
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

2020 

Cell profiling of mouse acute kidney injury reveals conserved Cell profiling of mouse acute kidney injury reveals conserved 

cellular responses to injury cellular responses to injury 

Yuhei Kirita 

Haojia Wu 

Kohei Uchimura 

Parker C. Wilson 

Benjamin D. Humphreys 

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F9178&utm_medium=PDF&utm_campaign=PDFCoverPages


Cell profiling of mouse acute kidney injury reveals
conserved cellular responses to injury
Yuhei Kiritaa,b, Haojia Wua, Kohei Uchimuraa, Parker C. Wilsonc

, and Benjamin D. Humphreysa,d,1

aDivision of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110; bDepartment of
Nephrology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; cDivision of Anatomic and Molecular Pathology, Department of Pathology
and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110; and dDepartment of Developmental Biology, Washington
University in Saint Louis School of Medicine, St. Louis, MO 63110

Edited by Martin R. Pollak, Beth Israel Deaconess Medical Center, Brookline, MA, and approved May 20, 2020 (received for review March 25, 2020)

After acute kidney injury (AKI), patients either recover or alterna-
tively develop fibrosis and chronic kidney disease. Interactions
between injured epithelia, stroma, and inflammatory cells de-
termine whether kidneys repair or undergo fibrosis, but the
molecular events that drive these processes are poorly under-
stood. Here, we use single nucleus RNA sequencing of a mouse
model of AKI to characterize cell states during repair from acute
injury. We identify a distinct proinflammatory and profibrotic
proximal tubule cell state that fails to repair. Deconvolution of
bulk RNA-seq datasets indicates that this failed-repair proximal
tubule cell (FR-PTC) state can be detected in other models of kid-
ney injury, increasing during aging in rat kidney and over time in
human kidney allografts. We also describe dynamic intercellular
communication networks and discern transcriptional pathways
driving successful vs. failed repair. Our study provides a detailed
description of cellular responses after injury and suggests that the
FR-PTC state may represent a therapeutic target to improve repair.

AKI | injury | transcriptomics | epithelia

Kidneys maintain fluid and electrolyte balance, excrete waste
products, and regulate blood pressure. Composed of ap-

proximately one million functional units called nephrons, the
kidneys receive ∼20% of cardiac output. Nephrons have high
metabolic activity rendering them susceptible to injury from toxins
or reduced blood flow. These insults cause acute kidney injury
(AKI) characterized by decreased kidney function. In early stages of
AKI, epithelial cells die, and surviving epithelia dedifferentiate,
accompanied by inflammation. Dedifferentiated epithelial cells then
proliferate and redifferentiate to repair the damaged nephron (1,
2). There are no specific treatments for AKI, but, with supportive
care, the kidney’s intrinsic repair capacity usually allows functional
recovery over a period of days to weeks.
After repair, kidney function may not return back to baseline

due to residual subclinical inflammation and fibrosis. Survivors
of AKI are at high risk of developing future chronic kidney
disease (CKD) and even kidney failure (3). The mechanisms for
failed repair are not well understood, but a subpopulation of
injured proximal tubule (PT) epithelia (the segment most sus-
ceptible to injury) are proposed to become arrested at the G2/M
cell cycle phase and adopt a senescence-associated secretory
phenotype (4). This may prevent complete repair, driving in-
flammation and fibrosis, and mouse ischemia–reperfusion injury
(IRI) models this process well (5). The aim of our study was to
understand the cellular events underlying both recovery from
AKI as well as the transition to CKD. Bulk transcriptional pro-
filing has successfully characterized kidney injury and recovery
(5, 6), but these approaches describe a transcriptional average
across cell populations, which may hide or skew signals of in-
terest. We hypothesized that understanding transcriptional
changes in single cell types over the course of AKI, repair, and
fibrosis would provide unique insights into disease pathogenesis
and potentially identify new therapeutic strategies.

