
Probabilistic Simulation of a Railway Timetable
Rebecca Haehn
RWTH Aachen University, LuFG THS, Germany
https://ths.rwth-aachen.de
haehn@cs.rwth-aachen.de

Erika Ábrahám
RWTH Aachen University, LuFG THS, Germany
abraham@cs.rwth-aachen.de

Nils Nießen
RWTH Aachen University, VIA, Germany
niessen@via.rwth-aachen.de

Abstract
Railway systems are often highly utilized, which makes them vulnerable to delay propagation. In
order to minimize delays timetables are desired to be robust, a property that is often estimated by
simulating the respective timetable for different deterministic delay values. To achieve an accurate
estimation under consideration of uncertain delays many simulation runs need to be executed. Most
established simulation systems additionally use microscopic models of the railway systems, which
further increases the simulations running times and makes them applicable rather for small areas of
interest for complexity reasons.

In this paper, we present a probabilistic, symbolic simulation algorithm for given timetables,
this means we do not simulate individual executions, but all possible executions at once. We use a
macroscopic model of the railway infrastructure as input. This way we consider the railway systems
in less detail but are able to examine certain performance indicators for larger areas. For a given
input model this simulation computes exact results. We implement the algorithm, examine its
results, and discuss possible improvements of this approach.

2012 ACM Subject Classification Computing methodologies → Model development and analysis

Keywords and phrases Railway, Modeling, Scheduling, Probabilistic systems, Optimization

Digital Object Identifier 10.4230/OASIcs.ATMOS.2020.16

Funding Supported by the German Research Council (DFG) – Research Training Group 2236
(UnRAVeL).

Acknowledgements We are gratefult to Deutsche Bahn for supporting us with data.

1 Introduction

Railway traffic has increased over the past years and is expected to increase further [11].
However, changes in the railway infrastructure to accommodate the increase in traffic are
expensive and take a long time. Therefore, it is increasingly important to optimize the
exploitation of the infrastructure capacity. As many passenger and freight trains as possible
should be able to use the infrastructure, of course in compliance with the necessary safety
requirements. At the same time the quality of service should still be satisfying. Unfortunately,
with increasing traffic volume delay propagation is increasing, too. That is the case because
the intervals between consecutive trains are smaller for a higher traffic volume, which makes
it more likely that one train’s delay impacts other trains’ punctuality as well.

There are different approaches to still ensure an acceptable quality of service [12]. On the
one hand, they aim at minimizing the primary delays, caused for example by malfunctions
like signal or brake faults or by large numbers of passengers. On the other hand, there

© Rebecca Haehn, Erika Ábrahám, and Nils Nießen;
licensed under Creative Commons License CC-BY

20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 16; pp. 16:1–16:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://ths.rwth-aachen.de
mailto:haehn@cs.rwth-aachen.de
mailto:abraham@cs.rwth-aachen.de
mailto:niessen@via.rwth-aachen.de
https://doi.org/10.4230/OASIcs.ATMOS.2020.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

16:2 Probabilistic Simulation of a Railway Timetable

are measures to reduce the secondary delays, resulting from conflicts with other trains and
therefore indirectly from primary delays. These measures can be roughly divided into two
categories, improving the robustness of the timetable (planning) [7, 14] and improving train
dispatching (execution) [8, 9, 18]. In this paper we propose an approach to examine the
robustness of a given timetable under consideration of probabilistic primary delays. By
robustness we mean here that the trains in the timetable should be able to recover from
small delays and that delay propagation in the timetable execution should be restricted, as
defined in [5].

Simulation is a technique often used to assess railway timetable robustness. There is a
variety of different simulation systems, varying for example in the level of details considered
and the simulation type used. Some use microscopic models which describe railway systems
in great detail, others are based on macroscopic models which are less detailed. For further
information on railway models see [16]. Microscopic models are well suited to achieve precise
simulation results for small areas of interest. However, for larger areas microscopic simulations
are not feasible since the computations are too complex. For that use case macroscopic
models are preferable.

The systems RailSys [4, 17] and OpenTrack [3, 15] use microscopic models and simulate
all trains synchronously in discrete time steps, such that all train operations are simulated in
a single run. In contrast, asynchronous simulation simulates train operations in a series of
runs starting with the highest priority trains. The system LUKS [1, 13] also uses microscopic
models but proceeds in an asynchronous/synchronous combination. Macroscopic models are
used e.g. in MOSES/WiZug [19], which proceeds asynchronously and is used specifically for
rail freight transportation.

