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ARTICLE

Single-cell transcriptomic analysis identifies the
conversion of zebrafish Etv2-deficient vascular
progenitors into skeletal muscle
Brendan Chestnut1,4, Satish Casie Chetty1,4, Andrew L. Koenig 1,2,4 & Saulius Sumanas 1,3✉

Cell fate decisions involved in vascular and hematopoietic embryonic development are still

poorly understood. An ETS transcription factor Etv2 functions as an evolutionarily conserved

master regulator of vasculogenesis. Here we report a single-cell transcriptomic analysis of

hematovascular development in wild-type and etv2 mutant zebrafish embryos. Distinct

transcriptional signatures of different types of hematopoietic and vascular progenitors are

identified using an etv2ci32Gt gene trap line, in which the Gal4 transcriptional activator is

integrated into the etv2 gene locus. We observe a cell population with a skeletal muscle

signature in etv2-deficient embryos. We demonstrate that multiple etv2ci32Gt; UAS:GFP cells

differentiate as skeletal muscle cells instead of contributing to vasculature in etv2-deficient

embryos. Wnt and FGF signaling promote the differentiation of these putative multipotent

etv2 progenitor cells into skeletal muscle cells. We conclude that etv2 actively represses

muscle differentiation in vascular progenitors, thus restricting these cells to a vascular

endothelial fate.
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During embryonic development, the lateral plate mesoderm
(LPM) gives rise to multiple different cell lineages which
include vascular endothelial cells, hematopoietic lineages

and cardiomyocytes1,2. The specification of these lineages occurs
in parallel to the specification of adjacent skeletal muscle pro-
genitors which are thought to originate in the somites from dif-
ferent progenitors than the LPM lineages3. Although many
factors involved in different steps of LPM lineage specification
and differentiation have been identified, the entire timeline,
transitional steps, and changes in the global transcriptional pro-
gram that occur during hematopoietic and cardiovascular dif-
ferentiation in vivo are still poorly understood.

While it is challenging to study early cardiovascular develop-
ment in mammalian embryos, the zebrafish has emerged as an
advantageous model system to study early cell fate decisions
during embryogenesis. The signaling pathways and transcrip-
tional programs that regulate the specification and differentiation
of the LPM lineages are highly conserved between zebrafish and
other vertebrates4.

We and others have previously identified an ETS transcription
factor Etv2/Etsrp which is one of the earliest markers of vascular
and hematopoietic progenitor cells and functions as a key reg-
ulator of vascular and hematopoietic development in multiple
vertebrates including mouse and zebrafish5–7. In zebrafish
embryos, etv2 is expressed in vascular endothelial progenitor cells,
as well as early myeloid and erythroid progenitors, and its
expression is downregulated after cells undergo hematopoietic
and vascular differentiation5,6. In the absence of Etv2 function,
vascular endothelial and myeloid progenitors fail to differentiate.
While some of them undergo apoptosis, others can acquire
alternative cell fates and differentiate into cardiomyocytes,
demonstrating fate flexibility of early progenitors8–10.

The relatively recent emergence of highly efficient and high-
throughput single-cell transcriptomic technologies has facilitated
extensive probing of cellular diversity and complex cell differ-
entiation pathways both in vitro and in vivo. In recent years,
several studies have been performed to delineate the transcriptional
diversity of vascular cell types, and to uncover lineage commitment
trajectories during cardiovascular development11–13. However, the
fate decisions of LPM-derived cells are still poorly understood.

Here, we report single-cell transcriptomic profiling of etv2-
expressing cells in wild-type and etv2-deficient zebrafish embryos
during early stages of vascular development. We identify the
transcriptional profiles and novel transitional states of cells dur-
ing different steps of vascular and hematopoietic differentiation.
Our results show that in the absence of Etv2 function, vascular
progenitors can acquire a skeletal muscle fate, arguing that Etv2
function is required to actively repress alternative cell fates in
multipotent mesodermal progenitors. These findings will be
important in understanding the ontogeny of different cardio-
vascular and hematopoietic lineages and will help in designing
more efficient in vitro and in vivo cell differentiation strategies to
generate different types of progenitors for therapeutic purposes.

Results
Single-cell RNA-seq of vascular and blood progenitors. To
analyze the diversity of hematovascular progenitors, we per-
formed single-cell RNA-seq of GFP-positive cells sorted by
fluorescence-activated cell sorting (FACS) from heterozygous and
homozygous etv2ci32Gt; UAS:GFP zebrafish embryos at the 20-
somite stage. This reporter line, recently generated by CRISPR
mediated homology-independent repair, has an insertion of the
gal4 reporter within the etv2 coding sequence14. As described
previously, heterozygous etv2ci32Gt embryos recapitulate the
endogenous expression pattern of etv2 in vascular endothelial

progenitors and differentiated vascular endothelial cells, while
homozygous embryos show profound defects in vascular devel-
opment due to the interruption of the etv2 coding sequence14

(Supplementary Fig. 1).
Transcriptomes of 2049 and 588 cells were obtained from

heterozygous and homozygous etv2ci32Gt embryos, respectively,
using the Chromium system (10× Genomics) which employs a
microdroplet technology to isolate individual cells, followed by the
next-generation seuencing. The relative frequency of GFP+ cells
out of the total number of cells was similar in heterozygous and
homozygous embryos (1.89% and 1.98%, respectively). Transcrip-
tomes from heterozygous and homozygous embryos were pooled
and clustered using Seurat15, resulting in 12 distinct cell clusters
which were visualized using the t-distributed stochastic neighbor
embedding (t-SNE) approach16 (Fig. 1a–d). We subsequently
assigned cell identities based on marker genes which were
significantly enriched in each cluster (Supplementary Table 1,
Supplementary Datas 1 and 2). Two different clusters (#2 and #3)
corresponded to vascular endothelial cells and were thus labeled as
EC1 and EC2. The EC1 cluster showed expression of multiple
known vascular endothelial markers, including cdh5, cldn5b, egfl7,
sox7, ecscr and others, while the top genes expressed in EC2 cells
included crip2, tpm4a, fli1a, and erg, all known to label vascular
endothelial cells (Supplementary Table 1 shows the top marker
genes for each cluster, while t-SNE and violin plots for selected
marker genes are shown in Fig. 1c and Supplementary Figs. 2 and
3). There was a large overlap in marker expression between the EC1
and EC2 groups. It is currently unclear whether EC1 and EC2 cells
represent distinct cellular identities or different stages of endothelial
differentiation. Cluster #4 corresponded to the vascular endothelial
progenitor group (EPC) which showed enriched expression of tal1,
lmo2, etv2, tmem88a, egfl7 (Fig. 1c, d, Supplementary Figs. 2 and 4,
Supplementary Table 1). Although some of these genes (tal1, lmo2,
etv2) are known to label both vascular and hematopoietic
progenitors5,17,18, other markers specific to this group (egfl7, sox7,
fli1b) label vascular and not hematopoietic cells19–21, arguing that
this population corresponds to vascular endothelial progenitors.
Two groups of cells with a strictly hematopoietic gene signature
were identified. Cluster #7 showed specific expression of cebpb,
spi1b, cebpa, cxcr3.2, all known to be specifically enriched in
macrophages (Fig. 1c, d, Supplementary Figs. 2 and 5, Supplemen-
tary Table 1, Supplementary Data 1). Cluster #11 showed strong
expression of multiple hemoglobin genes, including hbbe3, hbbe1.3,
hbae1.3, as well as klf17, blf and other genes that are specific to red
blood cells (Fig. 1d, Supplementary Figs. 2 and 5, Supplementary
Table 1, Supplementary Data 1). Although etv2 in zebrafish does
not show significant expression in zebrafish blood cells, etv2:GFP
expression has been previously observed in myeloid and erythroid
cells22, likely due to the expression of etv2 in hematopoietic
progenitors, which becomes downregulated as they differentiate.
Cluster #10 had very few significantly enriched genes, which
included a novel protein si:ch211–11n16.3, and genes tubb2b and
hmg2b which are likely to be ubiquitously expressed. Apoptosis and
cell cycle regulators pmaip1/noxa and ccng123,24 also showed
relatively strong expression in this cell population (Fig. 1d,
Supplementary Fig. 6, Supplementary Table 1, Supplementary
Data 1), suggesting that this group is likely to include pro-apoptotic
cells, which were observed in etv2ci32Gt embryos. Previous studies
have established that the loss of etv2 function results in increased
apoptosis of vascular or hematopoietic cells21,25. Cluster #12 showed
strong expression of hoxa11b, hoxb7a, cdx4, apoeb, which are all
expressed in the posterior mesenchyme either in zebrafish or mouse
embryos26–28 (Fig. 1c, d, Supplementary Figs. 2 and 6, Supplemen-
tary Table 1, Supplementary Data 1). The tailbud progenitors have
been shown to include multipotent cells which can give rise to
endothelial, somitic and neural lineages29. Therefore this group may
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include early stage endothelial progenitors located in the tailbud.
Indeed, many cells from the tailbud population exhibit noticeable
expression of EPC markers (Fig. 1d, Supplementary Fig. 4). Another
intriguing population of etv2+ cells (cluster #6) showed expression
of BMP response genes id3 and id1, as well as twist1a, pitx3, and
prrx1a (Fig. 1c, d, Supplementary Figs. 2 and 4, Supplementary
Table 1, Supplementary Data 1). Our subsequent analysis (see
below) demonstrated that all analyzed genes exhibited expression in

