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federated learning in medicine: 
facilitating multi‑institutional 
collaborations without sharing 
patient data
Micah J. Sheller1, Brandon edwards1, G. Anthony Reina1, Jason Martin1, Sarthak pati 2,3, 
Aikaterini Kotrotsou 4,5, Mikhail Milchenko6, Weilin Xu1, Daniel Marcus 6,  
Rivka R. colen 4,5,7,8 & Spyridon Bakas 2,3,9*

Several studies underscore the potential of deep learning in identifying complex patterns, leading to 
diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required 
for training, is a significant challenge in medicine and can rarely be found in individual institutions. 
Multi‑institutional collaborations based on centrally‑shared patient data face privacy and ownership 
challenges. federated learning is a novel paradigm for data‑private multi‑institutional collaborations, 
where model‑learning leverages all available data without sharing data between institutions, by 
distributing the model‑training to the data‑owners and aggregating their results. We show that 
federated learning among 10 institutions results in models reaching 99% of the model quality 
achieved with centralized data, and evaluate generalizability on data from institutions outside the 
federation. We further investigate the effects of data distribution across collaborating institutions 
on model quality and learning patterns, indicating that increased access to data through data 
private multi-institutional collaborations can benefit model quality more than the errors introduced 
by the collaborative method. finally, we compare with other collaborative‑learning approaches 
demonstrating the superiority of federated learning, and discuss practical implementation 
considerations. clinical adoption of federated learning is expected to lead to models trained on 
datasets of unprecedented size, hence have a catalytic impact towards precision/personalized 
medicine.

Abbreviations
CDS  Collaborative data sharing
FL  Federated learning
IIL  Institutional incremental learning
CIIL  Cyclic institutional incremental learning
IID  Independent and identically distributed
BraTS  Brain tumor segmentation
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AVG  Average
W-AVG  Weighted average
SIM  Single institutional model
LOO  Leave-one-out
MDACC   University of Texas MD Anderson Cancer Center
WashU  Washington University School of Medicine in St. Louis
CNN  Convolutional neural network

Predictive deep learning models show promise in aiding medical diagnosis and treatment, but require very 
large amounts of diverse data to be broadly effective. A recent  study1 found that deep learning models overfit on 
subtle institutional data biases and performed poorly on data from institutions whose data were not seen during 
training. It was specifically noted how deep learning medical imaging models may rely on confounding factors 
associated with institutional biases, rather than basing their predictions on the evaluated apparent pathology. 
Such models may result in good accuracy when tested against held-out data from the same institution, but do 
not generalize well to external institutions, or even across departments of the same institution. A natural way to 
increase both data size and diversity is through collaborative learning, where multi-institutional data are used 
to train a single model.

The current paradigm for multi-institutional collaborations in the medical domain requires the collaborating 
institutions to share patient data to a centralized location for model training (Fig. 1a). Distinct repositories exist 
for various medical fields, e.g.,  radiology2–9,  pathology10, and  genomics11. We refer to this approach as collabora-
tive data sharing (CDS). However, CDS does not scale well to large numbers of collaborators, especially in inter-
national configurations, due to privacy, technical, and data ownership  concerns12,13. Consequently, knowledge 
coming from diverse populations worldwide remains distributed across multiple institutions, raising a need to 
seek alternative approaches. Recent collaborative learning approaches enable training models across institutions 
without sharing patient  data14,15. We define such approaches as data-private collaborative learning.

Federated learning (FL)16 is a data-private collaborative learning method where multiple collaborators train 
a machine learning model at the same time (i.e., each on their own data, in parallel) and then send their model 
updates to a central server to be aggregated into a consensus model (Fig. 1b). The aggregation server then 
sends the consensus model to all collaborating institutions for use and/or further training. Each iteration of 
this process, i.e., parallel training, update aggregation, and distribution of new parameters, is called a federated 
round. FL was introduced in 2017 as federated averaging16, and later applied in training Google’s autocomplete 
keyboard  application17.

Chang et al.14 explored data-private collaborative learning methods for medical models, where institutions 
train serially rather than in parallel. We refer to these methods as institutional incremental learning (IIL—Fig. 1c) 
and cyclic institutional incremental learning (CIIL—Fig. 1d). In IIL, each institution trains the model and then 
passes it to the next institution for training, until all have trained once. CIIL repeats this process, fixing the 
number of training epochs at each institution and cycling repeatedly through the institutions. The serial training 
methods of IIL and CIIL can lead to what is technically termed as “catastrophic forgetting”, where the trained 
model highly favors the data it has most recently  seen18. The repetitive cycles and limited epochs per institution 
performed during CIIL enable it to make gradual progress, despite the forgetting, resulting in better models 
than IIL  produces14.

