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A person’s lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interac-
tions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a
multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipopro-
tein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in
stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period
July 2014–November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2–
degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci
were at least suggestively associated (P < 1 × 10−6) with lipid levels in stage 1 and were evaluated in stage 2,
followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147
independent loci were associated with lipid levels at P < 5 × 10−8 using 2-df tests, of which 18 were novel. No
genome-wide-significant associations were found testing the interaction effect alone. The novel loci included sev-
eral genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB),
and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF))
that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental
models.

alcohol consumption; cholesterol; gene-environment interactions; gene-lifestyle interactions; genome-wide
association studies; lipids; triglycerides

Abbreviations: A1CF, APOBEC1 complementation factor gene; APOBEC1, apolipoprotein B mRNA editing enzyme, catalytic
polypeptide 1; APOBEC1, apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 gene; CHARGE, Cohorts for Heart and
Aging Research in Genomic Epidemiology; DEPICT, Data-driven Expression Prioritized Integration for Complex Traits; df,
degrees of freedom; FDR, false discovery rate; GWAS, genome-wide association study(ies); HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; PCSK5, proprotein convertase subtilisin/kexin type 5; PCSK5, proprotein
convertase subtilisin/kexin type 5 gene; PCSK9, proprotein convertase subtilisin/kexin type 9 gene; TG, triglycerides; VEGF-B,
vascular endothelial growth factor B; VEGFB, vascular endothelial growth factor B gene.
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Serum concentrations of high-density lipoprotein cholesterol
(HDL-C), low-density lipoprotein cholesterol (LDL-C), and tri-
glycerides (TG) are modifiable risk factors for cardiovascular
disease, the leading cause of death globally (1). Lipid levels are
influenced by multiple exposures, including genetic and lifestyle
factors. The genetic factors influencing lipid levels have been
widely studied (2–8), and large-scale genome-wide association
studies (GWAS) have identified 236 loci associated with HDL-
C, LDL-C, and TG, which account for up to approximately
12% of the total trait variance in the studied populations (5, 7).

Lifestyle factors, such as alcohol consumption, are also con-
siderably associated with lipid levels: In epidemiologic studies,
greater alcohol consumption is associated with an improved
lipid profile, including associations with HDL-C levels, high-
density lipoprotein particle concentrations, and HDL-C subfrac-
tions (9, 10). The relationship between alcohol use and LDL-C
or TG is less clear, with some studies reporting positive associa-
tions while others have reported negative associations (11–20).
A causal role of low-to-moderate alcohol consumption in improv-
ing overall lipid profile is supported by intervention studies (19),
andmore recently byMendelian randomization studies (21, 22).

Potential modification of genetic effects on lipid levels by
lifestyle exposures, including alcohol consumption, is relatively
unexplored (23). Genetic association studies accounting for
potential gene-alcohol interactions may lead to the identifica-
tion of novel lipid loci and may reveal new biological insights
that can potentially be explored for treatment or prevention of
dyslipidemia. In order to investigate the potential modulating
role of alcohol consumption in the genetic architecture of lipid
levels and to identify novel HDL-C, LDL-C, and TG loci, we
performed genome-wide gene-alcohol interactionmeta-analyses
of LDL-C, HDL-C, and TG.

METHODS

Overall design

Table 1 shows the overall design of this study, whichwas con-
ducted within the setting of the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) Consortium
Gene-Lifestyle Interactions Working Group (24, 25). In order to
decrease the computational burden, we carried out genome-wide

analyses in stage 1 and followed up suggestively associated
variants in stage 2, with the combined results of analyses carried
out in stage 1 and stage 2 serving as the primary analysis (26).
We used 2 complementary approaches to model interactions:
1) a 2–degrees-of-freedom (df) test was used to jointly assess
both the genetic main effect and the interaction effect on lipid
levels, and 2) a 1-df test was used to assess the effect of interac-
tions alone. The 2-df test is more powerful when there is both a
genetic main effect and an interaction effect, and it may thus
help identify interaction effects for which the 1-df test lacks suf-
ficient power (27).

Overview of participating studies

This analysis covered the period July 2014–November 2017
and included men and women aged 18–80 years from 5 ances-
try groups: European, African, Asian, Hispanic, and Brazilian.
Investigators in each study obtained informed consent from
participants and approval from the appropriate institutional
review boards. Although the participating studies are based
on different study designs and populations, all of them have
data on lipid levels, alcohol consumption, and genotypes across
the genome. In total, the analysis comprised 394,584 individuals.

Stage 1 studies. Stage 1 included 89,893 European-ancestry
participants, 20,989 African-ancestry participants, 12,450 Asian-
ancestry participants, and 3,994 Hispanic-ancestry participants,
for an overall total of 127,326 individuals from 45 studies (see
Web Table 1, available at https://academic.oup.com/aje), namely:
the Age, Gene/Environment Susceptibility (AGES)-Reykja-
vik Study (1967—Reykjavik, Iceland), the Atherosclerosis
Risk in Communities (ARIC) Study (1987–1989—Washing-
ton County, Maryland; Forsyth County, North Carolina; Jack-
son, Mississippi; and Minneapolis, Minnesota), the Coronary
Artery Risk Development in Young Adults (CARDIA) Study
(1985–1986—Birmingham, Alabama; Chicago, Illinois; Min-
neapolis,Minnesota; andOakland, California), the Cardiovascu-
lar Health Study (CHS) (1989–1990 and 1992–1993—Forsyth
County, North Carolina; Sacramento County, California; Wash-
ington County, Maryland; and Pittsburgh, Pennsylvania), the
CROATIA-Korcula Study (2007—Korcula, Croatia), the
CROATIA-Vis Study (2003–2004—Vis, Croatia), the Erasmus

Table 1. Distribution (Number) of Participants by Ancestry in a Genome-WideMeta-Analysis of Gene-Alcohol
Interaction and Lipid Levels, 2017a

Analysis Stage
Ancestry Group

Meta-Analysis
European African Asian Hispanic Brazilian

1 89,893 20,989 12,450 3,994 0 127,326

2b 136,986 4,475 108,431 13,714 3,652 267,258

Totalc 226,879 25,464 120,881 17,708 3,652 394,584

Abbreviation: df, degrees of freedom.
a For each lipid trait, association analyses were performed accounting for 2 alcohol consumption status variables:

“current drinker” and “regular drinker.” For each ancestry group, study-specific results were combined to perform the
1-df test for an interaction effect and the 2-df joint test of the genetic main effect and interaction with drinking exposure.
Persons from 5 ancestry groups were included: European, African, Asian, Hispanic, and Brazilian.

b Variants selected for follow-up atP ≤ 1 × 10−6 using a 1-df interaction test and a joint 2-df interaction test.
c Variants found to be significant atP ≤ 5 × 10−8 using a joint 2-df interaction test or a 1-df interaction test.

Am J Epidemiol. 2019;188(6):1033–1054

1034 de Vries et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/188/6/1033/5304469 by W

ashington U
niversity in St. Louis user on 17 Septem

ber 2020

https://academic.oup.com/aje


Rucphen Family (ERF) Study (2002–2005—Rotterdam, the
Netherlands), the Family Heart Study (FamHS) (1992–1995—Salt
Lake City, Utah; Forsyth County, North Carolina; Minneapolis,
Minnesota; and Framingham,Massachusetts), the Framingham
Heart Study (1948—Framingham, Massachusetts), the Genetic
Epidemiology Network of Arteriopathy (GENOA) Study
(1995–2000—Rochester, Minnesota and Jackson,Mississippi),
the Genetic EpidemiologyNetwork of Salt Sensitivity (GenSalt)
Study (2003–2005—provinces of Hebei, Henan, Shandong,
Shaanxi, and Jiangsu, China), the Generation Scotland: Scottish
FamilyHealth Study (GS_SFHS) (2006–2011—Scotland, United
Kingdom), the Health, Aging and Body Composition (HABC)
Study (1997–1998—Pittsburgh, Pennsylvania and Memphis,
Tennessee), the Healthy Aging in Neighborhoods of Diver-
sity Across the Life Span (HANDLS) Study (2004–2009—
Baltimore,Maryland), theHealth, Risk Factors, Exercise Train-
ing and Genetics (HERITAGE) Study (1995–2000—Arizona;
Indiana; Minnesota; Texas; and Quebec, Canada), the Howard
University Family Study (HUFS) (2001–2008—Washington,
DC), the Hypertension Genetic Epidemiology Network
(HyperGEN) Study (1996–1999—Birmingham, Alabama; Salt
Lake City, Utah; Forsyth County, North Carolina;Minneapolis,
Minnesota; and Framingham, Massachusetts), the Jackson
Heart Study (JHS) (2000–2004—Jackson, Mississippi), the
Multi-Ethnic Study of Atherosclerosis (MESA) (2000–2002—
Los Angeles, California; St. Paul, Minnesota; Chicago, Illinois;
Winston-Salem, North Carolina; Baltimore, Maryland; and
New York, New York), the Netherlands Epidemiology of
Obesity (NEO) Study (2008–2012—Leiden, the Netherlands),
Rotterdam Study 1 (RS1) (1990—Rotterdam, the Netherlands),
Rotterdam Study 2 (RS2) (2000–2001—Rotterdam, the Nether-
lands), Rotterdam Study 3 (RS3) (2006–2008—Rotterdam,
the Netherlands), the Singapore Chinese Eye Study (SCES)
(2009–2011—Singapore), the Singapore Chinese Health
Study–CoronaryHeart Disease Study (SCHS-CHD) (1993–1998—
Singapore), the Singapore Malay Eye Study (SiMES) (2004–
2006—Singapore), the Singapore Indian Eye Study (SINDI)
(2007–2009—Singapore), the Singapore 2 (SP2) Study (SP2-
1MandSP2-610) (1982–1998—Singapore), theWomen’sGenome
Health Study (WGHS) (1992–1995—United States), and the
Women’s Health Initiative (WHI) (WHI Genomics and Ran-
domized Trials Network (WHI_GARNET) andWHIMemory
Study (WHI_WHIMS); 1993–1998—United States).