the LPM area; therefore we annotated this cluster as LPM cells.
Additional cell populations identified in our analysis included cells
with neural, epidermal, cardiomyocyte, and skeletal muscle-specific
gene signatures (Fig. 1c, d, Supplementary Figs. 2, 7, and 8,
Supplementary Table 1, Supplementary Data 1). Observation of
GFP-positive cardiomyocyte and skeletal muscle populations in
both etv2ci32Gt heterozygous and homozygous embryos was some-
what unexpected. Cardiomyocytes in wild-type embryos do not
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express etv2, while our previous study has shown that etv2-deficient
endothelial progenitors can differentiate as cardiomyocytes8. The
presence of GFP-positive cardiomyocytes in etv2ci32Gt heterozygous
embryos could be explained by the loss of one functional etv2 allele,
which resulted in some etv2+ cells differentiating as cardiomyo-
cytes. However, differentiation of hematovascular progenitors into
skeletal muscle cells has not been previously reported.

scRNA seq analysis of etv2 loss-of-function embryos. We then
analyzed the cell clusters present in etv2ci32Gt homozygous
embryos, which exhibit severe defects in vascular differentiation.
Both EC1 and EC2 populations, EPCs and macrophages were
nearly completely absent in etv2ci32Gt homozygous embryos
(Fig. 1b, e), consistent with the known requirement of etv2 in the
formation of these lineages5,6. In contrast, percentage of RBC cells
was slightly but significantly increased in etv2ci32Gt homozygous
embryos (Fig. 1b, e). To confirm this result, we analyzed
expression of RBC-specific markers using data from the recently
reported global transcriptome study of etv2ci32Gt heterozygous
and homozygous embryos14. Indeed, expression of multiple RBC-
specific genes, including hbaa1, vwf, hbae3 and others was sig-
nificantly upregulated in etv2ci32Gt homozygous embryos (Sup-
plementary Table 2). Furthermore, differential expression analysis
of scRNA-seq data between RBC cell populations in heterozygous
and homozygous embryos revealed an upregulation of several
RBC-specific genes in homozygous embryos, including alas2,
hbae3, hbae1.3, and hbbe1.1, while several vascular endothelial
specific genes including tpm4, ecscr and an EPC specific gene
lmo2 were downregulated (Supplementary Data 3). For additional
confirmation, we knocked down etv2 function using previously
validated MO5 in gata1:dsRed transgenic embryos which express
fluorescent reporter in RBCs. Etv2 knockdown embryos were
morphologically normal and showed previously reported vascular
defects that were similar to the etv2 mutant phenotype. Subse-
quently, cells were disaggregated at 23 hpf and analyzed by FACS
sorting. A statistically significant increase in the number of
dsRed-positive cells was observed in etv2 knockdown embryos
(Supplementary Fig. 9). This suggests that the erythropoiesis
pathway is upregulated in etv2-deficient embryos, although exact
mechanism requires further investigation.

The tailbud, epidermal and neural populations were not
significantly affected in etv2-deficient embryos. Interestingly, the
LPM, cardiomyocyte, and skeletal muscle (myocyte) populations
were greatly increased in the homozygous embryos (Fig. 1b, e).
While an increase in cardiomyocyte population was expected
because etv2+ cells are known to differentiate as cardiomyocytes
in etv2-inhibited embryos8, the presence of a myocyte population
was intriguing. These results suggested that some etv2-deficient
vascular progenitors may acquire skeletal muscle fate. Pseudotime
analysis of EPCs, ECs, LPM cells and myocytes showed the
distribution of EPCs which appear to originate from the cluster of
LPM cells and progress along a differentiation trajectory towards
either EC-1 or EC-2 states, while the myocyte pool branches
off from the main trajectory at an earlier time point (Fig. 1f).

Cells in the homozygous embryos showed an increase in the LPM
and myocyte populations, and a loss of EC populations. We
hypothesized that the LPM group represented EPCs at an earlier
stage of differentiation, and that the myocyte cells were an
alternative cell fate for etv2+ progenitors when they could not
differentiate into the vascular endothelial lineage.

Identification of an endocardial subcluster. In an attempt to
identify additional heterogeneity within the endothelial cells,
which may be missed in the global cell clustering approach, we
performed subclustering of endothelial cell populations EC1 and
EC2 identified in etv2ci32Gt+/− embryos using Seurat (see Meth-
ods). The subclustering of EC1 resulted in the identification of
two subpopulations of cells (Fig. 2a–c), while the subclustering of
EC2 did not yield meaningful subpopulations. One of the two
EC1 sub-clusters showed enriched expression of cdh6, gata5,
fn1a, and drl, among the other markers (Fig. 2d, e, Supplementary
Data 4). gata5 has been previously known to be enriched in
endocardial cells30. In situ hybridization (ISH) analysis confirmed
that expression of fn1a and drl was also enriched in the endo-
cardial cells and largely absent from other vascular endothelial
cells (Fig. 2f, g). In contrast, genes enriched in the remaining
EC1 subpopulation (designated as EC1a) which included etv2 and
lmo2, were largely absent from endocardial progenitors at the 20-
somite stage (Fig. 2h, i). This strongly suggests that the first
subcluster represents a population of endocardial progenitors
which possess a unique transcriptomic signature even prior to the
formation of the heart tube.

Vascular progenitors convert into muscle in etv2 mutants. To
confirm if GFP expression was in fact present in skeletal muscle
cells, as suggested by scRNA-seq analysis, we analyzed etv2ci32Gt;
UAS:GFP embryos by confocal microscopy. Indeed, GFP expres-
sion was observed in several myocytes in etv2ci32Gt heterozygous
embryos (3 ± 2.5 myocytes per embryo, ± refers to standard
deviation, n= 8 embryos), while multiple GFP-positive cells
(18.5 ± 5.4 per embryo, n= 10) were present within the somitic
muscle of etv2ci32Gt homozygous embryos at 25 hpf (Fig. 3a–e).
These cells displayed an elongated shape, similar to other skeletal
muscle cells, and were positive for expression of skeletal muscle
actin actc1b:GFP (Fig. 3f–h). GFP expression in skeletal muscle
overlapped with antibody staining for fast muscle but not slow
muscle cells (Supplementary Fig. 10). When crossed into the
previously generated etv2:mCherry reporter line31, these muscle
cells were also positive for mCherry expression (Fig. 3i–k), indi-
cating that the reporter fluorescence is unlikely to be an artifact of
transgene misexpression in unrelated tissues. To confirm that
etv2ci32Gt; UAS:GFP expression in the skeletal muscle is caused by
the loss of etv2 function, we crossed the etv2ci32Gt line with etv2ci33

loss-of-function mutants. The etv2ci33 allele, generated using
CRISPR/Cas9 mutagenesis, contains a 13 bp insertion in exon 5 of
the etv2 gene (see “Methods”). Homozygous etv2ci33 mutants
show vascular defects similar to the previously reported etv2y11

allele, which is likely to be null21 (Supplementary Fig. 11a–d).

