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SUPPLEMENTARY RESULTS 
 
The effect of bacterial load on ecogroup definition 
Given a set of N total fecal samples where each fecal sample (microbiota) contains a set of taxa, the 
fractional representation of any taxon can be calculated as 
 

𝑏"𝑥" = 𝑋" (1) 
 
where bi and xi and Xi represent the ‘bacterial load’, fractional abundance, and total abundance, 
respectively, of taxon ‘x’ for microbiota i. The covariance between taxon ‘x’ and taxon ‘y’ can be 
represented as 
 

𝑐𝑜𝑣 𝑥, 𝑦 = 	
1
𝑁

(𝑥" − 𝑥 )(𝑦" − 𝑦 )
1

"23

 (2) 

 
The average fractional abundance of a taxon ‘x’, for instance, can be expressed in terms of bacterial load 
as the following 
 

𝑥 = 	
1
𝑁

𝑋"
𝑏"

1

"23

 (3) 

 
Substituting (3) into (2) gives 
 

𝑐𝑜𝑣 𝑥, 𝑦 = 	
1
𝑁

𝑥" −
1
𝑁

𝑋3
𝑏3
+
𝑋5
𝑏5
+ ⋯+

𝑋1
𝑏1

𝑦" −
1
𝑁

𝑌3
𝑏3
+
𝑌5
𝑏5
+ ⋯+

𝑌1
𝑏1

1

"23

 (4) 
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The fractional abundance of taxon ‘x’ for any microbiota i can be expressed as total abundance and 
fractional abundance from (1) as 
 

𝑥" =
𝑋"
𝑏"

 (5) 

 
Substituting this into (4) gives 
 

𝑐𝑜𝑣 𝑥, 𝑦 = 	
1
𝑁

𝑋"
𝑏"
−
1
𝑁

𝑋3
𝑏3
+
𝑋5
𝑏5
+ ⋯+

𝑋1
𝑏1

𝑌"
𝑏"
−
1
𝑁

𝑌3
𝑏3
+
𝑌5
𝑏5
+ ⋯+

𝑌1
𝑏1

1

"23

 (6) 

 
Given the expression shown in (5), we can now address the case where (1) bacterial load is constant 
across all fecal samples, and (2) bacterial load is different across fecal samples.  
 
Case 1: All bacterial loads are equal across all N microbiota 
 
In the case that bacterial loads are equal across all N fecal samples, 
 

𝑏3 = 𝑏5 = ⋯ = 𝑏1 (7) 
 
Thus, bi can be substituted for b, a constant bacterial load across all N. Substituting this into (5) gives 
 

𝑐𝑜𝑣 𝑥, 𝑦 = 	
1
𝑁

𝑋"
𝑏
−
1
𝑁

𝑋3
𝑏
+
𝑋5
𝑏
+ ⋯+

𝑋1
𝑏

𝑌"
𝑏
−
1
𝑁

𝑌3
𝑏
+
𝑌5
𝑏
+ ⋯+

𝑌1
𝑏

1

"23

 (8) 

 
(6) simplifies to 
 

𝑐𝑜𝑣 𝑥, 𝑦 = 	
1
𝑏𝑁

𝑋" −
1
𝑁

𝑋3 + 𝑋5 + ⋯+ 𝑋1 𝑌" −
1
𝑁

𝑌3 + 𝑌5 + ⋯+ 𝑌1

1

"23

 (9) 

 
which is equal to 
 

𝑐𝑜𝑣 𝑥, 𝑦 = 	
1
𝑏𝑁

𝑋" − 𝑋 𝑌" − 𝑌
1

"23

 (10) 

 
Covariance calculated using absolute bacterial load between two taxa, ‘X’ and ‘Y’ is 
 

𝑐𝑜𝑣 𝑋, 𝑌 = 	
1
𝑁

𝑋" − 𝑋 𝑌" − 𝑌
1

"23

 (11) 

 
Thus from (10) and (11) 
 

𝑐𝑜𝑣 𝑥, 𝑦 = 	
1
𝑏
𝑐𝑜𝑣(𝑋, 𝑌) (12) 
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The result of (12) illustrates that when taking into account a constant bacterial load across an ensemble of 
fecal samples, the covariance computed between taxa ‘x’ and ‘y’ and between ‘X’ and ‘Y’ are related to 
each other by a constant—the inverse of the bacterial load. 
 
In our statistical approach, temporally conserved taxon-taxon covariance is computed using fractional 
abundance measurements from month 20 to 60 of postnatal life across the healthy Mirpur cohort. If we 
were to take into account a constant bacterial load across all samples, this covariance matrix would scale 
in a directly proportionate fashion as (12) demonstrates. 
 