Stage 2 studies. Stage 2 included 136,986 European-
ancestry, 4,475African-ancestry, 108,431Asian-ancestry, 13,714
Hispanic-ancestry, and 3,652 Brazilian-ancestry participants, for
an overall total of 267,258 individuals from the following 66 stud-
ies (Web Table 2): the 1982 Pelotas Birth Cohort Study
(1982—Pelotas, Brazil), the African American Diabetes Heart
Study (AA-DHS) (1998–2005—Winston-Salem, North Carolina),
the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)
(1998–2000—Denmark, Finland, Ireland, Norway, Sweden,
and the United Kingdom), the Baependi Heart Study (2010—
Baependi, Brazil), the BioBank Japan (BBJ) Project (2003–2008—
Japan), theBeijingEyeStudy (BES-Omniexpress) (2001—Beijing,
China), the British Genetics of Hypertension (BRIGHT) Study
(1995—United Kingdom), the Cardio-metabolic Genome
Epidemiology Network Amagasaki Study (CAGE-Amaga-
saki) (2002–2003—Amagasaki, Japan), the Data From the

Epidemiological Study on the Insulin Resistance Syndrome
(DESIR) Study (1994–1996—France), the Dongfeng-Tongji
(DFTJ) Cohort Study (2008—Shiyan City, China), the Diabe-
tes Heart Study (DHS) (1998–2005—Winston-Salem, North
Carolina), the Dose Responses to Exercise Training (DR’s
EXTRA) Study (2005–2006—Kuopio, Finland), the Estonian
Genome Center of the University of Tartu (EGCUT) Study
(2002–2010—Estonia), the European Prospective Investiga-
tion Into Cancer and Nutrition (EPIC) (1992–1997—France,
Italy, Spain, the United Kingdom, the Netherlands, Germany,
Sweden, Denmark, Norway, and Greece), the Fenland Study
(Fenland-GWAS and Fenland-Omics) (1950–1975—Cam-
bridgeshire, England, United Kingdom), the Finland-United
States Investigation of NIDDM Genetics (FUSION) Study
(1994—Finland), the Genetic Studies of Atherosclerosis Risk
(GeneSTAR) Study (1983–2006—Baltimore, Maryland), the
Gene × Lifestyle Interactions and Complex Traits Involved in
Elevated Disease Risk (GLACIER) Study (1985–2004—
Sweden), the Genetic Regulation of Arterial Pressure of
Humans in the Community (GRAPHIC) Study (2003–2005—
Leicestershire, England, United Kingdom), the Hispanic Com-
munity Health Study/StudyofLatinos (HCHS/SOL) (2008–2011—
Chicago, Illinois; Miami, Florida; New York, New York; and
San Diego, California), the Health and Retirement Study (HRS)
(2006–2010—United States), the Hypertension Genetic Epide-
miology Network (HyperGEN)-Axiom Study (which used the
AxiomGenome-Wide ASI 1 Array Plate; Thermo Fisher Scien-
tific, Waltham, Massachusetts) (1996–1999—Birmingham,
Alabama; Salt Lake City, Utah; Forsyth County, North Carolina;
Minneapolis, Minnesota; and Framingham, Massachusetts), the
Italian Network Genetic Isolates—Carlantino (INGI-CARL)
Study (2005–2006—Carlantino, Italy), the Italian Network
Genetic Isolates—Friuli-Venezia Giulia (INGI-FVG) Study
(2013—Friuli-Venezia Giulia, Italy), the EPIC-InterAct Case-
Cohort Study (InterAct) (1991–2007—France, Italy, Spain,
the United Kingdom, the Netherlands, Germany, Sweden, and
Denmark), the Insulin Resistance Atherosclerosis Study (IRAS;
IRAS Cohort Study and IRAS Family Study) (1999–2005—
San Antonio, Texas and San Luis Valley, Colorado), the Coop-
erativeHealth Research in theAugsburg Region S3 (KORA_S3)
Study (1994–1995—Augsburg, Germany), the Cooperative
Health Research in the Augsburg Region S4 (KORA_S4) Study
(1991–2001—Augsburg, Germany), the Lothian Birth Cohort
1936 (LBC1936) Study (2004–2007—Lothian, Scotland,
United Kingdom), the LifeLines Cohort Study (2006–2013—
the Netherlands), the London Life Sciences Prospective Popu-
lation (LOLIPOP)Study (2003–2007—London,England,United
Kingdom), the Long Life Family Study (LLFS) (2006–2009—
Boston, Massachusetts; New York, New York; Pittsburgh,
Pennsylvania; and Denmark), the Kingston Gene-by-Environment
(Loyola GxE) Study (1994–1995—Kingston, Jamaica), the
Spanish Town (Loyola SPT) Study (1994–1995—Kingston,
Jamaica), the Metabolic Syndrome in Men (METSIM) Study
(2005–2010—Kuopio, Finland), the Netherlands Study of
Depression andAnxiety (NESDA) (2004–2007—theNetherlands),
the Obesity in Adults (OBA) Study (2005—France), the Pre-
vention of Renal and Vascular End Stage Disease (PREVEND)
Study (1997–1998—Groningen, the Netherlands), the Precocious
Coronary Artery Disease (PROCARDIS) Study (2004–2008—
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United Kingdom, Italy, Sweden, and Germany), the Ragama
Health Study (RHS) (2007—Ragama, Sri Lanka), the Stock-
holm Heart Epidemiology Program (SHEEP) (1992–1994—
StockholmCounty, Sweden), the Study of Health in Pomerania
(SHIP) (participants from the baseline examination (SHIP-0)
(1997–2001—Greifswald, Stralsund, and Anklam, Germany)
and participants from a new sample for a new cohort drawn
from the same area (SHIP-Trend) (2008–2012—Greifswald,
Stralsund, and Anklam, Germany)), the Shanghai Women’s
Health Study/Shanghai Men’s Health Study (SWHS/SMHS)
(1997–2000—Shanghai, China), the TwinGene Project (data
from the Swedish Twin Registry; 2004–2008—Sweden), and
the Cardiovascular Risk in Young Finns Study (YFS) (1980—
Finland).

Calculation of variance. An additional study not included
in stage 1 or stage 2was used to determine the variance explained
by variants at known and new loci: the Airwave HealthMonitor-
ing Study (2004–2015—England, Scotland, and Wales, United
Kingdom).

Phenotype and lifestyle variables

Three lipid traits were analyzed separately: HDL-C (mg/dL),
LDL-C (mg/dL), and TG (mg/dL). HDL-C andTGwere directly
assayed, while LDL-C was either directly assayed or estimated
using the Friedewald equation: LDL-C = TC − HDL-C − (TG/
5) (28). Only fasting samples (≥8 hours) were used to assay TG,
and the Friedewald equation was only used in samples with fast-
ing TG concentrations less than or equal to 400 mg/dL. LDL-C
values were adjusted for use of statins (Web Appendix). HDL-C
and TG values were natural log-transformed prior to analyses.

Alcohol consumption was assessed using 2 dichotomized
alcohol consumption variables: “current drinking” status, defined
as any recurrent drinking behavior, and “regular drinking” status,
defined as the subset of current drinkers who consumed at least 2
drinks per week. Because the standard pure ethanol content in 1
alcoholic drink may vary among countries, for this study a
standard drink was defined to contain approximately 13 g of
pure ethanol, and this measure was used to standardize the
definitions across studies.

Genotyping and imputation

Information on genotyping and imputation for each of the
stage 1 and stage 2 studies is presented inWeb Table 3 andWeb
Table 4, respectively. For imputation, most studies used the
1000 Genomes Project Phase I Integrated Release Version 3
Haplotypes (2010–2011 data freeze; March 14, 2012, haplo-
types), which contain haplotypes for 1,092 individuals from
multiple ancestry groups (29).

