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ARTICLE

Single cell transcriptomics reveals opioid usage
evokes widespread suppression of antiviral gene
program
Tanya T. Karagiannis 1,2,9, John P. Cleary Jr 2,3,9, Busra Gok 2,4, Andrew J. Henderson5,

Nicholas G. Martin 6, Masanao Yajima 7, Elliot C. Nelson 8 & Christine S. Cheng1,2,3,4✉

Chronic opioid usage not only causes addiction behavior through the central nervous system,

but also modulates the peripheral immune system. However, how opioid impacts the immune

system is still barely characterized systematically. In order to understand the immune

modulatory effect of opioids in an unbiased way, here we perform single-cell RNA sequencing

(scRNA-seq) of peripheral blood mononuclear cells from opioid-dependent individuals and

controls to show that chronic opioid usage evokes widespread suppression of antiviral gene

program in naive monocytes, as well as in multiple immune cell types upon stimulation with

the pathogen component lipopolysaccharide. Furthermore, scRNA-seq reveals the same

phenomenon after a short in vitro morphine treatment. These findings indicate that both

acute and chronic opioid exposure may be harmful to our immune system by suppressing the

antiviral gene program. Our results suggest that further characterization of the immune

modulatory effects of opioid is critical to ensure the safety of clinical opioids.
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The opioid epidemic is a major threat to global public health
that affects millions of people and their families. Part of the
problem is caused by the rapid increase in the number of

opioid prescriptions written by medical practices starting from
the late 1990s. From 1999 to 2017, overdoses related to pre-
scription opioids have dramatically increased in the United States
with overdose deaths found to be five times higher in 2017
compared to 1999 (ref. 1). In addition, opioids affect not only the
central nervous system (CNS) but also the peripheral immune
system through the expression of a variety of opioid receptors on
different immune cell types2. However, the effect of opioids on
the peripheral immune system is complicated and involves var-
ious mechanisms. Studies have shown inconsistent results, where
some suggest opioid usage is immunosuppressive while, in con-
trast, others suggest opioids are immunoactivating2–4. Most of
these studies focus on a particular immune cell subpopulation
and a few candidate genes. Interestingly, epidemiological studies
suggest that opioid usage is associated with increased suscept-
ibility to opportunistic infections such as tuberculosis, HIV, and
pneumonia5–7. Given the extensive use of prescription opioids
and the global opioid epidemic, it is important to understand how
opioid usage modulates different cell types in the immune system.

Next-generation sequencing technologies such as RNA
sequencing (RNA-seq) have become standard for querying gene
expression in tissues and cells. Yet gene expression levels obtained
through such ensemble-based approaches generate expression
values averaged across large populations of cells, masking
cellular heterogeneity. Primary cells such as peripheral blood
immune cells or tissue samples from patients usually comprise
heterogeneous cell populations. It is therefore highly time con-
suming and labor intensive to separate and study the individual
cell types and generally not feasible given the limited input
material from patient samples. Recent experimental advances
have allowed the isolation of RNA from a single cell and the
generation of cDNA libraries that can be sequenced from small
amounts of RNA8.

Here, using single-cell RNA sequencing (scRNA-seq), we are
now able to determine expression profiles in single-cell resolu-
tion. ScRNA-seq is a powerful tool to identify and classify distinct
cell populations, characterize rare subpopulations, and trace cells
along dynamic cellular stages, such as during differentiation or
disease progression9. The recent development of massively par-
allel microdroplet-based scRNA-seq approaches allows profiling
of gene expression of thousands to millions of single cells from a
limited quantity of sample at a reduced cost10,11. Here, we utilize
microdroplet-based scRNA-seq to systematically characterize
cell-type specific gene expression in the peripheral immune sys-
tem of opioid-dependent individuals compared to non-dependent
controls.

Results
Peripheral blood mononuclear cell scRNA-seq of opioid users
shows suppression of antiviral genes. Using microdroplet-based
scRNA-seq, we profiled gene expression in 57,271 single cells
from the peripheral blood mononuclear cells (PBMCs) of seven
opioid-dependent individuals and seven age/sex-matched non-
dependent controls (averaging 3980 single cells per individual)
(Fig. 1a). To examine opioid usage-specific changes in gene
expression in response to pathogenic stimuli, we treated PBMCs
from three of the seven opioid-dependent individuals and three of
the controls with lipopolysaccharide (LPS, a component of Gram-
negative bacteria) for 3 h and profiled 22,326 single cells. We
sequenced these single cells to an average depth of 21,801 reads
per cell and detected on average 805 genes and 2810 transcripts
per cell. To identify each of the immune cell subpopulations, we

applied dimensionality reduction methods, including principal
component analysis (PCA) and t-stochastic neighbor embedding
(t-SNE), and unsupervised graph-based clustering12,13. We
identified 12 immune cell types/states using expression of cano-
nical gene markers (Fig. 1b, Supplementary Figs. 1–3). Of the
naive state immune populations, we identified CD4+ T cells,
naïve CD8+ T cells, memory CD8+ T cells, natural killer (NK)
cells, B cells, and monocytes. Of the LPS-treated immune popu-
lations, we identified CD4+ T cells, CD8+ T cells, activated
T cells, B cells, NK cells, and monocytes (Fig. 1b, Supplementary
Figs. 1–3). We observed a slight shift in global gene expression
states between opioid dependent and control samples in most of
the naïve cell types, while we observed larger differences in gene
expression states in LPS-treated cell types (Fig. 1b).

