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Quantitative trait variation in ASD probands
and toddler sibling outcomes at 24 months
Jessica B. Girault1* , Meghan R. Swanson2, Shoba S. Meera1,3, Rebecca L. Grzadzinski1, Mark D. Shen1,4,
Catherine A. Burrows5, Jason J. Wolff6, Juhi Pandey7, Tanya St John8, Annette Estes8, Lonnie Zwaigenbaum9,
Kelly N. Botteron10, Heather C. Hazlett1,4, Stephen R. Dager11, Robert T. Schultz7, John N. Constantino12, and
Joseph Piven1,4 for the IBIS Network

Abstract

Background: Younger siblings of children with autism spectrum disorder (ASD) are at increased likelihood of
receiving an ASD diagnosis and exhibiting other developmental concerns. It is unknown how quantitative variation
in ASD traits and broader developmental domains in older siblings with ASD (probands) may inform outcomes in
their younger siblings.

Methods: Participants included 385 pairs of toddler siblings and probands from the Infant Brain Imaging Study.
ASD probands (mean age 5.5 years, range 1.7 to 15.5 years) were phenotyped using the Autism Diagnostic
Interview-Revised (ADI-R), the Social Communication Questionnaire (SCQ), and the Vineland Adaptive Behavior
Scales, Second Edition (VABS-II). Siblings were assessed using the ADI-R, VABS-II, Mullen Scales of Early Learning
(MSEL), and Autism Diagnostic Observation Schedule (ADOS) and received a clinical best estimate diagnosis at 24
months using DSM-IV-TR criteria (n = 89 concordant for ASD; n = 296 discordant). We addressed two aims: (1) to
determine whether proband characteristics are predictive of recurrence in siblings and (2) to assess associations
between proband traits and sibling dimensional outcomes at 24 months.

Results: Regarding recurrence risk, proband SCQ scores were found to significantly predict sibling 24-month
diagnostic outcome (OR for a 1-point increase in SCQ = 1.06; 95% CI = 1.01, 1.12). Regarding quantitative trait
associations, we found no significant correlations in ASD traits among proband-sibling pairs. However, quantitative
variation in proband adaptive behavior, communication, and expressive and receptive language was significantly
associated with sibling outcomes in the same domains; proband scores explained 9–18% of the variation in
cognition and behavior in siblings with ASD. Receptive language was particularly strongly associated in concordant
pairs (ICC = 0.50, p < 0.001).

Conclusions: Proband ASD symptomology, indexed by the SCQ, is a predictor of familial ASD recurrence risk. While
quantitative variation in social communication and restricted and repetitive behavior were not associated among sibling
pairs, standardized ratings of proband language and communication explained significant variation in the same domains
in the sibling at 24months, especially among toddlers with an ASD diagnosis. These data suggest that proband
characteristics can alert clinicians to areas of developmental concern for young children with familial risk for ASD.
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Introduction
Autism spectrum disorder (ASD) is a highly heritable [1]
neurodevelopmental disorder diagnosed in 1–2% of
children [2]. While significant advances in genetics have
identified de novo mutations in a portion of the ASD
population, the vast majority of ASD cases are attributable
to common [3, 4], additive [3, 5] polygenic variation. The
heritable nature of ASD is reflected in the recurrence risk
in families, where prospective, longitudinal studies of in-
fant siblings of older children with ASD (probands) have
revealed that approximately 20% of high-risk younger sib-
lings receive a diagnosis themselves [6]. An additional 28%
of high-risk siblings who do not meet the diagnostic
criteria for ASD exhibit atypical behavioral profiles in
toddlerhood [7], suggesting an important role for ASD
genetic liability in child development more broadly.
Studies in biological siblings have revealed important in-

sights into the heritability of ASD traits and broader devel-
opmental domains in families affected by ASD. Among
sibling and twin pairs with ASD or subthreshold ASD
symptomology, similarities are present in the domains of
socialization [8–10], communication [8–10], and adaptive
behavior [9, 10]. Other studies have reported phenotypic
congruence in cognitive performance, including language
skills and verbal and nonverbal communication abilities,
among twin and sibling pairs concordant for ASD [8, 9,
11–13]. While fewer large-scale studies have investigated
the familial aggregation of ASD symptom domains, there
is evidence that nonverbal communication and social im-
pairments are correlated among affected sibling pairs [8,
14], with nonverbal communication being most heritable
[15]. Studies of symptom profiles in sibling pairs have not
found restrictive and repetitive behaviors to be similar
among siblings [8, 9, 11]. This work has provided largely
convergent evidence that the level of cognitive and behav-
ioral functioning in siblings with ASD is familial in nature.
In the context of ASD recurrence in families, it becomes

critical to understand how characteristics of the proband—
as indices of a potentially shared genetic liability for ASD—
may inform diagnostic and developmental outcomes in
their younger sibling(s) during a period suitable to early
intervention. The prospective nature of the infant sibling
study design is poised to address these questions, though
only two studies of this kind have been reported to date.
Schwichtenberg and colleagues [16] investigated whether
social-communicative features of first-degree family mem-
bers informed infant sibling categorical outcome (ASD,
atypical development, typical development) at 36months,
and found no significant association between the parent or
proband-autistic traits and infant sibling categorical out-
come group. Similarly, Ozonoff and colleagues [6] reported
that ASD social communication in probands was not
predictive of ASD diagnostic outcome group (ASD vs. no
ASD) in younger siblings. These studies found that

proband ASD-related social communication abilities were
not predictive of categorical or diagnostic outcomes in
younger siblings, though it remains unclear whether other
proband traits (repetitive behaviors, adaptive behaviors)
may inform recurrence risk. Further, there have been no
investigations relating proband traits to continuous, quanti-
tative variations in ASD symptomology or other behavioral
traits in toddler siblings. Thus, it is unknown whether pro-
band traits hold predictive power for specific areas of devel-
opmental concern, beyond diagnostic outcome, in younger
siblings from high-risk families.
In the present study, we leveraged the prospective lon-