Results
We performed single nucleus RNA-sequencing (snRNA-seq) on
cryopreserved mouse kidney (7). Mice were euthanized at 4 and
12 h and 2, 14, and 42 d after bilateral ischemia–reperfusion
injury (IRI) (Fig. 1A). Both histologic changes (SI Appendix, Fig.
S1) and blood urea nitrogen (BUN) (Fig. 1B) levels confirmed
acute injury and its resolution in mouse.
After quality control filtering, we obtained 26,643 cells from

healthy mouse kidneys. Visualization of single nucleus tran-
scriptomes in Uniform Manifold Approximation and Projection
(UMAP) space resolved 26 separate clusters (SI Appendix, Fig. S2A
and Dataset S1). Subclustering of both epithelial (descending loop
of Henle, thin ascending limb) and nonepithelial cells (immune,
endothelial, stromal) revealed additional cell clusters (SI Appendix,
Fig. S2B). For example, five separate endothelial clusters were
identified, including arterial, lymphatic, descending vasa recta and
cortical vs. medullary endothelium. Eight stromal clusters were de-
tected, including mesangium and Ren1-positive juxtaglomerular appa-
ratus cells (SI Appendix, Fig. S2B). Major cell types and subclusters
were identified based on cell type-specific markers (SI Appendix, Fig.
S2 C and D and Dataset S1) (8–10). Each nephron segment performs
unique reabsorptive and secretory functions to transform filtrate into
urine, and this is reflected by segment-specific expression of all detected
solute-linked carriers, ATPases, and channels (SI Appendix, Fig. S3).

Proximal Tubule Responses to Acute Injury. We generated 99,935
mouse AKI single cell transcriptomes (Fig. 1C) and integrated
these with the healthy datasets using the Harmony algorithm to
reduce batch effects (Fig. 1D) (11). We could define unique
anchor genes for all clusters in the integrated datasets and de-
fined the relative abundance of each cluster in healthy vs. injured
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kidney. For example, the AKI kidneys contributed a much larger
fraction of leukocytes than healthy kidneys (Fig. 1 D and E). All
original clusters were retained, but two new clusters in mouse
(Fig. 1D) (cluster 4: New PT1; and cluster 5: New PT2) appeared
in injury, and these were located adjacent to healthy proximal
tubule in UMAP space. Analysis of marker gene expression
showed that these new clusters expressed the proximal tubule
marker Lrp2 encoding Megalin, but also the injury marker
Havcr1 encoding Kim1, indicating that these clusters represented
an injured proximal tubule state in mouse.
We focused our analysis on proximal tubule, since this seg-

ment suffers the most injury due to high metabolic activity.
Unsupervised subclustering of all mouse proximal tubule cells
across time points yielded three healthy subclusters (the S1, S2,
and S3 segments of the proximal tubule), one repairing sub-
cluster, and three injured subclusters (Fig. 2A). Differential gene
expression and gene set enrichment analysis (GSEA) were per-
formed to characterize the subclusters (Dataset S2). Assigning
time points to these clusters in UMAP space helps visualize
temporal changes in proximal tubule gene expression (SI Ap-
pendix, Fig. S4A).
There were three categories of injured proximal tubule

cells—we annotated these as “injured S1/2,” “injured S3,” and
“severe injured PT,” respectively. “Injured S1/2” and “injured
S3” were primarily composed of cells from the 4- and 12-h time
points and expressed Myc, which encodes c-Myc playing a role in

cell cycle progression, and Havcr1, and also shared a part of
differentially expressed genes (DEGs) of “healthy S1” and
“healthy S2” as its DEGs (Fig. 2A and Dataset S2), respectively.
“Severe injured PT” shared expression of many injured PT genes
but additionally expressed the tubule injury markers Krt20 (5, 6),
as well as genes encoding heat shock protein, suggesting a more
severe injury to these cells. GSEA showed that these proximal
tubule injury states had enrichment of response to stress and
damage, and “severe injured PT” additionally had “cell cycle
arrest” (SI Appendix, Fig. S4B).
A “repairing PT” cluster arose 2 d after injury and had en-