From differential gene expression analysis for each immune
subpopulation, we observed a downregulation of interferon-
stimulated genes and antiviral genes in opioid-dependent samples
compared to control samples. The suppression of antiviral genes
was observed only in monocytes in naive state and in most
immune cell subpopulations under LPS treatment (Fig. 1c,
Supplementary Figs. 4 and 5). CD8+ T cells under LPS treatment
exhibited suppression of antiviral genes to a lesser degree
(Supplementary Fig. 5). This was further confirmed with
pathway enrichment analysis of the resulting differential genes.
We observed higher enrichment of defense response to virus and
interferon signaling pathways in monocytes in naïve state and in
most of the immune cell subpopulations in LPS-treated state in
control samples (Fig. 1d). LPS activates several innate immune
response transcriptional modules: core antiviral response, peaked
and sustained inflammatory genes that were previously char-
acterized in mouse bone marrow-derived dendritic cell cultures14

(Fig. 2a, Supplementary Table 1). We found widespread
suppression of antiviral genes in opioid-dependent cells across
LPS-treated immune subpopulations while peaked and sustained
inflammatory genes were modestly affected by opioid usage
(Fig. 2b, Supplementary Figs. 8–12). Taken together, our data
suggest that chronic opioid usage results in widespread suppres-
sion of antiviral genes affecting all immune subpopulations
including both innate and adaptive immune cell types.

To examine if the observed suppression of the antiviral gene
program upon LPS treatment in opioid-dependent individuals is
affected specifically through the TLR4 receptor pathway by
inactivation of the TRIF signaling cascade, we seek an alternative
way to activate type I interferon pathway directly. We activated
the antiviral gene program with interferon beta (IFNβ), which
directly activates type I interferon response and antiviral gene
program through the interferon alpha and beta receptors. Given
that interferon alpha and beta receptor subunits 1 and 2 (IFNAR1
and IFNAR2) are expressed in all immune cell populations
(Supplementary Fig. 13), we expect the activation of the antiviral
gene program and interferon response genes in each of these
immune subpopulations upon IFNβ treatment. In order to
perform scRNA-seq in a cost-effective way and also to reduce
technology driven batch effects, we performed scRNA-seq with
an antibody-based cell-hashing technique to multiplex samples in
droplet-based scRNA-seq15 (Supplementary Fig. 14; see Meth-
ods). We profiled 9278 single PBMCs treated with IFNβ for 3 h
from three opioid-dependent individuals and three age/sex-
matched non-dependent controls (averaging 1547 single cells per
individual) (Supplementary Fig. 14). We observed that activation
of the antiviral gene program is at the same level between opioid-
dependent individuals and non-dependent controls in each of the
cell types (Supplementary Fig. 15). Our results suggest that the
suppression of the antiviral gene program in opioid-dependent
cells is a stimulus-specific phenotype that is most likely affected
through the TLR4 pathway.
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Morphine reduces antiviral genes in LPS-treated PBMC. To
examine the in vitro effect of opioids, we first treated primary
human PBMCs from healthy individuals with a titration of
morphine for 24 h before stimulating with either a mock treat-
ment (Untreated) or 100 ng/mL LPS for 3 h. We then performed
quantitative reverse transcription PCR (RT-qPCR) using primers

against the major antiviral gene, ISG15, which was the most
prominent antiviral gene downregulated in opioid-dependent
cells across cell types. We found that PBMCs pretreated with
morphine for 24 h exhibited a dose-dependent inhibition to the
induction of ISG15 after LPS treatment (Fig. 3a). Furthermore,
this inhibition was also detectable after only 3 h of morphine
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Fig. 1 scRNA-seq revealed a widespread suppression of antiviral genes in opioid-dependent individuals. a Experimental workflow schematic. Peripheral
blood from opioid-dependent individuals and control individuals were collected, PBMCs were isolated, and microdroplet-based scRNA-seq was performed using
Chromium Controller (10X Genomics). b t-SNE plot of naive (51,041) and LPS (100 ng/mL)-treated (21,873) PBMCs were clustered (cells were filtered based
on >300 and <2000 genes per cell, <10,000 UMIs per cell; see Methods) and identified into immune populations (top) and visualized by control individuals
and opioid-dependent individuals in each state (bottom): naive state control samples 1–7 (C1–C7), naive state opioid-dependent samples 1–7 (O1–O7), LPS-
treated control samples 1–3 (C1–C3 (LPS)), LPS-treated opioid-dependent samples 1–3 (O1–O3 (LPS)). c Volcano plot showing fold change of gene expression
(log2 scale) for downregulated (Control) and upregulated (Opioid) genes for opioid-dependent cells compared to non-dependent controls for naive state
populations: monocytes and LPS-treated populations: NK cells, CD4+ T cells, and activated T cells (x-axis) with a significance of 0.05 (y-axis, −log10 scale).
Significant genes shown with black dots, significant antiviral genes shown with green dots, and insignificant genes shown with gray dots. d Pathway enrichment
analysis of significant differential genes across all naive and LPS-treated cell types evaluated by −log10(p value) as indicated by blue-purple scale (x-axis: cell
type/state, y-axis: pathways). White represents an analysis which did not provide enrichment results for the specific pathway. Source data listing genes and
expression values for c and d are provided in Source Data file. Similar findings were observed in repeat experiments using different patient samples.