gitudinal design of the Infant Brain Imaging Study (IBIS)
to address two primary research goals: (1) to determine
whether proband characteristics are predictive of ASD
recurrence in their younger sibling and (2) to assess the
extent to which proband traits explain variation in tod-
dler sibling dimensional outcomes at 24 months. We fo-
cused on the defining features of ASD and domains
shown to be associated among older sibling pairs, in-
cluding adaptive behavior, socialization, communication,
and repetitive behaviors. We also investigated domains
shown to be aberrant during the first 2 years of life in
high-risk siblings, including motor and language abilities
[7, 17–21], which may serve as targets for early
intervention.

Methods
Participant sample
IBIS is an ongoing, longitudinal study of infants at familial
risk for ASD by virtue of having an older sibling with a
diagnosis of ASD, verified by medical records and the Aut-
ism Diagnostic Interview-Revised (ADI-R); any additional
older siblings with ASD were not phenotyped. All partici-
pants were screened and excluded based on the following
criteria: (1) known genetic conditions or syndromes in the
proband or infant; (2) medical/neurological conditions
affecting growth, development, or cognition (e.g., vision or
hearing loss); (3) birth weight < 2000 g and/or gestational
age < 36 weeks or significant perinatal adversity and/or
exposure to in utero neurotoxins; (4) contraindication for
MRI; (5) predominant home language other than English;
(6) adopted children or half siblings; (7) first-degree relative
with psychosis, schizophrenia, or bipolar disorder screened
using the Family Interview for Genetic Studies [22]; and (8)
multiple gestation pregnancy. Parents provided written in-
formed consent prior to participating in this study. Proce-
dures for this study were approved by the Institutional
Review Boards at each clinical data collection site: Univer-
sity of North Carolina at Chapel Hill, University of Wash-
ington in Seattle, Children’s Hospital of Philadelphia, and
Washington University in St. Louis. Data coordination was
managed by the Montreal Neurological Institute at McGill
University. A comparison sample of infants with typically
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developing older siblings was included in the larger IBIS
study; however, parental interviews on typically developing
older siblings’ adaptive behavior were not collected, and
thus, these sibling pairs were not included here.
The present study included 385 pairs of familial high-risk

toddlers and their older siblings with ASD (proband). Be-
havioral data were available for both the toddler and the
proband on at least 1 parent interview or examiner-based
assessment (sample sizes per assessment are shown in
Table 1), and a diagnostic outcome was available for the
toddler sibling at 24months. A total of 89 sibling pairs were
concordant for ASD based on toddler sibling diagnosis of
ASD at 24months. The remaining 296 pairs were discord-
ant for ASD, as the younger siblings did not receive an ASD
diagnosis. The sample characteristics are reported in
Table 1.

Diagnostic classification
Clinical best estimate diagnoses were made at 24-month
visits by experienced, licensed clinicians using the DSM-IV-
TR criteria for autistic disorder or pervasive developmental
disorder, not otherwise specified, and collectively referred
to as ASD. The DSM-IV was used for diagnostic classifica-
tion as the DSM-5 was released in the later phases of the

IBIS study. A complete description of the assessment and
diagnostic procedures is reported by Estes et al. [17].

Clinical and behavioral measures
A list of corresponding proband and toddler sibling
measures are reported in Table 2. Proband measures
were collected using parent interviews including the
ADI-R, Social Communication Questionnaire (SCQ),
and Vineland Adaptive Behavior Scales, Second Edition
(VABS-II). Proband behavioral data were largely col-
lected at the younger sibling’s first visit as part of the lar-
ger longitudinal study at 6 months of age, but some
variation in timing for data collection (i.e., parent inter-
views on the proband taken at a subsequent study visit)
resulted in slightly different age ranges for each proband
measure (ADI-R: mean age 5.5 years, range 1.9 to 15.5
years; SCQ: mean age 5.5 years, range 1.7 to 15.5 years;
VABS-II: 5.6 years, range 1.8 to 15.5 years). The pro-
band’s chronological age at the collection of each
respective parent interview was entered as a covariate in
statistical analyses. Toddler sibling scores included a
combination of parent interviews and examiner-based
assessments including the ADI-R, Autism Diagnostic
Observation Schedule (ADOS), VABS-II, and Mullen

Table 1 Participant characteristics and sample sizes

Probands (n = 385) Siblings

ASD (n = 89) No-ASD (n = 296) Chi squarea

n % n % n % χ2 p

Sex 14.69 0.0001

Female 53 13.8 20 22.5 136 46.0

Male 332 86.2 69 77.5 160 54.0

Child race 10.97 0.6887

Asian 3 0.8 1 1.1 3 1.0

Black 12 3.1 3 3.4 10 3.4

More than one race 36 9.4 13 14.6 26 8.8

White 300 77.9 69 69.7 233 78.7

Not answered 34 8.8 10 11.2 24 8.1

Maternal education 4.03 0.1336

No college 125 32.5 36 40.5 91 30.7

College degree 153 39.7 28 31.5 125 42.2

Graduate degree 94 24.4 23 25.8 71 24.0

Missing 11 2.86 2 2.2 9 3.04

Number of assessmentsb

ADI-R 372 96.6 86 96.6 281 94.9

ADOS – – 75 84.3 261 88.2

MSEL – – 87 97.8 295 99.7

SCQ 346 89.9 – – – –

VABS-II 331 86.0 85 95.5 291 98.3
aComparison between siblings with and without a diagnosis of ASD
bNumber of participants with at least one of the scales of interest from each assessment
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Scales of Early Learning (MSEL). All sibling data were
collected at the 24-month visit (mean age = 24.7 months,
SD = 0.59 months), and chronological age is included in
all statistical models. Measures of interest from each as-
sessment are described below.
The ADI-R is a diagnostic interview assessing the quali-