richment of “mitotic cell cycle” and “meiotic cell cycle” terms,
including up-regulation of Top2a, which is essential for pro-
liferation. Cell cycle status analysis revealed that “repairing PT”
had the highest proportion of cycling cells (SI Appendix, Fig.S4 C
and D). In contrast, the proximal tubule injury clusters had al-
most disappeared by 2 d (Fig. 2B), and a new distinct cell cluster
arose, growing and reaching nearly 30% of all proximal tubule
states at 14 d after injury, and remaining ∼8% of total proximal
tubule by 6 wk after injury (Fig. 2B). This cluster expressed a
distinct set of genes not observed in either healthy or acutely
injured mouse proximal tubule. These included Vcam1, Dcdc2a,
and Sema5a (Fig. 2A and Dataset S2). Because this cluster ad-
ditionally down-regulated expression of terminal differentiation
markers such as Slc5a12, Slc22a30, and Slc7a13 even at late time
points, we annotated this cluster as “failed repair proximal
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Fig. 2. Time course analysis of proximal tubular cells revealed new cell state, failed repair proximal tubular cells. (A) UMAP displaying the clustering of
proximal tubular cells without Harmony integration and dot plot displaying gene expression patterns of cluster-enriched markers. (B) Bar plot displaying
composition of groups by clusters. (C) Representative images of immunofluorescence staining for VCAM1 (red), Kim1 (green), and LTL (white). (Scale bars: 50
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**P < 0.01; ***P < 0.001, one-way ANOVA with post hoc Dunnett’s multiple comparisons test. (E) Monocle2 pseudotime trajectory of proximal tubular cells
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tubule cells,” or FR-PTCs. We recently reported that ∼20% of
injured proximal tubule cells fail to repair at 2 wk after AKI, and
the presence of the FR-PTC cluster in the current analysis
supports and extends those results (12). GSEA of FR-PTC
revealed terms such as “positive regulation of lymphocyte acti-
vation,” “NIK NFκB signaling,” and “cell–cell signaling by Wnt,”
suggesting FR-PTCs are proinflammatory (SI Appendix, Fig.
S4B). We localized FR-PTCs after IRI by immunofluorescence.
Vcam1-positive FR-PTCs emerged within Kim1-positive injured
tubule in a scattered manner at 2 d after IRI and then expanded
and remained within atrophic tubules with or without Kim1 ex-
pression at late time points (Fig. 2C).
Mapping the PT subclusters back onto the entire dataset

revealed that the “New PT1” cluster was primarily composed of
the three acute injury states and the “New PT2” cluster was
primarily composed of FR-PTCs (SI Appendix, Fig. S4 E and F).
We therefore annotated these clusters as “Injured PT” and “FR-
PTC,” respectively, in further analyses. We asked whether these
distinct PT states could be detected in other bulk RNA-seq
datasets by applying the BSEQ-sc deconvolution algorithm
(13). We assessed the fraction of healthy PT, injured PT, and
FR-PTC in an independent mouse IRI 1-y time course (5). This
showed that healthy PT decreased after injury but gradually re-
covered with time, injured PT increased after injury but resolved
by 7 d, and FR-PTCs appeared beginning 1 wk after injury and
persisted (Fig. 2D). Similar trends were observed in a mouse folic
acid injury model (SI Appendix, Fig. S5A) (14). In human pro-
tocol biopsies from kidney transplants, FR-PTCs increased at 1 y
after transplant compared to pretransplant (SI Appendix, Fig.
S5B) (15). The proportion of FR-PTCs also increased with age in
rat kidneys, increasing from ∼5% at 6 mo to ∼12% at 27 mo (SI
Appendix, Fig. S5C) (16).
We reconstructed proximal tubule lineage relationships during

