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ARTICLE

The genetic architecture of human brainstem
structures and their involvement in common
brain disorders
Torbjørn Elvsåshagen, Shahram Bahrami et al.#

Brainstem regions support vital bodily functions, yet their genetic architectures and invol-

vement in common brain disorders remain understudied. Here, using imaging-genetics data

from a discovery sample of 27,034 individuals, we identify 45 brainstem-associated genetic

loci, including the first linked to midbrain, pons, and medulla oblongata volumes, and map

them to 305 genes. In a replication sample of 7432 participants most of the loci show the

same effect direction and are significant at a nominal threshold. We detect genetic overlap

between brainstem volumes and eight psychiatric and neurological disorders. In additional

clinical data from 5062 individuals with common brain disorders and 11,257 healthy controls,

we observe differential volume alterations in schizophrenia, bipolar disorder, multiple

sclerosis, mild cognitive impairment, dementia, and Parkinson’s disease, supporting the

relevance of brainstem regions and their genetic architectures in common brain disorders.

https://doi.org/10.1038/s41467-020-17376-1 OPEN

#A list of authors and their affiliations appears at the end of the paper.
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The brainstem is a critical regulator of vital bodily functions
and includes the midbrain, pons, and the medulla
oblongata1,2. These regions subserve emotions and beha-

vior and are implicated in the pathophysiology of psychiatric and
neurological diseases3–6. The midbrain is involved in reward-
related behavior and associated with addictive, psychotic, and
neurodegenerative disorders7–9. Midbrain and pons neurons
support mood and cognition and may have central roles in the
etiology and treatment of affective disorders10,11. The medulla
oblongata regulates cardiovascular and respiratory function and
atrophy and lesions of medulla oblongata and the other brainstem
structures are hallmarks of neurological disorders5,6,8. Despite
their importance in human health and disease, the brainstem
regions remain markedly understudied.

Magnetic resonance imaging (MRI) studies have revealed
cortical and subcortical structural alterations in psychiatric and
neurological disorders12–14, and the discovery of genetic con-
tributions to brain structure variation has begun15,16. Recent
imaging-genetics studies detected the first genetic loci linked to
whole brainstem volume17–19, yet no large-scale neuroimaging
study has focused on the differential genetic architecture of the
midbrain, pons, and medulla oblongata and their involvement in
common brain disorders. The unprecedented availability of large
imaging-genetics resources and recent development of a Bayesian
brainstem segmentation algorithm20 allow us to estimate volumes
of midbrain, pons, medulla oblongata, superior cerebellar ped-
uncle (SCP, which interconnects the pons and the cerebellum),
and the whole brainstem in a large sample. We employ three
complementary approaches to increase our knowledge of the
genetic underpinnings of brainstem regions and their roles in
common brain disorders.

First, we conduct genome-wide association studies (GWAS) of
brainstem volumes in UK Biobank participants21 and identify the
first genetic loci linked to the midbrain, pons, SCP, and the
medulla oblongata. Second, we use summary statistics from
recent large-scale GWAS of common brain disorders and detect
genetic overlap between volumes of the brainstem regions and
eight psychiatric and neurological disorders. Finally, we examine
volumes of the brainstem structures in individuals with psy-
chiatric or neurological illnesses in comparison with healthy
controls (HC) (n= 16,319) and find volume alterations in schi-
zophrenia (SCZ), bipolar disorder (BD), multiple sclerosis (MS),
dementia, mild cognitive impairment (MCI), and Parkinson’s
disease (PD). Collectively, these results provide new insights into
the genetic architectures of brainstem structures and their roles in
common brain disorders.

Results
Brainstem segmentation and samples. We obtained raw T1 3D
brain MRI data from a total of n= 57,298 individuals, collected
through collaborations, data sharing platforms, and from in-
house samples (Supplementary Tables 1–2). The MRI data were
segmented into the whole brainstem, midbrain, pons, SCP, and
medulla oblongata using Freesurfer 6.022 and Bayesian brainstem
segmentation, robust to differences in MRI scanners and pulse
sequence details20. We assessed the delineations in all 57,298
data sets by visually inspecting twelve sagittal view figures of the
segmentations for each participant (Supplementary Fig. 1). This
procedure was conducted blind to case-control status and
excluded 11.4% (n= 6513) of the data sets, mainly due to
insufficient field of view, image quality, and segmentation errors
in the clinical samples.

The resulting 50,785 MRI data sets comprised three main
samples (Supplementary Table 3): (1) 27,034 genotyped individuals
from the UK Biobank (GWAS discovery sample; age 45–82 years);

(2) 7432 additional genotyped individuals from the UK Biobank
(GWAS replication sample; age 50–82 years), and 3) 16,319
individuals with psychiatric or neurological disorders and HC
(clinical sample; age 3–96 years; 5062 patients and 11,257 controls).
Only a small minority in the clinical sample had genotype data and
thus no genetic analyses were run for these individuals.

GWAS reveals 61 loci associated with brainstem volumes.
Using MRI and single-nucleotide polymorphism (SNP) data from
the GWAS discovery sample (n= 27,034), we conducted GWAS
with PLINK v2.023 on volumes of the midbrain, pons, SCP,
medulla oblongata, and whole brainstem. All GWAS accounted
for age, age², sex, scanning site, intracranial volume (ICV), gen-
otyping batch, and the first ten genetic principal components to
control for population stratification. In addition, the GWAS for
the midbrain, pons, SCP, and medulla oblongata accounted for
whole brainstem volume, thus revealing genetic signals beyond
commonality in volume, analogous to a recent study of hippo-
campal subfields24. In additional supplemental analyses, the
GWAS for the brainstem structures were also run without cov-
arying for whole brainstem volume and when excluding indivi-
duals related up to 4th degree.