tative abnormalities in reciprocal social interaction and
communication, restricted and repetitive behaviors, and
the onset of atypical development at or before 36months
[23]. Measures of interest included the verbal and nonver-
bal communication, restricted and repetitive behavior
(RRB), and social standard scores. Higher scores on the
ADI-R reflect a greater endorsement of ASD symptomol-
ogy. The ADI-R was administered by a research-reliable
examiner, with only nonverbal items administered to non-
verbal children. Of the 372 probands and 367 siblings with
ADI-R data, 28% of probands (n = 105) and 57% of siblings
(n = 211) were scored according to the nonverbal

algorithm, and 72% of probands (n = 267) and 43% of sib-
lings (n = 156) were scored using the verbal algorithm. Of
the 355 sibling pairs with available ADI-R data, 118 pairs
(33%) were scored using the verbal algorithm, 66 pairs
(19%) were scored using the nonverbal algorithm (as
shown in Table 3), and the remaining pairs (n = 171, 48%)
were scored using opposite algorithms and are thus not
compared with the analyses of the ADI-R data described
below. Age-appropriate scoring algorithms were used;
probands under the age of 4 years and siblings at the 24-
month visit were scored using the algorithm validated for
ages 2 years to 3 years and 11months. Probands ages 4
years and older were scored using the standard algorithm.
Distributions of proband and sibling ADI-R scores can be
seen in Additional file 1: Figure S1 in the online supple-
mental material.
The SCQ, derived from the original ADI, is a 40-item

parent-report screening instrument for ASD that focuses

Table 2 Behavioral and clinical measures of interest

Domain(s) Probands Siblings

Parent interview Parent interview Examiner-based

Autism traits ADI-R, SCQ ADI-R ADOS

General ability/adaptive behavior VABS-II: ABC, SOC VABS-II: ABC, SOC MSEL: ELC

Communication/language VABS-II: COM, EL, RL VABS-II: COM, EL, RL MSEL: EL, RL

Motor VABS-II: MS, GM, FM VABS-II: MS, GM, FM MSEL: GM, FM

ADI-R Assessments include the Autism Diagnostic Interview-Revised, ADOS Autism Diagnostic Observation Schedule, SCQ Social Communication Questionnaire,
VABS-II Vineland Adaptive Behavior Scales Second Edition, and the MSEL Mullen Scales of Early Learning
Measures of interest from the MSEL and VABS-II include ABC adaptive behavior composite, ELC Early Learning Composite, SOC socialization, COM communication,
EL, RL expressive and receptive language, MS motor skills, GM, FM gross and fine motor
Higher scores on the ADI-R, SCQ, and ADOS indicate greater endorsement of ASD symptoms: higher scores on the VABS-II and MSEL indicate better adaptive and
cognitive skills

Table 3 Intraclass correlation coefficients

All sibling pairs Concordant pairs Discordant pairs

n ICC p n ICC p n ICC p

ADI-R

Social 355 0.03 0.096 81 − 0.20 0.595 274 0.02 0.112

RRB 355 0.03 0.056 81 0.02 0.386 274 0.04 0.027

Nonverbal communication 66 0.12 0.041 29 0.28 0.038 37 0.07 0.043

Verbal communication 118 0.04 0.087 18 0.08 0.209 100 0.01 0.389

VABS-II

ABC 306 0.13 < 0.001+ 65 0.27 0.005 241 0.09 0.008

Socialization 314 0.08 0.005 69 0.25 0.002+ 245 0.03 0.207

Communication 313 0.22 < 0.001+ 69 0.41 0.002+ 244 0.14 0.006

Expressive 321 0.15 < 0.001+ 71 0.35 0.001+ 250 0.07 0.052

Receptive 322 0.23 < 0.001+ 71 0.50 < 0.001+ 251 0.12 0.008

Motor 281 0.11 0.027 62 0.05 0.344 219 0.11 0.053

Fine 282 0.09 0.094 61 0.00 0.506 221 0.09 0.125

Gross 281 0.21 < 0.001+ 62 0.25 0.053 219 0.18 0.001+

+significant at p ≤ 0.004 after Bonferroni correction (12 comparisons per group)
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on items relating to ASD symptomology likely to be ob-
served by a primary caregiver [24]. This study utilized
the SCQ Lifetime version referencing complete develop-
mental history (past and present) of the proband, with a
subset of items focused on the period of time between
the proband’s fourth and fifth birthdays; if the proband
was not yet 4 years, parents were asked to report on the
past 12 months. The SCQ was not administered to sib-
lings at the 24-month visit given the generally limited
validation of the SCQ in populations under 30 months
of age [25]. SCQ total scores range from 0 to 33 for non-
verbal children and from 0 to 39 for verbal children. In
our sample of 348 probands with SCQ data, 24% (n =
83) were scored using the nonverbal algorithm and 76%
(n = 265) were scored using the verbal algorithm. Higher
scores on the SCQ reflect a greater endorsement of ASD
symptomology. Proband SCQ distributions are shown in
Additional file 1: Figure S1.
The VABS-II provides measures of adaptive behavior in

everyday settings and includes assessment of communica-
tion, daily living, and social and motor skills [26]. For this
study, we utilized the Adaptive Behavior Composite
(ABC), the socialization (SOC), communication (COM),
and motor skills (MS) standard scores. The scale scores of
expressive and receptive language (EL, RL) and fine and
gross motor (FM, GM) were also examined. The ABC,
SOC, COM, and MS standard scores range from 20 to
160 (mean = 100, SD = 15), and scale scores (EL, RL, FM,
GM) range from 1 to 24 (mean = 15, SD = 3), where higher
scores indicate better adaptive skills.
Toddler sibling measures of interest at 24 months in-