repair by pseudotemporal ordering. The mouse trajectory began
with injury, and most cells progressed to healthy S1/S2 or S2/S3
proximal tubule segments, but FR-PTCs formed an alternate
branch point off the successful repair trajectory, indicating that
FR-PTCs represent a distinct cell state (Fig. 2E). Gene ontology
(GO) analysis across the pseudotime trajectory showed that the
successful repair trajectory included terms that would be
expected in cells that are redifferentiating, such as “organic acid
metabolic process” and “carboxylic acid metabolic process”
(Fig. 2F). The FR-PTC arm included terms like “cell motility”
and “cell migration.” These results define FR-PTC as a distinct
state after injury characterized by a unique set of markers and
that persists after resolution of injury.
We next used single cell regulatory network inference and

clustering (SCENIC) to map the gene regulatory networks gov-
erning these proximal tubule cell states (17). We discovered
marked differences in regulon activity between FR-PTC, and
either healthy or acutely injured states, providing further evi-
dence that these are distinct proximal tubule cell states (Fig. 3A
and Dataset S3). The FR-PTC cluster had regulon activity for
both Relb and NFkB, suggesting a proinflammatory status for
these cells (Fig. 3B). Also specific to the FR-PTC cluster was the
Tcf7l1 regulon, which mediates Wnt signaling, consistent with
the strong Wnt GSEA terms in this cluster. Proximal tubule
canonical Wnt signaling is important both in specification and
development, but also in disease (18, 19).
We mapped the relationship between transcription factors

identified by this analysis and their regulation of genome-wide
association study (GWAS) genes associated with CKD. In the
successful repair cluster, Hnf4a, Hnf1b, and Pbx1 drive expres-
sion of multiple differentiation-associated genes that are also
GWAS hits for CKD, including a variety of solute-linked carriers
plus Plxdc2, Gas2, and Dab2 (Fig. 3B) (20). By contrast, both
injury and the FR-PTC clusters had strong gene regulatory
network signals for transcription factors regulating the

expression of GWAS genes that were not expressed in healthy
proximal tubule but rather in the injured state. Examples include
the nonmuscle myosin gene Myh9, present in both injured and
delayed repair clusters, and Nrg1 encoding the epidermal growth
factor ligand neuregulin, present primarily in the injured clusters.
In particular, NFkB and Relb regulons were specific to FR-PTC,
and we could map downstream CKD GWAS genes to specific
clusters, both healthy and injured. These results provide func-
tional annotations of cell state-specific transcription factor-
mediated regulatory networks, helping to elucidate the cellular
context for susceptibility loci identified in CKD GWAS studies.
We could detect FR-PTC marker expression in apparently

healthy human kidneys. Consistent with a prior report, these
cells are located in a “scattered” fashion, adjacent to normal
proximal tubule cells, throughout the proximal tubule (21). Ex-
amination of images from the Human Protein Atlas (22) shows
scattered cells in healthy human kidney that express VCAM1
and DCDC2 (SI Appendix, Fig. S6A). We could also detect evi-
dence for down-regulation of differentiation markers in isolated
cells scattered throughout the nephron as well (SI Appendix, Fig.
S6B). These results suggest that a conserved injury response
occurs in individual, isolated cells even during homeostasis.

Stromal Cell Responses to Injury. Recent single cell RNA-seq
(scRNA-seq) analyses have revealed unexpected stromal het-
erogeneity in both developing and adult kidney (8, 9, 23). With
Harmony integration, we combined the stromal clusters from all
time points to identify eight stromal cell subclusters (Fig. 4A).
These included four fibroblast populations that differed
according to their cortical or papillary site of origin. We could
also detect a pericyte and vascular smooth muscle cell pop-
ulation that were both characterized by strong expression of
Notch pathway constituents such as Notch3 and Jag1, consistent
with important roles for this pathway in pericyte development
and angiogenesis (24, 25). We identified renin-secreting juxta-
glomerular cells as well as mesangial cells. Several stromal
clusters differed according to kidney region. For example, the
cortical fibroblast marker Dapk2 was expressed in cluster 3 and 4
but not in cluster 1 and 2 (Fig. 4A) (26), suggesting that cluster 3
and 4 are cortical fibroblasts and cluster 1 and 2 are medullary
fibroblasts.
Myofibroblasts secrete matrix proteins and are critical for

