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SUMMARY: The International Initiative on Spatial Lifecourse Epidemiology (ISLE) convened its first International Symposium on Lifecourse
Epidemiology and Spatial Science at the Lorentz Center in Leiden, Netherlands, 16–20 July 2018. Its aim was to further an emerging transdisciplinary
field: Spatial Lifecourse Epidemiology. This field draws from a broad perspective of scientific disciplines including lifecourse epidemiology, environ-
mental epidemiology, community health, spatial science, health geography, biostatistics, spatial statistics, environmental science, climate change, ex-
posure science, health economics, evidence-based public health, and landscape ecology. The participants, spanning 30 institutions in 10 countries,
sought to identify the key issues and research priorities in spatial lifecourse epidemiology. The results published here are a synthesis of the top 10 list
that emerged out of the discussion by a panel of leading experts, reflecting a set of grand challenges for spatial lifecourse epidemiology in the coming
years. https://doi.org/10.1289/EHP4868

Introduction
The rapid increase in noncommunicable diseases (NCDs) poses a
significant and growing global public health threat. According to
the WHO, NCDs will be the leading cause of deaths in all world
regions by 2030 (WHO 2014). Prevention and control will require

addressing the many multifactorial and interrelated drivers of
NCDs, which are thus far insufficiently understood. The drivers of
NCDs can manifest at multiple levels—from individual-level risk
factors and behaviors, to more upstream determinants such as area-
level socioeconomic conditions and environmental exposures
(Krieger 2001). For example, chronic exposure to physical envi-
ronment factors such as temperature, air pollutants, and greenness
influences health behaviors (e.g., physical activity) (Durand et al.
2011) and the risk of chronic health outcomes (e.g., obesity, can-
cer, cardiovascular diseases) (James et al. 2015a; Jia et al. 2019b)
and mortality (Chen et al. 2013). Spatial science, which includes
the use of increasingly available spatial and location-aware tech-
nologies such as geographic information systems (GIS), remote
sensing systems (RS), and global positioning systems (GPS) can
help to identify various factors that influence NCDs. Spatial sci-
ence enables the assessment of exposures or their proxies over
long time frames, which can yield valuable measures of the expo-
some, that is, the totality of an individual’s environmental and life-
style exposures over the life course (Wild 2005).

Spatial lifecourse epidemiology is an emerging area of science
that seeks to investigate the life course effects of environmental
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and other spatial factors (e.g., spatial accessibility) on individual
behaviors and health outcomes at high spatiotemporal resolution,
accuracy, and precision (Jia 2019). Spatial lifecourse epidemiology
is emerging as an enabling field for the exposome during an era of
increased availability of geographic and epidemiologic data, trans-
disciplinary collaboration, and broad global investments in team sci-
ence initiatives (Jia and Wang 2019). Scientists engaged in spatial
lifecourse epidemiologic research seek to harness this opportunity
and infrastructure to make progress toward critical strategic global
health goals such as the United Nations’ Sustainable Development
Goals (e.g., good health and wellbeing, reduced inequalities, sus-
tainable cities and communities) (United Nations 2015) whilemaxi-
mizing cross-disciplinary integration and innovation.

The International Initiative on Spatial Lifecourse Epidemiology
(ISLE) convened its First International Symposium on Lifecourse
Epidemiology and Spatial Science at the Lorentz Center in Leiden,
Netherlands, 16–20 July 2018, to further the science of spatial life-
course epidemiology. The symposium drew on perspectives from a
wide range of disciplines including lifecourse epidemiology, envi-
ronmental epidemiology, community health, spatial science, health
geography, biostatistics, spatial statistics, environmental science, cli-
mate change, exposure science, health economics, and landscape
ecology. The workshop was cosponsored by the Lorentz Center,
Netherlands Organization for Scientific Research, and the Royal
Netherlands Academy of Arts and Sciences. The participants, span-
ning 30 institutions in 10 countries, sought to identify key issues
and research priorities in spatial lifecourse epidemiology, and all
agreed to strive toward a common language and research agenda for
understanding one another better to make true progress. The follow-
ing list is a synthesis of the top 10 priorities (in random order) that
emerged out of the discussion and represented the consensus of per-
spectives from leading scientists in multiple fields related to spatial
lifecourse epidemiology.

