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Abstract

The measles virus has been around since the 9th century. Throughout

the years measles have become less problematic in certain areas of the world due

to research and the creation of vaccinations. Sadly, not all countries are fortunate

enough to have adequate access to the vaccination, which leads to yearly outbreaks.

The goal of this project is to experiment with different mathematical

growth models and examine their suitability for modeling outbreaks of measles.

We will compare and contrast the exponential model, the logistic model, the SIR

model, and the SEIR model. In addition, we will show how the epidemiological

models are built and explain their parameters. We will then consider a model for

the spread of measles and analyze its suitability using real data.
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Chapter 1

Introduction

Measles have been a problem around the world since the 1900s. The

measles vaccination was a huge breakthrough, which granted many people immu-

nity from the disease and saved many lives. The Centers for Disease Control and

Prevention (CDC) reports that in the year 2000 the disease was considered elimi-

nated in the United States. However, in the last several years, measles have become

a problem again. Between 2015 and 2019, the United States started experiencing

epidemics again, with 2019 having the most outbreaks since 1992.

In Chad, Africa measles outbreaks happen yearly, but they usually die off

around June when the rainy season begins. Researchers are still not sure why this

happens. In 2018 the measles outbreak grew in intensity and continued into 2019.

Not enough people in the country have been vaccinated and this has resulted in

thousands of people losing their lives.

Mathematical models are extremely important in improving our under-

standing of population dynamics of infectious diseases. Models are a crucial tool
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to help with controlling and preventing the spread of disease based on scientific

evidence.
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Chapter 2

History of Measles

2.1 Measles

2.1.1 History

The measles were first accounted for and the first written accounts were

published in the 9th century by a Persian doctor, Muhammad ibn Zakariya ar-

Razi[Man19]. In 1757, Scottish physician Francis Home demonstrated that the

measles disease is caused by an infectious agent present in the blood of those who

contract the measles[CDC19].

Measles became a notifiable disease in the United States in 1912, requiring

all healthcare professionals and laboratories to report each diagnosed case of the

measles to government officials. The reported information allows the authorities

to monitor the disease and provide early warning of possible outbreaks. Within

the first decade of mandatory reporting, the United States averaged 6000 deaths

per year caused by measles.
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In the 1950s, before a measles vaccine was available, almost all children

contracted the measles before the age of fifteen. Each year in the United States,

three to four million people contracted the measles, 400 to 500 people died, ap-

proximately 48 thousand were hospitalized, and about 1000 people suffered from

brain swelling caused by the measles disease.

2.1.2 The Measles Virus

Measles is a very contagious airborne disease that is caused by a virus

and may be spread via an infected person who sneezes or coughs. The measles

virus can remain live in the air for up to two hours, so an infected person need

not be present in order to infect others. The virus is extremely contagious; if only

one person is infected, up to 90 percent of the people around that person may also

become infected if they have not been vaccinated. Measles is very serious in the

fact that it can create many complications and may result in death.

When infected with the measles, symptoms do not show for approxi-

mately seven to fourteen days. The first symptoms are a high fever (can be over

104 degrees), runny nose, cough, and eyes may become red and watery. Small

white spots, called Koplik spots, will develop inside the mouth two to three days

after the first symptoms appear, and a rash will appear within three to five days

of the first symptoms. The rash commonly starts as flat, red spots on the face

near the hairline, then advances to the neck, arms, legs and feet. Raised bumps

might also develop on top of the Koplik spots, and as the rash spreads the spots

may join together. When this is happening, one’s fever could spike to 104 degrees

or more. The total duration of the measles infection is about two to three weeks.
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2.2 Vaccination

2.2.1 Vaccine Creation

In 1954, the research of creating a measles vaccination began. John F.

Enders and Dr. Thomas C. Peebles began their research in Boston, Massachusetts

during a measles outbreak. They started by collecting blood samples from a hand-

ful of ill students. Their goal was to isolate the virus in the blood, and in turn,

create a vaccination. They were successful in doing so with 13 year old David

Edmonston[CDC19].

Enders and colleagues were able to transform their Edmonston-B strain

of the measles virus into a vaccination and license it in the United States in

1963. An improved and weaker vaccination, called the Edmonston-Enders (for-

merly “Moraten”) strain, was developed and distributed in 1968 by Maurice Hille-

man and his colleagues. The Edmonston-Enders strain has been the only measles

vaccination to be used in the United States since it was developed in 1968[CDC19].

The mealses vaccination works by enabling the immune system to create

antibodies that fight off the measles virus that is contained in the vaccination. The

vaccination defends the body from every type of mealses genotype. If someone

is exposed to the measles virus and they have been vaccinated, their body will

remember how to fight off the virus because it had been trained to do so when the

vaccination was administered.
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2.2.2 Vaccine Effectiveness

According to the CDC, the measles vaccine is very effective. One dose

of the vaccine is approximately 93% effective, and two doses of the vaccine are

approximately 97% effective, at preventing the measles if one is to be exposed to

the virus.

2.2.3 Measles in the United States

In 1978, The CDC set a goal to eliminate the measles in the United

States by 1982. In order to do this, vaccinations needed to be distributed among a

large number of people. Although the objective was not achieved, the vaccination

campaigns greatly reduced the number of people contracting the measles. By 1981,

measles cases had dropped over 80%. Unfortunately, in 1989 the United States

experienced measles outbreaks in school-aged children that had previously been

vaccinated. This inspired the Advisory Committee on Immunization Practices

(ACIP), the American Academy of Pediatrics (AAP), and the American Academy

of Family Physicians (AAFP) to suggest that children should receive a second dose

of the measles vaccination. There was a decline in reported cases after the second

dose suggestion and after the improvement of coverage of the first dose.

In the year 2000, there were no reported measles cases for more than

twelve consecutive months. Consequently, the measles were considered eliminated

from the United States. This achievement was brought about by a widespread

vaccination program and better measles control. The United States was able to

maintain this situation for 19 years, which was a huge public health accomplish-

ment. Unfortunately, measles outbreaks began again in 2019. [WHO19]
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2.2.4 Measles Around the World

Measles and a measles vaccination is present all over the world. Although

the vaccination is affordable and safe, a significant number of people are still not

vaccinated. There were an estimated 110,000 deaths in the world from the disease

in 2017, of which most were children under five years old. However, due to the

vaccination there was an 80% decline of deaths globally between the years 2000 and

2017. This amounts to about 21.1 million spared lives. The measles vaccination is

one of the best vaccinations to have been created. By 2017, approximately 85% of

children around the world had received at least one of two doses of the vaccination

before their first birthday. This was a 13% increase from the year 2000. [WHO19]

2.2.5 Why Not Vaccinate?

Although the measles vaccination is affordable and available all over the

world, many people refuse the vaccination for a variety of reasons. Some of these

reasons include, but are not limited to: religious reasons, personal beliefs or philo-

sophical reasons, safety concerns, and the need of additional information.
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Chapter 3

Chad, Africa

Figure 3.1: Chad, Africa.

