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Working memory function changes across development and varies across individuals. The patterns of behavior and brain
function that track individual differences in working memory during human development, however, are not well understood.
Here, we establish associations between working memory, other cognitive abilities, and functional MRI (fMRI) activation in
data from over 11,500 9- to 10-year-old children (both sexes) enrolled in the Adolescent Brain Cognitive Development
(ABCD) Study, an ongoing longitudinal study in the United States. Behavioral analyses reveal robust relationships between
working memory, short-term memory, language skills, and fluid intelligence. Analyses relating out-of-scanner working mem-
ory performance to memory-related fMRI activation in an emotional n-back task demonstrate that frontoparietal activity dur-
ing a working memory challenge indexes working memory performance. This relationship is domain specific, such that fMRI
activation related to emotion processing during the emotional n-back task, inhibitory control during a stop-signal task (SST),
and reward processing during a monetary incentive delay (MID) task does not track memory abilities. Together, these results
inform our understanding of individual differences in working memory in childhood and lay the groundwork for characteriz-
ing the ways in which they change across adolescence.

Key words: development; fMRI; frontoparietal; n-back; working memory

Significance Statement

Working memory is a foundational cognitive ability that changes over time and varies across individuals. Here, we analyze data
fromover 11,500 9- to 10-year-olds to establish relationships betweenworkingmemory, other cognitive abilities, and frontopari-
etal brain activity during a working memory challenge, but not during other cognitive challenges. Our results lay the ground-
work for assessing longitudinal changes inworkingmemory and predicting later academic and other real-world outcomes.

Introduction
Working memory, a collection of cognitive processes responsible
for storing and manipulating information, is a foundational abil-
ity that varies widely across individuals. Individual differences in
working memory, which appear to be stable over time (Alp,

1994; Ross et al., 2008; Johnson et al., 2013; Tulsky et al., 2014;
Xu et al., 2018), have pronounced real-world significance.
Although the direction of causality is unclear, measures of verbal
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and visuospatial working memory explain ;20–30% of the var-
iance in fluid intelligence in children (Engel de Abreu et al.,
2010), and visuospatial working memory performance explains
.40% of this variance in adults (Fukuda et al., 2010).
Furthermore, working memory function, which is related to ex-
ecutive and visuospatial attention (Kane and Engle, 2002; Huang
et al., 2012), short-term memory (Alloway et al., 2006), and in-
hibitory control (Davidson et al., 2006), predicts consequential
outcomes in development, including reading and math skills
(Bayliss et al., 2003; De Smedt et al., 2009; Alloway and Alloway,
2010; Nouwens et al., 2017). Despite the theoretical and practical
importance of characterizing associations between workingmemory
and other mental processes, much remains to be learned about the
nature of these relationships during development.

Working memory not only varies across individuals, but also
changes across the lifespan. Working memory emerges in
infancy and develops rapidly over the first year of life (Diamond
and Goldman-Rakic, 1989; Ross-Sheehy et al., 2003; Reynolds
and Romano, 2016; Buss et al., 2018). This ability continues to
improve during childhood, plateaus in mid-to-late adolescence
(Gathercole et al., 2004; Luciana et al., 2005; Conklin et al., 2007;
Ullman et al., 2014; Isbell et al., 2015), and declines after age 40–
50, albeit less steeply than it changed during early development
(Alloway and Alloway, 2013; Nyberg et al., 2014; Eriksson et al.,
2015; Swanson, 2017). Developmental gains in working memory
follow improvements in attention shifting, attentional mainte-
nance, and distractor suppression (Reynolds and Romano, 2016),
whereas changes during later childhood accompany increases in do-
main-general processing speed and memory capacity (Fry and
Hale, 1996, 2000; Pailian et al., 2016) with developmental asymp-
totic performance by adolescence (Casey et al., 2000, 2005;
Klingberg et al., 2002; Steinberg et al., 2009). Decrements in older
adulthood relate to declines in processing speed, selective attention,
and distractor suppression (Salthouse and Babcock, 1991; Gazzaley
et al., 2005; McNab et al., 2015).

Converging neuroimaging evidence suggests that variation in
frontoparietal brain systems, which are involved in processes
including attention and cognitive control (Woolgar et al., 2011;
Scolari et al., 2015; Assem et al., 2020), accounts for both devel-
opmental change in verbal and visuospatial working memory
and individual differences in these processes in adulthood. Early
work demonstrated that the same aspects of middle and inferior
frontal cortex that support working memory performance in
adults also support performance in children (Casey et al., 1995).
This evidence led to theorizing that the protracted fine-tuning of
prefrontal circuitry contributes to working memory improve-
ments during childhood and adolescence (Casey et al., 2000,
2005). Longitudinal studies support this prediction, with evi-
dence that maturation in prefrontal and parietal volume and
structural connectivity accompany working memory develop-
ment (Tamnes et al., 2013; Klingberg and Darki, 2015). Cross-

sectional work suggests that increases in frontoparietal activation
during working memory tasks are associated with age-related
improvements in performance (Klingberg et al., 2002; Kwon et
al., 2002; Crone et al., 2006; Satterthwaite et al., 2013). In the
developed brain, individual differences in frontoparietal areas’
microstructure, function, and structural and functional connec-
tivity track individual differences in working memory (Osaka et
al., 2003; Palva et al., 2010; Burzynska et al., 2011; Takeuchi et al.,
2011; Ekman et al., 2016). A subset of developmental studies
show similar associations between in-scanner working memory
performance (a state-like measure of memory function) and
frontoparietal activity during working memory tasks when con-
trolling for age (Crone et al., 2006; Satterthwaite et al., 2013).
One study comparing adolescents with higher and lower family
incomes found that the higher-income group showed greater
frontoparietal activity as a function of load in a working memory
(n-back) functional MRI (fMRI) task and higher out-of-scanner
working memory capacity (Finn et al., 2017a). However, it is not
yet known whether frontoparietal network function during
working memory challenges specifically, or during cognitive task
challenges more generally, predicts individual differences in
working memory during development.

Here, we examine behavioral and neural signatures of
working memory in childhood. Using data from 11,537 9- to 10-
year-olds participating in the Adolescent Brain Cognitive Deve-
lopmentsM (ABCD) Study (Casey, 2018; Volkow et al., 2018), we
first establish relationships between working memory and other
cognitive and attentional abilities, including short-term memory,
language and verbal skills, fluid intelligence, processing speed,
attention, inhibitory control, and reward processing. Because the
ABCD Study® will follow children longitudinally for 10 years,
characterizing these associations in childhood not only informs
the structure of cognition at a single time point but also facilitates
understanding the ways in which this cognitive structure changes
across adolescence. We next ask whether performance on an
out-of-scanner working memory test is related to frontoparietal
brain activity when measured (1) during a working memory
challenge and (2) during task challenges unrelated to memory.
Together, our results provide insight into individual differences
in working memory in childhood, and underscore the impor-
tance of task fMRI as a “stress test” for cognition (Finn et al.,
2017b) that can reveal task-specific and task-general neural sig-
natures of a mental process or behavior.

Materials and Methods
The ABCD Study
Individual differences in working memory and other cognitive and
attentional processes were assessed using data from 11,537 9- to 10-year-
olds in the ABCD Study, an ongoing multisite longitudinal study of neu-
rocognitive development (Luciana et al., 2018). Launched in September
2016, the ABCD Study aims to characterize cognitive and neural devel-
opment with measures of neurocognition, physical and mental health,
social and emotional function, and culture and environment. Exclu-
sionary criteria include a diagnosis of schizophrenia, a moderate to
severe autism spectrum disorder, an intellectual disability, or a substance
use disorder at recruitment. Children with a persistent major neurologic
disorder (e.g., cerebral palsy, a brain tumor, stroke, brain aneurysm,
brain hemorrhage, subdural hematoma), multiple sclerosis, sickle cell
disease, or certain seizure disorders (Lennox–Gastaut syndrome, Dravet
syndrome, and Landau Kleffner syndrome) were also excluded.