1. Create life course spatial exposure metrics
2. Define and operationalize composite and cumulative ex-

posure concepts
3. Improve personalized exposure assessment in prospective

studies
4. Understand the role of residential self-selection
5. Tap into emerging Big Data streams to capture spatial ex-

posure and behavior information
6. Facilitate the development and use of complex systems

models
7. Increase transdisciplinary collaboration to capitalize on

innovative data and methods
8. Examine and address health equity
9. Expand the scope and scale of research from local and re-

gional to national and global
10. Safeguard privacy while ensuring research needs.

1. Create Life Course Spatial Exposure Metrics
Incorporating spatial data into prospective cohort studies has led
to many important findings in the field of epidemiology. The geo-
coding of participant addresses in prospective cohorts, such as
the American Cancer Society Study and the Nurses’ Health
Studies in the United States (Hart et al. 2015; Krewski et al.
2000), has contributed to our understanding of how air pollution
affects health, and these findings have driven national regulatory
policies and decision making (Gilliland et al. 2017). As more
cohorts incorporate spatial data, the workshop consensus was that
we must develop toolkits that make it easier to geocode and
merge spatial information into prospective cohort studies.
Establishing geocoded residential addresses over decades of
participants’ lives and linking these geocoded data to tempo-
rally matched spatial data sets can enable researchers to

examine the effects of exposures over the life course. In cases
where residential addresses were not collected as part of the
original study design, collecting retrospective residential
address histories would enable researchers to reconstruct life
course exposures to a range of factors distributed spatially. It
should be noted that high-resolution spatial data are sometimes
not available. For instance, coarse- (e.g., 1 km) and medium-
resolution (e.g., 30–80 m) satellite data have been available
only since the 1970s, and high-resolution data (<10 m), only
since 1999 (Jia et al. 2019a). Data gaps may be filled by using
system dynamics models to extrapolate the existing spatial data
onward, but many challenges will remain.

Many countries, especially low- and middle-income countries
with poor infrastructure, face difficulties in accurate geocoding,
which is in large part due to a lack of a well-established nation-
wide address system. A nationwide address system can facilitate
the conversion of questionnaire-derived addresses into geo-
graphic coordinates (x and y) in a GIS (Jia et al. 2017). Until geo-
coding is supported in these settings, researchers can integrate
location-aware technologies (e.g., handheld GPS units, smart-
phone location services) in order to collect location data of study
participants, especially when combined with locator data in
questionnaire-based surveys (e.g., querying for the floor level of
a building in questionnaires in densely populated areas where
multiple households live in multi-family dwellings).

There are several excellent examples of large population-
based birth cohorts, yet none to date have followed individuals
for their entire life span. These efforts have almost exclusively
been implemented in high-income countries where there is strong
government funding and support. Even where large population-
based studies are underway, retrospective data on exposures and
other factors may be plagued by major errors due to recall bias.
The workshop consensus was that building capacity for prospec-
tive data collection was vitally important and should be consistent
with the emerging directions of health systems, including a shift
in focus from patient health to population health, and from a
focus on disease episodes to the full life course.

2. Define and Operationalize Composite and Cumulative
Exposure Concepts
As the volume of data and the number of data sources continue to
grow, researchers examining exposure to specific environmental
characteristics face difficult choices about how to define expo-
sure. Some of these choices include questions such as the follow-
ing: What exposure measure to use? How to operationalize that
measure? What area of exposure to choose? Defining exposure
to, for instance, the food environment requires choices regarding
the type of food retailers under study (e.g., restaurants, grocery
stores, local food shops), the metrics used to quantify these
retailers, and the definition of the area of interest. There are many
options, and we know that these choices matter: The degree of
exposure often differs greatly according to the definition and met-
rics used (Pinho et al. 2019). The use of varying definitions of ex-
posure to the environment has even been posed as a potential
explanation for the inconsistent findings in studies that, for
instance, focus on environmental determinants of obesity (Jia
et al. 2017; Mackenbach et al. 2014). To move the field forward
it is essential to get a better grasp on how to best define and oper-
ationalize exposures (Kwan 2012; Openshaw 1984).