The above mentioned systems have in common, that they implement Monte Carlo
simulation. They consider primary delays as deterministic variables and conduct a large
number of deterministic simulation runs with different random primary delay values. That is
quite time consuming, because many different simulation runs have to be executed in order
to achieve an accurate result. Another approach, presented in [6] and implemented in the
software OnTime [2, 10], uses analytical procedures to compute delay propagation instead
of Monte Carlo simulation. In that work the input timetables are modeled mesoscopic as
activity graphs while the delays are represented as distribution functions. In contrast to this
work, we focus more on the infrastructure utilization and therefore use a macroscopic model
of the infrastructure network instead of an activity graph. Also, we discretise the random
variables representing the delay. Another difference is that in [6] primary delay can occur at
any time on a train’s path, while we only consider primary delays at the beginning of each
train ride for now. Also changes in the train sequence are considered more explicitly in [6].
In both approaches rerouting is neglected as an option to dispatch delayed trains.

The novel contribution of this paper is a probabilistic simulation algorithm for given
timetables using a macroscopic model of railway infrastructure and synchronous simulation.
Our method allows to examine the timetables robustness by evaluating performance indicators
such as the expected time of arrival for each train. Additionally, we can identify infrastructure
elements that increase the expected delay and evaluate for each infrastructure element in
the macroscopic network the expected utilization over time. A strong advantage of our
approach is that, in contrast to Monte Carlo simulation, it provides exact results. We want
to make clear that our approach differs fundamentally from Monte Carlo simulation in
that no individual possible execution sequences are calculated, but rather a symbolic one,
representing all possible execution sequences. Limitations of our approach are that we (1)
discretise the random variables representing the delay, (2) only consider primary delays that

R. Haehn, E. Ábrahám, and N. Nießen 16:3

occur at the start of each train ride and (3) neglect rerouting as a possibility to reduce delays.
A short-term future work will aim at relaxing (2), as our approach is easily extensible to
handle also general primary delays. Relaxing (1) would be possible using integration, but
we would probably lose exactness. Relaxing (3) is currently not planned, as our focus lies
on analysis. We implemented and evaluated the presented approach using existing German
railway infrastructure networks and timetables.

We describe the model of railway systems that we use in Section 2 and present our
probabilistic simulation approach in Section 3. We proceed in Section 4 with a detailed
experimental evaluation and conclude the paper in Section 5.

2 Railway Systems

A railway system consists of an infrastructure network and a corresponding timetable. There
are different ways for modeling railway systems. One decision to be made is the level of
detail. Microscopic models describe railway systems in great detail, they contain for example
all signals and switches. This has the advantage that calculations on such models are quite
accurate. However, those models are very complex and get large even for small parts of
a railway network. Macroscopic models are less detailed, they disregard signals and exact
routes inside stations. In this paper we model railway systems on a macroscopic level.

Infrastructure Network

An infrastructure network is a directed graph G = (V,E), with a set of vertices V that
represent the operation control points (OCPs) and a set of directed edges E ⊆ {(v, u) ∈
V × V | v 6= u} representing the tracks between different OCPs that can be used in the
corresponding direction. Each infrastructure element x ∈ V ∪E is annotated with a capacity
value cap : V ∪ E → N. For vertices v ∈ V , cap(v) is defined as the number of stopping
points at the corresponding OCP or one if stopping is not possible there. cap(v) the maximal
number of trains not just dwelling at v but also passing through v. For edges e ∈ E, cap(e)
is the number of parallel tracks available in the given direction between the respective source
and target OCPs. Currently we model bi-directional tracks (which can be used in both
directions) with capacity c by two separate tracks, one in each direction and both having
capacity c, thereby over-approximating the available resources1. We assume that all cap(v)
resp. cap(e) tracks of a vertex v resp. edge e are equivalent in the sense that they could
replace each other. In the following we also neglect whether stopping is not intended at some
infrastructure elements. Despite the simplifying assumptions we made, we expect this model
to reflect the real conditions to a sufficient extent.

