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Systems level profiling of arginine starvation
reveals MYC and ERK adaptive metabolic
reprogramming
Caitlyn B. Brashears1, Meltem Barlin1, William R. Ehrhardt1, Richa Rathore 1, Matthew Schultze1, Shin-Chen Tzeng1,
Brian A. Van Tine 1,2 and Jason M. Held 1,2,3

Abstract
Arginine auxotrophy due to the silencing of argininosuccinate synthetase 1 (ASS1) occurs in many carcinomas and in
the majority of sarcomas. Arginine deiminase (ADI-PEG20) therapy exploits this metabolic vulnerability by depleting
extracellular arginine, causing arginine starvation. ASS1-negative cells develop resistance to ADI-PEG20 through a
metabolic adaptation that includes re-expressing ASS1. As arginine-based multiagent therapies are being developed,
further characterization of the changes induced by arginine starvation is needed. In order to develop a systems-level
understanding of these changes, activity-based proteomic profiling (ABPP) and phosphoproteomic profiling were
performed before and after ADI-PEG20 treatment in ADI-PEG20-sensitive and resistant sarcoma cells. When integrated
with metabolomic profiling, this multi-omic analysis reveals that cellular response to arginine starvation is mediated by
adaptive ERK signaling and activation of the Myc–Max transcriptional network. Concomitantly, these data elucidate
proteomic changes that facilitate oxaloacetate production by enhancing glutamine and pyruvate anaplerosis and
altering lipid metabolism to recycle citrate for oxidative glutaminolysis. Based on the complexity of metabolic and
cellular signaling interactions, these multi-omic approaches could provide valuable tools for evaluating response to
metabolically targeted therapies.

Introduction
The silencing of argininosuccinate synthetase 1 (ASS1)

expression disrupts the urea cycle in many types of can-
cer1–4. Importantly, loss of ASS1 expression renders
cancer cells dependent on extracellular arginine, as de
novo arginine synthesis is reliant on ASS14. While the
adaptive function of ASS1 silencing is not yet fully
understood, current data suggest that it is beneficial for
the production of biomass5,6. Cancers that silence ASS1
have been shown to have a more aggressive clinical

course, as silencing is associated with poorer overall
survival and metastasis-free survival in numerous sub-
types of cancer7–10.
To exploit this metabolic deficiency, multiple arginine

destruction enzymes have been developed, including
arginase, arginine decarboxylase, and arginine deimi-
nase1,11. The most clinically relevant is PEGylated argi-
nine deiminase (ADI-PEG20), which is currently in
clinical trials12. ADI-PEG20 converts extracellular argi-
nine to citrulline, which cannot be metabolized into
arginine in the absence of ASS113–15. Early development
of ADI-PEG20 as a monoagent failed to demonstrate a
survival advantage, likely due to the rapid re-expression of
ASS1 in tumors16. Due to the high adaptability of tumor
metabolism, most metabolically active drugs are not
effective when used as monoagents15. However, investi-
gations of the metabolic reprogramming that ASS1-
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negative tumors undergo as they re-express ASS1 have
revealed additional vulnerabilities in ADI-PEG20 sensitive
sarcomas7,8,15,17. To date, many of these studies have
relied upon metabolomic and genetic stratigies to
understand the development of resistance to ADI-PEG20
treatment in ASS1 negative tumors. However, given the
complex nature of cell signaling and cellular metabolism,
other “omics” techniques, such as proteomics, may pro-
vide additional insight into threapeutically actionable
targets.
Proteomic profiling can assess multiple potential

aspects of protein regulation, such as protein abundance
or protein post-translational modifications18–20. Alter-
natively, activity-based proteomic profiling (ABPP) can
evaluate changes in protein activity21, kinase activity22, or
ligand binding events23. Changes in protein expression or
protein-protein interactions invariably contribute to
ABPP as well24–26. Ultimately, ABPP integrates multiple
informative proteomic parameters and provides a broad
view of proteomic regulation. For example, ABPP can
identify adaptive kinomic changes based on either altered
kinase expression or activity22.
The mechanisms of developing resistance to arginine

starvation in sarcomas have been partially defined, and
include stabilization of nuclear Myc17, and increased
glutamine anaplerosis in order to produce aspartate15. In
addition, others have examined mechanisms of ASS1 re-
expression27,28 and Deptor regulation29. However, the
underlying proteomic changes that initiate these events
and coordinate metabolic reprogramming remain
unknown. We pursued systems biology profiling to
understand resistance to arginine starvation, as these
approaches have proven effective in delineating the
adaptive changes involved in highly pleiotropic pheno-
types such as drug resistance30,31, Myc activation, and
various metabolic changes32,33.
To understand ADI-PEG20-resistance of ASS1-negative

sarcomas at a systems level, we performed multi-omic
profiling using phosphoproteomics and activity-based
proteomics, and coupled these data with existing meta-
bolomic analyses15. ADI-PEG20-senstive leiomyosarcoma
cells (SKLMS-1) have a much more dynamic phospho-
proteomic response to ADI-PEG20 than a resistant
angiosarcoma cell line (PCB-011). This includes increased
phosphorylation of PDHA (pyruvate dehydrogenase) at
Ser293, that inhibits entry of pyruvate into the mitochon-
drial TCA cycle via decarboxylation15. ABPP profiling
reveals that glutamine anaplerosis is facilitated by pro-
teomic changes that drive the production of OAA (oxa-
loacetate) by glutamine and by anaplerotic carboxylation
of pyruvate, as well as the inhibition of lipid metabolism
to recycle citrate to the TCA cycle. In addition, ABPP
profiling reveals a Myc–Max transcriptional network that
is regulated by adaptive changes in MAPK1 and MAPK2

upon ADI-PEG20 treatment in SKLMS-1 cells. Therefore,
we have demonstrated that multi-omic profiling can be
utilized to delineate systems-level regulatory signaling
networks mediating drug sensitivity and resistance. Due
to the complex nature of metabolic and cell signaling
interactions, these approaches could provide valuable
tools for evaluating resistance and escape to metabolically
targeted cancer therapies.

