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in the presence of Dzyaloshinskii-Moriya interactions
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1School of Physics, University College Dublin, Dublin, Ireland
2Department of Physics, California State University, San Bernardino, California 92407, USA

(Presented 2 November 2011; received 3 October 2011; accepted 20 October 2011; published

online 15 February 2012)

Many low-dimensional systems, such as nanoscale islands, thin films, and multilayers, as well as

bulk systems, such as multiferroics, are characterized by the lack of inversion symmetry, a fact

that may give rise to a Dzyaloshinskii-Moriya (DM) interaction. For sufficient strength, the DM

interaction will favor spiral spin configurations of definite chirality. In order to harness such systems

for applications, it is important to understand the conditions under which these spiral spin configura-

tions form and how they can be controlled via an external field. Here, we present exact solutions of

the 1D magnetization profiles in such systems for arbitrary material parameters in closed form.

Determining the energy per unit length exactly, we are able to present the critical strength of the DM

interaction, at which spiral solutions are energetically favorable. These magnetization profiles, in

general, take the form of a domain wall or soliton lattice, with all solitons having the same chirality,

whose sign is dictated by DM interaction. Conversely, given an energetically favorable spiral solu-

tion, we determine quantitatively how the magnetization profile changes as a function of the applied

field. VC 2012 American Institute of Physics. [doi:10.1063/1.3671784]

I. INTRODUCTION

Low-dimensional magnetic systems are a fundamental

component of many prospective magnetic memory devices,

such as Parkin’s proposed “racetrack” memory,1 where a

sequence of domain walls in a magnetic nanowire encodes

the binary states. The reduced dimensionality seen in such a

system and also present in other magnetic systems, such as

nanoscale islands and thin films, can give rise to a lack of

inversion symmetry, which may give rise to parity breaking

Dzyaloshinskii-Moriya (DM) interactions that favor spiral

spin configurations of definite spin chirality, such as those

that have been seen in recent spin-polarized scanning tunnel-

ing microscopy and photoemission electron microscopy

experiments on quasi-1D spin structures.2,3 To harness such

systems for novel applications, it is important that we under-

stand the mechanisms and conditions under which such

spiraling configurations can form.

Utilizing a “micromagnetic” continuum approach,4 we

are able to describe, in closed form, the resulting magnetic

configurations for quasi-1D spin structures subject to the

DM interaction with arbitrary material parameters and sub-

ject to an external field. These configurations take the form

of a domain wall or soliton lattice, with chirality determined

by the DM interaction. By calculating the energy densities

per unit length for these configurations, this method allows

us to determine the critical strength of the DM interaction at

which spiraling configurations are energetically favorable.

We conclude by briefly relating our model to recent experi-

mental results, which have seen size-dependent spiraling

spin structures in iron nanoparticles.3

II. THEORETICAL MODEL

We consider the following 1D energy density per unit

area, which is valid for sufficiently narrow wires,4 and

extend it to include the DM interaction,

E ¼
ðL=2

�L=2

dx Að@xmÞ2 � Kem2
z þ Khm2

x

n

�HM0mz � Dðm� @xmÞx
�
; (1)

where L is the sample length (or the period of soliton-lattice)

and m is the unit vector of the magnetization, m : M=M0,

with M0 the saturation magnetization. Eq. (1) describes the

exchange interaction, easy and hard-axis anisotropies, and

coupling to an external field aligned along the easy axis,

with the final term describing our additional parity-breaking

DM term. The sign of the DM term, D, can be either positive

or negative and determines the “handedness” of our configu-

ration. It is more convenient to work with dimensionless

quantities and with polar coordinates m¼ (cos h,� sin h sin

/, sin h cos /), so we write

E ¼
ðL=2d0

�L=2d0

dn
1

2
ð@n/Þ2þ

1

2
sin2 /� hcos/�D@n/

� �
; (2)

where dimensionless quantities n and E have been introduced

by re-scaling the length along the x-axis and energy per unit

area as n¼ x=d0 and E ¼ E=2
ffiffiffiffiffiffiffiffi
AKe

p
, where d0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
A=Ke

p
is

the characteristic width and 2
ffiffiffiffiffiffiffiffi
AKe

p
is half the energy per

unit area of the static p-Bloch wall. In Eq. (2), to confine our

solutions to the easy plane, further simplifications were intro-

duced by setting h ¼ p=2 and neglecting polar fluctuations,

and we have also defined the dimensionless terms,

a)Electronic mail: ngrise@yahoo.com.
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h¼HM0=2Ke, as the reduced external field and the re-scaled