3.1 History

3.1.1 Lifestyle

The country of Chad is located in Central Africa and is bordered by Su-

dan, Cameroon, the Central African Republic, and Nigeria. The territory spreads
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across 1,284,000 square kilometers of desert and rain forest. Chad is the fifth largest

country in Africa and the 21st largest country in the world, with a population of

15.5 million.

Chad is an extremely poor country with one of the highest levels of hunger

in the entire world. Approximately 66.2 percent of Chad’s population is living

in severe poverty. In Chad, children are required to attend school to receive an

education, yet only about 68% of children attend. Half of the country’s population

is illiterate.

3.1.2 Vaccination

The healthcare system in Chad is extremely poor. The healthcare facil-

ities are overpopulated, under supported, and are not spread equally throughout

the country. The available healthcare facilities average only about three doctors,

fifteen nurses, and two midwives per 100,000 people. Deficits in the healthcare

system are primarily due to the political uncertainty that has been a concern for

many years.

Before a measles vaccination was present in Africa, the measles virus

mainly affected young children. More than a million cases were documented yearly.

Between 1970 and 1980, a measles vaccination was introduced in the African coun-

tries by the World Health Organization (WHO). The measles vaccination helped

the countries significantly, leading to longer times between epidemics. However,

the vaccination still has not been distributed to enough children to stop annual

outbreaks.
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3.1.3 Outbreaks

Table 3.1 and Figure 3.2 display the number of newly infected individuals

per week and the cumulative number of individuals that have been infected. Week

1 corresponds to the first week of January, 2018. Our chart begins week 20, May

12 - May 18, 2018, since this is when the epidemic was declared.

Time (Weeks) Newly Infected Total Infected

20 77 77

21 74 151

22 66 217

25 175 392

26 91 483

27 118 601

29 162 763

30 98 861

33 237 1098

35 122 1220

36 155 1375

48 259 1634

55 2000 3634

61 8333 11967

68 912 12879

69 846 13725

Table 3.1: Chad Data from the 2018 Outbreak.
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Figure 3.2: Scatterplot of Chad Data from the 2018 Outbreak.

Every year Chad experiences measles outbreaks. The outbreaks normally

begin in the spring and die off around June, when the rainy season begins. In

2018, the measles outbreak did not end in June, like most years. Instead, it grew

in intensity and continued into 2019, as depicted in Table 3.1 and Figure 3.2. This

was a huge problem because Chad’s pre-harvest season is from June to September,

which is when hunger is at an all time high. When children are malnourished they

are more susceptible to becoming ill and suffering from the measles. Those who

are malnourished have a lessened chance of surviving the disease.

In the next chapter we will explore different mathematical models and

evealuate their suitability to model the data shown in Table 3.1 and Figure 3.2.
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Chapter 4

Mathematical Models

Mathematical models can be used as a mechanism or tool that help ex-

plain, describe, and predict behavior of physical phenomena. One area in which

models are exceptionally useful is in the study of epidemiology. There are many

epidemiology mathematical models, from simple to complex. As scientists come

to better understand how disease spreads, they continue to work towards building

models that will be appropriate for whatever problem may be at hand. In this

thesis we begin our study with the analysis of a simple growth model and demon-

strate how to increase the complexity of a model to better represent the scenario

under investigation.
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4.1 Exponential Model

Figure 4.1: Graph Depicting Exponential Growth.

The exponential model was popularized by Thomas Robert Malthus (1766-

1834)[Sha97]. An exponential model has an unconstrained pattern. The assump-

tion that a growth rate will be proportional to the population leads to the differ-

ential equation dP
dt = rP , where the dependent variable P represents a population

as a function of time t and r is a parameter that represents the per capita growth

rate. All solutions of this equation are of the form P (t) = P0e
rt, where P0 denotes

the initial population P (0) and e is the base rate of growth shared by all contin-

uous growth processes. When r < 0, the population declines. When r > 0, the

populations increases. If r = 0, the population remains fixed.

The exponential model may sometimes be used to model early stages in
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the spread of disease, but it is too simplistic of a model to use long term. It

is useful because it relates to predicting impact on resources and can be used

to estimate parameters. One drawback to the model is that it does not predict

when the number of ill individuals will peak. When working with this model, we

assume an infinite population, unless the domain is restricted. In order to use

the model appropriately, the domain over which behavior would be approximately

exponential would need to be known ahead of time. We consider an example to

help explain some of the key drawbacks and benefits of the exponential model.

4.1.1 Exponential Model Example

In a short article published in 1978 by the British Medical Journal, the

authors present Figure 4.2 [BMJ78]. The graph depicts data of students confined to

bed and convalescent students from the influenza outbreak at an English boarding

school. By embedding the original graph in a GeoGebra worksheet and scaling

appropriately (see Figure 4.3), we obtain the data estimates given in Table 3.1.

The data estimates were then entered into Excel to create Figure 4.4.
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Figure 4.2: Graph of 1978 England Boarding School Influenza Estimates.

Figure 4.3: GeoGebra Estimates of Number of Students Confined to Bed and Num-
ber of Convalescent Students.
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Time (Days) Confined to Bed Convalescent

0 1 0

1 3 0

2 9 0

3 28 0

4 75 2

5 223 9

6 293 17

7 258 100

8 237 161

9 192 174

10 124 163

11 69 150

12 28 90

13 13 45

14 4 24

Table 4.1: Estimates of 1978 England Boarding School Influenza Data.

Figure 4.4: Scatterplot of 1978 England Boarding School Influenza Data Estimates.
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When looking at Figure 4.4 it is clear that an exponential model does

not fit our entire data set. However, we notice in Figure 4.4 that the first six data

points on the graph of the “infected” students appear to follow an exponential

growth pattern. Taking the first six data points and plotting them on a scatterplot

gives us a closer look at the proposed exponential growth (see Figure 4.5). When

an exponential best fit curve is added, we see that the fit appears close. With a

growth pattern such as this one, and only a few data points, it can be difficult to tell

visually whether the data fits an exponential model, or whether some other model

such as a power function might provide a better fit. We can use a semi-logarithmic

(semi-log) graph to help determine if the growth of our data is exponential or not.