cluded the same parent-reported measures from the
VABS-II, as well as examiner-based assessments of simi-
lar constructs on the Mullen Scales of Early Learning
[27]. Specifically, the Early Learning Composite (ELC)
standard score and scale T-scores corresponding to do-
mains measured in probands using the VABS-II: GM,
FM, EL, and RL. The ELC ranges from 49 to 155
(mean = 100, SD = 15), and T-scores range from 20 to 80
(mean = 50, SD = 10) [27]; higher scores indicate better
cognitive skills. Autism traits were assessed using the
ADI-R and the ADOS [28]. The ADOS is a semi-
structured play assessment of the characteristic features
of ASD, capturing communication, social interaction,
play skills, and RRBs. A research-reliable evaluator ad-
ministered the ADOS module 1 or 2 (depending on lan-
guage level) to siblings at the 24-month visit. ADOS
scores of interest included the overall calibrated severity
score [29] and the calibrated severity score for social
affect (SA) [30]. ADOS calibrated severity scores range
from 1 to 10, where higher scores indicate greater en-
dorsement of ASD symptoms. As with probands, the
verbal and nonverbal communication, RRB, and social
scores from the ADI-R were used.

Statistical analyses
First, we sought to determine how proband ASD traits re-
lated to toddler sibling diagnostic outcomes. ANCOVA
was used to test whether probands of concordant and dis-
cordant pairs differed in terms of their ASD trait level.
Sibling diagnostic group was entered as a categorical inde-
pendent variable, controlling for proband sex and age; pri-
mary dependent variables were proband SCQ total score
and ADI-R social, RRB, and communication scores. Sec-
ondary analyses were performed to test for group differ-
ences in proband ABC, SOC, COM, and MS composite
scores from the VABS-II. Proband scores shown to signifi-
cantly differ between concordant and discordant pairs
were entered as independent variables in a logistic regres-
sion analysis predicting sibling diagnostic outcome, con-
trolling for age at assessment for the proband and sibling,
sex of the proband and sibling, and clinical study site.
In order to determine the extent to which variation in

ASD traits, adaptive behavior, socialization, communica-
tion and language, and motor skills are associated among
sibling pairs, intraclass correlation coefficients (ICCs; two-
way mixed, absolute agreement, average measure) ac-
counting for the clustered nature of the data (i.e., siblings
grouped as pairs) were calculated for identical measures
(ADI-R, VABS-II). In this case, ICCs offer the advantage
over Pearson correlations by taking into account the
agreement of scores among sibling pairs, not simply linear
associations. We used the results of the ICC analysis to
identify variables of interest for further investigation,
where any measures or domains found to be significantly
correlated were retained for regression analyses.
Next, linear regression analyses were performed, where

primary independent variables included proband scores
from the VABS-II and dependent variables included both
parent report of sibling behavior on the VABS-II and
examiner-based measures of similar constructs on the
MSEL at 24-months. This allowed us to ensure that our
findings were not an artifact of comparing parent reports
across sibling pairs. All models included proband and sib-
ling age and sex, study site, and sibling diagnostic group as
covariates. A proband score by sibling diagnostic group
interaction term was included to test the hypothesis that
the predictive ability of proband traits for sibling behavior
is stronger in concordant pairs. All linear regression coeffi-
cients are standardized, and bivariate Pearson correlations
were calculated for significant linear regression models to
aid in the interpretation of the effect sizes across measures
(ICCs cannot be calculated across different measures). We
confirmed that model assumptions were met for normality
and heteroscedasticity using quantile-quantile plots and by
plotting the associations between fitted values and residuals,
respectively, for all linear models.
Several analyses were conducted to evaluate the ro-

bustness of the results. To ensure our results are not
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impacted by opposite-sex sibling pairs, primary models
were re-analyzed with only male-male sibling pairs (n =
206). Due to the small number of female-female sibling
pairs (n = 30 total, n = 7 concordant for ASD), we did
not perform analyses on female-only pairs. In an effort
to identify and filter out probands with potential intel-
lectual disability that may be due to de novo mutations
and not inherited genetic variation [31], we conducted
analyses excluding pairs where the proband scored < 60
on the VABS-II ABC (n = 286), translating to performing
below the first percentile. While adaptive behavior and
intellectual ability are not interchangeable, these do-
mains are more highly correlated in individuals with
ASD and comorbid intellectual disability [32], thus, this
approach is conservative in identifying probands with in-
tellectual disability. We also tested the effects of mater-
nal education level (less than a college degree, college
degree, graduate degree) on our models. Finally, due to
several toddlers scoring at the floor on the MSEL EL
and RL T-scores, we re-analyzed the MSEL data using
age-equivalent scores to avoid a skew in the distribution.
Linear and logistic regressions, ANCOVAs, t tests,

Cohen’s d effect sizes, and Pearson correlations were
performed using R version 3.5.1; ICCs were computed
using IBM SPSS Statistics version 26. Bonferroni correc-
tion was applied to each analysis to adjust for the num-
ber of comparisons of interest.