The degree to which the institutional datasets used during data-private collaborative learning are independent 
and identically distributed (IID) can have a large impact on the quality of learning compared to CDS. It can be 
more effective to iteratively compute model weight updates from batches that mix data across multiple non-IID 
institutional data sets, rather than iteratively averaging model weight updates, each produced from institution-
ally dependent batch draws. Zhao et al.19 showed that for an image classification task, the performance of their 
data-private collaborative models dropped by up to 55% depending on how much institutional bias (degree of 
non-IID) they introduce when sharding (i.e., partitioning) a single dataset into hypothetical institutions. The 
institutional bias of their hypothetical institutions is created by partitioning according to class label. Medical 
institution data bias is known to  occur1,20 caused by demographic differences in served populations, instru-
mentation bias, and other factors. However, analysis of data-private collaborative methods using artificial data 
assignments among hypothetical institutions may fail to account for how real-world institutional biases affect 
the collaborative learning, and the applicability of experimental results to a real-world setting is dependent on 
how well the experimental datasets model the distributions that will occur in that setting. A natural solution if 
available, is to experiment with real-world institutional data.

Chang et al.14 created institutional datasets by randomly sharding a single set of data into hypothetical insti-
tutions (i.e., IID datasets), as well as explored a case where one of those institutions was instead created with an 
institutional bias (low resolution images, or fewer images with a class label imbalance). Sheller et al.15 presented 
the first evaluation of FL, IIL, and CIIL in the medical domain, over real-world multi-institutional datasets 
from the International Brain Tumor Segmentation (BraTS)  challenge4–6,21,22. Importantly, in Sheller et al.15 the 
dataset assignments matched the real-world data distributions, such that all patients from the same hospital were 
assigned to the same institution. In such real-world configurations, Sheller et al.15, confirms that CIIL produces 
better models than IIL. However, forgetting still occurs during CIIL training, and as a result model quality 
severely fluctuates. These fluctuations, coupled with the fact that both CIIL and IIL provide no mechanism for 
validating on the shared dataset during training, resulted in worse models for either CIIL or IIL compared to 
FL. We have further explored this performance comparison in this present study and we obtained similar results 
(Figs. 3, 4). Furthermore, it was shown using artificially created institutional data that forgetting can worsen 
as the number of institutions grows, further reducing the performance of CIIL compared to  FL15. Li et al.23, 
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Figure 1.  System architectures of collaborative learning approaches for multi-institutional collaborations. The 
current paradigm for multi-institutional collaborations, based on Centralized Data Sharing, is shown in (a), 
whereas in (b) we note the proposed paradigm, based on Federated Learning. Panels (c) and (d) offer schematics 
for alternative data-private collaborative learning approaches evaluated in this study, namely Institutional 
Incremental Learning, and Cyclic Institutional Incremental Learning, respectively.
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similarly reconstituted the real-world contributions to the BraTS dataset and compared FL model quality under 
various training conditions. The primary focus was on the performance impact of differentially private training 
techniques, which may reduce the risk of training data being reverse engineered from model parameters. Such 
reverse engineering is one of the many security and privacy concerns that remain for FL, discussed in “Supple-
mentary Information: Security and Privacy”.

Data private collaborative learning introduces additional restrictions to the training process over that of data-
sharing (e.g., not shuffling data across participants) as the computational process is not identical (see “Discussion” 
section). For any given potential collaboration, a crucial question then is whether the increased access to data 
from data private collaborative learning improves model accuracy more than these restrictions may hamper 
model accuracy. Here, we take brain cancer as an example, and perform a quantitative evaluation of data-private 
collaborative learning on the task of distinguishing healthy brain tissue from cancerous tissue, by virtue of their 
radiographic appearance on clinically-acquired magnetic resonance imaging (MRI). We reconstitute the original 
10 institutional contributions to the data of the largest manually-annotated publicly-available medical imaging 
dataset (i.e.,  BraTS4–6,21,22), to form the Original Institution group for our study such that our dataset assignments 
match the real-world configuration, and further expand our quantitative evaluation to completely independent 
data from institutions that did not contribute to this dataset. We quantitatively compare models trained by (1) 
single institutions, (2) using the data-private collaborative learning methods FL, CIIL, and IIL, and (3) using 
CDS, by evaluating their performance on both data from institutions within the Original Institution group, and 
data collected at institutions outside of that group. These evaluations reveal that the loss relative to CDS in final 
model quality for FL is considerably less than the benefits the group’s data brings over single institution training. 
Though we provide a method for model validation during CIIL that makes it competitive with FL on this group 
of institutions, the Leave-One-(institution)-Out (LOO) testing on this group highlight the fact that CIIL model 
quality results are less stable than those of FL (Fig. 4). Our findings also indicate that IIL heavily biases the model 
toward the last model to train, as is discussed in “Supplementary Information: Hyper-Parameter Selection for 
IIL and CIIL”. For completeness we discuss practical considerations to be made during implementation, includ-
ing potential optimizations for training efficiency (see “Supplementary Information: Hyper-Parameter Selec-
tion for FL”) and ongoing work on mitigations for remaining security and privacy issues (see “Supplementary 
Information: Security and Privacy”), and also explore more challenging learning environments—both of which 
further expose the superiority of FL over CIIL (see “Supplementary Information: Further Challenging Model 
Quality Across Data-Private Collaborative Methods”). In summary, this present study when compared to our 
preliminary  results15 (i.e., the first evaluation of FL, IIL, and CIIL in the medical domain), provides a far more 
extensive evaluation and highlights the need and ongoing considerations to address security and privacy issues. 
Specifically, the extensive evaluation is done through use of additional publicly available data from  BraTS4–6,21,22 
and additional private testing data from independent institutions (not included in the BraTS dataset). The addi-
tional experiments conducted here attempt to evaluate model generalization under various training schemes 
comprising (1) single institution training, (2) LOO validation, and importantly (3) exhaustively evaluating per-
formance differences between FL, IIL, and CIIL, by exploring convergence, “model selection”, and the effect of 
institutional order for IIL and CIIL.

