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Abstract

The properties of DNA make it a useful tool for designing self-assembling nanos-

tructures. Branched junction molecules provide the molecular building blocks for creating

target complexes. We model the underlying structure of a DNA complex with a graph

and we use tools from linear algebra to optimize the self-assembling process. Some stan-

dard classes of graphs have been studied in the context of DNA self-assembly, but there

are many open questions about other families of graphs. In this work, we study the rook’s

graph and its related design strategies.



iv

Acknowledgements

In my mathematical career I have had two great teachers that have helped out

tremendously in my learning. I’d like to thank Theresa Hert, which was the first teacher

to hook me onto mathematics. If it wasn’t for Mrs. Hert, I would have never found out

what my gift was and I would have never thought of pursuing a degree in mathematics.

Thank you Mrs. Hert for your indirect contribution to my thesis. The other great teacher

that has made a difference in my learning, I had in my first quarter at Cal State San

Bernardino. Ever since that quarter, I made the effort to take as many classes as I could

with her. Dr. Johnson, thank you for being a great instructor!!! Dr. Johnson helped

me tremendously with my learning and as my committee chair. Your help in my thesis

is greatly appreciated and it has been a delight seeing my thesis evolve into an elegant

piece of work. Lastly, I’d like to thank my parents Ted and Emma Gonzalez. My parents

both put a big value on getting an education and pushed me to achieve more than the

bare minimum. Thank you mom and dad for always believing in me, pushing me to try

to be the best and thank you for all the financial and moral support.



v

Table of Contents

Abstract iii

Acknowledgements iv

List of Figures vi

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Graph Theory of the Rook’s Graph . . . . . . . . . . . . . . . . . . . . . . 1
1.3 DNA Self-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Goal for the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Necessary Information About DNA Self-Assembly 7
2.1 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Information for Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Information for Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Rooks Graph Under Scenario 1 12
3.1 Method Used for the Construction . . . . . . . . . . . . . . . . . . . . . . 12
3.2 n× n Rook’s Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 m× n Rook’s Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Rook’s Graph Under Scenario 2 16
4.1 2× n Rook’s Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 m× n Rook’s Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 n× n Rook’s Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Conclusion 28

Bibliography 29



vi

List of Figures

1.1 Examples of rook’s graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 DNA double helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Complete graph K3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 3× 3 rook’s graph in Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 2× 4 rook’s graph in Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Complete graph K5 and an isomorphic copy . . . . . . . . . . . . . . . . . 18
4.2 Making a rook’s graph from two complete graphs . . . . . . . . . . . . . . 18
4.3 2× 3 rook’s graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Lattice points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 2× 4 rook’s graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 3× 4 rook’s graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 3× 3 rook’s graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8 4× 4 rook’s graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



1

Chapter 1

Introduction

1.1 Introduction

The Watson-Crick complementary properties of DNA strands make self-assembly

an interesting technique for building structures at the nanoscale [EMJP19, See07, See82].

Applications of DNA self-assembly include, but are not limited to, drug delivery, biosen-

sors, biomolecular computing, and nanorobotics [EMPB+14]. Furthermore, an essential

step in building the self-assembling nanostructures is designing the component molecular

building blocks. These design strategy problems fall naturally into the realm of graph

theory [EMP11]. In addition to the practical applications of DNA self-assembly, there

is interest in expanding the theory around design strategies. This research focuses on

modeling the self-assembly of a structure isomorphic to a rook’s graph and related design

questions. The rest of Chapter 1 includes an introduction to the graph theoretical prop-

erties of the rook’s graph, followed by an introduction to the mathematical abstraction

of DNA self-assembly. We conclude the chapter with specific goals of this project.

1.2 Graph Theory of the Rook’s Graph

This project studies the tile based DNA self-assembly of the rook’s graph. To

begin, note that the rook’s graph is a graph that represents all the legal moves that the

rook chess piece can make on an m× n chessboard where m and n need not be distinct.

That is, the squares of the chessboard represent the vertices on a graph, and all the legal

moves that the rook’s piece can make will produce an edge. For example, Figure 1.1a is a
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3× 3 rook’s graph and Figure 1.1b is a 2× 6 rook’s graph. Recall that a graph G consists

of a set V = V (G) of vertices, a set E = E(G) of edges, and a map µ : E → V (2) where

V (2) is the set of unordered pairs of elements of V . Furthermore, if µ(e) = {u, v}, then u

and v are the vertices incident with e. Additionally, (u, e) is a half edge of G if v ∈ µ(e),

and H denotes the set of half edges of G [EMJP19]. Here are some graph theoretical

properties of the rook’s graph in order to understand it better. First, the rook’s graph is

a regular graph. That is, every vertex of the graph has the same degree; specifically, the

degree of each vertex is (m− 1) + (n− 1). Another property of the rook’s graph is that it

is the Cartesian product of two complete graphs of order m and n. For two graphs G and

H, the Cartesian product G×H has vertex set V (G×H) = V (G)×V (H). That is, every

vertex of G×H is an ordered pair (u, v), where u ∈ V (G) and v ∈ V (H). Two distinct

vertices (u, v) and (x, y) are adjacent in G×H if either (1) u = x and vy ∈ E(H) or (2)

v = y and ux ∈ E(G) [CZ12]. One can conclude that an m× n rook’s graph is Km ×Kn

where Km and Kn are complete graphs with m vertices and n vertices respectively.

1 2 3

4 5 6

7 8 9

(a) 3× 3 rook’s graph

7

1 2

8

3

9

4

10

5

11 12

6

(b) 2× 6 rook’s graph

Figure 1.1: Examples of rook’s graphs
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Figure 1.2: DNA double helix

1.3 DNA Self-Assembly

Recall, DNA is a ladder shaped molecule that is twisted into a shape that is

known as a double helix. The “rungs” of this ladder-looking molecule are composed

of two nitrogen bases. These bases are called adenine(A), thymine(T), guanine(G) and

cytosine(C), and they bond together in a particular manner. That is, (A) pairs with (T)

and (C) pairs with (G), see Figure 1.2. This property of DNA is used to design structures

that will self-assemble. The building blocks of DNA self-assembly are k-armed branched

junction molecules. These molecules are “spider” shaped in which its “body” represents

a vertex of the target structure, and its k-arms are double strands of DNA in which one

strand extends further than the other. The longer strand forms a cohesive-end at the

end of the arm that can only bond to another cohesive-end with complementary bases.

