
Blame for Null (Artifact)

Abel Nieto
University of Waterloo, Canada
anietoro@uwaterloo.ca

Marianna Rapoport
University of Waterloo, Canada
mrapoport@uwaterloo.ca

Gregor Richards
University of Waterloo, Canada
gregor.richards@uwaterloo.ca

Ondřej Lhoták
University of Waterloo, Canada
olhotak@uwaterloo.ca

Abstract
This artifact is a companion to the paper “Blame for
Null”, where we formalize multiple calculi to reason
about the interoperability between languages where
nullability is explicit and those where nullability is
implicit. Our main result is a theorem that states
that nullability errors can always be blamed on

terms with less-precise typing; that is, terms typed
as implicitly nullable. We summarize our result
with the slogan explicitly nullable programs can’t be
blamed. The artifact consists of a mechanized Coq
proof of the results presented in the paper.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Theory of computation → Type theory; Software and its engineering → Interoperability; Theory of
computation → Operational semantics
Keywords and phrases nullability, type systems, blame calculus, gradual typing
Digital Object Identifier 10.4230/DARTS.6.2.10
Funding This research was supported by the Natural Sciences and Engineering Research Council of
Canada and by the Waterloo-Huawei Joint Innovation Lab.
Acknowledgements We would like to thank the anonymous reviewers for their valuable feedback.

Related Article Abel Nieto, Marianna Rapoport, Gregor Richards, and Ondřej Lhoták, “Blame for
Null”, in 34th European Conference on Object-Oriented Programming (ECOOP 2020), LIPIcs, Vol. 166,
pp. 3:1–3:28, 2020. https://doi.org/10.4230/LIPIcs.ECOOP.2020.3
Related Conference 34th European Conference on Object-Oriented Programming (ECOOP 2020),
November 15–17, 2020, Berlin, Germany (Virtual Conference)

1 Scope

The paper’s contributions are reproduced below (the wording is adapted from the paper):
A core calculus, lambda null, that formalizes the essence of type systems with implicit and
explicit nullability, like those of Kotlin and Scala.
A higher-level calculus, stratified lambda null, that models the interoperability between lan-
guages with implicit nullability and languages with explicit nullability.
A metatheory for lambda null, consisting of the standard progress and preservation lemmas,
as well as well as blame theorems that characterize how nullability errors can occur.

© Abel Nieto, Marianna Rapoport, Gregor Richards, and Ondřej Lhoták;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 6, Issue 2, Artifact No. 10, pp. 10:1–10:2
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343693178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-2741-8119
mailto:anietoro@uwaterloo.ca
mailto:mrapoport@uwaterloo.ca
https://orcid.org/0000-0001-5058-2174
mailto:gregor.richards@uwaterloo.ca
https://orcid.org/0000-0001-9066-1889
mailto:olhotak@uwaterloo.ca
https://doi.org/10.4230/DARTS.6.2.10
https://doi.org/10.4230/LIPIcs.ECOOP.2020.3
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


10:2 Blame for Null (Artifact)

A metatheory for stratified lambda null with two main components. First, a desugaring
semantics for stratified lambda null. Second, our main result, which states that nullability
errors can always be blamed on terms with less-precise typing; that is, terms typed as implicitly
nullable. In the style of earlier work on blame, we summarize our result with the slogan
explicitly nullable programs can’t be blamed.

The artifact substantiates the contributions by providing a mechanized Coq proof of all results
presented in the paper.

2 Content

The artifact is packaged as a Virtual Box VM (an .ova file) containing:
A detailed guide listing the correspondence between definitions and lemmas in the paper and
those in the mechanization.
A mechanized Coq proof that includes all results from the paper.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://github.com/abeln/null-calculus.

4 Tested platforms

We have tested the VM with VirtualBox Version 6.1.6 r137129 (Qt5.6.3). The OS installed in the
VM is Ubuntu 18.04.

5 License

The artifact is available under an MIT license.

6 MD5 sum of the artifact

0488c9d847dc6c4508e1e049f6768e9a

7 Size of the artifact

6.4 GiB

https://github.com/abeln/null-calculus

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

