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— Abstract

This artifact accompanies our experience report
for our compiler testing technology transfer pro-
ject: taking the GraphicsFuzz research project
on randomized metamorphic testing of graphics
shader compilers, and building the necessary tool-
ing around it to provide a highly automated process
for improving the Khronos Vulkan Conformance
Test Suite (CTS) with test cases that expose fuzzer-
found compiler bugs, or that plug gaps in test cov-
erage. The artifact consists of two Dockerfiles and
associated files that can be used to build two Docker

containers. The containers include our main tool
for performing fuzzing: gfauto. The containers al-
low the user to fuzz SwiftShader, a software Vulkan
implementation, finding 4 bugs. The user will also
perform some line coverage analysis of SwiftShader
using our tools to synthesize a small test that in-
creases line coverage. Ubuntu, gfauto, SwiftShader,
and other dependencies inside the Docker contain-
ers are fixed at specific versions, and all random
seeds are set to specific values. Thus, all examples
should reproduce faithfully on any machine.
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1 Scope

The artifact validates the following claims from our experience report, which are also enumerated
(with instructions) in the README.md file in our artifact. We reference the relevant section from
our experience report in each case. Section 5 is addressed last because it uses a separate Docker
container.

We can find bugs through cross-compilation (Section 3.1)

We support crash and wrong image tests (Sections 3.3 and 3.4)

We support loop limiters and array bounds clamping (Section 3.5)

We can replay self-contained tests using gfauto (Section 4.1)
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Bugs are de-duplicated into crash buckets (Section 4.2)

Bugs found in previous fuzzing runs are ignored (Section 4.2)

Vulkan CTS test export (Section 4.3)

We find bugs in the SPIR-V tooling ecosystem (Section 6)

We can do differential coverage analysis (Section 5.2)

We can automatically synthesize small tests that fill coverage gaps (Section 5.3)

2 Content

The artifact package includes:
README.md: the instructions in Markdown format.
bug_image/Dockerfile: the first Dockerfile for validating all claims except for coverage
analysis claims.
bug_image/*/**: associated files for building the first Docker container, including a corpus of
input files for the fuzzer and an example bug report.
coverage_image/Dockerfile: the second Dockerfile for validating all coverage analysis claims.
coverage_image/*/**: associated files for building the second Docker container, including a
corpus of input files for the fuzzer and an example patch for SwiftShader.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available at:
http://multicore.doc.ic.ac.uk/tools/GraphicsFuzz/ECO00P2020Artifact/. All our tools
are open source and available at: https://github.com/google/graphicsfuzz.

4 Tested platforms

The artifact requires Docker and network access to build and run the Docker containers. It has
been tested on Linux, but should work on any machine or cloud service that supports Docker
Linux containers. Note that building the Docker containers can take 1-3 hours, depending on your
machine, and approximately 30GB of disk space is required.

5 License

The artifact is available under the Apache 2.0 license: http://www.apache.org/licenses/
LICENSE-2.0

6 MD5 sum of the artifact

bec7f8a6d48dd8b2b92625831a435£36

7 Size of the artifact

242 KB
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