The bonded cohesive-ends form the edges of the DNA complex. The DNA complex is

complete if it has no unmatched cohesive-ends. The k-armed branched junction molecules

with cohesive-ends are modeled by a k-degree vertex with k incident half-edges [EMP11,

EMJP19]. The following definition from [EMJP19] is the mathematical formalism that

will be used to study these objects.

Definition 1.1. The combinatorial objects for tile-based assembly design are as follows:

• Cohesive-end type: Given a finite set of symbols Σ, called an alphabet, the ex-

tended cohesive-ends on the arms are denoted by an “unhatted” letter in Σ and its

complement by the same letter, but “hatted”, that is Σ̂ = {x̂ |x ∈ Σ}.
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• Bond-edge type: A cohesive-end type joined to its complement forms a bond-edge

type, which are identified by the unhatted letter label. For example, cohesive-ends a

and â will join to form a bond-edge of type a.

• Tile: The combinatorial abstraction of a branched junction molecule is called a tile.

It consists of a vertex with half-edges labeled by the cohesive-end types on the arms

of the molecule the tile represents, and is denoted by a multi-set of its cohesive-

end types whose multiple entries of the same cohesive-end type are indicated by the

exponent to the corresponding symbol.

• Pot: A pot is a collection of tiles such that for any cohesive-end type that appears

on any tile in the pot, its complement also appears on some tile in the pot. A pot

is a set P = {t1, t2, . . . , tk} where each ti is a tile (i = 1, . . . , k) and for all a ∈ Σ,

if there is an i such that a ∈ ti, then there is a j ∈ {1, . . . , k} such that â ∈ tj. The

set of bond-edge types that appear in the tiles of P is denoted with Σ(P ), and define

#P to be the number of distinct tile types in P .

• Assembly design: An assembly design is a labeling λ : H → Σ∪Σ̂ of the half edges

of a graph G with the elements of Σ and Σ̂ such that if e ∈ E(G) and µ(e) = {u, v},
then λ̂(v, e) = λ(u, e). This means that each edge receives both hatted and an

unhatted symbol on its half edges. The convention that λ provides each edge with an

orientation that starts from the unhatted half edge to the hatted half edge is used.

• The set of tiles associated with an assembly design λ of a graph G is the set Pλ(G) =

{tv | v ∈ V (G)} where tv = {λ(v, e) | v ∈ µ(e), e ∈ E(G)}. This means that for each

vertex v of G, the assembly design specifies a tile tv whose multi-set is the set of

labels of half edges incident to v. Expand the labeling λ to a labeling on vertices

with λ : V → Pλ(G) such that λ(v) = tv.

An example of a pot P that realizes the complete graph on three vertices K3,

as in Figure 1.3, is P = {t1 = {a2}, t2 = {â, b}, t3 = {â, b̂}}. This pot P has cohesive-end

types a, â, b, b̂, with bond-edge types a, b. Notice that P is a pot since for each unhatted

label in some tile, there exists another tile that has its complementary hatted label.

According to [EMPB+14], when one requires a complex to be complete, “we may adopt

the convention of orienting edges from unhatted cohesive-ends towards hatted cohesive-
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ends”. Another convention that will be adopted in this paper, is giving each bond-edge

type a different color for readability.

1

2 3

a a

b

Figure 1.3: Complete graph K3

Due to the cost of generating synthetic DNA, laboratories must be efficient in the

design of self-assembling DNA. One translates the problem of efficiency into the following

mathematical problem. Given a graph G, one wishes to know the minimum number of

tile and bond-edge types that must be designed to construct the target complex. This

question is considered under three different scenarios [EMPB+14]:

1. Scenario 1. The possibility that graphs with fewer vertices than the target graph

may be created from the pot of tile types used to build the target graph is allowed.

2. Scenario 2. The possibility that graphs with the same number of vertices as, but

not isomorphic to, the target graph may be created from the pot of tile types that

builds the target graph. It is required that no complexes with fewer vertices can be

created from the pot of tile types used to build the target graph.

3. Scenario 3. It is required that graphs with the same number of vertices must be

isomorphic to the target graph.

Let Ti(G) denote the minimum number of tile types needed to construct a graph G in

Scenario i. Likewise, in Scenario i, let Bi(G) denote the minimum number of bond-edge

types needed to construct G. Thus, the goal is to find Ti(G) and Bi(G) for graphs that

represent DNA complexes.
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1.4 Goal for the Project

Since the study of DNA self-assembly is relatively new, there are plenty of open

questions that are waiting to be asked. The article [EMPB+14] has results for the DNA

self-assembly of some standard classes of graphs. The classes of graphs that will be

particularly interesting will be k-regular graphs and complete graphs since the rook’s

graph is both regular and the Cartesian product of complete graphs. In Scenario 1 we

will use the theory developed for regular graphs and in Scenario 2, we will use the theory

developed for complete graphs to build a pot for the rook’s graph. Using the fact that

the rook’s graph is regular, T1(G) and B1(G) follow easily from [EMPB+14]. We will

devote Chapter 3 to describing the pots of tiles that realize a rook’s graph in Scenario 1 .

Since there has already been theory developed for a complete graph Kn in [EMPB+14],

we attempt to build the rook’s graph relying on the structure of the tiles and bond-edge

types for complete graphs. In Chapter 2, we take a deeper look at the theory needed for

the DNA self assembly of the rook’s graph. Then we will look at Scenario 1 and Scenario

2 in Chapters 3 and 4.
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Chapter 2

Necessary Information About

DNA Self-Assembly

2.1 Background Information

Most of the theory and the results in this chapter are found in [EMPB+14]. One

proposition that will provide bounds for Ti(G) and Bi(G) is the following:

Proposition 2.1. For any graph G, B1(G) ≤ B2(G) ≤ B3(G) and T1(G) ≤ T2(G) ≤
T3(G).