We want to see if the model y = abt provides a good fit for the data for some a and

b, where y represents the dependent variable. For our semi-log graph we will use

a logarithmic scale for the dependent axis and a linear scale for the independent

axis. By taking the natural log of both sides of the equation y = abt, we obtain

the equation log y = log a+ t log b.1 Hence the graph of the exponential equation

will be linear on a semi-log graph.2

1In this paper we will let “log” denote the natural logarithm.
2A best fit curve is a curve that shows the overall idea of what the data is illustrating. It helps

us to see if there is a correlation between the two factors being graphed.
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Figure 4.5: First Six Data Points of the Boarding School Data.

To test our hypothesis on the boarding school data, we began by taking

the natural log of number of infected individuals, Table 4.2, and creating the

corresponding semi-log scatterplot, Figure 4.6.
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Time (Days) Confined to Bed log(Infected)

0 1 0

1 3 1.098612

2 9 2.197225

3 28 3.332205

4 75 4.317488

5 223 5.407172

6 293 5.680173

7 258 5.552960

8 237 5.468060

9 192 5.257495

10 124 4.820282

11 69 4.234107

12 28 3.332205

13 13 2.564949

14 4 1.386294

Table 4.2: Boarding School Data with Natural Log of Number of Infected.

Figure 4.6: Semi-Log Scatterplot of Boarding School Data.



20

Notice that the first six data points seem to lie on a line, further con-

firming our conjecture of exponential growth. Let us check the goodness-of-fit by

finding a line of best fit for the first six points on the semi-log graph.

Figure 4.7: Boarding School Data on a Semi-log Graph.

In Figure 4.7 we find that the line of best fit appears to provide a sur-

prisingly good fit for our data estimates. We find that the data given by y =

log(infected) seems to be modeled well by the line of best fit y = 1.0808t+ 0.0235.

4.1.2 Diagnostics and Model Validity

The coefficient of determination for this model is given by R2 = 0.9997.

Since this value is very close to 1, we may be able to conclude that the linear model

fits well. The coefficient of determination, R-squared, is a goodness-of-fit measure

for linear regression models. This statistic indicates the percentage of the variance

in the dependent variable that the independent variables explain collectively. The
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R-squared statistic measures the strength of the relationship between a model and

the dependent variable on a convenient 0 – 100% scale [Fro20]. We also examine

the residual plot to see if our model is biased. An unbiased model has residuals

that are randomly scattered around zero. If the model is unbiased, we can trust

our result of R-squared.

Figure 4.8: Boarding School Data Residual Plot

When examining our residual plot in Figure 4.8 it is difficult to conclude

if the differences between the data values and the values predicted by the model

are biased or not. Our residuals fall both above and below 0, therefore the model

appears to be unbiased, but with so few data points we cannot confidently make

that assumption. In order to strengthen our claim of goodness-of-fit, we can use

Excel Data Analysis to run regression statistics for our data, see Table 4.3
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Regression Statistics

R-squared 0.9997

Adjusted R-squared 0.9996

Standard Error 0.03698

Observations 6

Table 4.3: Regression Statistics of Semi-log Boarding School Data.

Table 4.3 confirms our R-squared value of 0.9997 and provides us with

a standard error value of 0.0368. Standard error tells us if our data is precise

enough to use for prediction. Since our standard error is 0.0368, our 95% prediction

interval would be 2× 0.0368 = ±0.0736 units. Our data set lies between 0 and 6,

therefore our standard error value of 0.0368 is small enough to confirm goodness-

of-fit. Now that we have obtained our R-squared value, examined our residual plot,

and obtained our standard error value, we may conclude that the linear model fits

well.

The model is given by y = 1.0808t+0.0235, which translates to the expo-

nential model for the number of infected given by I ≈ 1.02e1.0808t ≈ 1.02(2.947)t.

So the model predicts an approximate 195% increase in infected individuals per

day for the first five days. Clearly such behavior cannot continue indefinitely for

a finite population and we indeed see that it discontinues after day six. What our

findings tell us is that the early data fits the exponential model well, but as time

goes on, the spread slows down. This may be the case since the population was

confined to the boarding school. The infections grew quickly the first few days and

then slowed down as individuals were removed from the population the first day

they showed symptoms.
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4.2 Logistic Model

Figure 4.9: Logistic Growth Model.

The logistic model was introduced by Pierre Verhulst in 1838, who for-

mulated it as a model of population growth by adjusting the exponential growth

model[Sha97]. The logistic model has a constrained pattern. The population tends

toward a fixed value k, usually referred to as the carrying capacity. If the popula-

tion is small relative to k, the pattern approximates the pattern of the exponential

model. As P , a population as a function of time t, becomes a significant fraction

of k, the curve diverges from the exponential curve, and as P approaches k, the

growth drops to zero. We can model this behavior by modifying the exponential

model with the inclusion of a factor of k−P
k , which is close to 1 (has little effect)

when P is much smaller than k, and is close to zero when P is close to k. When P

is less than k, the expression k − P tells us how many more people may be added

to the population before the carrying capacity is reached. The logistic model is
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then defined by the initial value problem:

dP

dt
= rP

(
1− P

k

)
, P (0) = P0.

The differential equation is separable. The solution to the initial value problem

may be obtained analytically via a straightforward integration:∫ P

P0

1

ρ
(
1− ρ

k

)dρ =

∫ t

0
rdτ.

Integrating both sides yields the equation

ln

∣∣∣∣ P

k − P

∣∣∣∣− ln

∣∣∣∣ P0

k − P0

∣∣∣∣ = rt.

Solving for P we obtain

P =
k

1 +Ae−rt
,

where A = k
P0
− 1.

Although the logistic model has a sigmoid shape characteristic of many

models for the spread of disease, its parameters do not account for factors such as

individuals who have recovered from the disease and have gained lifelong immunity

or for randomness in infection or time. In particular, to use the model one would

need to know ahead of time what percent of the population is expected to become

infected.

4.2.1 Logistic Model Example

In section 4.1.1 we notice that the data follows an exponential pattern for

the first 5 days. The data from the British Medical Journal just provides us with

the number of boys confined to bed rest on any particular day. In this section we
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wish to look at the number of infected boys in the population on any particular day.