Timetable

Time is modeled discretely in minutes within a predefined finite time horizon, yielding a time
domain T = [tmin, tmax] ⊂ N. A (finite non-timed) path in an infrastructure network G =
(V,E) is a sequence (v1, v2, . . . , vk) of nodes vi ∈ V , i ∈ {1, . . . , k} connected through edges
(vi, vi+1) ∈ E for all i ∈ {1, . . . , k − 1}. A (finite) timed path π = (v1(a1 7→ d1), . . . , vk(ak 7→
dk)) in G is a path in G annotated with arrival and departure times ai, di ∈ T for all i ∈
{1, . . . , k} and a1 ≤ d1 ≤ a2 ≤ ... ≤ dk. A timetable forG is a set of trains {train1, . . . , trainn},

1 We are currently working on an extension of our method to handle bi-directional tracks without such
an over-approximation.

ATMOS 2020

16:4 Probabilistic Simulation of a Railway Timetable

where each train trainid = (typeid, πid) is specified by its type typeid (in Germany e.g. ICE,
RE) and a timed path πid = (vid,1(aid,1 7→ did,1), . . . , vid,kid(aid,kid 7→ did,kid)) in G for
id ∈ {1, . . . , n}. Note that we do not explicitly specify the length of tracks and the speed
of trains, but model them implicitly by specifying the time aid,j+1 − did,j needed for train
trainid to pass the track (vid,j , vid,j+1). Let in the following T = {train1, . . . , trainn} be an
executable timetable, meaning that in the absence of uncertainties and delays, for each time
point t ∈ T and each node v ∈ V , the number of trains that are in v at time t is at most cap(v),
i.e. |{id ∈ {1, . . . , n} | ∃j ∈ {1, . . . , kid}.vid,j = v ∧ aid,j ≤ t ≤ did,j}| ≤ cap(v), and similarly
|{id ∈ {1, . . . , n} | ∃j ∈ {1, . . . , kid}.vid,j = v ∧ vid,j+1 = v′ ∧ did,j ≤ t ≤ aid,j+1}| ≤ cap(e) for
each edge e = (v, v′) ∈ E.

3 Simulation

Simulation can be used to analyse complex real-world systems. It requires an executable
model of the real-world system, typically described in terms of states and events, such that
the execution of the model approximately imitates the real system’s behaviour. In this
paper, we simulate a railway timetable execution over time on a corresponding infrastructure
network by virtually letting trains run through the network, where states encode trains being
at certain stations and events encode trains moving through the infrastructure network.

There are different types of simulations that could be applied in our context. Without
considering uncertainties, deterministic simulation is suitable to check whether a timetable is
executable as planned (correctness). However, if we want to analyse timetable execution real-
istically, we need to consider uncertainties causing delays which might be further propagated
due to capacity restrictions.

Suitable approaches for this are stochastic and probabilistic simulations, the best known
is the Monte Carlo method. In these approaches, states and events may be uncertain, e.g.
the input is not precisely known or some random behaviour occurs. Such uncertainties are
modeled by stochastic (continuous) or probabilistic (discrete) distributions over the value
domains. The Monte Carlo method executes a model several times with randomly generated
values for uncertain model parameters and computes probability distributions to describe the
observable system behaviour. Stochastic/probabilistic simulation can be used in our context
to examine the robustness of timetables for different delay scenarios. A disadvantage of the
Monte Carlo method is that for reliable results it needs a high number of runs.

3.1 Probabilistic Simulation
Due to the aforementioned restrictions of deterministic simulation approaches and the Monte
Carlo method, in this paper we implement a probabilistic simulation. In contrast to Monte
Carlo simulation, our approach executes a single run and computes all random outputs
symbolically in an exact manner. Currently we only consider initial delays (i.e., delays for
the departure times did,1) and propagated delays caused by them, but do not consider any
further random events that affect the system. Especially, we assume that trains have no
additional random delay while already on their way, but consider only the intermediate
delays that are caused by initial delays. We explicitly represent these initial uncertainties by
specifying inputs as discrete probability distributions over a certain domain of possible delay
times, defined manually based on observations.