Fig. 1 Single-cell RNA-seq analysis of etv2ci32Gt; UAS:GFP heterozygous and homozygous embryos at the 20-somite stage. a, b t-SNE plots and cell
clustering analysis. Twelve different clusters were identified. Card cardiomyocytes, EC endothelial cells, EPC endothelial progenitor cells, Epid epidermal cells,
LPM lateral plate mesoderm, Macr macrophages, Myoc myocytes, Neur neural, Apo putative pro-apoptotic cells, RBC red blood cells, Tailbud tailbud progenitors.
c t-SNE plots showing selected top markers for different cell types. d Heatmap of marker gene expression in different cell populations. e The proportions of GFP
+ cell types in etv2ci32Gt+/− and etv2ci32Gt−/− embryos. Note a great reduction in EC1, EC2, EPC, and macrophage populations and an increase in LPM,
cardiomyocyte, myocyte, RBC, and Apo populations in etv2 mutants. ***p < 0.001, NS not significant, chi-square test. p Values: Card—5.0 × 10−26, EC1— 6.2 ×
10-18, EC2—1.8 × 10−14, EPCs—2.4 × 10−11, Epid—0.66, LPM—8.4 × 10−27, Macr—2.5 × 10−16, Myoc—3.4 × 10−4, Neur—1.0, Apo—1.9 × 10−7, RBC—1.1 × 10−4,
Tailbud—0.21. Totally, 2049 and 588 cells total from etv2ci32Gt+/− and etv2ci32Gt−/− embryos, respectively, were analyzed in a single scRNA-seq experiment.
f Pseudotime analysis graph of cells in LPM, EPC, EC1, EC2, and myocyte populations in etv2ci32Gt homozygous and heterozygous embryos.
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Double heterozygous etv2ci32Gt/ci33 embryos displayed a significant
increase in GFP+ myocytes compared to etv2ci32Gt+/− embryos
(Fig. 3l–n, Supplementary Fig. 11e–h). In addition, GFP expres-
sion in skeletal muscle cells was also observed in etv2y11−/−

mutant embryos crossed into the previously established Tg(-2.3
etv2:GFP) reporter line but not in wild-type Tg(-2.3 etv2:GFP)14,32

embryos (Fig. 3o). Collectively, these results argue that etv2-
expressing progenitors differentiate as skeletal muscle in the
absence of Etv2 function.

To investigate the mechanism of the conversion of these etv2-
deficient progenitors into skeletal muscle in greater detail, we
analyzed the functional role of bHLH transcription factor scl/
tal1 which functions downstream of etv2 during vascular
development and myelopoiesis6. Previous research has demon-
strated that the combined knockdown of scl and etv2 results in
ectopic myocardial differentiation of etv2+ progenitors in
zebrafish10, and that scl represses myocardial differentiation in
mouse embryos33. However, its role in repressing skeletal
muscle differentiation has not been investigated. The number of
myocytes, positive for etv2ci32Gt+/−; UAS:GFP expression, was
significantly increased in the etv2ci32Gt+/− embryos injected
with the previously validated scl morpholino (MO)33, compared
to the control etv2ci32Gt+/− embryos (Fig. 3n, p). Furthermore,
these ectopic myocytes were positive for expression of the
skeletal muscle actin actc1b (Fig. 3q-s), arguing that scl
knockdown results in increased skeletal muscle differentiation
of etv2ci32Gt+/−; UAS:GFP cells. However, injection of scl mRNA
into etv2ci32Gt; UAS:GFP embryos did not have a significant
effect on the number of ectopic GFP-positive muscle cells
(Supplementary Fig. 12), suggesting that etv2 and scl genes may
not function in a simple linear pathway to repress muscle
differentiation in etv2+ progenitor cells.

Heat-shock inducible etv2 expression has been demonstrated to
convert differentiated skeletal muscle into vascular endothelial
cells34. To test if etv2 is sufficient to inhibit early specification or
differentiation of myocytes, we overexpressed etv2 mRNA in
zebrafish embryos. We have previously shown that such over-
expression induces strong ectopic expression of vascular endothe-
lial markers5. Conversely, expression of the early regulators of
muscle differentiation myod, myf5, and myog was greatly inhibited
upon etv2 overexpression (Fig. 3t, u).

Vascular endothelial progenitors are known to originate in the
LPM region. However, the somitic origin of vascular progenitors
has also been suggested35. In order to analyze the origin of GFP+
myocytes, we performed time-lapse imaging of etv2ci32Gt; UAS:GFP
embryos. The majority of EPCs in heterozygous embryos originated
in the LPM region and subsequently migrated to the midline where
they coalesced into the DA and the PCV (Fig. 4a–f, Supplementary
Fig. 13a–f, Supplementary Movies 1 and 2). Occasional cells failed
to migrate to the midline and elongated to form somitic muscle. In
contrast, GFP+ cells in homozygous embryos failed to migrate to
the midline. Some of these cells underwent apoptosis while others
elongated and incorporated into the somitic muscle at approxi-
mately 14–18-somite stages (Fig. 4g–m, Supplementary Fig. 13g–l,

Fig. 2 Identification of the transcriptional signature of endocardial
progenitors. Subclustering of the EC1 population in etv2ci32Gt+/− embryos
identified a novel endocardial subpopulation (while the remaining endothelial
cells are designated as EC1a). a A section of a heatmap showing marker gene
expression in endocardial, endothelial (EC1a and EC2), endothelial progenitor
(EPC), and cardiomyocyte populations. b A portion of the global t-SNE plot
showing the endocardial subpopulation. c Heatmap for subclustering of
EC1 population showing genes enriched in endocardial and the remaining
endothelial (EC1a) cells. d, e t-SNE and violin plots for selected endocardial
genes. f–i In situ hybridization analysis at the 20-somite stage for selected
endocardial-enriched genes fn1a and drl (f, g arrows point to endocardial
expression) and endocardial-excluded genes etv2 and lmo2 (bilateral
expression is present in cranial endothelial progenitors but is largely absent
from the endocardial cluster). Flat-mounted embryos, ventral view, anterior is
to the left. The number of embryos displaying the representative phenotype
out of the total number of embryos obtained from two replicate experiments
is shown.
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Supplementary Movies 3–5). Thus, etv2ci32Gt; UAS:GFP cells that
give rise to the skeletal muscle cells in the homozygous embryos
appear to be derived from the initial pool of etv2+ cells in the LPM
region. To analyze when GFP+ positive cells initiate muscle marker

expression, we performed fluorescent ISH for myod expression
combined with GFP fluorescence analysis at the 8–10-somite stages
in etv2ci32Gt+/−; UAS:GFP embryos. GFP and myod co-expressing
cells were positioned at the posterior edge of the somites next to
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Fig. 3 Etv2-expressing cells differentiate as skeletal muscle cells in the absence of etv2 function. a–d Trunk region of etv2ci32Gt; UAS:GFP embryos at
25 hpf. Maximum intensity projections of selected confocal slices are shown in (c, d). Note the absence of intersegmental vessels (ISVs) and elongated
GFP-positive skeletal muscle fibers (arrows, c, d). The embryos were obtained from an incross of heterozygous etv2ci32Gt carriers; embryo numbers (lower
right) correspond to the expected Mendelian ratio. e Quantification of GFP+myocytes in the trunk region of 8 etv2ci32Gt+/− and 10 etv2ci32Gt−/−; UAS:GFP
embryos at 25 hpf, analyzed in 2 replicate experiments. The bars show median values. f–h Co-expression of etv2ci32Gt+/−; UAS:NTR-mCherry and muscle-
specific actc1b:GFP in mCherry-positive muscle cells (arrows, g, h). i–k The Tg(etv2:mCherry) line shows mCherry expression in skeletal muscle cells when
crossed to etv2ci32Gt+/−; UAS:GFP carriers. l, m Multiple GFP+ skeletal muscle cells are apparent in the progeny of etv2ci32Gt+/−; UAS:GFP zebrafish
crossed with the etv2ci33+/− line, which carries a loss-of-function mutation in etv2. Note that the expected frequency of double heterozygous embryos in
(m) is 50%. n Quantification of GFP+ myocytes in the trunk region of etv2ci32Gt/ci33 and etv2ci32Gt+/−; scl MO embryos shown in (m, p) obtained in two
replicate experiments. The graphs show median and SD values. o GFP+ skeletal muscle cells observed in etv2y11−/− embryos crossed into the Tg(-2.3 etv2:
GFP) reporter line. p Multiple GFP+ skeletal muscle cells are apparent in etv2ci32Gt+/−; UAS:GFP embryos injected with scl MO. See graph n for
quantification. q–s Ectopic myocytes observed in scl MO-injected etv2ci32Gt+/−; UAS:NTR-mCherry embryos are positive for muscle-specific actc1b:GFP
expression at 24 hpf. t etv2 RNA overexpression inhibits myod expression (arrow). Dorsal view, anterior is to the left. u qPCR analysis of myf5, myod, and
myog expression in etv2 RNA-injected and uninjected control embryos at the 10-somite stage. Mean values ± SEM is shown. RNA was purified from groups
of ten embryos analyzed in two replicate experiments. In all graphs, two-tailed Student’s t test was used. The number of embryos displaying the
representative phenotype out of the total number of embryos obtained from two replicate experiments is shown.
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GFP+ cells in the LPM (Fig. 5). In wild-type embryos, etv2-
expressing vascular progenitors are known to migrate between the
somites and coalesce into axial vasculature starting at the 8–10-
somite stage36. In contrast, some GFP+ cells migrate into the
somites instead, and initiate myod expression in etv2ci32Gt embryos.