fibrogenesis (27). Two marker genes for myofibroblasts are
Acta2 and Col1a1. In healthy kidney, Acta2 expression was
largely restricted to smooth muscle cells. After IRI, there was
strong up-regulation of Acta2 across all stromal clusters, with the
exception of mesangial cells, and Col1a1 was also strongly in-
duced in fibroblasts (Fig. 4B). We could observe that cortical
fibroblasts only transiently up-regulated Acta2 and Col1a1, with
a peak at day 2 after IRI, whereas medullary fibroblasts showed
sustained expression of Acta2 but not Col1a1 at 6 wk (Fig. 4 B
and C). Medullary fibroblasts also increased as a fraction of the
total stromal cells over time (SI Appendix, Fig. S7). These results
suggest an unappreciated plasticity of kidney stroma. We could
verify the injury-induced transient up-regulation of α-smooth
muscle actin (αSMA), the protein encoded by Acta2, in cortical
fibroblasts but not medullary fibroblasts, by immunofluorescence
analysis (Fig. 4D). These results suggest regional differences in
the response of fibroblasts to injury, with medullary fibroblasts
progressing to a myofibroblast cell state and cortical fibroblasts
reverting to their prior quiescent state (Fig. 4E).

Ligand–Receptor Interactions during Injury and Repair. Finally, we
leveraged our datasets to explore how injury affects intercellular
communication within the kidney. We performed ligand–
receptor analysis across all time points with simplified global
clustering (see Fig. 6A). We highlight the tubulointerstitial
compartment, comprising proximal tubule, endothelium, stroma,
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and leukocytes, because interstitial fibrosis in the kidney cortex
(where proximal tubule is located) best predicts future kidney
failure (28). Although we could identify six distinct leukocyte
clusters (three macrophage subtypes, dendritic cells, and T and
B cells) (SI Appendix, Fig. S8), we performed the ligand–receptor
analysis on the combined leukocyte cluster to increase robustness
of the analysis. Ccl2 and its receptor Ccr2 play important roles in
AKI by recruiting monocytes and T cells (29). We used a stan-
dardized ligand–receptor score to quantitate signaling from Ccl2
in tubulointerstitium to Ccr2 in leukocytes across time (30). This
revealed a temporal progression whereby fibroblasts and endo-
thelial cells were the first cell type to signal to leukocytes, fol-
lowed by leukocyte–leukocyte signaling at day 2, and finally
increasing Ccl2–Ccr2 signaling from FR-PTC (Fig. 5 B and C).
Compared to FR-PTC, proximal tubule destined for successful
repair minimally up-regulated Ccl2 even in acute injury, em-
phasizing the proinflammatory nature of FR-PTC.
To examine leukocyte chemotactic signaling across cell types

more globally, we extracted genes from the “leukocyte chemo-
taxis” GO term and summed the ligand-interaction score for all
cell types across time (Fig. 5D). The strongest scores were seen
in endothelium and fibroblasts, with increasing values over
time—suggesting ongoing leukocyte signaling even after repair
was apparently nearly complete, at 6 wk. Consistent with our
analysis of Ccl2 signaling, we only observed significant leukocyte

chemotactic signaling from epithelia at late time points in the
injured or FR-PTC clusters (Fig. 5D). These results highlight
striking differences in cell types that are promoting inflammation
in kidney after injury. In the acute phase, proinflammatory fi-
broblasts and endothelium predominate, but, in the chronic
phase, FR-PTCs drive ongoing inflammation.
We then compared proinflammatory and profibrotic signaling