a

2
1
0
–1
–2

Scaled
expression

LPS 3 h

Peak/Sustained
inflammation

Antiviral
response

b

LPS B cells

LPS NK cells
Control

OpioidControl

A
ve

ra
ge

 g
en

es
et

 e
xp

re
ss

io
n

(L
og

)
LPS CD4+ T cells

LPS activated T cells

Control
C1 C2 C3 O1 O2 O3

C1 C2 C3 O1 O2 O3

C1 C2 C3 O1 O2 O3

C1 C2 C3 O1 O2 O3

Opioid

Control Opioid

  C
or

e 
l ari vit na

dekae
P

malfni
deniatsu

S
malfni

C1 C2 C3 O3O1 O2

Core antiviral

Opioid

  C
or

e 
l ari vit na

dekae
P

malfni
deniatsu

S
malfni

  C
or

e 
l ari vit na

dekae
P

malfni
deniatsu

S
malfni

  C
or

e 
an

tiv
ira

l
dekae

P
malfni

deniatsu
S

malfni

Peaked inflam

C1 C2 C3 O3O1 O2 C1 C2 C3 O3O1 O2

Sustained inflam

C1 C2 C3 O3O1 O2

Core antiviral

C1 C2 C3 O3O1 O2

Peaked inflam

C1 C2 C3 O3O1 O2

Sustained inflam

C1 C2 C3 O3O1 O2

Core antiviral

C1 C2 C3 O3O1 O2

Peaked inflam

C1 C2 C3 O3O1 O2

Sustained inflam

C1 C2 C3 O3O1 O2

Core antiviral

C1 C2 C3 O3O1 O2

Peaked inflam

C1 C2 C3 O3O1 O2

Sustained inflam

1.0

0.5

0.0

****

0.4

0.3

0.2

0.1

0.0

**** ****

1.0

0.5

0.0

****

0.6

0.4

0.2

0.0

****

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

****

1.0

0.5

0.0

****

0.6

0.4

0.2

 ns
1.2

0.9

0.6

0.3

 ***

1.0

0.75

0.5

0.25

0.0

****

0.6

0.4

0.2

0.0

****

0.75

0.5

0.25

0.0

  **

TRAF1

CCL5
CCL3
CCL4
NFKB1

TNF

IFIT3
ISG20
MX1
IFIT2
ISG15

TRAF1

CCL5
CCL3
CCL4
NFKB1

TNF

IFIT3
ISG20
MX1
IFIT2
ISG15

TRAF1

CCL5
CCL3
CCL4
NFKB1

TNF

IFIT3
ISG20
MX1
IFIT2
ISG15

TRAF1

CCL5
CCL3
CCL4
NFKB1

TNF

IFIT3
ISG20
MX1
IFIT2
ISG15

1
0
–1

2

–2

Scaled
expression

1
0
–1

2

–2

Scaled
expression

1
0
–1

2

–2

Scaled
expression

A
ve

ra
ge

 g
en

es
et

 e
xp

re
ss

io
n

(L
og

)
A

ve
ra

ge
 g

en
es

et
 e

xp
re

ss
io

n
(L

og
)

A
ve

ra
ge

 g
en

es
et

 e
xp

re
ss

io
n

(L
og

)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16159-y

4 NATURE COMMUNICATIONS |         (2020) 11:2611 | https://doi.org/10.1038/s41467-020-16159-y | www.nature.com/naturecommunications



pretreatment followed by 3 h of LPS treatment (Fig. 3b). In order
to characterize this phenomenon at a genome-wide scale, we
performed scRNA-seq with the cell-hashing technique and pro-
filed 2946 single PBMCs treated with morphine alone and then
treated with LPS for 3 h (averaging 740 single cells per sample)
(Supplementary Fig. 16). We found a modest but consistent
suppression of core antiviral genes in response to morphine
exposure. This phenotype was most pronounced in CD4+ T cells,
CD8+ T cells, and NK cells (Fig. 3c, Supplementary Figs. 17–21).

Discussion
Our results show that there is widespread suppression of
interferon-stimulated genes and antiviral genes in multiple innate
and adaptive peripheral immune subpopulations both ex vivo and
in vitro upon LPS treatment. Our findings suggest a potential
adverse effect from opioid usage on the defense response towards
viral infection in the immune system. This may explain in part
the higher susceptibility to viral infection in opioid users observed
in epidemiological studies5–7,16. In addition, our in vitro findings
also demonstrate that the observed suppression of antiviral
pathway from our ex vivo experiments does not arise from needle
sharing or presence of hepatitis C virus infection in these injec-
tion opioid users. Given that most recreational opioid users inject
drugs and many prescription opioid users are post-surgery or
cancer patients under chemotherapy treatments, they are already
more prone to infection; therefore, suppression of antiviral genes
with opioid usage brings clinical relevance and demonstrates the
importance of carefully examining each individual case to avoid
any possibility of comorbidity.

Acute and chronic opioid use has been shown to modulate the
immune system and increase risk of opportunistic infections. This
is supported by both epidemiological studies and animal studies
where the variable from sharing of contaminated needles can be
eliminated17. Previous reports using in vitro cell culture model
and in vivo opioid treatment rodent models have shown that
opioids affect both the innate and adaptive immune function2–
4,17. For example, morphine has been shown to reduce IL6 and
TNFα expression in macrophages and reduce IL8 expression in
neutrophils while demonstrating increases in Th1 cell death and
Tbet activity in T cells17. In addition to the peripheral immune
system, studies have suggested that opioids create a neuroin-
flammatory response in the CNS through MOR-independent
pathways. Reports from Hutchinson et al.18 and Wang et al.19

have shown that morphine activates the TLR4 receptor through a
MOR-independent pathway in glial populations in the CNS
and contributes to drug reinforcement. Opioid antagonist,

β-funaltrexamine also has been shown to inhibit NFkB signaling
and chemokine expression in human astrocytes and inhibit LPS-
induced neuroinflammation in mice20,21. However, these studies
usually focus on a few genes and in a particular cell type. Fur-
thermore, very few of these immune function characterization
studies were performed using primary immune cells directly from
opioid-dependent patients. There is currently no study that
provides a systems level and genome-wide view of the immune
system from chronic opioid usage. Our study represents the first
genome-wide and single-cell level transcriptomics study to
characterize peripheral immune cell populations directly from
chronic opioid users. Furthermore, we have identified stimulus-
specific and cell-type-specific dysregulation of the immune
response gene regulatory circuitry upon chronic opioid usage and
acute opioid treatment. Our results provide potential systems
level molecular explanation to the widely observed higher sus-
ceptibility to opportunistic infection in opioid using individuals
from epidemiological studies.