The flu in this situation is the 1977-78 H1N1 influenza, where symptoms usually

present 24 hours after exposure. The boys were removed from the population and

confined to bed rest once symptoms presented. If we can estimate how many new

boys are added to the bed rest group each day, then we will have an estimate of

how many infected boys were in the population on the previous day. According

to the article, the boys were confined to bed for two to four days and then spent

another one to two days convalescing [BMJ78]. We will use this information to

break down the data and predict where in the recovery process each infected boy

is on any particular day. A problem with our data is that we can not determine,

after three to four days, how many new boys are added to the bed rest group each

day since the boys leave the group and, after a day or two of convalescing, re-enter

the population.

Using the data estimates from Table 4.1 and Excel we can estimate the

cumulative number of infections and fit it to a logistic curve in GeoGebra. First we

must estimate two transmission rates, β1 and β2. We estimate two transmission

rates because when using a single vallue for β it only allowed us to fit the first few

days, and after the first few days the model predicted a faster transmission than

the data showed, so we introduce a second β. We do this by taking the first five

data points and using the differential equation:

dS

dt
= −βSI

⇒ δS = −βSI

⇒ Sn − Sn−1 = −βSn−1In−1.
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We average the five values of β to get the a first approximation of β1 = 0.00265. We

will use the same value, 0.00265, for β2’s first approximation. We then run Excel

Solver to obtain a better approximation, giving us β1 = 0.00342 and β2 = 0.00198.

We assume every infected individual needs at least two days of bed rest. So we

also need to find the probability of needing a 3rd and 4th day of bed rest, B3 and

B4. We will create a table, Table 4.4, and adjust the values of B3 and B4 until

they give us values that are close to the real data values. We get B3 = 0.3854 and

B4 = 0.3.

Time (Days) Bed Day 1 Bed Day 2 Bed Day 3 Bed Day 4 Conv. Day 1 Conv. Day 2

1 3 0 0 0 0 0

2 7.8 3 0 0 0 0

3 19.9 7.8 1.2 0 3 0

4 49.7 19.9 3 0.3 5.6 3

5 115.6 49.7 7.7 0.9 14.7 5.6

6 129.1 115.6 19.2 2.3 36.9 14.7

7 111.2 129.1 44.6 5.8 86.8 36.9

8 71.3 111.2 49.8 13.4 116.3 86.8

9 35.7 71.3 42.9 14.9 116.6 116.3

10 15.3 35.7 27.5 12.9 88.8 116.6

11 6.1 15.3 13.8 8.2 54 88.8

12 2.4 6.1 5.9 4.1 27.3 54.0

13 0.9 2.4 2.4 1.8 12 27.3

14 0.3 0.9 0.9 0.7 4.9 12

total sick 568.6

Table 4.4: Predicted Data of the Boarding School Influenza: Breakdown by Day.
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Time (Days) Predicted New Infections Cumulative Predicted Infections

1 3 3

2 7.8 10.8

3 19.9 30.7

4 49.7 80.5

5 115.6 196.1

6 129.1 325.2

7 111.2 436.5

8 71.3 507.8

9 35.7 543.5

10 15.3 558.8

11 6.1 565

12 2.4 567.3

13 0.9 568.3

14 0.3 568.6

Table 4.5: Predicted Data of the Boarding School Influenza: New and Cumulative.

We can now fit a logistic curve in GeoGebra to the data from Table 4.5.

We find that a logistic curve provides a surprisingly good fit for our data estimates.
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Figure 4.10: Cumulative Predicted Infections Fit to a Logistic Curve.

4.3 SIR Model

The SIR model, also called the Kermack-McKendrick model, was one

of the early triumphs of mathematical epidemiology created by William Kermack

and Anderson McKendrick (1927) in order to model the spread of disease in larger,

closed populations. We assume the population, N, is classified into three distinct

groups of individuals, which are represented by the letters S, I, and R. The groups

are defined as follows:

S(t): Number of susceptible people. People belonging to the susceptible group

have not been infected with the disease nor are they immune to it. They are
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at risk of becoming infected with the disease in the future.

I(t): Number of infected or infectious people. These are people that are infected

with the disease and can transmit the disease to susceptible people.

R(t): Number of recovered people. This represents the population who have

recovered from the disease and are immune; they can no longer be infected

with the disease. This group may also include members of the population

who have been vaccinated.

Susceptible Infected Recovered
βSI γI

Figure 4.11: SIR Model.

Figure 4.11 illustrates how people move from one group to another as a

function of time. The parameters β and γ describe the flow rates, leading to a

system of differential equations.

New infections occur as a result of contact between infectives and sus-

ceptibles. In this simple model, the rate at which new infections occur is βSI for

some positive constant β related to the probability of a new infection occurring.

When a new infection occurs, the individual infected moves from the susceptible

group to the infected group. In our simple model, there is no other way individuals

can enter or leave the susceptible group, so we have our first differential equation:

dS

dt
= −βSI.
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The other process that may occur is the infective individuals may enter

the recovered group. We assume that this happens at the rate γI for some positive

constant γ. Thus we have our other two differential equations:

dI

dt
= βSI − γI,

dR

dt
= γI,

where t represents time, β represents the probability that there will be an interac-

tion between an infected and susceptible that results in a new infection

(β = probability of transfer per contact × contacts per day), and γ represents the

per capita recovery rate
(
γ = 1

average length of illness

)
. We are also interested in

the reciprocal, 1
γ , which describes the average infectious period.

In this model, R is completely determined by S and I so we need not

consider the R equation in this model, leaving a system of two equations

dS

dt
= −βSI,

dI

dt
= (βS − γ)I,

(4.1)

together with initial conditions:

S(0) = S0, I(0) = I0, S0 + I0 = N. (4.2)
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The SIR model is only applicable if S(t) and I(t) remain positive. Pop-

ulation values must be non-negative, and whenever S(t) or I(t) reaches zero, the

rates of change will be zero. This is because everyone would then be in the re-

covered population, R, and the disease would be terminated. It is recognized that

S′(t) ≤ 0 for all t, and I ′(t) > 0 if and only if S > γ
β . Thus I increases as long

as S > γ
β . If S′(t) < 0, then S decreases for all t, so I decreases and approaches

zero. This is because as susceptible individuals become infected, they leave S and

enter into I. They eventually move into R, so I also decreases. If S0 <
γ
β , then I

decreases to zero and there will be no epidemic. If S0 >
γ
β , then I first increases

to a maximum when S = γ
β and then decreases to zero, in which case there will

be an epidemic.