from successful repair proximal tubule vs. FR-PTC across time.
The pattern was similar whether proximal tubule was signaling to
endothelial cells, fibroblasts, or leukocytes. For proximal tubule
destined to successfully repair, there was very early up-regulation
of growth factors or cytokines followed by down-regulation be-
ginning 2 d after injury (Fig. 6 A–C). By contrast, the FR-PTC
cluster arising at 2 d after injury up-regulated a distinct set of
secreted proteins whose expression rose and continued to in-
crease 6 wk after injury. Ligands from FR-PTC targeting endothelium
include Edn1, encoding the potent vasoconstrictor endothelin-1, as well
as Tgfb2 encoding transforming growth factor beta-2, which promotes
fibrosis and Ltb, encoding lymphotoxin-β, which drives inflammatory
lymphangiogenesis (31). FR-PTC signaling to fibroblasts included the
profibrotic genes Pdgfrb and Pdgfrd (32). FR-PTC signaling to leuko-
cytes included a variety of proinflammatory and profibrotic cytokines,
including Csf1, Il34, Ccl5, Tnf, Ccl2, Ccl7, Ccl8, and Cxcl10. Consistent
with a proinflammatory role for FR-PTC, Vcam1+ tubules were
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surrounded by F4/80+ macrophages at late time points after IRI (SI
Appendix, Fig. S9).

Discussion
This single nucleus atlas of mouse AKI will serve as a resource
for future studies aimed at understanding cellular responses to
kidney injury. Our ability to differentiate between proximal tubule
cells that are undergoing successful vs. failed repair allowed the
molecular dissection of ligand–receptor interactions, signaling
pathways, and gene regulons that determine whether an injured
epithelial cell repairs successfully or not. Whether similar failed
repair cell states are shared across organs will be an important
question for future studies. Deconvolution of bulk RNA-seq data-
sets suggests that FR-PTCs also exist in human kidney and increase
with age. Whether these proinflammatory cells contribute to the
well-described age-associated decline in kidney function is another

open question. Our results suggest that targeting these proin-
flammatory FR-PTCs may reduce chronic inflammation and fi-
brosis after injury, improving repair.

Materials and Methods
Animals. All mouse experiments were performed according to the animal
experimental guidelines issued by the Animal Care and Use Committee at
Washington University in St. Louis. C57BL/6J (JAX Stock no. 000664) were
purchased from The Jackson Laboratory (Bar Harbor, ME).

Surgery. For bilateral IRI, 8- to 10-wk-old male mice were anesthetized with
isoflurane, and buprenorphine SR was administered for pain control. Body
temperature was monitored and maintained at 36.5 to 37.5 °C throughout
the procedure. Bilateral flank incisions were made, and the kidneys were
exposed. Ischemia was induced by clamping the renal pedicle with a non-
traumatic microaneurysm clamp (Roboz, Rockville, MD) for 18 min. The
clamps were subsequently removed, and kidneys were returned to the
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peritoneal cavity. The peritoneal layer was closed with absorbable suture,
and the flank incisions were closed with wound clips. Control mice un-
derwent sham surgery.

Mouse Kidney Samples. Mice were euthanized with isoflurane, blood was
collected, and the left ventricle was perfused with phosphate-buffered saline
(PBS). For snRNA-seq, kidneys were snap-frozen with liquid nitrogen. For
frozen sections, kidneys were fixed with 4% paraformaldehyde for 2 h on

ice, incubated in 30% (vol/vol) sucrose at 4 °C overnight, and embedded in
optimum cutting temperature compound (Sakura FineTek) to cut 7-μm sec-
tions. For paraffin sections, kidneys were fixed with 10% (vol/vol) formalin
and paraffin-embedded to cut 4-μm sections. Immunofluorescence protocols
and antibodies are detailed below.