Materials and methods
Materials
All materials were from Sigma unless otherwise noted.

ActivX desthiobiotin ATP kinase enrichment kit and BCA
assay were from Pierce. Mass spec grade trypsin was from
Promega. Amicon Ultra Centrifugal Filters and C18 zip-
tips were from Millipore. Bondbreaker TCEP, 5 mL 7 K
MWCO Zeba spin desalting columns, and formic acid
were from ThermoFisher. Oasis HLB 1 cc extraction
columns were from Waters. Lysis buffer for phosphor-
ylation analysis was from Cell Signaling Technologies.
Sequencing grade trypsin was from Promega. Ni-NTA
agarose beads were from Qiagen. MEM (11095-072) and
Penicillin-Streptomycin (15140122) for cell culture were
from ThermoFisher Scientific. Fetal Bovin Serum for cell
culture was obtained from R&D Systems (S111560). The
antibodies used in the immunoassays are as follows: ASS1
(Polaris), ERK1/2 (CST 4695), phospho-ERK1/2 (Thr202/
Tyr204) (CST 4370), cMyc (Abcam ab11917), phospho-
cMyc (S62) (abcam ab51156).

Cell culture
SKLMS-1 was acquired from ATCC. PCB-011 was

generously provided by Dr. Charles Keller (Children’s
Cancer Therapy Development Institute). SKLMS-1 and
PCB-011 were cultured at 37 °C in 5% CO2 in Minimum
Essential Media (MEM) supplemented with 10% fetal
bovine serum (FBS), penicillin–streptomycin (1:1000),
and plasmosin (InvivoGen ant-app). Cells were confirmed
to be mycoplasma negative with the mycoalert kit (Lonza
LT07-418). SKLMS-1 LTAT cell lines were generated as
previously described15. NucRed Cell lines were generated
with IncuCyte NucLight Red Lentivirus Reagent (EF-1
Alpha Promoter, Puromycin selection, cat. No. 4476)
according to manufactor protocol.

Proliferation and cell death assays
For analysis of cellular response to treatment with ADI-

PEG20, SKLMS-1 and PCB-011 were seeded at 2500 cells
per well in a 96-well plate one day prior to the assay.
Phenol red free media containing 10% FBS and 2mM
glutamine was pretreated with 1 µg/mL of ADI-PEG20 on
day prior to the assay. On the day of the assay, the media
was exchanged for ADI-PEG20 pretreated media or
phenol free media in the untreated control.
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For evaluation of SKLMS-1 response to inhibition of
ERK and cMyc signaling pathways NucRed SKLMS-1 WT
and LTAT cell lines were utilized. In brief, SKLMS-1 WT
and LTAT cell lines were seeded at 5000 cells/well in a
96-well plate 1 day prior to treatment. Phenol red free
media containing 10% FBS and 2mM glutamine was
pretreated with 1 µg/mL of ADI-PEG20 for 24 h. On the
day of the assay the media was exchanged with media
containing 50 nM YOYO-1 Iodide (ThermoFisher Y3601)
and: untreated phenol free media, ADI pretreated phenol
free media, 1.6 µM Trametinib (LC Laboratories T-8123),
and/or 5 µM 10058-F4 (Selleckchem S7153). Cell pro-
liferation was measured using NucRed nuclear counts.
Cell Death was measured using YOYO-1 Iodide counts.
Percent Cell death was calculated by normalizing YOYO-
1 Iodide counts to the total number of cells in the well. All
images were collected using the IncuCyte Live Cell Ima-
ging System and data was analyzed using IncuCyte S3
imaging software (Sartorius Ann Arbor, MI).

Immunoassays
For analysis of protein expression cells were seeded at

200,000 cells per well in a 10 cm dish and MEM was
pretreated with ADI-PEG20 (1 µg/mL) for 24 h. On the
day of the assay the media was exchanged for ADI-PEG20
pretreated media or fresh MEM in the untreated control.
After 72 h of treatment cells were lysed with 1× cell lysis
buffer (9803, Cell Signaling Technology). Lysates were run
on a ProteinSimple Wes automated western blot using the
instrument default settings and the ProteinSimple stan-
dard protocol. Protein Simple Compass was utilized for
the data analysis.

ABPP using ATP resin
Cells in a 10 cm dish were lysed and assayed using the

Pierce kinase enrichment kit with the ActivX
desthiobiotin-ATP probe per manufacturer’s instructions
and prepared for liquid chromatography–mass spectro-
metry (LC–MS). Three independent biological replicates
were performed. Briefly, cells were treated with ADI-
PEG20 for 72 h, trypsinized and pelleted at 1000×g for
5 min. The pellet was washed once with 5 mL PBS and
lysed in 1mL Pierce IP lysis buffer with the included
protease/phosphatase inhibitors added. Lysates were
desalted with 5 mL 7 K MWCO Zeba according to man-
ufacturer’s instructions, diluted to 2mg/mL in lysis buffer,
and labeled with 20 µM desthiobiotin-ATP for 10min at
room temperature. Proteins were enriched with the IP
lysis buffer plus 8M urea with 50 µL 50% slurry of the
high capacity streptavidin sepharose included in the kit,
rotating end-over-end for 1 h. Resin was washed 3 times
with lysis buffer supplemented with 4M urea prior to
elution with 500 µL 0.5% sodium dodecyl sulfate, 1% B-
mercaptoethanol in 0.1M Tris pH 6.8 and heated at 95 °C

for 5 min. A second, identical elution was performed and
combined with the first. Lysates were reduced (10 mM
DTT, 25min, 60 °C), alkylated with iodoacetamide
(18 mM, 30min) and concentrated with Millipore Ami-
con Ultra spin columns (UltraCel, 10 K MWCO). Proteins
were precipitated with 5 volumes MeOH:chloroform (4:1,
v/v). The interphase was isolated, washed with MeOH,
and proteolyzed with 1.25 µg trypsin in 78 µL of 2%
acetonitrile overnight at 37 °C at 900 rpm. Samples were
acidified with 0.5% formic acid, desalted with C18 zip tips
(0.6 µL resin), eluted with 80% acetonitrile, 0.5% formic
acid prior to vacuum concentrated to near dryness prior
to LC–MS analysis.

