vector, and western blot was conducted (Figure 2A).

The expression of cyclin D1 was identified by the FLAG epitope,

and the relative abundance of cellular cyclin D1 was increased

�1.5-fold (exogenous cyclin D1, labeled as ‘‘Ex’’ in Figure 2A).

This change in abundance is within the physiological 5-fold

change in abundance that occurs in MCF-7 cells upon serum or

E2 stimulation or during cell-cycle transition (Li et al., 2014). The

relativeabundanceofAkt1wasnot significantly altered. Thephos-

phorylation of Akt1 on Serine 473, which activates Akt (Sarbassov

et al., 2005), was enhanced 2.2-fold (Figure 2A). The phosphoryla-

tion of the Akt1 substrate TSC2 at Ser392 was increased 6-fold

without any change in TSC2. Reintroduction of cyclin D1 into the

cyclin D1�/� 3T3 cells increased cyclin D1 levels to that of cyclin

D1WT 3T3 cells (Li et al., 2006a), associated with a �48-fold in-

crease in phosphorylation of Akt at Ser473, without a change in

Akt1 abundance (Figure 2B). The phosphorylation of key down-

stream substrates of Akt1 was increased without a significant

change in the abundance of the substrates, including TSC2

(Ser393), FOXO1 (Ser319), and Bad (Ser126) (Figure 2B).

In order to define further the mechanisms by which cyclin D1

enhanced Akt1 phosphorylation, cyclin D1�/� cells were trans-

ducedwith expression vectors encoding either cyclin D1WT or cy-

clin D1KE. Similar levels of cyclin D1WT and cyclin D1KE mutant

proteins were identifiedwithin the cell by western blot (Figure 2C).

Re-expression of cyclin D1 in cyclin D1�/� cells enhanced Akt1

phosphorylation at Ser473. However, cyclin D1KE abrogated the

induction of Akt1 phosphorylation (Figure 2C). In order to consider

potential mechanism bywhich cyclin D1 augmented Akt1 activity,

we considered the possibility that cyclin D1 directly phosphory-

lated Akt1. Cyclin D1 immune-precipitation kinase assays were

conducted using immune-precipitated cyclin D1 from HEK293T

cells overexpressing cyclin D1 as the enzyme source (Ashton

et al., 1999) and expressed proteins including a pRB fragment

that encodes two CDK phosphorylation sites (Ashton et al.,

1999) and full-length immune-purified human Akt1 (Figures 2D

and 2E) as substrates. The glutathione S-transferase (GST) fusion

protein input was electrophoresed and stained with Coomassie,

and the g32p incorporated product was compared in order to

derive relative incorporation of g32p into the substrates (Figures

2D and 2E). Next, HEK293T cells were transfected with expres-

sion vector encoding hemagglutinin (HA)-Akt1 and either vector

or FLAG N-amino-terminal tagged cyclin D1WT. HA immunopre-

cipitation (HA-IP) was conducted on the cells, and mass spec-

trometry compared the relative abundance in post-translational

modification between vector control and cyclin D1-transfected

cells (Figure 2F). As Akt1 Ser473 was identified in western blot

and by mass spectrometry as a residue phosphorylated in

response to cyclin D1 expression, cyclin D1 IP kinase assays

were conducted of Akt1 WT versus Akt1 S473A. In contrast

with Akt1 WT, point mutation of Akt1 Ser473 reduced g32p incor-

porated by�80-fold (Figure 2G). This study demonstrates that RB

and Akt1 serve as efficient substrates in cyclin D1 immune com-

plex kinase assays (Figures 2D–2E). Cyclin A2 levels were un-

changed by cyclin D1 expression (Figures 2B and 2C).
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Figure 2. Cyclin D1 Phosphorylates Akt1 at S473

(A) Western blot analysis of MCF-7 cells transduced with an expression vector encoding cyclin D1 with antibodies as indicated to cyclin D1, Akt1, Akt1(Ser473),

and the Akt1 signaling pathway and its substrate TSC2 (Ser939). The comparison of FLAG-tagged cyclin D1 (high molecular weight, labeled ‘‘Ex’’ for exogenous)

and endogenous (labeled ‘‘End’’) cyclin D1 indicates a 2-fold increase in cyclin D1 abundance. The data are representative of n = 3 separate experiments.

(B and C) (B) Cyclin D1�/� cells transduced with a retroviral vector for (B) cyclin D1 or (C) cyclin D1WT and cyclin D1KE with antibodies as indicated.

(legend continued on next page)
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Extranuclear Interaction of Cyclin D1with Akt1 via the N
Terminus
In order to determine whether cyclin D1 resides in proximity to

Akt1 within the cell, we conducted proximity ligation assays

(PLAs). The PLA is an antibody-based assay that generates a fluo-

rescent signal only when the two target antigens are within 40 nm

of each other (Gustafsdottir et al., 2005).We performed PLAswith

antibodies recognizing cyclin D1 or Akt1. Figure 3A shows the

signal identified when cyclin D1 was introduced into cyclin

D1�/� 3T3 cells, whereas background signal only was identified

in cells transduced with a control vector (GFP) (Figure 3B) or

with control immunoglobulin G (IgG) (Figures S6 and S7). The

signal was primarily extranuclear based on DAPI (blue staining)

(Figure 3A). The signal for Akt1 and cyclin D1 proximity was main-

tained with a mutant of cyclin D1 (cyclin D1KE), which is defective

in several functions, including kinase activity (Figure 3C). Amutant

of a carboxy-terminal cyclin D1 phosphorylation site (cyclin

D1T286) that is known to be primarily nuclear in localization (Di

Sante et al., 2019; Alt et al., 2000) did not show association with

Akt1 (Figure 3D; Figure S8). Deletion of the acidic rich carboxy-

terminal motif from cyclin D1 (cyclin D1DE) maintained binding to

Akt1; however, deletion of the N-terminal residues 1–91 (cyclin

D1C6) abrogated Akt1 binding (Figure 3E–3G), and mutants

including deletions of this region (e.g., cyclin D1C4 and cyclin

D1C5) also failed to bind Akt1 (Figure S8). The murine cyclin D1/

CDK4/Akt1 (mCD1/CDK4/Akt1) model (Figure 3H) was generated

as described in the STAR Methods section. The high sequence

identity between mCD1/CDK4/Akt1 and the high-resolution

X-ray crystal structures used to generate this model provides a

high degree of confidence in the model. The model indicates

that Akt1 S473 is in proximity of the ATP g-phosphate for nucleo-

philic attachment to allow for its phosphorylation.

Cyclin D1AugmentsAkt1 Phosphorylation at the Plasma
Membrane
Previously, studies demonstrated the presence of Akt in the

cytoplasmic membrane (Zhang et al., 2012) and cyclin D1 was

shown to associate with themembrane-associated protein PAC-

SIN 2 (Meng et al., 2011), likely serving to tether cyclin D1 to the

cytoplasmic membrane compartment. In cyclin D1 WT 3T3 cells,

endogenous cyclinD1co-localizedwith pAkt1Ser473 (Figure 4A)

as seen in the Z series. In cyclin D1�/� 3T3 cells, immunohisto-

chemical staining revealed trivial phosphorylation of Akt1 at

Ser473 (Figure 4B). Rescue of cyclin D1�/� 3T3 cells with a cyclin

D1 expression retrovirus, which resulted in a physiological

rescue of cyclin D1 abundance similar to that of cyclin D1WT

3T3 cells (Casimiro et al., 2015), enhanced Akt1 phosphorylation

of Akt1 Ser473 at the cytoplasmicmembrane, with enrichment at

sites of focal contacts (Figure 4C). In contrast, rescue of cyclin

D1�/� 3T3 cells with a cyclin D1KE cDNA induced trivial Akt1

Ser473 phosphorylation at the plasma membrane (Figure 4D).

The Onset and Peak Activity of Akt1 by Mitogens
Require Cyclin D1/CDK4/6 Activity
Near-infrared (NIR) dye fluoresces at two different wavelengths

(dichromic fluorescence). Recent studies identified a dichromic

fluorescent (DCF) dye substrate for cellular Akt1 activity (Shen

et al., 2013). The diserine DCF substrate was shown to serve as

a specific substrate for Akt1, which can be used to quantitatively

assess the enzyme’s activity in real time (Shen et al., 2013). Insulin

activation of cellular Akt phosphorylates a single serine residue of

the diserine DCF substrate in a time-dependent manner and can

be used to assess longitudinally the stimulation and reversibility of

Akt1 activity. The dichromic dye LS456 is phosphorylated by Akt1

but not a variety of other kinases (including protein kinase A [PKA],

PKC, RSK1, P70S6K, and PI3K) (Shen et al., 2013). The binding of

insulin to its cell-surface receptor stimulates PI3K, which then in-

duces the second messenger, phosphotidylinositol-3, 4, 5-

triphosphate (PIP3) (Lawlor and Alessi, 2001). PIP3 activates Akt

and additional downstream effectors. As LS456 was shown to

serve as a specific substrate for Akt1 in response to 150 nM insu-

lin, we examined the kinetics of insulin-mediated activation of

LS456 in in cyclin D1�/� mouse embryonic fibroblasts (MEFs)

compared with WT MEFs (Figure 5A). Insulin stimulation of Akt1

activity assessed by LS456 was delayed with reduced induction

in cyclin D1�/� cells compared with the cyclin D1+/+ cells (Fig-

ure 5A). The response to epidermal growth factor (EGF) was

also delayed (Figure 5B). Analysis inCdk4/Cdk6�/�MEFs demon-

strated a delayed and reduced induction of insulin- and EGF-

mediated activation of LS456 in Cdk4/Cdk6�/� MEFs compared

with WT MEFs (Figures 5C and 5D).

