Putting Randomized Compiler Testing into

Production (Artifact)

Alastair F. Donaldson

Google, London, United Kingdom
Imperial College London, United Kingdom
afdx@google.com

Hugues Evrard
Google, London, United Kingdom
hevrard@google.com

Paul Thomson
Google, London, United Kingdom
paulthomson@google.com

— Abstract

This artifact accompanies our experience report
for our compiler testing technology transfer pro-
ject: taking the GraphicsFuzz research project
on randomized metamorphic testing of graphics
shader compilers, and building the necessary tool-
ing around it to provide a highly automated process
for improving the Khronos Vulkan Conformance
Test Suite (CTS) with test cases that expose fuzzer-
found compiler bugs, or that plug gaps in test cov-
erage. The artifact consists of two Dockerfiles and
associated files that can be used to build two Docker

containers. The containers include our main tool
for performing fuzzing: gfauto. The containers al-
low the user to fuzz SwiftShader, a software Vulkan
implementation, finding 4 bugs. The user will also
perform some line coverage analysis of SwiftShader
using our tools to synthesize a small test that in-
creases line coverage. Ubuntu, gfauto, SwiftShader,
and other dependencies inside the Docker contain-
ers are fixed at specific versions, and all random
seeds are set to specific values. Thus, all examples
should reproduce faithfully on any machine.

2012 ACM Subject Classification Software and its engineering — Compilers; Software and its engineering

— Software testing and debugging

Keywords and phrases Compilers, metamorphic testing, 3D graphics, experience report

Digital Object Identifier 10.4230/DARTS.6.2.3

Acknowledgements We are grateful to the anonymous ECOOP 2020 artifact reviewers for their feedback.

Related Article Alastair F. Donaldson, Google, London,UK, and Paul Thomson, “Putting Randomized
Compiler Testing into Production”, in 34th European Conference on Object-Oriented Programming
(ECOOP 2020), LIPIcs, Vol. 166, pp. 22:1-22:29, 2020.
https://doi.org/10.4230/LIPIcs.ECO0P.2020.22

Related Conference 34th European Conference on Object-Oriented Programming (ECOOP 2020),
November 15-17, 2020, Berlin, Germany (Virtual Conference)

1 Scope

The artifact validates the following claims from our experience report, which are also enumerated
(with instructions) in the README.md file in our artifact. We reference the relevant section from
our experience report in each case. Section 5 is addressed last because it uses a separate Docker
container.

We can find bugs through cross-compilation (Section 3.1)

We support crash and wrong image tests (Sections 3.3 and 3.4)

We support loop limiters and array bounds clamping (Section 3.5)

We can replay self-contained tests using gfauto (Section 4.1)
? Alastair F. Donaldvson, Hugues Evrar.d, a.nd Paul Thomson;

oY icensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 6, Issue 2, Artifact No. 3, pp. 3:1-3:2

\\v DAGSTUHL Dagstuhl Artifacts Series
ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7448-7961
mailto:afdx@google.com
mailto:hevrard@google.com
mailto:paulthomson@google.com
https://doi.org/10.4230/DARTS.6.2.3
https://doi.org/10.4230/LIPIcs.ECOOP.2020.22
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

3:2

Putting Randomized Compiler Testing into Production (Artifact)

Bugs are de-duplicated into crash buckets (Section 4.2)

Bugs found in previous fuzzing runs are ignored (Section 4.2)

Vulkan CTS test export (Section 4.3)

We find bugs in the SPIR-V tooling ecosystem (Section 6)

We can do differential coverage analysis (Section 5.2)

We can automatically synthesize small tests that fill coverage gaps (Section 5.3)

2 Content

The artifact package includes:
README.md: the instructions in Markdown format.
bug_image/Dockerfile: the first Dockerfile for validating all claims except for coverage
analysis claims.
bug_image/*/**: associated files for building the first Docker container, including a corpus of
input files for the fuzzer and an example bug report.
coverage_image/Dockerfile: the second Dockerfile for validating all coverage analysis claims.
coverage_image/*/**: associated files for building the second Docker container, including a
corpus of input files for the fuzzer and an example patch for SwiftShader.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available at:
http://multicore.doc.ic.ac.uk/tools/GraphicsFuzz/ECO00P2020Artifact/. All our tools
are open source and available at: https://github.com/google/graphicsfuzz.

4 Tested platforms

The artifact requires Docker and network access to build and run the Docker containers. It has
been tested on Linux, but should work on any machine or cloud service that supports Docker
Linux containers. Note that building the Docker containers can take 1-3 hours, depending on your
machine, and approximately 30GB of disk space is required.

5 License

The artifact is available under the Apache 2.0 license: http://www.apache.org/licenses/
LICENSE-2.0

6 MD5 sum of the artifact

bec7f8a6d48dd8b2b92625831a435£36

7 Size of the artifact

242 KB

http://multicore.doc.ic.ac.uk/tools/GraphicsFuzz/ECOOP2020Artifact/
https://github.com/google/graphicsfuzz
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