Study-specific analysis

Study-specific regression analyses were performed for each
variant, usingmodels containing the genetic variant, the alcohol
consumption variable (current drinking status or regular drinking
status), and their interaction. Variants were coded according to
the additive model, so that the β coefficient represents the effect
size per copy of the coded allele. These regressionswere adjusted
for age, sex, ancestry-informative principal components, and

study-specific variables where appropriate (such as center for
multicenter studies). Information on the principal components
and study-specific variables adjusted for in each study-specific
analysis is provided inWebTables 3 and 4.

In stage 1, investigators in each study performed genome-wide
association analyses within each ancestry group and provided the
CHARGEConsortiumwith information on the estimated genetic
main effect, the estimated interaction effect, and a robust estimate
of the corresponding covariance matrix. In stage 2, investigators
in each study performed analyses only for the selected variants
identified in stage 1. Study-specific association analyses were
performed using various software programs (Web Appendix
andWeb Tables 3 and 4). Extensive quality control using the R
(R Foundation for Statistical Computing, Vienna, Austria) pack-
age “EasyQC” was performed for all study-specific GWAS re-
sults, as described in theWebAppendix (30).

Meta-analysis

We implemented METAL software to meta-analyze the
geneticmain and interaction effects jointly using the 2-df approach
of Manning et al. (27) and Willer et al. (31) and to meta-analyze
the interaction coefficients alone using inverse-variance–weighted
meta-analysis (1-df test). For each meta-analysis, results were ob-
tained fromWald tests, performed using genetic main-effect esti-
mates, interaction effect estimates, and robust estimates of the
corresponding covariance matrix.

In stage 1, ancestry-specific meta-analyses were performed
for each of the 12 analyses (3 lipids × 2 alcohol consumption
exposures × 2 tests). Genomic control correction was applied
twice (32),first to the study-specificGWAS results (WebTable 5)
and then to the ancestry-specificmeta-analysis results. The results
from each ancestry group were then combined in a transancestry
meta-analysis.

The variants that were at least suggestively associated with
lipid levels (P < 1 × 10−6) in any of the stage 1 interaction
analyses were pursued for stage 2 analysis. In stage 2, we used
the same approaches as in stage 1 to perform ancestry-specific
and transancestry meta-analyses. Finally, ancestry-specific and
transancestry meta-analyses were performed to combine stage
1 results with stage 2 results. Variants with P values less than
5 × 10−8 for either the 2-df joint test of genetic main and inter-
action effects or the 1-df test of interaction effects were con-
sidered genome-wide-significant. False discovery rate (FDR)
q values were calculated using the Benjamini and Hochberg
method (33) implemented with the “p.adjust” function in R,
correcting for the number of tests performed in stage 1. FDR
q values less than 0.05 thus indicate a<5% FDR even after con-
sidering the multiple testing introduced by performing genome-
wide analyses on multiple outcomes using multiple models. An
independent locus was defined as the±1 mega–base-pair region
surrounding an index variant. For each locus, the closest genes
were determined on the basis of proximity to the index variant.
For loci with intergenic index variants, we included the closest
gene in each direction.

Additional analyses

The percentages of variance in HDL-C, LDL-C, and TG
levels explained by all previously known and novel variants
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were evaluated in 10 studies on multiple ancestry groups
(Web Appendix). The HaploReg (34), RegulomeDB (35),
and Genotype-Tissue Expression (GTEx) (36) software
packages were used to annotate variants at significant loci.
We also used Data-driven Expression Prioritized Integra-
tion for Complex Traits (DEPICT) software (37) to prioritize
genes at the loci associated with lipid levels in the combined
analysis of stages 1 and 2. More details on gene prioritization
using DEPICT can be found in theWebAppendix.

Lastly, we examined the associations of index variants at the
147 significant loci with coronary artery disease and myocar-
dial infarction using publicly available summary association re-
sults from a large GWAS of these phenotypes performed by the
Coronary Artery Disease Genome-Wide Replication and Meta-
Analysis (CARDIoGRAM) plus Coronary Artery Disease (C4D)
GeneticsConsortium (CARDIoGRAMplusC4DConsortium) (38).

RESULTS

Descriptive statistics for the studies participating in stage
1 of the analysis are shown in Web Table 1: 56.1% of stage 1
participants were current drinkers, and 39.9% were regular
drinkers. The stage 1 genome-wide analyses identified 25,115
variants in 495 independent loci that were at least suggestively
associated (P < 1 × 10−6) with HDL-C, LDL-C, or TG using
either the 1-df test of the interaction or the 2-df test that jointly
assessed genetic main and interaction effects. The 1-df interac-
tion test identified 356 suggestively associated variants, while
the 2-df joint test identified an additional 24,759 variants. Man-
hattan and quantile-quantile plots are shown in Web Figure 1
andWeb Figure 2, respectively.

The 25,115 variants were then evaluated in stage 2. Descrip-
tive statistics for the studies participating in stage 2 are shown
inWebTable 2: 58.5%of stage 2 participantswere current drink-
ers, and 41.0% were regular drinkers. The combined analysis of
stage 1 and stage 2 findings identified 22,590 variants at 147
independent loci with genome-wide significance (P < 5 × 10−8;
Web Table 6). All genome-wide-significant associations were
identified through the 2-df joint tests of main and interaction
effects. There were no genome-wide-significant 1-df interaction
associations in the combined analysis of stage 1 and stage 2. At
genome-wide significance, 95 of the 147 loci were associated
with HDL-C, 66 were associated with LDL-C, and 58 were
associated with TG. Of the 147 loci, 60 loci were associated
with more than 1 lipid trait, as shown in a Venn diagram in
Figure 1.

Novel loci

Of the 147 identified genome-wide-significant loci, 18 are
novel lipid loci that have not been previously identified by
other association studies for HDL-C, LDL-C, TG, or total
cholesterol (Table 2 and Web Figure 3) (2–8). A concurrent
genetic association study of exonic variants also identified 4
of these 18 novel loci (39), as indicated in Table 2. Eight of the
novel loci involved HDL-C, 8 involved LDL-C, and 7 involved
TG, as shown in the heat map in Figure 2. The most significant
associations at each of the 18 novel loci all had FDR q values
less than 0.05 (Table 2), indicating that they were unlikely to be
false-positive findings introduced by multiple testing. As shown

in forest plots (Web Figure 4), the 2-df associations at the novel
loci were predominantly driven by genetic main effects, with a
smaller contribution from interaction effects. Furthermore, of
the 18 index variants, 15 had at least suggestively significant
(P < 1 × 10−6) genetic main effects in stage 1 (Web Appendix
and Web Table 7). None of the associations at the 18 novel loci
displayed heterogeneity across ancestry groups (Table 2).

Known loci

The remaining 129 of the 147 significant loci had been iden-
tified in previous GWAS of lipid traits (Web Table 6) (2–8).
This is a subset of all known lipid loci: Web Table 8 shows the
significance of 314 reported index variants in all 236 known
lipid loci among all 2-df joint tests and 1-df interaction tests of
the combined analysis of stage 1 and stage 2, or stage 1 alone for
variants not meeting the stage 2 inclusion criteria (2–8). Consid-
ering only the 314 known variants, no 1-df interactions were sig-
nificant in the European, African, or transancestry meta-analyses
(P < 8.8 × 10−6, corresponding to 0.05/(314 variants × 3 lipid
traits × 2 alcohol consumption variables × 3 ancestry groups)).

Additional analyses

The percentages of variance in LDL-C, HDL-C, and TG
concentrations explained by various loci were calculated in
individual studies of multiple ancestry groups. Across ances-
try groups, the mean variance explained by known lipid loci
was 9.1% for HDL-C, 10.4% for LDL-C, and 7.5% for TG.
The total percentage of additional variance explained by the
18 novel loci, including both genetic main effects and inter-
action effects, was 0.2 for HDL-C, 0.3 for LDL-C, and 0.4
for TG. Ancestry-specific and study-specific estimates are
shown inWeb Table 9.

