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Abstract

Cataracts are a major cause of blindness worldwide and commonly occur in individuals over

70 years old. Cataracts can also appear earlier in life due to genetic mutations. The lens pro-

teins, αA- and αB-crystallins, are chaperone proteins that have important roles maintaining

protein solubility to prevent cataract formation. Mutations in the CRYAA and CRYAB crystal-

lin genes are associated with autosomal dominant early onset human cataracts. Although

studies about the proteomic and genomic changes that occur in cataracts have been

reported, metabolomics studies are very limited. Here, we directly investigated cataract

metabolism using gas-chromatography-mass spectrometry (GC-MS) to analyze the metab-

olites in adult Cryaa-R49C and Cryab-R120G knock-in mouse lenses. The most abundant

metabolites were myo-inositol, L-(+)-lactic acid, cholesterol, phosphate, glycerol phosphate,

palmitic and 9-octadecenoic acids, α-D-mannopyranose, and β-D-glucopyranose. Cryaa-

R49C knock-in mouse lenses had a significant decrease in the number of sugars and minor

sterols, which occurred in concert with an increase in lactic acid. Cholesterol composition

was unchanged. In contrast, Cryab-R120G knock-in lenses exhibited increased total amino

acid content including valine, alanine, serine, leucine, isoleucine, glycine, and aspartic acid.

Minor sterols, including cholest-7-en-3-ol and glycerol phosphate were decreased. These

studies indicate that lenses from Cryaa-R49C and Cryab-R120G knock-in mice, which are

models for human cataracts, have unique amino acid and metabolite profiles.

Introduction

Cataracts are a major cause of blindness worldwide, and protein aggregation and insolubility

are the key sources of lens opacification in human cataractogenesis [1]. Congenital cataracts,

which have been linked to crystallin gene mutations, appear early in life and account for

approximately 30% of childhood blindness [2–4]. Recently, metabolomics has been used in

both clinical and animal studies of several diseases, including some ocular pathologies [5, 6].

However, metabolomic studies specifically focused on cataracts are very limited [7–9]. Early

proteomic and RNA-seq studies that investigated the biochemical mechanisms of congenital
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cataracts suggested that metabolic changes in the lens occur during cataract development.

However, these metabolic changes have not been analyzed in detail [7, 10, 11].

Protein quality control is dependent on the proper functioning of chaperone proteins,

including α-crystallin [12]. Therefore, it is important to determine how the protein quality

control machinery regulates energy metabolism in the lens. As a member of the small heat

shock protein family of molecular chaperones, α-crystallin is a major chaperone in the lens

that prevents protein aggregation. Importantly, mutant forms of the cryaa and cryab proteins

are associated with human cataracts [13, 14], and they may also alter lens metabolism [10, 15].

The arginine-49-to-cysteine mutation (R49C) is associated with congenital cataracts and a loss

of chaperone activity of the CRYAA protein [13, 16, 17]. Similarly, the arginine-120-to-glycine

mutation is linked to early onset cataracts, a loss of chaperone function of the CRYAB protein,

and myopathy [14, 18, 19]. Therefore, to obtain a comprehensive understanding of the meta-

bolic changes that occur downstream of CRYAA and CRYAB human cataract-associated

mutations, we analyzed the metabolites in cryaa and cryab knock-in lenses.

The metabolome is the complex array of small-molecule metabolites and metabolic by-

products, including carbohydrates, that results from gene expression and protein activity.

Importantly, the metabolome can provide new, crucial insights to better understand both

healthy and diseased states. Metabolomics relies on analytical platforms, such as proton

nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), including gas

chromatography (GC)-MS and liquid chromatography (LC)-MS.

Recent studies have examined the spatial distribution of metabolites in human lenses, the effect

of human cataracts on metabolite levels, and the metabolic composition of the rat lens with NMR

and LC-MS methods [5, 7–9]. Analyzing the spatial distribution of 34 metabolites in the human

lens revealed that most metabolites had a homogenous distribution [8]. Additionally, most metab-

olites in rat lenses exhibited a gradual decrease with age [9]. Another study found that very low

glutathione (GSH) levels were present in the nuclei of cataractous lenses [7]. The concentration of

specific lens metabolites can vary significantly under stress, including elevated amino acid levels

that were observed in streptozotocin (STZ)-induced and selenite-induced cataracts [20–22]. In

vivo models of UV irradiation-induced cataracts also altered the lens metabolite profile [23].