Since the inputs are uncertain, the outputs are uncertain as well. That means, the results
of the analysis, based on inputs represented by probability distributions, are themselves
probability distributions. To compute these probabilistic outputs, we use discrete-time

R. Haehn, E. Ábrahám, and N. Nießen 16:5

simulation. That means we simulate discrete time steps iteratively, updating the state
variable values at a finite number of points in time. In the following we describe this approach
in detail. For technical reasons, we first need a slight extension of the input model introduced
in Section 2. We first describe this extension and define the states and events that are used
to describe the system, before we present the simulation algorithm in Section 3.2.

Input

In Section 2 we modeled railway systems as directed graphs G = (V,E) with a corresponding
timetable T = {train1, . . . , trainn}, trainid = (typeid, πid) for id ∈ {1, . . . , n}. For the simula-
tion we need a slight extension of this model: we add two auxiliary vertices source and target
to the set of vertices V ′ = V ∪ {source, target} and auxiliary edges from source to all vertices
in V and from all vertices in V to target, resulting in E′ = E∪{(source, v), (v, target) | v ∈ V }
and G′ = (V ′, E′). The capacities of the auxiliary infrastructure elements are arbitrarily large,
so we extend cap to cap′ : V ′∪E′ → N with cap′(x) = cap(x) for all x ∈ V ∪E and cap′(x) = n

for all other x. The idea is that virtually, all trains trainid start in source, move to their initial
node vid,1, complete their original route in vid,kid and move to target afterwards. The reason for
this extension is that a node’s capacities might be exceeded when a train would start in it, so
in order to be able to cleanly insert starting trains we let them start in source at their planned
starting time and move on to their initial node as soon as capacities allow. In addition, we
avoid that trains block capacities once they have completed their routes; in practice they move
on to another route at a time point specified by did,kid , which we model by moving to target.
Each timed path πid = (vid,1(aid,1 7→ did,1), . . . , vid,kid(aid,kid 7→ did,kid)) in the timetable is
extended accordingly to πid

′ = (vid,0(aid,0 7→ did,0), vid,1(aid,1 7→ did,1), . . . , vid,kid(aid,kid 7→
did,kid), vid,kid+1(aid,kid+1 7→ did,kid+1)) with vid,0 = source, aid,0 = did,0 = aid,1, vid,k+1 =
target and aid,k+1 = did,k+1 = did,k. Let T ′ = {train′1, . . . , train′n} with train′id = (typeid, πid

′)
for id ∈ {1, . . . , n}.

States

Each train trainid has the state set Sid = SV
id ∪ SE

id with SV
id = {(vid,j , epdt) | 0 ≤ j ≤

kid + 1 ∧ epdt ∈ T ∧ epdt ≥ did,j} and SE
id = {((vid,j , vid,j+1), epdt) | 0 ≤ j ≤ kid ∧ epdt ∈

T ∧ epdt ≥ aid,j+1}. A state (x, epdt) ∈ Sid encodes that train i is currently using the
infrastructure element x ∈ V ′∪E′ and will not release it before the earliest possible departure
time epdt. A train’s movement is modeled by a sequence of random variables (Xt

id)t∈T over
its state set, where P (Xt

id = s) for t ∈ T is the probability with which Xt
id has the value

s = (x, epdt) at time t. Initially at time tmin, each train trainid is in node source, where the
probability values P (Xtmin

id = (source, epdt)) are defined by an input distribution such that
P (Xtmin

id = (x, epdt)) > 0 only for x = source and epdt ≥ did,0. Our aim is to compute the
probabilities P (Xt

id = s), s ∈ Sid for all trains id ∈ {1, . . . , n} and time points t ∈ T \ {tmin}.
In order to compute these probabilities we simulate the infrastructure behaviour and

maintain for each infrastructure element x ∈ V ′∪E′ a set at[x] of occupiers of type Occupier
and a set blocked[x] of blockers of type Blocker that currently use that infrastructure’s
capacities. The data type Occupier= {id, j, epdt, p} is used to encode that with probability p
the train trainid resides at the given infrastructure element, which is the j-th vertex resp. edge2
in its path, with earliest possible departure time epdt. The data type Blocker= {id, u, p}

2 This information does not only reduce frequent searches of next steps in timetables but it is essential if
timed paths in the timetable may visit an infrastructure element more than once.