Functional annotations using HaploReg (34) and Regu-
lomeDB (35) for variants at the 147 loci that were associated
in the combined analysis of stages 1 and 2 are presented in
Web Table 10, and associations of these variants with gene
expression levels from the GTEx database (36) in a variety of

45

10

34

28

12

10

8

HDL-C LDL-C

Triglycerides

Figure 1. Distribution of genome-wide-significant associations at
147 genetic loci identified as being associated with 3 lipid traits (high-
density lipoprotein cholesterol (HDL-C), low-density lipoprotein cho-
lesterol (LDL-C), and triglycerides) in a genome-wide meta-analysis
of gene-alcohol interaction and lipid levels, 2017.
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Table 2. Novel Loci Discovered in a Genome-WideMeta-Analysis of Gene-Alcohol Interaction and Lipid Levels (Combined Analysis of Stages 1 and 2) Using a 2–Degrees-of-FreedomModel
That Jointly TestedMain and Interaction Effects, 2017

rsID Chromosome
No.:Position Allelesa Frequencyb Closest Gene(s) Main

Effectc
Interaction
Effectc

Joint
P Valuec

Joint FDR
q Valuec

Interaction
P Valued

Heterogeneity
P Valuee Most Significant 2-df Model

rs190528931f 11:63911273 A/C 0.04 MACROD1 0.0109 −0.0023 1.9 × 10−16 3.6 × 10−11 0.32 0.96 METAg
—HDL-C—

CURDRINKh

rs7904973f 10:124693587 T/G 0.55 C10orf88 0.9200 −0.1500 1.9 × 10−15 3.5 × 10−10 0.38 0.89 META—LDL-C—CURDRINK

rs73729083 7:137559799 C/T 0.91 CREB3L2 4.0100 0.6500 8.2 × 10−15 1.4 × 10−9 0.57 0.22 META—LDL-C—CURDRINK

rs80080062 3:185812169 G/C 0.87 ETV5 0.0061 0.0031 1.1 × 10−12 1.7 × 10−7 0.38 0.85 META—HDL-C—REGDRINKi

rs7140110 13:114544024 C/T 0.73 GAS6-AS1 −0.0100 −0.0040 3.4 × 10−12 5.1 × 10−7 0.19 0.42 META—TG—CURDRINK

rs34311866 4:951947 C/T 0.83 TMEM175 −0.0200 0.0040 1.5 × 10−11 2.1 × 10−6 0.42 0.90 EUR—TG—CURDRINK

rs2911971 8:6607634 G/C 0.34 AGPAT5 −0.7500 0.0100 7.5 × 10−11 1.1 × 10−5 0.53 0.49 META—LDL-C—CURDRINK

rs56076449 5:132442190 G/T 0.79 HSPA4/FSTL4 0.0130 −0.0020 9.3 × 10−11 1.3 × 10−5 0.80 0.80 META—TG—REGDRINK

rs41274050f 10:52573772 T/C 0.01 A1CF 0.1080 −0.0310 9.6 × 10−10 1.3 × 10−4 0.62 1.00 EUR—TG—REGDRINK

rs7035578 9:78745177 A/G 0.15 PCSK5 −1.2700 0.0800 1.2 × 10−9 1.6 × 10−4 0.70 0.82 EUR—LDL-C—CURDRINK

rs201445483 2:17890087 I/D 0.83 SMC6 1.4300 0.6800 4.7 × 10−9 6.0 × 10−4 0.17 0.46 META—LDL-C—CURDRINK

rs72729610 4:154190965 G/A 0.86 TRIM2 0.0075 −0.0036 5.6 × 10−9 7.2 × 10−4 0.08 0.26 META—HDL-C—REGDRINK

rs143528679 4:124558378 G/A 0.10 SPRY1/LINC01091 −1.2000 −5.6300 6.3 × 10−9 8.0 × 10−4 6.4 × 10−4 0.10 AFR—LDL-C—CURDRINK

rs2111622f 2:53984823 G/A 0.77 ASB3/GPR75-ASB3 0.0008 −0.0072 7.9 × 10−9 9.9 × 10−4 0.01 0.12 EUR—HDL-C—CURDRINK

rs13284665 9:131513370 G/A 0.88 ZER1 1.9900 −0.8900 1.1 × 10−8 1.3 × 10−3 0.35 0.89 EUR—LDL-C—CURDRINK

rs4898521 12:49755162 A/T 0.95 DNAJC22/SPATS2 0.0179 −0.0107 1.3 × 10−8 1.7 × 10−3 0.06 1.00 EUR—HDL-C—REGDRINK

rs6063050 20:45604240 C/T 0.75 EYA2 0.0110 0.0000 2.9 × 10−8 3.6 × 10−3 0.30 0.39 META—TG—CURDRINK

rs2963472 5:157999022 A/G 0.21 LOC101927697/EBF1 0.0140 −0.0020 3.5 × 10−8 4.2 × 10−3 0.96 0.23 EUR—TG—REGDRINK

Abbreviations:A1CF, APOBEC1 complementation factor gene; ADP, adenosine diphosphate; AFR, African ancestry; AGPAT5, 1-acylglycerol-3-phosphateO-acyltransferase 5 gene; APOBEC1, apolipoprotein
B mRNA editing enzyme, catalytic polypeptide 1; AS1, antisense RNA 1 gene; ASB3, ankyrin repeat and SOCS box containing 3 gene; cAMP, cyclic adenosine 3’,5’-monophosphate; C10orf88, chromosome 10
open reading frame 88 gene; CREB3L2, cAMP responsive element binding protein 3 like 2 gene; CURDRINK, current drinkers; df, degrees of freedom; DNAJC22, DnaJ heat shock protein family (Hsp40) member
C22 gene; EBF, early B cell factor; EBF1, EBF transcription factor 1 gene; ETS, E26 transformation-specific; ETV5, ETS variant 5 gene; EUR, European ancestry; EYA, eyes absent; EYA2, EYA transcriptional
coactivator and phosphatase 2 gene; FDR, false discovery rate; FSTL4, follistatin like 4 gene; GAS6, growth arrest specific 6 gene; GPR75, G protein-coupled receptor 75 gene; HDL-C, high-density lipoprotein
cholesterol; Hsp, heat shock protein; HSPA4, heat shock protein family a (Hsp70) member 4 gene; LDL-C, low-density lipoprotein cholesterol; LINC01091, long intergenic non-protein coding RNA 1091 gene;
LOC101927697, uncharacterized locus 101927697;MACROD1, macro domain-containing protein 1 gene; META, meta-analysis; PCSK5, proprotein convertase subtilisin/kexin type 5 gene; REGDRINK, regular
drinkers; rsID, reference SNP identifier; RTK, receptor tyrosine kinase; SMC6, structural maintenance of chromosomes 6 gene; SNP, single nucleotide polymorphism; SOCS, suppressor of cytokine signaling;
SPATS2, spermatogenesis associated serine rich 2 gene; SPRY1, sprouty RTK signaling antagonist 1 gene; TG, triglycerides; TMEM175, transmembrane protein 175 gene; TRIM2, tripartite motif containing 2
gene; ZER1, Zyg-11 related cell cycle regulator gene.

a Coded allele/noncoded allele.
b Frequency of the coded allele.
c These estimates pertain to the 2-df joint test of main and interaction effects.
d TheseP values pertain to 1-df tests of interaction effects.
e Significance of the stage 1 heterogeneity across ancestry groups in the most significant 2-df model.
f These loci were also discovered by Liu et al. (39) in a concurrent association study focused on exonic variants.
g Trans-ancestry meta-analysis.
h Alcohol consumption categorized into drinkers and nondrinkers.
i Alcohol consumption categorized into regular drinkers and non–regular drinkers.
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tissues are shown in Web Table 11. A total of 443 variants
were associated with gene expression levels, of which 27 var-
iants were indicated by RegulomeDB as having strong evi-
dence for an association with enhancer function.

Our gene prioritization analyses with DEPICT highlighted
(FDR q values <5%) 165 genes at HDL-C-associated loci,
110 genes at LDL-C-associated loci, and 87 genes at TG-
associated loci (Web Tables 11–14). Thus, at some loci, multi-
ple potential causal genes were prioritized. DEPICT identified
656, 877, and 497 reconstituted gene sets that were significantly
enriched (FDR q values <5%) for genes at HDL-C, LDL-C,
and TG loci, respectively (Web Table 15). This large number of
processes and enriched gene sets underscores the complex
genetic, biological, and physiological mechanisms underly-
ing lipid traits. Among the most significantly enriched gene
sets were processes related to “total amount of body fat” and
“abnormal liver morphology.” Finally, DEPICT revealed that
genes at associated HDL-C, LDL-C, or TG loci were signifi-
cantly enriched (FDR q values<5%) for association with gene
expression in 23 tissues, 14 cell types, and 12 physiological sys-
tems (Web Table 16). We found a compelling enrichment of
genes acting in hepatocytes and liver processes at associated loci
for each of the 3 traits and of genes acting in adipose tissues for
HDL-C and TG loci (Web Table 16,Web Figure 5).

Fourteen index variants at known lipid loci were associated
with coronary artery disease with P values less than 1.7 × 10−4

(0.05/(147 variants × 2 disease outcomes)), and 11 of these
were also associatedwithmyocardial infarction (WebTable 17)
(38). None of the index variants at novel loci were significantly
associated with these clinical endpoints.

DISCUSSION

We performed a GWAS of lipid levels incorporating inter-
actions with alcohol consumption and identified 147 genome-
wide-significant lipid loci, of which 18 are novel.

Despite the large sample of 394,584 individuals, which is
comparable to sample sizes in other successful genetic inter-
action studies (40, 41), genome-wide-significant interactions
were not found in the present study. Gene-alcohol interactions
also do not appear to have contributed substantially to the dis-
covery of the 18 novel loci, given that the genetic main effect
of index variants at 15 of the 18 novel loci passed the stage 1
suggestive significance threshold. Below, we highlight 3 of
the novel loci that harbor especially promising candidate
genes with putative roles in lipid metabolism based on exist-
ing evidence from cellular and experimental models.