Akt Ser473 phosphorylation is induced within 15 min of serum

release, peaking at 1–3 h (Rosner et al., 2007). In order to deter-

mine whether cyclin D1 rescue of cyclin D1�/� cells augmented

cell-cycle progression during this time frame, we compared the

cyclin D1�/� and cyclin D1�/�cyclin D1WT rescued cells. Fluores-

cence-activated cell sorting (FACS) analysis demonstrated trivial

differences in cell-cycle distribution in the 0- to 4-h time frame,

with an augmentation of S phase enrichment (9.9 versus 13.5)

occurring at 24 h (Figure S9A). CDK inhibitors have been shown

to reduce the RB kinase function of the cyclin D1/CDK4 complex;

however, significant additional interactions have been identified

(reviewed in Di Sante et al., 2019), warranting an analysis of CDK

inhibitor impact on Akt1 phosphorylation at Ser473 and the inter-

action with Rictor. To this end, we deployed MEFs encoding

tamoxifen-inducibleRictor small interferingRNA (siRNA) (Cybulski

(D and E) In (D), cyclin D1 immune-precipitation kinase assays were conducted using GST fusion proteins as substrates including pRB, and Akt1. Left panel:

proteins on an SDS-PAGE stained with Coomassie. Right panel: g32 p IP-kinase assay reactions, with relative incorporation into substrates indicated in (E) as

mean ± SEM for n = 3 separate experiments.

(F) Representative mass spectrometry spectrum to map the Akt1 Ser473 phosphorylation status in vivo. The liquid chromatography-tandem mass spectrometry

(LC-MS/MS) spectrum of the singly phosphorylated doubly charged peptide RPHFPQFpSYSASGTA representing S473 in the modified Akt1 sequence. The

neutral loss of phosphate confirms the phosphorylation status, and sites are localized to S10 (S473 full length) in the peptide based on the b-ion series (N-terminal

fragments) starting at b7 and the y-ion series starting at y10 that contain a phosphate group.

(G) Cyclin D1 immune-precipitation kinase assays were conducted using GST fusion proteins including Akt1-WT and Akt1 Ser473 mutation. Left panel: proteins

on an SDS-PAGE stained with Coomassie. Right panel: g32P IP-kinase assay reactions.
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Figure 3. Association of Akt1 via the Cyclin D1 N-Terminal Residues 1–91

(A–F) The PLA for endogenous Akt1 with WT cyclin D1 or cyclin D1 mutants is indicated by red dots, and nucleus was stained by DAPI. Cyclin D1 expression

plasmids were introduced by transduction of cyclin D1�/� 3T3 cells. 3D reconstruction of the z stack is indicated for representative examples of multiplicate

experiments.

(G) Schematic representation of cyclin D1 expression plasmids used.

(H) Model of the murine cyclin D1-CDK4/CDK6-Akt1 (C-terminal peptide) complex. The model indicates cyclin D1 and CDK4/CDK6 in blue and yellow cartoons,

respectively. The Akt1 c-terminal peptide bound at the active site of CDK4/CDK6 is indicated in green stick. The ATP and Mg2+ ions are indicated in blue sticks

and red spheres, respectively.
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Figure 4. Cyclin D1 Augments Phosphorylation of Akt1 at Ser473

(A–D) Immunohistochemical staining of 3T3 cells (A), cyclin D1�/� 3T3 cells (B), or cyclin D1-/- 3T3 cells transduced with retrovirus encoding either cyclin D1WT (C)

or cyclin D1KE (D). Immunohistochemical staining with Z slice reconstruction to show staining with antibody as indicated. Cyclin D1 co-localizes with pAkt1

Ser473 at the cytoplasmic membrane and is enriched at focal contacts.
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Figure 5. Selective Phosphorylation of LS456 by Mitogen Activation Requires Cyclin D1 and CDK4/6

(A andB) The fluorescence intensity of LS456 in response to either (A) insulin (150 nM) or (B) EGF (10 ng/mL) decreased in the 800-nm channel and increased in the

700-nm channel with delayed changes in cyclin D1-deficient MEFs. Data are indicated as mean ± SEM for n = 8 WT and n = 24 for cyclin D1�/� in separate

experiments (*p < 0.05; **p < 0.01; #p < 0.001). Quantitative analysis of the FI in WT and cyclin D1-deficient cells. Fluorescent images in cells were superimposed

on differential interference contrast images; scale bars, 20 mm.

(C and D) The fluorescence intensity of LS456 in response to either (C) insulin (150 nM) (n = 8Cdk4/6WT and n = 24Cdk4/6�/�MEFs) or (D) EGF (10 ng/mL) (n = 8

Cdk4/6WT and n = 8Cdk4/6�/�MEFs) was determined. The data are presented asmean ± SEM for n = 8 separate experiments (*p < 0.05; **p < 0.01; #p < 0.001).
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Figure 6. Induction of Immediate Early Gene Akt Signaling via Membrane-Associated Cyclin D1

(A) The fluorescent intensity (FI) of LS456 in cyclin D1�/� 3T3 cells transducedwith either vector, cyclin D1WT, or cyclin D1KE. The FI of LS456 decreased in the 800-

nm channel and increased in the 700-nm channel in response to insulin, indicated as fluorescent images in cells.

(B) Quantitative analysis of the FI in cyclin D1WT versus cyclin D1KE or vector control. Fluorescent images in cells are superimposed on differential interference

contrast images. Scale bars, 10 mm. Data are presented as mean ± SEM for n = 8 separate cells.

(legend continued on next page)
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et al., 2012). Acute reduction in Rictor abundance reduced Akt1

Ser473 compared with Akt1 (Figure S9B, lane 1 versus lane 4).

The addition of the two distinct CDK inhibitors palbociclib (8 mm)

or abemociclib (8 mm) reduced RB phosphorylation at Ser780

without significant effects on the relative phosphorylation of Akt1

Ser473 (Figure S9B, lanes 1 versus lanes 2 and 3). The reduction

on RB phosphorylation by acute siRictor may be due to the previ-

ously described reduction in cyclin D1 (Hietakangas and Cohen,

2008). In contrast, after chronic reduction in Rictor (30 days), the

addition of a CDK inhibitor—abemaciclib (4–8 mm) or palbociclib

(4–8 mm)—reduced Akt1 Ser473 abundance compared with that

of Akt1 (Figure S9C, lane 1 versus lane 5). Together, these studies

are consistent with the known importance of Rictor to induceAkt1

Ser473phosphorylation, and the newevidenceherein that endog-

enous cyclin D/CDK4/6 activity augments Akt1 Ser473 phosphor-

ylation, in part dependent upon the relative activity of Rictor in the

cells.

A Membrane-Tethered Cyclin D1 Is Sufficient for the
Induction of Akt1 Transcriptional Induction
In order to determine whether the onset and peak Akt1 activity

induced by insulin required the CDK binding residue of cyclin

D1, NIH 3T3 cells, which had been either deleted of the cyclin

D1 gene or rescued with either the cyclin D1WT cDNA or a cyclin

D1KE, were compared (Figures 6A and 6B). Insulin stimulation of

Akt1 activity assessed by LS456 was delayed with reduced in-

duction in cyclin D1�/� cells compared with the cyclin D1WT

rescued cells. Cyclin D1�/� NIH 3T3 transduced with a cyclin

D1KE was defective in the insulin-mediated induction of Akt1 ac-

tivity, as assessed by LS456 dichromic fluorescence (Figure 6B).

