
Static Type Analysis by Abstract Interpretation of
Python Programs (Artifact)
Raphaël Monat
Sorbonne Université, CNRS, LIP6, Paris, France
raphael.monat@lip6.fr

Abdelraouf Ouadjaout
Sorbonne Université, CNRS, LIP6, Paris, France
abdelraouf.ouadjaout@lip6.fr

Antoine Miné
Sorbonne Université, CNRS, LIP6, Paris, France
Institut Universitaire de France, Paris, France
antoine.mine@lip6.fr

Abstract
Python is an increasingly popular dynamic program-
ming language, particularly used in the scientific
community and well-known for its powerful and
permissive high-level syntax. Our work aims at
detecting statically and automatically type errors.
As these type errors are exceptions that can be
caught later on, we precisely track all exceptions
(raised or caught). We designed a static analysis
by abstract interpretation able to infer the pos-
sible types of variables, taking into account the
full control-flow. It handles both typing paradigms
used in Python, nominal and structural, supports
Python’s object model, introspection operators al-
lowing dynamic type testing, dynamic attribute
addition, as well as exception handling. We present
a flow- and context-sensitive analysis with special

domains to support containers (such as lists) and in-
fer type equalities (allowing it to express parametric
polymorphism). The analysis is soundly derived by
abstract interpretation from a concrete semantics of
Python developed by Fromherz et al. Our analysis
is designed in a modular way as a set of domains
abstracting a concrete collecting semantics. It has
been implemented into the MOPSA analysis frame-
work, and leverages external type annotations from
the Typeshed project to support the vast standard
library. We show that it scales to benchmarks a few
thousand lines long, and preliminary results show
it is able to analyze a small real-life command-line
utility called PathPicker. Compared to previous
work, it is sound, while it keeps similar efficiency
and precision.

2012 ACM Subject Classification Theory of computation → Program analysis; Software and its engin-
eering → Semantics
Keywords and phrases Formal Methods, Static Analysis, Abstract Interpretation, Type Analysis,
Dynamic Programming Language, Python Semantics
Digital Object Identifier 10.4230/DARTS.6.2.11
Funding This work is partially supported by the European Research Council under Consolidator Grant
Agreement 681393 – MOPSA.

Related Article Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné, “Static Type Analysis
by Abstract Interpretation of Python Programs”, in 34th European Conference on Object-Oriented
Programming (ECOOP 2020), LIPIcs, Vol. 166, pp. 17:1–17:29, 2020.
https://doi.org/10.4230/LIPIcs.ECOOP.2020.17
Related Conference 34th European Conference on Object-Oriented Programming (ECOOP 2020),
November 15–17, 2020, Berlin, Germany (Virtual Conference)

1 Scope

This is the artifact accompanying the research paper “Static Type Analysis by Abstract Interpret-
ation of Python Programs” published in ECOOP 2020. It allows the reproduction of the table
presented in the experimental evaluation of the paper, Table 16.

© Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 6, Issue 2, Artifact No. 11, pp. 11:1–11:6
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343693179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-8487-0326
mailto:raphael.monat@lip6.fr
https://orcid.org/0000-0001-7248-5914
mailto:abdelraouf.ouadjaout@lip6.fr
https://orcid.org/0000-0002-6375-3179
mailto:antoine.mine@lip6.fr
https://doi.org/10.4230/DARTS.6.2.11
https://doi.org/10.4230/LIPIcs.ECOOP.2020.17
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


11:2 Static Type Analysis by Abstract Interpretation of Python Programs (Artifact)

2 Content

This artifact consists in a virtualbox image containing:
the static analyzer presented in the paper, based on the Mopsa static analysis framework,
as well as the other analyzers we compare with (a tool by Fritz and Hage, Pytype, Typpete, a
tool by Fromherz et al., RPython),
the programs used in the experimental evaluation of the paper,
a Python script helping to reproduce the main table presented in the experimental evaluation
of the paper (Table 16).

All analyzers have been compiled and installed; they are ready to be run.
The username and the password of the virtual machine are ecoop20, but autologin is enabled.

The default keyboard is en_UK. In the virtual machine, the most important files are located in
~/Desktop/mopsa/:

the source code of the analyzer is in analyzer, described in Appendix A.2
the benchmark files are located in ecoop20_benchmarks (Appendix C).
to quickly check the artifact, we recommend launching the following command:
cd ~/Desktop/mopsa/ && python3 ecoop20.py. This script allows a reproduction of the
performance results described in Table 16 of the research paper (see Appendix C.1). The
analysis times are displayed progressively, as soon as they are established. It takes the script
around 42 minutes to complete, within the virtual machine, on an Intel Core i7-8650U.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS).