One of the newly identified associations for LDL-C maps to
the proprotein convertase subtilisin/kexin type 5 gene (PCSK5),
a member of the same gene family as proprotein convertase sub-
tilisin/kexin type 9 (PCSK9), which is targeted by new drugs
that successfully lower LDL-C levels (42, 43). Several indepen-
dent lines of evidence support the involvement of PCSK5 in the
regulation of lipid levels. First, in a candidate gene study, Iatan
et al. (44) found that variants in PCSK5 were associated with
levels of HDL-C. Additionally, in vitro studies of cell lines
show that proprotein convertase subtilisin/kexin type 5 (PCSK5)
inactivates endothelial lipase directly through cleavage and that

it may also inactivate endothelial lipase and lipoprotein lipase
indirectly through activation of angiopoietin-like protein 3 (45).
Endothelial lipase, lipoprotein lipase, and angiopoietin-like pro-
tein 3 have all been robustly implicated in the regulation of lipid
levels, probably with primary roles in the metabolism of HDL-C
andTG (3, 46–48). In our study, thePCSK5 locuswas associated
at genome-wide significance only with LDL-C levels; it was
associated at nominal significance (P< 0.05) with TG levels.

One novel locus for TGmapped to the apolipoprotein BmRNA
editing enzyme, catalytic polypeptide 1 (APOBEC1) comple-
mentation factor gene (A1CF), which encodes APOBEC1
complementation factor. Liu et al. (39) also identified the
same index variant (rs41274050) in association with TG in a
concurrent study. They showed that introducing the minor allele
of rs41274050 in mice led to increased TG levels, confirming
the functional role of this missense variant in the regulation of
TG levels (39). APOBEC1 complementation factor forms an
enzymatic complex with APOBEC1 and deaminates apolipo-
protein BmRNA (49). This site-specific deamination of cytidine
to uridine results in the production of the apolipoprotein B 48
isoform as opposed to the apolipoprotein B 100 isoform (49).
The apolipoprotein B 48 isoform is critical in the assembly and
secretion of chylomicrons, which mainly carry dietary-derived
TG (50). Interestingly, a recent GWAS carried out among per-
sons of East Asian ancestry identified the apolipoprotein B
mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1)
locus as being associatedwithHDL-C levels (5)—an association
that we confirmed in our analysis (index variant: 12:7725904:ID).
At nominal significance, both of the index variants near A1CF
and APOBEC1 were associated with all 3 lipid traits (P <
0.05). Given the role of apolipoprotein B 100 in atherosclero-
sis, promoting the synthesis of apolipoprotein B 48 instead of
apolipoprotein B 100 may represent a possible therapeutic
strategy for the prevention of cardiovascular disease (51). Nei-
ther the index variant at A1CF norAPOBEC1was significantly
associated with coronary artery disease or myocardial infarc-
tion in the largest GWAS of these outcomes. However, further
studies are needed to characterize their role in cardiovascular
disease, given our multiancestry design and the European-
driven design of the available GWAS data on cardiovascular
disease outcomes (Web Table 17).

Variants closest to the mono-ADP ribosylhydrolase 1 (macro
domain-containing protein 1) gene (MACROD1) were associ-
ated with HDL-C levels and TG levels. This locus was also
reported in the concurrent study by Liu et al. (39), although
the index variant in their studywas located in the phospholipase
C beta 3 (PLCB3) gene, around 120 kilo–base pairs away from
the index variant in the present study. We found that variants at
this locus were associated with expression levels of another
nearby gene, the vascular endothelial growth factor B gene
(VEGFB), in adipose and heart tissue (Web Table 11). Vascular
endothelial growth factor B (VEGF-B) is reportedly involved
in endothelial fatty acid transport, with Vegfb−/− mice showing
less accumulation of lipids in muscle, heart, and brown adipose
tissue but a greater uptake of fatty acids in white adipose tissue
and higher body weight (52). Additionally, inhibition of the
vascular endothelial growth factor B (Vegfb) protein in a mouse
model of type 2 diabetes resulted in an improved glycemic pro-
file, as well as a reduction of dyslipidemia (53). Mice lacking
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the Vegfb protein had lower levels of TG and LDL-C accompa-
nied by higher levels of HDL-C. Subsequent studies in other
mouse models did not corroborate these findings: Dijkstra et al.
(54) found in an independent strain of mice that knocking out
the mouse vascular endothelial growth factor B gene (Vegfb)
had no effect on TG and total cholesterol levels, while Rubciuc
et al. (55) andRafii andCarmeliet (56) reported that transduction
of the human VEGFB gene into mice led to increased vascular-
ity in adipose tissue and an improved lipid profile. Our results
provide insight into the effects of VEGF-B in humans to com-
plement the divergent reports from rodent studies. The A allele
of index variant rs190528931 is associated with decreased
expression of VEGFB in adipose and heart tissue, decreased
levels of HDL-C, and increased levels of TG. Additionally,
rs190528931 was also associated with nominally significant
increased levels of LDL-C (P < 0.05). Hence, evidence from
our study suggests that inhibition of VEGF-B does not im-
prove lipid profile but instead promotes dyslipidemia.

The strengths of this study include the large sample size, the
diverse ancestral composition of the sample, and the use of a
dense reference panel for genotype imputation (57). A limitation
of this study is the imbalance in ancestry groups between stage 1
and stage 2. Persons of African ancestry were well-represented
in stage 1 but underrepresented in stage 2. In contrast, persons of
Asian andHispanic ancestry were relatively underrepresented in
stage 1 as compared with stage 2. A more balanced division of
participants across stages 1 and 2 may have led to the identifica-
tion of additional loci. Additionally, alcohol consumption may
be underreported in both self-administered questionnaires and
interviews, leading to a loss of statistical power due to misclassi-
fication (58). Similarly, the classification of alcohol consumption
into categories such as “regular drinkers” and “current drinkers”
may have reduced power relative to treating it as a fully quantita-
tive variable (59). Nevertheless, the use of such categorieswas nec-
essary for harmonizing data from 111 studies with heterogeneous
measurement of alcohol consumption. It is plausible that more
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Figure 2. Significance and direction of effects of index genetic variants identified at 18 novel loci for 3 lipid traits (high-density lipoprotein choles-
terol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG)) in a genome-wide meta-analysis of gene-alcohol interaction and
lipid levels, 2017. For each combination of index variant and lipid trait, the effect direction of and P value for the most significant association is
shown. For example, the rs11:63911273 variant was most significantly associated with HDL-C in the transancestry meta-analysis, using the “cur-
rent drinker” alcohol consumption variable. Shades of purple and yellow represent negative and positive directions of effect, respectively, while as-
sociations of either direction with a P value greater than 0.05 are white. Effect +: the direction of effect is greater than or equal to zero; Effect –: the
direction of effect is less than zero. df, degrees of freedom; ID, identification; rs, reference SNP; SNP, single nucleotide polymorphism.
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comprehensive characterization of alcohol consumption could
reveal interactions that were missed in our study.