ATMOS 2020

16:6 Probabilistic Simulation of a Railway Timetable

encodes blocking times: with probability p, the train with id id has already left the respective
infrastructure element but due to safety zones, it is still blocking the element until time u.
Initially we set at[source] = {(id, 0, epdt, p) |P (Xtmin

id = (source, epdt)) = p > 0}, at[x] = ∅ for
all x ∈ V \ {source}, and blocked[x] = ∅ for all x ∈ V ′ ∪ E′.

An occupier with earliest possible departure time in the past represents a train waiting
for free resources. Therefore, at a fixed time point t ∈ T, for all train ids id ∈ {1, . . . , n} and
infrastructure elements x ∈ V ′ ∪ E′, all occupier entries (id, j, epdt, p) ∈ at[x] with epdt ≤ t
are equivalent in the sense that the train id is in x and is ready to depart if resources are
available. Therefore, for each given train we merge all such entries and consolidate their
probabilities. Technically, let I be the set of all entries (id, j, epdt, p) in an occupier set at[x]
at time point t with the same id and epdt ≤ t. Then we replace all these entries by a single
entry (id, j, t,

∑
pi). This merging strongly reduces the number of considered train states

with non-zero probabilities and will have a major impact on efficiency.

Events

Next we define the updates of occupier and blocker sets from time point t−1 to t. Let
x ∈ V ′ ∪ E′ be an infrastructure element and (id, j, epdt, p) ∈ at[x] at time point t − 1.
Let y be the infrastructure element that directly follows x in the path of trainid i.e. y =
(vid,j , vid,j+1) ∈ E′ if x is the node vid,j ∈ V ′ and y = vid,j+1 ∈ V ′ otherwise (if x is the edge
(vid,j , vid,j+1) ∈ E′). Then the train transitions to y with a certain probability py ∈ [0, 1] ⊂ R
and it remains in x one more time unit with the remaining probability px = 1− py.

If epdt > t then the earliest possible departure time lies in the future and the train id
stays at x with probability px = 1.0 (and thus py = 0). Otherwise, the train transits to y iff
there is free capacity not needed by higher-priority trains, i.e. py is the probability of free
capacity and px = 1− py. In this latter case, we compute py in the following two steps.

First, for i = 1, . . . , cap(y) we compute the probabilities pi that at least i tracks are
available in y at t− 1. Let m be the number of different trains that use or block resources
in y with positive probabilities at time point t − 1. If m < cap(y) then p1 to pcap(y)−m

are 1.0. For all remaining cases cap(y) −m < i ≤ cap(y) the probability pi is the sum of
the probabilities for exactly k ∈ {0, . . . , cap(y) − i} trains to use or block tracks at y. To
compute these probabilities, we add for all k-combinations of the m trains the product of the
probabilities with which they are at y or blocking y and the other m− k trains are neither.
The probability for a train id to be at y or block y is

∑
(id,.,.,p)∈at[y] p+

∑
(id,.,p)∈blocked[y] p.

Note that this technically assumes that the random variables are statistically independent.
However, due to the large number of interdependent variables the dependencies between the
variables are disregarded here.

Second, we collect all trains that compete for resources in y in the current step and
prioritize them. Here we use the data type Request= {x, id, j, epdt, p}, whose values encode
the competitors (id, j, epdt, p) ∈ at[x] which are willing to transit to y. Requests are then
sorted by type, where requests with a smaller type (corresponding for example to long-
distance passenger trains) have a higher priority. For requests with the same type those with
an earlier planned arrival time have higher priority. Should that not be sufficient to define
a clear order, the ids are used as conclusive criterion. Assuming we have an ordered set of
requests {req1, . . . , reqm′} to arrive in y at time t, where req1 has the highest priority. Then
req1 arrives at y with probability p1, reqr with probability pr for 1 < r ≤ min{cap(y),m′}
and all other requests, if there are any, with probability 0.0.

R. Haehn, E. Ábrahám, and N. Nießen 16:7

Listing 1 Probabilistic simulation
1 void simulate (Infrastructure G=(V,E), Timetable T) {
2 Occupier at [][];
3 Blocker blocked [][];
4 initialize ();
5
6 for(Time t = t_min , t <= t_max , t++) {
7 for each v in V { simulate_vertex (v, t); }
8 for each e in E { simulate_edge (e, t); }
9 }
10 }

To model the train remaining in x, if px > 0 then we include (id, j,max{epdt, t}, p · px) in
at[x] at time t. To model transit to y, if py > 0 then we include (id, j′, epdt′, p · py) in at[y]
at t, where the infrastructure element index j′ of y in π′id is j if x ∈ V ′ and j + 1 otherwise
(as the j-th node is followed by the j-th edge and the j-th edge is followed by the (j+1)-st
node).