BUNMeasurement. BUNmeasurement was done using the QuantiChrom Urea
Assay kit as per the manufacturer’s protocol.
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snRNA-seq. Single nuclei isolation from tissue was performed as previously
described (33). Briefly, nuclei were isolated with Nuclei EZ Lysis buffer (NUC-
101; Sigma) supplemented with protease inhibitor (5892791001; Roche) and
RNase inhibitor (N2615, Promega; AM2696, Life Technologies). Samples
were cut into <2-mm pieces and homogenized using a Dounce homogenizer
(885302-0002; Kimble Chase) in 2 mL of ice-cold Nuclei EZ Lysis buffer and
incubated on ice for 5 min with an additional 2 mL of lysis buffer. The ho-
mogenate was filtered through a 40-μm cell strainer (43-50040-51; pluri-
Select) and then centrifuged at 500 × g for 5 min at 4 °C. The pellet was
resuspended and washed with 4 mL of the buffer and incubated on ice for
5 min. After another centrifugation, the pellet was resuspended in Nuclei
Suspension Buffer (1x PBS, 1% bovine serum albumin, 0.1% RNase inhibitor),
filtered through a 5-μm cell strainer (43-50005; pluriSelect). Nuclei were
counted on hemocytometers (InCYTO C-chip) and partitioned into each
droplet with a barcoded gel bead using the 10× Chromium instrument (10×
Genomics, Pleasanton, CA). Single nuclei were lysed, and RNAs were reverse-
transcribed into complementary DNA (cDNA) within each droplet. After
breaking the emulsion, cDNAs were amplified and fragmented, followed by
the addition of Illumina adapters using Single Cell 3′ Library & Gel Bead Kit

(v2). Samples were indexed and sequenced on the S4 flow cell of NovaSeq
6000 (Illumina).

Data Processing of snRNA-seq Libraries. snRNA-seq data were processed with
zUMIs as previously described (34). Briefly, low-quality barcodes and unique
molecular identifiers (UMIs) were filtered out using the internal read-
filtering algorithm and then mapped to the mouse reference genome
(mm10) using STAR 2.5.3a. Next, zUMIs quantified the reads that were
uniquely mapped to the exonic, intronic, or intergenic region of the genome
and inferred the true barcodes that mark nuclei by fitting a k-dimensional
multivariate normal distribution with mclust package. Finally, a UMI count
table utilizing both exonic and intronic reads was generated for down-
stream analysis. The whole data processing was executed by running the
script on the facilities of the Washington University Center for High
Performance Computing.

General Strategy of snRNA-seq Data Analysis. Seurat v3 was used for down-
stream analyses, including normalization, scaling, and clustering of nuclei.
We analyzed each batch of mouse sample separately and excluded nuclei
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with less than 150 or more than 8,000 genes detected. We also excluded
nuclei with a relatively high percentage of UMIs mapped to mitochondrial
genes (≥0.01) and ribosomal genes (≥0.06). Subsequently, we applied SoupX
(35) to remove ambient RNA because different batches can be affected by
different levels of ambient RNA. Briefly, ambient RNA expression is esti-
mated from the empty droplet pool (10 UMIs or less) with setting “non-
ExpressedGeneList” to hemoglobin genes, followed by removing ambient
RNA counts using the “adjustCounts” function with default parameters,
according to the SoupX package (https://github.com/constantAmateur/
SoupX). In parallel, we used Scrublet (36) to remove doublets. After merging
all mouse data, we log-normalized and scaled the data to remove unwanted
sources of variation driven by the number of detected UMIs and performed
dimension reduction, clustering, and subclustering. In addition, after clus-
tering or subclustering, we performed curated doublet removal based on
known lineage-specific markers.

Clustering and Dimension Reduction. We first combined all mouse datasets. The
highly variable genes for principal component analysis were obtained by iden-
tifying the top 500 variable genes from each dataset with FindVariableFeatures
and merging the list; we then performed principal component analysis
(“RunPCA” function). Combined mouse datasets were integrated using the
“RunHarmony” function in the Harmony package. Clustering and UMAP were
performed in Seurat using the “harmony” data type as the dimensional
reduction type (i.e., reduction.type=“harmony”). Marker genes were identified
from each aligned cell type using the FindAllMarkers function in Seurat. Cluster
reassignment was performed based on manual review of lineage-specific
marker expression.