The next step in our approach is to apply PCA to the temporally weighted covariance matrix. The first 
step of PCA is to compute the eigenvectors and eigenvalues of the input matrix. We can ask what is the 
effect of proportionately scaling data with respect to identifying eigenvalues and eigenvectors of a 
matrix? Given the temporally weighted covariance matrix C, the way to identify the eigenvalues of C is 
by solving 
 

𝑑𝑒𝑡 𝐂 − 𝜴𝐈 = 0 (13) 
 
where ‘det’ means determinant, I is the identity matrix of the same dimension as C and 𝜴 represents the 
eigenvalues to be solved. As an example, if C is a 2x2 matrix defined as 
 

𝐂 = 𝐶33 𝐶35
𝐶53 𝐶55

 (14) 

 
then substituting (14) into (13) becomes 
 

𝑑𝑒𝑡 𝐶33 𝐶35
𝐶53 𝐶55

− 𝜴 1 0
0 1 = 0 (15) 

 
which equals 
 

𝑑𝑒𝑡 𝐶33 𝐶35
𝐶53 𝐶55

− 𝜴 0
0 𝜴 = 0 (16) 

 
which equals 
 

𝑑𝑒𝑡 𝐶33 − 𝜴 𝐶35
𝐶53 𝐶55 − 𝜴

= 0 (17) 

 
Computing (17) yields 
 

𝐶33 − 𝜴 𝐶55 − 𝜴 − 𝐶35𝐶53 = 0 (18) 
 
To compute the eigenvalues of the matrix C, solve (18) for 𝜴. Expanding (18) yields 
 

𝐶55𝐶33 − 𝜴𝐶33 − 𝜴𝐶55 + 𝜴5 − 𝐶35𝐶53 = 0 (19) 
 
The trace of C (Tr(C), sum of elements on main diagonal of C) is 
 

𝐶33 + 𝐶55 = Tr(𝐂) (20) 
 
The determinant of C is defined as 
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𝐶55𝐶33 − 𝐶35𝐶53 = det	(𝐂) (21) 

 
Therefore (19) can be expressed as 
 

𝜴5 − 𝜴Tr 𝐂 + det	(𝐂) = 0 (22) 
 
Using the quadratic formula to solve for 𝜴 in (22) gives the following solution for the eigenvalues of C 
 

1
2
Tr 𝐂 ± (Tr 𝐂 )5 − 4(det	(𝐂)H = 𝜴 (23) 

 
If the matrix C is scaled by a proportion b, as would be the case for an equal bacterial load across all 
samples, (16) becomes 
 

𝑑𝑒𝑡 𝑏𝐶33 𝑏𝐶35
𝑏𝐶53 𝑏𝐶55

− 𝜴 0
0 𝜴 = 0 (24) 

 
which equals 
 

𝑑𝑒𝑡 𝑏𝐶33 − 𝜴 𝑏𝐶35
𝑏𝐶53 𝑏𝐶55 − 𝜴

= 0 (25) 

 
Computing (25) yields 
 

𝑏𝐶33 − 𝜴 𝑏𝐶55 − 𝜴 − 𝑏5𝐶35𝐶53 = 0 (26) 
 
Expanding (26) yields 
 

𝑏5𝐶55𝐶33 − 𝜴𝑏𝐶33 − 𝜴𝑏𝐶55 + 𝜴5 − 𝑏5𝐶35𝐶53 = 0 (27) 
 
Using the definition of the trace and determinant of matrix C from (20) and (21), (27) can be expressed as 
 

𝜴5 − 𝑏𝜴Tr 𝐂 + 𝑏5det	(𝐂) = 0 (28) 
 
Using the quadratic formula to solve for 𝜴 in (28) gives the following solution for the eigenvalues of C 
scaled by b. 
 

1
2
bTr 𝐂 ± 𝑏5(Tr 𝐂 )5 − 4𝑏5(det	(𝐂)H = 𝜴 (29) 

 
(29) can be simplified to 
 

1
2
𝑏 Tr 𝐂 ± (Tr 𝐂 )5 − 4(det	(𝐂)H = 𝜴 (30) 

 
Using (23) as the solution for the unscaled eigenvalues, 𝜴JKLMNOPQ, and (29) as the solution for the scaled 
eigenvalues, 𝜴LMNOPQ, (23) and (29) can be related to each other by the following 
 

𝑏 𝜴JKLMNOPQ = 𝜴LMNOPQ (31) 
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Thus, taking into account a constant bacterial load across all samples scales the eigenvalues for each 
eigenvector by the constant bacterial load b. If a matrix is scaled by a proportion, we can ask whether this 
affects the eigenvectors (principal components). The fundamental relationship between a square matrix C, 
eigenvector v, and eigenvalue 𝜴 is 
 

𝐶𝐯 = 𝜴𝐯 (32) 
 
If C is scaled by a constant b, 
 

𝑏𝐶 𝐯 = 𝑏 𝐶𝐯 = 𝑏(𝜴𝐯) (33) 
 
Thus, scaling the matrix C does not affect the eigenvectors of the matrix, but only affects their scaling, 
and is a well-known result of linear algebra. An example of this result is shown in fig. S15A,B. 
 