Opioid-induced immune modulation is mainly thought to
occur through opioid receptors present on peripheral immune
cell types2,22–24. However, the presence of opioid receptors in
peripheral immune cells is controversial. While several studies
have shown that classical opioid receptors such as MOR are
expressed on various peripheral blood immune cell types25–30,
other studies evaluated the presence of opioid receptors in
PBMCs in which they failed to detect mRNA transcripts for all
opioid receptors except for the nonclassical receptor NOR4,31.
Due to the nature of single-cell assays such as scRNA-seq, the
expression level of opioid receptors at a single-cell level was very
low or not detectable. Therefore to clarify whether opioid
receptors are present in peripheral immune cells, we looked at the
expression of opioid receptors in population level RNA-seq data
from PBMCs of healthy individuals from a previous study32.
We found that the classical opioid receptor MOR is expressed in
CD4+ T cells, CD8+ T cells, monocytes, and NK cells, but not in
B cells, while the other two classical opioid receptors DOR and
KOR are very low in expression or undetectable (Supplementary
Fig. 22). The nonclassical receptor NOR is expressed in all
immune cell types and is higher expressed in monocytes (Sup-
plementary Fig. 22). We anticipate the immune modulatory effect
we observed from in vivo opioid usage and in vitro opioid
treatment potentially occurs through both MOR and NOR
receptors.

The stimulation of toll-like receptor 4 TLR4 by LPS induces
expression of innate immune response genes previously cate-
gorized into three gene modules: antiviral, peaked inflammatory,

Fig. 2 LPS-stimulated antiviral gene program were consistently suppressed in opioid-dependent individuals. a Evaluation of the three innate immune
response gene programs stimulated by LPS: antiviral, peaked inflammatory, and sustained inflammatory. b Left: Heatmap of scaled expression of core antiviral
and inflammatory response genes observed in control sample cells (C1–C3) and opioid-dependent sample cells (O1–O3) in LPS-treated populations: CD4+ T
cells, activated T cells, NK cells, and B cells. Color scale for heatmap indicates scaled gene expression. Yellow indicates positive scaled gene expression, purple
indicates negative scaled gene expression, and while black represents zero scaled gene expression. Labeled key antiviral and inflammatory genes expression
across LPS sample cells in the LPS-treated populations (Supplementary Figs. S6 and S7). Right: Average expression of all genes in a geneset (log expression) for
each cell, grouped by control samples (C1–C3) and opioid-dependent samples (O1–O3) for LPS-treated populations: CD4+ T cells (C1–C3: 5211 cells and
O1–O3: 6378 cells), activated T cells (C1–C3: 2456 cells and O1–O3: 1578 cells), NK cells (C1–C3: 268 cells and O1–O3: 351 cells), and B cells (C1–C3: 1527 cells
and O1–O3: 747 cells). Inset box plots show the median, lower and upper hinges that correspond to the first quartile (25th percentile) and third quartile (75th
percentile), and the upper and lower whiskers extend from the smallest and largest hinges at most 1.5 times the interquartile range. For CD4+ T cells, two-tailed
T-test with comparison tests between control and opioid-dependent groups for each geneset: core antiviral (p < 2.22e−16), peaked inflammation (p < 2.22e–16),
sustained inflammation (p < 2.22e–16). For activated T cells, two-tailed T-test with comparison tests between control and opioid-dependent groups for each
geneset: core antiviral (p < 2.22e–16), peaked inflammation (p= 2.7e–08), sustained inflammation (p < 2.22e−16). For NK cells, two-tailed T-test with
comparison tests between control and opioid-dependent groups for each geneset: core antiviral (p < 2.22e−16), peaked inflammation (p=0.44), sustained
inflammation (p=0.00054). For B cells, two-tailed T-test with comparison tests between control and opioid-dependent groups for each geneset: core antiviral
(p < 2.2e−16), peaked inflammation (p= 3.7e−6), sustained inflammation (p=0.0033). nsp > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Similar
findings were observed in repeat experiments using different patient samples.
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and sustained inflammatory genes14. Type I interferons function
as autocrine and paracrine factors to induce antiviral gene acti-
vation in response to LPS33,34. We have observed strong sup-
pression of the antiviral gene program in response to LPS in
PBMCs of opioid-dependent individuals (Fig. 2). Although there
is some evidence of TLR4 expression in other immune cell types
such as CD4+ T cells35 and NK cells36 in naive PBMCs,
monocytes are the major cell type that express high levels of TLR4
while other immune cell types demonstrate low expression
levels as shown from reanalysis of previously published popula-
tion level RNA-seq data from PBMCs of healthy individuals32

(Supplementary Fig. 13). We anticipate that LPS induction of the
three innate immune response gene pathways by TLR4 activation
occurs mainly in monocytes; this leads to the expression of
autocrine and paracrine factors such as TNFα and IFNα/IFNβ
which then induce expression of the innate immune response
gene modules in other immune cell types through the activation
of TNF receptors and IFNα/β receptors as shown by the expres-
sion of these receptors in CD4+ T cells, CD8+ T cells, B cells,
and NK cells. In addition, IFNβ activates the antiviral gene pro-
gram directly through the IFNAR receptors in each of the
immune cell types (Supplementary Fig. 15) given its ubiquitous
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expression (Supplementary Fig. 13 for IFNAR1 and IFNAR2
expression). Since we did not observe suppression of the antiviral
gene program in response to direct IFNβ treatment (Supple-
mentary Fig. 15), we speculate the modulatory effect of opioids
are affecting a component in the the TLR4/TRIF signaling cascade
in both the naive and LPS-treated conditions primarily in
monocytes, which could explain the observed suppression of the
antiviral gene program in response to LPS (Figs. 1 and 2).