The promoter of the immediate early gene c-fos is induced

acutely via Akt. The promoter reporter c-fos-LUC is activated

by EGF-Akt1 via the ternary complex factor (TCF) site (Figure 6C)

(Wang et al., 1998). Co-expression of the cyclin D1WT, but not the

CDK-binding defective mutant of cyclin D1, also induced c-fos

transcriptional activity assessed using the c-fos promoter linked

to a luciferase reporter gene (Figure 6D). A series of point muta-

tions of the TCF site and the serum response element (SRE) of

the c-fos promoter were assessed, as prior studies had demon-

strated that Akt mediates activity of the c-fos promoter via the

TCF site. In MCF7 cells, a point mutation of the TCF site abol-

ished induction of the c-fos promoter, indicating the importance

of the TCF site for activation by cyclin D1 (Figure 6E). In contrast,

the SRE was identified as the site responding to the serum-

induced acute signals that drive cells from Go to G1 via PI3K-

Rac/Rho (Wang et al., 1998). Cyclin D1 induced the c-fos-LUC

reporter and the SRE mutant reporter (Figure 6F).

We next compared the impact of cyclin D1 when tethered to

the cytoplasmic membrane or when localized to the nucleus.

An expression vector encoding cyclin D1, cytoplasmic-mem-

brane-tethered cyclin D1, or a constitutively active Akt1 (myr-

Akt1) induced the c-fos promoter and the SRE point mutant in

cyclin D1�/� cells (Figures 6F and 6G). In contrast, nuclear-tar-

geted cyclin D1 failed to induce c-fos promoter activity (Fig-

ure 6H). The myr-Akt1 expression vector induced c-fos-LUC

activity�4- to 6-fold, andmembrane-tethered cyclin D1 induced

c-fos-LUC activity �2.5-fold. There was no difference in c-fos-

LUC activation by membrane-tethered cyclin D1 versus cyclin

D1WT (Figures 6F and 6G). There was no further induction of

c-fos-LUC activity by membrane-tethered cyclin D1 in the pres-

ence of myr-Akt1. The activity of pm12-LUC is higher than that

of WT (c-fos-LUC) in the presence of myr-AKT1. Pm12 has a mu-

tation of the SRE site, which reduces basal level activity main-

tained by Akt-independent signaling pathways in the cell. pm12-

LUCmaintainsWT activation by Akt1. Therefore, when the activity

of pm12 is normalized to 1 for basal level activity, the relative ac-

tivity of pm12 in the presence of Akt1 is greater. These studies

suggest that membrane-tethered cyclin D1, but not nuclear-local-

ized cyclin D1, induces c-fos transcriptional activity.

Cyclin D1 andAkt PromoteCommonSignaling Pathways
in the Mammary Gland In Vivo

In order to determine whether Akt1 and cyclin D1 govern com-

mon signaling pathways in vivo, MMTV-ErbB2 transgenic mice

were intercrossed with Akt1+/� mice (Figure 7A) and mammary

tumor cell lines were derived that were either ErbB2/Akt1+/+ or

ErbB2/Akt1�/� (Ju et al., 2007).Microarray analysis of 3 indepen-

dent lines of each genotype identified expression of 823 genes

that were either induced or repressed by endogenous Akt1 (Fig-

ure 7B; GEO: GSE138957). The 1,127 genes regulated by cyclin

D1 in the mammary gland were derived by transient induction of

a cyclin D1 cDNA in the mammary gland under control of the

tetracycline-regulated promoter unit (MMTV-RtTA-cyclin D1)

(Figures 7A and 7B) (Casimiro et al., 2012). The Akt1-regulated

and cyclin D1-regulated genes shared 60 genes when using a

<2-fold change in expression as a cutoff (p < 0.05) (Table S1).

Approximately 50% of the cyclin D1-regulated Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) pathways overlapped

with Akt1-regulated pathways (18/38; Figure 7C), including

several types of ‘‘cancer signaling,’’ ‘‘metabolism in cancer,’’

‘‘FOXO signaling,’’ and ‘‘meiosis’’ (Figure 7D) with the relative

fold enrichment and gene number given in Figure 7E.

Akt1 Gene Expression Signature Correlates with Cyclin
D1 Expression in Human Breast Cancer
For luminal A and luminal B breast cancer subtypes, a high Akt1-

induced gene expression signature correlated with poor

outcome (Figures S9D and S9E). In order to examine the relation-

ship between cyclin D1 expression and gene expression reflect-

ing Akt1 pathway signaling, a superset of 2,254 patient breast

cancer gene expression profiles was interrogated (Casimiro

et al., 2012). The gene expression signature for Akt1 signaling

in themammary tumors (Figure 7B) was examined for correlation

with the abundance of cyclin D1 mRNA in human breast cancer

(C) Schematic representation of c-fos promoter luciferase reporter genes including point mutations of the SRE and TCF site.

(D and E) c-fos-LUC promoter activity in MCF-7 cells (D) transfected with expression vectors encoding either cyclin D1WT or cyclin D1KE or (E) transfected with

c-fos-LUC reporter mutants.

(F–H) Cyclin D1�/� 3T3 cells were co-transfected with expression vector encoding c-fos-LUC WT or mutant and activated Akt (myr-Akt1) or (F) cyclin D1, (G)

membrane-localized cyclin D1, or (H) nuclear-localized cyclin D1.
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using the Pearson product-moment correlation coefficient. In

healthy individuals, the Akt1 gene expression signature and cy-

clin D1 expression were highly correlated (R = 0.39, p < 10�4)

(Figure S10A). Cyclin D1 expression and the Akt1-induced

gene expression signature were positively correlated in each ge-

netic subtype of breast cancer, with the highest significance for

luminal A (R = 0.34, p < 10�9), luminal B (R = 0.44, p < 10-10), and

basal (R = 0.43, p = < 10�17) (Figures S10B–S10F).

DISCUSSION

This study provides evidence for a novel mechanism in which cy-

clin D1 kinase augments Akt1 activity through phosphorylation of

Akt1 at Ser473. In this study, mass spectrometry evidenced that

cyclin D1 bound to, and augmented, Akt1 phosphorylation at

Ser473. Cyclin D1 restored Akt1 signaling in a kinase-dependent

manner, as evidenced by increased phosphorylation of Akt1 and

its substrates, shown by western blot, immunofluorescence, and

IHC in tissue culture and in transgenic mice. Using cyclin D1�/�

cells for reconstitution, we demonstrated that cyclin D1 is suffi-

cient to augment Akt1 signaling, as demonstrated by phosphor-

ylation of Akt1 (Ser473) and downstream substrates of Akt1

(TSC2 Ser939, FOXO1 Ser319, and Bad Ser126). The phosphor-

ylation of Akt1 Ser473 by cyclin D1-associated kinase was

observed upon acute cyclin D1 overexpression in mammary

epithelium of tissue-specific inducible transgenic mice and

was shown to be a function of endogenous cyclin D1 usingmam-

mary epithelial cell tissue-specific cyclin D1 knockout. In the

mammary epithelium and in tissue culture, cyclin A2 levels

were unchanged, evidencing that the mechanism by which cy-

clin D1 augments Akt1 activity is distinct from cyclin A2-induced

phosphorylation at S477/T479 (Liu et al., 2014).

In this study, using PLAs, cyclin D1 co-localized with Akt1 in an

extranuclear pool. The interaction between Akt1 and cyclin D1

required the amino-terminal domain of cyclin D1. Restoration of

cyclin D1 levels rescued Akt1 phosphorylation at the plasma

membrane. Cyclin D1 restored phosphorylation of Akt1 at

Ser473. Previous studies identified an association between cyclin

D1 and cytoplasmic membrane proteins, including PACSIN 2

(Meng et al., 2011), Filamin A (Zhong et al., 2010), and Paxillin

(Fusté et al., 2016); and several components of the cell-cycle con-

trol apparatus are located in the cytoplasmic membrane,

including cyclin D1 (Nebot-Cegarra and Domenech-Mateu,

1989; Alhaja et al., 2004), p27Kip1, and p16INK4a (Alhaja et al.,

2004; Fåhraeus and Lane, 1999). Although the physiological func-

tion of cytoplasmic-membrane-associated cell-cycle compo-

nents was previously not well understood, p16INK4a and CDK6

co-localized in membrane ruffles of spreading cells and func-

tioned upstream of alpha-v-beta3-dependent activation of PKC

to regulate matrix-dependent cell migration (Fåhraeus and

Lane, 1999). The present study extends our understanding of cy-

clin D1 function in the extranuclear pool and directly links two hall-

marks of cancer: cell-cycle control and Akt activity.

Herein, cyclin D1 enhanced phosphorylation of TSC2 at

Ser939. mTOR functions within two distinct complexes

(mTORC1 and mTORC2) that couple growth factors to anabolic

signaling (Dibble and Cantley, 2015). The TSC complex, which is

composed of three subunits—TSC1, TSC2, and TBC1D7—inte-

grates many growth signals that sense the abundance of growth

factors glucose, oxygen, and energy (ATP) (Manning and Cant-

ley, 2007; Yuan and Cantley, 2008). TSC2 Ser939 is important

in organismal growth, and mutation of the Akt-target sites on

TSC2 (corresponding to S939 and T1462) can block Akt-induced

growth in flies (Potter et al., 2002). The finding that cyclin D1 aug-

ments TSC2 Ser939 phosphorylation, via activation of Akt1, may

provide a novel mechanism by which a component of the cell cy-

cle can rapidly cross-couple and thereby fine tune growth

sensing and anabolic metabolism.