This proposition will help provide bounds in later chapters. The next definition

gives notation that will appear shortly.

Definition 2.2. Given a pot P , define O(P ) to be the set of graphs realized by P . The

set of graphs of minimum order that may be realized by P is denoted Omin(P ). Denote

mp for the minimal order of a graph that may be realized by P .

Furthermore, given a pot P = {t1, . . . , tp}, define Ai,j to be the number of

cohesive-ends of type ai on tile tj , and Âi,j to be the number of cohesive-ends of type

âi. With the preceding definition, the following proposition follows from requiring the

complexes to be complete.
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Proposition 2.3. Let P = {t1, . . . , tp} be a pot. Then :

1. The total number of hatted cohesive-ends types must equal the total number of un-

hatted cohesive-end types in a complete complex.

2. If G ∈ O(P ) where the order of G is n, then there are nonnegative integers Rj

for j = 1, . . . , p (representing the number of each tile of the type tj used in the

construction of G) with
∑

j Rj = n and such that
∑

j Rj(Ai,j − Âi,j) = 0 for all i.

That is, the number of hatted cohesive-ends of each type used in the construction of

G must equal the number of unhatted cohesive-ends of the same type that appear in

the construction.

This information is then encoded in a matrix with the following definition. Also,

the following definition and proposition along with Proposition 2.3 will be used extensively

to prove results in later chapters while working in Scenario 1 and Scenario 2.

Definition 2.4. Let P be a pot with p tile types labeled t1, . . . , tp and let zi,j be the net

number of cohesive-ends of type ai on tile tj, i.e., zi,j = Ai,j − Âi,j. Define ri to be the

proportion of tile type ti used in the assembly process. The following system of equations

captures the requirements outlined in Item 2 of Proposition 2.3:

z1,1r1 + z1,2r2 + · · ·+ z1,prp = 0
...

zm,1r1 + zm,2r2 + · · ·+ zm,prp = 0

r1 + r2 + · · ·+ rp = 1

The construction matrix of P , M(P ), is the corresponding augmented matrix:

M(P ) =


z1,1 z1,2 · · · z1,p 0

...
...

...

zm,1 zm,2 · · · zm,p 0

1 1 · · · 1 1

 (2.1)

The solution space of the construction matrix M(P ) of a pot P is called the

spectrum of P and is denoted S(P ).
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Proposition 2.5. Let P = {t1, . . . , tp} be a pot. Then:

1. If G is a graph of order n where G ∈ O(P ) using Rj tiles of type tj, then

(1/n)〈R1, . . . , Rp〉 ∈ S(P ).

2. If 〈r1, . . . , rp〉 ∈ S(P ), and there is a positive integer n such that nrj ∈ Z≥0 for all

j, then there is a graph of order n such that G ∈ O(P ) using nrj tiles of type tj.

3. The minimum order of a graph realized by P is mp = min{lcm{bj | rj 6= 0 and

rj = aj/bj}, where 〈r1, . . . , rp〉 ∈ S(P )}, and where the minimum is taken over all

solutions to M(P ) such that rj ≥ 0 and aj/bj is in reduced form for all j.

2.2 Information for Scenario 1

We develop a few tools for Scenario 1 before exploring the results for the rook’s

graph in Chapter 3. The valency sequence of G is the sequence of unique vertex degrees of

G, and the length of the sequence is denoted av(G). The even-valency sequence is the the

sequence of unique even degree vertices of G, with its length denoted ev(G). Lastly, the

odd-valency sequence is the sequence of unique odd degree vertices of G, with its length

denoted ov(G). According to [EMPB+14] the algorithm that appears here as Algorithm

2.7 produces a pot where av(G) ≤ T1(G) ≤ ev(G) + 2ov(G), and B1(G) = 1. Recall that

an Eularian graph is a connected graph that contains an Eulerian circuit [CZ12]. A useful

theorem in [CZ12] states that a nontrivial connected graph G is Eularian if and only if

every vertex of G has even degree. An algorithm that will be used within Algorithm 2.7

along with results in later chapters is called Fleury’s Algorithm. Fleury’s Algorithm is

used to display the Euler path or Euler circuit from a given graph.

Algorithm 2.6 (Fleury’s Algorithm). In this algorithm one labels the edges in the order

in which they are traveled.

1. Make sure the graph is connected and has no odd degree vertices.

2. Make two copies of the graph, and label them G1 and G2.

3. Choose a starting vertex.
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4. At each step, label the edge being traversed in G1 by giving it an orientation and

delete the corresponding edge in G2. If there is a choice between a bridge and a

non-bridge, always choose the non-bridge to traverse.

5. Once every edge in G1 is traversed , the circuit is complete and you should be back

at the starting vertex.

Algorithm 2.7. Input: a target graph G.

Output: at most ev(G) + 2ov(G) tile types from which G may be constructed.

1. Create an augmented graph G′ from G by adding edges between pairs of odd degree

vertices. G′ is then Eulerian.

2. Use Fleury’s Algorithm to find a directed Eularian circuit.

3. Delete the augmented edges, leaving an orientation
−→
G of the original graph G.

4. Record a tile type with j cohesive-ends of type a and k cohesive-ends of type â

whenever there is a vertex of
−→
G with outdegree j and indegree k.

This algorithm ensures that B1(G) = 1 for all graphs and ensures that at most

ev(G) + 2ov(G) tile types are used. A consequence of the algorithm is the following

corollary as presented in [EMPB+14]:

Corollary 2.8. If G is a k-regular graph, then

T1(G) =

1 if k is even,

2 if k is odd.

We shall use the terminology of even regular if G is k-regular where k is even

and odd regular if k is odd.

2.3 Information for Scenario 2

For Scenario 2, we explore pots that realize structures no smaller than the order

of the desired graph. There are two results from [EMPB+14], that will be used in Chapter

4. The first theorem gives a relationship between the number of bond-edge types and the

number of tile types needed to realize a structure.
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Theorem 2.9. If G is a graph with n > 2 vertices, then B2(G) + 1 ≤ T2(G).