3. Improve Personalized Exposure Assessment in
Prospective Studies
The majority of studies examining associations between spatial
factors and health assume that the area around a residential
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address is a reasonable proxy for exposure (James et al. 2015a;
Jia et al. 2017). However, this assumption is widely acknowl-
edged as invalid given that studies show that, for instance, only
6% of daily activities occur in the residential census tract, 21% in
adjacent census tracts, and 73% take place in other parts of the
city (Matthews et al. 2005). By examining only residential
addresses, we are missing a major piece of the puzzle: the daily
time–activity patterns, or the places and environments that we
visit throughout the day (e.g., the workplace), will be ignored
(Chaix et al. 2013; Perchoux et al. 2013).

Through questionnaires, web-based approaches, time–activity
diaries, or GPS-based methods, we can establish time–activity
patterns and develop spatial exposure metrics that capture an
individual’s exposure as they move through time and space. For
example, assessing personalized exposure to environmental air
pollution relies both on measurements of the ambient levels of air
pollution from spatially resolved models and on tracking indi-
viduals’ location, their activity patterns, and their behavior.
Traditionally, the quantification of human exposure to air pollu-
tion has relied on static population distributions and pollutant
concentrations from ground-based data (obtained at fixed air
quality network sites), satellite-derived products, or both, usu-
ally combined with land use regressions to model air pollution
levels across space. New developments in sensor and GPS tech-
nology, although not perfect in the sensitivity and accuracy,
may enable monitoring of personal exposure to air pollutants
directly while people move through their activity spaces and vary-
ing concentration fields (Steinle et al. 2013). Some cutting-edge
spatial exposure assessment approaches can also be used to esti-
mate finer-scale physical and social environmental exposures such
as dispersion models (Özkaynak et al. 2013), chemistry transport
models, hybrid models (e.g., dispersion chemistry transport mod-
els) (Hennig et al. 2016), Google Street View™ cars with air
pollution sensors for air pollution exposure (Apte et al. 2017),
and social network analysis for social environmental exposure
(Fowler and Christakis 2008). In addition, measuring the
dynamic aspects of the exposure history itself (e.g., duration
or time–varying intensities of exposure) used to be difficult in
risk modeling and lifecourse epidemiology (Vermeulen and
Chadeau-Hyam 2012), but, according to the workshop consen-
sus, is increasingly feasible in spatial lifecourse epidemiology
and should be encouraged.

4. Understand the Role of Residential Self-Selection
A critical issue with research linking environmental characteris-
tics to behavioral or health outcomes is that cause and effect are
difficult to disentangle. For instance, if a researcher is interested
in how the amount or quality of greenspace influences physical
activity levels, cross-sectional analyses may not provide much
insight. In a concept known as residential self-selection, it may
well be that individuals who care more about health are more
likely to spend time in or move to more healthy areas rather than
the other way around (Diez Roux 2004). Although some have
suggested that self-selection bias is of limited importance in
some specific contexts (James et al. 2015b; Sallis et al. 2009), it
needs to be further explored.

Some nonexperimental research designs used by health econ-
omists may help mitigate the residential self-selection issue.
These include natural experiments, driven by government regula-
tion; unexpected changes in industrial production, or catastrophic
events, resulting in unexpected shocks to environmental quality;
high-frequency short-term variations in environment, assuming
residential self-selection in response to environmental changes
occurs more slowly than health changes (e.g., exploring the effect
of day-to-day change in air pollution); and within-family designs,

controlling for observed and unobserved family characteristics
that may confound the associations between environmental expo-
sure and health status of siblings (X Zhang, personal communica-
tion) (Currie et al. 2014; Zhang et al. 2018). The analysis
methods to take these self-selection phenomena into account are
being explored, for instance, including variables into the models
that may adjust for the likelihood that someone’s choice to live
somewhere is linked to the outcome or independent variable of
interest (Mackenbach et al. 2018). Propensity score matching
techniques have also been proposed to control for residential
preference and nonrandom selection into specific neighborhoods
(Root and Humphrey 2014).

5. Tap into Emerging Big Data Streams to Capture Spatial
Exposure and Behavior Information
The Big Data revolution in medical, environmental, and popula-
tion registers; advances in personalized sensors; and vast, new
data from social and other media can help us to better capture—
and understand—the complex interactions between environmen-
tal stressors and human health. The workshop consensus was that
Big Data was not simply the use of large data sets, but the critical
and statistical synthesis and analysis of massive data sets to
reveal value greater than the sum of the individual parts. The
recent availability of Big Data from sources such as loyalty cards,
smartphones, wearables, web-enabled devices, social media, and
technology companies hold immense potential to gather spatially
referenced data at unprecedented volumes and velocity. These
data streams will move spatial lifecourse epidemiology forward
as we capitalize on these data sets to create intensive longitudinal
measures of exposures and behaviors.