ABCD Study data collection includes yearly behavioral assessments,
interviews, questionnaires, and biosample collection as well as biennial
MRI scans (Casey, 2018). Here, we analyze year-one (baseline) demo-
graphic and behavioral data collected across 22 sites when children were
9–10 years old and made available as part of curated data release 2.0.1

The ABCD data repository grows and changes over time. The ABCD data used in this report came from
National Institute of Mental Health Data Archive DOI 10.15154/1504041. DOIs can be found at https://nda.nih.
gov/study.html?id=721.
Data used in the preparation of this article were obtained from the ABCD Study (https://abcdstudy.org),

held in the National Institute of Mental Health Data Archive (NDA). This is a multisite, longitudinal study
designed to recruit more than 10,000 children age 9–10 and follow them over 10 years into early adulthood.
A listing of participating sites and a complete listing of the study investigators can be found at https://
abcdstudy.org/principal-investigators. ABCD consortium investigators designed and implemented the study and/or
provided data but did not necessarily participate in analysis or writing of this report. This report reflects the views of
the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.
The authors declare no competing financial interests.
Correspondence should be addressed to Monica D. Rosenberg at mdrosenberg@uchicago.edu or B.J. Casey

at bj.casey@yale.edu.
https://doi.org/10.1523/JNEUROSCI.2841-19.2020
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(DOI 10.15 154/1504041; n=11,537; 48.4% female). Sample demo-
graphics including race, ethnicity, socioeconomic status, and symptoms
of internalizing and externalizing disorders are available in Thompson et
al. (2019).

Data from children diagnosed with autism spectrum disorder or epi-
lepsy were excluded from the current analysis because moderate to
severe forms of autism spectrum disorder and other seizure disorders
were exclusionary for the ABCD Study (n=338 of 11,875). Data from
children with attention deficit hyperactivity disorder, depression, bipolar
disorder, anxiety, and phobias (n=1,598 of 11,537) were not excluded,
as these diagnoses were assessed with a single screening question and we
aimed to characterize working memory in a heterogeneous developmen-
tal population.

Behavioral data
To characterize associations between working memory and other cogni-
tive abilities, we analyzed performance data from all 15 available neuro-
cognitive (Luciana et al., 2018) and neuroimaging (Casey, 2018) tasks,
described in detail below (Table 1). Working memory ability outside of
the scanner was operationalized as performance on the NIH Toolbox
List Sorting Working Memory Task. Performance measures were
selected based on previous work including reports of ABCD baseline
data (Casey, 2018; Luciana et al., 2018).

NIH Toolbox cognition battery
The NIH Toolbox cognition battery includes seven tasks measuring mul-
tiple aspects of cognition (Gershon et al., 2013; Table 1, column 3).
Performance is measured using uncorrected standard scores, as age-cor-
rected scores are currently undergoing revision by the NIH Toolbox
(Luciana et al., 2018).

The Toolbox List Sorting Working Memory Test measures working
memory by asking children to recall stimuli in different orders (Tulsky
et al., 2014). Children were first shown pictures of two animals and were
asked to repeat them back in order from smallest to largest. They were
shown longer lists (with up to seven animals) if they answered correctly.
Next, children were shown pictures of both animals and foods and were
asked to repeat the animals in order of size and then the foods in order
of size. Interleaved lists increased in length from two to seven if children
responded accurately, and performance scores reflect the number of
accurate responses. Importantly, this list sorting task was developed to
assess working memory function in general rather than verbal or visual
working memory in particular (Tulsky et al., 2014). Visuospatial work-
ing memory was not measured in the ABCD baseline sample and reflects
a cognitive ability closely related to but dissociable from verbal working
memory (Alloway et al., 2006; Swanson, 2017) that is traditionally tested
with tasks such as delayed match-to-sample.

The Toolbox Picture Vocabulary Test measures language and verbal
abilities (Gershon et al., 2014). Children hear a series of words and are

Table 1. Demographic, neurocognitive, and neuroimaging task performance measures

Description Cognitive process(es)
Performance
measure(s) Data file Variable name(s) Percent missing

Percent
outliers

Demographics Age in months abcddemo01 interview_age 0.02 0

Sex abcddemo01 sex 0.07 0

Autism, epilepsy abcd_screen01 scrn_asd, scrn_epls 0

Family ID acspsw03 rel_family_id 0 0

Site ID abcd_lt01 site_id_l 0 0

Scanner ID abcd_mri01 mri_info_deviceserialnumber 1.01

Neurocognitive battery NIH toolbox cognition

battery

Working memory List Sorting Working Memory

Test uss

abcd_tbss01 nihtbx_list_uncorrected 1.71 1.23

Language Picture Vocabulary Test uss abcd_tbss01 nihtbx_picvocab_uncorrected 1.32 1.76

Cognitive control, attention Flanker Test uss abcd_tbss01 nihtbx_flanker_uncorrected 1.37 2.67

Flexible thinking Dimensional Change Card Sort

Test uss

abcd_tbss01 nihtbx_cardsort_uncorrected 1.35 2.94

Processing speed Pattern Comparison Processing

Speed Test uss

abcd_tbss01 nihtbx_pattern_uncorrected 1.51 0.81

Visuospatial sequencing,

memory

Picture Sequence Memory Test

uss

abcd_tbss01 nihtbx_picture_uncorrected 1.40 0.59

Reading Oral Reading Recognition Test

uss

abcd_tbss01 nihtbx_reading_uncorrected 1.42 2.75

Matrix reasoning task Fluid reasoning WISC-V matrix reasoning total

scaled score

abcd_ps01 pea_wiscv_tss 2.18 1.40

Rey auditory verbal

learning test (RAVLT)

Learning, memory Total correct on immediate and

delayed recall trials

abcd_ps01 pea_ravlt_sd_trial_vi_tc,

pea_ravlt_ld_trial_vii_tc

1.87

2.31

1.95

1.68

Intertemporal Cash

Choice Task

Delay of gratification Choice of smaller-sooner or

larger-later reward

cct01 cash_choice_task 1.83 0

Little Man Task Mental rotation Efficiency ratio (% accuracy �
mean correct-trial RT)

lmtp201 lmt_scr_efficiency 2.85 1.49

fMRI tasks Emotional n-back (EN-

back) task

Memory, emotion regulation % correct on 0-back and

2-back blocks

abcd_mri nback02 tfmri_nb_all_beh_c0b_rate,

tfmri_nb_all_beh_c2b_rate

20.08

20.08

3.19

3.19

Post-scan EN-back stim-

uli

recognition memory

test

Memory Sensitivity (d’) mribrec02 Mean of tfmri_rec_all_beh_

posf_dpr, tfmri_rec_all_

beh_neutf_dp, tfmri_

rec_all_beh_negf_dp,

tfmri_rec_all_beh_place_dp

24.24 1.41

Stop-signal task (SST) Impulsivity –1*stop-signal RT abcd_sst02 tfmri_sst_all_beh_total_

meanrt

18.97 2.51

Monetary incentive delay

(MID) task

Reward processing Mean earnings abcd_mid02 Mean of tfmri_mid_r1_beh_

t_earnings,

tfmri_mid_r2_beh_t_earnings

17.26 1.95

Data were acquired from publicly available ABCD data release 2.0.1 (DOI 10.15154/1504041). Percent missing values represent the percentage of values missing in the full sample of 11,537 children meeting inclusion criteria,
although note that recovery of missing data are ongoing. Percent outlier values represent the percentage of data values more than 2.5 SDs from the group mean. uss = uncorrected standard score.
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asked to choose which of four pictures most closely matches the mean-
ing of the word.