Results
Proband traits as predictors of sibling diagnostic
outcomes
ANCOVA models revealed that probands of concordant
pairs scored higher on the SCQ than probands of dis-
cordant pairs (F1342 = 4.89, p = 0.028, Cohen’s d = 0.27).
Proband scores on the ADI-R (social: F1368 = 1.28, p =
0.259; RRB: F1368 = 0.879, p = 0.349; nonverbal communi-
cation: F1101 = 1.34, p = 0.250; verbal communication:
F1263 = 2.02, p = 0.157) and composite scores from the
VABS-II (ABC: F1319 = 1.77, p = 0.185; SOC: F1323 = 2.63,
p = 0.104; COM: F1322 = 2.59, p = 0.109; MS: F1290 =
0.793, p = 0.374) were not significantly different between
probands of concordant and discordant pairs.
Proband SCQ total score was then entered into a logistic

regression predicting sibling diagnostic outcome, along
with proband and sibling age and sex, and study site. As
expected, based on previous reports [6], sex of the toddler
sibling significantly predicted diagnostic outcome (β =
1.21, SE = 0.38, p = 0.0001; OR for males = 3.34; 95% CI =
1.19, 6.36). Above and beyond the sex of the sibling, we
found that proband ASD symptomology indexed by the
SCQ total score significantly predicted sibling diagnostic
outcome at 24months (β = − 0.06, SE = 0.026, p = 0.014;
OR for a 1-point increase in SCQ = 1.06; 95% CI = 1.01,
1.12). For each additional point a proband scored on the

SCQ—reflective of the endorsement of additional ASD
symptoms—the odds of the toddler sibling receiving a
diagnosis of ASD increased by 6%. Other proband charac-
teristics including chronological age (OR = 0.99; CI = 0.98,
1.0) and sex (OR for males = 0.71; CI = 0.34, 1.54) did not
significantly predict sibling diagnostic outcomes. In sup-
plemental analyses, SCQ results were probed further by
splitting the proband sample into quartiles and controlling
for the verbal and nonverbal status of the proband. Find-
ings from all analyses suggest the SCQ is a significant pre-
dictor of toddler sibling diagnostic outcomes at 24
months, see Additional file 1: Tables S1–S2 in the online
supplemental material for full model results.

Proband-sibling associations: ASD traits
For ASD traits measured by the ADI-R, associations be-
tween proband-sibling pairs were generally weak and none
survived correction for multiple comparisons (Table 3).
Though, when comparing the ICCs for pairs concordant
for ASD, the correlation for abnormalities in communica-
tion is notably higher (ICC = 0.28) among nonverbal pairs
than verbal pairs (ICC = 0.08). We also tested for cross-
instrument correlations between proband SCQ scores and
sibling ADOS calibrated severity scores as an additional
evaluation of ASD trait similarities among sibling pairs; we
found no significant associations (ADOS social: r = − 0.19,
p = 0.123; ADOS calibrated severity: r = − 0.08, p = 0.455).

Proband-sibling associations: cognition and behavior
Distributions of the VABS-II scores for probands and
toddler siblings are depicted in Fig. 1, and a comparison
of proband and sibling measures is presented in Add-
itional file 1: Table S3. For scores on the VABS-II, sig-
nificant ICCs (range 0.25–0.50) for concordant pairs
were found for ABC, SOC, and COM composite scores
and the EL and RL scale scores (Table 3). As expected,
higher ICCs were observed in pairs concordant for ASD.
The highest ICC was found for RL, where 66% of tod-
dlers with ASD scored within 3 points (1 SD on the
VABS-II scale scores) of their proband, as depicted in
Additional file 1: Figure S2 in the online supplemental
material. A significant ICC was also found between GM
scores for discordant pairs (r = 0.18, p = 0.001), an asso-
ciation that did not survive correction for multiple com-
parisons in concordant pairs (r = 0.25, p = 0.053).
The results from regression models relating VABS-II

scores among probands and siblings are shown in Table 4.
Proband ABC, COM, EL, and RL were significantly associ-
ated with sibling scores in the same domains at 24
months, each surviving Bonferroni correction for effects
of interest (proband score, proband score x group inter-
action) across models. No associations were found be-
tween proband and sibling SOC and GM scores after the
adjustment for covariates. Significant proband score by
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sibling diagnostic group interactions was found for EL and
RL scores, suggesting that associations between proband
and sibling scores differed between concordant and dis-
cordant pairs, as expected. Highly similar main effects of
proband scores (VABS-II ABC, EL, RL) were observed for
the MSEL examiner-based assessments of general cogni-
tion (ELC), EL, and RL (Table 5).
We found no notable associations between the sex of

the proband, proband or sibling age, or study site and
sibling outcomes at 24 months, and thus, these covari-
ates are not presented in Tables 4 and 5; model results
for the full set of covariates are reported in supplemental
Additional file 1: Tables S4-S5. For the interpretation of
the effect sizes, raw scatterplots and bivariate Pearson
correlations among proband and sibling scores found to
be significantly associated with the regression analyses
on both the VABS-II and MSEL are shown in Fig. 2.
Pearson correlations ranged between 0.16 and 0.26 for

the entire sample, and between 0.30 and 0.43 for con-
cordant pairs; thus, proband scores explained 9–18% of
the variation (0.09 ≤ r2 ≤ 0.18) in adaptive behavior and
communication in their toddler siblings with ASD.
All primary findings from ICCs and regression models

relating proband and toddler sibling traits were highly
similar across both the male-only sibling pairs and pairs
where the proband scored > 60 on the VABS-II ABC
(Additional file 1: Tables S6-S11). Models adjusted for
maternal education level were highly similar to the main
findings (Additional file 1: Tables S12–13). Replacing
MSEL T-scores with age-adjusted scores had no impact
on the results (Additional file 1: Table S14, Add-
itional file 1: Figure S3).