The next result gives the minimum number of bond-edge types and tile types

for the complete graph, Kn.

Proposition 2.10.

B2(Kn) =

 1 if n is even,

2 if n is odd.

T2(Kn) =

 2 if n is even,

3 if n is odd.

A helpful portion in the proof of the previous proposition is the description of

the tiles used to realize Kn. The pots are

Peven = {t1 = {an−1}, t2 = {ân/2, an/2−1}} (2.2)

Podd = {t1 = {an−1}, t2 = {â, b(n−3)/2, b̂(n−1)/2}, t3 = {â, b(n−1)/2, b̂(n−3)/2}}. (2.3)



12

Chapter 3

Rooks Graph Under Scenario 1

3.1 Method Used for the Construction

In constructing the self-assembly design of the rook’s graph, the ideas discussed

in Chapter 2, Section 2 will be implemented. We will also consider the graph theory

developed in Section 1.1.2 with a little more detail. First, we will use Corollary 2.8 to

determine the number of tile types needed to build the rook’s graph. Then an explicit de-

scription of the pot of tiles used in its construction is given. The results from [EMPB+14]

were used in conjunction with Fleury’s algorithm to discover the explicit form of the tiles.

Notice in the case when m = 1 the m× n rook’s graph is Kn. Also, note the 2× 2 rook’s

graph is C4, the cycle graph on 4 vertices. Thus, for the rest of this chapter, we assume

m ≥ 2 and n > 2.

3.2 n× n Rook’s Graph

Lemma 3.1. The n× n rook’s graph is even regular.

Proof. Consider an n× n grid and choose any arbitrary point of the grid. A rook’s piece

can move to any other point in that column. That is, there are n − 1 moves in that

column. Utilizing the same line of reasoning, a rook’s piece can also move to any other

point on that row, that is, there are n − 1 moves in that row. Hence each vertex has

degree (n− 1) + (n− 1) = 2(n− 1). Hence G is even regular.
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Lemma 3.2. Let G be the n× n rook’s graph. Then B1(G) = 1 and T1(G) = 1.

Proof. B1(G) = 1 follows directly from Algorithm 2.7 and T1(G) = 1 follows from Corol-

lary 2.8.

Theorem 3.3. Let G be an n × n Rook’s graph and let P = {t = {an−1, ân−1}}. Then

G ∈ O(P ).

Proof. Given an n × n rook’s graph G, by Lemma 3.2, B2(G) = 1 and T2(G) = 1. By

Lemma 3.1, deg(v) = 2(n−1) for all v ∈ V . Hence P = {t} where t = {ak, â2(n−1)−k} for

some k ∈ {0, 1, 2, . . . , 2(n−1)}. According to Proposition 2.3 part 2 , R1(A1,1− Â1,1) = 0

which implies A1,1 = Â1,1. Thus k = 2(n − 1) − k which yields that k = n − 1. As a

consequence of using Algorithm 2.7, G ∈ O(P ) .

Note that the pot P in Theorem 3.3 realizes regular graphs of any order as long

as the degree of each vertex is 2(n−1). That is, O(P ) = {G | deg(v) = 2(n−1) for all v ∈
V (G)}. This possibility is permitted in Scenario 1.

Example 3.4. Consider the 3 × 3 rook’s graph. Note that deg(v) = 4 for all v ∈ V .

Implementing Fleury’s Algorithm, the following picture is constructed.

1 2 3

4 5 6

7 8 9

Figure 3.1: 3× 3 rook’s graph in Scenario 1

By Theorem 3.3 P = {t1 = {a2, â2}}. Note that P realizes regular graphs of any

order as long as the degree of each vertex is 4.
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3.3 m× n Rook’s Graph

In the case where m 6= n, we assume m < n since an m × n rook’s graph with

m > n will be isomorphic. That is, a 2× 7 rook’s graph is isomorphic to the 7× 2 rook’s

graph.

Lemma 3.5. Let G be an m × n rook’s graph where m < n. If m and n are of the

same parity then G is even regular. If m and n are not of the same parity, then G is odd

regular.

Proof. Consider an m × n grid where m < n. There are three cases depending on the

parity of m and n. Note that each vertex has degree (m− 1) + (n− 1) = m+ n− 2.

Case one, assume m and n are both even. Then m = 2k and n = 2q where

k, q ∈ N. Then each vertex has degree m + n− 2 = 2k + 2q − 2 = 2(k + q − 1). That is

every vertex is of even degree, and G is even regular.

Case two, assume m and n are both odd. Then m = 2a+1 and n = 2b+1 where

a, b ∈ N. Then each vertex has degree m+n−2 = (2a+1)+(2b+1)−2 = 2a+2b = 2(a+b).

Hence every vertex is of even degree and G is even regular.

Case three, without loss of generality assume m is even and n is odd. Thus

m = 2c and n = 2d + 1 where c, d ∈ N. Then each vertex has degree m + n − 2 =

(2c) + (2d+ 1)−2 = 2c+ 2d−2 + 1 = 2(c+d−1) + 1. Hence each vertex is of odd degree

and G is odd regular.

Hence if m and n are of the same parity, then G is even regular. If m and n are

not of the same parity, then G is odd regular.

Lemma 3.6. Let G be an m× n rook’s graph where m < n. If m and n are of the same

parity then T1(G) = 1 and B1(G) = 1.

Proof. Let G be an m× n rook’s graph where m < n. By Corollary 2.8, T1(G) = 1. By

Algorithm 2.7, B1(G) = 1.

Theorem 3.7. Let G be an m × n rook’s graph, where m < n. If m and n are of the

same parity and P =
{
t =

{
a

(m−1)+(n−1)
2 , â

(m−1)+(n−1)
2

}}
, then G ∈ O(P ).

Proof. Given an m×n rook’s graph G, where m < n and m and n are of the same parity,

by Lemma 3.5 every degree is even and deg(v) = (m−1)+(n−1) for all v ∈ V . By Lemma
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3.6, T1(G) = 1 and B1(G) = 1. Hence P = {t} where t = {ak, â(m−1)+(n−1)−k} for some

k ∈ {0, 1, 2, . . . , (m−1)+(n−1)}. According to Proposition 2.3 part 2, R1(A1,1−Â1,1) = 0,

where R1 = mn which implies that A1,1 = Â1,1. Thus k = (m − 1) + (n − 1) − k which

yields that k = (m−1)+(n−1)
2 . As a consequence of using Algorithm 2.7, G ∈ O(P ).