SNP-based heritability estimated using genome-wide complex
trait analysis (GCTA) v1.9225 on the GWAS summary statistics
was 48% for the whole brainstem, 47% for the midbrain, 47% for
pons, 27% for SCP, and 35% for the medulla oblongata (all s.e.
<5%; all P < 1e−16), illustrating the substantial genetic influence
on brainstem volumes (Fig. 1a and Supplementary Table 4). We
found genome-wide significant hits (P < 5e−8) for all brainstem
volumes and identified a total of 125 independent significant
SNPs across structures located in 61 genomic loci, using the
Functional Mapping and Annotation of GWAS (FUMA) plat-
form v1.3.526 (Fig. 1b–c and Supplementary Data 1). Individual
Manhattan and quantile–quantile (Q–Q) plots for each brainstem
volume are provided in Supplementary Figs. 2–3. Supplementary
Fig. 4 shows regional plots for the most significant genetic locus
for each brainstem volume. GWAS hits and heritability estimates
for the brainstem regions without covarying for whole brainstem
volume are provided in Supplementary Fig. 5, Supplementary
Table 4, and Supplementary Data 2. Supplementary Data 3 shows
the GWAS results when excluding individuals related up to 4th
degree from the analyses (n= 705). A large majority of the lead
SNPs identified in the main analyses had P < 5e−8 also in the
sample without any up to 4th degree related individuals (n=
26,329), supporting that the GWAS results were not driven by
relatedness.

Sixteen of the 61 genetic loci were associated with whole
brainstem volume and 10, 23, 3, and 9 loci were associated with
volumes of the midbrain, pons, SCP, and medulla oblongata,
respectively. Sixteen loci were associated with more than one
brainstem volume, thus resulting in 45 unique brainstem-
associated genetic regions. Twenty-nine of these unique loci were
associated with volumes of the individual brainstem regions and
not with whole brainstem volume. Moreover, 6, 15, 3, and 3 loci
were only significant for midbrain, pons, SCP, and medulla
oblongata volumes, respectively, whereas 10 of the loci were only
associated with whole brainstem volume (Supplementary Data 1).

When employing a more stringent statistical threshold of P <
1e−8 (corrected for analyses of 5 volumes), there were
46 significant genetic loci across the brainstem structures
(Supplementary Data 4). Thirteen loci were associated with
whole brainstem volume and 6, 21, and 6 loci were associated
with volumes of the midbrain, pons, and medulla oblongata,
respectively. No locus was significant for SCP. The 46 genomic
loci included 34 unique brainstem-associated regions of which 21
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were only associated with volumes of the individual brainstem
regions and not with whole brainstem volume.

Further evidence of association in the replication GWAS. The
brainstem-associated lead SNPs of the discovery sample with P <
5e−8 were further evaluated in the replication GWAS (n= 7432).
We found that all SNPs had the same effect direction for most of
the volumes (all but a few SNPs for medulla oblongata and
midbrain volumes when accounting for whole brainstem volume;
Supplementary Table 5). Next, we found that for most volumes,
the majority of the lead SNPs had uncorrected P < 0.05 in the
GWAS replication sample. Moreover, as expected due to the
modest sample size, only two of the lead SNPs reached the P < 5e
−8 threshold in the replication sample (both associated with pons
volume). Finally, we found that the discovery and replication
GWAS for all volumes were significantly genetically correlated
(all Rg > 0.73; Supplementary Table 5).

Functional annotation of discovery GWAS loci. We function-
ally annotated SNPs across the brainstem volumes that were in
linkage disequilibrium (r2 ≥ 0.6) with one of the independent
significant SNPs with P < 5e−8 in the discovery sample using
FUMA. A majority of these SNPs were intronic (60.3%) or
intergenic (23.7%) and 1.5% were exonic (Supplementary Data 5–
9). About 94% of the SNPs had a minimum chromatin state of
1–7, thus suggesting they were in open chromatin regions27.
Supplementary Fig. 6 provides information for functional SNP
categories for each brainstem volume. Two of the lead SNPs
were exonic and associated with medulla oblongata (rs13107325)
and whole brainstem (rs13388394) volumes. The combined
annotation-dependent depletion (CADD) scores of those SNPs
were 23.1 (rs13107325) and 17.7 (rs13388394), thus indicating
deleterious protein effects28. rs13107325 is located in SLC39A8
and has previously been associated with multiple traits, including
SCZ and PD29.
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Implicated genes and genome-wide gene-based associations.
We used positional, expression quantitative trait loci (eQTL), and
chromatin interaction mapping in FUMA26 to map the 125
independent significant SNPs with P < 5e−8 of the discovery
sample to genes. These three strategies identified 280 unique
genes, where 168 of these were implicated by one mapping
strategy, 68 genes by two strategies, and 25 of the genes were
implicated by three strategies (Fig. 1d, and Supplementary
Data 10). Supplementary Fig. 7 provides visualization of mapped
genes for each brainstem volume in Circos plots.

We then conducted genome-wide gene-based association
analyses (GWGAS; P < 2.7e−6, i.e., 0.05/18,447 genes) using
MAGMA v1.0730 and detected 87 unique genes across the
brainstem volumes (Fig. 2 and Supplementary Data 11). Thirty-
six were associated with whole brainstem volume and 22, 37, 10,
and 17 genes were associated with volumes of the midbrain, pons,
SCP, and the medulla oblongata, respectively. Twenty-two were
only associated with whole brainstem volume, whereas 13, 14, 6, 5
genes were only significant for midbrain, pons, SCP, and the
medulla oblongata volumes. Supplementary Fig. 8 provides Q–Q
plots for these GWGAS. We also found that 25 of the genes
identified by GWGAS were not mapped by the GWAS analyses,
resulting in a total number of 305 brainstem-linked genes
identified by either GWAS or GWGAS. Moreover, supporting

robustness, 17 of the 87 genes identified by the GWGAS were also
implicated by all three FUMA mapping strategies (Fig. 1d,
Supplementary Table 6).

We also mapped independent SNPs significant at the P < 1e−8
threshold (corrected for analyses of five volumes) by positional,
eQTL, and chromatin interaction mapping and identified 96, 57,
and 100 genes, respectively (Supplementary Data 12). GWGAS
detected 66 unique genes across the brainstem volumes when
applying a significance threshold of P < 5.4e−7 (i.e., 2.7e−6/5
volumes; Supplementary Fig. 9 and Supplementary Data 13).
Fifteen were only associated with whole brainstem volume,
whereas 6, 12, 4, and 5 genes were only significant for midbrain,
pons, SCP, and medulla oblongata volumes, respectively.