IMAC enrichment of phosphopeptides
Three independent biological replicates were per-

formed. Cells in 10 cm dishes were treated with or with-
out ADI-PEG20 (10 µM) for 72 h, washed with PBS and
lysed in 1× Cell Signaling Cell Lysis Buffer plus 1 mM
phenylmethylsulfonyl fluoride. Lysates were sonicated in a
water bath on ice for 15 s and insoluble material was
removed with a 14,000×g centrifugation for 10min at
4 °C. Five 200 µg aliquots of lysate were made for each
sample. Each aliquot was desalted with 600 µL GE 2-D
Clean-Up kit and processed through to trypsin digest as in
ABPP. Lysates were desalted using Oasis HLB columns
per manufacturer’s instructions. Samples were then dilu-
ted with 1 mL 90% ACN (acetonitrile), and phosphopep-
tides were enriched with 20 µL of Qiagen Ni-NTA slurry
for 30min at 25 °C with end-over-end rotation. Beads
were washed four times with 1 mL 80% ACN, 0.1% tri-
fluoroacetic acid and eluted with 250 µL 50% ACN, 2.5%
ammonia, and 2mM phosphate buffer pH 10. Lysates
were acidified to pH <3 with formic acid, vacuum con-
centrated to dryness, desalted with a C18 ziptip using
manufacturer’s instructions, vacuum concentrated to
dryness, resuspended in 0.5% formic acid and analyzed by
LC–MS.

Liquid chromatography–mass spectrometry
Samples were analyzed by reverse-phase liquid

chromatography–electrospray ionization–MS/MS using
an Eksigent cHiPLC Nanoflex microchip system con-
nected to a quadrupole time-of-flight TripleTOF 5600
mass spectrometer (ABSCIEX). The Nanoflex system uses
replaceable microfluidic traps and columns packed with
ChromXP C18 (200 μm ID × 15 cm, 3 μm particle, 120 Å)
for online trapping, desalting, and analytical separations.
Solvents composed of water/acetonitrile/formic acid (A,
100/0/0.1%; B, 0/100/0.1%). A 200 ng to 1 µg portion of
sample was loaded (typically, 2–10 μl of sample was
injected) into column with 98% mobile phase A. After
online trapping, peptide mixtures were eluted into ana-
lytical column at a flow rate of 800 nL/min using the
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following gradient: (1) starting at 2% solvent B; (2) 2–5%
solvent B from 0 to 12 min; (3) 5–22% solvent B from 12
to 120 min; (4) 22–30% solvent B from 120 to 150min; (5)
30–80% solvent from 150 to 165min; and finally 80% (vol/
vol) solvent from 165 to 169min with a total run time of
180min including mobile phase equilibration. Column
was maintained at 35 °C during the run.
Two different mass spectrometric acquisition workflows

were performed in this study: (1) Data dependent acqui-
sitions (DDA): Mass spectra and tandem mass spectra
were recorded in positive-ion and high-sensitivity mode.
The nanospray needle voltage was typically 3800 V. After
acquisition of each sample, TOF MS spectra and TOF
MS/MS spectra were automatically calibrated during
dynamic LC–MS and MS/MS auto calibration acquisi-
tions by injecting 50 fmol β-galactosidase. For collision-
induced dissociation tandem MS (CID–MS/MS), the
mass window for precursor ion selection of the quadru-
pole mass analyzer was set to ±1 m/z. The precursor ions
were fragmented in a collision cell using nitrogen as the
collision gas. Advanced information-dependent acqui-
sition was used for MS/MS collection on the TripleTOF
5600 to obtain MS/MS spectra for the 20 most abun-
dant parent ions following each survey MS1 scan
(allowing typically for 80 ms acquisition time per each
MS/MS). Dynamic exclusion features were set to an
exclusion mass width of 50 mDa and an exclusion
duration of 30 s. (2) Data independent MS2 acquisitions
(DIA): In the “SWATH” DIA MS2 acquisition, instead
of the Q1 quadrupole transmitting a narrow mass range
through to the collision cell, a wider window of ~10 m/z
is passed in incremental steps over the full mass range
(m/z 400–1250 with 85 SWATH segments, 63 ms
accumulation time each, yielding a cycle time of 5.5 s
which includes one MS1 scan with 50 ms accumulation
time). SWATH MS2 produces complex MS/MS spectra
that are a composite of all the analytes within each
selected Q1 m/z window. The RAW and processed data
associated with this manuscript have been deposited to
the ProteomeXchange repository with the identifier
PXD017043.

Protein identification and MS1 quantification with
MaxQuant
Mass spectral data sets were analyzed and searched with

MaxQuant (ver.1.5.2)34 against the Uniprot Human
Reference Proteome. The MS/MS spectra were deiso-
toped and filtered such that only the ten most abundant
fragments per 100-m/z range were retained. The MS/MS
spectra were searched with fixed modification of Carba-
midomethyl-Cysteine, variable modifications of oxidation
(M), acetylation (protein N-term), Gln- > pyro-Glu, and
phosphoryation (STY). Search parameters were set to an

initial precursor ion tolerance of 0.07 Da, MS/MS toler-
ance at 40 ppm and requiring strict tryptic specificity with
a maximum of two missed cleavages. The minimum
required peptide length was set to seven amino acids.
Identification false-discovery rate (FDR) was set at 1%.
Label-free protein and peptide quantification was per-
formed in MaxQuant and data normalization was done in
Perseus. Peptides that were unique in gene level were
summed to represent protein expression. Ratios of protein
expression in drug treated sample against non-treated
sample were calculated. The RAW and processed data
associated with this paper have been deposited to the
ProteomeXchange repository with the identifier
PXD017043.