Example 3.8. Consider the 2 × 4 rook’s graph. Note that deg(v) = 4 for all v ∈ V .

Implementing Fleury’s Algorithm, the following picture is constructed.

5

1 2 3

76

4

8

a a a

a a

aaa

a a

a

aa

a a

a

Figure 3.2: 2× 4 rook’s graph in Scenario 1

By Theorem 3.7, P = {t1 = {a2, â2}}. Note that P realizes regular graphs of

any order as long as the degree of each vertex is 4. Note that the pot P in this example

is the same pot as in Example 3.4. This is permitted in Scenario 1.

Theorem 3.9. Let G be an m × n rook’s graph, where m < n. If m and n are not

of the same parity and P =
{
t1 =

{
a

m+n−1
2 , â

m+n−3
2

}
, t2 =

{
a

m+n−3
2 , â

m+n−1
2

}}
, then

G ∈ O(P ).

Proof. Given an m × n rook’s graph G, where m < n and m and n are not of the same

parity, by Lemma 3.5 every degree is odd. By Corollary 2.8, T1(G) = 2 and by Algorithm

2.7, B1(G) = 1. By Lemma 3.5 deg(v) = (m − 1) + (n − 1) = m + n − 2 for all v ∈ V .

Since Algorithm 2.7 augments the graph and builds an Eularian circuit, once deleting

the augmented edges, the number of incoming and outgoing edges in each vertex differs

by one. That is, the number of cohesive-ends a and â differs by one in each tile. To

achieve this, the tiles will have the form t1 = {ak, âk−1} and t2 = {al, âl+1}. Then

k + (k − 1) = m + n − 2 implies k = m+n−1
2 . Similarly, l + (l + 1) = m + n − 2 implies

l = m+n−3
2 . As a consequence of using Algorithm 2.7, G ∈ O(P ).
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Chapter 4

Rook’s Graph Under Scenario 2

The idea behind the construction of the rook’s graph under Scenario 2 was to

use the theory already developed for T2(Kn) and B2(Kn) from [EMPB+14]. This idea

worked for the 2 × n rook’s graph where n is odd. A different method of constructing

the remaining classes of rook’s graphs had to be developed, which yielded the pot for the

general n× n case. As in Chapter 3, in the case when m = 1 the m× n rook’s graph is

Kn. Also, note the 2× 2 rook’s graph is C4, the cycle graph on 4 vertices. Thus, for the

rest of this chapter, we assume m ≥ 2 and n > 2 with the exception of Theorem 4.7 and

Theorem 4.12.

4.1 2× n Rook’s Graph.

Theorem 4.1. If G is a 2× n rook’s graph, then B2(G) ≥ 2.

Proof. Assume by contradiction that B2(G) = 1. The associated construction matrix for

pots with one bond-edge type has the form

M(P ) =

 z1,1 z1,2 . . . z1,p 0

1 1 . . . 1 1

 ,
which has a solution of the form

1

(z1,1 − z1,2)
〈−z1,2, z1,1, 0, . . . , 0〉 ∈ S(P ). (4.1)
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Note that z1,j 6= 0 for all j otherwise a graph of order 1 may be realized. Reorder

the tiles as necessary so that z1,1 > 0 and z1,2 < 0. Since deg(v) = n for all v ∈ V , then

|z1,j | ≤ n. This implies that z1,1−z1,2 ≤ 2n. If z1,1−z1,2 = 2n, this implies t1 = {an} and

t2 = {ân}. Then the solution from Equation 4.1 is of the form
〈
n
2n ,

n
2n , 0, . . . , 0

〉
which

can be rewritten as
〈
1
2 ,

1
2 , 0, . . . , 0

〉
. This implies that a graph of order 2 may be realized

which is less than the order of G. If z1,1 − z1,2 < 2n, then P realizes a graph of order

smaller than the target graph of order 2n, a contradiction. Thus B2(G) ≥ 2.

Corollary 4.2. If G is a 2× n rook’s graph, then T2(G) ≥ 3.

Proof. Since G is a 2 × n rook’s graph, we have by Theorem 4.1 that B2(G) ≥ 2. By

Theorem 2.9 we have that T2(G) ≥ 3.

Notice that Theorem 4.1 tells us the pots that realize a rook’s graph in Scenario

1 will not satisfy the conditions of Scenario 2. Therefore, we need a new design strategy.

First method of constructing pots.

The goal for finding an assembly design of the 2 × n rook’s graph when n is

odd is to take the complete graph Kn along with its tile structure from Equation 2.3 and

“flatten it out”. That is, rearrange the vertices such that they make a straight line using

the tiles t1 = {an−1}, t2 = {â, b(n−3)/2, b̂(n−1)/2}, t3 = {â, b(n−1)/2, b̂(n−3)/2} to represent

the vertices. More formally, let

λ(vi) =


t1, for i ∈ {1, 2n}

t2, for i ∈ {2, . . . , n+1
2 } ∪ {

3n+1
2 , . . . , 2n− 1}

t3, for i ∈ {n+3
2 , . . . , 3n−12 }.

(4.2)

For example, the 2 × 5 rook’s graph yields the following assembly design as in

Figure 4.1b, and Figure 4.1c

λ(vi) =


t1, for i ∈ {1, 10}

t2, for i ∈ {2, 3, 8, 9}

t3, for i ∈ {4, 5, 6, 7}.

Next, “stack” the Kn copies as in Figure 4.2a and “glue” the graphs together

to construct the entire 2 × n rook’s graph. By the design of Kn, vertices vi for i ∈
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{2, . . . n+1
2 } ∪ {

3n+1
2 , . . . , 2n − 1} have one more cohesive-end b̂ than cohesive-end b and

vertices vk for k ∈ {n+3
2 , . . . , 3n−12 } have one more cohesive-end b than cohesive-end b̂. To

“glue” K2 and Kn, let vi for i ∈ {1, . . . , n−12 } ∪ {
3n+1

2 , . . . , 2n} receive the cohesive-end b

and let vertices vk for k ∈ {n+1
2 , . . . , 3n−12 } receive the cohesive-end b̂.