Gene sets implicated by the significant genes. We conducted
gene-sets analyses for the genes prioritized in the GWAS dis-
covery sample (hypergeometric tests based on independent sig-
nificant SNPs with P < 5e−8) and identified seven Gene Ontology
sets significantly associated with whole brainstem volume, and 2,
8, 1, and 15 gene sets associated with volumes of the midbrain,
pons, SCP, and medulla oblongata, respectively, after Bonferroni
correction (Supplementary Table 7). The most significant gene set
for whole brainstem volume was susceptibility to natural killer
cell mediated cytotoxicity (P= 1.32e−6), amyloid beta formation

MOV10
ANP32E

DIRC3 MITF MRPL1

PKD2

CENPK

PPWD1

TRIM23

TRAPPC13

SGTB

NLN

BMP6
SAMD5

GINM1

KATNA1
LATS1

NUP43
PCMT1

LRP11

CDK6

TRPS1

PAPPA LIMA1

ATF1

GNPTAB

DRAM1 CCDC53NUP37

PARPBP
IGF1

RP11-144F15.1
RFX4

RIC8B

NF1

C20orf166

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122

a Whole brainstem

KIF1B

HIVEP3
CNTN2

RBBP5

PAX3
ANKRD28

HNRNPD

BMP6

BMP5

SESN1

HEY2

FAM120A

PHF2

ASTN2

TRIM32

CCND1

CHPT1

GNPTAB

DRAM1

CCDC53 NUP37

PARPBP

IGF1

TCP11L2

POLR3B

RP11-144F15.1

RFX4

RIC8B
PRR15L

CDK5RAP3
SKAP1 HOXB1

HOXB2

HOXB3

HOXB5

HOXB6

HOXB7

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122

16

Ponsc

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 
–l

og
10

 P
va

lu
e

–l
og

10
 P

va
lu

e
–l

og
10

 P
va

lu
e

–l
og

10
 P

va
lu

e

–l
og

10
 P

va
lu

e

Midbrain

8

9

10

11

KIF1B

BMP6

TRIM32

GNPTAB

DRAM1

POLR3B

ARHGAP27
PLEKHM1

SPPL2C

MAPT

WNT3
CDK5RAP3

HOXB1

HOXB2

HOXB3

HOXB6

HOXB7

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Medulla oblongata

8

9

10

11

12

e

b

LMX1A

REST

NOA1
POLR2B

KATNA1
LATS1

NUP43
PCMT1

TMEM74 YPEL2

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122

Superior cerebellar peduncled

NYAP2

ANKRD28

VWA5B2

ECE2 CAMK2N2

HNRNPD
FAM120A

PHF2

CKAP5
C11orf49

BICD1
DRAM1

CCDC53

NUP37

PARPBP

IGF1

HNF1A
RP11-468E2.4

YLPM1

PROX2

DLST

RPS6KL1

Chromosome

Chromosome

Chromosome

Chromosome

Chromosome

Fig. 2 Manhattan plots from the genome-wide gene-based association analyses for volumes of the whole brainstem. a midbrain b pons c superior
cerebellar peduncle d, and medulla oblongata e in the discovery sample. Thirty-six genes were associated with whole brainstem volume and 22, 37, 10, and
17 genes were associated with volumes of the midbrain, pons, superior cerebellar peduncle, and the medulla oblongata, respectively. Twenty-two of the
genes were only associated with whole brainstem volume, whereas 13, 14, 6, 5 genes were only significant for volumes of the midbrain, pons, superior
cerebellar peduncle, and the medulla oblongata. The red horizontal lines indicate genome-wide significance threshold of two-sided P < 2.7e−6, i.e., 0.05/
18,447 genes.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17376-1

4 NATURE COMMUNICATIONS |         (2020) 11:4016 | https://doi.org/10.1038/s41467-020-17376-1 | www.nature.com/naturecommunications



for midbrain (P= 0.01), skeletal system morphogenesis for pons
(P= 4.6e−5), de novo imp biosynthetic process for SCP (P=
0.03), and embryonic skeletal system development for medulla
oblongata (P= 1.0e−7). Notably, HOX genes, which encode
transcription factors with central roles in nervous system devel-
opment31 were included in seven of the significant gene sets for
pons and in all gene sets associated with medulla oblongata. We
also employed the ConsensusPathDB32 to identify over-
represented pathways for the mapped genes and found 13 sig-
nificant pathways for whole brainstem volume, and 1, 25, and
58 significant for pathways for pons, SCP, and medulla oblongata
volume, after false discovery rate (FDR)-correction (Supplemen-
tary Table 8).

The gene-sets analyses and the pathway analyses were also run
with prioritized genes from the discovery GWAS sample when
adjusting for five volumes (based on independent significant
SNPs with P < 1e−8) and implicated the same gene sets and
pathways as in the main analysis (based on independent
significant SNPs with P < 5e−8). Ten Gene Ontology gene sets
were associated with whole brainstem volume, and 1, 6, and 16
gene sets were associated with volumes of the midbrain, pons, and
medulla oblongata, respectively (Supplementary Table 9). Con-
sensusPathDB32 identified 53, 19, 1, and 3 significant pathways
for volumes of the whole brainstem, midbrain, pons, and medulla
oblongata, respectively (Supplementary Table 10).

Genetic overlap between volumes and common brain dis-
orders. To further examine the polygenic architecture of brain-
stem volumes and the potential genetic overlap between
brainstem regions and common brain disorders, we used GWAS
summary statistics for attention-deficit/hyperactivity disorder
(ADHD), autism spectrum disorder (ASD), BD, major depression
(MD), SCZ, Alzheimer’s disease (AD), MS, and PD, as outlined in
Methods. We then generated conditional Q–Q plots33–35 for the
brainstem regions and the eight clinical conditions. The condi-
tional Q–Q plots compare the association with one trait (e.g.,
whole brainstem volume) across all SNPs and within SNPs strata
determined by the significance of their association with another
trait (e.g., SCZ). Polygenic overlap exists if the proportion of
SNPs associated with the first trait increases as a function of the
strength of association for the second trait and is visualized as a
successive leftward deflection from the null distribution33. The
conditional Q–Q plots for brainstem volumes and the clinical
conditions showed successive increments of SNP enrichment for
whole brainstem, midbrain, pons, SCP, and medulla oblongata
(Supplementary Fig. 10), consistent with polygenic overlap across
volumes and disorders. Conditional Q–Q plots illustrating the
genetic overlap between whole brainstem volume and SCZ, BD,
and PD are provided in Fig. 3a–c.