Discussion
The present study documents the associations between
proband quantitative traits and toddler sibling diagnostic

Fig. 1 Proband and sibling VABS-II composite score distributions. Histograms display a wide distribution of VABS-II adaptive behavior,
communication, socialization, and motor composite scores for ASD probands and toddler siblings with and without ASD. Score distributions
overlap for probands and toddler siblings, with younger siblings exhibiting generally better performance in all domains. Statistics comparing
proband and sibling performance among pairs concordant for ASD are reported in Additional file 1: Table S3 in the online supplemental material
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and dimensional outcomes at 24 months in a cohort of
385 proband-sibling pairs. We found that the proband
ASD trait level, as measured by the SCQ, is predictive of
recurrence risk in younger siblings, though ASD trait
domains were not significantly correlated among con-
cordant sibling pairs. Our analyses further revealed that
proband adaptive behavior, communication, and expres-
sive and receptive language scores accounted for signifi-
cant variation in toddler sibling performance in the
same domains, above and beyond major predictors of
outcomes including diagnostic group. Associations were
significant for the entire sample and stronger in con-
cordant pairs, with proband scores explaining 9–18% of

the variation in outcomes in toddler siblings diagnosed
with ASD (0.30 ≤ r ≤ 0.43; Fig. 2). Importantly, these
findings were convergent across both parent-reported
and examiner-based assessments of sibling cognition
and behavior at 24 months. This study demonstrates that
ASD traits and cognitive and behavioral profiles in pro-
bands have the potential to identify the risk for recur-
rence and specific areas of developmental concern in
younger siblings.
Given the heritable nature of ASD and elevated recur-

rence risk within families affected by ASD, we investi-
gated whether proband traits were useful as statistical
predictors of diagnostic outcomes in their younger

Table 4 Linear regression analyses: VABS-II parent-reported behavior

Betaa 95% CI lower 95% CI upper p value

ABC model (n = 303)

Proband ABC 0.33 0.11 0.55 0.004+

Sibling sex − 0.27 − 0.48 − 0.07 0.009

Group 0.99 0.75 1.23 < 0.0001

Proband score x group − 0.18 − 0.43 0.07 0.149

SOC model (n = 311)

Proband SOC 0.25 0.04 0.46 0.022

Sibling sex − 0.33 − 0.53 − 0.14 0.001

Group 0.88 0.64 1.12 < 0.0001

Proband score x group − 0.21 − 0.45 0.03 0.089

COM model (n = 309)

Proband COM 0.40 0.20 0.61 < 0.0001+

Sibling sex − 0.16 − 0.35 0.04 0.113

Group 1.07 0.83 1.30 < 0.0001

Proband score x group − 0.28 − 0.51 − 0.04 0.021

EL model (n = 317)

Proband EL 0.44 0.23 0.65 < 0.0001+

Sibling sex − 0.23 − 0.44 − 0.03 0.028

Group 0.80 0.55 1.04 < 0.0001

Proband score x group − 0.36 − 0.60 − 0.12 0.003+

RL model (n = 318)

Proband RL 0.53 0.32 0.73 < 0.0001+

Sibling sex − 0.08 − 0.27 0.12 0.429

Group 1.05 0.82 1.28 < 0.0001

Proband score x group − 0.42 − 0.65 − 0.19 < 0.0001+

GM model (n = 277)

Proband GM 0.22 − 0.05 0.50 0.113

Sibling sex 0.03 − 0.22 0.27 0.832

Group 0.55 0.27 0.84 < 0.0001

Proband score x group − 0.01 − 0.32 0.29 0.933

ABC Adaptive Behavior Composite, SOC socialization composite, COM communication composite, EL expressive language, RL receptive language, GM gross motor
aStandardized beta coefficients from linear regression models. Reference groups for sibling sex and group are female (vs. male) and ASD (vs. no ASD), respectively.
Full model results are shown in Additional file 1: Table S4
+significant at p ≤ 0.004 after Bonferroni correction for main and interacting effects of proband score (12 comparisons)
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siblings. The proband ASD trait level as measured by
the SCQ significantly predicted sibling diagnostic out-
come, such that a 1-point increase in the SCQ total
score—reflective of endorsement of additional ASD
symptoms—conferred a 6% increase in the odds of the
later-born sibling receiving a diagnosis of ASD at 24
months. These findings are in contrast with two other
high-risk infant sibling studies that did not find proband
ASD traits to be predictive of recurrence [6, 16]. This
may be due to the differences in the study design. In a
similarly powered sample, Ozonoff and colleagues mea-
sured ASD traits in probands using the ADOS social
communication score [6], which may not capture the
same variability in ASD traits as the SCQ that also in-
cludes restricted and repetitive behaviors. The study by
Schwichtenberg and colleagues [16] used the social re-
sponsiveness scale (SRS) to index ASD traits in probands
and found that proband SRS was not predictive of cat-
egorical outcomes (ASD, atypical, typical) in younger
siblings. However, that study [16] reported elevated ASD
traits in multiple incidence (multiplex) families—as has
been reported by others [33–35]—and found multiplex
status (i.e., having more than one older child with ASD
in the family) was a significant predictor of recurrence.
These findings are consistent with the results from the
current report, where elevated ASD traits were found in
probands of siblings who developed ASD and are, by
definition, multiplex families. Finally, we replicated pre-
vious findings that the sex of the sibling is a significant
predictor of recurrence [6, 16] and that proband sex is

not [6]. While additional studies will be needed to
understand why certain indices of ASD traits in pro-
bands appear to be more predictive of recurrence in sib-
lings than others, our findings suggest that indexing
genetic liability for ASD in probands holds important in-
formation for identifying the risk for recurrence that de-
serves further investigation.
Although we identified that proband ASD trait level

predicted recurrence risk in younger siblings, we found
generally weak and non-significant associations between
ASD trait domains (social interaction, communication,
repetitive behaviors) in concordant pairs as measured by
the ADI-R. Thus, while the syndrome itself is highly
heritable, and elevated ASD traits travel in multiplex
families where recurrence risk is highest, ASD sympto-
mology appears to be phenotypically dissimilar among
sibling pairs despite shared genetic background. Very
similar weak associations have been reported in other
studies of sibling pairs with ASD using the ADI-R [8,
11]. This may be reflective of a limitation of the ADI-R
to index quantitative ASD traits, though cross-
instrument correlations between proband SCQ and sib-
ling ADOS scores were also weak and non-significant.
Alternatively, it may indicate that ASD symptomology is
influenced by non-shared environmental factors [8], as
has been recently suggested by a study of twins pheno-
typed using the SRS [36] where twin-twin differences in
SRS scores were notably greater above the diagnostic
threshold for ASD. Finally, while it did not survive the
correction for multiple comparisons, we did observe a