The term Big Data has also been used to encompass the use
of predictive data analytics and the computational analysis of
extremely large, multi-source data sets to reveal patterns, trends,
and associations. For example, Google Earth Engine is a new
cloud-computing platform on which massive global-scale satel-
lite data can be processed (Gorelick et al. 2017); machine learn-
ing algorithms can process satellite data as well as Google
Street View™ imagery to derive important new indicators that
may be predictive of health outcomes (Maharana and Nsoesie
2018) and reduce the dimensionality of the almost explosively
rich data sets (e.g., selecting the best possible indicators of
early life in the decomposition of inequality of health in old
age); Light Detection and Ranging (LiDAR) scanning (an RS
method that uses a pulsed laser to measure variable distances to
the Earth) and other measures from driverless cars can generate
precise, three-dimensional information of the built environment
(Arayici 2007).

A common issue that has traditionally plagued environmental
epidemiology is that the influence of an environmental character-
istic on a health outcome might very well be small and subtle,
especially in cross-sectional studies where modest effects are cu-
mulative over time. Obviously, rough measures will not allow
researchers to detect subtle effects. This is where advanced spa-
tial and location-based technologies, such as RS, sensors, and
smartphone apps, can step in and contribute to the detection of
those subtle effects by providing fine-scale, frequently repeated
measurements over time (Jia et al. 2019a). However, this issue
will persist in the Big Data era, where larger data sets tend to
detect statistically significant effects with small clinical rele-
vance. So with larger, higher-dimensional data, according to the
workshop consensus, researchers will need to exercise care when
distinguishing environmental exposures that have larger (and
therefore more meaningful) effects from those that have smaller
effects.
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6. Facilitate the Development and Use of Complex Systems
Models
The putative pathway through which characteristics of the envi-
ronment influence behavior and, ultimately, health outcomes is
long, and many factors influence these relations along the way in
a complex, adaptive, and interacting manner. Although complex
systems thinking currently sees a revival in this field of research
(Rutter et al. 2017), complex systems doing is not so evident.
Complex system maps may guide analyses (Butland et al. 2007),
but as complex as they may seem, even these maps do not
(yet) do justice to the complexity of real life. In the past few
decades, we learned that many environmental exposures do
not have a linear relation with health behaviors or outcomes,
and reductionist ways of analyzing relations often provide
puzzling results. With the increasing amount of available data,
new statistical methods have to be developed or adapted from
other fields of research to cope with these data, for instance,
by translating established (network and classification) method-
ology from molecular biostatistics (Swinburn et al. 2011). We
need to identify better ways of analyzing complex exposures
and forces that represent salient environmental characteristics
(Lakerveld and Mackenbach 2017). The tools and methods to
study molecular and genetic drivers of disease manifestation
are far ahead of those currently used to analyze the more
upstream environmental determinants of health behaviors and
outcomes (Swinburn et al. 2011).

7. Increase Transdisciplinary Collaboration to Capitalize on
Innovative Data and Methods
Workshop participants agreed that one key to a better under-
standing of the complex interactions between environmental
exposure and human health was assembling, linking, and ana-
lyzing diverse, large data sets, through the development of
appropriate algorithms, analytical frameworks, and new
approaches to inference. Doing so will necessitate multidisci-
plinary team science, that is, collaborative efforts that leverage
the strengths and expertise of professionals trained in different
disciplines (Hall et al. 2012; Stokols et al. 2008). An example
is a transdisciplinary partnership among public health, com-
puter science, and data science: Public health researchers have
substantive knowledge and standards for understanding rela-
tionships between exposures and disease, computer scientists
have the tools and methods to adapt Big Data to this purpose,
whereas (spatial) data scientists have the knowledge and skills
to properly deal with (spatial) data and a substantive knowledge
of how these data can be used to measure environment and
human–environment interaction.