In this study, cyclinD1 restored the inductionofAkt1signaling to

the c-fos promoter. Cyclin D1 was sufficient to reconstitute the

Akt1 transcriptional signaling program, and membrane-tethered

cyclin D1 was sufficient to reconstitute the 2.5-fold induction of

c-fos-LUC seen with the rescue by WT cyclin D1. Importantly,

signaling to the c-fos promoter by membrane-tethered cyclin D1

occurred via the TCF site. which is known to be activated by

EGF-Akt (Wang et al., 1998). In contrast, the SRF site, which re-

sponds to serum-induced signals via Rac/Rho (Wang et al.,

1998; Norman et al., 1988), was not involved in activation of c-

fos-LUC activity by membrane-tethered cyclin D1. Although the

signaling to the SRE and TCF sites is complex, our findings are

consistent with a model in which membrane-tethered cyclin D1

augments an Akt signaling pathway. The noncanonical functions

of cyclin D1 include the ability to regulate gene transcription via

specific target transcription factors. Such activity has been desig-

natedasanuclear transcriptional activitymediatedbyapoolof cy-

clin D1 located in the context of chromatin (Bienvenu et al., 2010;

Fu et al., 2005; Casimiro et al., 2012, 2014). The present studies

extend these findings by demonstrating that, in addition to the nu-

clear transcriptional activity of cyclin D1 (Pestell, 2013), a mem-

brane-associated cyclin D1 also augments gene transcription

via phosphorylation of Akt1 and, thereby, induction of down-

stream signaling.

Both insulin and EGF signalingwere reduced but not abolished

in cyclin D1�/� cells, indicating that cyclin D1-dependent and -in-

dependent Akt1 signaling occur. As cyclin D1 tethered to the

membrane induced Akt1 transcriptional activity, we sought to

Figure 7. Cyclin D1 and Akt1 Govern Similar Signaling Modules in the Mammary Gland In Vivo

(A) Schematic representation of transgenic mice used for gene expression analysis. MMTV-Akt+/� mice were intercrossed with MMTV-ErbB2 transgenics, and

themammary epitheliumwas used for a source of mRNA. The cyclin D1-induced state was recapitulated through doxycycline induction of MMTV-RtTA-cyclin D1

transgenics treated for 10 days.

(B) Pie diagrams representing the number of genes either induced or repressed by Akt or cyclin D1.

(C) KEGG pathway analysis used to identify functional pathways regulated by either Akt1 or cyclin D1 and those regulated by both Akt1 and cyclin D1.

(D) The names of pathways identified by KEGG analysis regulated by both cyclin D1 and Akt1 in the mammary gland (migration 1, adherens junction; migration 2,

tight junction).

(E) Schematic representation of the relative fold enrichment in gene number of the individual KEGG pathways regulated by both cyclin D1 and Akt1.
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determine whether increased cyclin D1 expression correlated

with increased Akt1 gene signaling in human breast cancer. To

test this hypothesis, we generated a surrogate measure of Akt1

genetic activity by creating an Akt1 genetic signature. The Akt1

activity genetic signature was derived by comparing genetic

deletion of Akt1 with Akt1 WT mammary gland. In order to inter-

rogate cyclinD1 andAkt1-mediated gene expression,we interro-

gated a superset of 2,254 breast cancer samples and samples

fromhealthybreast tissue. This study shows that increased cyclin

D1expression correlatedwith increasedAkt1-mediatedgeneac-

tivity. The abundance of cyclin D1 gene expression correlated

with the gene signature forAkt1-induced activity in normal breast

tissue and in breast cancer samples. Furthermore, cyclin D1

expression and the Akt1-induced gene expression signature

were positively correlated in each genetic subtype of breast can-

cer. Furthermore, genome-wide expression analysis of murine

mammary glands from mice with the Akt1 gene deletion and

mice with the cyclin D1 gene deletion demonstrated substantial

overlap inKEGG functions, including the ‘‘cell-cycle’’ and ‘‘insulin

signaling’’ pathways and ‘‘mTOR signaling,’’ consistent with the

phenotype of cyclin D1�/� (Sicinski et al., 1995) and Akt1�/�

mice (Chen et al., 2001; LaRocca et al., 2011), which share

several common features, including defective mammary gland

development. Together, these studies are consistent with a

model in which cyclin D1 induction correlates with increased

Akt1-target gene activity.

This study define amechanism bywhich the cell cycle interacts

with Akt signaling that is distinct from that in several previous

studies. Under cell-cycle conditions, the cyclin A/Cdk2 priming

phosphorylation becomes more important and is, therefore, rela-

tively mTORC2/Rictor independent (Liu et al., 2014). We propose

that Rictor can function upstream of cyclin D1/CDK4/6 (by prim-

ing S477/T479 phosphorylation) and, in certain physiological cir-

cumstances, in parallel to mTORC2/Rictor (direct phosphoryla-

tion of Ser473). The induction of Akt1 activity by cyclin D1

herein appears to be independent of previously described cell-cy-

cle-related Akt activity, which occurs during the first 15 min to 6 h

of the cell cycle (Rosner et al., 2007), preceding the cell-cycle

changes of cyclin D1, which occurred at 16 to 24 h, as assessed

herein by FACS analysis. The Sin1 component of mTORC2 binds

hyper-phosphorylated RB, which inhibits mTORC2-mediated

activation of Akt (Zhang et al., 2016). Although our studies did

not directly address the role of pRB/Sin1 in regulating Akt1 activ-

ity, the mechanisms of the two studies appear to be distinct. Cy-

clin A2 can induce Akt1 activity (Liu et al., 2014); however, herein,

cyclin A2 levels were unchanged by cyclin D1 expression in the

mammary gland of mice in which cyclin D1 was either overex-

pressed or reduced in abundance. Similarly, the cyclin D1 rescue

analysis in 3T3 cells conducted herein showed induction of cyclin

D1, but not cyclin A, abundance.
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Fusté, N.P., Fernández-Hernández, R., Cemeli, T., Mirantes, C., Pedraza, N.,

Rafel, M., Torres-Rosell, J., Colomina, N., Ferrezuelo, F., Dolcet, X., and

Garı́, E. (2016). Cytoplasmic cyclin D1 regulates cell invasion and metastasis

through the phosphorylation of paxillin. Nat. Commun. 7, 11581.

Gustafsdottir, S.M., Schallmeiner, E., Fredriksson, S., Gullberg, M., Söder-
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

cyclin D1 Santa Cruz sc-20044; RRID: AB_627346

Akt1 Santa Cruz sc-5298; RRID: AB_626658

pAkt1 Ser473 Cell Signaling #9018; RRID: AB_2629283

pAkt1/2/3 Ser473 Santa Cruz sc-7985-R; RRID: AB_667741

TSC2 Santa Cruz sc-893; RRID: AB_632569

pTSC2 Ser939 Abcam ab59269; RRID: AB_2210004

FKHR Santa Cruz sc-11350; RRID: AB_640607

pFKHR Ser319 Santa Cruz sc-101682; RRID: AB_2294254

Bad Santa Cruz sc-8044; RRID: AB_626717

pBad Ser136 Abcam ab28824; RRID: AB_725616

Rictor Santa Cruz sc-271081; RRID: AB_10611167

Rictor Santa Cruz sc-99004; RRID: AB_2269610

pRb Ser780 Cell signaling #9307; RRID: AB_330015

Flag (M2) Millipore-Sigma F1804; RRID: AB_262044

HA Santa Cruz sc-805; RRID: AB_631618

cyclin A2 Abcam ab16726; RRID: AB_302478

PACSIN 2 Proteintech 10518-2-AP; RRID: AB_2161854

Paxillin (5H11) Millipore-Sigma (Upstate) 05-417; RRID: AB_309724

pPaxillin Tyr118 Thermo Fisher 44-722G; RRID: AB_2533733

b-actin Santa Cruz sc-47778; RRID: AB_2714189

Bacterial and Virus Strains

JM109 Competent Cells Promega L2001

Chemicals, Peptides, and Recombinant Proteins

AKT1 (NM_005163) Human Recombinant Protein Origene TP320257

Insulin Human Recombinant Protein Millipore-Sigma I2643

Recombinant human EGF protein, CF R&G 236-EG

Critical Commercial Assays

Duolink In Situ Red Starter Kit Mouse/Rabbit Millipore-Sigma DUO92101

RNeasy Mini Kit QIAGEN 74104

SuperScript� III First-Strand Synthesis System Thermo Fisher 18080051

Deposited Data

cyclin D1-dependent gene signature in mouse mammary

gland

GEO database GEO: GSE43216

Akt1-dependent gene signature from the murine ErbB2

mammary tumor

GEO database GEO: GSE138957

Experimental Models: Cell Lines

MCF-7 ATCC HTB-22

HEK293T ATCC CRL-3216

Cyclin D1 wt and ko MEFs/3T3s Casimiro et al., 2012 N/A

ErbB2-Akt wt and ko mammary tumor cells Ju et al., 2007 N/A

Inducible rictor shRNA MEFs (iRicKO) Cybulski et al., 2012 N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Richard