The basic reproduction number determines if there will be an epidemic or

not. It is the number of secondary infections that are caused by a single infected

person during the course of their infection. The single infective has introduced

the infection into an entirely susceptible population of size N ≈ S0. The basic

reproduction number is denoted by R0 and represented by the quantity βS0

γ . If

R0 > 1, there will be an epidemic, and if R0 < 1 the infection will die out and

there will not be an epidemic. In this model, we assume an infected person makes

βN contacts per unit of time with susceptible individuals and hence new infections

occur. The mean infective period is 1
γ ; thus the basic reproduction number is βN

γ .

We assume N ≈ S0, then βN
γ ≈

βS0

γ .

The system 4.1 is a two-dimensional autonomous system of differential

equations. We proceed to analyze the system.
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The sum of the two equations of 4.1 is

(S + I)′ = −γI. (4.3)

Thus S + I is a nonnegative smooth decreasing function and therefore tends to a

limit as t tends to infinity. Also, the derivative of a nonnegative smooth decreasing

function must tend to zero, so

lim
t→∞

(S + I)′(t) = 0.

It follows that

I∞ = lim
t→∞

I(t) = 0.

Thus, there exists a finite value S∞ such that

lim
t→∞

S(t) + I(t) = lim
t→∞

S(t) = S∞.

Working with the above results, we can determine a relationship between

the size of the epidemic and the basic reproduction number. Division of the first

equation of 4.1 by S and integration from 0 to ∞ gives the following.3

3Recall that in this thesis we use “log” to denote the natural logarithm.
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S′ = −βSI

⇒ S′

S
= −βI

⇒
∫ ∞
0

S′

S
dt = −β

∫ ∞
0

Idt

⇒ −
∫ 0

∞

S′

S
dt = −β

∫ ∞
0

Idt

⇒
∫ 0

∞

S′

S
dt = β

∫ ∞
0

Idt

⇒ lim
a→∞

∫ 0

a

S′

S
dt =

β

γ

∫ ∞
0

γIdt

⇒ lim
a→∞

[logS(t)]0a =
β

γ

∫ ∞
0

R′(t)dt,
d

dt
log(S(t)) =

S′(t)

S(t)

⇒ log (S0)− log (S∞) =
β

γ
lim
b→∞

[R(b)−R(0)]

⇒ log
S0
S∞

=
β

γ
[N − S∞] , assuming R(0) = 0,

⇒ log
S0
S∞

=
βN

γ

[
1− S∞

N

]
.
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We can now rewrite this final result as

log
S0
S∞

= R0

[
1− S∞

N

]
. (4.4)

Equation 4.4 is called the final size relation. The final size relation gives a con-

nection between the size of the epidemic and the basic reproduction number. As-

suming there are no deaths, the number of members of the population who are

infected over the course of the epidemic, the final size of the epidemic, is N − S∞

. This is sometimes described in terms of the attack ratio
(
1− S∞

N

)
. The final

size relation given by Equation (4.4) can be generalized to more complex epidemic

models, like one that includes an exposed period.

We also have an SIR model with vaccination:

Susceptible Infected Recovered
βSI γI

C

Figure 4.12: SIR Model with Vaccination.

We assume that the vaccinated population, C, are accounted for if they

were vaccinated before the disease started to spread. Thus, the vaccinated popu-

lation would start in the Recovered group. We assume no one is vaccinated during

the time the disease is spread, and proceed as in the previous section.

The SIR model may work for modeling the spread of a disease such as

the measles in a closed community, but we can refine and take the model a step
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further by including an exposed period. We will explore this further in Section

4.4.

4.3.1 SIR Model Example

We will use the data from Table 4.1 to complete an SIR model. We

complete our model by giving each differential equation an initial condition

S(0) = 762,

I(0) = 1,

R(0) = 0.

In terms of the scaled variables, these initial conditions are

s(0) = 1,

i(0) = 0.00131,

r(0) = 0.

We do not know the values for parameters β and γ yet, but we can estimate them

and then adjust to better fit our data. The average time that boys were removed

from the population due to the infection was five to six days. Let us propose a

guess of γ = 1
5 = 0.2. If we guess that, on average, each infectious boy would infect

one contact per day, then β = 1. We must remember that this is just a guess. The

following model shows the solution curves for these choices of β and γ.
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Figure 4.13: SIR Model with s(0) = 1, i(0) = 0.00131, r(0) = 0, β = 1 and γ = 0.2.

The average infectious period for influenza is known to be about five to

seven days, so our γ value is probably close, but our β value was just a guess. We

will focus our experiment on the infected solution, i(t), since the function tells us

about the progress of the infection. After experimenting with different parameter

values in order to find values that fit our data, we conclude that β = 1.6 and

γ = 0.2 provides a reasonably close fit for our infected data. Now let us compare

our model with the data.
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Figure 4.14: SIR Model with s(0) = 1, i(0) = 0.00131, r(0) = 0, β = 1.6 and
γ = 0.2.

Figure 4.15: Bar Graph of the Number of Individuals in the Infected Population.
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When comparing the “Infected” curve in Figure 4.14 to Figure 4.15, we

are able to see the resemblance. We see a jump in infections from day 4 to day

5, with a peak at day 6 and then a slow decline. On the other hand, a major

flaw we see with this SIR model is how quickly the susceptible curve declines. Our

susceptible population does decline quickly, because as soon as a student shows

symptoms they are removed from the population, but this model predicts them

to be removed too soon. When experimenting with the parameter values, it was

not possible to get each curve to fit our real data. This is why we modified the

parameter β in section 4.2.1.

4.4 SEIR Model

4.4.1 About the Model

The SEIR model differs from the SIR model in the addition of a latency

period. In many disease outbreaks, susceptible individuals go through an exposed

period after they contract the infection, in which they are infected, but not yet

experiencing symptoms and are not able to spread the infection to another sus-

ceptible individual. The population of exposed individuals, E, is incorporated by

the mean exposed period, 1
γ .

S(t): Number of susceptible people.

E(t): Number of exposed people. This represents the portion of the population

who have been infected, but are not yet infectious.

I(t): Number of infected or infectious people.
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R(t): Number of recovered people.

Susceptible Exposed Infected Recovered
βSI σE γI

Figure 4.16: SEIR Model.