Furthermore, our study demonstrates the utility of scRNA-seq
as an unbiased tool to assess cell-type-specific and stimulus-
specific genome-wide transcriptomic phenotype from limited
quantity of patient samples. Upon a stimulation condition, such
as LPS treatment, the opioid-induced phenotype is much more
pronounced and resembles the signal amplifying effect from
electronic amplifiers. We anticipate this type of signal amplifi-
cation method coupled with single-cell transcriptomics will be of
broad interest and can be applied to many other disease models
where disease relevant stimuli can be used to activate naïve
PBMCs isolated from patients that are otherwise quiescent to
amplify signal over noisy background and thus reveal the phe-
notype of the disease.

Our finding of opioid-induced widespread suppression of
antiviral gene program upon LPS treatment may suggest that in
addition to the adverse effects of addiction behavior, opioid usage
might increase susceptibility to opportunistic viral infection.
Chronic prescription of opioid use is common in cancer patients,
many of which are also going through chemotherapy that mod-
ulate and weaken the immune system. Our finding suggests that
deeper understanding of the immune modulatory effect of
opioid in the context of these clinical conditions is needed and
that precaution is needed by clinicians when prescribing opioids
to patient groups that are already more susceptible to opportu-
nistic infections.

Methods
PBMCs from opioid-dependent individuals. Frozen vials of PBMCs prepared
from the fresh blood of opioid-dependent (mostly heroin dependent), and non-
dependent neighborhood control individuals were collected in the Comorbidity
and Trauma Study (CATS)37,38 and subsequently obtained from the biorepository
of National Institute on Drug Abuse (NIDA, Rockville MD). We evaluated 14 age-
matched subjects ranging from 24 to 45 years in age, with an equal number of male
and female subjects (Supplementary Table 6). Cases were recruited from opioid
replacement therapy (ORT) clinics in the greater Sydney, Australia region, while
controls were recruited from areas in close proximity to ORT clinics (neighbor-
hood controls). Cases and controls were required to be English speakers 18 years of
age or older. Cases were participants in ORT for opioid dependence while controls
were excluded for recreational opioid use 11 or more times lifetime. All subjects
provided written informed consent37,38. All samples were stripped of personally

identifying information and assigned sample ID numbers prior to receipt. No
further ethical oversight was required from the Boston University IRB following
de-identification of the procured samples.

scRNA-seq of LPS-treated patient PBMCs. Frozen PBMCs isolated from the
blood of opioid-dependent and non-dependent neighborhood individuals were
revived, and live cells were isolated via fluorescently activated cell sorting (FACS)
using a Sony SH800 cell sorter and a live/dead cell stain (LIVE/DEAD Fixable
Green Cell Stain Kit, for 488 nm Excitation, Thermo Fisher, L34969). The FACS
gating strategy used for the isolation of live PBMC is illustrated in Supplementary
Fig. 23. Dilutions were prepared from all 14 samples at a concentration of
1000 cells/μL as outlined in the Chromium Single Cell 3′ Reagent Kit v2 User
Guide (10X Genomics, CG00052 Rev.B), and 7000 cells per sample were used to
perform the droplet-based Chromium Single Cell 3′ scRNA-seq method (10X
Genomics, Chromium Single Cell 3′ Library and Gel Bead Kit, Cat# PN-120237).
In total, 200,000 cells from 6 of the 14 samples (three dependent and three non-
dependent) were plated into a non-tissue culture-treated 96-well plate in a
leukocyte-supporting complete RPMI medium (10% HI-FBS, 1% L-glutamate, 1%
NEAA, 1% HEPES, 1% sodium pyruvate, 0.1% B-mercaptoethanol). Lipopoly-
saccharide (LPS) (Invivogen, LPS-EK Ultrapure, Cat# tlrl-pekpls) was then added
to a final concentration of 100 ng/mL and the cells were incubated at 37 ˚C for 3 h.
Cells were then collected, washed, and diluted to 1000 cells/μL before being used to
perform the 10X Genomics Chromium Single Cell 3′ method as outlined in the
Single Cell 3′ Reagent Kit v2 User Guide. Briefly, 20 μL of 1000 cells/μL PBMC
suspension from each subject/condition were combined, and 33.8 μL of cell sus-
pension (total cell number= 33,800) was mixed with 66.2 μL of RT reaction mix
before being added to a chromium microfluidics chip already loaded with 40 μL of
barcoded beads and 270 μL of partitioning oil. The chip was then placed within the
chromium controller where single cells and barcoded beads were encapsulated
together within oil droplets. Reverse transcription was then performed within the
oil droplets to produce barcoded cDNA. Barcoded cDNA was isolated from the
partitioning oil using Silane DynaBeads (Thermo Fisher Scientific, Dynabeads
MyONE Silane, Cat# 37002D) before amplification by PCR. Cleanup/size selection
was performed on amplified cDNA using SPRIselect beads (Beckman-Coulter,
SPRIselect, Cat# B23317) and cDNA quality was assessed using an Agilent 2100
BioAnalyzer and the high-sensitivity DNA assay (Agilent, High-Sensitivity DNA
Kit, Cat# 5067-4626). Sequencing libraries were generated from cleaned, amplified
cDNA using the 10X Chromium Kit's including reagents for fragmentation,
sequencing adaptor ligation, and sample index PCR. Between each of these steps,
libraries were cleaned and size selected using SPRIselect beads. Final quality of
cDNA libraries was once again assessed using the Agilent BioAnalyzer High-
Sensitivity DNA assay, and quality-confirmed libraries were sequenced using
Illumina’s NextSeq platform. All reagents are listed in Supplementary Table 2.