Wnt and FGF pathways are required for ectopic muscle. Wnt
and FGF signaling pathways have been previously implicated in
somitic differentiation and myogenesis37. We tested if these
pathways were involved in the differentiation of etv2ci32Gt; UAS:
GFP+ progenitors into ectopic muscle cells. To inhibit Wnt sig-
naling we induced expression of Wnt inhibitor dkk1 at the 8-
somite stage. As it has been previously demonstrated29, Wnt
inhibition at this stage resulted in reduced myod expression in the
tailbud region, whilemyod expression in differentiated somitic cells

was largely unaffected (Supplementary Fig. 14a, b). Heat-shock
inducible expression of Wnt inhibitor dkk1 greatly reduced the
number of etv2+ myocytes observed in heterozygous etv2ci32Gt;
UAS:GFP embryos (Fig. 6a–c). Dkk1 overexpression did not affect
the total number of cells positive for the UAS reporter expression
in etv2ci32Gt embryos (Supplementary Fig. 14c). This suggests
that Wnt signaling promotes muscle differentiation in multipotent
etv2+ progenitors.

To investigate the role of FGF signaling, we treated etv2ci32Gt−/−

embryos with SU5402, a chemical inhibitor of FGF signaling38.
SU5402-treated embryos showed a significant decrease in the
number of ectopic GFP+ muscle cells (Fig. 6d–f). To confirm the
requirement of FGF signaling in the ectopic muscle differentiation,
etv2ci32Gt+/−; UAS:NTR-mCherry carriers were crossed with a heat-
shock inducible hsp70:dnFGFR1 line39, and the expression of
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Fig. 4 Time-lapse imaging of cell migration in etv2ci32Gt embryos starting at the 9–10-somite stage. Lateral view is shown, anterior is to the left. a–f In
etv2ci32Gt+/−; UAS:GFP embryos, bilaterally located vascular and hematopoietic progenitors within the lateral plate mesoderm (LPM, arrowheads) migrate
toward the midline and coalesce into the axial vasculature (arrows). Note that some cells remain in the lateral position and elongate into muscle cells
(myoc). DA progenitors of the dorsal aorta, ISV intersegmental vessels. Time frames are selected from the Supplementary Movie 1. g–l In etv2ci32Gt−/−;
UAS:GFP embryos, cells initiate migration (blue arrows) but fail to coalesce into the axial vasculature. Instead, many cells either undergo apoptosis (apo,
red arrowheads point to round apoptotic cells) or differentiate into myocytes (white arrows, myoc). Time frames are selected from the Supplementary
Movie 3. m Higher magnification view showing differentiation of a GFP+ progenitor cell initially positioned in the LPM into a myocyte (arrowhead points to
the same cell). Note that the cell migrates dorsally from the LPM into the somite and then elongates as it undergoes differentiate into the muscle. Time
frames are selected from the Supplementary Movie 4. Representative embryos are shown out of the total of seven heterozygous and four homozygous
etv2ci32Gt; UAS:GFP embryos that were imaged in two replicate experiments.
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dnFGFR1 was induced at the 8-somite stage. A significant reduction
in the number of ectopic muscle cells was observed in FGF-inhibited
embryos while no significant defects in vascular development were
apparent (Fig. 6g–i). The overall number of UAS reporter-positive

cells was not affected in FGF-inhibited etv2ci32Gt+/− embryos
(Supplementary Fig. 14c). Together, these results suggest that FGF
signaling is required for muscle-specific differentiation of multi-
potent etv2+ progenitors.
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Fig. 5 Fluorescent in situ hybridization for myod expression in etv2ci32Gt+/−; UAS:GFP embryos. In situ hybridization was performed using hybridization
chain reacion (HCR) at the 8–10-somite stages. a–c Maximum intensity projection is shown; d–f An area boxed in a was imaged at higher magnification;
maximum intensity projection of three confocal slices is shown. Note that most GFP-expressing cells are positioned in the lateral plate mesoderm, while
some cells are starting to migrate toward the midline (arrow, d, e, points to a migrating angioblast which does not have myod expression). GFP and myod
co-expressing cells (arrowheads, d, e) are apparent at the posterior edge of the somite. The punctate myod expression pattern is due to the nature of the
HCR probe. Dorsolateral view, anterior is to the left. The numbers in the lower left corner display the number of embryos showing the phenotype out of the
total number of embryos analyzed in two replicate experiments.
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Identification of putative multipotent LPM progenitors. Based
on scRNA-seq analysis, cell cluster #6 was significantly increased
in etv2ci32Gt−/−; UAS:GFP embryos. Marker genes for this popu-
lation included BMP response genes id3 and id1 (Supplementary
Table 1, Supplementary Data 1), which have been recently shown
to function upstream of etv2 during vascular differentiation of
tailbud-derived neuromesodermal progenitors40. Another marker
gene for this population, twist1a, has been implicated in devel-
opmental angiogenesis41, although its mechanistic role in this
process has not been investigated. Other genes enriched in this
cluster included transcription factors prrx1a, foxd1, and foxd2,
which have been implicated in diverse processes, including
epithelial–mesenchymal transition and craniofacial develop-
ment42,43. However, their function or relevance to vascular
development has yet to be elucidated. We decided to investigate
the identity of the cells from cluster #6 in greater detail. Expression
of transcription factors twist1a, prrx1a, and foxd2 was present in
the LPM region at the 18-somite stage (Fig. 7a–n). Based on ISH
analysis of etv2ci32Gt+/−; UAS:GFP embryos, prrx1a and twist1a
expression was absent from the midline GFP+ cell population
which correspond to vascular endothelial cells that are coalescing
into axial vessels, while it partially overlapped with GFP expres-
sion in the most lateral vascular progenitors. The expression of
these genes was not significantly affected in etv2ci32Gt−/−; UAS:
GFP embryos (Fig. 7d–f, j–n). Similar overlap of prrx1a or twist1a
expression with GFP fluorescence in the most lateral vascular
progenitors was also observed in wild-type TgBAC(etv2:GFP)
embryos (Supplementary Fig. 15). Because vascular progenitors
originate within the LPM prior to their migration to the midline,
such gene expression pattern suggests that this cell cluster corre-
sponds to the LPM cells which may include the earliest vascular
progenitors (Fig. 7o, p).

Transcriptional profiling of etv2:GFP cells using Fluidigm.
Although the Chromium-based scRNA-seq analysis identified
novel cell populations, we were not able to distinguish endo-
thelial subpopulations such as arterial and venous progenitors
which are known to separate early during vasculogenesis. We
decided to supplement our analysis by sequencing fewer cells at a
higher coverage. For this approach, we used a previously estab-
lished Tg(-2.3 etv2:GFP) line31 which shows specific GFP
expression in vascular endothelial cells (Fig. 8a–c). Cells from
embryos at 16–20-somite stages were dissociated and sorted
using the Fluidigm C1 system. Totally, 96-cells were subjected to
scRNA-seq analysis. After cell clustering using AltAnalyze soft-
ware44, 8 distinct cell populations were identified. They included
macrophage, erythroid, tailbud progenitor, and nonspecific epi-
dermal cell populations (Fig. 8d–g). Four different vascular
endothelial cell populations were identified. The vascular endo-
thelial progenitor population displayed high expression of etv2,
lmo2 and tal1, as well as multiple genes that have not been
previously associated with EPCs (Fig. 8d–g, Supplementary
Datas 5 and 6). Many genes overlapped between EPC popula-
tions identified in the Chromium and Fluidigm analyses, sug-
gesting that the same populations of cells were identified using
both approaches. Cluster 5 was enriched in venous-specific
vascular endothelial genes such as flt4 and stab1l, while cluster
6 showed high expression of known arterial-specific markers,
including dll4, efnb2a, cldn5b (Fig. 8g, Supplementary Data 5).
Cluster 7 included many genes with known expression in vas-
cular endothelium such as col4a1, ldb2a, or hapln3. Validation by
ISH analysis confirmed expected expression patterns of EPC,
arterial and venous markers and showed that expression of the
cluster 7 marker ldb2a was also primarily enriched in the arterial
vasculature (Fig. 8i–l). The biological difference between the

clusters 6 and 7 is unclear, and it will require further investiga-
tion. Notably, marker genes for cluster 7 (also labeled as EC2) are
largely different from the EC2 cluster identified using the
Chromium platform.