Metabolites reflect the physiological processes that are occurring within the lens and provide

important information about pathogenesis. Currently, the precise effects of cryaa and cryab muta-

tions on lens metabolism are unknown; therefore, knock-in mice with Cryaa or Cryab mutations

that are associated with human hereditary cataracts afford a unique opportunity to study cataract

lens metabolism. Recently, proteomic and RNA-seq studies with cryaa and cryab mouse models

during the early stages of cataract development (postnatal days 2 and 14 lenses) have implicated

glycolysis, amino acid biosynthesis, and protein aggregation in cataracts [10, 15].

To determine the functional metabolic ramifications of cryaa and cryab mutations in adult

mice, we performed a systematic analysis of the metabolites present in the lenses of adult

Cryaa-R49C and Cryab-R120G knock-in mutant mice and compared them to a wild-type

(WT) cohort. We performed GC-MS analysis on hundreds of intermediate metabolites,

including lipids, sugars, and amino acids, to identify metabolic predictors of cataracts. Our

analytical results can be used to identify interactions between metabolic profiles and lens

health that contribute to cataractogenesis.

Methods

Animals

All animal procedures were approved by the IACUC at Washington University (St. Louis,

MO, USA) and conform to the ARVO Statement for the Use of Animals in Ophthalmic and
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Vision Research. The Mouse Genetics Core at Washington University was responsible for the

mouse care, breeding, and genotyping. WT (wild-type) C57BL/6J and knock-in mice carrying

the Cryaa-R49C or Cryab-R120G mutations were used. Heterozygous (Cryaa-R49C-het,

Cryab-R120G-het) or homozygous (Cryaa-R49C-homo, Cryab-R120G-homo) mutant knock-

in mice were previously generated and studied in our laboratory [19, 24]. The knock-in mutant

mice were converted to a C57BL/6J background by speed congenics and identified by strain-

specific single nucleotide markers (DartMouse, Lebanon, NH, USA). The metabolite concen-

tration for each mouse lens of each genotype was profiled and the data were averaged by geno-

type. Adult mice were used for the comparisons between different genotypes. The mice used

for the GC-MS analyses were between 113 and 333 days old (mean ± S.D.: 222 ± 73 days). All

experiments included at least four lenses per group and were performed in duplicate. Mice

ages were as follows: WT, 113–256 days, 160 ± 73, n = 6; Cryaa-R49C-het, 273–275 days,

273 ± 1, n = 5; Cryaa-R49C-homo, 161–161 days, 161 ± 0, n = 7; Cryab-R120G-het, 333–333,

333 ± 0, n = 4; Cryab-R120G-homo 192–256 days, 226 ± 29, n = 6.

Sample preparation

Sample preparation, metabolite quantification, data analysis, and data interpretation were per-

formed at the Washington University School of Medicine Mass Spectrometry Core. The

recently described GC-MS methods were used [25–28]. To analyze small metabolites, lenses

were dissected from mice according to approved animal protocols. Briefly, the mouse eyes

were enucleated, and the lenses were excised and placed in individual microcentrifuge tubes

for extraction. The lenses were homogenized with disposable grinders (Axygen, Union City,

CA, USA) in 1.5-mL Eppendorf tubes containing 400 μL 100% ethanol. The lens extracts were

then centrifuged at 4˚C for 30 minutes at 15,000 rpm to pellet the proteins and other insoluble

components. Ethanolic supernatants were transferred to a vial insert (Thermo Scientific cat.

No. 03-250-630) and dried under nitrogen before derivatizing with 0.2/1/2.8 pyridine/BSTFA

1% TMCS/acetonitrile. The derivatized samples were injected (2 μL with a 1:10 split) and ana-

lyzed via an Agilent 7890A gas chromatograph that was coupled to an Agilent 5975C mass

spectrometer. The following temperature program was used: 80˚C for 2 minutes, followed by a

10˚C/min increase until 300˚C, and a final hold for 5 minutes.

Biological data analysis and interpretation

Peak areas were integrated using Chem Station E.02.02.1431 and identified using the National

Institute of Standards and Technology (NIST) MS Search 2.3 software and the NIST 2014

(NIST14) and 2017 (NIST17) libraries. Metabolite percentages were calculated as the peak area

of the compound/area of the total chromatogram × 100. Compounds were identified using the

NIST14 and NIST17 libraries with good (� 700) R-matches when compared to the spectra.