4.4.2 SEIR Without Vital Dynamics

When we assume no births or deaths with a closed population, the system

of differential equations becomes:

dS

dt
= −βSI,

dE

dt
= βSI − σE,

dI

dt
= σE − γI,

dR

dt
= γI,

(4.5)

where N = S +E + I +R is the total population, the parameter β represents the

probability of an interaction between and infected and susceptible that results in a

new infection, the parameter σ represents the per capita rate of latent individuals

becoming infectious, the parameter γ represents the per capita recovery rate.

Our analysis of the SEIR model will be similar to that performed for the

SIR model, but with E + I replacing I. This means that the total number of
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the infected population, if they are contagious or not, are considered instead of

using the number of infectives as one of the variables. In some cases the exposed

population may cause infectivity during the exposed period. This must be modeled

by assuming infectivity is reduced by a factor which we will denote by ε, during

the exposed period. A calculation of the rate of new infections per susceptible

leads to the following model:

dS

dt
= −βS(I + εE),

dE

dt
= βS(I + εE)− σE,

dI

dt
= σE − γI,

(4.6)

with initial conditions:

S(0) = S0, E(0) = E0, I(0) = I0.

For this model, the basic reproduction number is given by

R0 =
βN

γ
+ ε

βN

σ
(4.7)

because we must account for those in the exposed population that may be conta-

gious.

In order to find our final size relation we first divide the first equation

from 4.5 by S and then integrate from 0 to ∞:

log
S0
S∞

= β

∫ ∞
0

[I(t) + εE(t)]dt.
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Using the fact that I ′(t) = σE(t) − γI(t) and substituting for I(t) in the above

integral, it follows that

log
S0
S∞

= β

∫ ∞
0

[
σE(t)− I ′(t)

γ
+ εE(t)

]
dt

= β

∫ ∞
0

[
σE(t)

γ
+ εE(t)− I ′(t)

γ

]
dt

= β

(
σ

γ
+ ε

)∫ ∞
0

E(t)dt− β

γ

∫ ∞
0

I ′(t)dt

= β

(
σ

γ
+ ε

)∫ ∞
0

E(t)dt+
β

γ
I0

Integrating the third equation from 4.5 yields

σ

∫ ∞
0

E(t)dt = γ

∫ ∞
0

I(t)dt− I0.

It follows that

log
S0
S∞

= β

(
σ

γ
+ ε

)[
γ

σ

∫ ∞
0

I(t)dt− I0
σ

]
+
βI0
γ
.

Now, integration of the sum of equations 4.5 from 0 to ∞ gives

N − S∞ = γ

∫ ∞
0

I(t)dt.



42

Hence

log
S0
S∞

= β

(
σ

γ
+ ε

)
1

σ
[N − S∞]− β

(
σ

γ
+ ε

)
I0
σ

+
βI0
γ

=
βNσ

γσ
+
βNε

σ

[
1− S∞

N

]
− βI0

γ
− εβI0

σ
+
βI0
γ
.

Finally, we recall Equation 4.7 to arrive at our final size relation

log
S0
S∞

= R0

[
1− S∞

N

]
− εβI0

σ
.

It is assumed that there are some individuals who were originally infected, that

are now past the exposed stage of infectivity. Therefore, we obtain an initial term

βI0
α in the final size relation. It must be assumed that I(0) = 0 in order to obtain

a final size relation without this initial term. Assuming I(0) = 0 is assuming that

the initial infectives are in the first stage of disease, in which they can transmit

the infection.

We also have an SEIR model with vaccination, C:

Susceptible Exposed Infected Recovered
βSI σE γI

C

Figure 4.17: SEIR Model with Vaccination.

As with the SIR model, if we wish to include vaccinated members of
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the population, we will include them with the recovered group at the start of the

spread.

4.4.3 SEIR with Birth and Death

Introducing births and deaths in the model for the spread of a disease

may predict either a sustained epidemic or the further spread of the disease since

new births create additional susceptible individuals. When we have a realistic

population, including births and deaths, the dynamic of the disease will reach a

steady state. Suppose we assume that the birth rate (µ) and death rate (ν) are

equal. Then the population size remains constant, so the system of differential

equations become:

dS

dt
= µN − νS − βSI

N

dE

dt
=
βSI

N
− νE − σE

dI

dt
= σE − γI − νI

dR

dt
= γI − νR,

where N = S + E + I +R is the total population.[SEI19]

When the full course of an outbreak is observed, we can see that after

the initial fast growth, the epidemic reduces the number of susceptible individuals

in the population. This in turn reduces the chances of a susceptible individual
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coming infected, so the virus will die off. Introducing an incubation period will

not change the overall number of individuals who are infected.

Since the measles has a latency period, of of all the models studied so

far, this type of model may be most appropriate for long term analyses.

4.4.4 SEIR Model Example

We will use the data from Table 4.1 and the example of the SIR model

to complete the SEIR model. Again, we complete our model by giving each differ-

ential equation an initial condition

S(0) = 762,

E(0) = 1.6,

I(0) = 1,

R(0) = 0.

In terms of the scaled variables, these initial conditions are

s(0) = 1,

e(0) = 0.0021,

i(0) = 0.00131,

r(0) = 0.

We use the same values from Figure 4.14 along with an extra parameter, σ. We

have β = 1.6 and γ = 0.2. The parameter σ represents the per capita rate of latent

individuals becoming infectious. The average per capita rate of latent individuals

becoming infectious is 1 to 4 days. Since this is not included in our data, we will
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compare different parameter values for σ to illustrate how changes in σ affect the

model of an outbreak.

Figure 4.18: SEIR Model with s(0) = 1, e(0) = 0.0021, i(0) = 0.00131, r(0) = 0,
β = 1.6, σ = 1, and γ = 0.2.

Figure 4.19: SEIR Model with s(0) = 1, e(0) = 0.0021, i(0) = 0.00131, r(0) = 0,
β = 1.6, σ = 2, and γ = 0.2.
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Figure 4.20: SEIR Model with s(0) = 1, e(0) = 0.0021, i(0) = 0.00131, r(0) = 0,
β = 1.6, σ = 3, and γ = 0.2.

Figure 4.21: SEIR Model with s(0) = 1, e(0) = 0.0021, i(0) = 0.00131, r(0) = 0,
β = 1.6, σ = 4, and γ = 0.2.