DM constant, D ¼ D=2
ffiffiffiffiffiffiffiffi
AKe

p
. So defined, the configurations

which satisfy Eq. (2) are consistently described by the azi-

muthal angle /(x). This energy density, Eq. (2), leads to the

following Euler-Lagrange equation @2
n/� U0ð/Þ ¼ 0, which

has the following first integral:

1

2
ð@n/Þ2 � Uð/Þ ¼ c; (3)

where we have defined the potential Uð/Þ ¼ 1
2

sin2 / �h cos /
and c is an integration constant larger than the minimum of

–U(/). We note that, as a total derivative, the chiral DM term

contributes to the energy, but does not enter the Euler-

Lagrange equation. As such, the set of all possible solutions is

not affected by the value of D and the DM term only deter-

mines the most energetically favorable configuration.

As the first integral Eq. (3) is separable, it can be for-

mally integrated to determine the possible configurations.

Here, we are mainly interested in chiral, spiraling solutions,

where @n/ never vanishes. This is the case for c> h, where

we obtain explicitly

wðnÞ ¼ �jw2j
cn

n
d
; k

� �

sn
n
d
; k

� � ; (4)

where sn(x, k) and cn(x, k) are Jacobian elliptic functions of

modulus k. Here, the intrinsic width d and modulus k are

given by

d�1 ¼ w2j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðcþ hÞ;

r
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

1

�� ��= w2
2

�� ��q
:

Here, h> 0 and the constants w2
1;2 are defined as

w2
1;2 ¼ �ð1þ cÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2 þ 2c

ph i
=ðhþ cÞ:

Note that our system is aligned such that /(x¼ 0)¼ p and

the “unit cell” of our soliton lattice extends over length L¼
2K(k)d, where K is the complete elliptic integral of the first

kind.

Rather than discussing this solution in full generality,

we shall focus on a few very simple cases:

A. Absence of anisotropies and external fields

In this case, the Euler Lagrange equations are simply

@2
n/ ¼ 0 and may be immediately integrated to /¼ kxþ/0,

with k the wavenumber. The energy density is then Ak2 – Dk,

which is minimal for the spiraling wavevector k0¼D=2A. Note

that the uniform ferromagnetic state is unstable with respect to

a spiral structure with k0 6¼ 0 for arbitrarily small values of D.

The chirality of the spiral is determined by the sign of D.

B. Nonvanishing anisotropy

Consider now a sample or nanowire of length L� d0

with an easy-axis anisotropy, which stabilizes the ferromag-

netic state. We may now give a simple criterion for the

instability toward spiral structures for h¼ 0 by, considering

simple domain wall configurations. With h¼ 0, we have

Uð/Þ ¼ 1
2

sin2 /, and so we can directly integrate Eq. (3) for

c¼ 0 to find the following domain wall solution for

L!1:

/ðnÞ ¼ 2 tan�1 en; (5)

which describes a rotation of the azimuthal angle / by p
within the easy plane and which is contained to a localized

region, i.e., a p-soliton or a Bloch wall. Since the magnetiza-

tion winds by a total angle p, we have
Ð

dn@n/ ¼ p and,

hence, we find for the Bloch wall energy,2 E ¼ 2� pD,

where the last term is due to the DM interaction. In physical

units, we have E ¼ 4
ffiffiffiffiffiffiffiffi
AKe

p
� pD. Since the uniform ferro-

magnetic state has zero energy,2 the anisotropic ferromagnet

becomes unstable with respect to the formation of a single p
Bloch wall if the DM constant obeys D>Dc, where the criti-

cal strength is given by

Dc ¼
4

p

ffiffiffiffiffiffiffiffi
AKe

p
: (6)

In particular, in contrast to the previous case of no anisot-

ropy, there is now a finite value of D required to induce a

spiral structure. Also, it is evident that the resulting equilib-

rium spiral structure will no longer have constant pitch, but

be of the type in Eq. (4), i.e., have the character of a lattice

of domain walls or a so-called “soliton lattice”. We now

include an external field in our considerations.