For a given match, all the peaks in the library spectra had to be present in the experimental

spectra of the chromatogram.

Data was imported into Agilent Mass Hunter Version B.07.00, which computationally decon-

voluted co-eluting peaks into individual compounds for analysis. The deconvoluted data was then

imported into Mass Profiler Professional B.12.6.1 (MPP) to identify metabolite components that

were statistically different between genotypes. Within MPP, prior to analysis, the data were nor-

malized, log2 transformed, and the median of the control and heterozygous samples were set as

the baseline. Because a primary objective was to identify a dose-dependent effect of the mutated

gene, one-way analysis of variance comparing the WT, Cryaa-R49C-het, and Cryaa-R49C-homo

genotypes was completed separately from the WT, Cryab-R120G-het, and Cryab-R120G-homo

analysis. P values less than or equal to 0.05 were considered statistically significant.
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The MPP software provides several methods to filter unreproducible peaks, normalize data,

and compare metabolite profiles among groups to identify metabolites that are statistically dif-

ferent between genotypes. To account for differences in lens size and variation in metabolite

recovery, we normalized the data using two techniques and compared the results from the two

methods. For the 75th percentile technique, the software identified the peak in the 75th percen-

tile of intensity in each chromatogram and made the 75th percentile intensity equivalent across

chromatograms. The software then adjusted the intensities of the remaining peaks. We also

normalized the peak intensity data using a scalar value of the total ion count of each chromato-

gram. Both methods yielded the same or very similar results.

In order to clarify the identities of sugar isomers that were difficult to resolve with the NIST

libraries alone, we also ran several standards and acquired their retention times and mass spec-

tra (S1 Fig).

Results

The lens metabolites that were detectable by GC-MS included amino acids, organic acids, sugars

and sugar alcohols, fatty acids, and sterols. One of the most abundant metabolites that was identi-

fied was myo-inositol (Fig 1). Additionally, TMS derivatives of cholesterol, L-(+)-lactic acid, phos-

phate, glycerol phosphate, palmitic and 9-octadecenoic acids, and sugars that were identified as β-

D-glucopyranose and β-D-galactopyranose, were also prominent on the chromatograms (Fig 1).

Several compounds in the mouse lens extracts could not be identified using the NIST14

and NIST17 libraries or from any standards we analyzed. The mass spectra of these unknown

compounds are shown in S2 Fig.

Because we were most interested in dose-dependent effects of the mutated α-crystallin gene,

we first analyzed lenses from the WT, Cryaa-R49C-het, and Cryaa-R49C-homo mice separate

from the WT, Cryab-R120G-het, and Cryab-R120G-homo mice lenses. The total number of com-

pounds detected was 153 ± 4 (mean ± S.E., n = 6) for WT, 156 ± 5 (n = 5) for Cryaa-R49C-het,

and 66 ± 7 (n = 7) for Cryaa-R49C-homo mice lenses (Fig 2). A small number of metabolites

were reduced in Cryaa-R49C-het mice. The metabolites at 15.2 and 16.12 minutes were promi-

nently reduced in lenses from Cryaa-R49C-het mice and were identified as α-D + mannopyranose

and β-D-glucopyranose with match factors of 927 and 946, respectively (Fig 3). Based on our

study with the glucose standard, these two isomers were formed with the same retention times

upon derivatization of glucose (S1 Fig). Therefore, these two peaks likely represent glucose present

in the mouse lenses (S1 Table). The lenses from Cryaa-R49C-het mice also exhibited a small (~3

fold) reduction in the relative amounts of minor sterols (Fig 3). The lenses from the Cryaa-R49C-

het mice had statistically significant decreases in various sugars whose spectra appeared nearly

identical but had different retention times (S1 Table). Fig 3D depicts the percentage of lactic acid

relative to the other compounds in lenses from WT and Cryaa-R49C-het mice. GC-MS analysis

revealed an increase in lactic acid in Cryaa-R49C-het mouse lenses compared to WT lenses.

Phenotypically, the lenses from Cryaa-R49C-homo mice were noticeably smaller and

appeared shrunken in size relative to the lenses from WT and Cryaa-R49C-het mice [29, 30].