Gene set enrichment analysis (GSEA)
GSEA35 was performed using GSEA version 2.2.2 from

the Broad Institute at MIT. Parameters used for the
analysis were as follows. Datasets with protein expression
fold changes due to drug treatment were testing for
enrichment against BioCarta, Hallmark, Reactome and
KEGG gene sets. Number of permutations was set to 1000
to calculate p-value and permutation type was set to
gene_set. All basic and advanced fields were set to default.
Phosphopeptides were assigned to specific genes based on
the MaxQuant annotation.

Skyline data analysis
Skyline software (https://skyline.ms/project/home/

begin.view?) was used to manually examine and quantify
DIA data. Spectral libraries were generated in Skyline
using the DDA database searches of the raw data files.
Raw files were directly imported into Skyline in their
native file format and only cysteine containing peptides
were quantified.

Gene set enrichment analysis (GSEA)
GSEA35 was performed using GSEA version 2.2.2 from

the Broad Institute at MIT. Refer to supplemental meth-
ods for detailed parameters.

Kinome tree plot
KinMap36 was used to generate the kinome tree based

on relative expression in the ABPP dataset.

X2K
X2K37 was performed using default parameters and

Networkin as the kinome database. Input was all proteins
upregulated by ADI-PEG20 (nominal p value ≤ 0.05) in
SKLMS-1 cells in the ABPP dataset.

Statistics
All t tests were two sided.
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Results
Proliferative and morphologic changes of PCB-011 and
SKLMS-1 with ADI-PEG20 treatment
To systemically identify regulatory networks underlying

resistance to ADI-PEG20 we examined two sarcoma cell
lines, SKLMS-1 (leiomyosarcoma) and PCB-011 (angio-
sarcoma). Treatment of SKLMS-1 cells with ADI-PEG20
resulted in cessation of cellular proliferation, indicating
that SKLMS-1 cells are sensitive to arginine starvation
induced by ADI-PEG20 (Fig. 1a). In comparison, PCB-011
cells were rapidly resistant to ADI-PEG20 as evidenced by
their continued proliferation over 72 h of treatment (Fig. 1b).
These data are consistent with the ASS1 expression in
each cell line, as SKLMS-1 is ASS1-negative, while PCB-
011 is ASS1-positive (Fig. 1c). After 72 h of treatment with
ADI-PEG-20, PCB-011 increases expression of ASS1,
suggesting a rapid adaptation to treatment. Compara-
tively, SKLMS-1 fails to significantly increase expression
of ASS1 after 72 h. Finally, unlike PCB-011, there is a
morphological change identified in the SKLMS-1 cell line,

as it becomes more spindle-like in response to arginine
starvation (Fig. 1d, e). Cumulatively these data demon-
strate the SKLMS-1 is sensitive to arginine depletion with
ADI-PEG20, while PCB-011 is not responsive.

Phosphoprotemomic changes as a result of ADI-PEG20
treatment in sensitive and resistant cell lines
Glutamine and glucose metabolic tracing has previously

shown that SKLMS-1 cells increase anaplerotic oxidative
glutaminolysis to produce aspartate from oxaloacetate in
response to ADI-PEG20-induced arginine starvation15. In
addition, western blots of candidate metabolic regulatory
proteins have shown decreased phosphorylation of PKM2
Y105 (pyruvate kinase) and LDHA Y10 (lactate dehy-
drogenase), and increased phosphorylation of PDH1 S300

in response to ADI-PEG2015. In order to gain insight into
how proteomic adaptations in ADI-PEG20 sensitive cells
promote altered metabolism and cell signaling to survive
arginine deprivation, we performed ABPP using an ATP-
resin24 as well as phosphoproteomic profiling of SKLMS-1

Fig. 1 Proliferative and morphologic changes of PCB-011 and SKLMS-1 with ADI-PEG20 treatment. a In vitro cell proliferation response to
extracellular arginine deprivation with ADI-PEG20 in SKLMS-1. Cell proliferation was measured using cell confluence on the IncuCyte Live Cell Analysis
System. (n= 3) ****p < 0.0001. b In vitro cell proliferation response to extracellular arginine deprivation with ADI-PEG20 in PCB-011. Cell proliferation
was measured using cell confluence on the IncuCyte Live Cell Analysis System. (n= 3) NS p > 0.05. c Protein expression of ASS1 compared in
untreated and ADI-treated SKLMS-1 and PCB-011 at 72 h. Cell lysates were analyzed with SimpleProtein Wes automated capillary western system.
Band density differences were plotted as ASS1 area under the curve normalized to total protein in the capillary (representative N= 3); data are
represented as mean+ SD. d Representative (N= 3) DIC images of SKLMS-1 at 0 and 72 h of ADI-PEG20 treatment. Images were collected on the
IncuCyte Live Cell Analysis System at 20× magnification. e Representative (N= 3) DIC images of PCB-011 at 0 and 24 h of ADI-PEG20 treatment.
Images were collected on the IncuCyte Live Cell Analysis System at 10× magnification.
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and PCB-011 cells with and without ADI-PEG20 treat-
ment for 72 h. In ADI-PEG20-sensitive SKLMS-1 cells
and ADI-PEG20-resistant PCB-011 cells, changes
between the untreated condition and 72 h of ADI-PEG20
treatment were compared. PCB-011, a cell line with
intrinsic ADI-PEG20 resistance, was utilized as a negative
control in the proteomic analysis.
We first examined how the phosphoproteome of each

cell line responded to ADI-PEG20 treatment. 2551
phosphopeptides were detected with a 1% FDR. Notably,
the phosphoproteomic response of ADI-PEG20-sensitive
SKLMS-1 cells was much more dynamic than PCB-011

cells, with more phosphopeptides upregulated and
downregulated by ADI-PEG20 (Fig. 2a). A heatmap of
phosphopeptides altered by ADI-PEG20 treatment also
indicates that the SKLMS-1 phosphoproteome is more
dynamic than ADI-PEG20-resistant PCB-011 cells when
starved of arginine (Fig. 2b).
The phosphorylation of several notable proteins is

uniquely upregulated in ADI-PEG20-sensitive SKLMS-1
cells. This includes phosphorylation of PDHA1 S293,
which inhibits pyruvate entry into the TCA cycle through
oxidative decarboxylation15 and increases anaplerotic
production of oxaloacetate (OAA)15. These data are