scRNA-seq of IFNβ-treated patient PBMCs. Frozen PBMCs isolated from the
blood of three opioid-dependent and three non-dependent neighborhood indivi-
duals were revived, and live cells were isolated via FACS using a Sony SH800
cell sorter and a live/dead cell stain (LIVE/DEAD Fixable Green Cell Stain Kit, for
488 nm Excitation, Thermo Fisher—L34969). The FACS gating strategy used for
the isolation of live PBMC is illustrated in Supplementary Fig. 23. Live cells were
plated into a non-tissue culture-treated 96-well plate in a leukocyte-supporting
complete RPMI medium (10% HI-FBS, 1% L-glutamate, 1% NEAA, 1% HEPES, 1%
sodium pyruvate, 0.1% B-mercaptoethanol) at a density of 200,000 cells per well.
Twenty-two microliters of a 100 U/mL solution of IFNβ (Recombinant Human
IFN-beta Protein, R&D Systems, Cat# 8499-IF-010) was then added to each well

Fig. 3 Short exposure to morphine resulted in suppression of antiviral genes upon LPS treatment. a, b Evaluation of ISG15 mRNA expression after
morphine treatment. PBMCs from a healthy, non-opioid-exposed individual were pretreated with morphine (0, 10, 100 μM) for 24 h (a) or 3 h (b) followed
by LPS (100 ng/mL) stimulation for 3 h. Interferon pathway gene ISG15 expression was evaluated by RT-qPCR. Values displayed as fold increase (log10) to
gene expression in LPS-treated cells over unstimulated cells, plus or minus one standard deviation. Error bars here represent technical variability;
experiments were repeated at least three times with similar results. c Cell hashing scRNA-seq of healthy PBMCs pretreated with morphine for 24 h
followed by LPS (100 ng/mL) treatment for 3 h. Left: Heatmaps of scaled expression of core antiviral response genes observed in LPS-treated populations:
CD4+ T cells, CD8+ T cells, and NK cells. Color scale for heatmap indicates scaled gene expression. Yellow indicates positive scaled gene expression,
purple indicates negative scaled gene expression, and while black represents zero scaled gene expression Right: Average expression of all genes in a
geneset (log expression) for each cell, grouped by mock-treated and morphine-treated cells of LPS-treated populations: CD4+ T cells (LPS (534 cells),
Morphine+LPS (605 cells)), CD8+ T cells (LPS (152 cells), Morphine+LPS (158 cells)), and NK cells (LPS (37 cells), Morphine+LPS (9 cells)). Inset box
plots show the median, lower and upper hinges that correspond to the first quartile (25th percentile) and third quartile (75th percentile), and the upper and
lower whiskers extend at most 1.5 times the interquartile range. All comparisons use two-tailed T-tests. For CD4+ T cells: comparison between control and
opioid-dependent groups for each geneset: core antiviral (p < 2.22e−16), peaked inflammation (p= 0.91), sustained inflammation (p= 0.16). For CD8+
T cells: comparison between control and opioid-dependent groups for each geneset: core antiviral (p= 6.3e−07), peaked inflammation (p= 0.91),
sustained inflammation (p= 0.85). For NK cells: comparison between control and opioid-dependent groups for each geneset: core antiviral (p= 0.0053),
peaked inflammation (p= 0.23), sustained inflammation (p= 0.00039). nsp > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Source data for
a and b detailing expression values are provided in Source Data file.
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(for a final IFNβ concentration of 10 U/mL) and cells were incubated for 3 h at
37 °C. After treatment, all cells were collected, and an equal number of cells per
patient sample were collected, washed, and each sample was “hashed” using unique
oligonucleotide-barcoded antibodies15 (Supplementary Table 4) to track the cells’
well/condition of origin. Briefly, cells were suspended in Cell Staining Buffer
(BioLegend, Cat# 420201) and blocked using Human TruStain FcX reagent (Bio-
Legend, Cat# 422301). Cells were then incubated with 1 μg of TotalSeq antibodies
(BioLegend, Cat# 3964601, 394603, 394605, 394607, 394609, 394611, 394613,
394615, 394617, 394619, 394623, 394625), washed with PBS, and filtered through
40 μM cell strainers (Bel-Art, Flowmi Cell Strainer, Cat# H13680-0040). Samples
were then normalized to 1000 cells/μL, mixed in equal measure (20 μL each), and
used to perform the Chromium Single Cell 3′ scRNA-seq method. Briefly, 20 μL of
1000 cells/μL PBMC suspension from each subject/condition were combined, and
33.8 μL of cell suspension (total cell number= 33,800) was mixed with 66.2 μL of
RT reaction mix before being added to a chromium microfluidics chip already
loaded with 40 μL of barcoded beads and 270 μL of partitioning oil. The chip was
then placed within the chromium controller where single cells and barcoded beads
were encapsulated together within oil droplets. Reverse transcription was then
performed within the oil droplets to produce barcoded cDNA. Barcoded cDNA
was isolated from the partitioning oil using Silane DynaBeads (Thermo Fisher
Scientific, Dynabeads MyONE Silane, Cat# 37002D) before amplification by PCR.
Cleanup and size selection was performed on amplified cDNA using SPRIselect
beads (Beckman-Coulter, SPRIselect, Cat# B23317) and cDNA quality was assessed
using an Agilent 2100 BioAnalyzer and the high-sensitivity DNA assay (Agilent,
High-Sensitivity DNA Kit, Cat# 5067-4626). Sequencing libraries were generated
from cleaned, amplified cDNA using the 10X Chromium Kit’s including reagents
for fragmentation, sequencing adaptor ligation, and sample index PCR. Between
each of these steps, libraries were cleaned, and size selected using SPRIselect beads.
Final quality of cDNA libraries was once again assessed using the Agilent BioA-
nalyzer High-Sensitivity DNA assay, and quality-confirmed libraries were
sequenced using Illumina’s NextSeq platform. Additional primers were included in
the cDNA amplification step to amplify the TotalSeq oligonucleotide tags. During
the post-amplification cleanup, supernatant containing amplified TotalSeq tags was
collected and processed parallel to the standard 10X library fraction. All reagents
are listed in Supplementary Table 2.