In conclusion, we identified 18 novel loci that were signifi-
cantly associated with lipid traits, and these include several
loci with genes (PCSK5, VEGFB, and A1CF) that have a puta-
tive role in lipid metabolism based on existing evidence from
cellular and experimental models. The associations identified
in this study appear to be driven by genetic main effects, and it
remains uncertain whether alcohol consumption modifies the
association of genetic variants with lipid levels.
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additional contribution from the National Institute of
Neurological Disorders and Stroke, NIH. Additional support
was provided through grant R01AG023629 from the NIA.
The provision of genotyping data was supported in part by
the National Center for Advancing Translational Sciences,
Clinical and Translational Science Institute grant
UL1TR000124, and National Institute of Diabetes and
Digestive and Kidney Diseases (NIDDK) Diabetes Research
Center grant DK063491 to the Southern California Diabetes
Endocrinology Research Center. Coronary Artery Risk
Development in Young Adults (CARDIA) Study: The
CARDIA Study was conducted and supported by the
NHLBI in collaboration with the University of Alabama at
Birmingham (grants HHSN268201300025C and
HHSN268201300026C), Northwestern University (grant
HHSN268201300027C), the University of Minnesota (grant
HHSN268201300028C), the Kaiser Foundation Research
Institute (grant HHSN268201300029C), and the Johns
Hopkins School of Medicine (grant
HHSN268200900041C). The CARDIA Study was also
partially supported by the Intramural Research Program of
the NIH, NIA. Genotyping was funded as part of the NHLBI
Candidate-Gene Association Resource (grant N01-HC-
65226) and the National Human Genome Research
Institute’s Gene, Environment Association Studies
(GENEVA) Consortium (grants U01-HG004729, U01-
HG04424, and U01-HG004446).CROATIA-Korcula Study:
The CROATIA-Korcula Study was funded by the Medical
Research Council (United Kingdom), the Croatian Ministry
of Science, Education and Sports (grant 216-1080315-
0302), the European Commission Sixth Framework
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Programme EUROSPAN Project (contract LSHG-CT-2006-
018947), and the Croatian Science Foundation (grant 8875).
Single nucleotide polymorphism genotyping for the
CROATIA-Korcula cohort was performed by the German
Research Center for Environmental Health (Helmholtz
ZentrumMünchen), Neuherberg, Germany. CROATIA-Vis
Study: The CROATIA-Vis Study was funded by the Medical
Research Council, the Croatian Ministry of Science,
Education and Sports (grant 216-1080315-0302), the
European Commission Sixth Framework Programme
EUROSPAN Project (contract LSHG-CT-2006-018947),
and the Croatian Science Foundation (grant 8875). Single
nucleotide polymorphism genotyping for the CROATIA-Vis
cohort was performed in the core genotyping laboratory of
the Wellcome Trust Clinical Research Facility (Western
General Hospital, Edinburgh, United Kingdom). Erasmus
Rucphen Family (ERF) Study: The ERF Study, as a part of
the European Special Populations Research Network
(EUROSPAN), was supported by European Commission
Sixth Framework Programme Specific Targeted Research
Projects grant 018947 (grant LSHG-CT-2006-01947) and
also received funding from the European Commission
Seventh Framework Programme (grant FP7/2007-2013)/
grant agreement HEALTH-F4-2007-201413 with the
European Commission under the Fifth Framework
Programme (“Quality of Life andManagement of Living
Resources”; grant QLG2-CT-2002-01254). The ERF Study
was further supported by the European Network for Genetic
and Genomic Epidemiology (ENGAGE) Consortium and
the Centre for Medical Systems Biology. High-throughput
analysis of the ERF data was supported by a joint grant from
the Netherlands Organisation for Scientific Research and the
Russian Foundation for Basic Research (grant 047.017.043).
The ERF Study was further supported by a grant from the
Netherlands Organisation for Health Research and
Development (ZonMw) (project 91111025). Family Heart
Study: The Family Heart Study was funded by grants
R01HL118305 and R01HL117078 from the NHLBI and
grants 5R01DK07568102 and 5R01DK089256 from the
NIDDK, NIH. Framingham Heart Study: The Framingham
Heart Study was supported by the NHLBI and Boston
University School of Medicine. The analyses reflect
intellectual input and resource development from the
FraminghamHeart Study investigators participating in the
SNP Health Association Resource (SHARe) Project. This
work was partially supported by the NHLBI (contracts N01-
HC-25195 and HHSN268201500001I) and a contract with
Affymetrix, Inc. (Santa Clara, California) for genotyping
services (contract N02-HL-6-4278). A portion of this
research utilized the Linux Cluster for Genetic Analysis
(LinGA-II), funded by the Robert Dawson Evans
Endowment of the Department of Medicine at Boston
University School of Medicine and Boston Medical Center.
The research was partially supported by grant R01-
DK089256 from the NIDDK (Principal Investigators: Ingrid
B. Borecki, L. Adrienne Cupples, and Kari North).Genetic
Epidemiology Network of Arteriopathy (GENOA) Study:
Support for the GENOA Study was provided by the NHLBI
(grants HL119443, HL118305, HL054464, HL054457,
HL054481, HL071917, and HL087660). Genotyping was

performed at the Mayo Clinic (Rochester, Minnesota)
(Stephen T. Turner, Mariza de Andrade, Julie Cunningham).
Genetic Epidemiology Network of Salt Sensitivity (GenSalt)
Study: The GenSalt Study was supported by research grants
(grants U01HL072507, R01HL087263, and R01HL090682)
from the NHLBI.Healthy Aging in Neighborhoods of
Diversity Across the Life Span (HANDLS): The HANDLS
Study was supported by the Intramural Research Program of
the NIH, NIA and the National Center onMinority Health
and Health Disparities (project Z01-AG000513). Data
analyses for the HANDLS Study utilized the high-
performance computational resources of the Biowulf Linux
cluster at the NIH (http://biowulf.nih.gov; http://hpc.nih.
gov).Health, Aging, and Body Composition (HABC) Study:
The HABC Study was funded by the NIA. The research was
supported by NIA contracts N01AG62101, N01AG62103,
and N01AG62106. The genome-wide association study
(GWAS) was funded by NIA grant 1R01AG032098-01A1
to the Division of Public Health Sciences, Wake Forest
School of Medicine, Wake Forest University, and
genotyping services were provided by the Center for
Inherited Disease Research (Baltimore, Maryland). The
Center for Inherited Disease Research is fully funded
through a federal contract from the NIH to the Johns
Hopkins University (contract HHSN268200782096C). The
research was supported in part by the Intramural Research
Program of the NIH, NIA.Health, Risk Factors, Exercise
Training and Genetics (HERITAGE) Study: The
HERITAGE Study was supported by NHLBI grant HL-
45670.Howard University Family Study: The Howard
University Family Study was supported by NIH grant
S06GM008016-320107 to Charles N. Rotimi and NIH grant
S06GM008016-380111 to Adebowale Adeyemo.
Participant enrollment was carried out at the Howard
University General Clinical Research Center, supported by
NIH grant 2M01RR010284. The research was supported in
part by the Intramural Research Program of the NIH, Center
for Research on Genomics and Global Health. The Center
for Research on Genomics and Global Health was supported
by the National Human Genome Research Institute, the
NIDDK, the Center for Information Technology, and the
Office of the Director of the NIH (grant Z01HG200362).
Genotyping support was provided by the Coriell Institute for
Medical Research.Hypertension Genetic Epidemiology
Network (HyperGEN) Study: The HyperGEN Study was
funded by the following cooperative agreements (U10
agreements) with the NHLBI: HL54471, HL54472,
HL54473, HL54495, HL54496, HL54497, HL54509,
HL54515, and 2 R01 HL55673-12. The study involves the
following centers—the University of Utah (Network
Coordinating Center, Field Center, andMolecular Genetics
Laboratory), the University of Alabama at Birmingham
(Field Center and Echo Coordinating and Analysis Center),
the Medical College of Wisconsin (Echo Genotyping
Laboratory), Boston University (Field Center), the
University of Minnesota (Field Center and Biochemistry
Laboratory), the University of North Carolina (Field Center),
Washington University (Data Coordinating Center), Weil
Cornell Medical College (Echo Reading Center), and the
NHLBI.Generation Scotland: Scottish Family Health Study
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(GS_SFHS): The GS_SFHS received core support from the
Chief Scientist Office of the Scottish Government Health
and Social Care Directorates (grant CZD/16/6) and the
Scottish Funding Council (grant HR03006). Genotyping of
the GS_SFHS samples was carried out by the Genetics Core
Laboratory at the Wellcome Trust Clinical Research Facility
(Western General Hospital, Edinburgh, United Kingdom)
and was funded by theMedical Research Council and the
Wellcome Trust (Strategic Award “Stratifying Resilience
and Depression Longitudinally” (STRADL) reference no.
104036/Z/14/Z). Jackson Heart Study: The Jackson Heart
Study was supported by contracts HSN268201300046C,
HHSN268201300047C, HHSN268201300048C,
HHSN268201300049C, and HHSN268201300050C from
the National Institute onMinority Health and Health
Disparities, NIH.Multi-Ethnic Study of Atherosclerosis
(MESA): MESA was supported by contracts N01-HC-
95159, N01-HC-95160, N01-HC-95161, N01-HC-95162,
N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-
95166, N01-HC-95167, N01-HC-95168, and N01-HC-
95169, by NHLBI grant HL071205, and by grant UL1-DR-
001079 from the National Center for Research Resources,
NIH. Funding for SHARe genotyping in MESA was
provided by NHLBI contract N02-HL-6-4278. This
publication was partially developed under Science to
Achieve Results (STAR) research assistance agreement
RD831697 (MESA Air), awarded by the US Environmental
Protection Agency. The provision of genotyping data was
supported in part by the National Center for Advancing
Translational Sciences, Clinical and Translational Science
Institute grant UL1TR001881, and NIDDKDiabetes
Research Center grant DK063491 to the Southern California
Diabetes Endocrinology Research Center. Netherlands
Epidemiology of Obesity (NEO) Study: Genotyping in the
NEO Study was supported by the Centre National de
Génotypage (Paris, France), headed by Jean-Francois
Deleuze. The NEO Study was supported by the participating
departments, Division 2, and the Board of Directors of
Leiden University Medical Center and by Leiden University
(research profile area: Vascular and Regenerative Medicine).
Dennis Mook-Kanamori was supported by the NWO
(ZonMw-Veni grant 916.14.023). 1982 Pelotas Birth
Cohort Study: The 1982 Pelotas Birth Cohort Study was
conducted by the Postgraduate Program in Epidemiology at
Universidade Federal de Pelotas (Pelotas, Brazil) with the
collaboration of the Brazilian Public Health Association.
From 2004 to 2013, theWellcome Trust supported the study.
The International Development Research Center, the World
Health Organization, the Overseas Development
Administration, the European Union, the National Support
Program for Centers of Excellence, the Brazilian National
Research Council, and the Brazilian Ministry of Health
supported previous phases of the study. Genotyping of 1982
Pelotas Birth Cohort Study participants was supported by the
Department of Science and Technology (Ministry of Health,
Brazil), the National Fund for Scientific and Technological
Development (Ministry of Science and Technology, Brazil),
Funding of Studies and Projects (Ministry of Science and
Technology, Brazil), and Coordination of Improvement of
Higher Education Personnel (Ministry of Education, Brazil).