Expression of venous markers in arterial progenitors. Previous
studies have suggested that arterial and venous progenitors ori-
ginate at distinct spatial regions and at different times36. How-
ever, it has been controversial as to when cells acquire distinct
arterial and venous identities45–47. We used the expression of
well-established arterial and venous markers to calculate an
arteriovenous index for each vascular endothelial cell (see
“Methods”). While some cells showed a very clear arterial or
venous signature, many cells co-expressed both arterial and
venous markers (Fig. 8h). Fluorescent ISH analysis for venous
dab2 and arterial marker cldn5b expression confirmed that many
arterial progenitors co-express both markers at the 20-somite
stage (Fig. 8m–o). In contrast, arterial dab2 expression becomes
downregulated by 24 hpf and is restricted to the PCV (Fig. 8p–r).
Intriguingly, ventrally located progenitors of the PCV mostly
displayed venous marker expression and showed very little, if any,
arterial cldn5b expression (Fig. 8m–o). Thus, arterial progenitors
co-express both arterial and venous markers at early stages of
vascular development while venous progenitors show largely
venous-specific marker expression.

Discussion
In this study we used scRNA-seq analysis to identify transcrip-
tional signatures and investigate transitional states of cell popu-
lations during the differentiation of vascular endothelial and
hematopoietic lineages. Our results suggest that cells in the LPM
are multipotent and that the same progenitors can give rise to
hematopoietic, vascular, myocardial, and even skeletal muscle
lineages. Wnt and FGF signaling pathways promote skeletal
muscle development in etv2-negative multipotent progenitors
(Fig. 9). Etv2 overexpression was sufficient to inhibit muscle
differentiation and instead promoted hematovascular fates. Our
results argue that in addition to activating vasculogenic and
hematopoietic programs, etv2 also actively represses myogenesis,
possibly through the transcription factor scl/tal1. Previous work
has demonstrated that etv2 can similarly repress myocardial
differentiation in both zebrafish and murine embryos8,9. Scl,
similar to Etv2, also represses myocardial fates by occupying
primed enhancers of myocardial specific genes and preventing
their activation by cardiac factors48. It is tempting to speculate
that Etv2 also inhibits muscle specification by a similar
mechanism, where Scl functions downstream of Etv2 and binds to
muscle-specific promoters, thus preventing their activation by
Myod. Alternatively, Scl and Etv2 may form a protein complex
and/or function in parallel pathways to repress myocardial dif-
ferentiation. Because scl overexpression failed to repress the for-
mation of ectopic myocytes observed in etv2-deficient embryos,
we speculate that scl may not function in a simple linear pathway
downstream of etv2 to inhibit myogenesis. While the precise
molecular pathways remain to be established, they will likely
involve epigenetic mechanisms to repress the transcriptional
activation of the myogenic program when the hematovascular
program is activated.

A recent study has demonstrated two opposing activities of
FGF and BMP signaling in specifying somitic progenitors and the
LPM40. FGF signaling through bHLH factors myf5, myod and
msgn1 induced medial fate such as skeletal muscle in tailbud-
derived neuromesodermal progenitors while BMP signaling
induced blood and endothelium marker expression, and etv2
expression in particular, through transcriptional activation of id
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genes, including id1 and id3. Loss of msgn1/myod/myf5 function
or activation of hs:id3 expression resulted in a dramatic expansion
of etv2 expression into the paraxial mesoderm40. Our results show
that a loss of etv2 expression results in the opposite phenotype,
and endothelial progenitors differentiate as skeletal muscle cells.
FGF signaling was required for this differentiation, consistent
with its role in promoting muscle fate. Similar loss of endothelial

cells and expansion of skeletal muscle was observed upon inhi-
bition of BMP signaling using the HS:dnBMPR line40, suggesting
that BMP inhibits paraxial mesoderm development through etv2
function.

Intriguingly, based on our scRNA-seq analysis, id1 and id3
genes were enriched not in the population of vascular progeni-
tors, but in the LPM cells, together with twist1a, prrx1a, and
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foxd1/d2 homologs. This suggests that BMP signaling is active in
the multipotent progenitors in the LPM and activates etv2
expression through id1 and id3, which are then downregulated as
cells differentiate into endothelial or hematopoietic lineages
(Fig. 9). Based on our results, etv2 mutant embryos showed a
nearly complete absence of vascular endothelial and progenitor
cells while the LPM population was increased, suggesting that
many LPM cells are arrested in the progenitor stage unable to
differentiate further, while others undergo differentiation into
skeletal muscle.

A previous study has suggested that id1 and id3 genes function
upstream of etv2 during embryogenesis40. Here, we provide evi-
dence that prrx1a and foxd1/d2 are co-expressed with etv2 in the
LPM, and are involved in regulating its expression during vas-
culogenesis. This further supports the model that the LPM
population includes early progenitors that can give rise to the
vascular endothelial lineage and suggests that additional factors
which function upstream of etv2 may be present within this cell
population.

While etv2ci32Gt−/− mutant embryos displayed UAS:GFP
expression in multiple skeletal muscle cells, some muscle cells were
also present in the heterozygous etv2ci32Gt+/− embryos. Because no
GFP expression in skeletal muscle cells was observed in wild-type
Tg(-2.3etv2:GFP) embryos, this phenotype is likely caused by the
loss of a single etv2 allele in heterozygous etv2ci32Gt+/− embryos.
Intriguingly, vascular defects observed in etv2ci32Gt−/− mutant
embryos were more severe compared to etv2y11 and etv2ci33

mutants, both of which are expected to be null alleles. A possible
explanation is that the insertion of a rather large Gal4-containing
construct into the etv2 locus may have interrupted the expression of
a related ETS transcription factor fli1b, which is positioned adjacent
to etv2 on the same chromosome and may share common reg-
ulatory elements with etv2. The combined loss of Etv2 and Fli1b
function results in a similar (albeit more severe) loss of vascular
endothelial differentiation as seen in homozygous etv2ci32Gt−/−

embryos49.
Overall, scRNA-seq of etv2ci32Gt and Tg(-2.3 etv2:GFP) embryos

using the Chromium and Fluidigm platforms, respectively, iden-
tified some of the same cell populations, including endothelial
progenitor cells, vascular endothelial cells, red blood cells, macro-
phages and presumptive tailbud progenitors. The cell populations
which were observed in etv2ci32Gt heterozygous embryos but not in
Tg(-2.3 etv2:GFP) embryos, include cardiomyocytes, skeletal mus-
cle cells, apoptotic cells, and LPM progenitors. We have not
observed any GFP expression in cardiomyocytes, skeletal muscle or
apoptotic cells in Tg(-2.3 etv2:GFP) or TgBAC(etv2:GFP) embryos,
therefore the presence of these populations is likely caused by a
partial loss of etv2 function in etv2ci32Gt+/− embryos. Indeed, loss
of Etv2 function is known to result in EC apoptosis21,49, and we
have previously demonstrated that etv2-positive cells can differ-
entiate into cardiomyocytes in etv2-inhibited embryos8. There are a
couple of reasons as to why LPM progenitors were not identified
by scRNA-seq of Tg(-2.3 etv2:GFP) embryos. It is possible that a

low number of LPM cells could not be separated into a distinct
cluster because only 96 cells were sequenced using the Fluidigm C1
instrument. Also, this population may have low-GFP expression as
these cells may have just initiated etv2 expression, making them
particularly difficult to detect by FACS. The etv2ci32Gt; UAS:GFP
line is significantly brighter than the Tg(-2.3 etv2:GFP) line, likely
due to the amplification of GFP expression by the Gal4:UAS sys-
tem14. Therefore low GFP cells may have been missed when
sorting cells from the Tg(-2.3 etv2:GFP) line.

The precise developmental timepoint at which vascular pro-
genitors acquire either arterial or venous identities has been the
subject of debate. Some experiments have suggested that arterial
and venous identities are prespecified at very early stages during
gastrulation or early somitogenesis45,46. In contrast, our results
show that many arterial and venous genes are co-expressed in the
same cells as late as the 20-somite stage, when arterial progenitors
have begun assembling into vascular cords. These results support
the model where vascular progenitors are initially bipotent and
can differentiate as either arterial or venous cells. Intriguingly,
venous progenitors which are known to originate more laterally
and later in development than arterial progenitors36, do not show
significant expression of arterial markers. This suggests differ-
ences in the mechanisms involved in the early specification of
arterial and venous progenitors.