As to the value epdt′ of the earliest possible departure time, let ay, dy be the planned
arrival and departure times at y. If we enforce that trains spend at least the time planned
in the timetable at each infrastructure element then we would have epdt′ = t + (dy − ay).
However, in reality additional buffer times are included in the timetable to be able to make
up for past delays if necessary. In this paper we assume that the driving times can be reduced
by up to 5%. For the waiting times we make the assumption that for passenger trains they
can be reduced to three minutes, while for freight trains they can be reduced to ten minutes.
However, trains are not allowed to be earlier than planned. This means that for y ∈ E′ we
have epdt′ = max{dy, t+ 0.95 · (dy − ay)}, and for y ∈ V ′ we have epdt′ = max{dy, t+ stop}
with stop = min{(dy − ay), 3} for passenger trains and stop = min{(dy − ay), 10} for freight
trains (according to typeid).

To model blocking, for each infrastructure element x we start from the set blocked[x] at
time t − 1, remove all entries (id, u, p) with u < t, and for each entry (id, j, epdt, p) added
to at[y] for a request from x we also add an entry (id, t + u, p) to blocked[x], where u is a
pre-defined blocking duration (in our experiments 2 minutes).

3.2 Algorithm
The main algorithm is shown in Listing 1. First, the required variables need to be

initialized, then the actual simulation can be executed in lines 6-9. For each time step all
vertices and edges are simulated, shown for the vertices in Listing 2. After unblocking the
vertex, see line 2, the requests from all incoming edges are collected after combining the
respective occupiers in lines 4-16. Next the probabilities with which the requests arrive are
computed, see line 18. Afterwards the requests can actually be scheduled, as described in
Section 3.1 and shown in Listing 3. To schedule a request with a certain probability p the
corresponding occupiers probability is multiplied with 1 − p, see lines 16, 17, unless the
probability would get below a certain threshold, in which case the occupier is deleted in line
7. This is done in the implementation to avoid time-consuming arithmetic computations.
For exact results exact arithmetic would be necessary, however, the results are still accurate
for a sufficiently small threshold. Next a new occupier is added for the current infrastructure
element with the probability of the old occupier multiplied with p, see lines 18-20, respectively
8-10, while the previous infrastructure element is blocked with that probability. Under the
assumption that the random variables are statistically independent this algorithm is correct

ATMOS 2020

16:8 Probabilistic Simulation of a Railway Timetable

Listing 2 Vertex simulation
1 void simulate_vertex (Vertex v, Time t) {
2 unblock (blocked [v], t); // delete all Blocker with u < t
3
4 ordered_set <Request > req;
5 for each e = (v’,v) in E {
6 // merge Occupiers (id ,j,t1 ,p1), (id ,j,t2 ,p2)..
7 // ..to (id ,j,t,p1+p2) when t1 ,t2 <= t
8 merge(at[e], t);
9 for each (id ,j,epdt ,p) in at[e] {
10 if(epdt <= t) {
11 Time arr = T[o.id][o.j+1].a; // planned arrival time at v..
12 // .. needed for sorting
13 req. insert (Request (v’, arr , id , j, epdt , p));
14 }
15 }
16 }
17
18 double cap [] = capacities (blocked [v], at[v], v.capacity , req.size ());
19
20 int i = 0;
21 for each r in req {
22 ++i;
23 if(i > v. capacity || cap[i] == 0.0) { break ; }
24 // train is no longer at incoming edge e with probability r.p*cap[i]
25 Edge e = (r.prev , v);
26 schedule_request (r, r.p*cap[i], t, at[e], blocked [e], at[v], v);
27 }
28 }

Listing 3 Request processing
1 void schedule_request (Request r, double p, int t, Occupier atCurrent [],