Rotterdam Study: The Rotterdam Studywas funded by
ErasmusMedical Center (ErasmusMC) and Erasmus
University (Rotterdam, the Netherlands), the Netherlands
Organisation for Health Research and Development
(ZonMw), the Research Institute for Diseases in the Elderly,
theMinistry of Education, Culture and Science, theMinistry
of Health, Welfare and Sports, the European Commission
(Directorate-General for Science Research and Development
(DGXII)), and theMunicipality of Rotterdam. Generation
and management of GWAS genotype data for the Rotterdam
Study was conducted at the Human Genotyping Facility of the
Genetic Laboratory of the Department of Internal Medicine,
ErasmusMC. The GWAS data sets were supported by the
NWO (grants 175.010.2005.011 and 911-03-012); the
Genetic Laboratory of the Department of Internal Medicine,
ErasmusMC; the Research Institute for Diseases in the
Elderly (RIDE2 grant 014-93-015); the Netherlands
Genomics Initiative/NWO; and the Netherlands Consortium
for Healthy Aging (project 050-060-810). Singapore Chinese
Eye Study, SingaporeMalay Eye Study, and Singapore Indian
Eye Study: The SingaporeMalay Eye Study, the Singapore
Indian Eye Study, and the Singapore Chinese Eye Study were
supported by the National Medical Research Council
(Singapore) (grants 0796/2003, 1176/2008, 1149/2008,
STAR/0003/2008, 1249/2010, CG/SERI/2010, CIRG/1371/
2013, and CIRG/1417/2015) and the Biomedical Research
Council (Singapore) (grants 08/1/35/19/550 and 09/1/35/19/
616). Ching-Yu Cheng was supported by an award from the
NationalMedical Research Council (grant CSA/033/2012).
The Singapore Tissue Network and the Genome Institute of
Singapore (Agency for Science, Technology and Research,
Singapore) provided services for tissue archival and
genotyping, respectively. Singapore Chinese Health Study–
Coronary Heart Disease Study: The Singapore Chinese
Health Study was supported by the NIH (grants RO1
CA144034 and UM1CA182876); the Coronary Heart
Disease Study, a nested case-control study of myocardial
infarction, was supported by the National Medical Research
Council (Singapore) (grant 1270/2010); and genotyping was
supported by the HebrewUniversity of Jerusalem–Campus
for Research Excellence and Technological Enterprise (HUJ-
CREATE) Programme of the National Research Foundation
(Singapore) (project 370062002). Singapore 2 (SP2)
Prospective Study Program: The SP2 Study (including the
SP2-1M and SP2-610 subsets) was supported by individual
research grants and clinician scientist awards from the
NationalMedical Research Council (Singapore) and the
Biomedical Research Council (Singapore).Women’s Genome
Health Study: TheWomen’s GenomeHealth Study was
supported by the NHLBI (grants HL043851 and HL080467)
and the National Cancer Institute, NIH (grants CA047988 and
UM1CA182913), with collaborative scientific support and
funding for genotyping provided byAmgen, Inc. (Thousand
Oaks, California).Women’s Health Initiative: TheWomen’s
Health Initiative was funded by the NHLBI through contracts
HHSN268201100046C, HHSN268201100001C,
HHSN268201100002C, HHSN268201100003C,
HHSN268201100004C, and HHSN271201100004C.

Stage 2 studies—African American Diabetes Heart Study:
The African American Diabetes Heart Study was supported
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by NIH grants R01 DK071891 and R01 HL092301 and the
General Clinical Research Center of Wake Forest School of
Medicine, Wake Forest University (grant M01-RR-07122).
Airwave Health Monitoring Study: The Airwave Health
Monitoring Study was funded by the United Kingdom Home
Office (grant 780-TETRA), with additional support from the
National Institute for Health Research (NIHR), the Imperial
College Healthcare NHS Trust, and the Imperial College
Biomedical Research Centre. The study received ethical
approval from the National Health Service Multicentre
Research Ethics Committee. This work used computing
resources provided by the MRC-funded UKMedical
Bioinformatics Partnership Programme (grant MR/
L01632X/1). Paul Elliott received support from theMedical
Research Council and Public Health England for the MRC-
PHE Centre for Environment and Health (grant MR/
L01341X/1) and from the NIHR Health Protection Research
Unit in Health Impact of Environmental Hazards (grant
HPRU-2012-10141). Anglo-Scandinavian Cardiac
Outcomes Trial (ASCOT): ASCOT and the collection of
samples for the ASCOT DNA repository were supported by
Pfizer, Inc. (New York, New York); by the Servier Research
Group (Paris, France); and by Leo Laboratories
(Copenhagen, Denmark). Genotyping was funded by the
Centre National de Génotypage, the Medical Research
Council, and the NIHR. This work forms part of the research
program of the NIHR Cardiovascular Biomedical Research
Unit (NIHR Barts Biomedical Research Centre) at Barts and
The London School of Medicine and Dentistry, QueenMary
University of London. Practicia B. Munroe received support
from the NIHR Barts Biomedical Research Centre at Barts
and The London School of Medicine and Dentistry, Queen
Mary University of London. Beijing Eye Study: The Beijing
Eye Study was supported by the National Key Laboratory
Fund, Beijing, China. BioBank Japan Project: The BioBank
Japan Project was supported by the Japan Agency for
Medical Research and Development and by the Japanese
Ministry of Education, Culture, Sports, Sciences and
Technology. British Genetics of Hypertension (BRIGHT)
Study: The BRIGHT Study was supported by the Medical
Research Council (grant G9521010D) and the British Heart
Foundation (grant PG/02/128) and forms part of the research
program of the NIHR Cardiovascular Biomedical Unit
(NIHR Barts Biomedical Research Centre) at Barts and The
London School of Medicine and Dentistry, QueenMary
University of London. Cardio-metabolic Genome
Epidemiology Network Amagasaki (CAGE-Amagasaki)
Study: The Cardio-metabolic Genome Epidemiology
Network studies were supported by Core Research for
Evolutional Science and Technology (CREST) grants from
the Japan Science and Technology Agency; the Program for
Promotion of Fundamental Studies in Health Sciences,
National Institute of Biomedical Innovation (Japan); and a
grant from the National Center for Global Health and
Medicine (Japan). Cooperative Health Research in the
Augsburg Region (KORA) Study: The KORA Study was
initiated and financed by the German Research Center for
Environmental Health (Helmholtz ZentrumMünchen),
which is supported by the German Federal Ministry of
Education and Research and the State of Bavaria.