4 Tested platforms

Alongside this document, the artifact consists in a virtualbox image, which has been tested using
virtualbox 6.0 on an Ubuntu 19.10. We recommend allocating at least 8GB of RAM to the virtual
machine; there is no need for a multi-core CPU.

5 License

The virtual machine image contains software using different licenses:
Mopsa and the tool from Fromherz et al. are licensed under the GNU LGPL v3,
Pytype and RPython are under MIT license,
Typpete uses a Mozilla license,
the tool from Fritz and Hage uses a BSD License 2.0.

The full licenses are provided within the virtual machine.

6 MD5 sum of the artifact

c275ca7c1de3b346fe30bf52625a818b ECOOP20_Artifact_Monat_Ouadjaout_Mine.ova

7 Size of the artifact

6.1GB



R. Monat, A. Ouadjaout, and A. Miné 11:3

A About Mopsa

A.1 Running the Analyzer
Basic Usage. You can run the analyzer using the command mopsa-python-types (which corres-
ponds to the configuration 2 defined in the research paper), and providing the file you want to ana-
lyze as argument. A slower version (configuration 1) is available as mopsa-python-types-conf1.
I Example. If we want to run the analyzer on the spectral_norm.py benchmark, you can run
mopsa-python-types ecoop20_benchmarks/spectral_norm.py from the mopsa root directory.
The results are provided in Fig. 1. If the analyzer detects any alarm, it will report them. In this
case, Mopsa detects a potential UnboundLocalError line 62, and highlights the location from
where this exception originates. Here, the UnboundLocalError is a false alarm, meaning it cannot
happen in practice.

Figure 1 Running mopsa on spectral_norm.py.

Other options. If you want to get the abstract state at the end of the analysis, you can use the
-lflow option.
I Example. Running the analyzer on ecoop20_benchmarks/mutation_mopsa.py yields the result
provided in Fig. 2 (this is the running example shown in Figures 3, 4 and 10 of the research
paper). The abstract state consists in a mapping from flow tokens F to the set of abstract
addresses currently allocated (heap), the abstract environment (addrs), and the abstract heap
(attributes). In our case, we notice in addrs that both x and y point to the same strong address,
which is an instance of the class A. In attributes, we see that the analysis inferred that val is
an attribute always defined, and that atr may be undefined.

If you want to see all evaluations done by the analyzer, you can add the -hook logs option
to the analyzer call. You can also specify -hook logs -short-logs to see all evaluations, but
without any abstract state displayed. Using -interactive, triggers a step by step analysis, in a
debugger-like fashion (the commands related to the interactive mode are displayed by typing h).

A.2 Structure of the Analyzer
The architecture of Mopsa is described in details in [5]. We give a brief overview of the file
organization for the curious reader. The source code of the analyzer is in analyzer/src:

The core of the analyzer is defined in framework.
The analysis of C programs is described in lang/c, but is out of the scope of this artifact.

DARTS



11:4 Static Type Analysis by Abstract Interpretation of Python Programs (Artifact)

Figure 2 Displaying the last abstract state of mutation_mopsa.py.

The lang/universal folder describes analyses common to the C and Python analyzers, such
as interprocedural inlining, loop invariant inference, and the analysis of some intraprocedural
constructs.
The lang/python folder of the analysis consists in different files and directories:

ast, ast_compare, pp and visitor define the AST of Python used, as well as comparison
operator on this ast, pretty printers and visitors.
the entry point of the Python analysis is program (though frontend is called before to
perform the parsing).
desugar performs dynamic rewriting of Python expressions into other expressions (Python
or universal ones), letting other domains handle them afterwards.
the data_model defines the semantics of Python for most operators:

∗ arithmetic operators (+, -, ...)
∗ comparison operators (==, is, <=, ...)
∗ augmented assignments (+=, ...)

∗ attribute accesses (x.attr)
∗ calls (obj())
∗ subscript (a[b])

the semantics of the data_model is supplemented by the semantics described in objects.
For example, performing an attribute access x.attr usually calls object.__getattribute
__(x, attr), which is in objects/py_object.ml (and described in Fig. 6 of the research
paper).
parts of some libraries are directly defined in OCaml, and found in folder libs
flows/exn.ml describes the handling of exceptions in Python, which is a special feature in
the control-flow analysis.
the type analysis is described in types:
∗ addr_env is an abstract environment, mapping variables to sets of addresses
∗ nominal_types handles analysis of some operators such as isinstance.