The Toolbox Flanker Task, a flanker task (Eriksen and Eriksen,
1974) used to measure cognitive control and attention, was adapted
from the Attention Network Task (Fan et al., 2002; Zelazo et al., 2014).
On each trial, children see a row of five arrows. The outer four arrows
(distractors, or flankers) all point to the left or right of the screen. The
middle arrow (the target) points in the same direction as the flankers on
congruent trials, and the opposite direction of the flankers on incongru-
ent trials. Children are asked to indicate whether the center arrow points
to the left or to the right. Performance scores are based on speed and
accuracy.

The Toolbox Dimensional Change Card Sort Task measures cogni-
tive flexibility (Zelazo, 2006). On each trial, children see two objects on a
screen. They are asked to match a third item with one of the initial two
based on either color or shape. Children first match items based on one
dimension (e.g., color), then match items based on the other dimension
(e.g., shape), and finally match based on both shape and color in pseu-
dorandom order. Performance scores are based on speed and accuracy.

The Toolbox Pattern Comparison Processing Speed Test measures
visual processing speed (Salthouse et al., 1991; Carlozzi et al., 2015).
Children are shown two pictures and are asked to indicate whether they
are the same or different. Scores are based on the number of correct
responses within a time limit.

The Toolbox Picture Sequence Memory Test measures episodic
memory and visuospatial sequencing (Bauer et al., 2013; Dikmen et al.,
2014). Children are shown 15 pictures of activities or events and asked
to reproduce the presentation order.

The Toolbox Oral Reading Recognition Task measures reading abil-
ities by asking children to pronounce a series of written letters and words
(Gershon et al., 2014).

Matrix reasoning
The matrix reasoning subtest of the Wechsler Intelligence Test for
Children-V (WISC-V; Wechsler, 2014) measures fluid and spatial rea-
soning, perceptual organization, visual attention, and sequencing. On
each trial, children are shown an array of visual stimuli, and are asked to
select one of four stimuli that best completes the pattern. The task con-
tinues until a child makes three consecutive errors or completes 32 trials.
Performance is measured by converting the number of total correct
items to a standard score (Luciana et al., 2018).

Rey Auditory Verbal Learning Test
The Rey Auditory Verbal Learning Test (RAVLT) measures learning
and memory. During the test, children hear a list of 15 unrelated words
five times. Each time they hear the list, they are asked to recall as many
words as possible. After these five learning trials, children hear a distrac-
tor list and are again asked to recall as many words as they can. Recall of
the initial list is assessed immediately after the distractor list and again
30min later (Van Den Burg and Kingma, 1999; Luciana et al., 2018).
Here, we measure performance as the number of correctly recalled
words on these immediate and delayed memory assessments (i.e.,
RAVLT trials vi and vii).

Intertemporal cash choice task
The Intertemporal Cash Choice Task (Wulfert et al., 2002) assesses
children’s delay of gratification, motivation, and impulsivity (Luciana et
al., 2018). Children are asked, “Let’s pretend a kind person wanted to
give you some money. Would you rather have $75 in 3 days or $115 in
3months?” Smaller-sooner reward choices were coded with a “1,”
larger-later reward choices were coded with a “2,” and infrequent “don’t
know” responses were excluded from analysis. Positive correlations
between cash choice and performance on another task indicate that chil-
dren who performed better on the other task were more likely to choose
the larger-later option, whereas negative correlations indicate that chil-
dren who performed worse on the other task were more likely to choose
the larger-later option.

Little Man task
The Little Man Task (Acker and Acker, 1982) measures aspects of visuo-
spatial processing including mental rotation. During this task, children
see a cartoon of a man holding a briefcase in his left or right hand appear
on a computer screen. The man can be right side up or upside down and
can appear facing the child or with his back turned. Children are asked
to indicate whether the man’s briefcase is in his left or right hand via but-
ton press. The task includes practice trials and 32 assessment trials.
Performance is measured with efficiency (percent accuracy divided by
mean correct-trial response time; Luciana et al., 2018).

Emotional n-back task
The in-scanner emotional n-back (EN-back) task engages processes
related to memory and emotion regulation (Barch et al., 2013; Casey,
2018). During the task, children perform 0-back (low memory load) and
2-back (high memory load) task blocks with four types of stimuli: happy,
fearful, and neutral face photographs (Tottenham et al., 2009; Conley et
al., 2018) and place photographs. Data are collected during two ;5-min
fMRI runs each with four 0-back and 2-back blocks each. Runs included
362 whole-brain volumes after discarded acquisitions. At the start of each
0-back block, children are shown a target stimulus and asked to press a
button corresponding to “match”when they see an identical picture and a
button corresponding to “no match” when they see a different picture.
During 2-back blocks, children are asked to press match when they see a
picture identical to the one they saw two trials back. Performance is quan-
tified as percent accuracy on 0-back and 2-back blocks.

Recognition memory task
After scanning, memory for EN-back task stimuli is assessed with a rec-
ognition memory test (Barch et al., 2013; Casey, 2018). During this test,
children are presented with 48 EN-back stimuli and 48 novel stimuli
(i.e., 12 old and new happy, fearful, and neutral face photographs and 12
old and new places), and are asked to rate whether each picture is “old”
or “new.” Performance is assessed with sensitivity (d9) averaged across
stimulus types.

Stop-signal task
The in-scanner stop-signal task (SST; Logan, 1994) is designed tomeasure
impulsivity and impulse control (Casey, 2018). SST data are collected dur-
ing two ;6-min fMRI runs (437 volumes after discarded acquisitions)
each with 180 trials each. On each trial, children see an arrow pointing to
the left or to the right of the screen (the go signal). They are instructed to
indicate the direction of the arrowwith a button press as quickly and accu-
rately as possible, except when an upright arrow (the stop signal) appears
on the screen (16.67% of trials). The time between go and stop signal
onset, the stop-signal delay, is staircased so that each child achieves;50%
accuracy on stop trials. Performance ismeasuredwith stop-signal reaction
time (SSRT), or the mean stop-signal delay subtracted from the mean
reaction time on correct go trials. For consistency with other behavioral
measures, SSRTs were reverse scored (multiplied by –1) so that higher
scores correspond to better performance.

Monetary incentive delay task
The in-scanner MID task (Knutson et al., 2000; Yau et al., 2012) meas-
ures aspects of reward processing, including anticipation and receipt of
rewards and losses and motivation to earn rewards and avoid losses
(Casey, 2018). Data are collected during two ;5.5-min, 50-trial fMRI
runs (403 volumes per run after discarded acquisitions). Trials begin with
a cue indicating whether the child can win $0.20 or $5, lose $0.20 or $5, or
earn $0. After 1500–4000ms, a target appears for 150–500ms. Target tim-
ing is staircased such that each child achieves ;60% accuracy. Children
must respond during the target presentation to achieve the indicated trial
outcome. Trials are followed by feedback indicating the outcome.

Response time and accuracy are not used as MID performance meas-
ures because target timing was individualized. Overall task performance
is instead summarized as the average amount of money earned during
both runs. This metric is correlated with mean accuracy (rs = 0.68,
p, 0.001) and correct-trial RT (r = –0.29, p, 0.001), but may capture
additional variance in reward-related behavior. For example, two chil-
dren who achieve 60% accuracy could earn different amounts of money
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if one preferentially responds to win large rewards and avoid large losses,
perhaps due to greater reward motivation.