G. Pestell (richard.pestell@bblumberg.org).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Data and Code Availability
The Microarray data generated during this study are available at The Gene Expression Omnibus (GEO) database, https://www.ncbi.

nlm.nih.gov/geo/. The accession code for the cyclin D1-dependent gene signature inmousemammary glandwith transient induction

of a cyclin D1 expression under control of the tetracycline-regulated promoter unit is GEO: GSE43216. The accession code for the

Akt1-dependent gene signature from the murine ErbB2 mammary tumors is GEO: GSE138957.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
MCF-7 and HEK293T cell lines were from the American Type Culture Collection (Manassas, VA). The rictor inducible siRNA MEFs

(iRicKO) (Cybulski et al., 2012) were a generous gift from Dr. Michael N. Hall. The cyclin D1+/+ and cyclin D1�/� MEFs and 3T3 cells

(Casimiro et al., 2012) and the ErbB2-Akt1+/+ or ErbB2-Akt1�/� (Ju et al., 2007) mammary tumor cell lines were generated from trans-

genicmouse tumors developed by this laboratory as described previously (Albanese et al., 1999).MCF-7 andHEK293Twere recently

authenticated by ATCC. The MEFs generated by this laboratory were authenticated by IDEXX Bioresearch. All cell lines were tested

for mycoplasma contamination using the ATCC Universal Mycoplasma Detection Kit. All cell lines were cultured at 37�C in 5% CO2

with DMEM medium supplemented with 10% fetal bovine serum, 100 unit/mL penicillin and 100 mg/mL streptomycin.

Animal models
The MMTV-RtTA-cyclin D1, MMTV-RtTA-cyclin D1 KE and MMTV-ErbB2-Akt1�/� transgenic mice were previously described (Ca-

simiro et al., 2012). Cyclin D1fl/fl (Choi et al., 2012) and ROSA26-ER-Cre mice (Ventura et al., 2007) were intercrossed to form Cyclin

D1fl/fl-ROSA26-ER-Cre bi-transgenic mice and treated with Tamoxifen as previously described (Choi et al., 2012). Comparison was

made between the cyclin D1fl/fl-ROSA26-ER-Cre and cyclin D1wt. ROSA26-ER-Cre (Ventura et al., 2007). All of themice usedwere in

FVB background, female and 10-12 weeks old. Experimental procedures with transgenic mice were approved by the Institutional

Animal Care and Use Committee (IACUC) of Thomas Jefferson University.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

MMTV-Rtta-control, cyclin D1-wt and cyclin D1-KE

mice/FVB

Casimiro et al., 2012, 2015 N/A

MMTV-ErbB2-Akt1 wt and ko mice/FVB Ju et al., 2007 N/A

Flox-cyclin D1/Rosa26-CreERT2 mice/FVB Choi et al., 2012 N/A

Recombinant DNA

p3xFlag-CMV-10 encoding cyclin D1 and its mutants Wang et al., 2003 N/A

pMSCV -IRES-GFP encoding cyclin D1 and its mutants Li et al., 2006b N/A

ECFP-Mem-Cyclin D1 plasmid This paper N/A

Cherry-lacR-NLS-CD1NUC Plasmid Li et al., 2010 N/A

pBABE-myrAkt1-IRES-GFP Eves et al., 1998 N/A

pCMV5-HA-Akt1 Alessi et al., 1996 N/A

pGEX-GST-Akt1 and pGEX-GST-Akt1(S473A) Liu et al., 2014 N/A

c-fos-LUC, SRE or TCF mutant (pm12 or pm18) Wang et al., 1998 N/A

pRSV-b-Gal Addgene #24058

Software and Algorithms

Fiji (ImageJ) ImageJ https://imagej.net/Fiji
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METHOD DETAILS

Plasmids
pMSCV-IRES-GFP encoding 3xFlag taggedwild-type cyclin D1 or its series ofmutants were generated by inserting the coding region

of the human cyclin D1 cDNA or its mutants into the MSCV-IRES-GFP vector at the EcoRI site upstream of the IRES driving expres-

sion of GFP (Li et al., 2006b). The inserts were PCR amplified from p3xFLAG-CMV-10 (Sigma) encoding 3xFlag tagged wild-type cy-

clin D1 or itsmutants (Wang et al., 2003). pECFP-mem-cyclin D1was generated by inserting the cyclin D1 cDNA, whichwas amplified

by PCR from pMSCV-cyclin D1-IRES-GFP, into Nhe1 and Age1 site of the pECFP-mem vector (Clonetech), which encodes a fusion

protein consisting of the N-terminal 20 amino acids of neuromodulin, also called GAP-43, and a cyan fluorescent variant of the

enhanced green fluorescent protein (ECFP) (Hynes et al., 2004). The neuromodulin fragment contains a signal for posttranslational

palmitoylation of cysteines 3 and 4 that targets ECFP to cellular membranes. Expression of ECFP-Mem in mammalian cells results in

strong labeling of the plasma membrane (Piljic and Schultz, 2006) and had been used to target proteins including ERa to the plasma

membrane (Razandi et al., 2003). Cherry-lacR-NLS-CD1NUC which encodes a nuclear localized form of cyclin D1 was generated by

inserting the cyclin D1 cDNA at the COOH-terminus of the Cherry-lacR-NLS vector (Soutoglou and Misteli, 2008) into the KpnI/XmaI

sites. The primers used were the following: cyclin D1 forward: cggggtaccgaacaccagctcctgtgct; cyclin D1a reverse: tccccccgggtca

gatgtccacgtcccgca; cyclin D1b reverse: tccccccgggtcacccttgggggccttg (Li et al., 2010). The Akt1 retroviral expression plasmids en-

coding constitutively active Akt1 (myr-Akt1) linked through an internal ribosomal entry site to a GFP fusion protein (pBABE-myrAkt1-

IRES-GFP) was generous gift fromDr. NissimHey at the University of Illinois at Chicago (Eves et al., 1998). pCMV5-HA-Akt1 was from

Dr. Alessi at the University of Dundee, UK (Alessi et al., 1996). pGEX-GST-Akt1 and pGEX-GST-Akt1(S473A) were fromDr.WenyiWei

from Harvard University at Boston. The c-fos-LUC, serum response element (SRE), or ternary complex factor (TCF) mutants (pm12

and pm18) were gift from Dr. Ron Prywes at Columbia University, New York (Wang et al., 1998). pRSV-b-Gal was a gift from Dr. Fred-

erick Stanley at NYU LangoneMedical Center (now available at Addgene, plasmid # 24058). All plasmid DNA constructs were verified

by sequencing.

Antibodies
The antibodies used in western blot analysis were cyclin D1 (sc-20044, Santa Cruz), b-actin (sc-47778, Santa Cruz), Akt1 (sc-5298,

Santa Cruz), pAkt1 Ser473 (#9018, CST), pAkt1/2/3 Ser473 (sc-7985-R, Santa Cruz), TSC2 (sc-893, Santa Cruz), pTSC2 Ser939

(ab59269, Abcam), FKHR (sc-11350, Santa Cruz), pFKHR Ser319 (sc-101682, Santa Cruz), cyclin A2 (ab16726, Abcam), Bad (sc-

8044, Santa Cruz), pBad Ser136 (ab28824, Abcam), Rictor (SC#271081, H11) and phosphorylated RB (S780) (Cell Signaling). Mouse

anti-FLAG (M2), mouse anti-vinculin (hVIN-1) antibodies were fromSigma (St. Louis,MO). The antibody used for Immunoprecipitation

was HA (sc-805, Santa Cruz). The antibodies used for immunohistochemistry and immunofluorescence were cyclin D1 (sc-20044,

Santa Cruz), for Akt Ser473 phosphorylation (pAkt1/2/3 Ser473) (SC-7985-R, Santa Cruz), for pAkt1 Ser473 (#9018, CST), TSC2

(sc-893, Santa Cruz), pTSC2 Ser939 (ab59269, Abcam), pFKHR Ser319 (sc-101682, Santa Cruz), pBad Ser136 (ab28824, Abcam),

cyclin A2 (ab16726, Abcam), paxillin (05-417, Millipore-Sigma), Rictor (H278, sc-99004), tyrosine phosphorylated paxillin (44-722G,

Thermo Fisher), PACSIN2 (10518-2-AP, Proteintech).