Results
Ample and diverse data are needed. In order to establish the need for more numerous and diverse 
data at the individual institutions of the Original Institution group, we trained single institution models for each 
institution in the group, and then evaluated each of these models against held-out validation sets from each of 
the institutions in the group defined prior to model training (Fig. 2).

We note that institutional models perform much lower against data from the other institutions of the group, 
showing that more ample and diverse data are indeed needed by each institution to train more generalizable 
models—a fact that is also supported by the results in our next finding. Note also that institution 1 has by far 
the best generalization performance. Institution 1 also holds the most data in the group (see “Methods: Data” 
section for more details). The poorest model generalization performances are shown on institutions 2, 3 and 6, 
which have the smallest data contributions of the group.

collaborative learning is superior. We evaluate the benefits of collaborative learning with respect to 
improving both scores on an institution’s own data, and the generalization performance to data from unseen 
institutions. In both evaluations, we compare models trained only on data from each single institution against 
models trained collaboratively using CDS and FL. To evaluate the first goal, we compare models over the single 
institutions’ local held-out validation sets (For more details see “ Methods: Data” section) to determine whether 
a given institution can improve performance on its own data by collaborating. To evaluate the second goal, we 
compare models over data from institutions that did not participate in the Original Institution group.

Figure 3 shows the average (over experimental runs) of the model quality (Dice) results for single institution, 
CDS, and FL models, measured against the local (single institution) validation sets. Notably, averaging over insti-
tutions, the CDS model performance is 3.17% greater than the single institution models on their own validation 
data, and for FL the increase is 2.63% (percent improvements are shown in Table S1).

Table 1 includes the average mean and standard deviation of test Dice results of models trained using CDS, 
FL, and data of each single institution, as well as using a LOO schema, where each institution is held out in turn 
as the test set. Here, test performance exposes an even broader gap in model quality between the single institu-
tion and collaborative models (both CDS and FL).

We see the benefits of collaboration for the ten institutions in our study, both in terms of their own data and in 
terms of external test data, as rooted in the inherent diversity that can come from data collection across multiple 
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Figure 2.  Single Original Institution Validation Results. Single institution mean final model qualities (based on 
the Dice Similarity Coefficient34) for the Original Institution group (y-axis) measured against all single institution 
held-out validation sets (x-axis) using multiple runs of five-fold collaborative cross validation. The Y axis 
represents models trained on a single institutional dataset, and the X axis represents the validation dataset of 
each independent institution (Local Validation Dataset). “AVG” indicates the average of each institution mean 
model performance over all institutions in the group other than itself, “W-AVG” denotes the same, but with 
a weighted average according to each institution’s contribution to the validation set size. The diagonal entries 
indicate how well each institution’s final models scored against their own validation set, and they are represented 
as the Single Institutional Model (SIM) results reported in Fig. 3.

Figure 3.  Model quality results from single institution training, CDS, FL, IIL, and CIIL. CDS, FL, CIIL mean 
model Dice against the Original Institution group single institution held-out validation data over multiple runs 
of collaborative cross validation, as well as the average of single institutional results under the same scheme (AVG 
SIM). The AVG 1–10 column provides the average performance of each collaboration method across single 
institution validation sets. For CIIL, ‘best local’ and ‘random local’ are two methods we introduce for final model 
selection during CIIL (More details are given in the “Methods: Final Model Selection” section ). Note that the 
color scale here differs from that used in Fig. 2.
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institutions. Collaborative training across multiple institutions is a natural means by which to address the need 
that deep learning models have for ample and diverse data.