Relationships between behavioral measures
To characterize associations between working memory and other cogni-
tive abilities, we first cross-correlated all 17 behavioral measures using
data from all children meeting inclusion criteria (n=11,537). Although
normality was not evaluated with formal tests, which reject the null hy-
pothesis for near-normal distributions in large samples (Ghasemi and
Zahediasl, 2012), rank correlation was applied because visual inspection
indicated that behavioral measures were not normally distributed
(Fig. 1). To establish whether relationships were robust to potential con-
founds such as age, sex, missing data, outliers, and statistical dependence
introduced by family structure, data collection method, and site, we sub-
sequently replicated this analysis using:

(1) Data from one child per family, based on self-report (n = 9,750).
For families with multiple children in the 11,537-participant cohort, the
child whose randomly assigned NDAR Global Unique Identifier
(GUID) came first in alphabetical order was included in this sample. (2)
Data from all children meeting inclusion criteria using Spearman partial
correlation to control for age and sex. (3) Data values within 2.5 SDs of
the group mean (Table 1). (4) Data from children with no missing values
(i.e., complete cases; n = 7,504). (For this analysis, “don’t know”
responses on the cash choice task were counted as missing values.) (5)
Data from children who completed the emotional n-back task, SST, and
MID task during MRI data collection rather than on a laptop outside the
scanner (n = 9,452). (Of the children whose data were analyzed here,
1,102 did not complete any task in the scanner or did not have this infor-
mation available, 399 completed one task in the scanner, 584 completed
two tasks in the scanner, and 9,452 completed all three tasks in the scan-
ner.) (6) Data from children without performance flags on the emotional
n-back task, SST, and MID task (n = 6,441). Performance flags, available
in the curated ABCD data, were assigned based on the following criteria:
,60% 0-back or 2-back accuracy on the emotional n-back task;,150 go
trials, ,60% go trial accuracy, .30% incorrect go trial percentage,
.30% late go trial percentage, .30% “no response” go trials, ,30 stop
trials, or ,20% or .80% stop trial accuracy on the SST; less than three
positive and negative feedback events for large reward, small reward,

large loss, small loss, or no stakes trials on the MID task. (7) Data from a
conservative subsample excluding outlier values, incomplete cases, chil-
dren who completed neuroimaging tasks outside of the scanner, children
with neuroimaging task performance flags, and related children. Age
and sex were controlled with partial correlation (n = 4,393). (8) Data
from each of the 21 data collection sites with more than 100 participants
separately (n = 328–988; mean n = 524.4; SD = 192.1; 22nd site with 36
children excluded from this analysis).

Because of the presence of missing data, relationships between be-
havioral measures were evaluated with pairwise correlations rather than
with data reduction techniques such as principal component analysis
(PCA), which do not typically allow for missing data. 34.96% of children
were missing at least one performance measure, and neuroimaging task
performance data were missing in 20.14% of the sample on average
(Table 1; note that recovery of missing data are ongoing). Although
Bayesian probabilistic PCA can account for missing data as well as the
nesting of participants in families and data collection sites (Thompson et
al., 2019), this approach assumes that missing data occur randomly, in-
dependent of other sample features (Oba et al., 2003). This assumption
is violated in the current sample, as, for example, children with better
working memory function are less likely to be missing other behavioral
measures (Spearman correlation between list sorting performance and
number of missing performance measures = –0.09, p, 2.2� 10�16). [Of
note, Thompson et al. (2019) performed Bayesian probabilistic PCA on
a subset of the behavioral measures analyzed here, specifically those col-
lected outside the scanner. A smaller percentage of these data are missing
from curated release 2.0.1 (,3% per measure; Table 1), reducing issues
associated with missingness.]

Neuroimaging data collection
ABCD scan sessions included a localizer and acquisition of a high-reso-
lution anatomic scan, two runs of resting state fMRI, diffusion weighted
images, 3D T2-weighted spin echo images, two more runs of resting
state fMRI, and task-based fMRI. [Sites with Siemens scanners used
framewise integrated real-time MRI monitoring (FIRMM; Dosenbach et
al., 2017) to monitor children’s head motion during data collection; scan
operators at these sites may have stopped resting-state data collection
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Figure 1. Kernel density estimates, or smoothed histograms, show performance in the full sample of 11,537 9- to 10-year-olds, including statistical outliers. NIH Toolbox performance is
measured with uncorrected standard scores. Responses on the cash choice task, whether a child preferred to receive a smaller–sooner reward, a larger–later reward, or could not choose, are
visualized with a histogram. Although “don’t know” responses on this task are included here, they were excluded from formal analysis.
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after three runs if 12.5min of low-motion resting-state data had been
collected.] Image acquisition order was fixed, but fMRI task order was
randomized across participants (Casey, 2018). Data were collected on
Siemens Prisma, Phillips and GE 750 3T scanners, with detailed acquisi-
tion parameters reported in previous work (Casey, 2018; Hagler et al.,
2019). Functional images were collected using a multiband gradient EPI
sequence with the following parameters: TR=800ms, TE=30ms, flip
angle = 52°, 60 slices acquired in the axial plane, voxel size = 2.4 mm3,
multiband slice acceleration factor= 6.

Image preprocessing
Task-based data were processed by the ABCD Study Data Analysis and
Informatics Center (DAIC) using approaches described in detail in
Hagler et al. (2019). Preprocessing steps included motion correction
with 3dvolreg in AFNI, B0-distortion (i.e., field-map) correction, gradi-
ent nonlinearity distortion correction, and resampling scans into align-
ment with cubic interpolation using a mid-session scan as the reference.
Registration between T2-weighted spin echo scans, field maps, and T1-
weighted structural images was performed using mutual information.
Functional images were aligned to T1-weighted images using rigid-body
transformation (Hagler et al., 2019).

The equivalent of 16 volumes was removed from the start of each
run. For Siemens and Philips scanners, eight volumes were removed
because the first eight volumes were used as the multiband reference
scans. For GE scanners running DV25 software, five volumes were
removed because the first 12 volumes were used as the multiband refer-
ence. The images were then combined into a single volume and saved as
the initial TR (leaving a total of five frames to be discarded). For GE
scanners running DV26 software, 16 volumes were removed.

Relationships between fMRI activity and working memory function
After preprocessing, voxel-wise time series data were normalized within
run. Task-related activity estimates were generated for each child using
general linear models (GLMs) with 3dDeconvolve in AFNI (Hagler et
al., 2019). GLMs included nuisance regressors accounting for baseline
and quadratic trends as well as motion estimates and their derivatives,
temporally filtered to attenuate 0.31- to 0.43-Hz signals related to respi-
ration (Fair et al., 2020). Volumes with framewise displacement values
.0.9 mmwere censored (Siegel et al., 2014).

In addition to fixation, the emotional n-back task GLM included pre-
dictors for happy, fearful, and neutral face as well as place stimuli in the
0-back and 2-back conditions. Task blocks (;24 s) were modeled as
square waves convolved with a two-parameter gamma basis function
(Hagler et al., 2019). The SST model included predictors for correct and
incorrect stop and go trials, modeled as instantaneous. The MID model
included small and large reward and loss cues and feedback and no
stakes cues, modeled as instantaneous (Hagler et al., 2019). GLM beta
coefficients for cortical gray matter voxels were sampled into surface
space. [This step differs from the processing pipeline described in Hagler
et al. (2019), in which preprocessed data were sampled onto the cortical
surface, but does not affect the beta values.]