Fig. 2 ADI-sensitive SKLMS-1 cells have a dynamic phosphoproteomic response to arginine starvation that regulates pyruvate
dehydrogenase and proteins involved in cell morphology and contacts. a Phosphoproteomic profiling of SKLMS-1 and PCB-011 sarcoma cells
upon ADI-PEG20-PEG (ADI-PEG20) treatment (72 h, N= 3 biological replicates). b Heatmap of proteins with significantly altered phosphorylation
upon ADI-PEG20 treatment. Colors are assigned according to the directionality of deviation from no change (red, up; blue, down). Three biological
replicates were analyzed for each cell per conditions. c DIA-MS results for phosphorylation of S29 in PDHA1. d Quantification of S29 phosphorylation
in PDHA1 upon ADI treatment. Two-sided t test, *p < 0.05.
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consistent with previous metabolomic analyses15. The
increase in PDHA1 S293 phosphorylation was verified by
DIA-MS (data-independent acquisition mass spectro-
metry)38, which was able to clearly distinguish phosphor-
ylation of S293 from other serines in the peptide (Fig. 2c).
DIA-MS shows a significant (1.6-fold) increase in the
expression of pS293 upon ADI-PEG20 treatment (Fig. 2d),
paralleling the increase in PDHA S300 phosphorylation
upon ADI-PEG20 treatment15. Other phosphoproteins
uniquely regulated by ADI-PEG20 treatment in ADI-
PEG20-sensitive SKLMS-1 cells include β-catenin, as well
as the cell morphology and contact proteins LIMA1, VIM,
MAP1B, MLLT4, CTTN, and PALLD, which is consistent
with the change to a more fusiform morphology, as noted
in ADI-treated SKLMS-1 cells (Fig. 1d).

SKLMS-1 cells upregulate MAPK signaling and TCA
proteins in response to ADI-PEG20, but downregulate lipid
metabolism
ABPP detected 1912 proteins, and substantial activity-

based proteomic changes in both cell lines upon ADI-
PEG20 treatment (Fig. 3a). A clustered heatmap including
all proteins that were differentially regulated (p value ≤
0.05) reveals four distinct clusters, indicating that the
proteomic response to ADI-PEG20 in each cell line is
highly individualized (Fig. 3b).
In order to determine the biological pathways and

functions of proteins regulated by ADI-PEG20 treatment,
we performed gene set enrichment analysis (GSEA)35.
GSEA utilizes the fold changes of all proteins detected by
ABPP, a more appropriate approach than filtering data by
an arbitrary cutoff39. MAPK pathway and TCA cycle
annotations were enriched in SKLMS-1 cells after ADI-
PEG20 treatment but were not enriched in PCB-011 cells
(Fig. 4a). In addition, fatty acid, triacylglycerol, and ketone
body metabolism was negatively regulated in SKLMS-1
but not in PCB-011 cells (Fig. 4a). PCB-011 cells did not
show strong positive enrichment of any pathways but
showed negative regulation of translation and SRP-
dependent co-translational protein targeting to mem-
branes, which were also observed, albeit less strongly, in
SKLMS-1 cells (Fig. 4a). Enrichment plots and heatmaps
of expression in SKLMS-1 cells demonstrate coordinated
regulation of proteins within the MAPK, TCA cycle, and
fatty acid, triacylglycerol, and ketone body metabolism
pathways upon ADI-PEG20 treatment (Fig. 4b). Meta-
bolic reprogramming in the TCA cycle has been pre-
viously observed in SKLMS-1 cells upon ADI-PEG20
treatment15. In addition, regulation of MAPKs and lipid
metabolism has been observed in ADI-PEG20-sensitive
melanoma15,40. These results demonstrate that ADI-
PEG20-sensitive SKLMS-1 cells undergo metabolic and
kinomic adaptation upon arginine starvation, which is
consistent with the existing literature15,40,41.

Arginine starvation induces coordinated proteomic
alterations that promote glutamine anaplerosis,

oxaloacetate formation, and inhibit lipid metabolism in
SKLMS-1 cells
ADI-PEG20 treatment increases glutamine anaplerosis

through the TCA cycle, forming oxaloacetate to produce
aspartate15. However, the specific proteomic alterations
that facilitate this metabolic rewiring remain unknown. In
order to provide a more complete understanding of the
mechanisms underlying the adaptive metabolic rewiring
in response to arginine starvation, we focused on the
ABPP regulation of individual proteins in the differentially
regulated TCA cycle and fatty acid, triacylglycerol, and
ketone body metabolism annotations in SKLMS-1 cells
upon arginine starvation (Fig. 4b).