These lenses exhibited dramatic decreases in numerous metabolites, many of which fell below

the detection limit, causing them to appear absent or nearly absent on the chromatogram.

Therefore, the number of metabolites detected using the MPP software was appreciably

reduced (Fig 2). Myo-inositol levels in the Cryaa-R49C-homo lenses were significantly lower

than in the WT lenses (S3 Fig).

Interestingly, in the lenses from Cryaa-R49C-homo mice, there was also another subset of

compounds that were present in similar amounts to those in the lenses from mice with the

WT or Cryaa-R49C-het genotypes (Fig 4). These compounds were all classified as lipids and
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included cholesterol and long carbon chain compounds (2-monostearin, 2-palmitoylglycerol,

9-octadecenoic acid, glycerol monostearate, 1-monopalmitin, 2,3-diydroxypropylicosanoate,

stearic acid, butanedioic acid, and palmitic acid). In addition, lactic acid and the 3TMS deriva-

tive of phosphate were also prevalent in the chromatograms corresponding to lenses from the

Cryaa-R49C homozygous mice.

Phosphate was present in the buffer that was used for lens dissection. All lenses were dis-

sected into PBS and gently blotted before being deposited in the ethanol extraction buffer;

therefore, the likely origin of the trisilylated phosphate was residual PBS buffer. This peak was

also found on many chromatograms in other studies using similar samples, including those

derived from cultured cells [31].

We next analyzed lenses from WT, Cryab-R120G-het, and Cryab-R120G-homo mice. The

total number of compounds detected in these lenses was 153 ± 4 (mean ± S.E., n = 6) for WT,

161 ± 4 for Cryab-R120G-het (n = 4), and 145 ± 6 (n = 6) for Cryab-R120G-homo mice (Fig

Fig 1. Representative chromatogram of a lens from a 143-day-old WT mouse showing the elution of amino acids,

carbohydrates, and sterols (top). The peaks in the chromatogram were identified and are shown in the table (bottom).

https://doi.org/10.1371/journal.pone.0238081.g001
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2). Relative changes in the percentages of major and minor sterols in lenses from mice with the

Cryab-R120G-het and Cryab-R120G-homo genotypes are shown in Fig 5. Sterols were identi-

fied using the NIST14 and NIST17 libraries. However, the sterol at 26.43 minutes (peak 43, Fig

1) was not present in the library. The mass spectra of this and other unidentified peaks is

shown in S2 Fig. Changes in the percent of minor lens sterols from mice with the Cryab-

R120G genotype compared to those in WT mice are displayed in Fig 5.

Lenses from heterozygous mice, which includes both Cryab-R120G-het and Cryaa-R49C-

het, did not appear morphologically different that lenses from WT mice. However, they exhib-

ited quantitative differences in some metabolite levels. There was no appreciable appearance

or disappearance of any metabolites. Myo-inositol, a major lens metabolite (Fig 1) in Cryab-

R120G-homo lenses, was present at a lower level than in WT lenses, but this decrease was not

statistically significant (S3 Fig).

Two unknown metabolites (retention times 10.42 and 11.75 minutes), minor sterols (reten-

tion time 26.4 minutes), cholest-7-en-3-ol (3β, 5 α), and glycerol phosphate decreased in the

lenses from Cryab-R120G-het and Cryab-R120G-homo mice (Fig 5 and S2 Table). The Cryab-

R120G-homo genotype did not appear to be nearly as severe as the Cryaa-R49C-homo genotype

because the lenses were not completely shrunken, nor did they exhibit large-scale decreases.

Lenses from Cryab-R120G-het and Cryab-R120G-homo mice had increased amino acids

levels, which occurred in a gene-dose-dependent fashion (Fig 6). The total percentage of

amino acids also increased in lenses from Cryab-R120G-het and Cryab-R120G-homo mice

when compared to lenses from WT mice. These changes were statistically significant in lenses

from mice with the Cryab-R120G-homo genotype. More specifically, L-proline, L-methionine,

serine, threonine, L-5-oxoproline (glutamate degradation product), and the branched-chain

amino acids L-valine and L-isoleucine increased relative to lenses from WT mice. The L-

5-oxoproline peak may be a glutamate degradation product.