To characterize relationships between out-of-scanner List Sorting
Working Memory performance and fMRI activation in response to a
working memory challenge, we first estimated memory-related activity
with a linear contrast of 2-back versus 0-back emotional n-back task
blocks (6,965 datasets available; n=3,750 after exclusion). Subject-spe-
cific beta weights were entered into a multiple regression model, includ-
ing list sorting performance as a predictor, with FSL’s PALM software
(Winkler et al., 2014). Covariates were also included in the model: age
and sex (to account for effects present in the uncorrected list sorting
standard scores; Luciana et al., 2018), scanner [to account for magnet-
related differences between the 26 scanners as well as effects of partici-
pant population (e.g., family income, education, race and ethnicity)],
fluid intelligence (to account for non-specific effects of cognitive func-
tion), and mean frame-to-frame head motion during the emotional n-
back task. Head motion was measured with tfmri_nback_all_beta_mm
from curated data release 2.0.1 sheet nback_bwroi02.txt. Degrees of free-
dom (tfmri_nback_all_beta_dof) and number of frames with a framewise
displacement of ,0.2 mm (tfmri_nback_ab_subthnvols) were not

included as covariates because they were highly correlated with frame-
to-frame motion (r = –0.96 and –0.95, respectively). Nonparametric sig-
nificance was assessed with permutation testing using PALM’s tail
approximation acceleration method (Winkler et al., 2016). For each con-
trast, 1,000 permutations were run, a generalized Pareto distribution
(GPD) was fit to the tail of the resulting null distribution, and p values
below 0.10 were computed from the GPD. Regression coefficients sur-
viving a family-wise error-corrected p value threshold of 0.05 were con-
sidered significant.

To assess the specificity of relationships between list sorting scores
and memory-related fMRI activity, we repeated this analysis using con-
trast maps related to three other processes: emotion processing, inhibi-
tory control, and reward processing. Subject-specific beta coefficient
maps reflecting emotion processing-related activity were computed by
contrasting emotional versus neutral face stimulus blocks on the emo-
tional n-back task (6,965 datasets available; n= 3,750 after exclusion).
Beta coefficient maps reflecting inhibitory control-related activity were
computed by contrasting successful versus unsuccessful stop trials on
the SST (6,906 datasets available; n = 4,316 after exclusion). Beta coeffi-
cient maps reflecting activity related to reward sensitivity were computed
by contrasting successful versus unsuccessful reward trials (i.e., volumes
corresponding to positive vs negative feedback) on the MID task (6,984
datasets available; n= 4,277 after exclusion). Multiple regression models
including working memory performance, age, sex, scanner, fluid intelli-
gence, and mean frame-to-frame head motion during the relevant task
runs were applied to predict subject-specific beta weights.

Neuroimaging data exclusion
Neuroimaging data from all Philips scanners (;13% of the sample) were
excluded from analysis due to an error in curated ABCD data prepro-
cessing. Neuroimaging data from children with poor structural scan
quality, determined with curated data release 2.0.1 sheet freesqc01.txt,
were also excluded from analysis. Participants with a score of zero for
fsqc_qc and/or a score greater than one for fsqc_qu_motion, fsqc_qu_pia-
lover, fsqc_qu_wmunder, or fsqc_qu_inhomogeneity were excluded. For
each task contrast, participants with fewer than 550 degrees of freedom
in preprocessed, concatenated fMRI time series, missing grayordinate
(i.e., gray-matter vertex or voxel) values, and/or or extreme values (.3
SDs from the group mean) for the mean or SDs of beta weights over all
grayordinates were also excluded. All fMRI analyses were performed
using data from only one child per family to avoid confounds introduced
by family structure. We elected to take this conservative approach rather
than attempt to control for family structure with multilevel block per-
mutation (Winkler et al., 2015) given the complexity of possible familial
relationships (e.g., triplets, monozygotic and dizygotic twins, full sib-
lings, half siblings, cousins, etc.).

Results
Working memory performance in childhood
Working memory function, operationalized with NIH Toolbox
List Sorting Working Memory Test performance, approximated
the normative population mean (uncorrected standard score
mean=96.7, SD = 12.0, range= 36–136; normative mean=100,
SD = 15). Working memory was positively correlated with age
(rs = 0.148, p, 2.2� 10�16) and differed by sex, albeit with a
negligible effect size (female mean= 96.3; male mean= 97.2;
Welch t(11317) = –3.99; p=6.8� 10�5; Cohen’s d = –0.075).
Performance on all other neurocognitive measures in the ABCD
task battery, which assess short term memory, fluid intelligence,
visuospatial attention, reading and language skills, cognitive con-
trol, processing speed, flexible thinking, learning, delay of gratifi-
cation, emotion regulation, impulsivity, and reward processing,
is visualized in Figure 1.

Behavioral signatures of working memory
Although a rich literature in cognitive psychology describes
relationships between working memory and cognitive and
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attentional processes in adulthood,
how these associations emerge in de-
velopment is less well understood.
Thus, a primary goal of the current
work is to characterize these associa-
tions in childhood to understand how
they change over time.

To relate working memory to cog-
nitive and attentional abilities, we
computed pairwise Spearman correla-
tions between performance scores on
all tasks included in the dataset (i.e., all
behavioral measures visualized in Fig.
1). Correlation coefficients are reported
without corresponding p values because
effect sizes as small as r2 = 3.34 � 10�4

are significant at p, 0.05 in a sample of
11,537, and statistical dependence intro-
duced by family relatedness, site effects,
and the inclusion of multiple perform-
ance measures per test precludes para-
metric r-to-p conversion. Furthermore,
the goal of this analysis is to establish
a pattern of behavioral relationships
rather than to evaluate the statistical sig-
nificance of particular associations.

Across individuals, working mem-
ory was most strongly related to lan-
guage skills measured with the NIH
Toolbox Picture Vocabulary and Oral
Reading Recognition tests (rs values =
0.40); memory-related performance
on the emotional n-back task, Picture
Sequence Memory Test, and RAVLT;
and fluid intelligence measured with
matrix reasoning (rs= 0.35; Figs. 2, 3).

Correlations between list sorting
performance and performance on
other memory tests also revealed rela-
tionships between different aspects of
memory. The emotional n-back task,
collected during fMRI, measured per-
formance during high memory load
(2-back) and low memory load (0-back)
task blocks. During 2-back blocks,
children were asked to indicate when
they saw a picture identical to the one
they saw two trials back. During
0-back blocks, children were shown a
target picture and instructed to indi-
cate when they saw a matching image.
Working memory was more strongly
related to 2-back than to 0-back accu-
racy (rs = 0.36 vs 0.32; Steiger’s
z= 5.36, p, 0.0001), indicating that,
as predicted, working memory ability
is reflected to a greater degree by
performance on high-load versus low-
load n-back blocks. [Interestingly, 2-
back and 0-back accuracy scores were
highly correlated (rs = 0.62), suggesting that common processes
such as working memory, attention, and motivation contribute
to performance on both tasks.] Recognition memory for

emotional n-back stimuli (happy, fearful, and neutral face pho-
tographs and place photographs) was tested after fMRI data
collection. Although working memory was less highly corre-
lated with recognition memory than with performance on

EN-back
recognition
memory d'

Figure 2. Multidimensional scaling plot illustrating 2D distance between behavioral metrics in children with no missing data
(n= 7,504). Classical multidimensional scaling was applied to the complete-case sample to avoid assumptions associated with
imputing missing values. Distance was calculated as the Euclidean distance between each pair of behavioral measures after
mean-centering and scaling each measure across participants. NIH Toolbox measures are shown in dark green, other neurocogni-
tive measures in dark gray, and neuroimaging task measures in light green.

d'

d'

Figure 3. Spearman correlations between performance measures in the full 11,537-child sample. Measures are ordered accord-
ing to the strength of their relationship with working memory, operationalized as NIH Toolbox List Sorting Working Memory
Test. Because the outcome of the cash choice task is binary, relationships with performance on this measure are equivalent to
point-biserial Spearman correlation coefficients.
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visual attention tasks, including the Flanker task (rs = 0.21 vs
0.25; Steiger’s z=�4.01, p= 0.0001), this may reflect low overall
memory for specific stimuli, especially face photographs, at this
age (Casey, 2018). Finally, the RAVLT assessed immediate
recall of a word list as well as recall after a 30-min delay, and
the NIH Toolbox Picture Sequence Memory Test measured epi-
sodic memory and visuospatial sequencing. Working memory
was similarly related to immediate and delayed recall on the
RAVLT and performance on the Picture Sequence Memory
Test (rs values = 0.3389, 0.3372, and 0.3428, respectively).