fL performs comparably to data‑sharing. Table 1 shows the mean model test Dice of models trained 
using FL on the Original Institution group. Specifically, for the LOO results, the collaborative method is carried 
out with one institution held-out from training, the held-out data to be used as the test set for the resulting mod-
els. The ‘LOO Test’ results reported in Table 1 are the weighted average over institutional LOO tests, weighted by 
the test institution contribution. These LOO results differentiate FL from IIL and CIIL, and do not include single 
institution models as these are not trained using data from multiple institutions. The per-institution LOO results 

Table 1.  Model quality results from single institution training, CDS, and all data-private methods. 
Mean ± standard deviation of Dice for all collaboration methods on the Original Institution group under 
multiple runs of collaborative cross validation, as well as the mean of single institutional results under the same 
scheme. The LOO results are a weighted average over institutional LOO tests, weighted by test institution 
contribution. The ‘–’ entries in the LOO column indicate single-institution tests, where the LOO method did 
not apply.

Model BTest WashU MDACC Global val LOO

Avg single inst 0.732 ± 0.054 0.666 ± 0.045 0.705 ± 0.033 0.733 –

CDS 0.863 ± 0.008 0.782 ± 0.009 0.828 ± 0.007 0.862 ± 0.007 0.84 ± 0.006

FL 0.858 ± 0.004 0.771 ± 0.008 0.82 ± 0.003 0.857 ± 0.007 0.835 ± 0.006

CIIL “best local” 0.855 ± 0.007 0.775 ± 0.013 0.82 ± 0.009 0.853 ± 0.006 0.831 ± 0.012

CIIL “rand. local” 0.84 ± 0.021 0.758 ± 0.021 0.808 ± 0.014 0.824 ± 0.035 0.804 ± 0.031

IIL “smallest first” 0.833 ± 0.006 0.751 ± 0.007 0.781 ± 0.009 0.825 ± 0.007 0.785 ± 0.023

Institution 1 0.826 0.731 0.773 0.824 –

Institution 2 0.614 0.572 0.651 0.628 –

Institution 3 0.700 0.635 0.718 0.702 –

Institution 4 0.751 0.680 0.701 0.747 –

Institution 5 0.753 0.685 0.691 0.733 –

Institution 6 0.708 0.621 0.668 0.709 –

Institution 7 0.721 0.674 0.712 0.732 –

Institution 8 0.755 0.687 0.720 0.755 –

Institution 9 0.745 0.691 0.715 0.755 –

Institution 10 0.751 0.687 0.700 0.745 –

Figure 4.  Learning curves of collaborative learning methods on Original Institution data. Mean global validation 
Dice every epoch by collaborative learning method on the Original Institution group over multiple runs of 
collaborative cross validation. Confidence intervals are min, max. An epoch for DCS is defined as a single 
training pass over all of the centralized data. An epoch for FL is defined as a parallel training pass of every 
institutiuon over their training data, and an epoch during CIIL and IIL is defined as a single insitution training 
pass over its data.
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can be found in the Supplementary Information Section “Extended Data”. Notably FL performs within 1% Dice 
of CDS on the three test sets, as well as for the LOO tests (on average).

In order to compare the rates of model improvement, we plotted global validation Dice over epoch for all 
collaborative methods (Fig. 4) and show that FL training converges relatively quickly to the same performance 
as CDS training. A CDS epoch is defined to be a complete training pass over the shared data, whereas an FL 
epoch is defined as a parallel pass of all institutions over their own data. Averaging epochs from single institution 
training updates (i.e., FL) is not as efficient as CDS training, which shuffles the institutions’ datasets together, 
but both approaches eventually converge to the same performance. Here we measure that FL final models took 
on average 2.26 × as many epochs to train when compared to CDS final models (with a stopping criterion of 10 
epochs with no improvement in the best validation DC observed). We also include learning curves for other 
data-private collaborative methods (Fig. 4).

Model learning during fL is more stable than during incremental methods. To identify the supe-
riority of a single data-private collaborative method, we compared the learning performance of FL with IIL and 
CIIL. FL achieves the best rate of model improvement over epoch of the data-private collaborative learning 
methods (Fig. 4). In addition, the more erratic nature of the IIL and CIIL curves (compared to both FL and CDS) 
expose an inefficiency in their training, a topic that we return to in the “Discussion” section. Note that an epoch 
for IIL and CIIL is defined as a pass of one institution over its training data.

The results in Table 1 also show that FL results in better models on average than every other data-private 
method on the Original Institution group. For CIIL, “best local” and “random local” are two methods we introduce 
for final model selection (see “Methods: Final Model Selection” section), as the only such methods considered by 
Chang et al.14, was that of keeping the model resulting from the last training cycle of a predetermined number of 
cycles (see “Discussion” section for more information regarding their final model selection). CIIL “best local” is 
the best competing data-private method, producing models of quality that is generally less than, but very close to 
FL (see “Supplementary information: Hyper-Parameter Selection for IIL and CIIL” for results regarding the choice 
of institutional order used in IIL and CIIL). The experiments on the LOO groups (Table 1) show, however, that 
CIIL “best local” can be less stable, as the standard deviation of model quality is twice or more that of both CDS 
and FL. See “Supplementary Information: Further Challenging Model Quality Across Data-Private Collaborative 
Methods”, for experiments on a more challenging hypothetical group of institutions for which CIIL “best local” 
final model quality mean drops further below that of FL, with an even larger standard deviation relative to FL.