Fig 2. Total number of compounds and average total peak areas in mouse lenses. Data were analyzed using the MPP software. (A) The total number of

compounds and (B) average total peak areas in lenses from WT, Cryaa-R49C-het, Cryaa-R49C-homo, Cryab-R120G-het, and Cryab-R120G-homo mice are

shown. The mice were 222 ± 73 days old, and the total number of lenses was 34.

https://doi.org/10.1371/journal.pone.0238081.g002
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We also performed an age-dependent metabolite study with lenses from Cryab-R120G-het

mice that were 74–143 days (young) and 411–756 days old (aged). We analyzed nearly equal

numbers of mice in these two age groups, finding a large difference in metabolite levels

between them. Conversely, we showed that the differences in the relative levels of metabolites

extracted from WT or cryab mutant lenses in mice between the ages of 100–300 days were

exceedingly small and not statistically significant. We measured a statistically significant

increase in the percent cholesterol with age, which was accompanied by a decrease in desmos-

terol content (S4 Fig). In lenses from Cryab-R120G-het mice, cholesterol and β-D-glucopyra-

nose emerged as entities that changed proportionally with age. The cholesterol result was more

pronounced when compared to β-D-glucopyranose, which may be attributed to the greater

cholesterol content in mouse lenses. Some of the lower abundance sterols may also vary with

age, but they were present in minor amounts and were not analyzed further.

Discussion

The in vivo biological consequences of a Cryaa or Cryab mutation on the lens can be under-

stood by quantitatively measuring the metabolic response of lenses expressing mutant and

aggregation-prone forms of cryaa and cryab in knock-in mouse models. Here, we report

Fig 3. (A) Representative chromatograms displaying changes in sugars and sterols in mouse lenses. Sugars (B) and sterols (C) in lenses from WT and

Cryaa-R49C-het mice are shown. The sugar and sterol content in the mutant lenses were compared to lenses from WT mice. The match factors were 927

and 946 for α-D-mannopyranose and β-D-glucopyranose, respectively. (D) Lactic acid content in cryaa-R49C-het mouse lenses were compared to levels

in WT mouse lenses. Data are presented as the means ± S.D. (P< 0.05).

https://doi.org/10.1371/journal.pone.0238081.g003
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metabolomic abnormalities in WT and Cryaa-R49C and Cryab-R120G knock-in mutant

lenses using GC-MS as analytical platforms. We used knock-in mouse models that were previ-

ously generated in our lab to express mutant cryaa and cryab proteins [19, 24]. The mutant

proteins in these models are expressed from birth in every cell; therefore, by studying adult

knock-in mice, metabolite changes that occur when a lens grows throughout the lifespan in

the presence of mutant cryaa or cryab can be used to better understand inherited human cata-

racts. This model system can also be used to better understand how genetic perturbations in

chaperone proteins affect metabolites.

Several important assumptions within this study require further discussion. In this study,

whole lenses were homogenized, and compounds were extracted from the homogenate;

Fig 4. Representative chromatograms of long-chain fatty acids in mouse lenses. Several compounds in the lenses from Cryaa-R49C-homo mice were

unchanged in abundance compared to lenses from WT mice (arrow). The inset displays an enlarged view of chromatogram in the beige circle. WT, blue;
Cryaa-R49C-homo, red. (1), 2-palmitoylglycerol 2 TMS; (2), 1-monopalmitin 2TMS; (3), 2-monostearin 2TMS; (4), glycerol monostearate 2TMS.

https://doi.org/10.1371/journal.pone.0238081.g004

Fig 5. Major and minor sterols in Cryab-R120G mouse lenses are compared to WT lenses. Four or six lenses from mice of

each genotype were individually analyzed, and the average percentage was determined. Data are presented as the means ± S.

D. (�P< 0.05).

https://doi.org/10.1371/journal.pone.0238081.g005
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therefore, cataract metabolism represents the average of the entire lens. This average does not

reveal differences in metabolism of the non-cataractous fractions compared to the cataractous

fractions. Due to the very small size of the mouse lens, we did not attempt to dissect the lens to

separate the aggregated from non-aggregated fractions. Nevertheless, data for the altered

metabolite profiles obtained from heterozygous lenses revealed statistically significant differ-

ences between mice with the Cryaa-R49C genotype and WT mice in our multivariate analysis.

Many metabolites in the extracts from Cryaa-R49C-homo lenses, if present, fell below the lim-

its of detection.