Of note, correlations between list sorting performance and
other behavioral measures are influenced by both the similarity
of the constructs they measure and the reliability of the measures
themselves. Previous work reports good to excellent reliability
for all NIH Toolbox tasks [test-retest intraclass correlation coeffi-
cient (ICC)= 0.61–0.90; Dikmen et al., 2014; Gershon et al.,
2014; Tulsky et al., 2014; Zelazo et al., 2014; Carlozzi et al., 2015],
the WISC-V matrix reasoning test (test-retest r= 0.78; Luciana et
al., 2018), and the RAVLT (test-retest r = ;0.60–0.70; Van Den
Burg and Kingma, 1999; Luciana et al., 2018). In the current
sample, ICC, calculated by comparing performance during par-
ticipants’ first and second fMRI runs, is 0.64 for the 0-back task
and 0.68 for the 2-back task. However, the reliability of MID
earnings is poor (ICC=0.27). Thus, the low correlation between
list sorting performance and measures including MID earnings
may in part reflect low measure reliability. (Test-retest reliability
estimates for the Intertemporal Cash Choice Task, Little Man
Task, and post-scan n-back stimuli recognition memory test are
not available because these tests were only completed once and
reliability estimates have not been published elsewhere; test-
retest reliability was not calculated for the SST because run-spe-
cific stop-signal delay values were not available.)

Behavioral relationships replicate across independent data
releases
To assess the reproducibility of behavioral relationships, we
cross-correlated all performance measures using data from cura-
ted ABCD releases 1.1 (n= 4,397) and 2.0.1 (n=7,140 new indi-
viduals) separately. The pattern of relationships was stable across
releases (spatial rs = 0.982), suggesting that the observed pattern
is generalizable rather than idiosyncratic to a particular sample.

Behavioral relationships are not influenced by family
structure
The full 11,537-child cohort includes 3,532 related children from
9,750 unique families (based on self-report). Because relatedness
affects the independence of behavioral measures and could have
affected relationships between them, we replicated correlations
between cognitive and attentional abilities in a subset of data
from only one child per family. The pattern of behavioral rela-
tionships in this unrelated subsample was nearly identical to that
observed in the full sample: the Spearman spatial correlation
between the two samples’ vectorized behavioral cross-correlation
matrices was 0.999.

Given the importance of accounting for family structure in
big data samples, we next characterized effects of relatedness on
behavioral relationships with an additional analysis. First, we
computed the absolute difference between all 136 pairwise
behavioral correlations in the full sample (n=11,537) and the
unrelated subsample (n= 9,750 after excluding 1,787 related chil-
dren). Next, we randomly excluded 1,787 children from the full
sample, re-calculated pairwise behavioral relationships, and
recorded the difference between the full-sample correlations and
these random subsample correlations. We repeated this process
1,000 times to generate a null distribution of correlation

coefficient differences for each pair of behavioral measures. Non-
parametric p values were generated by comparing each true
correlation difference, |r(i,j)full sample – r(i,j)unrelated subsample|, to
its corresponding null distribution. We used this conservative
sub-sampling approach rather controlling for family relatedness
with linear mixed models because of the range of possible fami-
lial relationships and the fact that relatedness may be inaccur-
ately captured with self-report measures.

Using the subsampling approach, we found that none of the
136 pairwise behavioral relationships differed between the full
sample and the unrelated subsample more than they differed
between the full sample and the random subsamples (all .
Bonferroni-corrected p= 0.05/136= 3.68� 10�4). Therefore,
excluding family members from the sample did not dispropor-
tionately affect pairwise behavioral relationships, and including
related participants does not bias the current results.

Behavioral relationships are robust to age, sex, outliers, and
missing data
Control analyses confirmed that behavioral relationships were
robust to other potential confounds. Specifically, the overall pat-
tern of relationships was consistent after controlling for age and
sex with partial correlation (n= 11,537; rs = 0.995), excluding
outlier values (.2.5 SDs from the group mean; n=11,537; rs =
0.995), excluding children with any missing behavioral scores
(n= 7,504; rs = 0.997), excluding children who completed any
neuroimaging task (i.e., the emotional n-back task, SST, or MID
task) on a laptop outside the scanner (n= 9,452; rs = 0.997), and
excluding children with neuroimaging task performance flags
provided by the ABCD Study (n= 6,441; rs = 0.982). The overall
pattern of relationships was replicated to a lesser degree in a con-
servative subsample of children excluding relatives, outlier

Figure 4. Relationships between fMRI activation and working memory function, measured
with an out of scanner list sorting task, across individuals. Analyses control for age, sex, scan-
ner, fluid intelligence, and mean frame-to-frame head motion during the relevant fMRI runs.
Unthresholded t statistics (regression coefficients divided by their SE) are visualized on the
inflated cortical surface. Black outlines indicate vertices significant at family-wise error-cor-
rected, two-tailed p, 0.05.
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values, incomplete cases, children who
completed neuroimaging tasks outside
the scanner, and children with neuroi-
maging task performance flags, and
controlling for age and sex (n=4,393;
rs = 0.973). Finally, associations between
behavioral measures were similar across
data collection sites despite differences
in target sociodemographics (Garavan et
al., 2018). Similarity between site-spe-
cific behavioral cross-correlation pat-
terns ranged from rs = 0.80 to rs = 0.94
(mean rs = 0.86, SD = 0.03).

Neural signatures of working
memory
To identify a vertex-wise map of asso-
ciations with working memory, we
related out-of-scanner List Sorting
Working Memory performance to
fMRI activation in response to a work-
ing memory challenge. Working memory was significantly
related to 2-back versus 0-back (i.e., high vs low memory load)
activation in regions of frontal and parietal cortex including
bilateral intraparietal sulci, dorsal premotor cortex/frontal eye
fields, dorsolateral prefrontal cortex, anterior insula, dorsal ante-
rior cingulate cortex extending into the presupplementary motor
area, and precuneus (Fig. 4). In line with previous work high-
lighting the importance of frontoparietal regions for working
memory in development (Klingberg et al., 2002; Satterthwaite et
al., 2013; Klingberg and Darki, 2015), children with better out-
of-scanner working memory performance showed increased ac-
tivity during high relative to low memory load task blocks in this
distributed set of regions that overlap with frontoparietal and
dorsal attention networks (Power et al., 2011; Yeo et al., 2011;
Fig. 5).

Relationships between working memory and fMRI activity
are domain specific
Are patterns of fMRI activation that track individual differences
in working memory driven by general task demands, or are they
driven by working memory engagement per se? We performed
two analyses to disentangle these alternatives. First, we examined
the association between individual differences in working mem-
ory performance and activation revealed by a contrast emotional
of versus neutral face blocks in the n-back task. Although these
emotion-related activation patterns were measured during a
working memory task, the contrast of these two types of face
blocks does not reflect a working memory challenge. Therefore,
significant relationships between these patterns and working
memorywould suggest that neural signatures of workingmemory
are domain general rather thandomain specific. Second, we exam-
ined the relationships between individual differences in working
memory and activation patterns reflecting distinct cognitive proc-
esses in distinct task contexts: inhibitory control during an SST
and rewardprocessingduringaMIDtask.