Discussion
This study shows that data-private collaborative learning approaches, and particularly FL, can achieve the full 
learning capacity of the data while obviating the need to share patient data, and hence facilitate large-scale multi-
institutional collaborations, while overcoming technical and data ownership concerns and assisting towards 
meeting the requirements of data protection regulations (e.g., the European General Data Protection Regulation 
(GDPR)24, and the Health Insurance Portability and Accountability Act (HIPAA) of the United States)25. This 
finding can potentially pave the way towards shifting the paradigm of multi-institutional collaborations. Model 
training using FL across multiple authentic institutional datasets performs comparably to model training using 
CDS (Table 1, Figs. 3, 4). The use of FL over CDS has the immediate advantage of raw data confidentiality, and 
current technologies can be incorporated into FL to aid in alleviating additional privacy concerns (discussed 
below). We expect for domains such as medicine, that the development of such solutions will allow for data-
private collaborative training over data of unprecedented numbers and diversity. Such collaborations are likely 
to result in a significant jump in the state of the art performance for these models.

Previous work on CIIL (Chang, et al.14) performs final model selection by keeping the last model trained after 
a predetermined number of cycles. Selecting final models from all locally trained models in this way, makes sense 
provided models can be consistently validated, and scores shown to be (more or less) non-decreasing. Chang 
et al.14, held out a global validation set for consistent validation, and their results indeed show a non-decreasing 
trend. We do not see a non-decreasing trend as something one can rely on in general. We think that Chang 
et al.14 was an exceptional case driven by some intrinsic characteristic of their data (such as the IID nature of 
the data at their hypothetical institutions), and indeed our results confirm that on the contrary a quasi-periodic 
pattern can be observed. Moreover, CIIL in practice does not allow for anything but local validation. Though 
we use global validation results to assess the quality of CIIL models, no such set is available to a collaboration in 
practice without sharing data. Additionally for CIIL, only two of all collaborators ever see any one given model, 
preventing the aggregation of local validation on the same model that FL uses to obtain global validation results 
for its model selection process. As a result, we introduce the “random local” and “best local” model selection 
methods, and consider “random local” as the method closer to Chang et al.14 as it requires less communication. 
We find that “best local” significantly outperforms “random local” in our setting.

Following its performance evaluation, we favor FL over IIL and CIIL as a more principled way to perform 
multi-institutional data-private collaborative learning. The individual institutional training that occurs during 
all of FL, IIL, and CIIL is biased in as much as that institution’s data patterns differ from that of the union of 
data used for CDS training. In the case of FL however, the results of institutional training are aggregated at the 
end of each round, mitigating this bias. In IIL, a type of aggregation exists as subsequent institutional training 
blends knowledge into the models it receives from the previous institution, however this aggregation favors 
institutions that train later in the cycle, and no mitigation exists for bias introduced by the last institution. See 
“Supplementary Information: Hyper-Parameter Selection for IIL and CIIL” for further evidence of this bias 
during IIL. CIIL further mitigates individual institutional bias, by limiting the number of epochs each institu-
tion trains before passing it forward, and by incorporating repeated cycling in an effort to enhance the type of 
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aggregation that occurs during incremental training. The differences in the time-scale and quality of aggregation 
that occurs during FL versus IIL and CIIL, create qualitative differences in their training curves (Fig. 4). The 
short-term performance drops within the IIL training curve in Fig. 4 indicate that when an institution trains, 
it can significantly reduce previously established performance. Likewise, the CIIL curves clearly show a quasi-
periodic pattern formed by re-visiting these performance drops while cycling over the institutions. We see this 
behavior as indicative of catastrophic forgetting18. The forgetting is not complete, as is evidenced by the fact that 
model improvement is still achievable for CIIL over cycles. However, these patterns do expose an inefficiency in 
the training processes of both IIL and CIIL.

Consistent with the findings of Zech et al.1, the CDS models for the Original Institution group still appear 
to suffer from a lack of diverse data, scoring an average of 11% and 5% lower Dice on the data from institutions 
outside of the Original Institution group (Table 1, Fig. 3). Though our institutional datasets are somewhat limited 
to be representative of a standard CDS contribution, we expect that data privacy and ownership concerns prevent 
near-term multi-institutional CDS collaborations large enough to overcome institutional biases and build models 
that widely generalize. We believe the data privacy that FL enables will be a catalyst for the formation of much 
larger collaborations, leveraging data throughout the world, since the data will be retained within their acquired 
institutions. Hence FL models will substantially benefit by continually learning on new data, compensating for the 
current relatively inferior performance compared to CDS models. Additionally, some settings may allow for this 
gap to be further closed, as we further describe in the Supplementary Section “Hyper-Parameter Selection for FL”.