Our data demonstrated that carbohydrates and minor sterols decreased in lenses from

Cryaa-R49C-het mice, which occurred in concert with increased lactic acid content. Because

lactic acid is a product of pyruvate reduction, it may be a measure of tricarboxylic acid cycle

dysfunction. Collectively, these results suggest an increase in glycolysis and are supported by

reduced sugar levels. In addition, we demonstrated that there was an increase in total and spe-

cific amino acids and cholesterol in lenses from Cryab-R120G-het and Cryab-R120G-homo

mice. These changes were accompanied by a decrease in desmosterol and other minor sterols

in the lenses. Other studies have reported amino acid increases in cataractous lenses [20].

Intriguingly, both mutations affected minor sterol and sugar levels. The lenses from Cryab-

R12G-het mice had minor increases in monooleoyl glycerol, decreases in 1-octadecanol and

desmosterol, and a prominent increase in cholesterol.

The most abundant metabolites that we found in mouse lenses were myo-inositol and lac-

tate, which is in agreement with a previous study on human lenses [7]. In the prior study on

human lenses with LC-MS, other abundant metabolites were creatine, GSH, glutamate, glu-

cose, and glutamine. The study also showed that metabolite concentration in the cortex and

nucleus was similar except for ascorbate, GSH, and NAD, which were lower in the center of

the lens than in the cortex. Primary UV filters were also lower in the center of the lens. In

human lenses, GSH and ascorbate are in millimolar concentrations, and their levels decrease

in cataracts [7].

Another study reported the content of 33 metabolites in rat lenses that were analyzed by

GC-MS without preliminary derivatization of the compounds [9]. They reported decreases in

several amino acids, including alanine, leucine, and isoleucine, which occurred as age

Fig 6. Amino acid content in Cryab-R120G mouse lenses are compared to WT mouse lenses. The lenses were first derivatized

with TMS, and the amino acids were detected as single- or double-derivatized species. Four or six lenses from mice of each genotype

were individually analyzed, and the average percent area of each amino acid was determined. Data are presented as the means ± S.D.

(�P< 0.05).

https://doi.org/10.1371/journal.pone.0238081.g006
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increased from 1 to 14 months. Others have shown that young lenses are more metabolite-rich

than old lenses, and alanine, arginine, and glycerophosphate decrease with age [9]. In our

study, increased amino acid levels were observed in lenses from the Cryab-R120G-het and

Cryab-R120G-homo mice. These data may indicate elevated degraded protein levels and

increased amino acid transport across the cell membrane in mutant lenses. Early work on lens

metabolism showed that amino acid oxidation in the lens can be an energy source [32]. In our

recent RNA-seq studies with lenses from postnatal Cryab-R120G-het mice, we found 5- and

27-fold increases in Slc6a13 and Slc1a1 gene expression, respectively [15]. These genes encode

the transporters that regulate solute entry into cells, including amino acids. Loss of the amino

acid transporter LAT2 (Slc7a8) causes a strong imbalance in lens amino acid concentrations

and is associated with cataracts in both mouse and humans [33]. In a study that investigated

rat lenses and other ocular tissue, 13 lens-specific metabolites were identified by GC-MS [34].

Other studies also report amino acid increases in cataracts [20, 35]. Lens metabolomic profil-

ing has also identified differences in amino acid metabolism between different fish species

[36]. Five-oxo-proline, an intermediate of glutamate breakdown (a GSH precursor) was higher

in salmon, the species with increased cataract severity and prevalence when compared to trout,

the other fish studied. The increase in the branched-chain amino acids leucine, isoleucine, and

valine that are traditionally associated with oxidative metabolism and energy production in

muscle tissue have also been identified as significant predictors of diabetes. Importantly, the

breakdown of branched-chain amino acids may be a source of acetyl coenzyme A in lens epi-

thelial cells, which suggests that branched-chain amino acids may induce oxidative damage

and increase the risk of cataract development. Our data demonstrating that amino acid levels

increase in cataracts caused by the Cryab-R120G mutation could have great potential medical

implications.

Glucose is the primary energy substrate for the lens. Several sugars were decreased in the

lenses from Cryaa-R49C-het and Cryaa-R49C-homo mice, which is in agreement with our

previous RNA-seq studies that showed decreased Slc31a1 (-6.5 fold), Slc46a3 (-4.4-fold),

Slc20a2 (-3.77 fold), and Slc7a13 (-89 fold). However, Slc7a3 increased 21- fold in the previous

study [15].