PBMCs from healthy individuals used in in vitro assays. Fifteen milliliters of
fresh whole blood from healthy donors (Research Blood Components, Boston MA)
were diluted 1:1 with warm PBS+ 2% FBS, mixed, and gently layered atop 30 mL
Ficoll-Paque density gradient medium (GE Healthcare, Ficoll-Paque PLUS, Cat#
17-1440) in 50 mL conical tubes. This process was repeated seven times in pro-
cessing 100 mL of blood. Tubes were centrifuged for 20 min at 1200 × g to separate
leukocytes from red blood cells and plasma. The leukocyte-containing buffy coat
was carefully transferred into new tubes, washed with warm PBS+ 2% FBS,
counted, resuspended in DMSO, and aliquoted. Isolated cells were then stored in
liquid nitrogen until later experimental use. Due to the anonymous nature of the
procured whole-blood samples, no ethical oversight was required from the Boston
University IRB for these samples. All reagents are listed in Supplementary Table 2.

Controlled substances. Solid morphine sulfate (Sigma Aldritch, Cat# M8777-
25G) was obtained with approval and oversight from the controlled substances
sub-office of the Boston University Department of Environmental Health and
Safety. Aliquots of a 10 mM stock solution were prepared and stored for further use
in experimentation. All reagents are listed in Supplementary Table 2

Morphine titration in PBMCs from healthy individuals. Normal PBMCs were
revived in leukocyte-supporting complete RPMI medium and plated onto non-
tissue culture-treated 96-well plates at a density of 2.0e5 cells/well (two wells per
condition, 4.0e5 cells total). Cells were treated either with a mock treatment or a
titration of morphine sulfate in RPMI complete medium (0, 10, 100 μM) for 24 h.
At the end of the morphine incubation either medium or LPS (final concentration
100 ng/mL) was added to the wells and cells were incubated for further 3 h, at the
end of which the cells were collected, washed, and processed for total RNA using
the ZymoPure QuickRNA MiniPrep kit (Zymo Research, Cat# R1055). RNA
samples were then used to perform RT-qPCR. All reagents are listed in Supple-
mentary Table 2

RT-qPCR analysis. Total RNA was isolated from cells using the ZymoPure
QuickRNA MiniPrep kit. cDNA was synthesized using ~50 ng of total RNA per
sample (Thermo Fisher, SuperScript IV First-Strand Synthesis System, Cat#
18091200). Two microliters of cDNA per reaction was then used to perform qPCR
(Fisher Scientific, PowerUp SYBR Greβen Master Mix, Cat# A25742) with primers
against transcripts of the Interferon target gene ISG15 (IDT; Supplementary
Table 3) We used primers against ActB (IDT, primer sequences in supplement) as
a housekeeping gene control. All reagents are listed in Supplementary Table 2.

scRNA-seq of in vitro morphine treatment with healthy PBMCs. Cells were
treated either with a mock treatment or 100 μM of morphine sulfate in RPMI
complete medium for 24 h. At the end of the morphine incubation either medium

or LPS (final concentration 100 ng/mL) was added to the wells and cells were
incubated for additional 3 h, at the end of which the cells were collected and
washed. After treatment, all cells were collected, and an equal number of cells per
patient sample was subjected to cell hashing for scRNA-seq using 1 μg of TotalSeq
antibodies (Supplementary Table 5). Hashtagged cells were then washed, diluted to
1000 cells/μL, and pooled before being used to perform the 10X Genomics
Chromium Single Cell 3′ method. Briefly, 20 μL of 1000 cells/μL PBMC suspension
from each subject/condition were combined, and 33.8 μL of cell suspension (total
cell number= 33,800) was mixed with 66.2 μL of RT reaction mix before being
added to a chromium microfluidics chip already loaded with 40 μL of barcoded
beads and 270 μL of partitioning oil. The chip was then placed within the chro-
mium controller where single cells and barcoded beads were encapsulated together
within oil droplets. Reverse transcription was then performed within the oil dro-
plets to produce barcoded cDNA. Barcoded cDNA was isolated from the parti-
tioning oil using Silane DynaBeads (Thermo Fisher Scientific, Dynabeads MyONE
Silane, Cat# 37002D) before amplification by PCR. Cleanup/size selection was
performed on amplified cDNA using SPRIselect beads (Beckman-Coulter, SPRI-
select, Cat# B23317) and cDNA quality was assessed using an Agilent 2100
BioAnalyzer and the High-Sensitivity DNA assay (Agilent, High-Sensitivity DNA
Kit, Cat# 5067-4626). Sequencing libraries were generated from cleaned, amplified
cDNA using the 10X Chromium Kit’s including reagents for fragmentation,
sequencing adaptor ligation, and sample index PCR. Between each of these steps,
libraries were cleaned and size selected using SPRIselect beads. Final quality of
cDNA libraries was once again assessed using the Agilent BioAnalyzer High-
Sensitivity DNA assay, and quality-confirmed libraries were sequenced using
Illumina’s NextSeq platform. All reagents are listed in Supplementary Table 2.