Results revealed that working memory was not significantly
associated with emotion-related activation during the emotional n-
back task, inhibitory control-related activation during the SST, or
reward-related activation during the MID task (Fig. 4). Although
we did not compare regression coefficients across conditions
because participant samples were overlapping but not identical,
more participants and time points were available for the SST and

MID than for the emotional n-back task. Furthermore, within-sub-
ject reliability of fMRI task activations (characterized by comparing
beta weights in regions of the Desikan cortical brain atlas from par-
ticipants’ first and second task runs, as included in curated data
release 2.0.1) was numerically highest for the MID task contrast.
Thus, the presence of significant effects for the working memory
contrast, but not the inhibitory control or reward processing con-
trasts, is not attributable to sample size, amount of data per individ-
ual, or increased within-subject fMRI activation reliability for the
working memory contrast, and results suggest that frontoparietal
activity is a domain-specific rather than a domain-general signature
of working memory.

Memory-related frontoparietal activity reflects in-scanner
and out-of-scanner working memory performance
One potential explanation of the current results is that in-scan-
ner emotional n-back performance, a state-like measure of work-
ing memory and task engagement rather than a measure of
individual differences in working memory per se, drives the
selective relationship between working memory and 2-back ver-
sus 0-back frontoparietal activation. To evaluate this possibility,
we replicated the analysis relating out-of-scanner working mem-
ory performance to 2-back versus 0-back activation with age, sex,
scanner, fluid intelligence, mean frame-to-frame head motion
during the n-back task, and 0-back and 2-back accuracy included
in the model as covariates. Results revealed significant clusters in
frontoparietal regions (Fig. 6), demonstrating that memory-
related activation reflects both in-scanner and out-of-scanner
working memory performance.

As an exploratory analysis, we next related 2-back versus
0-back activity to behavior with a multiple regression model that
included all 17 behavioral measures reported in Figure 1 as well
as age, sex, scanner, and mean frame-to-frame head motion dur-
ing the n-back task. As expected, n-back activity predicted in-
scanner 2-back and 0-back accuracy, even when controlling for
performance on all out-of-scanner cognitive tasks. In addition,
significant (albeit qualitatively weaker) relationships were
observed between 2-back versus 0-back activity and performance
on the list sorting task and the out-of-scanner measures with
which it was most highly correlated, the NIH Toolbox Picture
Vocabulary and Oral Reading Recognition tasks and the WISC-
V matrix reasoning test. Activity was also significantly related to

Figure 5. Overlap between neural signatures of working memory in childhood and canonical resting-state functional networks
from Yeo et al. (2011) and Power et al. (2011). Black outlines indicate significant relationships between 2-back versus 0-back
activation and working memory function across individuals (family-wise error-corrected, two-tailed p, 0.05).
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performance on the Little Man Task. Together, these results sug-
gest that frontoparietal activity reflects both in-scanner and out-
of-scanner measures of working memory as well as behavioral
performance on statistically related measures. Given that a limi-
tation of this exploratory analysis is strong correlation among
predictor variables, future work relating independent measures
of cognitive and attentional processes to frontoparietal activity
observed in multiple task contexts can inform the degree to
which working memory-related activity specifically reflects
working memory behavioral performance.

Neuroimaging findings replicate across independent data
releases
To assess the reproducibility of observed brain–behavior rela-
tionships, we repeated fMRI analyses using data from partici-
pants first included in ABCD releases 1.0 and 2.0.1 separately.
Consistent with the full-sample findings, List Sorting Working
Memory Task performance was significantly related to 2-back
versus 0-back activity in frontoparietal regions in both subsam-
ples. List sorting performance was not significantly related to
emotional versus neutral face, successful versus unsuccessful
stop, or successful versus unsuccessful reward activity in either
subsample (Fig. 7). When controlling for in-scanner n-back ac-
curacy, the pattern of results was qualitatively similar, but signifi-
cant relationships were observed in release-2 data only (release 1
n= 1,412; release 2 n= 2,338; Fig. 6).

Discussion
Working memory is a foundational cognitive function that
changes over development and varies across individuals. Here,
we characterize relationships between working memory, cogni-
tive and attentional processes, and task-related brain activity in
childhood using behavioral and fMRI data from the largest de-
velopmental neuroimaging sample to date. Behavioral analyses
demonstrate that children with stronger working memory abilities
perform better on a range of cognitive tasks, and revealed close rela-
tionships between working memory, performance on other mem-
ory tasks, language abilities, and fluid intelligence. fMRI analyses of
emotional n-back task, SST, and MID task data provide evidence

that frontoparietal activation in response to an explicit working
memory challenge, but not in response to general task demands, is
a reliable marker of working memory ability. Finally, a control anal-
ysis suggests that memory-related frontoparietal activity reflects
individual differences in working memory above and beyond
ongoing task performance.

Positive associations between working memory, language
abilities, and fluid intelligence replicate previous work on the
structure of cognition in children and adults (Engle et al., 1999;
Gathercole, 1999; Thompson et al., 2019). As expected, children
with stronger working memory performance (measured with the
List Sorting Working Memory Test) also showed better perform-
ance on tests of episodic memory (Picture Sequence Memory),
short-term memory (Rey Auditory Verbal Learning), and low-
load and high-load working memory (emotional n-back 0- and
2-back conditions, respectively). Correlations between these
measures in the full sample of 11,537 children ranged from 0.32
to 0.36, suggesting that they reflect both distinct and overlapping
aspects of memory function. Somewhat surprisingly given estab-
lished links between working memory and processing speed
(Conway et al., 2002), working memory was less closely related
to performance on the Pattern Comparison Processing Speed
Test than to performance on every cognitive task except the SST,
MID task, and Intertemporal Cash Choice task. Although the
strength of the relationship between working memory and proc-
essing speed (rs = 0.20) is numerically similar to previous find-
ings with the same tasks in 8- to 12-year-olds (r= 0.26; Carlozzi
et al., 2015), individual differences in working memory were
more strongly related to processes including executive attention
and cognitive flexibility than to processing speed in the current
cohort. Together, these results reveal relationships between
working memory and cognitive and attentional processes in
childhood.

This behavioral cross-correlation pattern was consistent after
controlling for age and sex and excluding statistical outliers,
incomplete cases, and neuroimaging task data collected outside
the scanner. These behavioral patterns remained unchanged
when measured in a subsample of the data that did not include
relatives (i.e., only including one child per identified family).
Thus, although it is important to account for these factors in

Figure 6. Relationships between 2-back versus 0-back activation and out-of-scanner working memory performance across individuals, controlling for age, sex, scanner, fluid intelligence,
mean frame-to-frame head motion, and in-scanner 0-back and 2-back accuracy, in the full sample and in ABCD data releases 1.1 (“release 1”) and 2.0.1 (“release 2”) separately. Black outlines
indicate vertices significant at family-wise error-corrected, two-tailed p, 0.05. Results demonstrate that frontoparietal activation in 2-back versus 0-back contrasts reflects trait-like in addition
to state-like working memory abilities.
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large datasets such as the ABCD sample, the current results
appear robust to effects of statistical dependence and outliers.
Furthermore, the results are not biased by the inclusion of related
children.

Neuroimaging results likewise align with previous work, pro-
viding evidence that frontoparietal activity reflects differences in
working memory function during development (Klingberg et al.,
2002; Satterthwaite et al., 2013). The narrow age range of the cur-
rent sample, however, allowed us to disentangle individual differ-
ences from developmental changes, providing novel evidence
that frontoparietal brain function underlies variability in working
memory both within and across individuals. Furthermore,
assessing relationships between working memory and fMRI ac-
tivity related to memory, emotion processing, inhibitory control,
and reward processing demonstrated that frontoparietal activa-
tion is a domain-specific rather than a task-general neural signa-
ture of working memory. Accounting for in-scanner emotional
n-back performance, which reflects individual differences in
working memory and attentional processes as well as transient
attentional state, revealed relationships between out-of-scanner
working memory performance and memory-related fMRI activa-
tion in regions of superior parietal and presupplementary motor
cortex. Children with stronger working memory abilities, there-
fore, show increased frontoparietal activation during high rela-
tive to low memory load task blocks in part because they simply
perform better on these tasks, but also because of individual dif-
ferences in their ability to hold and manipulate information in
mind.