Other reagents
Purified Akt1 used in the cyclin D1 immune-precipitation kinase assays was from OriGene, (AKT1, CAT#TP320257) or GST fusion

proteins for pRB, which contains 2 CDK phosphorylation sites (Wang et al., 2006), Akt1 or Akt1-S473A, were generated in this lab-

oratory as previously described (Wang et al., 2006). Insulin was from Millipore-Sigma and epidermal growth factor (EGF) was from

R&D.

Immunohistochemistry (IHC)
IHC for tissue was conducted at the Translational Research/Pathology Core Facility of Thomas Jefferson University using a DAKO

Autostainer Plus equipment with an enzyme labeled biotin–streptavidin system. The IHC images were acquired with a 10x or 40x

objective and semi-quantified with Fiji software. The procedure for semi-quantification involved first opening the image software,

then in the heading dropdown menu selecting the option of ‘‘image,’’ then clicking on the menu item ‘‘color’’ then ‘‘color deconvo-

lution’’ with selection of ‘‘H&E, DAB.’’ This procedure splits the original image into H&E and DAB-images. When selected within the

DAB-image modality, the threshold was established to cover the target signals and this threshold value was then applied to all sam-

ples being compared. Subsequently, under the heading dropdown menu entitled ‘‘analyze’’ was activated, then the menu item enti-

tled ‘‘setup measurement’’ and then ‘‘integrated intensity’’ were selected. Within the threshold-image modality, the heading ‘‘mea-

sure’’ in the heading drop downmenu and then the heading ‘‘analyze’’ were chosen to obtain the results of integrated intensity. In the

H-images setting, the threshold to cover the target nuclear staining was established, then the heading dropdown menu titled ‘‘pro-

cess’’ was selected followed by activating the operation entitled ‘‘binary,’’ then ‘‘fill holes’’ and then ‘‘watershed.’’ The heading drop-

down menu item titled ‘‘analyze,’’ was then used, activating the item titled ‘‘analyze particles’’ and then within the pop-out menu, the

target size was defined, ‘‘show outlines’’ and ‘‘summary’’ were selected, and then clicking ‘‘ok’’ to obtain the total cell number. The

relative intensity was calculated by dividing the integrated intensity with the total cell number. In order to obtain the ratio of positive

cells, the DAB-image was processed as an H-image above to obtain the total number of positive cells. The ratio was calculated by
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dividing the total positive cell number with the total cell number. Double check if the outline images of the nucleoli matched the stain-

ing shown in the original images and if not, therefore it was necessary to count the cell number manually.

Immunofluorescence (IF)
IF staining and confocal microscopy of cultured cells was conducted as described previously (Li et al., 2010, Jiao et al., 2008). The

cells that were grown in 4-well-chamber slides (Lab-Tek II, Fisher) were fixed with 10% paraformaldehyde in PBS for 20 min at room

temperature. The chambers were removed after fixation. The slides were rinsed with PBS and permeated with 0.05% NP-40 in PBS.

The primary antibodies were diluted in PBS containing 5% goat sera, 5% FBS and 0.05% NP-40 and incubated with samples for

1 hour. The secondary antibodies used were Alexa Fluor 488, 568 or 633–conjugated F(ab’)2 fragment of goat anti-mouse immuno-

globulin G (IgG; Molecular Probes, 1/500). The samples were visualized on a Zeiss LSM 510 META Confocal Microscope with a 63x

objective. The images were processed with Fiji software.

Western blot
Western blot analyses were conducted as described previously (Li et al., 2006b).Whole-cell lysates (60 mg) were electrophoresed in a

10% sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) in a running buffer (25 mM Tris base, 190 mM glycine, 0.1% SDS,

pH8.3) and semi-dry transferred to nitrocellulose membrane (Amersham Corp.) in a transfer buffer (48 mM Tris, 39 mM glycine,

0.037% SDS, pH 8.3, 20%methanol). After semi-dry transfer, the membrane was stained with ATX Ponceau S Red staining solution

(09189, Fluka) for blotting efficiency. The blotting membrane was blocked for 1 h at room temperature in PBST buffer (137 mMNaCl,

2.7 mM KCl, 8 mM Na2HPO4, 2 mM KH2PO4 and 0.05% Twenn-20) supplemented with 5% (w/v) dry milk or 2% Bovine Serum

Albumin (BSA). Following an overnight incubation with primary antibody in PBST buffer containing 0.8% Fish Gelatin (G-7765,

Sigma). The membrane was washed 10 min, 3 times with PBST and then incubated with horseradish peroxidase conjugated second

antibody (1/2000) for 1 hour and washed again. The target band were visualized by the enhanced chemiluminescence system.

Immunoprecipitation/kinase assays
The protocol is described previously (Ashton et al., 1999) with modification. HEK293T cells transfected with an expression vector

encoding 3xFLAG tagged cyclin D1, were grown in 10-cm plates at 37�C in 5% CO2 with DMEM medium supplemented with

10% fetal bovine serum, 100 unit/mL penicillin and 100 mg/mL streptomycin. The cells were washed with 10 mL PBS, and one ml

of cell lysis buffer (50mMHEPES pH7.2, 150mMNaCl, 1mMEDTA, 1mMEGTA, 1mMDTT, 0.1%Tween 20, 0.1mMPMSF (Sigma),

2.5 mg/mL leupeptin (Sigma), 100 mMsodium orthovanadate) was added. Cells were incubated on ice for 20min, then scraped, trans-

ferred to a 1.5 mL Eppendorf tube and then mixed thoroughly by pipetman tips. The cell lysates were cleared by centrifugation at

10000 rpm for five minutes at 4�C. The supernatant was collected and the protein concentration was measured. 100 mg of soluble

proteins were incubated overnight at 4�C in a rocker with 2 mg of anti-Flag antibody (M2, F1804, Sigma) previously bound to 20 mL

Protein G agarose beads, which were prewashed with cold lysate buffer without inhibitors. The beads were spun down, the super-

natant was carefully removed with a pipetman and then washed three times with cold lysis buffer and two times cold assay buffer

(50 mM HEPES buffer, pH7.2, 10 mMMgCl2, 5 mM MnCl2 and 1 mM DTT). The beads were incubated in 40 mL of assay buffer sup-

plemented with 10 mM ATP, 5 mCi g32P-ATP and 2 mg of purified Akt1, Akt1(S473A) or GST-Rb for 30 minutes at 30�C. The samples

were denatured by boiling in SDS sample buffer and separated on SDS-PAGE gels. The gel was subsequently stained with Coomas-

sie blue, dried, and exposed to radiographic film.

Identification of Akt1 phosphorylation sites by mass spectrometry
Themass spectrometry was conducted as previously described (Wang et al., 2006). HEK293T cells were transfected with expression

vectors encoding HA-Akt1 and either Vector or FLAG N-amino terminal target cyclin D1WT. HA-IP was conducted of the cells and

mass spectrometry conducted, comparing the relative abundance in post-translational modification between vector control and cy-

clin D1 transfected cells. The Akt1 protein was isolated by HA immunoprecipitation and separated by gel electrophoresis. The gels

were stained with Coomassie G250 and the bands were excised and digested with trypsin. Phosphorylated peptides were isolated

using affinity purification using TiO2 Nu-tips fromGlygen. Briefly, the extracted peptides were loaded on the tip in a buffer containing

300 mg/ml DHB in 80% Acetonitrile, 0.1% TFA, washed once with the loading buffer and once with 80% Acetonitrile, 0.1% TFA and

eluted in 0.4M Ammonium Hydroxide. Peptides were immediately acidified with Formic Acid and were analyzed by ESI-MS/MS on a

on a Q Exactive Plus mass spectrometer. MS/MS spectra were searched against a custom UniProt human database plus the HA-

Akt1 sequence using MaxQuant 1.5.2.8 with Carbamidomethyl as a fixedmodification and Oxidation (M), Phospho (ST), Phospho (Y)

as variable modifications. False discovery rates for protein, peptide and PTM site are set at 1%.