Fig. 3 Activity-based proteomic profiling reveals regulation of
metabolism and kinases that are unique to ADI-sensitive SKLMS-
1 cells upon arginine starvation. a ABPP profiling of SKLMS-1 and
PCB-011 sarcoma cells upon ADI-PEG20-PEG (ADI-PEG20) treatment
(72 h, N= 3 biological replicates). b Heatmap of proteins with
significantly altered phosphorylation upon ADI-PEG20 treatment.
Color choices are assigned according to the directionality of deviation
from no change (red, up; blue, down). Three biological replicates were
analyzed for each cell per conditions.
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Fig. 4 (See legend on next page.)
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Multiple proteomic alterations support enhanced glu-
tamine anaplerosis and utilization of oxaloacetate (OAA).
First, multiple enzymes that drive glutamine anaplerosis
to OAA were upregulated, including DLD (dihy-
drolipoamide dehydrogenase), OGDH (oxoglutarate
dehydrogenase), and SDHA (succinate dehydrogenase A)
(Fig. 4c). In addition, IDH2 (isocitrate dehydrogenase),
IDH3A, and IDH3B are substantially downregulated,
blocking the reverse activity of the TCA cycle that can
occur in cancer15, and further directing αKG (alphake-
toglutarate) toward OAA. Second, PDHB levels are
decreased and pyruvate carboxylase (PC) levels are
increased. Together with the increased phosphorylation of
PDH S300 (Fig. 2d), which inhibits PDH activity15, these
findings suggest that more pyruvate is directly converted
to OAA via anaplerotic carboxylation upon arginine
deprivation (Fig. 4c). Third, ABPP finds that while citrate
synthase (CS) is upregulated, metabolism of citrate to
fatty acids is likely reduced due to decreased ACLY (ATP
citrate lyase), ACSL4 (Acetyl-CoA synthase 4), ACSL5
(Acetyl-CoA synthase 5), FASN (fatty acid synthase), and
TECER. Since conversion directly to mitochondrial αKG
is blocked by substantially decreased IDH2, 3A, 3B levels
(Fig. 4c), while cytoplasmic IDH1 is largely unchanged,
citrate is likely shunted cytoplasmically to αKG or gluta-
mate and back into the TCA cycle to undergo another
anaplerotic cycle. However, the exact route cannot be
determined from these protein-level results. Fourth, while
mitochondrial malate dehydrogenase (MDH2) is largely
unchanged upon arginine starvation, MDH1 is upregu-
lated by 1.6-fold, suggesting that OAA may be pre-
ferentially formed from malate that has been exported to
the cytoplasm (Fig. 4c). Taken together, the results from
the ABPP analysis suggest that glutamine-based produc-
tion of OAA and aspartate is driven by three potential
pathways: increased TCA cycle activity, anaplerotic car-
boxylation of pyruvate, and inhibition of lipid metabolism
that recycles cytoplasmic citrate back to the TCA cycle.

Arginine starvation induces adaptive kinomic changes
driving MYC–MAX activation in SKLMS-1 cells
The regulation of metabolic adaptation and repro-

gramming is highly pleiotropic, coordinating regulation of

kinases, transcription factors, and other proteins across
multiple signaling pathways42. Kinases are key transducers
of signaling pathways, often clinically actionable, and can
be unbiasedly profiled by ABPP22,43. Due to the fact that
GSEA indicated that MAPKs were uniquely upregulated
in SKLMS-1 cells upon arginine starvation (Fig. 4a, b), we
further investigated the kinomic changes of SKLMS-1 and
PCB-011 cells in response to ADI-PEG20. Consistent with
phosphoproteome regulation (Fig. 3a, b), ADI-PEG20-
sensitive SKLMS-1 cells have a much more dynamic
response to ADI-PEG20 treatment than PCB-011, and the
patterns of kinases that are regulated are distinct (Fig. 5a).
Kinases with altered ABPP levels (p ≤ 0.05) are shown in
Fig. 5b, which includes 14 kinases in SKLMS-1 cells
compared to two in PCB-011 cells. Notably, while
SKLMS-1 cells do not harbor activating mutations in ERK
or AKT/mTOR signaling, ERK1 and ERK2 (MAPK3 and
MAPK1, respectively) along with the ERK substrate p70
S6 kinase21 have the largest increases upon ADI-PEG20
treatment by ABPP profiling. Each of these kinases pro-
mote tumor growth and are capable of reprograming
cellular metabolism44,45. Significantly, ERK activation has
been implicated in the escape mechanism to ADI-PEG20
in melanoma41.
In order to build a more complete picture of the reg-

ulatory networks involved in the response of SKLMS-1
and PCB-011 cells to arginine starvation, we performed
X2K analysis on the ABPP data37. X2K incorporates
kinomic and other changes in protein expression to infer
regulatory networks. As X2K requires differentially
expressed genes as input, all upregulated proteins with a
nominally significant p value were included in the X2K
analysis of each cell line. Myc, and its activating hetero-
dimeric partner Max, were the two most overrepresented
transcription factors in SKLMS-1 cells upon ADI-PEG20
treatment but were much less enriched in PCB-011 cells
(Fig. 6a). Myc is stabilized in SKLMS-1 cells upon ADI-
PEG20 treatment and the cMyc–Max heterodimerization
inhibitor 10058-F4 blocks ADI-driven resistance con-
sistent with this regulatory model17. Network analysis
suggests that Myc and Max are driven by upstream acti-
vation of ERK1/2 (MAPK1/3, Fig. 6b). ERK can phos-
phorylate and stabilize Myc41,46, supporting this

(see figure on previous page)
Fig. 4 Arginine starvation induces MAPK signaling and coordinated proteomic alterations that promote glutamine anaplerosis,
oxaloacetate formation, and inhibit lipid metabolism in SKLMS-1 cells. a Normalized enrichment scores (NES) of Annotations enriched from
gene set enrichment analysis (GSEA) analysis for ABPP profiling of SKLMS-1 and PCB-011 cells in response to ADI-PEG20 treatment. N.E. indicates Not
Enriched and bold font indicates a false-discovery rate < 25%. b Relative expression of individual genes in Annotations enriched in SKLMS-1 cells.
c Schema of glycolysis, TCA cycle and lipid metabolism with ABPP and phosphoproteomic results (log2 fold change of ADI-treated compared to
untreated, colors based on directionality of deviation from no change (red, up; blue, down)) in SKLMS-1 cells, overlaid with known metabolic changes
in SKLMS-1 cells upon ADI treatment15 (thick solid lines). Dashed lines indicate altered metabolism proposed by ABPP results. Colors are assigned
according to the directionality of deviation from no change (red, up; blue, down).
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regulatory model upon arginine starvation in SKLMS-1
cells. Taken together, the ABPP profiling indicates adap-
tive changes in ERK1/2 upon ADI-PEG20 treatment and a
concomitant activation of the cMyc–Max transcriptional
network in ADI-PEG20-sensitive SKLMS-1 cells, but not
in ADI-PEG20-resistant PCB-011 cells.