Although the data are not centrally shared in FL, sources of variation across equipment configurations and 
acquisition protocols require careful consideration. For example, the highest throughput of medical images is 
produced during standard clinical practice, where the uncontrolled and varying acquisition protocols make 
such data of limited use and significance in large-scale analytical studies. In contrast, data from more controlled 
environments (such as clinical trials) are more  suitable26,27. To appropriately address this issue, common pre-
processing routines should be considered and shared that account for harmonization of heterogeneous data 
(e.g., image resampling, orientation to a standardized atlas), allowing for integration and facilitating easier 
multi-institutional collaboration for large-scale analytics (see “Methods: Data” for details).

This study focused on the evaluation of data-private collaborative methods in radiographic imaging data. 
Specifically, following the performance evaluation presented here, the findings of this study support the superi-
ority of FL when compared with IIL and CIIL, particularly on computational models for distinguishing healthy 
brain tissue from cancer, by virtue of their radiographic appearance. Technically, one can assume that similar 
results might be expected for other medical deep learning use cases, since generally FL should be able to approach 
CDS by increasing the rate of synchronization at the cost of network communication overhead. However, we 
acknowledge that the synchronization used in this study (1 epoch per synchronization, i.e., federated round) may 
be insufficient for data such as electronic health  records28,29 and clinical notes, as well as genomics, where more 
variance might be present across international institutions. Notably, we did not perform hyper-parameter tuning 
specifically to FL. Further evaluation should be considered for the application and generalizability of data-private 
collaborative learning in other medical applications, beyond radiographic imaging, including exploration on 
variations in data sizes, institutional bias, as well as number and sequence of institutions.

While data-private collaborative learning methods keep patient records confidential and allow multi-insti-
tutional training without sharing patient data, we caution that privacy risks still exist, since model parameters 
and the training execution are distributed among the collaborators. Studies have shown that training data may 
be approximated from the model  weights30,31. Model parameters necessarily encode information about their 
training data, which attackers may  extract30. In FL, CIIL, and IIL the training algorithm is shared with multiple 
parties, each of which can tamper with some portion of the training. A malicious participant may tamper with 
training to cause the model to encode more information about others’ training data than is necessary for the 
model task, improving the attacker’s ability to approximate training  data32. Thus, while data-private collabora-
tions offer clear privacy advantages over CDS, collaborators must still conduct privacy analyses and consider 
possible mitigations such as tamper-resistant hardware and proper identity management. See “Supplementary 
Information: Security and Privacy” for a discussion on such threats and mitigations.

Methods
Data. We use the task of distinguishing healthy brain tissue from tissue affected by cancer cells as the case 
study in evaluation of FL against CDS on a medical imaging task. We used the BraTS 2017 training  dataset4–6,21,22 
to form our institutional training and test datasets. We further formed two additional test sets by utilizing inde-
pendent additional clinically-acquired brain tumor MRI scans from the University of Texas MD Anderson Can-
cer Center (MDACC) and Washington University School of Medicine in St. Louis (WashU). The complete BraTS 
2017 high grade glioma data were collected from 13 different institutions, and consist of a training set of 210 
patient scans, (collected from 10 different institutions), and additional validation and testing sets of 33 and 116 
patients, respectively. The WashU and MDACC data consist of 18 and 29 patients, respectively. All these data 
reflect true clinical practice of radiographically scanning patients diagnosed with gliomas, and consist of multi-
modal magnetic resonance imaging (MRI) comprising pre- and post-contrast T1-weighted, T2-weighted, and 
T2-weighted Fluid Attenuated Inversion Recovery (T2-FLAIR) scans.

The radiographically abnormal regions of each image were annotated and approved by multiple clinical 
experts at each contributing institution following a pre-defined annotation protocol. The annotated regions 
included 3 distinct label masks indicating (1) peritumoral edematous/infiltrated tissue, (2) non-enhancing/
solid and necrotic/cystic tumor core, and (3) enhancing tumor regions. The raw brain scans were rigidly co-
registered to a common anatomical  atlas33, resampled to an isotropic resolution of 1 mm3 to make the size of each 
scan consisting of 155 axial 2D slice images of 240 × 240 resolution, and skull-stripped. The data were further 
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pre-processed to be made suitable for the specific task of our study, where the affected brain tissue is defined as 
the union of all three labels described  above4–6,21,22. Furthermore, following the BraTS annotation protocol we 
eliminated all but the T2-FLAIR modality.

