
Implementation of SHAPES Case Studies (Artifact)
Alexandros Tasos
Imperial College London, United Kingdom
at1917@ic.ac.uk

Juliana Franco
Microsoft Research, London, United Kingdom
juliana.franco@microsoft.com

Sophia Drossopoulou
Imperial College London, United Kingdom
Microsoft Research, London, United Kingdom
scd@doc.ic.ac.uk

Tobias Wrigstad
Uppsala University, Sweden
tobias.wrigstad@it.uu.se

Susan Eisenbach
Imperial College London, United Kingdom
sue@doc.ic.ac.uk

Abstract
Our main paper presents SHAPES, a language ex-
tension which offers developers fine-grained control
over the placement of data in memory, whilst retain-
ing both memory safety and object abstraction via
pooling and clustering. As part of the development
of SHAPES, we wanted to investigate the usefulness

of the concepts SHAPES brings to the table. To
that extent, we implemented five such case studies.
This publication provides the corresponding code
and instructions on how to run these case studies
and derive the results we provide.

2012 ACM Subject Classification Software and its engineering → Classes and objects; Theory of
computation → Formalisms; General and reference → Performance
Keywords and phrases Cache utilisation, Data representation, Memory safety
Digital Object Identifier 10.4230/DARTS.6.2.19
Funding Alexandros Tasos: The support of the EPSRC Centre for Doctoral Training in High Per-
formance Embedded and Distributed Systems (HiPEDS, Grant Reference EP/L016796/1) is gratefully
acknowledged.

Related Article Alexandros Tasos, Juliana Franco, Sophia Drossopoulou, Tobias Wrigstad, and Susan
Eisenbach, “Reshape Your Layouts, Not Your Programs: A Safe Language Extension for Better Cache
Locality”, in 34th European Conference on Object-Oriented Programming (ECOOP 2020), LIPIcs,
Vol. 166, pp. 31:1–31:3, 2020. https://doi.org/10.4230/LIPIcs.ECOOP.2020.31
Related Conference 34th European Conference on Object-Oriented Programming (ECOOP 2020),
November 15–17, 2020, Berlin, Germany (Virtual Conference)

1 Scope

SHAPES is a language extension intended to allow developers to control how objects are laid out
in memory in a more fine-grained way compared to conventional managed languages. This is
achieved by introducing the concepts of object pooling (objects are placed into pools of a specific
type, objects in the same pool are placed close to each other in memory) and clustering (each
pool adheres to a layout, which dictates how the objects in that pool are laid out in memory).
This is achieved in a type-based manner.

© Alexandros Tasos, Juliana Franco, Sophia Drossopoulou, Tobias Wrigstad, and Susan Eisenbach;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 6, Issue 2, Artifact No. 19, pp. 19:1–19:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:at1917@ic.ac.uk
mailto:juliana.franco@microsoft.com
mailto:scd@doc.ic.ac.uk
mailto:tobias.wrigstad@it.uu.se
mailto:sue@doc.ic.ac.uk
https://doi.org/10.4230/DARTS.6.2.19
https://doi.org/10.4230/LIPIcs.ECOOP.2020.31
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


19:2 Implementation of SHAPES Case Studies (Artifact)

In order to show the usefulness of these concepts and justify the design of SHAPES, we have
presented five case studies in our original paper (§3) which show that these concepts do have,
indeed, merit. The case studies we have implemented are the following:

OP2 (§3.1, §G.2 in the original paper), where we compare against an existing open source
C++ library (OP2 [1]). OP2 mainly attempts to tackle the issue of executing a kernel over a
set of data in parallel in a declarative manner. It also provides pooling and clustering feautres,
albeit more limited compared to those of SHAPES.
Skeletal Animation (§3.2 in the original paper), which explores the use of different layouts
to determine the fastest layout for animating a 3D model that uses the MD5Anim skeletal
animation format [2].
Traffic (§G.3 in the original paper), which explores the use of different layouts to speed up a
traffic simulation based on the Nagel-Schreckenberg traffic model [3]. Our implementation is
derived from a CUDA implementation presented in [4].
Doors (§G.4 in the original paper), wherein we must determine whether a Door of a specific
Allegiance must be open because a Character of the same Allegiance is close to it. The
case study partitions objects into multiple pools to improve performance.
Currency (§3.3 in the original paper), which reflects a query system with real-world data (daily
exchange rates against the Euro) and made-up queries (exchange rate of a specific currency
on a specific date) and attempts to improve performance by using multiple pools of the same
class and having each pool use a different layout.