Adapted resistance to ADI-PEG20 sensitizes cells to
inhibition of the MEK-ERK-cMyc pathway
In order to biochemically and functionally validate the

activity of the ERK/cMyc pathway identified by

proteomics, we first evaluated ERK expression and acti-
vating phosphorylation in SKLMS-1 cell lines treated with
ADI-PEG20 for 72 h. Capillary western analysis demon-
strated no significant changes in protein expression of
ERK1/2 between WT and ADI treated SKLMS-1 cells
(data not shown). Consistent with the proteomic studies,
72 h of ADI-PEG20 treatment resulted in a significant
increase in activating phosphorylation of ERK (Thr202/
Tyr204) relative to the untreated cells (Fig. 7b). Addi-
tionally, the ratio of phosphorylated ERK (Thr202/
Tyr204) to unphosphorylated ERK was significantly

Fig. 5 The adaptive kinome of SKLMS-1 and PCB-011 cells in response to ADI-PEG20-PEG20 includes ERK. a Kinases identified by ABPP are
labeled. Size of the circle indicates relative changes in binding upon ADI-PEG20 treatment and is scaled from the log2 ratio. Color choices are
assigned according to the directionality of deviation from no change (black, increased binding; red, decreased binding). Kinome tree illustration
reproduced courtesy of Cell Signaling Technology, Inc. (http://www.cellsignaling.com). b Kinases detected by ABPP with a log2 fold change > |0.5 | .
N= 3 biological replicates; data are represented as mean+ SD.
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increased in the ADI-PEGD20 treated SKLMS-1 cells
(Fig. 7c).
Secondly, to investigate the functional significance of

ERK activation in the escape response to ADI-PEG20, cell
proliferation experiments were conducted using the Mek
inhibitor Trametinib in ADI-PEG20-sensitive SKLMS-1
WT cells and ADI-PEG20-resistant SKLMS-1 LTAT
(long-term ADI-PEG20 treated) cells15. Trametinib inhi-
bits MEK-mediated ERK activation and prevents activa-
tion of its downstream signaling targets47,48. Therefore,
Trametinib was utilized to interrogate dependency upon
ERK signaling in the development of resistance to argi-
nine starvation. SKLMS-1 WT cells halt cellular pro-
liferation in the presence of ADI-PEG20, resulting in
relative protection from cell death during the acute phase
ADI-PEG20 resistance. Conversely, SKLMS-1 LTAT cells
stably express ASS1, resulting in resistance and pro-
liferation in the presence of ADI-PEG20. Therefore,
SKLMS-1 WT ADI treated cell lines were utilized to
evaluate acute response to ADI-PEG20 treatment and
SKLMS-1 LTAT cell lines were utilized to evaluate
adapted resistance15. Cell death in SKLMS-1 cell lines
increased with Trametinib treatment (Fig. 7c). However,
ADI-PEG20 resistant SKLMS-1 LTAT cell lines exhibit
significantly higher rates of cell death with Trametinib
than either SKLMS-1 WT untreated or SKLMS-1 WT
ADI-PEG20 treated cells (Fig. 7c). These data indicate
increased dependence upon ERK signaling in in the
context of adaptive resistance to arginine starvation,
supporting the proposed activation of ERK in the ADI-
PEG20 escape response.

In addition to ERK upregulation, the X2K analysis
indicated significant upregulation of the Myc–Max
pathway in response to treatment with ADI-PEG20 in
SKLMS-1 (Fig. 6a). Therefore, the functional role of cMyc
in the development of ADI-PEG20 resistance was also
evaluated. Capillary western analysis revealed modest
increases in cMyc expression between SKLMS-1 WT
untreated and SKLMS-1 WT ADI treated cells. While,
ADI-PEG20 resistant SKLMS-1 LTAT cells exhibited a
significant increase in cMyc protein expression relative to
ADI-PEG20-sensitive SKLMS-1 WT cells (Fig. 7d), sug-
gesting increased stabilization of cMyc as cells develop
resistance to arginine starvation. Indeed, stabilizing
phosphorylation (S62) and the ratio of phosphorylated to
unphosphorylated cMyc was significantly increased the
ADI-PEG20-resistent SKLMS-1 LTAT cells (Fig. 7e, f),
supporting upregulation of this pathway in ADI-PEG20
escape46.
In order to evaluate the functional significance of cMyc

in the putative escape pathway, a specific inhibitor of the
Myc–Max interaction (10058-F4) was utilized in isolation
and in combination with Trametinib. Treatment of ADI-
PEG20 SKLMS-1 WT and LTAT cell lines with 10058F4
alone did not result in substantial cell death (Fig. 7g)
However, co-treatment with Trametinib and 10058-F4
caused significant cell death in SLKMS-1 LTAT cell lines
but only resulted in a modest increase in cell death in
SKLMS-1 WT cell lines (Fig. 7g). These data suggest
synergistic or additive effects of MEK inhibition and cMyc
inhibition in the context of ADI-PEG20 resistance.
Cumulatively, these data support the proteomic analysis

Fig. 6 ADI treatment activates a signaling network driving Myc–Max activation. a X2K transcription factor enrichment analysis of SKLMS-1 and
PCB-011 cells upon ADI treatment. N= 3 biological replicates. b X2K kinase network analysis based on ABPP profiling of SKLMS-1 cells upon ADI
treatment.
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Fig. 7 Adapted resistance to ADI-PEG20 sensitizes cells to inhibition of the MEK-ERK-cMyc pathway. a Protein expression of phospho-ERK
(Thr202/Tyr204) compared in untreated SKMS-1 WT and ADI-treated SKLMS-1 WT at 72 h. Band density differences were plotted as phospho-ERK
(Thr202/Tyr204) area under the curve normalized to total protein in the capillary (N= 3); data are represented as mean+ SD. b Protein expression of
phospho-ERK (Thr202/Tyr204) normalized to protein expression of ERK compared in untreated SKMS-1 WT and ADI-treated SKLMS-1 WT at 72 h. Data
are represented as mean+ SD (N= 3). c In vitro cell death response to Trametinib (1.6 µM) treatment in SKLMS-1 WT cell lines, SKLMS-1 WT ADI-
PEG20 treated cell lines, and SKLMS-1 LTAT cell lines. Data are represented as mean ± SD (n= 3). NS p > 0.5, ***p < 0.001, ****p < 0.0001. d Protein
expression of cMyc in untreated SKMS-1 WT, ADI-treated SKLMS-1 WT, and SLKMS-1 LTAT at 72 h. Band density differences were plotted as cMyc area
under the curve normalized to total protein in the capillary (n= 3); data are represented as mean+ SD. e Protein expression of phospho-cMyc (S62)
in untreated SKMS-1 WT, ADI-treated SKLMS-1 WT, and SLKMS-1 LTAT at 72 h. Band density differences were plotted as phospho-cMyc (S62) area
under the curve normalized to total protein in the capillary (n= 3); data are represented as mean+ SD. f Protein expression of phospho-cMyc (S62)
normalized to protein expression of cMyc compared in untreated SKMS-1 WT, ADI-treated SKLMS-1 WT, and SLKMS-1 LTAT at 72 h. Data are
represented as mean+ SD (N= 3). g In vitro cell death response to 1058-F4 (5 µM) treatment or combined 10058-F4 (5 µM)+ Trametinib (1.6 µM)
treatment in SKLMS-1 WT cell lines, SKLMS-1 WT ADI-PEG20-treated cell lines, and SKLMS-1 LTAT cell lines. Data are represented as mean ± SD (N= 3).
NS p > 0.5, ***p < 0.001, ****p < 0.0001. h Schematic diagram of proposed model of ERK/cMyc mediated escape from ADI-PEG20 treatment.