Proximity ligation assay
The PLA was performed using Duolink reagents (Invitrogen) according to the manufacturer’s instructions as previously

described (Ivanschitz et al., 2015). Formalin-fixed 3T3 Ccnd1 �/� rescue wt (WT), 3T3 Ccnd1 -/ -rescue GFP (GFP), 3T3 Ccnd1 -/ -rescue KE

(KE), 3T3 Ccnd1 -/ -rescue C6 (C6), 3T3 Ccnd1 -/ -rescue DE (DE) and 3T3 Ccnd1 -/ -rescue 286 (286) cells were incubated with blocking solution

(Sigma, DUO82007) for 30 minutes at 37�C and then incubated overnight at 4�C with anti-Akt1 (Santa Cruz biotechnology 1:50, sc-

5298) and anti-Cyclin D1 (Santa Cruz biotechnology 1:50, sc-753) in antibody diluent (Sigma, DUO82008). For positive control,
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3T3ccnd1�/� rescue WT and 3T3ccnd1�/�rescue GFP cells were incubatedwith anti-Akt1 (Santa Cruz biotechnology 1:50, sc-5298) and anti-

phospho-Akt1 S473 (Cell signaling, 1:50, cat # 9018). For negative control, 3T3 ccnd1�/� rescue WT and 3T3 ccnd1�/�rescue GFP cells were

incubated with IgG. After incubation with primary antibody, 3T3 ccnd1 �/� rescue wt and 3T3 ccnd1 �/�rescue GFP cells were incubated with

secondary antibody conjugated with oligonucleotides (PLA probe PLUS and PLA probe MINUS) for 60 minutes at 37�C. After this
step, the samples were incubated with ligation solution for 30 minutes at 37�C and then incubated with amplification solution for

100 minutes at 37�C. The samples were analyzed using a fluorescence microscope (Zeiss Axiovert 200M).

Generating the model of the cyclin D1, CDK4/CDK6, Akt1 complex
The murine cyclin D1 and CDK4/6 3D models were generated using the software Protein Homology/analogY Recognition Engine V

2.0 (Phyre 2), which produces amodel of the protein of interest based on sequence alignment to known structures (Kelley et al., 2015).

The 3D structure of murine cyclin D1 was modeled of the X-ray crystal structure of human CD1 (PDB ID: 2W9Z), which has 95%

sequence identity to the mouse gene. The murine CDK4/CDK6 structure was modeled of the crystal structure of the human

CDK4/CDK6 (PDB ID: 1BLX) to which the murine gene has 69% sequence identity. The presence of X-ray crystal structures with

significantly high sequence identity with themurine genes has allowed PHYRE to generate thesemodels with 100%confidence. Sub-

sequently the murine cyclin D1-CDK4/6 assembly was generated using the crystal structure of the human cyclin D1-CDK4/CDK6

complex (PDB ID: 2W9Z). In the absence of a structure of CDK4/CDK6 bound to the Akt1 C-terminal activation peptide, we used

the crystal structures of CDK2-cyclin A (PDB ID: 1QMZ) and Akt1-GDC-0068 (PDB ID: 4EKK) protein peptide complexes to model

the C-terminal Akt1 peptide at the active site of the murine CDK4/CDK6 model. The model was further refined by applying geometry

minimization in Phenix (Afonine et al., 2010). The figures were generated in Pymol (Schrodinger, 2015).

Live cell Akt activity monitoring
Cyclin D1 wt and cyclin D1�/� 3T3 cells and MEFs (Albanese et al., 1999) were maintained at 37�C and 5% CO2 in DMEM medium

supplemented with 10% fetal bovine serum, 100 unit/mL penicillin, and 100 mg/mL streptomycin. The cells (105 cell/well) were

cultured in glass bottom dishes overnight and transfectedwith 5mMof each LS456, using GeneJuice transfection reagent (Novagen,

Madison,WI) in the dish for 18 h at 37�C, according to themanufacturer’s instructions. The transfected cells were treatedwith 150 nM

insulin in Tris-buffered saline and imaged at 30�Cusing an FV1000 confocal microscopewith UPLanApo/IR 60X/1.20Wobjective lens

(Olympus, Center Valley, PA). The treated cells were incubated with 150 nM of insulin. Imaging was conducted at different time

points. The mean fluorescence intensity (n58) (Ex/Em = 633/670-730 nm; Ex/Em = 785/805–830 nm) in the dishes was determined

with FV1000 software. All of the fluorescence intensity changes at each time point were normalized to the positive control (0 min). The

image of LS542 (Figures 5 and 6) were acquired with LI-COR Pearl Imager (Lincoln, NE) at Ex/Em of 685/705 nm and 785/810 nm

channels. Live cell imaging studies were conducted at 30�C, which is the default room temperature for the imaging platform of

the microscope. All images within the same time series were recorded from the same area of the slides. However, as the live cells

moved during the imaging sessions, eight representative cells were used to quantify the fluorescence using Olympus FV1000 soft-

ware. The data shown in Figures 5 and 6B were obtained from a duplicate of 4 different experiments.

Luciferase reporter assays (LUC assay)
MCF-7 or cyclin D1�/� 3T3 cells were cultured in Dulbecco’smodified Eaglemedium supplementedwith 10% fetal bovine serum, 1%

penicillin, and 1% streptomycin. One day before transfection, the cells were seeded in 24-well plates. MCF-7 cells were co-trans-

fected with 200 ng c-fos wt or mutant promoter reporters, 0-400 ng wild-type cyclin D1 or cyclin D1 mutant expression plasmids,

and 200 ng transfection efficiency reporter plasmid pRSV-b-gal using Lipofectamine 2000 (Invitrogen) following the manufacturer’s

manual. 48 hours post transfection, LUC assays were performed as previously described (Li et al., 2006b). Briefly, the cells were ex-

tracted by 100 mL extract buffer (X-buffer, GME buffer (25 mMGly-gly, 15 mMMgSO4, 4 mM EGTA) supplement with 1 mMDTT, 1%

Triton X-100). The cell lysates were divided to two parts: 90 mL was transferred to the assay tube for LUC assay and 10 mL was trans-

ferred to 96-well plate for b-gal assay. For LUC assay, 300 mL ATP-mix (GME buffer supplement with 1/6 (v/v) of 100 mM potassium

phosphate buffer (pH 7.4), 1 mMDTT and 1 mM ATP) was added in LUC assay tube and the luciferase activity were read by an auto-

matic tube luminometer (Autolumat LB953, EG&G Berthold) with LUC-buffer (GME buffer supplemented with 1 mMDTT and 0.2 mM

Luciferin). For b-gal assay, 100 mL PM2 buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MCl2 and 50 mM Mercap-

toethanol) and 20 mL ONPG solution were added to each well, which contained 10 mL of the cell lysates, of 96-well plate. Incubation

was conducted at 37�C for 1 hour and the optical density read at 420 nm on an ELISA reader. Normalized luciferase activity was

calculated by luciferase activity dividing with b-galactosidase reporter activity. The -fold effect was determined by comparison to

the empty expression vector cassette.

Comparison of gene expression from Akt1 deficient or cyclin D1 overexpressing mice
Comparison was made of Akt activity from Akt WT or Akt1-deficient (Akt1�/�) cells. The Akt1�/� and Akt1+/+ (WT) cells used in this

study were cultured and transfected as previously described (Ju et al., 2007). Briefly, mammary tumor epithelial cells derived from

MMTV-ErbB2 transgenic mice tumors were cultured in F-12 medium (Sigma, St. Louis, MO) with EGF (10 ng/mL), hydrocortisone

(1 mg/mL), penicillin (100 units/mL), streptomycin (100 mg/mL), and gentamycin (50 mg/mL) and supplemented with 10% FBS. Total
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RNA isolated from either ErbB2-Akt1+/+ or ErbB2-Akt1�/� mammary tumor cell lines (Ju et al., 2007), or mammary epithelium from

doxycycline inducible cyclin D1 transgenic mice (Casimiro et al., 2012, 2015) was treated with Trizol (Sakamaki et al., 2006).

RNA samples were treated with RQ1 DNase I (Promega Inc, Madison, WI) to remove contaminating DNA from RNA preparations

followed by re-purification using RNeasy Mini Kit (QIAGEN, Valencia, CA). DNA-free RNA was subjected to reverse transcription re-

actions, performed using SuperScript III reverse transcriptase kit (Invitrogen, Carlsbad, CA). Affymetrix Expression Console 1.1 or the

R statistic console with the limma package was used to compute Robust Multichip Average (RMA) expression values for the Mouse

Gene 1.0 STmicroarrays andMouse 430A 2.0microarrays. The core set of probe-set clusters was usedwith annotation version na30.

The cyclin D1 dataset was imported into MATLAB version R2010b (The Mathworks), and 1-way ANOVA was used to evaluate the

significance of differential expression between biological conditions. The -fold change cutoff was > 1.25 and the p value was <

0.05. Akt1 microarray analysis was performed using GeneSpring. Arrays were normalized using robust multi-array analysis, the

fold change cutoff of 2 and p value of < 0.05 were applied as a statistical criterion for differentially expressed genes.