The current results suggest that frontoparietal activation is a
domain-specific neural signature of working memory in that

individual differences in working memory are selectively reflected
in 2-back versus 0-back frontoparietal activity. Results of an ex-
ploratory analysis also suggest some degree of specificity in the
reverse direction: 2-back versus 0-back frontoparietal activity is
uniquely related to both in-scanner and out-of-scanner working
memory measures, as well as a subset of measures correlated
with working memory task performance. Importantly however,
frontoparietal activity does not only support working memory
function but is also related to processes including attention and
cognitive control (Corbetta and Shulman, 2002; Vincent et al.,
2008; Spreng et al., 2010, 2013; Ptak, 2012). Recent work has
emphasized the multifunctional nature of the frontoparietal net-
work, proposing that it represents a domain-general “cognitive
core” of the brain (Assem et al., 2020). Our results are not
inconsistent with this conceptualization. Rather, they demonstrate
that a high versus low memory load contrast reveals a frontopa-
rietal activity signature of working memory, and leave open the
possibility that an attention or cognitive control contrast could
reveal a frontoparietal activity signature of attention or cognitive
control. Future work that expands the collection of attention and
control tasks and varies their cognitive demands will provide
additional insights into the functional significance of overlapping
and distinct patterns of frontoparietal activity across psychological
tasks with development.

A neural signature of working memory based on task activa-
tion data complements a growing body of work identifying neu-
romarkers of individual differences from functional brain
connectivity. In particular, patterns of task-based and resting-
state functional connectivity, or statistical dependence between
two brain regions’ activity time courses, have been used to

Figure 7. Relationships between task activation and out-of-scanner working memory performance across individuals, controlling for age, sex, scanner, fluid intelligence, and mean frame-to-
frame head motion. Black outlines indicate vertices significant at family-wise error-corrected, two-tailed p, 0.05. Analyses were run using data from each release separately. Participants
included in the full sample were included in the “release 1” analysis if they appeared in curated ABCD data release 1.1, and were included in “release 2” otherwise.
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predict individual differences in abilities including attention,
fluid intelligence, and aspects of memory (Finn et al., 2015;
Galeano Weber et al., 2017; Rosenberg et al., 2017; Lin et al.,
2018; Rudolph et al., 2018; Yamashita et al., 2018; Avery et al.,
2020). Recent work suggests that models based on task connec-
tivity generally outperform those based on resting-state connec-
tivity for predicting behavior, potentially because tasks engage
circuits related to a process of interest to magnify individual dif-
ferences in behaviorally relevant neural phenotypes, thereby
improving predictions (Finn et al., 2017b; Greene et al., 2018;
Rosenberg et al., 2018; Yoo et al., 2018). It is an open question,
however, whether tasks selectively enhance the prediction of
task-relevant behaviors. Here, motivated by previous work relat-
ing frontoparietal activation to developmental change in working
memory (Klingberg et al., 2002; Kwon et al., 2002; Crone et al.,
2006; Satterthwaite et al., 2013), we address this question with
task activation rather than functional connectivity analyses. The
current result, that frontoparietal activity indexes working mem-
ory only when working memory is explicitly taxed, suggests that
task challenges may reveal neural signatures of task-relevant
behaviors, and underscores the importance of multitask or mul-
ticondition data for elucidating state-specific and state-general
biomarkers of behavior.

The goal of the current work was to characterize a brain-
based biomarker and behavioral signature of working memory
in childhood not just for the sake of understanding these rela-
tionships at a single point in time, but also for ultimately under-
standing their trajectories across development. Because the
ABCD Study will follow children from age 9–10 to age 19–20,
longitudinal work can provide new insights into associations
between working memory, cognitive and attentional processes,
and real-world outcomes across adolescence and young adult-
hood. Biennial MRI sessions, during which participants will
complete the same emotional n-back task, SST, and MID task
that they completed at ages 9 through 10, will also facilitate the
discovery of changing neural signatures of abilities and behavior.
For example, will there be changes in the distinct and overlap-
ping brain activity patterns associated with working memory, in-
hibitory control, and reward processing with age? Will the
domain specificity and domain generality of these signatures
vary over time? Are there different developmental trajectories for
frontoparietal organization of function across these processes? A
fruitful way to frame the current findings is as a single point
along a nonlinear trajectory rather than as a summary of working
memory function in development as a whole.

Finally, as sample sizes in psychology and human neuro-
science rapidly increase, it is important to note limitations of big
data cohort-based approaches. First, behavioral and neuroimag-
ing task batteries for these studies are determined by committee
to address specific scientific goals. Although the resulting task
sets often assess a range of mental processes, they may not be
optimal for answering all questions. In the ABCD Study neuroi-
maging battery, for example, cognitive control demands and task
difficulty are not equated across the emotional n-back task, SST,
and MID task. Thus, the 2-back versus 0-back contrast may
reflect processes such as cognitive control and attention that are
not reflected in the three control contrasts. In addition, the indi-
vidualized nature of the SST and MID task (which results in dif-
ferent timing parameters for different children) may obscure
activation patterns related to individual differences in behavior.
Furthermore, recent work highlights potential issues in the
ABCD stop-signal task that may impact interpretation of the SST

data (Bissett et al., 2020). Future work relating individual differ-
ences in working memory to fMRI activity reflecting cognitive
control, attentional engagement, and other processes in contexts
matched for task difficulty will further inform the domain speci-
ficity and generality of neural signatures of working memory.
Second, large samples are not necessarily representative samples,
and the ABCD cohort, while geographically, demographically,
and socioeconomically diverse, should not be considered repre-
sentative of the country or the world as a whole (Garavan et al.,
2018). Looking ahead, future work relating cognitive and neural
measures in weighted samples (LeWinn et al., 2017) can comple-
ment existing studies of single-site and multisite datasets. Third,
just as the ABCD participant population may not represent
youth as a whole, the structure of neurocognition in nine- and
10-year-olds likely does not reflect that of children at other ages.
Longitudinal analyses of the ABCD cohort can inform changes
in brain–behavior relationships across adolescence, and data col-
lection efforts such as the Human Connectome Project (HCP)
Development Study (Somerville et al., 2018) and HCP Aging
Study (Bookheimer et al., 2019) can inform these associations in
younger and older individuals. Finally, because even small effects
can reach significance when samples are large, it is helpful to dis-
tinguish statistical from practical significance. Here, we focused
on statistical significance as a proof-of-principle demonstration
that memory-related frontoparietal activity tracks individual dif-
ferences in working memory in childhood. Future work can eval-
uate practical or applied significance by testing whether models
based on task activation patterns generalize to predict real-world
outcomes including academic performance or changes in these
outcomes over time.

Despite these limitations, the current results provide the most
well powered characterization of relationships between working
memory, cognitive and attentional processes, and task-based
fMRI activation in development to date. Overall, they replicate
established findings that children with stronger working memory
function perform better on a variety of cognitive tasks, particu-
larly those assessing other aspects of memory, language skills,
and fluid intelligence. Furthermore, they provide evidence that
frontoparietal network activation in response to an explicit work-
ing memory challenge is a robust and domain-specific marker of
individual differences in working memory ability at age nine and
ten. Together, these results inform understanding of the struc-
ture of neurocognition in childhood, and highlight the impor-
tance of evaluating brain–behavior relationships in multiple task
contexts to demarcate the specificity and generality of neural sig-
natures of abilities and behavior.
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