We leveraged the genetic overlap to discover more of the
genetic underpinnings of brainstem volumes by employing
conditional FDR statistics33–35. The conditional FDR builds on
an empirical Bayesian statistical framework, combines summary
statistics from a trait of interest with those of a conditional trait,
and thus increases power to detect genetic variants associated
with the primary trait. We ran the conditional FDR analyses for
each of the brainstem volumes conditioned on the eight disorders
and discovered a total of 208 genetic loci for the whole brainstem,
and 111, 270, 55, and 125 loci for the midbrain, pons, SCP, and
medulla oblongata, respectively. These regions were located in 52
unique genetic loci for whole brainstem volume, and 29, 63, 21,
and 25 unique loci for volumes of the midbrain, pons, SCP, and
medulla oblongata, respectively (Fig. 3d, Supplementary Data 14–
18). The loci identified by the conditional FDR included all
brainstem-associated genetic regions detected in the GWAS

discovery sample. Supplementary Fig. 11 provides Manhattan
plots for the genetic loci detected by the conditional FDR analyses
for each brainstem region.

To further characterize the genetic overlap between brainstem
volumes and the eight clinical conditions, we performed
conjunctional FDR analyses, which enable detection of genetic
loci shared between two phenotypes33–35. These analyses revealed
shared loci across the brainstem structures and the clinical
conditions (Fig. 3e). We found the largest number of loci shared
between brainstem volumes and SCZ (31), BD (14), and PD (17).
For ASD, ADHD, MD, AD, and MS, there were 9, 4, 6, 5, and 5
genetic loci jointly associated with the brainstem volumes and the
disorders, respectively, when applying a conjunctional FDR
threshold of 0.05 (Fig. 3e). Notably, the shared genetic loci
exhibited a mixed pattern of allelic effect directions, i.e., disorder-
linked genetic variants were associated with both larger and
smaller brainstem volumes (Supplementary Fig. 12). No definitive
conclusions can be drawn about effect directions for each
disorder due to the modest number of shared loci, yet the
majority of loci for SCZ showed opposite effect directions (74%;
i.e., disorder-linked variants were associated with reduced
volumes), whereas the majority of loci for PD showed same
effect directions (70%; i.e., disorder-linked variants were asso-
ciated with increased volumes). Manhattan plots and details for
the genetic loci shared between the eight clinical conditions and
the brainstem volumes are provided in Fig. 4a–h and in
Supplementary Data 19. When using a conjunctional FDR
threshold of 0.01 (corrected for five volumes), there were genetic
loci jointly associated with the brainstem volumes and BD (2),
SCZ (10), ASD (3), MS (2), ADHD (1), and PD (6) and no shared
loci for MD and AD (Supplementary Data 19).

We ran Gene Ontology gene-sets analyses for genes nearest to
the shared loci significant at a conjunctional FDR threshold of
0.05 across the brainstem regions for each disorder and found
33 significant gene sets for SCZ, mainly involving central nervous
system, neuronal, and cellular developmental processes (Supple-
mentary Table 11). There were no significant gene sets for the
other disorders.

We also examined genetic correlations between brainstem
volumes and the common brain disorders using LD score
regression v1.0.036 (Supplementary Fig. 13). There were correla-
tions with uncorrected P < 0.05, including positive associations
between brainstem volumes and PD, yet these were not
significant after multiple testing corrections.

Brainstem volumes in common brain disorders. We compared
brainstem volumes between individuals with common brain dis-
orders and HC (age range 3–96 years): ADHD (n= 681 patients/n
= 992 HC), ASD (n= 125/n= 140), BD (n= 464/n= 1513), major
depressive disorder (MDD; n= 211/n= 93), SCZ (n= 1044/n=
2079), prodromal SCZ or at risk mental state (SCZRISK; n= 91/n
= 402), non-SCZ psychosis spectrum diagnoses (PSYMIX; n= 308/
n= 1430), dementia (n= 756/n= 1921), MCI (n= 987/n= 1655),
MS (n= 257/n= 1053), and PD (n= 138/n= 67). Supplementary
Tables 1–3 provide information on the individual cohorts. Linear
models were run covarying for sex, age, age², ICV, and scanner site
using R 3.537. The analyses for volumes of midbrain, pons, SCP,
and medulla oblongata were run both with and without covarying
for whole brainstem volume, and were adjusted for multiple testing
using FDR (Benjamin–Hochberg, accounting for all 99 tests). Fig-
ure 5 depicts the resulting case-control differences in Cohen’s d,
whereas group differences in mm3 and scatter plots are presented in
Supplementary Figs. 14–15.

BD was associated with smaller medulla oblongata volume and
larger pons volume, when accounting for the whole brainstem.
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Individuals with SCZ showed smaller volumes of all brainstem
structures compared with HC, but not significantly for the
midbrain, pons, and medulla oblongata when regressing out
whole brainstem volume, consistent with a general effect across
the brainstem regions. Volumes of whole brainstem, midbrain,
and pons were smaller in the individuals with dementia compared
with HC, whereas medulla oblongata volume was larger. A highly
similar pattern was found for individuals with MCI, with smaller
volumes of the whole brainstem, midbrain, and pons, and larger
medulla oblongata volume when accounting for whole brainstem.
Individuals with MS showed smaller volumes of the whole
brainstem, midbrain, pons, and medulla oblongata, whereas
individuals with PD had larger volume of the whole brainstem,
midbrain, and medulla oblongata.