From the BraTS 2017 training data, we sharded the data across 10 institutions, to match the real-world con-
figuration of the 10 contributing institutions. We call this the Original Institution sharding. The resulting patient 
counts for each of the shards, which we will refer to as institutions 1–10 are given as 88, 22, 34, 12, 8, 4, 8, 14, 
15, and 5 patients respectively. Additionally, we formed the Original Institution LOO groups from the Original 
Institution group, by variously holding out each one of the ten original institutions. The LOO groups represent 
additional examples of authentic institutional groups.

Furthermore, for each institution of the collaborative group we hold out a validation set from their data, i.e., 
local validation set. We call the union of local validation sets the global validation set. These validation sets are 
used for final model selection as described below.

In order to reduce bias due to local validation set selection, we perform what we call “collaborative cross 
validation”. In collaborative cross validation, each institution’s dataset is partitioned into approximately 5 equal 
folds (indexed partitions), while ensuring that the 155 2D slices coming from a single patient scan end up in the 
same fold. Every experiment with a different model initialization is performed for five runs, each run using a 
different fold index to determine the validation fold at every institution. The other four fold indices correspond 
to the folds that form the training set for every institution during that run. Note that institution 6, holding only 
4 patients, will have one empty fold. During CDS and FL, the run for which this fold number is selected is run as 
usual with no local validation step for institution 6, whereas during IIL, CIIL, and single institution 6 training this 
run is skipped. All experimental results in this work report average results over multiple instances of collaborative 
cross validation, with each instance using a different model initialization. Note that collaborative cross validation 
defines multiple iterations of coordinated local training and validation splits. As we specify for each experiment 
we perform, the validation scores reported may come from validating against the global validation set (union of 
all local validation sets), or from a local validation set belonging to a particular institution.

The BraTS 2017 validation data were combined with 22 cases from the BraTS 2017 test data (moved to the 
validation set for BraTS 2019) to form one test set for our study, which we call BTEST. (These images are now 
provided to BraTS 2019–2020 participants during the competition for method development and fine-tuning, 
and not for ranking purposes. Intel possessed the BraTS 2017–2018 training data having been participants in 
BraTS 2018 (as the training data were the same for 2017 and 2018). The binarized whole tumor (WT) labels 
for the BraTS 2017 validation data and the additional 22 BraTS 2017 test cases that were moved to BraTS 2019 
validation set, were provided to the lead author Micah Sheller after the conclusion of the BraTS 2018 competition 
and under a signed Non-Disclosure Agreement. The data were held for calculation, avoiding exposure to a third 
party, and will be deleted upon publication of this manuscript.) Both WashU and MDACC did not contribute 
data to the BraTS 2017 training dataset or in the formulated BTEST data, and as such their data is used to test 
generalization to data from outside institutions. Models resulting from training on each of the Original Institution 
LOO groups are tested against the data owned by the institution held out to form the group.

final model selection. Following standard practice, the final model for individual institutional training is 
taken as the one that achieves the best local validation score over the course of training. For CDS, final model 
selection can similarly be made using global validation scores. During FL, each institution locally validates any 
model it receives from the central aggregation server, i.e., at the start of each federated round. These local valida-
tion results are then sent to the aggregation server along with the model updates to be aggregated with the other 
institutional results. In such a way, global validation results can be naturally obtained during FL for final model 
selection.

Final model selection is harder for IIL and CIIL, than for FL and CDS, as generally no single model is seen 
by all institutions. Therefore, a complete set of local validation scores cannot be computed within these methods’ 
natural framework. For CIIL, previous  work14,15 did not provide any final model selection mechanism. Here, we 
introduce and explore two final model selection methods that keep close to the minimal communication costs 
of CIIL. For both these methods, each institution saves the best locally validated model. After the last training 
cycle, the final model is either randomly selected from one of the locally best models (which we call “random 
local”) or all locally selected models and corresponding local validation results are passed around in order to 
select the best local model according to global validation (which we call “best local”). We stress that CIIL “best 
local” requires more communication between institutions than was originally designed  for14.

Model quality metric. To evaluate model quality on a particular test sample, we use a measure (Dice Simi-
larity Coefficient34, also known as Dice) in the range [0,1] for the similarity between the model prediction on the 
test sample features, and the sample’s ground truth mask label. If P and T are the prediction and ground truth 
masks respectively, Dice is defined as:

where ◦ is the Hadamard product (component-wise multiplication), and ‖‖1 is the L1-norm (sum on the absolute 
values of all components).