These case studies are run of five different machines and the results from the execution on
each machine are consolidated in order to generate the final charts.

2 Content

This artifact contains a Zip file, consisting of the source code for our case studies and is split into
the following directories:

op2orig/ and op2reimpl/ provide the source code for the original OP2 commit (and our
patch) we used and for our own implementation, respectively.
stickmen/ contains the source code for Skeletal Animation.
traffic/ contains the source code for Traffic.
doors/ contains the source code for Doors.
forex/ contains the source code for Currency.
lib/ contains the source code for the Google C++ Benchmarking library (which we use for
measurements on all case studies but OP2).
charts/ contains the LATEX source code we use in our paper to generate our charts. The LATEX
source code parses the CSV files located in charts/csv_data in order to generate the charts.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The artifact is also available at: https:
//drive.google.com/file/d/17ioOVFJHwqPxztak-ouDeQhos9parQPh/view?usp=sharing.

The GitHub repository of the artifact is also available at: https://github.com/octurion/
ecoop-artifact.

https://drive.google.com/file/d/17ioOVFJHwqPxztak-ouDeQhos9parQPh/view?usp=sharing
https://drive.google.com/file/d/17ioOVFJHwqPxztak-ouDeQhos9parQPh/view?usp=sharing
https://github.com/octurion/ecoop-artifact
https://github.com/octurion/ecoop-artifact


A. Tasos, J. Franco, S. Drossopoulou, T. Wrigstad, and S. Eisenbach 19:3

4 Tested platforms

We use Docker to build our artifact; we expect our artifact to build and run on any Linux machine
with Docker installed.

We require at least a dual core machine with hyperthreading (i.e. 4 logical cores) to run the
use cases and obtain numbers similar to ours.

5 License

The OP2 project and our OP2-related patches are licensed under the 3-Clause BSD License
(incorrectly stated as 2-Clause BSD). All remaining case studies are licensed under the MIT
License.

6 MD5 sum of the artifact

0e70eb4c6eaaa071ceb3a0aaf2cb8dbc

7 Size of the artifact

28.94 MiB

References
1 M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall,

and P. H.J. Kelly. Performance analysis of the op2
framework on many-core architectures. SIGMET-
RICS Perform. Eval. Rev., 38(4):9–15, March
2011. doi:10.1145/1964218.1964221.

2 David Henry. Md5mesh and md5anim files
formats. http://tfc.duke.free.fr/coding/
md5-specs-en.html, Wayback Machine: https:
//web.archive.org/web/20180816101227/http:
//tfc.duke.free.fr/coding/md5-specs-en.html,
2005.

3 Kai Nagel and Michael Schreckenberg. A cellular
automaton model for freeway traffic. Journal de
physique I, 2(12):2221–2229, 1992.

4 Matthias Springer and Hidehiko Masuhara. Ikra-
cpp: A c++/cuda dsl for object-oriented program-
ming with structure-of-arrays layout. In Proceed-
ings of the 2018 4th Workshop on Programming
Models for SIMD/Vector Processing, page 6. ACM,
2018.

DARTS

https://doi.org/10.1145/1964218.1964221
http://tfc.duke.free.fr/coding/md5-specs-en.html
http://tfc.duke.free.fr/coding/md5-specs-en.html
https://web.archive.org/web/20180816101227/http://tfc.duke.free.fr/coding/md5-specs-en.html
https://web.archive.org/web/20180816101227/http://tfc.duke.free.fr/coding/md5-specs-en.html
https://web.archive.org/web/20180816101227/http://tfc.duke.free.fr/coding/md5-specs-en.html

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