We ran further analyses of associations between brainstem
volumes and clinical characteristics in the individuals with MCI,

dementia, MS, SCZ, and PD and details of these analyses are
provided in Supplementary Figs. 16–17 and Supplementary Note
1. There were significant associations between Mini-Mental State
Examination scores and brainstem volumes in dementia and
MCI, indicating smaller pons and larger medulla oblongata
volumes in more severely affected individuals (linear models; all
P < 2e−04). In MS, there were brainstem volume decreases also in
the subgroup of patients without infratentorial lesions (linear
models; n= 91; all P < 0.05) and significant negative associations
between the Expanded Disability Status Scale scores and
brainstem volumes in patients with infratentorial lesions (linear
models; n= 153; P < 0.05). There was no significant association
between the Global Assessment of Functioning scale or Positive
and Negative Syndrome Scale scores and brainstem volumes in
individuals with SCZ. We found no evidence for tremor severity
influencing brainstem volumes in individuals with PD.
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Fig. 3 Genetic overlap between brainstem volumes and common brain disorders. a Conditional Q–Q plots for whole brainstem volume conditioned on
SCZ (left) and vice versa (right), demonstrating genetic overlap. b Conditional Q–Q plots for whole brainstem volume conditioned on PD (left) and vice
versa (right), showing genetic overlap between these phenotypes. c Conditional Q–Q plots for whole brainstem volume conditioned on BD (left) and
vice versa (right), demonstrating genetic overlap. d Enhanced discovery of genetic loci for each of the brainstem volumes when conditional false discovery
rate analyses were run for each of the brainstem volumes conditioned on the eight brain disorders. These analyses revealed a total of 208 genetic loci for
whole brainstem volume, and 111, 270, 55, and 125 loci for volumes of the midbrain, pons, SCP, and medulla oblongata, respectively. These genetic regions
were located in 52 unique genetic loci for whole brainstem volume, and 29, 63, 21, and 25 unique loci for volumes of the midbrain, pons, SCP, and medulla
oblongata. e conjunctional false discovery rate analysis detected shared genetic loci across brainstem volumes and the eight clinical conditions. The largest
numbers of shared loci were found for SCZ (31), BD (14), and PD (17), whereas 8, 4, 6, 9, and 5 genetic loci were jointly shared for ASD, ADHD, MD, AD,
and MS, respectively, and the brainstem volumes, when applying a conjunctional FDR threshold of 0.05. WBS whole brainstem. MID midbrain. SCP
superior cerebellar peduncle. MED medulla oblongata. ADHD attention-deficit/hyperactivity disorder. ASD autism spectrum disorders. BD bipolar
disorder. MD major depression. SCZ schizophrenia. AD Alzheimer’s disease. MS multiple sclerosis. PD Parkinson’s disease.
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Discussion
The midbrain, pons, and medulla oblongata have central roles in
human health and disease, yet no large-scale neuroimaging study
has focused on their structure and genetic underpinnings. Here,
we discovered novel genetic loci associated with brainstem
volumes and found genetic overlap with eight psychiatric and
neurological disorders, revealing that these brainstem regions
may play important roles in common brain disorders. Indeed,
leveraging clinical imaging data we found differential alterations
of midbrain, pons, and medulla oblongata volumes in individuals
with SCZ, BD, MS, dementia, MCI, and PD.

We identified 61 genetic loci associated with brainstem
volumes at a statistical threshold of P < 5e−8. Sixteen of the loci
were associated with more than one volume, thus resulting in 45
unique brainstem-associated genetic regions. Twenty-nine of
them were associated with volumes of the individual brainstem
regions and not with whole brainstem volume. Thirty-four of the

45 unique loci remained significant at a threshold of P < 1e−8,
i.e., adjusted for analyses of five volumes.

There is to our knowledge no previous study of the genetic
underpinnings of midbrain, pons, SCP, and medulla oblongata
volumes, yet a study of 3144 functional and structural brain
imaging phenotypes in ~8400 individuals from UK Biobank
identified four loci associated with Freesurfer-based volume of the
whole brainstem17. These SNPs are within four of the sixteen
genetic loci linked to whole brainstem volume in the present
study. One recently published large-scale GWAS identified 48
genetic loci associated with seven subcortical brain volumes and
16 of these were linked to the whole brainstem18. Twelve of them
overlap with genetic regions linked to volume of the whole
brainstem in the current study. Another recent GWAS of 101
brain phenotypes detected 6 and 15 genetic loci associated with
whole brainstem volume at thresholds of P < 4.9e−10 (adjusted
for analyses of 101 phenotypes) and P < 5e−8, respectively19 and
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9 of the latter are within regions associated with whole brainstem
volume in the present study. Three genetic loci linked to whole
brainstem volume in the current study on chromosomes four
(rs10939607), nine (rs418382), and 12 (rs11111091) overlap with
genetic loci significant in all of the three previous works. Four of
the whole brainstem-associated loci identified by the current
study on chrosomomes one (rs35536968 and rs698915), two
(rs13388394), and six (rs75343521) have not been reported
previously.

The GWAS identified ten genetic loci linked to midbrain
volume at P < 5e−8. The most significant midbrain-associated
genetic locus was found on chromosome 7 (rs151057105), which
was associated with malignant brain tumor and well-being in
previous studies38,39. IGF1 was among the genes most strongly
associated with midbrain volume in the GWGAS of the current
study. IGF1 encodes a growth factor in the brain which regulates
synaptic plasticity and neurogenesis and affects all major neural
cells during development40.

We detected 23 and 9 genetic loci associated with volumes of
pons and medulla oblongata at P < 5e−8, respectively. The
genetic loci most strongly associated with pons and medulla
oblongaa volumes was located on chromosome 12 (rs11111091).
Notably, rs11111091 is a SNP identified in one of three loci linked
to whole brainstem volume across the present and three previous
studies17–19. The gene nearest rs11111091 is DRAM1, which
encodes an autophagy and apoptosis-regulating protein of the
p53 tumor suppressor pathway41. We also found that HOX genes

were included in the nine most significant Gene Ontology
gene sets for pons and in the 24 gene sets most strongly associated
with medulla oblongata volume. In addition, nine HOX genes
(HOXB1-9) were associated with volumes of both pons and
medulla oblongata in the GWGAS. HOX genes encode Hox
proteins, which are transcription factors with central roles in
nervous system development42. The HOXB1-4 genes are
critical for the development of the embryonic hindbrain, which
gives rise to the pons, the medulla oblongata, and the cere-
bellum31. The HOX genes are not, however, expressed in the
embryonic midbrain, which develops into the midbrain. Con-
sistent with the embryonic genetic division between the hindbrain
and the midbrain, HOX genes were not associated with the
midbrain in the gene sets or in the GWGAS analyses of the
current study.