4

5

1

2

3

a

a a

a

bb

b

b

bb

(a) K5

1 2 3 4 5a b bb

a
a

a

b

b

b

(b) K ′5

6 7 8 9 10abbb

a
a

a

b

b b

(c) K ′′5

Figure 4.1: Complete graph K5 and an isomorphic copy
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(a) Two complete graphs

6

1 2 3

87

4 5

9 10

a

b b

a

b bb

bb

b

b

bb

a
a

a

a
a

a

b b

bb

b b

(b) 2× 5 rook’s graph

Figure 4.2: Making a rook’s graph from two complete graphs

Note that this construction only works for the 2 × n rook’s graph where n is

odd. This method does not work for the 2 × n case where n is even due to the fact

that a graph of smaller order is always realized. This was discovered by looking at the

spectrum. According to Theorem 4.1, B2(G) ≥ 2 and by Theorem 2.9, T2(G) ≥ 3. Since

B2(G) ≥ 2, we have that in the “stacking” and “gluing” process using Peven = {t1 =

{an−1}, t2 = {ân/2, an/2−1}} from Equation 2.2, we are forced to use a new bond-edge

type b. This yields P = {t1 = {an−1, b}, t2 = {ân/2, an/2−1, b}, t3 = {ân/2, an/2−1, b̂}}.
Thus, the construction matrix M(P ) has the unique solution

〈
1
n ,

n−2
2n ,

1
2

〉
. Since n is

even, the ratio n−2
2n can be reduced and we have that mp = n. Thus there exists a graph

H ∈ O(P ) such that the order of H is n.



19

The following is an example of the 2× 3 rook’s graph following the first method

of constructing pots.

Example 4.3. Consider the 2 × 3 rook’s graph. Let the colors black and red represent

the bond-edge types a, b, respectively.

4

1 2 3

65

a

a

b

b

b bb

a

a

Figure 4.3: 2× 3 rook’s graph

Consider the following tiles: t1 = {a2, b}, t2 = {â, b, b̂}, t3 = {â, b̂2}. Hence the

pot P = {t1, t2, t3}, has the associated construction matrix

M(P ) =


2 −1 −1 0

1 0 −2 0

1 1 1 1


with solution

〈
1
3 ,

1
2 ,

1
6

〉
∈ S(P ) and mp = 6.

This example and method of constructing pots leads to the following proposition.

Proposition 4.4. If G is a 2 × n rook’s graph where n is odd, then B2(G) = 2 and

T2(G) = 3.

Proof. Let P = {t1 = {an−1, b}, t2 = {â, b
n−1
2 , b̂

n−1
2 }, t3 = {â, b

n−3
2 , b̂

n+1
2 }}. This yields

the following construction matrix

M(P ) =


n− 1 −1 −1 0

1 0 −2 0

1 1 1 1


which has solution

〈
1
n ,

2n−3
2n , 1

2n

〉
∈ S(P ) and applying Proposition 2.5 item 3, mp = 2n.

Thus B2(G) = 2 and according to Corollary 4.2, T2(G) ≥ 3. By construction #P = 3,

hence T2(G) = 3. Note G ∈ Omin(P ) by the construction of P .
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Second method of constructing pots.

To discover a pot that will realize the 2 × n rook’s graph where n is even, the

idea was to think “backwards” and reverse engineer what is wanted. We assume that

B2(G) = 2, and that T2(G) = 3. By Theorem 4.1 and Corollary 4.2 we know B2(G) ≥ 2

and T2(G) ≥ 3, so these assumptions are reasonable. Then there is a solution of the

form 1
2n〈R1, R2, R3〉 ∈ S(P ). According to Proposition 2.3 Item 2, the following system

of equations are produced:

z1,1R1 + z1,2R2 + z1,3R3 = 0 (4.3)

z2,1R1 + z2,2R2 + z2,3R3 = 0 (4.4)

R1 +R2 +R3 = 2n. (4.5)

We use the 2× 4 rook’s graph as an example to motivate the construction. For

this example, there are two more assumptions that were made. Assume R1 = 2 and

t1 = {a3, b}, then
〈
2
8 ,

R2
8 ,

R3
8

〉
∈ S(P ). Since the order of the target graph is 8, and two

vertices have already been identified to a tile, this results in R2 +R3 = 6. The choice of

R2 and R3 is then refined due to the fact that one can not choose both R2 and R3 to be

even. Let R2 = 5 and R3 = 1, then Equation 4.3 and Equation 4.4 become

3(2) + z1,2(5) + z1,3(1) = 0 (4.6)

1(2) + z2,2(5) + z2,3(1) = 0 (4.7)

which yields

M(P ) =


3 z1,2 z1,3 0

1 z2,2 z2,3 0

1 1 1 1

 .
By letting zi,2 be the x−axis and letting zi,3 be the y−axis we obtain the fol-

lowing graph. Keep in mind that |zi,j | ≤ deg(v) = 4 which bounds the graph as in Figure

4.4. We look for lattice points on the lines in Equations 4.6 and 4.7. Once all possible

lattice points are found, we sift through the corresponding tiles to see if they build the

desired graph.
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Figure 4.4: Lattice points

Continuing our motivation with the 2×4 example, (z1,2, z1,3) ∈ {(−2, 4), (−1,−1)}
and (z2,2, z2,3) ∈ {(−1, 3), (0,−2)}. If (z1,2, z1,3) = (−2, 4), then z1,3 = 4 implies t3 has at

least 4 cohesive-ends of type a. Since deg(v) = 4 for all v ∈ V , t3 has no cohesive-ends of

type â, b or b̂. Hence z2,3 = 0, a contradiction. This leaves us with (z1,2, z1,3) = (−1,−1).

If zi,j is odd, then the sum of cohesive-ends from a particular bond-edge type must be odd.