Case 2: All bacterial loads differ across all N microbiota 
 
If bacterial loads are different between samples, the simplification from (6) to (8) no longer holds. Thus, 
as a simple example of how different bacterial loads affect covariance between taxa, assume N = 2. 
Therefore, 
 

𝑐𝑜𝑣 𝑥, 𝑦 = 	
1
2

𝑋3
𝑏3
− 𝑥

𝑋5
𝑏5
− 𝑥

𝑌3
𝑏3
− 𝑦

𝑌5
𝑏5
− 𝑦  (34) 

 
(34) can be expanded to 
 

𝑐𝑜𝑣 𝑥, 𝑦 = 	
1
2
𝑋3
𝑏3
𝑋5
𝑏5
−
𝑋3
𝑏3

𝑥 −
𝑋5
𝑏5

𝑥 − 𝑥 5 𝑌3
𝑏3
𝑌5
𝑏5
−
𝑌3
𝑏3

𝑦 −
𝑌5
𝑏5

𝑦 − 𝑦 5  (35) 

 
Expanding (35) gives 
 

𝑐𝑜𝑣 𝑥, 𝑦 = 	
1

2𝑏3𝑏5
𝑋3𝑋5𝑌3𝑌5 − 𝑋3𝑋5 𝑦 𝑏5𝑌3 + 𝑏3𝑌5 − 𝑋3𝑋5𝑏3𝑏5 𝑦 5

+ 𝑥 𝑦 𝑏5𝑋3 + 𝑏3𝑋5 𝑏5𝑌3 + 𝑏3𝑌5 − 	 𝑥 𝑏5𝑋3 + 𝑏3𝑋5 𝑌3𝑌5
+ 𝑥 𝑏5𝑋3 + 𝑏3𝑋5 𝑏3𝑏5 𝑦 5 − 𝑏3𝑏5 𝑥 5𝑌3𝑌5 + 𝑥 5𝑏3𝑏5 𝑦 𝑏5𝑌3 + 𝑏3𝑌5
+ 𝑏3

5𝑏5
5 𝑥 5 𝑦 5  

(36) 

 
If only fractional abundance is taken into consideration, the covariance between fractional abundance of 
taxa ‘x’ and ‘y’ over N = 2 is 
 

𝑐𝑜𝑣 𝑥, 𝑦 = 	
1
2
𝑥3𝑥5𝑦3𝑦5 − 𝑥3𝑥5 𝑦 𝑦3 + 𝑦5 − 𝑥3𝑥5 𝑦 5 + 𝑥 𝑦 𝑥3 + 𝑥5 𝑦3 + 𝑦5

− 	 𝑥 𝑥3 + 𝑥5 𝑦3𝑦5 + 𝑥 𝑥3 + 𝑥5 𝑦 5 − 𝑥 5𝑦3𝑦5 + 𝑥 5 𝑦 𝑦3 + 𝑦5
+ 𝑥 5 𝑦 5  

(37) 

 
Comparing (36) with (37) shows that taking into consideration differential bacterial load across the two 
samples scales each term in the equations by a combination of the bacterial loads for each sample in a 
non-linear fashion. Thus, unlike the case where a constant bacterial load across fecal samples scales the 
eigenvalues for each eigenvector by the bacterial load, in this case the relationship is a non-linear scaling, 
with the exact value of scaling being dependent on the value of each bacterial load. As illustrated in fig. 
S15C,D using a toy example of differential bacterial load across samples, we see that though the 
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eigenvalues for each eigenvector scale non-linearly, the eigenvectors themselves remain unchanged. 
Mathematically this is consistent with equation (32). If bacterial load is taken into consideration, the input 
values to the covariance calculation will be absolutely different, as shown by (1), but a relative measure 
of whether two taxa co-vary does not change. Mathematically, by equation (32), the set of eigenvalues for 
each eigenvector can be different, but the existence of the set of eigenvectors v (a set of transformed axes 
to represent the data) remains unchanged. The practical interpretation of this result is that taking into 
consideration differential bacterial load will only change the amount of variance represented by the 
principal component. Thus, identification of ecogroup taxa is invariant to differential bacterial load. 
 
Dietary practices  
The daily diets of members of the 5-year Mirpur birth cohort were recorded from postnatal day 1 through 
60 months. Diet profiles of each of the 37 individuals are shown in fig. S8A-C where a dietary transition 
is defined if a new diet category was consumed for ≥30 days.  
 