We found three genetic loci associated with SCP volume at
P < 5e−8. The most strongly associated SCP-linked locus was
located on chromosome 1 (rs11809085). The gene nearest this
locus—LMX1A—was also the most strongly SCP-associated gene
in the GWGAS. LMX1A codes for a growth factor that is involved
in development of brainstem and cerebellum structures and has
been linked to psychiatric and neurological disorders, including
SCZ and PD43. REST was the second-most strongly SCP-
associated gene in the GWGAS in the present study. REST
encodes a transcriptional repressor with neuroprotective prop-
erties in normal aging and REST-dysfunction has been linked to
neurodegenerative disorders, including AD44.
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There was polygenic overlap between the brainstem regions
and the eight psychiatric and neurological disorders of the present
study. We leveraged the genetic overlap to uncover more of the
genetic architecture of the brainstem volumes and identified 52,
29, 63, 21, and 25 loci associated with volumes of the whole
brainstem, midbrain, pons, SCP, and medulla oblongata,
respectively, using conditional FDR. These loci included all
brainstem-associated genetic regions identified by the GWAS.
The polygenic overlap also indicates a role for brainstem regions
in common brain disorders and gene-sets analyses implicated
cellular and neurodevelopmental processes in the genetic loci
shared with SCZ.

Further studies of how the overlapping genetic regions influ-
ence brainstem structure and the risk for common brain disorders
are warranted, yet several of the shared loci are noteworthy. The
most significant shared locus for SCZ and the second-most sig-
nificant shared locus for PD was rs13107325, which was asso-
ciated with midbrain volume in SCZ and medulla oblongata
volume in both disorders. rs13107325 is located in the metal ion
transporter gene SLC39A8. We also found that rs4845679 was
jointly associated with volumes of pons, SCP, and medulla
oblongata and both SCZ and BD. The nearest gene for rs4845679
is KCNN3, which is expressed at high levels in the adult brain and
encodes a protein that contributes to the afterhyperpolarization in
neurons45. rs8070942 and rs3865315 were shared between ASD
and SCZ, respectively, and medulla oblongata volume. The
nearest gene for these SNPs was KANSL1, which is expressed in
the brain and encodes a nuclear protein involved in histone
acetylation46.

We also found that the genetic loci shared between brainstem
structures and the brain disorders exhibited a mixed pattern of
allelic effect directions, i.e., disorder-linked genetic variants were
associated with both larger (same effect direction) and smaller
(opposite effect direction) brainstem volumes. A consistent
direction of effect across overlapping genetic loci is a requirement
for a significant genetic correlation as assessed using LD score
regression36. For example, a recent study showed that SCZ and
educational attainment may share >8 K causal genetic variants,
yet their genetic correlation is close to zero due to shared variants
with opposite effect directions47. Thus, a mixed pattern of allelic
effect directions might be one explanation for the lack of robust
genetic correlations between the brainstem volumes and the
disorders in the present study.

We detected brainstem volume differences between individuals
with SCZ, BD, dementia, MCI, MS, and PD and their respective
HC groups. The monoaminergic nuclei of the brainstem are
implicated in psychotic and mood disorders4,48, yet there are few
volumetric studies of brainstem regions in these illnesses. The
results of the present study suggest a general volume decrease
across brainstem regions in SCZ, consistent with previous studies
of the whole brainstem49,50. BD, on the other hand, was asso-
ciated with reduced volume of the medulla oblongata and a
relative sparing or even increase of pons volume in the current
study. Whether brainstem differences in SCZ and BD are
genetically mediated and involved in the development of these
disorders or illness effects that emerge during the course of the
diseases mandates future studies. We do however note that a
majority of the genetic loci shared between SCZ and brainstem
volumes in the current study had opposite effects directions, i.e.,
disorder-linked variants were associated with reduced volumes.
This finding is suggestive of genetic contributions to brainstem
volume decreases in SCZ.

Individuals with dementia had reduced volumes of the mid-
brain and pons and increased relative volume of medulla
oblongata. Notably, we found a highly similar pattern in indivi-
duals with MCI. To our knowledge, there is no previous study

showing reduced brainstem volumes in MCI, although one recent
report found greater whole brainstem volume reduction over one
year in individuals with MCI that converted to dementia than in
those who did not convert51. There is a scarcity of structural
brainstem studies in dementia, yet the results of the present study
are consistent with a few previous findings suggesting volume
decreases mainly in midbrain and pons in dementia20,52. Here, we
extend these findings to MCI, thus suggesting that structural
midbrain and pons alterations could be present in the early
phases of dementia. The smaller volumes of whole brainstem,
midbrain, pons, and the medulla oblongata in individuals with
MS are consistent with the limited number of previous volumetric
brainstem studies of the disorder53,54.

We found larger volumes of the whole brainstem, midbrain,
and medulla oblongata in the individuals with PD. There was no
indication that tremor severity could explain the volume
increases. Notably, some previous studies detected enlargement
of the brainstem and other brain structures in PD55,56 and the
individuals with PD of the present study were in the early phase
of the disorder and none used anti-Parkinson drugs. Further-
more, the majority of loci jointly associated with PD and
brainstem volumes in the present study showed same effect
directions, i.e., disorder-linked variants were associated with
increased volumes. Although no definitive conclusions can be
drawn due to the modest number of shared loci, this may suggest
that brainstem volume increases in PD, if present, may be at least
partly genetically mediated. However, the PD sample was small
and replication studies are needed to further explore how genetic
variants, clinical characteristics, and potential confounds,
including within-scanner motion, may factor into measurements
of brainstem volumes in PD.

In summary, the current study provides new insights into the
genetic architecture of brainstem regions, identifies the first
genetic loci linked to volumes of the midbrain, pons, SCP, and the
medulla oblongata, and shows genetic and imaging evidence for
an involvement of brainstem regions in common brain disorders.
Altogether, these findings encourage further studies of brainstem
structures in human health and disease.

Methods
Samples. We collected data from a total of n= 57,298 individuals, obtained
through collaborations, data sharing platforms, and from in-house samples. All
included samples have been part of previously published works and data collection
for each sample was performed with participants’ written informed consent and
with approval by the respective local Institutional Review Boards. Supplementary
Table 1 provides details for each sample and refers to previously published works
from the included samples.