That is, z1,2 = −1 implies t2 has the cohesive-ends {â} or {a, â2}. If zi,j is even, then the

sum of cohesive-ends from a particular bond-edge type must be even. That is, z2,2 = 0

implies t2 has cohesive-ends {b, b̂} or {b2, b̂2}. Since deg(v) = 4 for all v ∈ V , we must

have 4 cohesive-ends per tile. Hence if (z1,2, z1,3) = (−1,−1), then (z2,2, z2,3) 6= (0,−2).

Therefore, (z1,2, z1,3) = (−1,−1) and (z2,2, z2,3) = (−1, 3). This means t2 = {â, b, b̂2}
or t2 = {a, â2, b̂}, and t3 = {â, b3}. After attempting to build our graph, the pot found

in Example 4.5 is the only set of tiles that constructs the 2 × 4 rook’s graph under our

assumptions.
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Example 4.5. Consider the 2× 4 rook’s graph and the following tiles: t1 = {a3, b}, t2 =

{â, b, b̂2}, t3 = {â, b3}. Hence the pot P = {t1, t2, t3}, has the associated construction

matrix

M(P ) =


3 −1 −1 0

1 −1 3 0

1 1 1 1


with solution

〈
1
4 ,

5
8 ,

1
8

〉
∈ S(P ) and mp = 8. Let the colors black and red represent the

bond-edge types a, b, respectively.

5

1 2 3

76

4

8

b b b b

a

a

b

bb

b

a
a

a
a

b

b

Figure 4.5: 2× 4 rook’s graph

This example leads to the following conjecture.

Conjecture 4.6. If G is a 2×n rook’s graph where n = 4k and k ∈ N, then B2(G) = 2

and T2(G) = 3.

Let P = {t1 = {an−1, b}, t2 = {â, b(n−2)/2, b̂n/2}, t3 = {â, b(n/2)+1, b̂(n/2)−2}}.
The associated construction matrix is

M(P ) =


n− 1 −1 −1 0

1 −1 3 0

1 1 1 1


with solution 〈

1

n
,
3n− 2

4n
,
n− 2

4n

〉
∈ S(P ). (4.8)
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Since n = 4k where k ∈ N, the solution in Equation 4.8 becomes〈
1

4k
,
6k − 1

8k
,
2k − 1

8k

〉
. (4.9)

By Proposition 2.5 item 3, mp = 8k = 2n.

It still remains to be shown that G ∈ Omin(P ) for all 2× n rook’s graphs where

n = 4k for k ∈ N. That is, it needs to be shown that there exists an explicit assembly

design using the pot P in Conjecture 4.6. Example 4.5 shows that P realizes the 2 × 4

rook’s graph and it has been shown that P also realizes the 2× 8 and the 2× 12 rook’s

graph with the following assembly design

λ(vi) =


t1, for i ∈ {1, 2n}

t2, for i /∈ {1, 3, 5, . . . , n− 1, 2n}

t3, for i ∈ {3, 5, 7, . . . , n− 1}.

(4.10)

We leave it as a conjecture that G ∈ Omin(P ) for all n = 4k. When n = 4k + 2 for

some k ∈ N, the pot in Conjecture 4.6 realizes a graph of order n. That is, the unique

solution
〈
1
n ,

3n−2
4n , n−24n

〉
from Equation 4.8 can be rewritten as

〈
1

4k+2 ,
3k+1
4k+2 ,

k
4k+2

〉
, hence

mp = 4k + 2 = n.

4.2 m× n Rook’s Graph

We build upon the results of Section 4.1 to prove in general, B2(G) ≥ 2.

Theorem 4.7. If G is an m× n rook’s graph where m > 2 and n > 2 and m ≤ n, then

B2(G) ≥ 2.

Proof. Assume by contradiction that B2(G) = 1. The associated construction matrix for

pots with one bond-edge type has the form

M(P ) =

 z1,1 z1,2 z1,3 · · · z1,p 0

1 1 1 · · · 1 1

 ,
which has a solution of the form

1

(z1,1 − z1,2)
〈−z1,2, z1,1, 0, . . . , 0〉 ∈ S(P ).
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Note that z1,j 6= 0 for all j otherwise a graph of order 1 may be realized.

Reorder the tile numbers as necessary so that z1,1 > 0 and z1,2 < 0. Furthermore, since

deg(v) = (m − 1) + (n − 1) for all v ∈ V , then |zi,j | ≤ (m − 1) + (n − 1). This implies

that z1,1 − z1,2 ≤ 2[(m− 1) + (n− 1)] = 2[m+ n− 2]. Note that 0 < (m− 2)(n− 2) for

m > 2 and n > 2, thus z1,1 − z1,2 ≤ 2[m+ n− 2] < mn . This would imply P realizes a

graph of order less than G, a contradiction, hence B2(G) ≥ 2.

Corollary 4.8. If G is an m× n rook’s graph where m > 2 and n > 2, then T2(G) ≥ 3.

Proof. Since G is an m × n rook’s graph where m > 2 and n > 2 we have by Theorem

4.7 that B2(G) ≥ 2. By Theorem 2.9 we have that T2(G) ≥ 3.

The following example shows that for the 3 × 4 rook’s graph, B2(G) = 2 and

T2(G) = 3.

Example 4.9. Consider the 3 × 4 rook’s graph. Let the colors black and red represent

the bond-edge types a, b, respectively.

5

1

9

3

7

11

2

6

10

4

8

12

aa b

b

b

b aa

a a

a

a

b

b b

bb

a

ab

a

a

b

a

a

a b
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Figure 4.6: 3× 4 rook’s graph

Consider the following tiles: t1 = {a3, b2}, t2 = {a, â, b, b̂2}, t3 = {a, â3, b}.
Hence the pot P = {t1, t2, t3}, has the associated construction matrix

M(P ) =


3 0 −2 0

2 −1 1 0

1 1 1 1


with solution

〈
1
6 ,

7
12 ,

1
4

〉
∈ S(P ) and mp = 12.
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4.3 n× n Rook’s Graph

The next two examples show the design process for the n×n rook’s graph. Using

the second method of constructing pots, as in the 2 × n case, we begin by making a set

of reasonable assumptions. We assume R1 = 1 and t1 = {a2(n−1)}. We then generalize

these examples in Theorem 4.12.