Generating RF-derived models of gut microbiota development in healthy members of birth cohorts 
representing geographically distinct regions and anthropologic characteristics 
MAL-ED is a network of eight study sites, located in low-income countries, dedicated to assessing the 
impact of enteric infections that alter gut function and impair the growth and development of infants and 
children. To define the extent to which age-discriminatory taxa are shared between infants and young 
children, we generated V4-16S rDNA datasets from fecal samples collected monthly for the first 2 
postnatal years from members of MAL-ED birth cohorts with healthy growth phenotypes living in Loreto, 
Peru, Vellore, India, Fortaleza, Brazil and Venda, South Africa [n=22.4±2.8 (mean ± SD) fecal 
samples/child; total of 1639 samples; table S4]. ‘Healthy’ in these sites was defined as height-for-age and 
weight-for-height Z-scores (HAZ, WHZ) consistently no more than 1.5 standard deviations below the 
median calculated from a WHO reference healthy growth cohort (36). Bacterial V4-16S rDNA reads were 
grouped into 97%ID OTUs. 
 Using the 16S rDNA dataset and a sparse 2-year, 30 OTU RF-derived model generated from 25 
healthy members of the Bangladeshi birth cohort in Gehrig et al. (21), we determined that a minimum of 
12 individuals would be required to construct a model with comparable performance (fig. S9A-C). Based 
on this result, we generated RF-derived models of gut development from the sufficiently powered Indian 
and Peruvian datasets (fig. S9D,E; table S12). Limiting models to 30 OTUs with the top ranked feature 
importance scores had only minimal impact on accuracy (i.e., the models were within 1% of the mean 
squared error obtained using all OTUs). Therefore, our subsequent analyses used sparse site-specific RF-
generated models that were each comprised of their 30 top-ranked 97% ID OTUs. The Peruvian and 
Indian models shared 13 OTUs, and 16 and 15 OTUs with the Bangladeshi model, respectively (fig. 
S9D,E). 
 We created a sparse ‘aggregate’ model from bacterial 16S rDNA datasets generated from all but the 
Bangladeshi birth cohort (i.e., the MAL-ED cohorts from India, Peru, Brazil and South Africa) (fig. 
S9F,G). To balance the representation of each site’s contribution to the aggregate model, seven of the 
most densely sampled healthy individuals from each of the four sites were selected (see Methods; n=599 
fecal samples). The resulting RF-derived aggregate model contained 17 of the 30 OTUs present in the 
sparse 2-year Bangladeshi RF-derived model, and 18 and 16 of the OTUs in the sparse Indian and 
Peruvian models, respectively (also see fig. S9H). 
 
Sensitivity analyses of the workflow for identifying ecogroup taxa 
We performed a sensitivity analysis of the workflow described in Fig. 1A-C. Specifically, we compared 
the projections along PC1 shown in Fig. 1C with results obtained (i) using unrarefied 16S rDNA data, (ii) 
considering compositional data from postnatal months 1 to 60 versus months 20 to 60, and (iii) using 
different thresholds for monthly covariance binarization. 
 The merits of rarefaction have been the source of extensive discussion in analyzing microbiota 
compositional data. While certain methods advocate using unrarefied, raw count data, other studies have 
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argued rarefaction is a useful normalization method prior to ordination (6,37,38). The output of our 
workflow is the projection of each taxon onto PC1 of a temporally weighted covariance matrix (Fig. 1C). 
We found a linear relationship between the PC1 projections computed using unrarefied versus rarefied 
compositional data (Pearson r2 value of 0.98; fig. S16A, table S13A) indicating that rarefaction does not 
affect our identification of consistently co-varying taxa in the ecogroup. 
 The framework of our workflow was to calculate conserved covariance within microbiota that had 
achieved a degree of stability with respect to their community structure. This required us to perform iPCA 
on the longitudinal Bangladeshi birth cohort in order to identify a starting month for the analysis. Fig. 
S4B,C shows why we selected months 20 to 60. Choosing months 1 through 60 as compared to months 
20 through 60 results in a similar pattern of taxa projections along PC1 but compresses the dynamic range 
of these projections (fig. S16B, table S13B). Choosing months 25 or 30 through 60 as compared to 
months 20 through 60 results in a similar pattern of taxa projections along PC1 (fig. S16C,D, table 
S13B). 
 In our workflow, monthly covariance values were binarized according to the top and bottom 10% of 
the distribution of covariance values. We performed a perturbation analysis of this threshold, evaluating 
the taxa projections onto PC1 for the top and bottom 5%, 20%, and 30%. Identification of ecogroup taxa 
is robust to changes in threshold choice; fig. S16E-G demonstrates that varying this threshold affects the 
dynamic range but not the order of taxa projections along PC1, particularly at the lower threshold (30%) 
(table S13C).  
 