In summary, our work suggests that cells in the vascular
endothelial lineage arise from multipotent progenitors in the
LPM which can differentiate into skeletal muscle in the absence of
Etv2 function. The role of the key transcription factor Etv2 and
the molecular mechanisms governing vascular development are
highly conserved between many vertebrates, and therefore it is
highly likely that our findings will also be relevant for mammalian
embryos. Gaining insight into the fundamental mechanisms of
cell fate commitment will not only provide us with a deeper
understanding of complex developmental processes but will also
be important for stem cell differentiation into highly diverse and
specific lineages for regenerative therapies.

Methods
Zebrafish lines. The following zebrafish lines were used in the study: Tg(5xUAS:
EGFP)50, Tg(UAS-E1B:NTR-mCherry)51, Tg(etv2:mCherry)zf37331, Tg(-2.3 etv2:GFP)
zf37231, TgBAC(etv2:GFP)ci122, etv2y1121, Tg(fli1a:GFP)y152, Tg(gata1a:dsRed)53,
Tg(actc1b:GFP)32, Tg(hsp70l:dkk1b-GFP)54, abbreviated further as hsp70:dkk1, Tg
(hsp70l:dnfgfr1a-EGFP)39, abbreviated as hsp70:dnfgfr1a. The etv2Gt(2A-Gal4)ci32 gene
trap line (further abbreviated as etv2ci32Gt) was generated by performing a knock-in
of a construct with gal4-pA sequence into exon 5 of the etv2 gene by CRISPR/Cas9
mediated homology-independent repair mechanism14. The etv2ci33 mutant line was
generated by injecting Cas9 mRNA and etv2 gRNA mixture (gRNA targets the
following sequence within the exon 5 of etv2: GGGAAAGGCCCAAGTCACA
GAGG, PAM sequence is underlined) into embryos from the kdrl:mCherryci5 line22.

The line contains a 13 bp insertion in the region targeted by the gRNA, designated

in capital letters:…ggcccaagtcaGCTCTGCTGCCTGcagagg.
Tg (5xUAS:loxP-mCerulean-pA-loxP-NTR-2A-YFP-pA)ci46 line (abbreviated as

UAS:mCer) was made using Tol2-mediated transgenesis approach. The line
showed mCerulean expression in all vascular endothelial cells in non-mosaic
fashion when mated to etv2ci32Gt line.

Fig. 7 Expression of LPM cluster genes partially overlaps with etv2ci32Gt; UAS:GFP expression. a–l Fluorescent in situ hybridization using hybridization
chain reaction for prrx1a (a–f) and twist1a (g–l) expression combined with GFP fluorescence in etv2ci32Gt; UAS:GFP heterozygous or homozygous embryos at
the 18-somite stage. Maximum intensity projections of selected confocal z-stacks are shown. Note that both prrx1a and twist1a are expressed bilaterally,
and their expression partially overlaps with GFP in the most lateral cells (arrows). GFP+ cells fail to coalesce into axial vasculature in etv2ci32Gt−/−

embryos. DA precursor vessel for the dorsal aorta, LDA lateral dorsal aortae. m, n Expression of foxd2 in the trunk region in etv2ci32Gt heterozygous and
homozygous embryos at the 18-somite stage. Note expression in the LPM region (arrows). Expression in the somites is also apparent. o, p In situ
hybridization for GFP expression in etv2ci32Gt+/− and etv2ci32Gt−/−; UAS:GFP embryos at the 17–18-somite stage. GFP expression is observed in endothelial
cell (EC, combined EC1 and EC2), endocardial (Endoc), endothelial progenitor cell (EPC), lateral plate mesoderm (LPM), tailbud and red blood cell (RBC)
populations. Note the absence of EC and endocardial expression in (p). In all panels, the numbers display the number of embryos showing the expression
pattern out of the total number of embryos analyzed in two replicate experiments.
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Throughout the study, embryos were typically incubated at 28.5 °C, except for
the embryonic stages prior to 24 hpf, where embryos were incubated for part of the
time at 23.5–24 °C to slow down their development. Embryos were staged using
previously established criteria55.

MO injections. Totally, 10 ng (per embryo) of previously validated scl splice-
blocking MO was used for injections: AATGCTCTTACCATCGTTGATTTCA56.

To knockdown etv2, 10 ng mixture (5 ng each MO) of two previously described
etv2 (etsrp) MOs was used: MO1, TTGGTACATTTCCATATCTTAAAGT and
MO2, CACTGAGTCCTTATTTCACTATATC (Gene Tools, Inc.)5.

Skeletal muscle cell counts. To count GFP- or mCherry-positive cells within the
skeletal muscle, embryos were mounted in 0.6% low-melting-point agarose and the
trunk region was imaged using a Nikon A1 confocal microscope at the CCHMC
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Confocal Imaging Core. Fluorescent cells within the skeletal muscle were counted
manually within the entire trunk region by analyzing confocal z-stacks.

In situ hybridization. To perform ISH, embryos were fixed overnight in BT-Fix
(4% paraformaldehyde in 1× phosphate-buffered saline (PBS)), dehydrated in
sequential ethanol series and stored at −20 °C. Embryos were rehydrated and
washed 3× in PBT (1× PBS, 0.2% bovine serum albumin, 0.2% Tween 20). Embryos
were incubated in the prehybridization buffer (50% formamide, 5× SSC, saline
sodium citrate, 50 µg/ml heparin, 5 mM EDTA, 0.5 mg/ml rRNA, 0.1% Tween 20,
citric acid added to pH 6.0) for 2 h at 65 °C. DIG-labeled RNA probe solution was
added at approximately 1 µg/ml concentration in prehybridization buffer (prehyb)
and incubated overnight at 65 °C with shaking. Embryos were washed at 65 °C with
subsequent solutions: 75% prehyb/25% 2× SSC; 50% prehyb, 50% 2× SSC; 25%
prehyb, 75% 2× SSC; 2× SSC; twice with 0.2× SSC. Subsequently, embryos were
washed at room temperature in the following solutions: 75% 0.2× SSC, 25% PBT;
50% 0.2× SSC, 50% PBT, 25% 0.2× SSC, 75% PBT, and 100% PBT. Afterwards
embryos were incubated overnight in 1× PBT with 2% lamb serum and 1:4000
dilution of anti-digoxigenin-AP antibody (Sigma-Aldrich, cat No. 11093274910).
Embryos were washed 6× in PBT solution and incubated in AP buffer (100 mM
NaCl, 50 mM MgCl2, 100 mM Tris-Cl, pH 9.5, 0.1% Tween 20) in the presence of
4-nitrotetrazolium blue chloride (0.225 mg/ml) and 5-Bromo-4-chloro-3-indolyl
phosphate disodium salt (0.175 mg/ml). Staining was stopped with PBT washes.

The following probes were used: etv257, cldn5b58, flt418, fn159, drl60. To
synthesize a gfp probe, a gfp fragment was amplified by PCR from the myl7-hand2-
IRES-GFP vector61 using the following primers: ATGGTGAGCAAGGGCGAGG
AG and ATTATGCTGAGTGATATCCCTTACTTGTACAGCTCGTCC followed
by RNA synthesis using T7 RNA polymerase (Promega) and DIG-labeling mix
(Sigma-Aldrich). To synthesize a ldb2a probe, a cDNA clone from GE Dharmacon,
cat. No. MDR1734-202728743, which contains ldb2a cDNA in pME18S-FL3
vector, was used as a template for PCR amplification with primers 18S-1 (CTTC
TGCTCTAAAAGCTGCG) and 18S-T7 (CCTTTAATACGACTCACTATAGGG
CCGCGACCTGCAGCTCG). DIG-labeled RNA was transcribed from the PCR
product using T7 RNA polymerase (Promega). A foxd2 cDNA fragment was
amplified by PCR from zebrafish embryonic cDNA using primers TCGGACAGTT
CTGCTCTGTC (Forward) and TAATACGACTCACTATAGGGCTTGCTTCGG

CCACGAACCA (Reverse with T7 sequence), followed by RNA synthesis using T7
RNA polymerase. T3 and T7 primers were used for PCR amplification of lmo2
cDNA in pBK-CMV vector18, followed by in vitro probe synthesis using T7 RNA
polymerase.