For the model training loss, we took the negative log of Dice, and explored multiple values for the Laplace 
smoothing [s terms in Eq. (2)]. After algebraically rearranging this loss function, we obtained:

(1)Dice =
2�P ◦ T�1 + 1

�P�1 + �T�1 + 1
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the U‑net model. For our analysis, we implemented a U-Net topology of a deep Convolutional Neural 
Network (CNN)35, in TensorFlow, and made the source code publicly available at: https ://githu b.com/Intel AI/
unet/tree/maste r/2D (commit: eaeac1fc68aa309feb00d419d1ea3b43b8725773). All experiments use a dropout 
parameter of 0.2, upsampling set to true, and args.featuremaps set to 32.

training hyper‑parameters. See “Supplementary Information” for a table summarizing all the hyper-
parameters considered in this study. All institutional training in our experiments use mini-batch stochastic 
optimization and the Adam  optimizer36, thus require batch size and Adam optimizer hyper-parameters36 (adam 
learning rate, adam first moment decay parameter, and adam second moment decay parameter). Additionally, our 
training loss function requires the smoothing parameter (Laplace smoothing) the ‘s’ of Eq. (2) in “Model Qual-
ity Metric”. These are the only hyper-parameters required for individual institutional training and CDS, and are 
shared by FL, IIL and CIIL.

When using the Adam optimizer during FL, each institutional training session results in a distinct final 
state for Adam’s first and second moments. A natural question arises as to whether it is best to aggregate these 
moments to be used by every institution in the next training session, or whether it is better to carry forward the 
optimizer states in some other way. We considered this choice to be an FL-specific hyper-parameter (optimizer 
state treatment). In addition, for FL training one needs to determine how many epochs of training to apply at each 
institution per round (epochs per round), which here we only consider as the same number for all institutions 
and rounds. One also needs to determine what percentage of institutions to randomly select for participation 
on each round (institutions per round).

Similar to FL, IIL and CIIL also have specific hyper-parameters. No hyper-parameters are associated with the 
Adam optimizer for institutional training, as for IIL and CIIL we pass the values of the Adam first and second 
moments along with the model for continued training. Specifically needed for IIL however, is the determination 
of the number of epochs with no validation improvement (over best so far) before passing the model to the next 
institution (patience), as well as how to order the institutions for the serial training process (institution order). 
For CIIL training one needs to determine how many epochs of training to apply at each institution (epochs per 
institution per cycle), as well as how to order the institutions for each training cycle (institution order). We consider 
only the same patience value for all institutions during IIL, the same institution order to made during every cycle 
of CIIL, and the same epochs per institution per cycle to be applied at every institution for every cycle of CIIL.

For all institutional training we chose a batch size of 64, and used the Adam optimizer with adam first moment 
decay parameter of 0.9 and adam second moment decay parameter of 0.999. In a preliminary experiment, we per-
formed a grid search over the values of the Laplace smoothing, and learning rate used during CDS training, and 
found the best cross-validation values to be a Laplace smoothing value of 32, and a learning rate of 1 × 10−4. We 
subsequently used these institutional training hyper-parameter values for all experiments. See “Supplementary 
Information: Hyper-Parameter Selection for Institutional Training” for further details regarding institutional 
training hyper-parameter tuning.

The FL hyper-parameter epochs per round and institutions per round were set to 1 and 100% respectively in 
all experiments. Additionally, the FL hyper-parameter optimizer state treatment was set to that of aggregating 
the moments using a weighted average, exactly as the model weights are aggregated during FL. For a discussion 
of how other values of these hyper-parameters can affect FL training, see “Supplementary Information: Hyper-
Parameter Selection for FL”.

All IIL experiments used a patience value of 10. For epochs per institution per cycle during CIIL, we used 1, 
as this value produced the best results in previous  work14,15. For all IIL and CIIL experiments, institutional order 
was taken as increasing order by institution data size as preferable to decreasing order in initial exploration. See 
“Supplementary Information: Hyper-Paramter Selection for IIL and CIIL” for details of this exploration.

experiments. Every experiment in this work was repeated over multiple runs: using multiple random ini-
tializations of the U-Net model, with multiple choices for the local validation sets (as discussed in “Data” sec-
tion).

We first trained models for each institution in the Original Institution group using its own training and 
validation data, training all models to 100 epochs, and evaluating the final model quality Dice against all single 
institution validation sets, the global validation set, as well as BTest, WashU and MDACC test data.

Next, we measure final model quality Dice of FL, CIIL “best local”, CIIL “random local”, IIL, and CDS mod-
els trained on the Original Institution group against the global validation data as well as the BTest, WashU and 
MDACC test data. Here, all models were trained to 200 epochs.

Finally, we train using CDS, FL, CIIL “best local”, and CIIL “random local” on each of the LOO groups 
(described in “Data” section). Here all models are trained for a maximum of 200 epochs, stopping early if the 
best known model by validation did not change over 90 epochs. The quality of these final models was measured 
as its Dice value against the entire training/validation dataset belonging to the institution that was held out to 
form the group.

Received: 5 March 2020; Accepted: 23 June 2020
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