Comparing the approach described in Fig. 1A with two other methods, SPIEC-EASI and SparCC, 
for defining taxon interaction networks in the gut microbiota  
SPIEC-EASI (10) seeks to create an interaction graph using cross-sectional data by first applying the 
centered log-ratio transform then inferring the interaction graph by computing the inverse of a taxon-
taxon covariance matrix. The mathematical basis of this method is a well-known approach for solving 
what is termed ‘the inverse problem’; i.e. inferring system interactions from correlations (39,40). SparCC 
(9) seeks to infer correlations between the abundances of taxa by first log-transforming community 
compositional data, thereby maintaining sub-compositional coherence, and then mathematically solving 
for the correlation coefficient that emerges from computing the variance of the log-ratio between 
abundances of any two taxa. Importantly, SparCC is meant to be used on observed counts, since 
normalization may generate unreliable results for rare OTUs (9).  
 We applied each method to 16S rDNA datasets generated from members of the healthy Bangladeshi 
birth cohort from postnatal months 1 to 60. Taxon-taxon monthly interaction matrices generated by 
SPIEC-EASI and covariance matrices produced by SparCC were then averaged from months 20 to 60 
(table S6A,C). PCA was performed on the resulting matrices to identify 15 taxa that interact (SPIEC-
EASI) or co-vary (SparCC) in a temporally conserved fashion (table S6B,D). These taxa were validated 
using the same criteria as for the ecogroup; namely, the ability to describe (i) healthy gut microbial 
development in children residing in Bangladesh, (ii) the configurations of SAM and MAM microbiota, 
and (iii) the effects of standard treatment on SAM microbiota and MDCF interventions on MAM 
microbiota.  
 Taxon projections along PC1 resulting from SparCC show a high degree of concordance with the 
taxon projections resulting from our workflow shown in Fig. 1C (Pearson r2 value of 0.7, see fig. S11A, 
table S6B).  Eight of the 15 taxa identified by SparCC are ecogroup taxa (fig. S11A). The 15 SparCC 
taxa recapitulate the dynamics of healthy microbiota development in the Bangladeshi birth cohort with 
movement along PC1 corresponding to the chronological age of the donor of the fecal sample (fig. S11B); 
this result is driven primarily by the presence of B. longum (OTU 559527). Moreover, configurational 
changes in the microbiota of children with SAM before and after treatment defined by the 15 SparCC 
identified taxa demonstrate a similar pattern of movement in PCA space as that described by the 15 taxa 
identified in our workflow (compare fig. S11C with Fig. 3A). This result is due to the inclusion of taxa 
that characterize differences in the SAM microbiota as a function of time and treatment, namely B. 
longum (559527), Bifidobacterium (484304), S. gallolyticus (349024), and F. prausnitzii (514940) (Fig. 
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3C). Reducing the stringency of inclusion to the 21 SparCC taxa that project most significantly onto PC1 
captures the two ecogroup P. copri OTUs (588929 and 840914).   
 PCA performed on the temporally averaged interaction matrix produced by SPIEC-EASI revealed 
two significant principal components (fig. S12A,B, table S6D); PC1 isolates Prevotella species while 
PC2 distinguishes P. copri OTUs 588929 and 840914. The 15 taxa that project significantly onto PC1 
computed using the SPIEC-EASI workflow comprise 6 ecogroup taxa and 9 non-ecogroup taxa (table 
S6E). See the main text and fig. S11 and fig. S12 for a comparison of these approaches and the approach 
shown in Fig. 1A in characterizing (i) healthy gut microbiota development and (ii) the effects of treatment 
on the configurations of fSAM- and MAM-associated microbiota.  
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SUPPLEMENTARY FIGURES 
 

 
 