Time Course Analysis of Proximal Tubular Cells. We extracted mouse proximal
tubular cell clusters and then performed clustering without Harmony in-
tegration. The highly variable genes for principal component analysis were
obtained by identifying the top 300 variable genes from each dataset with
FindVariableFeatures and merging the list. We then performed principal
component analysis (“RunPCA” function), clustering, and UMAP.

Pseudotemporal Analysis. Pseudotemporal analysis was performed using
Monocle2. We ordered the cells onto a pseudotime trajectory based on the
union of highly variable genes in a set of principal components (PCs) that
were previously used for time course analysis of proximal tubular cells. Next,
we defined the branch-dependent genes by branched expression analysis
modeling (BEAM) function in Monocle2 and then cataloged them into two
clusters in a pseudotime manner. Finally, we performed GO analysis of each
gene cluster.

Gene Regulatory Network Analysis on Proximal Tubular Cells. We used SCENIC
for gene regulatory network analysis. In brief, we generated coexpression
networks of mouse proximal tubular nuclei data via GRNBoost2. We then
utilized the SCENIC package to generate cell regulatory networks frommouse

proximal tubular nuclei data, with the mouse mm10 genome for cis-
regulatory analysis. We used two gene-motif rankings: 10 kilobases
around the transcription start site (TSS) or 500 base pairs (bp) upstream and
100 bp downstream of the TSS, which were obtained from https://resources.
aertslab.org/cistarget/.

Single Cell Deconvolution. We used BSeq-sc to estimate the proportion of
each PT subtype identified from snRNA-seq in the previously reported bulk
RNA-seq data as previously described (37). Briefly, the marker genes for each
PT subtype and the reads per kilobase million (RPKM) normalized gene ex-
pression matrix from bulk RNA-seq were used as input according to the
tutorial from BSeq-sc package (https://shenorrlab.github.io/bseqsc/vignettes/
bseq-sc.html).

Ligand–Receptor Interaction Analysis. To study ligand–receptor interactions
across cell types, we used a draft network (38) and defined an interaction
score as previously described with a slight modification (30). In brief, first we
eliminated ligand–receptor pairs that included laminin and collagen genes
as ligands and then considered only ligands and receptors expressed in more
than 0.5% of the nuclei in the specific cell type. Next, we defined the in-
teraction score as the product of the average expression of a ligand in a cell
type at a time point and the average expression of its cognate receptor of
another cell type at the same time point. We then standardized each
ligand–receptor interaction score by taking the distance between the in-
teraction score and the mean interaction score in units of SDs.

Immunofluorescence. Kidneys were fixed in 4% paraformaldehyde (Electron
Microscopy Services), cryoprotected in 30% sucrose solution overnight, and
embedded in optimum cutting temperature (OCT) compound (Tissue Tek).
Kidneys were cryosectioned at 7 μm thickness and mounted on Superfrost
slides (Thermo Fisher Scientific). Sections were washed with PBS (three times,
5 min each) and then blocked with 10% normal goat serum (Vector Labs),
permeabilized with 0.2% Triton X-100 in PBS, and then stained with primary
antibody specific for Cy3-conjugated anti-αSMA (C6198, 1:400; Sigma), rat
anti-PDGFRβ (16-1402, 1:200; eBioscience), rabbit anti-CD31 (ab28364, 1:200;
Abcam), and rat anti-F4/80 (ab6640, 1:200; Abcam). Secondary antibodies
included AF488-, Cy3-, or Cy5-conjugated (Jackson ImmunoResearch). Then,
sections were stained with DAPI (4′,6-diamidino-2-phenylindole) and
mounted in Prolong Gold (Life Technologies). Images were obtained by
confocal microscopy (Nikon C2+ Eclipse; Nikon, Melville, NY).

Data Availability. All relevant data have been deposited in the Gene Ex-
pression Omnibus under accession number GSE139107.
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