Preprocessing of MRI data, brainstem segmentations, and quality control
procedures. Raw T1-weighted MRI data for all individuals was stored and ana-
lyzed locally at the University of Oslo. The whole brainstem, midbrain, pons, SCP,
and medulla oblongata were then delineated using Freesurfer 6.022 and Bayesian
brainstem segmentation20. The brainstem segmentation method is based on a
probabilistic atlas and Bayesian inference and is robust to changes in MRI scanners
and pulse sequence details20. We then manually assessed the delineations in all
MRI data sets (n= 57,298) by visually inspecting twelve sagittal view figures of the
segmentations for each participant, as shown in Supplementary Fig. 1. This visual
QC procedure for each data set was conducted blind to case-control status. Data
sets were excluded from the study if one of the following requirements was not met:
(1) the field of view included the whole brainstem, (2) the superior boundary of the
midbrain approximated an axial plane through the mammillary body and the
superior edge of the quadrigeminal plate, (3) the boundary between midbrain and
pons approximated an axial plane through the superior pontine notch and the
inferior edge of the quadrigeminal plate, (4) the boundary between pons and
medulla oblongata approximated an axial plane at the level of the inferior potine
notch, (5) the inferior boundary of the medulla oblongata approximated an axial
plane at the level of the posterior rim of the foramen magnum, (6) there were no
substantial segmentation errors for the anterior and posterior boundaries of
midbrain, pons, and medulla oblongata, and (7) the superior boundary of the SCP
approximated the inferior boundary of the midbrain tectum, the inferior boundary
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of the SCP was defined by the merging with the cerebellum, and the anterior
boundary of the SCP was defined by the posterior boundary of the pons.

This QC procedure excluded 11.4% (n= 6513) of the data sets, mainly due to
insufficient field of view (e.g., not fully covering the inferior part of the medulla
oblongata), insufficient data quality, and segmentation errors in the clinical
samples, resulting in a final sample size of n= 50,785. These comprised three main
samples (Supplementary Table 3): (1) a GWAS discovery sample with 27,034
genotyped individuals from the UK Biobank; (2) a GWAS replication sample with
7432 additional genotyped individuals from the UK Biobank, and (3) a clinical
sample of individuals with psychiatric or neurological disorders and HC (5062
patients and 11,257 controls).

Genome-wide association studies for brainstem volumes and identification of
genomic loci. We conducted GWAS on MRI and genetic data from the partici-
pants in the GWAS discovery and replication samples. We restricted all genetic
analyses to individuals with White European ancestry, as determined by the UK
Biobank study team. We applied standard quality control procedures to the UK
Biobank v3 imputed genetic data, removing SNPs with an imputation quality score
<0.5, a minor allele frequency <0.05, missing in more than 5% of individuals, and
failing the Hardy Weinberg equilibrium tests at a P < 1e−6.

GWAS was run for the brainstem volumes in the discovery and replication
samples using PLINK 2.023. All GWAS accounted for age, age², sex, scanning site,
ICV, genetic batch, and the first ten genetic principal components to account for
population stratification. In addition, the GWAS for the midbrain, pons, SCP, and
medulla oblongata was run both with and without accounting for whole brainstem
volume. The MHC region was excluded from the analysis. To account for potential
effects of relatedness in the discovery sample, we reran the GWAS for all brainstem
volumes when excluding individuals related up to 4th degree (n= 705), leaving us
with 26,329 individuals, and compared the GWAS results of these individuals with
those of the whole discovery sample (n= 27,034).

We identified genetic loci related to brainstem volumes using the FUMA
platform v1.3.526. The settings and results of the FUMA analyses can be found at
[https://fuma.ctglab.nl/browse] (FUMA ID 97–105). For these analyses, we used
the 1000GPhase3 EUR as reference panel. We identified independent significant
SNPs by the genome-wide significant threshold (P < 5e−8) and by their
independency. The minimum r2 was used to determine the borders of the genomic
risk loci and during the first clumping step, the SNPs that were at r2 ≤ 0.6 with each
other within a 1 mb window were considered as independent significant SNPs. In
the next step, independent significant SNPs with r2 < 0.1 within a 1 mb window
were defined as lead SNPs. Genomic risk loci were found by merging lead SNPs if
they were closer than 250 kb. Candidate SNPs were defined as all SNPs in LD (r2 ≥
0.6) with one of the independent significant SNPs in the genetic loci. We also
present findings when employing a statistical threshold of P < 1e−8, i.e., adjusted
for analyses of five brainstem volumes.

Functional annotation, gene-based association, and gene-set analysis. We
functionally annotated all candidate SNPs of brainstem volumes that were in
linkage disequilibrium (r2 ≥ 0.6) with one of the independent significant SNPs
using FUMA. FUMA is based on information from 18 biological repositories and
tools and functionally annotates GWAS results. The platform prioritizes the most
likely causal SNPs and genes by combining positional, eQTL, and chromatin
interaction mapping26. FUMA annotates significantly associated SNPs with func-
tional categories, combined CADD scores28, RegulomeDB scores57, and chromatin
states26. A CADD score above 12.37 is suggestive of a deleterious protein effect28.
The RegulomeDB score indicates the regulatory functionality of SNPs based on
eQTLs and chromatin marks. The chromatin state shows a genomic region’s
accessibility for every 200 bp with 15 categorical states predicted by ChromHMM
based on five histone modification marks (H3K4me3, H3K4me1, H3K36me3,
H3K27me3, H3K9me3) for 127 epigenomes27. A lower score shows higher
accessibility in the chromatin state and refers to a more open state. The 15-core
chromatin states as suggested by Roadmap are as follows: 1=Active Transcription
Start Site (TSS); 2= Flanking Active TSS; 3= Transcription at gene 5′ and 3′; 4=
Strong transcription; 5=Weak Transcription; 6=Genic enhancers; 7= Enhan-
cers; 8= Zinc finger genes & repeats; 9=Heterochromatic; 10= Bivalent/Poised
TSS; 11= Flanking Bivalent/Poised TSS/Enh; 12= Bivalent Enhancer; 13=
Repressed PolyComb; 14=Weak Repressed PolyComb; 15=Quiescent/Low1358.