Furthermore, KORA research was supported within the
Munich Center of Health Sciences, LudwigMaximilians
University, as part of the LMUinnovativ projects.Data
From the Epidemiological Study on the Insulin Resistance
Syndrome (DESIR) Study: The DESIR Study Group
comprises investigators from Institut National de la Santé et
de la Recherche Médicale (INSERM) Unité 1018 (Paris: B.
Balkau, P. Ducimetière, and E. Eschwège), INSERMUnité
367 (Paris: F. Alhenc-Gelas), Centre Hospitalier
Universitaire d’Angers (A. Girault), Bichat Hospital (Paris:
F. Fumeron, M. Marre, and R. Roussel), Centre Hospitalier
Universitaire de Rennes (F. Bonnet), Centre National de la
Recherche Scientifique Unité Mixte de Recherche 8199
(Lille: A. Bonnefond and P. Froguel), Medical Examination
Services (Alençon, Angers, Blois, Caen, Chartres,
Chateauroux, Cholet, Le Mans, Orléans, and Tours), the
Research Institute for General Medicine (J. Cogneau), the
general practitioners of the region, and the Cross-Regional
Institute for Health (C. Born, E. Caces, M. Cailleau, N.
Copin, J. G. Moreau, F. Rakotozafy, J. Tichet, and S. Vol).
The DESIR Study was supported by INSERM contracts with
the Caisse Nationale d’Assurance Maladie des Travailleurs
Salariés (Paris, France), Eli Lilly and Company
(Indianapolis, Indiana), Novartis Pharmaceuticals
Corporation (East Hanover, New Jersey), and Sanofi-
Aventis France S.A. (Paris, France), as well as by INSERM
(Réseaux en Santé Publique, Interactions Entre les
Déterminants de la Santé, Cohortes Santé Très Grande
Infrastructure de Recherche 2008), the Association Diabète
Risque Vasculaire, the Fédération Française de Cardiologie,
La Fondation de France, the Association de Langue
Française pour l’Etude du Diabète et des Maladies
Métabolique (ALFEDIAM), the Office National
Interprofessionnel des Vins (ONIVINS), the Société
Francophone du Diabète, Ardix Medical (Suresnes, France),
Bayer Diagnostics (Tarrytown, New York), Becton
Dickinson (Franklin Lakes, New Jersey), Cardionics, Inc.
(Webster, Texas), Merck Santé S.A.S. (Lyon, France), Novo
Nordisk (Bagsværd, Denmark), Laboratoires Pierre Fabre
(Paris, France), Roche, Inc. (Basel, Switzerland), and
Topcon Corporation (Tokyo, Japan).Dongfeng-Tongji
Cohort Study: The Dongfeng-Tongji Cohort Study was
supported by grants from the National Basic Research
Program (grant 2011CB503800), the Programme of
Introducing Talents of Discipline, the National Natural
Science Foundation of China (grants NSFC-81473051,
NSFC-81522040, and NSFC-81230069), and the Program
for the New Century Excellent Talents in University (grant
NCET-11-0169).Diabetes Heart Study: The Diabetes Heart
Study was supported by the NIH (grants HL67348 and
HL092301).Dose Responses to Exercise Training (DR’s
EXTRA) Study: The DR’s EXTRA Study was supported by
grants from the Ministry of Education and Culture of Finland
(grants 722 and 627; 2004–2010); the Academy of Finland
(grants 102318, 104943, 123885, and 211119); European
Commission Sixth Framework Programme Integrated
Project (EXGENESIS) grant LSHM-CT-2004-005272; the
City of Kuopio (Kupio, Finland); the Juho Vainio
Foundation; the Finnish Diabetes Association; the Finnish
Foundation for Cardiovascular Research; Kuopio University
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Hospital; the Päivikki and Sakari Sohlberg Foundation; and
the Social Insurance Institution of Finland. Estonian
Genome Center of the University of Tartu (EGCUT): The
EGCUT Study is part of the Estonian Biobank and was
supported by European Union H2020 grants 692145,
676550, and 654248; Estonian Research Council grant
IUT20-60; the Nordic Information for Action eScience
Center; the European Institute for Innovation and
Technology (EIT Health); the NIH (grant 2R01DK075787-
06A1); and the European Union, through the European
Regional Development Fund (Center of Excellence for
Genomics and Translational Medicine (GenTransMed)
project 2014-2020.4.01.15-0012). European Prospective
Investigation Into Cancer and Nutrition (EPIC): The EPIC
Study was funded by Cancer Research UK, the British Heart
Foundation, the Medical Research Council, the Ministry of
Agriculture, Fisheries and Food (United Kingdom), and the
Europe Against Cancer Programme of the Commission of
the European Communities. European Investigation Into
Cancer and Nutrition–InterAct Case-Cohort Study (EPIC-
InterAct): The EPIC-InterAct Study received funding from
the European Union (Integrated Project LSHM-CT-2006-
037197 in the European Commission Sixth Framework
Programme). Fenland Study: The Fenland Study was funded
by theWellcome Trust and the Medical Research Council
(grants MC_U106179471 andMC_UU_12015/1). Finland-
United States Investigation of NIDDMGenetics (FUSION):
The FUSION Study was supported by NIH grants
DK093757, DK072193, DK062370, and ZIA-HG000024.
Genotyping was conducted at the Genetic Resources Core
Facility at the Johns Hopkins Institute of Genetic Medicine.
Gene × Lifestyle Interactions and Complex Traits Involved
in Elevated Disease Risk (GLACIER) Study: The GLACIER
Study was supported by Novo Nordisk, the Swedish
Research Council, the Swedish Heart-Lung Foundation, the
European Research Council, and the Skåne Health Authority
through grants to Paul W. Franks.Genetic Regulation of
Arterial Pressure of Humans in the Community (GRAPHIC)
Study: The GRAPHIC Study was funded by the British
Heart Foundation (grant BHF/RG/2000004). This work falls
under the portfolio of research supported by the NIHR
Leicester Cardiovascular Biomedical Research Unit.
Christopher P. Nelson and Nilesh J. Samani were supported
by the British Heart Foundation, and Nilesh J. Samani is an
NIHR Senior Investigator.Genetic Studies of
Atherosclerosis Risk (GeneSTAR): GeneSTARwas
supported by grants from the NHLBI (grants HL49762,
HL59684, HL58625, HL071025, U01 HL72518,
HL087698, HL092165, HL099747, and K23HL105897),
the National Institute of Nursing Research, NIH (grant
NR0224103), and the National Institute of Neurological
Disorders and Stroke, NIH (grant NS062059) and by grants
from the National Center for Research Resources to the
Johns Hopkins General Clinical Research Center (grant
M01-RR000052) and the Johns Hopkins Institute for
Clinical and Translational Research (grant UL1 RR
025005).Hispanic Community Health Study/Study of
Latinos (HCHS/SOL): The HCHS/SOL baseline
examination was supported by contracts from the NHLBI to
the University of North Carolina (grant N01-HC65233), the

University of Miami (grant N01-HC65234), Albert Einstein
College of Medicine (grant N01-HC65235), Northwestern
University (grant N01-HC65236), and San Diego State
University (grant N01-HC65237). The National Institute on
Minority Health and Health Disparities, the National
Institute on Deafness and Other Communication Disorders,
the National Institute of Dental and Craniofacial Research,
the NIDDK, the National Institute of Neurological Disorders
and Stroke, and the NIH Office of Dietary Supplements
additionally contributed funding to HCHS/SOL. The
Genetic Analysis Center at the University of Washington
was supported by NHLBI and National Institute of Dental
and Craniofacial Research contracts (contracts
HHSN268201300005C AM03 andMOD03). Additional
analysis support was provided by NIDDK grants
1R01DK101855-01 and 13GRNT16490017 from the
American Heart Association. Genotyping was also
supported by National Center for Advancing Translational
Sciences grant UL1TR000124 and NIDDK grant
DK063491 to the Southern California Diabetes
Endocrinology Research Center. HCHS/SOL was also
supported in part by the Intramural Research Program of the
NIH, NIDDK (contract HHSB268201200054C) and
Illumina, Inc. (San Diego, California).Health and
Retirement Study: The Health and Retirement Study was
supported by the NIA (grants U01AG009740 and R03
AG046389). Genotyping was funded separately by the NIA
(grants RC2 AG036495 and RC4 AG039029). Genotyping
for the Health and Retirement Study was conducted by the
NIH Center for Inherited Disease Research at Johns Hopkins
University. Genotyping quality control and final preparation
of the data were performed by the Genetics Coordinating
Center at the University of Washington.Hypertension
Genetic Epidemiology Network (HyperGEN)-Axiom Study:
The HyperGEN-Axiom Study was supported by the NIH
(NHLBI grant HL086718). Italian Network Genetic Isolates
(INGI-CARL) Study: The INGI-CARL Study was partially
supported by Regione Friuli-Venezia Giulia (grant
L.26.2008) and the Italian Ministry of Health (grant GR-
2011-02349604). Italian Network Genetic Isolates (INGI-
FVG) Study: The INGI-FVG Study was partially supported
by Regione Friuli-Venezia Giulia (grant L.26.2008) and the
Italian Ministry of Health (grant GR-2011-02349604).
Insulin Resistance Atherosclerosis Study (IRAS): The IRAS
was supported by the NHLBI (grants HL047887,
HL047889, HL047890, and HL47902). The IRAS Family
Study was supported by the NHLBI (grants HL060944,
HL061019, and HL060919). Genotyping for IRAS was
supported by the Genetics Underlying Diabetes in Hispanics
(GUARDIAN) Consortium with grant support from the
NIDDK (grant DK085175) and in part by NIH grants
UL1TR000124 (Clinical and Translational Science Institute)
and DK063491 (Diabetes Research Center). Kingston Gene-
by-Environment (Loyola GxE) Study: The Loyola GxE
Study, a subset of the International Collaborative Study of
Hypertension in Blacks, was supported by NIH grant
R01HL53353. Lothian Birth Cohort 1936: Lothian Birth
Cohort 1936 was supported by Age UK (the Disconnected
Mind Project). Genotyping was funded by the
Biotechnology and Biological Sciences Research Council
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(grant BB/F019394/1). The work was undertaken by the
University of Edinburgh Centre for Cognitive Ageing and
Cognitive Epidemiology, part of the cross-council Lifelong
Health andWellbeing Initiative (grant MR/K026992/1).
Funding was also received from theMedical Research
Council. LifeLines Cohort Study: The LifeLines Cohort
Study and generation and management of GWAS genotype
data for the LifeLines Cohort Study were supported by the
Netherlands Organisation for Scientific Research (grant
175.010.2007.006); the Dutch government’s Economic
Structure Enhancing Fund; the Netherlands Ministry of
Economic Affairs; the Netherlands Ministry of Education,
Culture and Science; the Netherlands Ministry of Health,
Welfare and Sport; the Northern Netherlands Collaboration
of Provinces; the Province of Groningen; University
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