Single cell analysis. LPS treatment: RNA-seq processing and downstream ana-
lysis: We used CellRanger version 2.1.0 (10X Genomics) to pool and process the
raw RNA sequencing data. First, using CellRanger mkfastqc pipeline, each sample
sequencing library was demultiplexed based on the sample index read to generate
FASTQ files for the paired-end reads. STAR aligner39 was used to align reads to the
human reference genome (GRCh38) through the CellRanger count pipeline. After
alignment, all sample libraries were equalized to the same sequencing depth (each
sample cell is downsampled to have the same confidently mapped reads per cell)
and aggregated together subsequently to generate a gene-cell barcode matrix using
CellRanger aggr pipeline.

After data aggregation, we performed all filtering, normalization, and scaling of
data using Seurat suite version 2.3 (refs. 12,13). Cells with less than 300 and greater
than 2000 detected genes were filtered out, as well as cells with greater than 10,000
UMIs and greater than 10% mitchondrial counts were filtered out. Genes that were
detected in less than 10 cells were removed. Gene counts for each cell were
normalized by total expression, multiplied by a scale factor of 10,000 and
transformed to log scale.

PCA based on the highly variable genes detected (dispersion of 2) was
performed for dimension reduction and the top 20 principal components (PCs)
were selected. We clustered cells based on graph-based methods (KNN and
Louvain community detection method) implemented in Seurat. The clusters and
other known annotations were visualized using t-stochastic neighbor embedding
(t-SNE)40.

Cell hashing processing and analysis: For hashtag oligo (HTO) quantification,
we first ran Cite-seq-Count15,41 on the HTO fastq files to process the HTO reads
with the parameters specific to 10X Genomics single-cell 3′ v2 data as stated in
https://github.com/Hoohm/CITE-seq-Count. In addition, we used CellRanger
v.3.0.2 (10X Genomics) to process the raw sequencing RNA reads and Seurat suite
for downstream analyses. To identify the cells sample-of-origin, we demultiplexed
the HTOs and removed doublets and ambiguous cells using the Seurat pipeline for
demultiplexing as mentioned in https://satijalab.org/seurat/hashing_vignette.html.

IFNβ treatment: After demultiplexing the HTOs, we performed all downstream
analyses as described above. Cells with less than 200 and greater than 2500 detected
genes were filtered out, as well as cells with greater than 5% mitochondrial counts
were filtered out.

In vitro morphine treatment: After demultiplexing the HTOs, we performed all
downstream analyses as described above. Cells with less than 500 and greater than
3000 detected genes were filtered out, as well as cells with greater than 5%
mitochondrial counts were filtered out.

RNA sequencing DE analysis: To identify peripheral immune subpopulations,
we performed differential expression analysis using Wilcoxon rank-sum test
between clusters to identify top expressing genes for each cluster for cell type
identification implemented in Seurat. Cell-type-specific gene signatures were
determined from the overlap of more highly expressed and canonical gene markers.

We performed differential expression analysis for each cell type between control
cells and opioid-dependent cells using Model-based Analysis of Single Cell
Transcriptomics (MAST)42. Utilizing this method, we fit a hurdle model modeling
condition and the centered cellular detection rate (cngeneson), and then performed
a likelihood ratio test dropping the condition term to identify genes upregulated
and downregulated in opioid-dependent samples compared to controls.
Differentially expressed genes were evaluated according to their log fold change
(greater than log2(1.5)) and adjusted p values (0.05). All figures generated using
ggplot2 R package43.
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Enrichment analysis: We performed gene enrichment analysis of the list of
differential genes between opioid-dependent individuals and non-dependent
controls for each cell type using Metascape44 online tool (http://metascape.org/).
The enrichment analysis was run using default settings, and was assessed and
visualized through a heatmap of significance (−log(p value)). All heatmaps were
generated using ComplexHeatmap R package and color scale generated using
dependent R package circilize45.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Processed cell-hashing scRNA-seq data are available from GEO under accession
GSE128879. Raw scRNA-seq data of opioid-dependent individuals and non-dependent
controls are available upon request from dbGaP under accession phs000277.v2 at
[https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000277.v2.
p1]. We have included all processed scRNA-seq datasets on Single Cell Portal, including
the cell barcodes, t-SNE coordinates, and other available characteristics (sample ID, cell
type, age, sex, and comorbidities). The processed scRNA-seq data of LPS-treated PBMCs
from opioid-dependent individuals and controls are available at [https://singlecell.
broadinstitute.org/single_cell/study/SCP587/]. The processed scRNA-seq data of IFNβ-
treated PBMCs from opioid-dependent individuals and controls are available at [https://
singlecell.broadinstitute.org/single_cell/study/SCP589/]. The processed scRNA-seq data
of in vitro morphine-treated PBMCs are available at [https://singlecell.broadinstitute.org/
single_cell/study/SCP591/]. The source data underlying Figs. 1–d, 3a, b, and
Supplementary Figs. 4–5, 13, 22 are provided in the Source Data file.

Code availability
The original R scripts for Seurat processing and cell hashing are available on github
[https://github.com/satijalab/seurat). All custom-made code to reproduce the analyses
and figures reported in this paper are available on github (https://github.com/tanya-
karagiannis/scRNAseq-PBMC-opiate).
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