Example 4.10. Consider the 3× 3 rook’s graph. Let the colors black and red represent

the bond-edge types a, b, respectively. The graph is built in two phases as in Figure 4.7.

To complete the construction, superimpose Figure 4.7a and Figure 4.7b.

1 2 3

4 5 6

7 8 9

a

a b

b

b

a

a

b

a

b

a b

(a) Phase 1

1 2 3

4 5 6

7 8 9a

a

a

a

a

a

(b) Phase 2

Figure 4.7: 3× 3 rook’s graph

Consider the following tiles: t1 = {a4}, t2 = {a, â2, b̂}, t3 = {a, b3}. Hence the

pot P = {t1, t2, t3}, has the associated construction matrix

M(P ) =


4 −1 1 0

0 −1 3 0

1 1 1 1


with solution

〈
1
9 ,

2
3 ,

2
9

〉
∈ S(P ) and mp = 9.

In Phase 1 of Figure 4.7a, let

λ(vi) =

t1 for i ∈ {1}

t3 for i ∈ {5, 9}.
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Note that t1 only has one choice for distributing its cohesive-ends. For tile t3 distribute

the cohesive-ends b vertically on the vertices on that column, and let one cohesive-end be

distributed horizontally to the first column on that row. Distribute the cohesive-end a on

tile t3 horizontally to remaining incident edges. Note that the remaining vertices vk for

k ∈ {2, 3, 4, 6, 7, 8} are associated to t2. Use Algorithm 2.7 in Phase 2 of Figure 4.7b to

distribute the remaining cohesive-ends a and â.

Example 4.11. Consider the 4× 4 rook’s graph. Let the colors black and red represent

the bond-edge types a, b, respectively. The graph is built in two phases as in Figure 4.8.

To complete the construction, superimpose Figure 4.8a and Figure 4.8b.
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a b
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a
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a

b

a

a

a

b

b

bb

(a) phase 1

1 2 3 4

5 6 7 8
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a a

a a

a

a

a a

a

a a

a

a

a

a

a

a

a

a

a

a

a

a

(b) phase 2

Figure 4.8: 4× 4 rook’s graph

Consider the following tiles: t1 = {a6}, t2 = {a2, â3, b̂}, t3 = {a2, b4}. Hence the

pot P = {t1, t2, t3}, has the associated construction matrix

M(P ) =


6 −1 2 0

0 −1 4 0

1 1 1 1


with solution

〈
1
16 ,

3
4 ,

3
16

〉
∈ S(P ) and mp = 16.

In Phase 1 of Figure 4.7a, let

λ(vi) =

t1 for i ∈ {1}

t3 for i ∈ {6, 11, 16}.
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Note that t1 only has one choice for distributing its cohesive-ends. For tile t3 distribute

the cohesive-ends b vertically on the vertices on that column, and let one cohesive-end be

distributed horizontally to the first column on that row. Distribute the cohesive-end a on

tile t3 horizontally to remaining incident edges. Note that the remaining vertices vk for

k /∈ {1, 6, 11, 16} are associated to t2. Use Algorithm 2.7 in Phase 2 of Figure 4.7b to

distribute the remaining cohesive-ends a2 and â2.

The following theorem is a generalization of the preceding examples.

Theorem 4.12. If G is an n× n rook’s graph, then B2(G) = 2 and T2(G) = 3.

Proof. According to Theorem 4.7, when m ≤ n, B2(G) ≥ 2. Now it remains to be shown

that B2(G) = 2 and T2(G) = 3. Let P = {t1 = {a2(n−1)}, t2 = {an−2, ân−1, b̂}, t3 =

{an−2, bn}}. The associated construction matrix is

M(P ) =


2(n− 1) −1 n− 2 0

0 −1 n 0

1 1 1 1


with solution

〈
1
n2 ,

n−1
n , n−1

n2

〉
∈ S(P ) and mp = n2 by Proposition 2.5.

To show that G ∈ Omin(P ), consider the labeling on the vertices that has been

shown in Figure 4.7 and Figure 4.8. Let λ(v1) = t1. There are n − 1 vertices that

remain along the main diagonal, let λ(v1+k(n+1)) = t3 for k ∈ {1, 2, . . . , n − 1}. For the

remaining vertices vi such that i 6= 1 + k(n + 1) for k ∈ {0, 1, . . . , n − 1}, let λ(vi) = t2.

Then G ∈ Omin(P ), B2(G) = 2 and by construction along with applying Corollary 4.8,

T2(G) = 3.
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Chapter 5

Conclusion

In conclusion, this paper explored the tile based DNA self-assembly of the rook’s

graph. Research of DNA self-assembly is about 35 years old [See82], and the rook’s graph

was studied for the first time in this thesis. The rook’s graph is interesting because

unlike previous classes of graphs studied in the context of DNA self-assembly, the rook’s

graph grows in two dimensions. Growing in two dimensions created several challenges in

finding an assembly design. We have fully classified the rook’s graph in Scenario 1. In

Scenario 2, the n× n rook’s graph, or the square case, was finished and we have partial

results for the rectangular case. The hope was to use the fact that the m × n rook’s

graph is the Cartesian product Km×Kn and to determine if in general, assembly designs

can be found using this graph property. Although the assembly design for Kn worked

for the 2 × n rook’s graph where n is odd in Scenario 2, it quickly failed after. Since

it appears that Cartesian products of graphs do not immediately provide an assembly

design, other design strategies had to be developed to finish 2 × n graphs in Scenario

2. Scenario 3 is left as an open question due to the extra condition that non-isomorphic

graphs cannot be constructed. Notice the pots described in Chapter 4 contain tiles with

pairs of complimentary cohesive-ends. Such tiles can realize graphs with loops which is

a quick way to determine if a pot realizes a non-isomorphic graph. Lastly, the general

m × n case is still left as an open question under Scenario 2. Although, we have found

lower bounds for B2(G) and T2(G), and we have examples of rook’s graphs that achieve

these bounds.
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