We conducted genome-wide gene-based association and gene-set analyses using
MAGMA v1.0730 in FUMA on the complete GWAS input data. The MHC region
was excluded before running the MAGMA analyses. MAGMA performs multiple
linear regression to obtain gene-based P values and the Bonferroni-corrected
significant threshold was P= 0.05/18158 genes= 2.75e−6. We performed a gene-
set analysis using hypergeometric tests for curated gene sets and GO terms
obtained from MsigDB59. To identify overrepresented pathways for the mapped
genes, we used the ConsensusPathDB32. ConsensusPathDB is a database system
that integrates functional interactions, including binary and complex
protein–protein, genetic, metabolic, signaling, gene regulatory and drug-target
interactions, as well as biochemical pathways32. The genome-wide gene-based
association, the gene sets, and the pathway results are also presented when
accounting for analyses of five brainstem volumes.

Analyses of genetic overlap between brainstem volumes and eight brain
disorders. To further examine the genetic architecture of brainstem volumes and
the genetic relationships between brainstem regions and common brain disorders,
we obtained GWAS summary statistics for ADHD60, ASD, SZ, and BD from the
Psychiatric Genomics Consortium61–63, for MD from the Psychiatric Genomics
Consortium and 23andMe64,65, for AD from the International Genomics of Alz-
heimer’s Project66, for MS from the International Multiple Sclerosis Genetics
Consortium67, and for PD from the International Parkinson Disease Genomics
Consortium68,69. We then employed conditional Q–Q plots and conditional FDR
and conjunctional FDR statistics to assess polygenic overlap between brainstem
volumes and the eight brain disorders using MATLAB 2017a and Python
3.7.1433,34. A mathematical description and review of the applications of these
methods in neurological and psychiatric disorders can be found in Smeland et al.35.

The conditional FDR builds on an empirical Bayesian framework and uses
auxiliary genetic information to re-adjust GWAS test statistics of a primary
phenotype35. Conditional FDR includes separate GWAS data and leverages
overlapping genetic associations to increase discovery of phenotype-associated
SNPs. This approach asigns a conditional FDR value to each SNP which is defined
as the probability that a SNP has no association with the first phenotype, given that
the P values for the first and second phenotypes are as small or smaller than the
observed P values33–35. The conditional FDR values are estimated for each nominal
SNP P value for the first phenotype after computing the stratified empirical
cumulative distribution functions of the nominal P values35.

The first step of the conditional FDR approach is to construct conditional Q–Q
plots. These plots compare the association with a primary trait across all SNPs and
within SNPs strata determined by their association with the secondary trait.
Genetic overlap exists if the proportion of SNPs associated with a phenotype
increases as a function of the strength of the association with a secondary
phenotype. In conditional Q–Q plots, this enrichment is visualized as successive
leftward deflections from the null distribution, and can be directly interpreted in
terms of the true discovery rate (1−FDR)33–35. In this work, we plotted the
empirical cumulative distribution of nominal P values in one phenotype (e.g.,
whole brainstem volume) for all SNPs and for subsets of SNPs with significance
levels in another phenotype (e.g., SCZ) below the indicated cutoffs (P ≤ 1, P ≤ 0.1,
P ≤ 0.01, and P ≤ 0.001).

To detect genetic loci jointly associated with the brainstem volumes and the
eight clinical conditions, we used the conjunctional FDR method33–35 and present
results based on both a threshold of 0.05 and a threshold of 0.01. The conjunctional
FDR is an extension of conditional FDR and is defined by the maximum of the two
conditional FDR values for a specific SNP. This method estimates a posterior
probability that a SNP is null for either trait or both at the same time, given that the
P values for both phenotypes are as small, or smaller, than the P values for each
trait individually. Manhattan plots were constructed based on the ranking of the
conjunctional FDR to show the genomic location of the shared genetic risk loci.
The empirical null distribution in GWASs is affected by global variance inflation
and all P values were therefore corrected for inflation using a genomic inflation
control procedure. All analysis was performed after excluding SNPs in the major
extended histocompatibility complex (hg19 location chromosome 6:
25119106–33854733) and 8p23.1 regions (hg19 location chromosome 8:
7242715–12483982) for all cases and MAPT and APOE regions for PD and AD,
respectively, since complex correlations in regions with intricate LD can bias the
FDR estimation. We also ran pairwise genetic correlations between brainstem
volumes and the eight psychiatric and neurological disorders using LD score
regression36. Here, the SNPs were pruned using a pairwise correlation coefficient
approximation to LD (r²), where SNPs were disregarded at r² < 0.2 and pruning
performed with 20 iterations.

Statistical analysis of brainstem volumes, brain disorders, and clinical vari-
ables. Statistical analyses for group comparisons were conducted using linear
models in R statistics37. We included all healthy individuals that were imaged on
the same scanners as the patients they were compared with, in the respective
control groups. For clinical conditions where participants were imaged on multiple
scanners, we included scanner site as a covariate in the analyses. For each of the
clinical conditions, we ran linear models covarying for sex, age, age², ICV, and
adjusted for multiple testing using FDR (Benjamini–Hochberg). The group ana-
lyses for volumes of midbrain, pons, SCP, and medulla oblongata were run both
with and without covarying for whole brainstem volume and group differences in
Cohen’s d and mm3 are presented.

Information concerning illness severity was available from individuals with
MCI, dementia, MS, SCZ, and PD. 1610 individuals with MCI or dementia had
MMSE score, whereas 190 individuals with MS had EDSS scores. Linear models
were run to examine the relationships between the clinical variables and brainstem
volumes covarying for sex, age, age², ICV, and scanner site. Two neuroradiologists
assessed the imaging data from the individuals with MS and found that n= 153
participants had infratentorial MS lesions detectable with MRI, whereas n= 91 did
not. 384 individuals with SCZ had function scores of the Global Assessment of
Functioning scale, whereas 264 individuals had symptom scores from the scale. 616
and 614 individuals with SCZ had positive and negative scores, respectively, from
the Positive and Negative Syndrome Scale. 128 individuals with PD had Unified
Parkinson’s Disease Rating Scale III scores70 and the Hoehn and Yahr Stage score.
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To examine whether tremor level might influence the measurements of brainstem
volumes in PD, we used the self-report tremor item 2.10 of the Unified Parkinson’s
Disease Rating Scale III and examined brainstem volumes across these tremor
scores using linear models.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
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