R. Monat, A. Ouadjaout, and A. Miné 11:5

∗ structural_types keeps the potential attributes of each addresses, and the analysis of
low level attribute accesses used by data_model/attribute and objects/py_object.ml
for example.

∗ type_annot handles type annotations potentially given as stubs in files share/mopsa/
stubs/python/typedshed/.

All binaries and scripts to launch the analyzer are in bin. share/mopsa/ contains json configura-
tions of different analyses, as well as stubs (which consists in type annotations for the Python
part).

B Running the other analyzers

B.1 Fritz & Hage
The tool from Fritz and Hage [2] dates from 2011, and uses GHC 7.0.3 and cabal 1.14.0. We were
unable to install it using more recent versions of Haskell, so we embedded a docker container into
the virtual machine. Going back to the analysis of spectral_norm.py, you can launch the analyzer
using the command infer-python-types spectral_norm.py. The script infer-python-types
is located in ~/.local/bin. The output of the analyzer consists in the type of each variable at
each program point.

B.2 Pytype
Pytype [6] is run using the following command: pytype -n spectral_norm.py. The -n option
disables the cache. The output of Pytype consists in the errors it has detected. It also provides
the results of its inference as annotations in a directory given by ninja during the analysis (and
then in the pyi directory).

B.3 Typpete
Typpete [4] is called using typpete isinstance.py. Similarly to Pytype, the inference results
are provided as an annotated pyi file, in the generated inference_output directory. Upon errors,
the analyzer will print Unsat in the output and provide a short explanation.

B.4 Value Analysis of Fromherz et al.
The analyzer from Fromherz et al. [3] is based on an older version of the Mopsa framework. You
can call it using ~/nfm18-analyzer/bin/nfm18 isinstance.py. Detected exceptions will be
displayed, with their location in the file.

B.5 RPython
RPython [1] is called using rpython –annotate –rtype isinstance.py. It may reject some
benchmarks as its goal is to optimize the performance of a subset of Python programs. It
needs some special wrapping around programs, so the files analyzed are in a separate directory:
ecoop20_benchmarks/rpython.

C Reproducing the experimental evaluation

This section explains how to reproduce the results established in Section 6.3 of the research paper.

DARTS



11:6 Static Type Analysis by Abstract Interpretation of Python Programs (Artifact)

C.1 Performance Evaluation
When your current working directory is ~/Desktop/mopsa, you can run python3 ecoop20.py.
This will output a table similar to Table 16 of the research paper. It takes the script around 42
minutes to complete, within the virtual machine, on an Intel Core i7-8650U. The timeout duration
of one analysis can be defined at the beginning of the script (by default set to 15 minutes), as well
as the number of times each analysis is run (by default it is set to 1, but you can switch to 10 to
have a bit less variation on the lower running times).

C.2 Soundness Evaluation
Within the ko directory of ecoop20_benchmarks, you will find erroneous variants of the bench-
marks, along with an explanatory markdown file for each file. In all erroneous variant, a simple
bug has been added, where an integer is replaced by a string.

References
1 Davide Ancona, Massimo Ancona, Antonio Cuni,

and Nicholas D. Matsakis. Rpython: a step to-
wards reconciling dynamically and statically typed
OO languages. In DLS, pages 53–64. ACM, 2007.

2 Levin Fritz and Jurriaan Hage. Cost versus preci-
sion for approximate typing for Python. In PEPM,
pages 89–98. ACM, 2017.

3 Aymeric Fromherz, Abdelraouf Ouadjaout, and
Antoine Miné. Static value analysis of Python pro-
grams by abstract interpretation. In NFM, volume
10811 of LNCS, pages 185–202. Springer, 2018.

4 Mostafa Hassan, Caterina Urban, Marco Eilers,
and Peter Müller. MaxSMT-based type inference
for Python 3. In CAV (2), volume 10982 of LNCS,
pages 12–19. Springer, 2018.

5 M. Journault, A. Miné, R. Monat, and A. Ouad-
jaout. Combinations of reusable abstract domains
for a multilingual static analyzer. In Proc. of
the 11th Working Conference on Verified Software:
Theories, Tools, and Experiments (VSTTE19),
pages 1–17, July 2019.

6 Pytype. https://github.com/google/pytype,
2019. Accessed: 2019-10-22.

https://github.com/google/pytype

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact
	About Mopsa
	Running the Analyzer
	Structure of the Analyzer

	Running the other analyzers
	Fritz & Hage
	Pytype
	Typpete
	Value Analysis of Fromherz et al.
	RPython

	Reproducing the experimental evaluation
	Performance Evaluation
	Soundness Evaluation