The members of our panel of experts all agree that, although
much collaboration between spatial scientists and epidemiologists
has been fruitful, we need to move these collaborations to the
next generation of transdisciplinary work. For example, high-
resolution satellite imagery (Jia and Stein 2017), as well as aerial
and street-view photos, hold untapped information that could be
linked to the geocoded addresses of individuals and derive novel
metrics of exposure to physical environments through machine
learning approaches (Maharana and Nsoesie 2018). Data scien-
tists have the expertise and experiences in handling these large
and complex spatial data sets, and they can engage with epidemi-
ologists to merge novel (spatial) metrics with epidemiologic
cohort data. With better measures, spatial lifecourse epidemiol-
ogy can further benefit from collaboration with scholars in other
fields such as environmental and health economists who have a
unique focus on causal inference and may help strengthen causal
evaluations of environmental exposure.

Nevertheless, tracking an individual’s daily movements can-
not reveal everything. There is much farther to go in terms of
capturing individual day-to-day lifestyle choices and preferences
that may impact health (Jia et al. 2019b). Such insights may be
achieved using so-called Thick Data, which are often comprised
of a complex range of data originating from primary and second-
ary research approaches (e.g., surveys, focus groups, videos).
Thick data are capable of, for instance, capturing the influence of
regular and irregular social and cultural activities that may affect
behaviors and the health status of populations (Latzko-Toth et al.
2017). Transdisciplinary collaboration in improving exposure
measurement will be both necessary and invigorating.

8. Examine and Address Health Equity
Recent analyses have demonstrated astounding differences in life
expectancy within cities for neighborhoods that are only miles
apart (Robert Wood Johnson Foundation 2015). The idea that
one’s residential location (e.g., postal code) may determine
health speaks to the fundamental importance of spatial factors
in driving health outcomes. Spatial lifecourse epidemiology
can identify specific factors and sorting mechanisms that pre-
dict health disparities, such as socioeconomic deprivation and
heterogeneity in levels of environmental stressors (e.g., air,
water, soil, noise pollution), as well as isolate environmental
aspects that may decrease disparities, such as greenspace. The
principles and methods in environmental justice may be useful
for advancing this area (Brulle and Pellow 2006; Meentemeyer
et al. 2012), and it will be important to understand how popula-
tions vary in their vulnerability to environmental stressors, par-
ticularly those that relate to differences in coping abilities and
behaviors.

Some further questions that the spatial lifecourse epidemiol-
ogy toolset might address include how greenspace can help to
reduce health disparities; how policy solutions to health dispar-
ities might be identified from spatial data (e.g., systematically
characterizing gaps in parks and quality of greenspace among dis-
advantaged neighborhoods); how best practices with regard to
built environments can be implemented in low-income settings;
and how the physical, social, and policy environments interact
(Mitchell and Popham 2008; Reis et al. 2016).

9. Expand the Scope and Scale of Research from Local and
Regional to National and Global
The overwhelming majority of spatial epidemiologic studies have
taken place in North America and Europe. For instance, a recent
review of the literature on green space and health showed that
only 1 of 66 reviewed studies took place in Africa (James et al.
2015a). Another review of the applications of GIS in obesity
research showed that only 4 of 121 reviewed studies were con-
ducted in emerging and developing economies (Jia et al. 2017).
Rapid population growth, uncontrolled urbanization, and pro-
found socioeconomic inequalities in these settings are often asso-
ciated with mounting environmental concerns. Environmental
stressors (e.g., air pollution) are often at higher levels in those
regions than in North American and European countries
(Akimoto 2003), especially in urban areas. This knowledge may
help better model the dose–response relationship due to larger
variations in environmental exposures. Industrialization and eco-
nomic development will intensify environmental health risks,
making it even more critical to examine and understand how spa-
tial factors, such as air pollution, noise, and lack of greenspace,
impact chronic disease risk and health outcomes. Expanding the
scale of environmental health studies, from local regions to
nations and the entire world will also help address the issue of
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environmental spillover effects (e.g., pollution in one country
may affect neighboring countries).