Microarray Dataset
A breast cancer microarray dataset that was previously compiled from the public repositories Gene Expression Omnibus (Casimiro

et al., 2012) (https://www.ncbi.nlm.nih.gov/geo/, GSE1456, GSE6532, GSE7390, GSE9195, GSE12093) and ArrayExpress (https://

www.ebi.ac.uk/arrayexpress/) was used to evaluate Akt pathway and CCND1 transcript level expression in the context of clinical

samples (Casimiro et al., 2012) and displayed using Zebra Plots (Chaves et al., 2012).

A breast cancer microarray dataset used to evaluate the Akt1 pathway and CCND1 transcript level expression in the context of

clinical samples was available from the public repositories Gene Expression Omnibus (Casimiro et al., 2012), and ArrayExpress

(https://www.ebi.ac.uk/arrayexpress/, E-TABM-158).

Statistical Analysis
Unless specified, 3 to 4 independent experiments were included in each statistical analysis. All statistical analysis unless otherwise

specified was conducted with the Student t test in Microsoft Excel. Data was expressed as mean ± SEM.
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SUPPLEMENTAL FIGURES 

Figure S1. Transgenic induction of cyclin D1WT, but not cyclin D1KE, induced Akt signaling, 
related to Figure 1. (A). Schematic representation of transgenic mice expressing a doxycycline 
inducible cyclin D1WT and cyclin D1KE mutant cDNA targeted to the mammary gland by MMTV-
RtTA, were treated with doxycycline for 14 days and immunohistochemical analysis was 

 



conducted for phosphorylated targets of Akt1. Representative immunohistochemistry (IHC)  is 
shown, and quantitative data are shown as mean ± SEM to the right of the panels. IHC was 
conducted for (B-E). Immunohistochemical staining of the mammary gland of transgenic mice 
expressing mammary gland targeted, tetracycline induced, cyclin D1WT or cyclin D1KE (as shown 
in Fig. 1) is shown for downstream Akt signaling substrates (TSC2 Ser939, FKHR Ser319, BAD 
Ser136). A representative example is shown together with data as mean ±SEM for N=3 separate 
experiments with antibodies as indicated. 
 

Figure S2. Mammary epithelial cell specific deletion of cyclin D1 reduces Akt signaling in 

vivo, related to Figure 1. (A). Schematic representation of transgenic mice. The cyclin D1fl/fl mice 

were intercrossed with ROSA26-ER-Cre and the mice treated with tamoxifen for 5 days and 

analyzed after a subsequent 28 days. Immunohistochemical staining was conducted of the 

mammary epithelium. (B-D). Immunohistochemical staining of the mammary gland for 

downstream Akt signaling substrates (TSC2, TSC2 Ser939, FKHR Ser319). The data is shown as 

semi-quantitative data as mean ±SEM for the relative abundance of proteins. Genetic deletion of 

 



cyclin D1 in the mammary gland reduces activation of Akt1 downstream substrates (TSC2 Ser939) 

without changing the abundance of the individual substrates (TSC2).  

Figure S3. Transgenic induction of cyclin D1WT, but not cyclin D1KE, induced Akt1 Ser473 
phosphorylation without affecting cyclin A2, related to Figure 1. (A-D). Immunohistochemical 
staining of the mammary gland of transgenic mice expressing tetracycline induced cyclin D1WT or 
cyclin D1KE (as shown in Fig. 1). A representative example is shown together with data as mean 
±SEM for N=3 separate experiments with antibodies as indicated. (E-G). Analysis of mammary 
epithelium of the cyclin D1fl/fl mice intercrossed with ROSA26-ER-Cre mice treated with 
tamoxifen for 5 days cyclin D1 assessing AKT signaling and cyclin A2 abundance with 
quantitation shown as mean ±SEM for N=3 separate experiments with antibodies as indicated.   

 



 

Figure S4. Akt signaling in the mammary gland in vivo, related to Figure 1. (A). Schematic 
representation of transgenic mice analyzed in the studies. MMTV-ErbB2-Akt1+/+ or MMTV-ErbB2-
Akt1-/-. (B-G). Immunohistochemical staining of the mammary gland of transgenic mice in which 
the genotype with other Akt1+/+ or Akt1-/-, in which the relative abundance of either Akt1 or its 
downstream substrates were quantitated by immunohistochemistry. The data is shown adjacent to 

 



representative examples of immunohistochemical staining with quantitative data shown as mean 
± SEM for N=3 separate mice of each genotype. 
 
 

 

Figure S5. Relative abundance of mTOR components in cyclin D1 transgenics, related to 
Figure 1. (A, B). The relative abundance of the mTOR complex components were assessed in 
MMTV-cyclin D1 transgenic mice compared with normal mammary gland. The relative intensities 

 

 



of the probe sets were highly correlated between mRNA sources shown in A. Data are shown as 
mean signal intensity for mRNA abundance determined by qRT-PCR. In (E) relative abundance 
of the mTOR components was determined in cyclin D1-/- or cyclin D1-/- cells rescued with a cyclin 
D1 expression vector. In F, G Rictor was assessed by immunohistochemistry in the transgenic 
mouse mammary gland as indicated. A representative example is shown. 
 
 
 

 

Figure S6. Proximity of  Akt1 with cyclin D1, related to Figure 3. (A). Confocal microscopy 
of the proximity ligation assay was conducted using control antibodies in analysis of interaction 
between endogenous Akt1 with cyclin D1. Proximity of two molecules is shown by red dots with 
nucleus stained by DAPI. Transduction of cyclin D1-/- 3T3 cells was conducted with a control GFP 
expression plasmid or (B), a cyclin D1 expression plasmid. Cells were  stained using the antibodies 
indicated in each panel, either for cyclin D1 or  Akt1 or (C) stained with IgG control antibodies.   

 



 

 

 

 

 

 

 

 

 

 
 
 
Figure S7. Proximity of Akt1 
with cyclin D1, related to Figure 
3. (A). The proximity ligation 
assay was conducted using control 
antibodies in analysis of 
interaction between endogenous 
Akt1 with cyclin D1. Proximity of 
two molecules is shown by red dots 
with nucleus stained by DAPI. 
Transduction of cyclin D1-/- 3T3 
cells was conducted with a control 
GFP expression plasmid or right 
hand panel, a cyclin D1 expression 
plasmid. Cells were  stained with 
(A), IgG control antibodies or (B-
D), antibodies to cyclin D1 and/or 
Akt1. 
 

 

 

 

 

 



 

Figure S8. Proximity of Akt1 with cyclin D1 occurs via the cyclin D1 N terminal residues (1-
91), related to Figure 3. (A). The proximity ligation assay was conducted with antibodies directed 
to endogenous Akt1 or cyclin D1. Cyclin D1-/- 3T3 cells were transduced with either cyclin D1 wt 
or cyclin D1 mutants (A-H). The cyclin D1/Akt1 proximity assay is shown by red dots, and the 
nucleus is stained by DAPI. 3D reconstruction of the Z stack is shown for representative examples 
of multiplicate experiments. (A and B are positive controls shown in Fig. 3 for comparison).  
 
 

 



 
 
Figure S9. (A). Fluorescent activated cell-cycle (FACS) analysis of cyclin D1-/- vs. cyclin D1-/- 

3T3 cells rescued with cyclin D1, related to Figure 5.  FACS was conducted of cyclin D1-/- vs. 
cyclin D1-/- 3T3 cells rescued with the cyclin D1 cDNA. after serum starvation and release. FACS 
analyses of cell cycle distribution was conducted at the time points shown (0-24 hrs). (B-C). Cdk 
inhibitors reduce Akt Ser 473 in Rictor knockdown cells, related to Figure 5. Western blot 
analysis of Tamoxifen inducible Rictor knockdown cells, treated with control or tamoxifen acutely 
with the Cdk inhibitors palbociclib (8 µM) or ribociclib (10 µM) (A), or chronically (4 weeks) 
with abemaciclib or palbociclib at the doses shown (B), for 24 hrs. Western blot was conducted 
with the antibodies as indicated. (D-E). Genetic subtype classification of human breast cancer 
microarray samples show correlation of cyclin D1 with Akt1 activity predicts poor outcome, 
related to Figure 7. Kaplan Myer plots showing differences in overall survival using enrichment 

 



of Akt pathway activation. In genetic subtypes, the correlation between overall survival and 
enrichment for Akt activity is significant in luminal A (p=0.048) (D) and in luminal B (P=0.019 
for N=49) (E). 
 

 

 

 

Figure S10. Genetic subtype classification of human breast cancer microarray samples show 
correlation of cyclin D1 gene expression with Akt1 gene signature, related to Figure 7. (A-F). 
Cyclin D1 transcript levels plotted vs. normalized Akt1 gene signature expression levels reveal the 
positive relationship between cyclin D1 and Akt1. The correlation coefficient (r) value, and the 
corresponding p value are shown for each breast cancer genetic subtype. 
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