fig. S1. A comparison of taxonomic assignments generated by QIIME and Amplicon Sequence 
Variants (ASVs) by DADA2. Sensitivity analysis directly comparing taxonomic assignments using 
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OTUs versus amplicon sequence variants (ASVs) (15, 16). (A) Summary of workflow. An ASV database 
is created by running all datasets described in this report and Gehrig et al. (21) through the DADA2 
pipeline. Fifteen ASVs are randomly chosen; for each ASV, a V4-16S rDNA sequence that has 100% 
identity with the ASV is defined as the ‘primary OTU sequence.’ For each ‘primary OTU sequence’, a 
library of 1000 sequences with at least 97% identity is generated. Each sequence in each library is then 
compared to the ASV database and the ASV with the maximum sequence identity (MSI) is noted. If the 
MSI ASV corresponds to the ASV from which the ‘primary OTU sequence’ was generated (defined as 
the ‘correct ASV’), the sequence in the library is given a ‘1’; otherwise, the sequence in the library is 
given a ‘0’. An average score is computed for the entire library. The process of library generation and 
sequence score designation is repeated 10 times and an overall average is computed. This average 
represents the probability of assigning the ‘correct ASV’ to the ‘primary OTU sequence’ given a 
sequence divergence of ≤ 3%. (B) 10 separate iterations of the procedure described in panel A were 
conducted, each generating 15 randomly chosen sequences from the ASV database. Corresponding 
‘primary OTU sequences’ were identified from all birth cohorts studied. The probability of detecting the 
‘correct ASV’ for each of the 15 randomly chosen ‘primary OTU sequences’ is shown in the barplot with 
errors corresponding to the standard deviation of the probability. (C,D) The procedure described in panel 
A applied to the 15 ecogroup taxa (panel C) and the 30 taxa comprising the 2-year sparse Bangladeshi 
RF-generated model (panel D). 
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fig. S2. Gut microbiota development in healthy members of the Mirpur birth cohort sampled 
monthly from postnatal months 1 through 60. (A,B) UniFrac, a beta-diversity dissimilarity metric that 
measures the degree to which any two communities share branch length on a bacterial phylogenetic tree, 
was used to calculate the degree of dissimilarity between each sampled child’s fecal microbiota at each 
timepoint of fecal collection (n = 36 individuals; 1961 samples) relative to samples profiled from 
unrelated adults who also lived in Mirpur (n = 12 males, 49 samples). Unweighted (panel A) and 
weighted UniFrac (panel B) distances are plotted as mean values ± SD. As a reference control, the 
distances between adult samples relative to one another are shown. (C,D) Alpha-diversity metrics 
[Shannon diversity index (SDI) and Phylogenetic diversity (PD)] plotted as mean values ± SD for each 
monthly age bin and for adult samples. 
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fig. S3. A Random Forests (RF)-derived model of gut microbiota development based on a 60-month 
period of monthly sampling of healthy members of a Mirpur birth cohort. (A) Performance of RF-
derived models (based on R2 of validation set) with varying numbers of children in the training set. The 
R2 reaches its maximum with 17 subjects; therefore, 17 individuals were included in the training set for 
the final RF-derived model. (B,C) Training and validation of the 5-year RF-derived model. Each point 
represents a fecal sample collected from a child randomized to the training set (panel B) and validation set 
(panel C). (D) The top-ranked age-discriminatory taxa in the 5-year RF-generated model based on feature 
importance scores. Taxa highlighted in green are members of the ecogroup (Fig. 1C). (E) Heatmap of the 
monthly distribution of relative abundances of age-discriminatory taxa. 
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fig. S4. Schematic of iterative PCA (iPCA) procedure and results of iPCA using fecal samples from 
months 36 or 60 as reference. (A) Workflow. Fractional abundances of taxa are determined in 
microbiota sampled from healthy members of the birth cohort at different time points (1 to n). In this 
example, time point 1 considers two datasets (time point 1 and a reference time point). The dissimilarity 
between the two time points is reflected in the primary principal component (PC1). The system is 
considered to be stable at the time point where adding further time-series data negligibly contributes to 
data variance (mathematically, when the eigenvalue of PC1 reaches an asymptote). (B) Results of iPCA 
applied to fecal samples using month 36 as the reference time point. The y-axis, termed ‘Microbiota 
Dissimilarity Index’, is a measure of how dissimilar a time point is relative to the reference time point and 
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is mathematically defined by the eigenvalue of PC1 obtained via iPCA. The arrow highlights the 
‘Microbiota Dissimilarity Index’ of postnatal month 20. The inset presents the derivative of the data with 
respect to time. (C) A similar analysis to that shown in panel B but with month 60 used as the reference 
time point. 
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fig. S5. Workflow for identifying co-varying bacterial taxa at postnatal month 60 in healthy 