Brashears et al. Cell Death and Disease          (2020) 11:662 Page 12 of 15

Official journal of the Cell Death Differentiation Association



and suggest activity of the ERK/cMyc signaling pathway in
the escape mechanism of SKLMS-1 to ADI-PEG20.

Discussion
Acquired resistance to anticancer therapy remains a

major challenge and often occurs in the absence of genetic
mutations. Many cancers are arginine auxotrophic due to
silencing of ASS1 and/or argininosuccinate lyase4. These
tumors are sensitive to ADI-PEG20, which converts
arginine to citrulline49. However, monotherapy with ADI-
PEG20 ultimately results in the development of tumor
resistance through re-expression of ASS1, metabolic
reprogramming15, and Myc stabilization17. As the cellular
signaling pathways that mediate these changes are not
completely understood, we focused on identifying the
proteomic adaptations that facilitate metabolic repro-
gramming, and ultimately resistance to arginine depriva-
tion in ADI-PEG20 sensitive cells.
In this study we employed phosphoproteomics and

ABPP to characterize how the proteome of SKLMS-1 cells
adapts upon arginine starvation. These methods proved to
be complementary, and by integrating these data with
existing metabolomics data15, we were able to gain unique
insights into the regulatory networks involved in ADI-
PEG20 resistance in ASS1-negative sarcoma. In line with
existing literature, we identified adaptive kinomic changes
in ADI-PEG20-sensitive SKLMS-1 cells, including upre-
gulation of ERK1 and ERK2. Network analysis suggested
that this ERK upregulation stimulates a Myc–Max tran-
scriptional network (Figs. 4a and 6a). Myc in this context
has been demonstrated to promote re-expression of
ASS141. In addition, Myc is able to promote glutamine
anaplerosis50, but in the setting of arginine deprivation it
is not known how proteomic changes facilitate this
metabolic reprogramming51–53. The cellular signaling
events that promote reprogramming of glutamine meta-
bolism in this context are the subject of ongoing research.
We find that regulation of multiple proteins likely con-
tributes to increased flux from glutamine to OAA (glu-
tamine anaplerosis), direct oxaloacetate production from
pyruvate by increasing PC (pyruvate anaplerosis), and
upregulation of citrate synthase combined with inhibition
of lipid synthesis to recycle citrate for TCA anaplerosis
(Fig. 4b, c). Furthermore, consistent with the proteomic
analysis, we have identified a novel sensitivity in vitro to
inhibition of ERK activation with trametinib in the con-
text of ADI-PEG20 adapted resistance.
The reprogramming of cancer metabolism is a critical

factor promoting tumorigenesis and drug resistance.
Proteomic regulation is essential to metabolic repro-
gramming54, such as PKM2 tetramerization that pro-
motes the Warburg effect55. While the limited number of
cellular metabolites56 make metabolomic profiling rela-
tively routine, the vast complexity of proteomic regulation

remains challenging and the myriad of potential
mechanisms by which proteomic changes drive metabolic
reprogramming remain incompletely understood. The
combination of multiple proteomic and metabolomic
techniques will be essential for resolving these complex
pathways, as highlighted by this study. The precision of
ABPP is limited by allosteric modulation by ATP, protein-
protein interactions, and other factors; therefore, the sole
use of ABPP for the elucidation of complex metabolic
networks is unlikely to provide a comprehensive pathway
analysis. However, combining ABPP with other -omics,
such as phosphoproteomics and metabolomics, allows for
a more complete understanding of these interconnected
systems. Systems level analysis pairing global, unbiased,
and integrative proteomic and metabolic analyses have
recently been performed in models of plants57–59, para-
sites, and antibiotic resistance60,61. However, utilization of
integrative proteomic–metabolomic analysis has been
limited with respect to modeling drug resistance and
metabolism in cancer models62–65. Our exploration of
ADI-PEG20 resistance elucidates numerous changes
consistent with metabolomics and finds that these two
-omics approaches provide complementary insight.
A full understanding of the metabolic and proteomic

adaptation to ADI-PEG20 is needed for arginine starva-
tion to become a mainstay of cancer treatment. The
metabolic changes that promote escape from arginine
starvation induce a new transcriptional profile as well as
significant alterations in protein regulation and activity.
The changes that facilitate escape from arginine depri-
vation also limit the metabolic flexibility of cells. It has yet
to be determined if these metabolic adaptations are per-
manent choices, but as long as the stress of extracellular
arginine starvation is present, the ability of a tumor to
return to its baseline metabolism is limited. Under-
standing the metabolic changes that occur upon treat-
ment with metabolically targeted compounds in concert
with associated proteomic changes provides insight into
cellular resistance mechanisms and may inform the
development of more efficient multiagent therapies.
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