Table 5 Linear regression analyses: MSEL examiner-based assessment

Betaa 95% CI lower 95% CI upper p value

ELC model (n = 317)

Proband VABS-II ABC 0.30 0.09 0.50 0.004+

Sibling sex − 0.29 − 0.49 − 0.10 0.003

Group 1.13 0.90 1.36 < 0.0001

Proband score x group − 0.22 − 0.44 0.01 0.066

EL model (n = 324)

Proband VABS-II EL 0.34 0.14 0.55 < 0.0001+

Sibling sex − 0.18 − 0.38 0.03 0.089

Group 0.80 0.57 1.04 < 0.0001

Proband score x group − 0.18 − 0.42 0.05 0.122

RL model (n = 323)

Proband VABS-II RL 0.47 0.28 0.66 < 0.0001+

Sibling sex − 0.14 − 0.33 0.05 0.140

Group 1.14 0.91 1.36 < 0.0001

Proband score x group − 0.39 − 0.61 − 0.17 < 0.0001+

ELC Early Learning Composite, EL expressive language, RL receptive language
aStandardized beta coefficients from linear regression models. Reference groups for sibling sex and group are female (vs. male) and HR-ASD (vs. HR-NoASD),
respectively. Full model results are shown in Additional file 1: Table S5
+significant at p ≤ 0.008 after Bonferroni correction for main and interacting effects of proband score (6 comparisons)
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notable association between qualitative abnormalities in
the communication on the ADI-R—including lack of or
delay in nonverbal gestures and social imitative play—
among nonverbal sibling pairs concordant for ASD
(Table 3), a finding that has been reported in twins with
ASD and linked-to-shared genetic background [8, 14,
15]. This may suggest distinct patterns of association of
ASD traits among siblings with and without comorbid
intellectual disability that warrants further study.

Phenotypic congruence among siblings with ASD has
been reported in areas outside of the diagnostic features
of ASD including adaptive behavior, communication,
socialization, and cognition [8–10, 12, 13]. In the present
study, we extend these findings to a sample of 24-
month-olds and their older siblings with ASD, demon-
strating that global traits of adaptive behavior and com-
munication are familial in nature and traceable to very
early childhood. This is evidenced by a downward shift

Fig. 2 Raw scatterplots and bivariate Pearson correlations among proband and sibling scores. Plots are shown for all VABS-II and MSEL scores
found to be significantly associated among proband-sibling pairs in regression analyses. The left panel depicts proband-sibling associations
between identical domains on the VABS-II (a, c, e), while the right panel depicts associations between proband scores on the VABS-II and sibling
scores on related domains from the MSEL (b, d, f). Overall linear associations for the entire sample (all probands, all siblings) are depicted by
black dashed regression lines with shaded gray confidence intervals; corresponding correlations (computed for ease of effect size interpretation)
are denoted by gray boxes. Linear associations and Pearson correlations for concordant pairs (red) and discordant pairs (blue) are also shown.
Significance levels are denoted as follows: ns, non-significant; *p < 0.05, **p < 0.01, ***p < 0.001. Generally stronger associations are found for
concordant pairs in all domains, with individuals with ASD exhibiting a downward shift in score profiles for adaptive behavior and cognition.
Highly similar patterns of proband-sibling associations are found for overall functioning (a, b), receptive language (c, d), and expressive language
(e, f) using both parent-reported VABS-II measures and MSEL examiner-based assessments of sibling abilities at 24 months
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in the score distributions for ASD siblings and signifi-
cant correlations between concordant proband-sibling
pairs (Fig. 2) for adaptive behavior and communication
that are in line with previous reports in biological sib-
lings with ASD [8–10]. While measures of cognitive
functioning in probands were not available, comparisons
between proband adaptive behavior and toddler sibling
general cognition revealed a significant positive associ-
ation. Taken together, these findings highlight that pro-
band adaptive behavior and communication abilities
carry important information for sibling outcomes in the
same domains at 24 months.
Proband-sibling associations were further investigated

among domains of language development, a reported
endophenotype of ASD [37]. Expressive and receptive lan-
guages were significantly correlated among sibling pairs,
driven by pairs concordant for ASD (Table 3, Fig. 2).
These results, importantly, were convergent across both
parent-report and examiner-based assessments. Proband
expressive language accounted for 14% of the variation in
concordant sibling scores on the same VABS-II measure
at 24months (r = 0.38; Fig. 2). Receptive language associa-
tions were even stronger, with proband scores explaining
the 18% of the variation in the scores of toddler siblings
with ASD (r = 0.43; Fig. 2), and 66% of ASD siblings scor-
ing within 1 SD of their proband (Additional file 1: Figure
S3). These results echo findings that genetic liability for
ASD impacts receptive language to a greater extent than
expressive language [37]. This, to our knowledge, is the
first evidence linking expressive and receptive language in
sibling pairs concordant for ASD. Because language delay
is observed by 12months of age in infants who go on to
receive an ASD diagnosis [17, 38] and occurs at greater
frequency in high-risk siblings regardless of ASD diagnosis
[37], this finding suggests that increased surveillance for
language delays may be warranted in infant siblings of
probands who exhibit marked deficits in expressive and
receptive language.
Recent advances in individualized prediction algorithms