members of the Mirpur birth cohort. (A) The fractional abundances of 118 taxa (97% ID OTUs; rows) 
in the fecal microbiota of healthy children (columns) sampled at postnatal month 60. (B) A taxon-taxon 
covariance matrix with superimposed distribution of average fractional abundances for each of the 118 
taxa. Red, white, and blue pixels indicate positive, no, and negative covariance, respectively, between two 
taxa (Cov(i,j) value). As an example, B. longum (green bar) positively covaries with L. ruminis (red bar 
and red box) and negatively covaries with Ruminococcus and Clostridiales (blue bars and boxes). Overall, 
most taxa display independent variance (white pixels) with only a small subset exhibiting covariance. (C) 
Hierarchical clustering of data in panel B illustrates the sparsity of covariation within the dataset. The 
most co-varying taxa (highest Cov(i,j) values) are shown in the expanded view of the matrix. (D) 
Covariance values are normalized against the maximum covariance value in panel B and plotted as a 
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histogram. The red line represents a t-location scale distribution. The results further confirm the small 
number of significantly co-varying taxa. 
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fig. S6. Ecogroup taxa show a high degree of coupling to other ecogroup taxa. (A) Matrix where 
columns represent the postnatal month when fecal samples were obtained from healthy members of the 
birth cohort, and rows represent 80 bacterial taxa ordered by the value of their projection onto PC1 as 
indicated in Fig. 1C. Pixel intensity represents the number of connections for a given taxon where 
‘connections’ are defined as the number of significant covariance values. For network graphs such as 
those shown in Fig. 1E, the number of connections for a node is termed the ‘degree’. (B) An example of 
covariance of an ecogroup member, Streptococcus gallolyticus, with ecogroup and non-ecogroup taxa 
over time. The y-axis plots ‘percent degree saturation’ a term that indicates number of connections 
observed divided by the total number of possible ecogroup connections or non-ecogroup connections. 
Across all months, S. gallolyticus exhibits a high percent degree saturation to ecogroup (red) taxa 
compared to non-ecogroup taxa (blue). (C) Averaging the percent degree saturation over all months for 
the 76 taxa with non-zero degree distributions illustrates that ecogroup taxa (red) preferentially co-vary 
with each other. 
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fig. S7. Characterization of the fecal microbiota of healthy Bangladeshi infants sampled at postnatal 
months 1, 4, 40 and 60. (A) Fecal samples collected at postnatal month 1 are compared based on a PCA 
analysis using all taxa, ecogroup taxa, or non-ecogroup taxa analogous to the procedure used in Fig. 2. 
The ecogroup taxa capture the pronounced interpersonal variation present at month 1. The heatmap shows 
the fractional representation of these ecogroup taxa in all 38 individuals. (B) Results obtained at postnatal 
month 4 shows a reduction in interpersonal variation in microbiota configurations. (C) The distribution of 
fecal microbiota collected at postnatal months 40 and 60 in the PCA spaces displayed show a similar 
distribution to that of postnatal month 20 samples shown in Fig. 2A. 
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fig. S8. Dietary transitions in members of the healthy Mirpur cohort. (A) Sample diet profile of a 
cohort member. Dietary history and transitions can be measured as a function of postnatal day. Diet 
categories were defined as follows; (i) breast milk (BM) only, (ii) BM plus cow’s milk or reconstituted 
powdered bovine milk (BM + CM/PM), (iii) BM plus Rice/Atta (wholemeal wheat flour) powder, (iv) 
CM/PM only, (v) Rice/Atta gruel/powder, (vi) BM plus Rice/Atta plus CM/PM, (vii) CM/PM plus 
Rice/Atta gruel/powder, (viii) other Family Food, (ix) BM plus CM/PM plus Rice/Atta gruel/powder, or 
(x) BM plus other Family Food. (B) A ‘transition’ matrix where each pixel represents the probability of 
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seeing a transition to a new diet category from the row to the column. Because of the hysteretic nature of 
dietary history, this transition matrix is not symmetric. (C) A histogram of all pixels in the matrix in panel 
B shows that only a few diet transitions are observed with a high probability. Numbers in parenthesis 
after each listed category represent the average month of dietary transition. 
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fig. S9. Random Forests (RF)-derived sparse 2-year models of gut microbiota development in 
healthy members of birth cohorts from Bangladesh, India and Peru. (A) Sparse (30 OTU) RF-
derived model generated from healthy members of the Mirpur birth cohort (n = 25 individuals; 539 fecal 
samples) in which OTUs are ranked in descending order of their importance to the accuracy of the model. 
The x-axis plots the increase in mean-squared error when abundance values from each OTU are randomly 
permuted. The inset shows the cross-validation curves that result from reducing the number of 97% ID 
OTUs used for model training. (B,C) Sample size estimation for RF-derived model training. Subsampling 
of the training set of healthy Bangladeshi children (n = 25) was performed and validated on a separate set 