It is important to note the significant effect σ has on our curves. The

shorter the exposed period is, the slower the infection spreads. This is because

symptoms show quickly, and we can remove the infected from the population before

they are able to infect more individuals. What is also interesting is that when σ = 1
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our “Susceptible” curve is similar to that given by our data, but our “Infected”

curve does not provide a good fit. We note that when σ = 4, our “Infected” curve

appears closest to fitting.

Again, we were not able to find parameter values that accurately depicted

all of our data.



48

Chapter 5

Modeling Chad Outbreak

5.1 Outbreak of Study

In May of 2018, Chad declared a measles outbreak. This particular out-

break did not end in June when the rainy season began, like most years, and

continued into 2019. Data was collected and reported periodically. We will model

the outbreak using data from May 20, 2018 (week 20) to May 12, 2019 (week 69).

Earlier data may not have been collected because it was not clear if there was an

outbreak at that time. During the period from week 20 to week 69, it was reported

that 13,725 people were infected with measles and 123 people died. The average

age of those infected was 9.9 years old and the median age was six years old. About

39% of the affected people were four years old and below, 23% were between five

and nine years old, and 37% were 10 years old and older. Since measles out-

breaks affect Chad yearly and lifelong immunity is gained after recovering, we will

make the simplifying assumption that our population consists of children between
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0 to 14 years old. The population of children in Chad aged 0 to 14 is 7,636,427.

Approximately 37% of children are vaccinated, so they will be removed from the

susceptible population and included in the recovered population. This gives us an

initial susceptible population of 4,810,949.

Table 5.1 and Figure 5.1 show the number of newly infected individuals

each week and the cumulative number of infected individuals each week. The data

was reported and published to the World Health Organization. We have gaps in

time because for certain weeks there were no changes reported. For example, week

23 and week 24 were not reported, although it is reasonable to assume changes

took place. Therefore, our table does not include those weeks for which there was

no report.

Time (Weeks) Newly Infected Total Infected

20 77 77

21 74 151

22 66 217

25 175 392

26 91 483

27 118 601

29 162 763

30 98 861

33 237 1098

35 122 1220

36 155 1375

48 259 1634

55 2000 3634

61 8333 11967

68 912 12879

69 846 13725

Table 5.1: Chad Measles Infections.
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Figure 5.1: Scatterplot of Chad Measles Infections.

5.1.1 Exponential Model of Chad Data

For our Chad measles data, we will analyze the total number of infected

individuals each week. We begin by taking the log of the number of infected indi-

viduals, given in Table 5.2, and creating the corresponding log-linear scatterplot,

Figure 5.2.
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Time (Weeks) Total Infected log(Total Infected)

20 77 4.343805422

21 151 5.017279837

22 217 5.379897354

25 392 5.97126184

26 483 6.180016654

27 601 6.398594935

29 763 6.637258031

30 861 6.7580945049

33 1098 7.001245622

35 1220 7.106606138

36 1375 7.226209017

48 1634 7.398786275

55 3634 8.198089249

61 11967 9.389908141

68 12879 9.463353357

69 13725 9.526974266

Table 5.2: Measles Data with Natural Log of Number of Infected.

Figure 5.2: Log-Linear Scatterplot of Measles Data.
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Notice that the trend of the data from week 20 to week 35 seems to align

with that of a concave down curve, and the trend of the data from week 36 through

week 61 seem to align with a concave up curve. We create Figure 5.3 and Figure

5.4 to take a closer look at this conjecture.

Figure 5.3: Measles Data on a Log-Linear Scatterplot: Weeks 20 to 35.
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Figure 5.4: Measles Data on a Log-Linear Scatterplot: Weeks 36 to 69.

It is clear that the data from weeks 20 to 35 follows a concave down

and increasing trend. This tells us that the growth is not exponential, it is sub-

exponential. The sub-exponential growth makes sense for growth that can be

described by a sigmoid curve. Recall that in a sigmoid growth pattern the initial

trend may be nearly exponential, but approaches a linear trend as the curve ap-

proaches its inflection point, at which point the rate of growth begins to decrease.

Our graph may be suggesting that if the trend is sigmoid, the data being reported

in weeks 20 to 35 may be near the inflection point, rather than at the beginning

of the virus. It is also clear that the data from weeks 36 to 61 follow a concave up

trend, which indicates faster than exponential growth. This suggests that some-

thing happened to cause the infection to spread more quickly. Until week 35, our

data followed a pattern that was pretty much the shape we expected it to be if we

assume a typical sigmoid growth pattern and assuming reports of data began only
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after it was noticed that there was an outbreak. It makes sense that we are closer

to the inflection point, rather than if we had data from the very beginning. More-

over, it may be the case that the data from weeks 20 to 35 lie along the steepest

part of the sigmoid curve, which passes through the inflection point. With our

conjecture that we are near an inflection point, we will fit a logistic curve to those

weeks and examine the result.

5.1.2 Logistic Model of Chad Data

Figure 5.5: Measles Data on a Logistic Curve.

If we hypothesize that we are near an inflection point and fit a logistic

curve for weeks 20 to 35, then we observe that the curve fits fairly well. We get

the confirmation that we might be near that inflection point and the logistic curve

predicts a carrying capacity of about 1370 individuals, which is close to the mark

before the unexpected continued growth in cases. It looks like the spread was

slowing down as was normally the case at the start of the rainy season. Then,

between weeks 36 and 48 the number of cases grew, so a lot more people than
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previous years were sick, thereby sustaining the disease longer than usual. Looking

at weeks 20 to 35 the model predicts an inflection point at week 26, which is

mid-June and is usually when the measles outbreaks die off. In this outbreak,

it appears a positive rate of increase continued longer than normal. Where the

numbers of new cases should have started to decrease around week 26, a positive

rate of growth is continuing, and perhaps even spiking. This may cause a larger

than usual initial number of infected individuals to be brought into the new cycle.

Our initial value for the next cycle is higher than it would have normally been

and that is perhaps where the new jump comes from. The data suggests that

perhaps there was something that caused the spread of the virus to behave more

aggressively than in previous years.

We know the logistic model may not be an ideal model for the spread

of measles. We are taking advantage of its sigmoid shape, characteristic of the

pattern for cumulative infectives, to suggest what phase of the outbreak the data

lies in. We found that the logistic curve may provide a good fit if we are near the

inflection point.