Fluorescent ISH for prrx1a, twist1a, dab2, cldn5b, and myod expression was
performed using hybridization chain reaction (HCR, version 3)62. HCR probes and
fluorescent hairpins were synthesized by Molecular Technologies at Beckman
Institute, California Institute of Technology, Pasadena, CA. Embryos were fixed,
dehydrated and rehydrated using standard ISH protocol as described above.
Embryos were prehybridized in hybridization buffer (30% formamide, 5× SSC,
9 mM citric acid (pH 6.0), 0.1% Tween 20, 50 µg/ml heparin, 1× Denhardt’s
solution, 10% dextran sulfate) for 30 min at 37 °C. Two picomole of each HCR
probe was added to 50 µl of hybridization buffer and incubated overnight at 37 °C.
Embryos were washed 4 × 15 min in 30% formamide, 5× SSC, 9 mM citric acid (pH
6.0), 0.1% Tween 20, 50 µg/ml heparin solution at 37 °C. Samples were then washed
3 × 5 min with 5× SSCT (5× SSC and 0.1% Tween 20) at room temperature,
followed by 30 min incubation in amplification buffer (5× SSC, 0.1% Tween 20,
10% dextran sulfate) at room temperature. Thirty picomole of each fluorescently
labeled hairpin by snap cooling 10 µl of 3 µM stock solution. Hairpin solutions
were added to embryo samples in amplification buffer and incubated overnight in
the dark at room temperature. Samples were washed 5× with 5× SSCT solution,
and stored at 4 °C until imaging. GFP fluorescence was still apparent after HCR.
Embryos were mounted in 0.6% low-melting point agarose and imaged using a
Nikon A1 confocal microscope at the CCHMC Confocal Imaging Core.

Immunostaining. F310 (1:50 dilution) and S58 (1:10) primary antibodies (Devel-
opmental Studies Hybridoma Bank, Iowa City, IA) were used for whole-mount
immunostaining of etv2ci32Gt; UAS:GFP embryos at 24 hpf. No immunostaining
was performed for GFP which was visible in fixed embryos. Anti-mouse IgG,
CF594 antibody (Sigma-Aldrich, SAB4600098) was used as a secondary antibody.

Microscopy imaging and image processing. Embryos were whole mounted in
slide chambers with 0.6% low-melting poing agarose. To image stained embryos
after ISH, images were captured using a 10× objective on an AxioImager Z1 (Zeiss)
compound microscope with an Axiocam ICC3 color camera (Zeiss). Images in
multiple focal plans were captured individually and combined using the Extended
Focus module within Axiovision software (Zeiss). For confocal imaging, embryos
were mounted in 0.6% low-melting point agarose and imaged using a 10×, 20×, or
40× objective on a Nikon A1R confocal microscope. Denoising (Nikon Elements
software) was performed for some of the images with weak signal to reduce noise.
Images were assembled in Adobe Photoshop CS6 software package. Non-linear
level adjustment was used to increase contrast and reduce background. In all cases,
images of control and experimental embryos were adjusted similarly.

etv2 overexpression and quantitative RT-PCR. etv2 mRNA was synthesized as
previously described5. To analyze expression of muscle markers, approximately
75 pg of zebrafish etv2 mRNA was injected into fli1a:GFP embryos at the 1-cell
stage. Embryos were screened for ectopic GFP expression at the 10-somite stage
and then frozen for qPCR analysis. Groups of 10 embryos were analyzed in two
independent experiments. An RNAqueous 4-PCR kit (ThermoFisher) was used to
extract RNA. cDNA synthesis was performed using Superscript IV cDNA synthesis
kit (ThermoFisher). Quantitative real-time PCR was performed using SYBR Green
Master Mix (ThermoFisher) and StepOne Software v2.3 (Applied Biosystems). The
following primers were used:

ef1α (TCACCCTGGGAGTGAAACAGC) and (ACTTGCAGGCGATGTGAG
CAG),

myf5 (GGTTGACTGCAACAGTCCTG) and (GCGTTGGCCTGAGGCATC
TT),

myog (GCATAACGGGAACAGAGGCA) and (CAGCCTTCCTGACTGCCT
TA),

Fig. 8 Single-cell RNA-seq analysis using Fluidigm cell sorting of Tg(-2.3 etv2:GFP) embryos at the 16–20-somite stage. a–c GFP expression in live
embryos, maximum intensity projection is shown. Arrows label vascular endothelial cells and their progenitors. Ten embryos were imaged in two
independent experiments and a representative embryo is shown. a lateral view; b anterior view, c dorsal view. A anterior, P posterior. d Heatmap view of
marker gene expression in different cell clusters. A complete list of differentially expressed genes is presented in Supplementary Data 5. e, f 2-D and 3-D
principal component analysis plots of different cell clusters. Cluster names are the same as in (d). g Relative marker gene expression in different cell
clusters. Vertical bars depict log-normalized gene expression. h An Arteriovenous (A-V) index of different endothelial cells. Note that many cells are
positive for both arterial and venous marker expression. i–l ISH expression analysis of key marker genes for EPC (etv2), venous (flt4), arterial (cldn5b), and
EC-2 (ldb2a) populations in the trunk region at the 20-somite stage. Black arrows label the DA and white arrowheads label venous progenitors which are
starting to coalesce into the PCV. Note that flt4 is enriched in the PCV while cldn5b and ldb2a label the DA.m–r Two color ISH analysis for the expression of
venous dab2 and arterial cldn5b at the 20-somite and 24 hpf stages. Arrows label the DA while arrowheads mark the PCV or its progenitors. Note that dab2
and cldn5b are co-expressed in the DA progenitors at the 20-somite stage but not at 24 hpf. In all panels, the numbers in the lower right corner display the
number of embryos showing the expression pattern out of the total number of embryos analyzed in two replicate experiments.
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Fig. 9 A proposed model for the differentiation of vascular endothelial
cells from the multipotent mesodermal progenitors in the LPM. Wnt and
FGF signaling promotes myocyte differentiation of multipotent progenitors
in the lateral plate mesoderm (LPM). BMP signaling through its downstream
effectors id1 and id3 promotes vascular endothelial differentiation. Additional
LPM markers that include prrx1a, foxd1, foxd2 and others may be involved in
this process, although their role is purely speculative at this point. Etv2
promotes vascular endothelial differentiation while directly or indirectly
repressing myogenesis.
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myod (CCAGCATCGTGGTGGAGCGAATT) and (GGTCGGATTCGCCTTT
TTCT).

The results were analyzed using StepOne Software v2.3 (Applied Biosystems).
Two biological and two technical replicates were obtained for each sample (four
biological replicates were available for control uninjected embryos). Relative
expression values were normalized for ef1α expression. Statistical analysis was
performed using Prism 8 software (GraphPad Software).

Single-cell RNA sequencing using the Chromium platform. Approximately,
100–150 of etv2ci32Gt+/−; UAS:GFP and 75–100 etv2ci32Gt−/−; UAS:GFP embryos
were collected at the 20-somite stage and dissociated into a single-cell suspension
using the previously reported protocol63. Briefly, the embryos were manually
dechorionated, and transferred into the deyolking buffer (55 mM NaCl, 1.8 mM
KCl, and 1.25 mM NaHCO3). Embryos were pipetted up and down on ice using
p1000 pipettor until yolk was dissolved. Embryos were centrifugated at 300 G for
1 min, and supernatant was removed, while the pellet was resuspended in 0.5×
Danieau solution (1× Danieau: 58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6
mM Ca(NO3)2, 5 mM HEPES, pH 7.6). Centrifugation and removal of supernatant
was repeated again, followed by another centifugation at 300 G. The pellet was
resuspended in FACSmax solution cell dissociation solution, which was then
passed through a cell strainer. Cells were centrifugated at 300 G and suspended in a
buffer of 1× PBS containing 1 mM EDTA and 2% fetal bovine serum (FBS).
Fluorescence-activated cell sorting was then used to collect GFP+ cells in a solution
of 50% FBS in 1× PBS (see Supplementary Fig. 16a for FACS gating strategy).
Single cells were captured and processed for RNA-seq using the Chromium
instrument (10× Genomics) at the CCHMC Gene Expression Core facility. RNA-
seq was performed at the CCHMC DNA Sequencing core on Illumina
HiSeq2500 sequencer using one flow cell of paired-end 75 bp reads, generating
240–300 million total reads.