The members of our panel of experts all concur that the
increased development of GIS data sets in emerging and devel-
oping economies, complemented by satellite data derived from
the global coverage of high spatiotemporal–resolution earth ob-
servation satellites, will likely enable more spatial epidemio-
logic research in these regions. Advanced data analysis
approaches, including machine learning approaches, could be
fruitfully applied to such challenges and could inform the crea-
tion of standardized environmental metrics in places where
ground-level exposure measures or sensor surveillance net-
works are underdeveloped either because of their cost or for
lack of physical access to the regions. These powerful support-
ing technologies can enable researchers to scale up some com-
putationally expensive efforts (e.g., high-resolution image
processing) from local to global scales and, combined with the
increasing use of smartphone location services to collect
individual-level data in many emerging and developing coun-
tries, can enable more spatial lifecourse epidemiologic research
(Jia and Wang 2019).

10. Safeguard Privacy While Ensuring Research Needs
The past 20 y have brought about dramatic technological pro-
gress in terms of location-aware smartphones, wearables, and
data analytics. Although that progress has produced new and im-
portant ways to improve our understanding of how spatial factors
affect human health, it has also raised concerns about privacy and
confidentiality in the use of these data. People are increasingly
under surveillance, and concerns of being constantly tracked
and observed are greater than ever. Public closed circuit televi-
sion (CCTV) cameras, smartphones, and loyalty cards, for
example, record movements and habits often without the
knowledge or consent of individuals (Rengel 2013; Wigan and
Clarke 2013; Jia 2018). Although new technical possibilities
and opportunities are immense, there are serious concerns on
data interoperability across these platforms and on making
these data available for scientific use (e.g., loss of privacy,
identification of certain behaviors, issues with obtaining insur-
ance). These issues have to be addressed before analytical and
predictive research work can be commenced. Many of the
methods and techniques used for spatial life course studies
require data on an individual’s activities, habits, and behaviors
over long periods of time. Collection of these data may be an
infringement of personal space and privacy, and it will be a
challenge to keep the ethical standards up with those data col-
lection, storage, and sharing activities. This has also been an
emerging issue in satellite data due to increasingly identifiable
objects and environment features on very high-resolution
images, especially on street-view photos. Our panel of experts
all agree that the development of ethical and technological
standards and guidelines for collection and anonymization
(and/or safeguarding) of individual spatial and behavioral data
and the implementation of secure data handling and storage
was imperative.

Further complicating the use of these data are concerns about
data ownership. Personal data are valuable, and the companies
collecting these data as part of their business model are often not
initially willing to share them with researchers. For example,
Fitbit®, Google Maps™, MyFitnessPal®, and Strava® all record
location, movement, and/or health data. Use of these sources will
require public–private partnerships and data use agreements
across platforms and research sites. Although current privacy reg-
ulations are essential and needed to protect the privacy of study
populations, strict rules in many countries often prohibit data

owners from using or sharing locational information of study
populations or to link this information to external (e.g., GIS)
data. For instance, in the United States, the Health Insurance
Portability and Accountability Act (HIPAA) regulates that the
postal codes or geographic coordinates of a participant’s home or
work location fall under the category of protected health informa-
tion (Nosowsky and Giordano 2006). The European Union has
also recently introduced the General Data Protection Regulation,
which fundamentally impacts how personalized data is to be
handled (De Hert and Papakonstantinou 2016). Methods for
using these data with the consent of individuals will be necessary.
In short, there are many advantages to personal exposure mea-
surement made possible through spatial lifecourse epidemiology.
At the same time, however, we must weigh the privacy and confi-
dentiality concerns of participants. The implication is that there is
an urgent need for researchers using these data to acknowledge
the immense responsibility and public trust that comes with
access to these data. Researchers must be held to high standards
and take personal responsibility to address privacy concerns and
data confidentiality to ensure that these data are always used
ethically.

Conclusions
This article presents 10 key issues that confront the emerging
field of spatial lifecourse epidemiology. They represent the
consensus of perspectives from leading scientists in multiple
fields related to spatial lifecourse epidemiology. In an era with
rapidly growing environmental exposure, increasing volumes
of health data, and rising attendant demands for modeling com-
plex interactions and systems, it will be essential for scientists
to launch transdisciplinary research programs built on team sci-
ence traditions that integrate a wide array of intelligence, meth-
ods, and data to yield a better understanding of the etiology of
human diseases. This top 10 list is intended to serve as a start
of a discussion on future research priorities in spatial lifecourse
epidemiology while stimulating an open and critical debate on
the philosophical and methodological foundations of this
emerging field.
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