C. Nonvanishing anisotropy and nonvanishing
external field

Also, here it is convenient to consider the case of

L!1, where we have the benefit of a simple analytical so-

lution4 of Eq. (3), which may be expressed as

tanð/=2Þ ¼ cosh Rss= sinhðn=dssÞ: (7)

This corresponds to a soliton-soliton pair stabilized in an

external field. Here, we introduced the dimensionless relative

distance Rss of the two constituents of the soliton-soliton pair

and the intrinsic width dss, which are both related to the

external field as

csch2Rss ¼ h; dss ¼ tanh Rss: (8)

Thus, a strong applied field leads to decrease of the intersoli-

ton distance Rss with a concomitant decrease of the intrinsic

width dss. The (dimensionless) energy per area E for this

soliton-soliton pair is given by

E ¼ 4fcoth Rss þ Rss csch2 Rssg � 2pD; (9)

since, in this case, the soliton-soliton pair consists of two p
domain walls with the same twist and, therefore,Ð

dn@n/ ¼ 2p. We may now convince ourselves that the limit

h ! 0 is correct, since then, Rss !1 and the first term

equals 4 and one recovers the condition in Eq. (6). For finite

fields, however, we have D>Dc, as the applied field has a

07C706-2 Grisewood et al. J. Appl. Phys. 111, 07C706 (2012)



stabilizing influence on the uniform state. Conversely, we can

stabilize the uniform state with a field and, after switching it

off, the magnetization will relax into a spiral state. This spiral

state has a lower energy than the uniform state for

D > Dcfcoth Rss þ Rss csch2 Rssg; (10)

where Dc is given by Eq. (6). The spiral and the uniform

phase in the D – Rss plane are shown in Fig. 1. Note that the

value of D considerably increases for large fields. Vice versa,

by varying h and, hence, Rss, one can pass between the two

phases.

D. Soliton-Antisoliton

We conclude with remarks on soliton-antisoliton config-

urations, which may be obtained for c¼ –h in the first inte-

gral. One may then obtain the following magnetization

profile:5

tanð/=2Þ ¼ coshðn=ds�sÞ= sinh Rs�s; (11)

with radius and width defined by

sech2 Rs�s ¼ h; ds�s ¼ coth Rs�s;

with energy density in the L!1 limit of

E ¼ 4ftanh Rs�s � Rs�s sech2 Rs�sg: (12)

We note that the DM term does not contribute to the domain

profile, as it does not appear in Eq. (3), nor the resultant

energy density, since
Ð

dn@n/ ¼ 0 in this case. Thus, nuclea-

tion is not affected by the existence of a Dzyaloshinskii-

Moriya term.

E. Applications

We describe a potential application of this model to

recent photoemission electron microscopy results,3 where

spiraling spin structures were observed in iron nanoparticles.

These particles were coupled to a ferromagnetic cobalt sup-

port for particle sizes L> 6 nm, with collinear alignment for

smaller sizes. Numerical analysis attributed this transition to

an exchange to anisotropy-dominated energy density on

increasing particle height.

We can adapt our model to suit these types of experi-

ment by taking an approach similar to the two-grain model
of Ref. 6. By treating the substrate and nanoparticle as a

coupled quasi-1D system, if we consider “penetration” of the

spin configuration into the substrate, we may determine the

nanoparticle’s spin structure by matching boundary condi-

tions and accounting for differing anisotropy constants, the

DM interaction, or slippage at the interface. The connection

of our model with the two-grain model can be made more

explicit by considering the limit of grain sizes L!1.

III. CONCLUSIONS

In conclusion, here, we have extended the “micro-

magnetic” continuum approach to account for the chiral DM

interaction in quasi-1D systems with arbitrary material

parameters. Our method allows the calculation of exact solu-

tions of the 1D magnetization profiles and their correspond-

ing energy densities. We demonstrated that these solutions

can take the form of analytic hyperbolic functions or, in

more general cases, the configurations can be described by

Jacobian elliptic functions. We find it remarkable that these

configurations and their associated energy densities are

determined solely by the values of two parameters: c, an

integration constant, and h, the reduced field. Our method

allows us, in principle, to determine the critical strength of

the DM interaction, for which spiraling solutions will be

energetically favorable, even in the presence of applied fields

for any given parameters, and we demonstrated its critical

value Dc ¼ ð4=pÞ
ffiffiffiffiffiffiffiffi
AKe

p
when h¼ 0. We suggest that our

micromagnetic continuum approach is suitable for applica-

tion to many spin systems, including nanowires and nanopar-

ticles, and can provide exact solutions that can assist in

understanding the mechanisms under which spin spirals form

for use in novel spintronic devices.
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FIG. 1. (Color online) Phase boundary between spiral and uniform states in

the D – Rss plane, where Rss is related to the applied field as csch2Rss¼ h.
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