Cell Ranger version 2.0.0 was utilized for processing and de-multiplexing raw
sequencing data. Raw basecall files were first converted to the fastq format, and
subsequently the sequences were mapped to the Danio rerio genome (version zv10)
to generate single-cell feature counts (using STAR alignment). Downstream
analysis of the gene count matrix generated by CellRanger was performed in R
version 3.5.2 using Seurat version 2.3.464,65 and Tidyverse packages. The gene
counts matrix was loaded into Seurat and created by filtering cells which only
expressed more than 200 genes and genes that were expressed in at least 3 cells. In
addition, as an extra quality-control step, cells were filtered out (excluded) based on
the following criteria: <200 or >3500 unique genes expressed, or >5% of counts
mapping to the mitochondrial genome. This resulted in 2049 cells in the etv2ci32Gt

heterozygous sample and 588 cells in the etv2ci32Gt homozygous sample. For
further downstream analysis, data from the heterozygous and homozygous samples
were merged, resulting in a combined dataset of 2637 cells. Raw read counts were
normalized by the “LogNormalize” function that normalizes gene expression levels
for each cell by the total expression, multiplies the value by a scale factor of 104 and
then log-transforms the result. Highly variable genes were determined by
calculating the average expression and dispersion for each gene, placing the genes
into bins and then calculating a z-score for dispersion within each bin. Based on
the parameters selected to remove outliers, 3707 genes were calculated as being
highly variable in expression and these genes were used for downstream analysis.
Prior to dimensionality reduction, a linear transformation was performed on the
normalized data. Unwanted cell-cell variation driven by mitochondrial gene
expression and the number of detected molecules (nUMIs) was removed by
regressing out these variables during the scaling of data.

Dimensionality reduction was performed on the entire dataset using principal
component analysis using the list of highly variable genes generated above. The top
13 principal components which explained more variability (than expected by
chance) were identified based on PC heatmaps, the JackStrawPlot and
PCElbowPlot. These 13 components were used as input for generating clusters
(using the default SLM algorithm), with a resolution of 0.6. t-SNE16 was utilized to
reduce the dimensionality of the data to two dimensions (for visualization
purposes). Following clustering, genes differentially expressed in each of the
clusters were determined using a method of differential expression analysis based
on the non-parametric Wilcoxon rank sum test. Cells in each cluster were
compared against cells of all other clusters. Genes were then filtered based on being
detected in ≥25% of cells within a cluster and a Bonferroni adjusted p value < 0.05.
Based on the lists of differentially expressed genes ordered by average log fold
change, clusters were assigned specific cell identities. Visualization of specific gene
expression patterns across groups on t-SNE and violin plots was performed using
functions within the Seurat package.

To subcluster endothelial cells, prior to merging data from etv2ci32Gt

heterozygous and homozygous cells, clustering was performed on the two datasets
independent of each other. For the etv2 heterozygous dataset, 15 significant
principal components were identified and used as input for t-SNE dimensionality
reduction, using a resolution of 1.2 for clustering. An endothelial cell population
was identified based on differentially expressed genes in that cluster. To identify
heterogeneity within the endothelial cell population, the endothelial cells were
subsetted into a separate Seurat object and highly variable genes were calculated. A
linear transformation was performed again whilst removing unwanted variation
driven by mitochondrial gene expression and nUMI by regressing out these

variables during the scaling of data. Fourteen significant principal components
were selected for t-SNE dimensionality reduction, using a resolution of 1.0 for
clustering. Based on these parameters, there appeared to be two transcriptionally
distinct populations of endothelial cells, which was also confirmed by a heatmap of
gene expression of the two groups.

Pseudotime analysis. To analyze endothelial cell lineage pathways, we used
Monocle version 2.8.0 that implements reversed graph embedding on gene
expression data to determine single-cell developmental trajectories in an entirely
unsupervised manner66. The following populations of cells (from merged hetero-
zygous and homozygous data) were subsetted and imported to Monocle: LPM,
EPCs, EC1, EC2, Myocytes. Cells with a UMI count > 106 were excluded from the
data to exclude potential multiplets. Furthermore, upper and lower bounds on
nUMI were set at two standard deviations above and below the mean UMI to
remove low-quality cells. Only cells falling within these boundaries were included
for further downstream analysis Filtering of genes was performed by keeping genes
expressed in ≥10 cells. Gene dispersion values and average expression was calcu-
lated and genes with a mean expression ≥0.1 were subsetted. The top seven sig-
nificant principal components were used to reduce the dimensionality of the data
using t-SNE. Cells were then clustered, setting num_clusters= 8. A differential
gene test was performed to determine significant differentially expressed genes and
the top 425 genes were arranged by q value to create a list of ordering genes. An
ordering filter was then applied to the cells based on the list of genes created in the
previous step to label whether a cell is used for ordering or not. In order to
determine cell differentiation trajectories, dimensionality reduction to two com-
ponents was performed using the “DDRTree” method and then assignment of
pseudotime and state to each of the cells was carried out using the OrderCells
function. The trajectories of cells were plotted on a pseudotime graph and colored
by cell identities previously determined using clustering in Seurat.

Single-cell RNA sequencing using Fluidigm C1. Sequencing was performed on
cells from zebrafish embryos at 16–18 somite stages and at 20 somite stages.
Approximately, 300 Tg(-2.3 etv2:GFP) embryos were collected at each stage, dis-
sociated into a single-cell suspension as described above and suspended in a buffer
of 1× PBS containing 1 mM EDTA and 2% FBS. Fluorescence-activated cell sorting
was then used to collect GFP+ cells in a solution of 50% FBS in 1× PBS (Sup-
plementary Fig. 16b). Cells were then counted on a hemocytometer, spun down at
300 × G and resuspended at a concentration of approximately 30,000 cells per ml.
Each suspension was then loaded onto a 96-well Fluidigm C1 chip for capture of
single cells at the CCHMC Gene Expression core. Forty-eight individual cells from
each stage group were selected for library synthesis, barcoding, and pooled paired-
end sequencing using a single lane of a PE75 flow cell at 1.5–2 million reads per
cell, performed at the CCHMC DNA Sequencing core. Data analysis were per-
formed using AltAnalyze44. Reads were aligned to Ensembl release 72 of the Zv9
assembly of the zebrafish genome and gene counts were quantified using Kallisto67.
Iterative Clustering and Guide-gene Selection (ICGS) was used to identity de novo
clusters/groups of cell68. ICGS was performed using cosine similarity with an
expression fold cutoff of six for a minimum of five cells using conservative filtering
for cell cycle effects. From ICGS, group specific enriched genes were identified
automatically using Markerfinder69. All heatmaps and principal component ana-
lyses were created using AltAnalyze.

For the enriched marker table for each cluster, log-normalized fold change
values were acquired directly from the AltAnalyze MarkerFinder analysis. Averages
of log-normalized fold-change were generated for each marker per cluster. P-value
was determined by a two-tailed Mann–Whitney U test comparing fold change in
the cluster of interest to fold change in all other cells. The table of average
expression values for genes in each cluster was created directly from a text file
generated from AltAnalyze. These values represent the average of expression of all
cells in that cluster calculated as reads for a specific gene that have been normalized
to the total reads per cell and a scale factor of 10,000× applied.

To obtain arteriovenous index, the average of the log2 expression was calculated
first for the following known arterial and venous markers: cldn5b, efnb2a, dll4,
hey2, dlc, notch3 (arterial), and flt4, dab2, stab1l, ephb4a, mrc1a (venous).
Subsequently, the average arterial expression was divided by the average venous
expression to generate an arteriovenous identity index (AV index).

Fluorescent cell counting. Percentage of fluorescent cells which express etv2
reporter was estimated in etv2ci32Gt+/−; UAS:mCerulean (mCer) embryos alone or
crossed with hsp70:Dkk1-GFP and hsp70:dnFGFR1-GFP lines. Cells from 10 to 25
embryos in each group were disaggregated at 24 hpf as described above and mCer-
positive cells were counted using BD FACS Aria II at the CCHMC FACS core
facility.

To count gata1:dsRed-positive cells in wild-type and etv2MO-injected embryos,
cells from 50 to 70 embryos in each group were disaggregated at approximately 23
hpf. dsRed-positive cells were counted at the CCHMC FACS core facility using BD
FACS Canto II. FACS gating strategy for both fluorescent lines is shown in
Supplementary Fig. 16c, d.
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Ethics approval. Zebrafish embryo experiments were performed under animal
protocol. IACUC2016-0039, approved by the Institutional Animal Care and Use
Committee at the. Cincinnati Children’s Hospital Medical Center.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data that support the findings of this study are available from the corresponding
author upon reasonable request. scRNA-seq data generated in the study using the
Chromium (10× Genomics) platform have been deposited in the NCBI GEO database
under the accession code GSE143750. scRNA-seq data generated in the study using the
Fluidigm platform have been deposited in the NCBI GEO database under the accession
code GSE142484.
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