 25 

of 25 children in this 2-year birth cohort study. As the number of children incorporated into a model is 
reduced, there is a reduction in Pearson’s correlation coefficient (panel B) and an increase in the mean-
squared error rate (panel C). These effects plateau when ≥12 children are included in the model training. 
(D,E) Sparse RF-derived models generated from members of birth cohorts, sampled monthly, living in 
Vellore, India (331 fecal samples from 14 individuals; panel D) and Loreto, Peru (505 fecal samples from 
22 individuals; panel E), (F) ‘Aggregate’ model generated by combining V4-16S rDNA datasets 
generated from monthly fecal samples collected during the first 2 years of postnatal life from members of 
the Peruvian, Indian, Brazilian and South Africa birth cohorts. (G) Heat map showing temporal changes 
in the mean relative abundances of age-discriminatory OTUs comprising the sparse ‘aggregate’ RF-
derived model. (H) Reciprocal tests of the various RF-derived models of gut microbiota development. R2 
values shown for the Pearson correlation between microbiota age and chronological age were calculated 
using the indicated RF-derived model and birth cohort. 
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fig. S10. Characterization of the fecal microbiota of healthy members of Indian and Peruvian birth 
cohorts. (A-D) Fecal samples collected at postnatal months 1, 4, 10, 20, and 25 are compared based on a 
PCA analysis using all taxa identified in the fecal microbiota of members of the two birth cohorts (1459) 
and the 15 ecogroup taxa, analogous to the procedure used in Fig. 2A and fig. S7. PCA plots are shown 
for the Indian cohort (panels A and B) and the Peruvian cohort (panels D and E). Comparing panels C 
(India) and F (Peru) with Fig. 2B reveals similar temporal patterns of change in the fractional 
representation of ecogroup taxa in healthy members of the Indian, Peruvian, and Bangladeshi birth 
cohorts. 
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fig. S11. SparCC-based analyses. (A) The SparCC computational workflow was applied to the 
Bangladeshi birth cohort (see Supplementary Results for details). Monthly covariance matrices generated 
for postnatal months 20 to 60 were averaged and the resulting covariance matrix was subject to PCA. 
Taxon projection along PC1 as computed using the SparCC workflow and temporally conserved 
covariance is plotted. (B) The 15 taxa that project most significantly onto PC1 computed by SparCC were 
used to analyze the temporal pattern of gut microbiota development analogous to that described in Fig. 
2A. For postnatal months 4, 10, 20, 40 and 60, fecal microbiota are plotted on a PCA space to illustrate 
temporal changes in the community. (C) The 15 taxa that most significantly project onto PC1 computed 
by SparCC are used to ordinate a PCA plot, analogous to the one shown in Fig. 3A in order to compare 
the fecal microbiota of children with SAM and MAM prior to and after administration of therapeutic 
foods. Abbreviation; d/c, discharge from in-hospital nutritional rehabilitation unit. 
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fig. S12. SPIEC-EASI-based analysis. The SPIEC-EASI computational workflow was applied to the 5-
year healthy Bangladeshi birth cohort. Monthly taxon-taxon interaction matrices were generated for 
postnatal months 20 to 60 and averaged. The resulting temporally-averaged interaction matrix was subject 
to PCA. (A) Eigenspectrum of the temporally averaged interaction matrix. Two principal components 
capture 39% of the data variance. (B) Two P. copri OTUs and two Prevotella OTUs contribute 
significantly to taxon projections along PC1 and PC2; these two P. copri strains and one of the two 
Prevotella OTUs are also ecogroup taxa. (C) The 15 taxa that most significantly project onto PC1 
computed by SPIEC-EASI were used to analyze the temporal pattern of gut microbiota development in a 
a manner analogous to the approach described in Fig. 2A. (D) The 15 taxa that most significantly project 
onto PC1 were used to ordinate a PCA plot in a manner analogous to Fig. 3A in order to evaluate the 
effects of treatment on the fecal microbiota of children with SAM and MAM. 
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fig. S13. Characterization of the fitness of ecogroup strains in the intestines of gnotobiotic piglets.  
(A) Description of experimental design showing the order of presentation of the different cultured strains 
as a function of postnatal day and diet. Designations for the strains shown in parenthesis are abbreviations 
used in Fig. 4, Fig. 5, and panel B of this figure. (B) Fractional representation of strains in different 
regions of the intestine as defined by shotgun sequencing (COPRO-Seq) of DNA prepared from luminal 
contents harvested at the time of euthanasia when fully-weaned animals were consuming the Mirpur-18 
diet. Strains are hierarchically clustered according to their biogeographical patterns. 
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fig. S14. Creation of enrichment matrix from microbial RNA-Seq data. (A) Workflow. Normalized 
transcript counts (TPM) are aggregated into mcSEED subsystem/pathway modules. An mcSEED count 
matrix, M, is created where each row is an mcSEED metabolic module, each column is a strain, and the 
element within the matrix is the summed transcript level for all genes belonging to a particular mcSEED 
metabolic module. A pseudocount of 20, the lowest non-zero value within the matrix, is added to each 
cell in the matrix. Each column is log-normalized against a chosen reference to create an mcSEED 
enrichment matrix, ME. (B) The count and enrichment matrices, M and ME respectively, are shown for all 
strains (columns) and all mcSEED metabolic modules (rows). The green arrow in the enrichment matrix 
delineates P. copri as the chosen reference strain. (C) The mathematical relationship between strain and 
mcSEED metabolic module. The relationship within strains (n = 18) is given by the 18x18 correlation 
matrix Fij. The relationship within mcSEED metabolic modules (n = 81) is given by the 81x81 correlation 
matrix Xij. The equation for eigendecomposition of each correlation matrix is shown. Singular value 
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decomposition relates the two correlation matrices by transforming the enrichment matrix (ME, 81x18) 
into a product of three different matrices. U and V are matrices of the left and right singular vectors from 
the mcSEED metabolic module and strain correlation matrices respectively. They are related by the 
singular values E1/2. (D) Histogram of mcSEED projections along the first left singular value. The 
mcSEED metabolic modules that project to the left of the dashed red line are metabolic modules with low 
mcSEED enrichment scores in the Bifidobacterium strains relative to that of P. copri. These metabolic 
modules were considered for the analysis shown in Fig. 5B (table S11). 
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fig. S15. Considering the effect of bacterial load on identifying groups of co-varying taxa by PCA. 
(A) A sample 4 by 4 unscaled matrix is shown with values ranging from -1 to 1 (upper portion of panel 
A). The eigenspectrum of this matrix is displayed showing 4 eigenvectors (Ev) with corresponding 
eigenvalues. The columns of this matrix are scaled to represent a constant bacterial load across all fecal 
samples (lower portion of panel A). The eigenspectrum of the scaled matrix is displayed. (B) The 
eigenvalues of the scaled and unscaled eigenvectors are plotted against each other, illustrating a perfectly 
linear relationship. (C) Differential scaling of the unscaled matrix in panel A is performed to represent 
different bacterial loads across fecal samples. The unscaled and differentially scaled matrices and 
eigenspectra are shown. (D) The eigenvalues of the unscaled and differentially scaled eigenvectors in 
panel C are plotted against each other, illustrating a near-linear relationship. See Supplementary text for a 
mathematical description. 
  



 38 

 
 
fig. S16. Sensitivity analysis of workflow for identifying ecogroup taxa. (A) PCA was performed on a 
temporally conserved covariance matrix using unrarefied data as input, and taxon projections along PC1 
were subsequently computed. These taxon projections (x-axis) are plotted against taxon projections 
computed using fractional abundance data (y-axis, Fig. 1C). (B-D) The workflow for identifying 
ecogroup taxa described in the text considers fractional abundance data from postnatal months 20 to 60. 
Taxon projections along PC1 of a temporally conserved covariance matrix computed using months 1 to 
60 (panel B), 25 to 60 (panel C), and 30 to 60 (panel D) are shown on the y-axis and plotted against the 
taxon projections computed considering months 20 to 60 (x-axis). (E-G) Taxon projections along PC1 of 
the temporally conserved covariance matrix are computed by varying the threshold at which monthly 
covariance matrices were binarized [10% (panel E), 40% (panel F), and 60% (panel G); y-axis]; the 
results are plotted against a 20% binarization threshold (x-axis).   
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