5.1.3 SIR Model of Chad Data

We will use the data from Table 5.1 to complete an SIR model. We

complete our model by giving each differential equation an initial condition

S(0) = 4,810,949,

I(0) = 77,

R(0) = 2,825,478.
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In terms of the scaled variables, these initial conditions are

s(0) = 1,

i(0) = 0.000016,

r(0) = 0.00000035.

We do not know the values for parameters β and γ yet, but we can estimate them

and then adjust them to fit our data. The average infectious period is 6 to 7 days.

Let us propose a guess of γ = 1
6 = 0.167. If we guess that, on average, each infected

would infect one contact per day, then β = 1. As before, we keep in mind that this

is just a guess. The following model shows the solution curves for these choices of

β and γ.

Figure 5.6: SIR Model with s(0) = 1, i(0) = 0.000016, r(0) = 0.00000035, β = 1
and γ = 0.167.

Since the average infectious period for the measles is known to be about

6 to 7 days, our γ value is probably close, but our β value was just a guess. We

will focus our experiment on the infected solution, i(t), since the function tells us



57

about the progress of the infection. After experimenting with different parameter

values in order to find values that fit our data, we conclude that β = 1.15 and

γ = 0.154 gives us an improved fit for our infected data. Now let us compare our

model with the data.

Figure 5.7: SIR Model with s(0) = 1, i(0) = 0.000016, r(0) = 0.00000035, β = 1.15
and γ = 0.154.
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Figure 5.8: Bar Graph.

When comparing the “Infected” curve in Figure 5.7 to Figure 5.8, we see

a slight resemblance only for the peak week. On our bar graph, Figure 5.8, we see

a jump in infections from week 48 to week 55, with a peak at week 61 and then a

sharp decline. A major flaw we see with this SIR model is the gradual infection

growth and the gradual decline after the peak weak. When experimenting with

the parameter values, we were not able to get each curve to fit our real data.

5.1.4 SEIR Model of Chad Data

We will use the data from Table 5.1 and the SIR model to complete an

SEIR model. Again, we complete our model by giving each differential equation
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an initial condition

S(0) = 4, 810, 949,

E(0) = 115.5,

I(0) = 77,

R(0) = 2,825,478.

In terms of the scaled variables, these initial conditions are

s(0) = 1,

e(0) = 0.000024,

i(0) = 0.000016,

r(0) = 0.00000035.

We will use the same values from Figure 4.14 along with an extra parameter, σ.

We have β = 1.15 and γ = 0.154. The parameter σ represents the per capita rate

of latent individuals becoming infectious. The average per capita rate of latent in-

dividuals becoming infectious is 7 to 14. Since the exposed period is not included

in our data, we will test different parameter values for σ to show the effect on the

oubreak model.
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Figure 5.9: SEIR Model with s(0) = 1, e(0) = 0.000024, i(0) = 0.000016, r(0) =
0.00000035, β = 1.15, σ = 7, and γ = 0.154.

Figure 5.10: SEIR Model with s(0) = 1, e(0) = 0.000024, i(0) = 0.000016, r(0) =
0.00000035, β = 1.15, σ = 8, and γ = 0.154.
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Figure 5.11: SEIR Model with s(0) = 1, e(0) = 0.000024, i(0) = 0.000016, r(0) =
0.00000035, β = 1.15, σ = 9, and γ = 0.154.

Figure 5.12: SEIR Model with s(0) = 1, e(0) = 0.000024, i(0) = 0.000016, r(0) =
0.00000035, β = 1.15, σ = 10, and γ = 0.154.

We can see that the parameter, σ, does not have a significant impact on

our SEIR models. Again, we were not able to find parameter values that accurately

depicted our data. There is no way that the SIR and SEIR models could be a good

fit because they predict too many infections in the population, and we know that

was not the case.
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If we take into account that the data from weeks 20 to 35 may be at

the inflection point of the characteristic sigmoid shape, the latency period may be

affecting how far the outbreak is extending into the rainy season. If we have more

people getting infected than normal, and for longer into the cycle, and we also

take into account that they have a latency period, then those individuals would be

infecting people further into the rainy season. In this case, infections are carrying

over and causing a higher initial value for the next cycle. So the latency period

comes into effect when we compare the first and second outbreak cycle.
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Chapter 6

Conclusion

The goal of this project was to experiment with different mathematical

growth models and examine their suitability for modeling disease outbreaks. We

compared and contrasted the exponential model, the logistic model, the SIR model,

and the SEIR model. In addition, we showed how the epidemiological models are

built and examined their parameters using the boarding school outbreak. We then

considered each model for the spread of measles and evaluated its suitability using

real data.

The exponential model may be used to say that our data is not expo-

nential, and is actually sub-exponential. Data that follows an increasing concave

down trend on a log-linear scale is exhibiting sub-exponential growth. We used the

flattening out of the sub-exponential growth pattern to hypothesize that the data

is at the inflection point of a sigmoid trend. We further supported this conjecture

by testing the fit of a simplest sigmoid curve, the logistic model. This experiment

supported our conjecture that the data could be near the inflection point. We
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then noticed that where we expected our curve to flatten out, it did not. When

we considered the first few weeks of the Chad data on the logistic curve, the trend

appeared to flatten out where it normally would. When we extended the data

longer, we saw that the data grew, instead of flattening out. This suggested that

the disease was not progressing in the usual way. This led us to wonder what

factors might lead to an outbreak that caused more people to get sick than usual,

and further resulted in an increase in the initial number of infectious individuals

moving into the next cycle. We are not sure what is causing this to happen, but we

hypothesize that weather, travel, conflict, and people gathering to water sources

during a drought may be possible factors.

We also found that neither the SIR nor SEIR models provided suitable fits

for our data. A key problem encountered was that the total susceptible population

was extremely large in relation to the amount of infections. With these models, we

would also assume that the total population is equally distributed over a common

area, which is not the case in Chad. The models may still be useful if modified

to adapt to the situation we have. Perhaps there is a way to estimate a value to

replace S0 that might lead to a modified model that better represents the data.

My initial hypothesis when beginning this project was that, in the end, the SEIR

model would provide a good fit for the spread of measles in Chad, Africa. My

results do not support this hypothesis.

We see with the boarding school data and Chad measles data, that it

is very difficult to find a mathematical model that fits real data. Our models fit

the boarding school data better because it was a completely closed and controlled

population. With the Chad measles data, there are many factors that could be
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affecting our data. There are many parameters and factors that play into the

collection and analysis of real data, that create problems and complications in

mathematical modeling. A question we are left with is, what do we have to do to

adapt these models to create a model that makes sense?
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