Anaerobic glycolysis has an important role in the lens and lactic acid increases during this

process. We found increased lactic acid levels in lenses from Cryaa-R49C-het mice when com-

pared to lenses from WT mice. We also found decreased phosphoglycerol in lenses from

cryaa-R49C-het mice when compared to lenses from WT mice.

Myo-inositol helps to regulate important cellular functions including glucose homeostasis.

Notably, low levels of myo-inositol are associated with diabetes and disrupted cell signaling

pathways, including with inositol triphosphate (IP3) and phosphatidylinositol phosphate lipid

(PIP2/PIP3) signaling. Myo-inositol also contributes to cell growth and survival. Lens health is

also dependent on myo-inositol. Lenses have Na+-dependent myo-inositol transport and high

levels of myo-inositol cause osmotic stress that contributes to cataract formation. Low levels of

myo-inositol occur in diabetic rats with cataracts, but can be resolved with diet modifications

[37]. Although an osmotic effect can explain the physical changes in the lens that lead to cata-

ract formation, sorbitol accumulation in other tissues and the ensuing diabetic complications

are associated with myo-inositol depletion and disrupted Na+/K+-ATPase activity [38, 39].

Our data demonstrating reduced levels of myo-inositol in Cryaa-R49C-homo lenses may indi-

cate its role in the formation of cataracts caused by this mutation.

Current lens metabolomic studies provide the foundation for future, detailed analyses and

can even be extended to targeted metabolomics. Instruments that are suitable for metabolic

flux analysis with 13C or 2H tracers and targeted metabolomics would enhance these studies.

MS has been used to quantify metabolic fluxes in glycolysis, the TCA cycle, pentose phosphate
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pathways, amino acid metabolism, nucleotide metabolism, and lipid metabolism. These stud-

ies provide insight about the effects of poor protein quality control due genetic mutations in a

major crystallin gene and the downstream effects on glucose metabolism. We showed that

after expressing Cryab-R120G crystallin in the lens, glycolytic intermediates and amino acids

were altered and glycolytic flux was enhanced. In addition, sugar levels were reduced, and lac-

tic acid production was enhanced in Cryaa-R49C expressing heterozygous lenses. These meta-

bolic fluctuations reflect changes in lens biology caused by mutant cryaa or cryab protein

expression.
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S1 Fig. GC-MS analysis of standard compounds (related to Fig 1). Mass spectral analysis of

D-glucose, D-fructose, and myo-inositol by GC-MS are shown. (A) D-glucose yielded two

peaks at retention times 15.6 and 16.4 minutes, close to peaks 27 and 30 in the WT mouse lens

extracts shown in Fig 1. These peaks were identified as 5TMS derivatives, β-D-(+)-mannopyr-

anose and β-D-glucopyranose, respectively. (B) The retention times for D-fructose peaks at

14.70, 14.78 and 14.86 minutes were close to peaks 23, 24, and 25 in the WT mouse lens

extracts shown in Fig 1. (C) Myo-inositol, 6TMS derivative, at retention time 17.6 minutes was

close to peak 33 in the WT mouse lens extracts shown in Fig 1.

(TIF)

S2 Fig. Mass spectra of unknown compounds detected in mouse lens extracts (related to

Fig 1). The mass spectra of four compounds present in mouse lens extracts that could not be

definitively identified using NIST14 and NIST17 library searches are shown. Data from a WT

mouse lens are shown in Fig 1. (A) Peak 14 (retention time 10.73 minutes). (B) Peak 16 (reten-

tion time 12.34 minutes). (C) Peak 38 (retention time 22.64 minutes). (D) Peak 43 (retention

time 27.01–27.04 minutes).

(TIF)

S3 Fig. myo-inositol in mouse lenses (related to Fig 3). Graphs showing percentages of myo-

inositol levels in WT, Cryaa-R49C-het, Cryaa-R49C-homo, Cryab-R120G-het, and Cryab-

R120G-homo mouse lenses analyzed by GC-MS.
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S4 Fig. Age-related changes in cholesterol and desmosterol percentages in lenses from

Cryab-R210G-het mice. GC-MS analysis reveals a cholesterol increase in Cryab-R120G-het

mouse lenses with age (A). In contrast, the percentage of desmosterol decreased with age (B).
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