in neuroscience are paving the way for identifying high-risk
infants who will later be diagnosed with ASD as early as 6
months of age using neuroimaging [39, 40]. Another study
has shown it is possible to predict dimensional cognitive
abilities at age 2 from brain scans at birth in both typically
developing children and preterm infants at risk for poor de-
velopmental outcomes [41]. This work is part of a larger
shift in focus from the group to the individual [42], taking
place in both research and practice, in keeping with the
precision medicine framework designed to assign individ-
uals to personal treatment plans, and in maximizing treat-
ment efficacy [43]. It has been suggested that indices of
genetic background, if shown to account for variation in
child outcomes, may play a crucial role in the generation of
neurodevelopmental risk algorithms capable of identifying

individualized areas of concern [44], allowing for early, tar-
geted intervention. Quantitative traits in first-degree rela-
tives, as demonstrated in this study, may be particularly
useful to include in such a prediction framework, especially
in combination with other cost-effective measures that
carry high predictive value for diagnostic outcome.
There is growing support for the hypothesis that ASD,

which is both polygenic [3–5] and pleiotropic [45, 46] in
nature, may be traceable to early-emerging developmen-
tal endophenotypes that are both specific and non-
specific to ASD [47, 48]. This is evidenced by a body of
work documenting that sensory, motor, and language
behaviors are altered in the first year of life, prior to the
onset of ASD symptoms [48, 49]. The need to explore
genetic associations early, prior to symptom onset, is
well illustrated in two recent twin studies. Hawks and
colleagues [50] found that the variation in ASD traits
and psychopathological traits non-specific to ASD were
uncorrelated in infancy and traceable to genetically dis-
tinct structures, while these traits in childhood, after
ASD develops, are largely overlapping, and thus conflat-
ing shared genetic influences with longitudinal, inter-
active effects. Pohl and colleagues [51] reported that
highly heritable predictors of familial ASD recurrence—
variation in attention, motor coordination, and parental
ASD trait level—are also genetically independent in early
childhood in the general population, yet jointly influence
early reciprocal social behavior. Findings from the
present report echo this work by demonstrating that it is
ASD endophenotypes (language, adaptive behavior) and
not ASD traits that are associated among concordant
pairs. Taken together, this work emphasizes the import-
ance of investigating the contribution of familial genetics
to early precursor behavioral traits rather than to the
diagnosis of ASD itself or to behaviors that emerge well
after symptoms are evident [48].
Future work should focus on identifying how quantita-

tive traits in both affected and unaffected family mem-
bers, as indices of genetic liability for ASD and
background genetic variation, relate to brain and behav-
ioral development in infants through the period of risk
to diagnosis. Such investigations will provide critical in-
sights into how genetic liability for ASD influences neu-
rodevelopmental and behavioral processes leading up to
the onset of ASD symptomology, revealing mechanistic
insights into pathogenesis [52]. Here, we demonstrate
that proband adaptive behavior, communication, and
language are associated with outcomes in those domains
at 24 months in toddler siblings, but a developmental ap-
proach at multiple levels of analysis, including both
brain and behavior, will be needed to understand the
biological basis and temporal nature of these associa-
tions. Further, these studies should be extended to in-
clude more targeted behaviors, including eye tracking,
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for example, which has been shown to be highly herit-
able, disrupted in first-degree relatives, and aberrant in
high-risk infants prior to diagnosis [53–56]. In the
present study, motor skills were not associated among
sibling pairs after adjustment for covariates, though
there was an association among pairs for gross motor
scores in the ICC analysis. This lack of significance
may be due to the course nature of the motor assess-
ments used in this study, as associations between
more comprehensive motor assessments for twins
concordant for ASD have been documented [57].
Future studies capturing more detailed measures of
motor behaviors in proband-infant pairs would pro-
vide clarity.

Limitations
There are certain limitations to the current study.
The only measure of autistic features common to
both probands and siblings was the ADI-R, which is a
clinical measure not necessarily intended to capture
continuous measures of severity across symptom do-
mains. Further, the ADI-R is not well suited to cap-
ture the variability in ASD traits below the diagnostic
threshold, and thus, there is a relatively little variabil-
ity in the scores of the toddler siblings who did not
develop ASD. Thus, conclusions related to a lack of
association regarding autistic traits may be owed to
measurement limitations, a common concern with
other prior studies [8, 14, 15] that should be ad-
dressed in future investigations. Additionally, we did
not have parental quantitative traits to provide a lar-
ger context for genetic background; future work is
needed to understand the predictive utility of parental
and proband quantitative traits for informing infant
sibling outcomes. Measures of verbal and nonverbal
intelligence in the probands were unavailable and lim-
ited our ability to fully characterize how phenotypic
similarities in ASD traits among sibling pairs may
vary as a function of similarities in intellectual ability.
Finally, there is evidence that the number of siblings
in a family with ASD (i.e., multiplex vs. simplex) is a
strong predictor of outcomes in younger siblings; this
information is currently being collected in the IBIS
sample and will be explored in future analyses as an
additional marker of the level of familial ASD genetic
liability.

Conclusions
The present study capitalized on the infant sibling
study design to determine whether quantitative traits
in probands were informative of outcomes in younger
siblings. Here, we provide evidence that ASD traits in
probands are predictive of recurrence risk and that
quantitative traits in probands account for significant

variation in sibling adaptive behavior, communication,
and language abilities at 24 months. Our findings call
for conducting deep phenotyping in first-degree rela-
tives to parse the contributions of genetic background
and genetic liability for ASD to brain and behavioral
development in emerging ASD.
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