Blocker blocked [], Occupier atNext [], Vertex v) {
2 Occupier o = Occupier (r.id , r.j, r.epdt , r.p);
3
4 // r is scheduled with probability 1.0..
5 // ..(or probability with which it stays gets too small)
6 if(p == 1.0 || (r.p*(1-p) < 0.00001)) {
7 atCurrent .erase(o);
8 blocked . insert (Blocker (r.id , t + tb , r.p));
9 Time epdt = std :: max(T[r.id][r.j+1].d, t + stop);
10 atNext . insert (Occupier (r.id , r.j+1, epdt , r.p));
11 } else if(r.p*p < 0.00001) {
12 return ; // the probability that r arrives is too small
13 } else {
14 // r arrives with probability r.p*p..
15 // .. and stays with probability r.p*(1-p)
16 atCurrent .erase(o);
17 atCurrent . insert (Occupier (r.id ,r.j,r.epdt ,r.p*(1-p)));
18 blocked . insert (Blocker (r.trainID , t + tb , r.p*p));
19 Time epdt = std :: max(T[r.id][r.j+1].d, t + stop);
20 atNext . insert (Occupier (r.id , r.j+1, epdt , r.p*p));
21 }
22 }

R. Haehn, E. Ábrahám, and N. Nießen 16:9

Table 1 Railway systems - infrastructure network and timetable properties.

Network |V | |E| |T ′
1| |T ′

2| |T ′
3|

N 2646 5622 436 566 1254
N_SO 5146 11028 858 1221 2521
W_M_SW 6635 14510 1509 1924 4474

(up to rounding).

4 Experimental Results

The algorithm defined in Subsection 3.2 was implemented in C++. Therefore, probabilities
need to be represented. Theoretically probabilities are in the interval [0, 1] ∈ R. Since
computers can not easily represent reals and very small probabilities have no practical
relevance we use high-precision floating point values. We restrict the precision of probabilities
to 10−5. That means we round probabilities smaller than that to be zero. Due to imprecision
in the multiplication especially of small values, some intermediate results might be smaller
than 0.0 or larger than 1.0 (by less than 10−5). Those values are set to the respective limit.

For the experiments we used a computer with a 1.80 GHz × 8 Intel Core i7 CPU and 16
GB of RAM. To evaluate the algorithm we used real-world railway infrastructure networks.
All of those have been generated from confidential infrastructure data in XML form, provided
by DB Netz AG (German Railways). These data include many details that are not required
for the infrastructure model used in this paper, therefore, we abstracted from the given data
to extract the required input networks. Table 1 shows some properties of the networks: the
second resp. third column lists the number of vertices resp. edges.

Time was modeled discretely in minutes, as mentioned in Section 2, with a time step size
of one minute. In order to convert the time values in the given timetables consistently, we
decided that a day is modeled as the time interval [0, 1440] with 0 representing midnight. We
considered different time intervals T = [tmin, tmax] ⊂ N that are defined accordingly instead
of starting with 0:
T1 = [480, 540], from 08:00 am to 09:00 am (1 hour)
T2 = [60, 360], from 01:00 am to 06:00 am (5 hours, during the night)
T3 = [720, 1020], from 12:00 am to 05:00 pm (5 hours, during the day)

For the infrastructure networks corresponding feasible timetables Ti extended with source
and target for the considered time intervals were given. The remaining three columns in
Table 1 show the number of trains contained in these timetables. This gives a rough idea
about the utilization, despite the train lines containing varying numbers of stations. Like the
infrastructure networks the timetables are based on the DB data. In order for the timetables
to match the networks’ level of detail we had to slightly modify the given timetable data as
well.

In the following we first take a look at the computational efficiency and the running times
of the algorithm, then we analyse and discuss the results.

4.1 Running Times of the Algorithm
In order to execute the implemented probabilistic simulation two more parameters need
to be decided. The blocking time tb between two consecutive trains is approximated with
two minutes. For the required initial delay distributions we use a geometric distribution

ATMOS 2020

16:10 Probabilistic Simulation of a Railway Timetable

Table 2 Running times (in sec) for different versions of the implementation.

Input basic on-demand min-prob
N with its T1 2,5 2,1 1,5
W_M_SW with its T1 9,4 6,6 5,0
N with its T2 11,1 8,6 4,9
W_M_SW with its T2 45,0 32,8 14,7

and let each train depart with probability 0.8 at every time step. With the discretisation
of time and the lower bound on the precision this results in the delays i with probability
pi for (i, pi) ∈ {(0, 0.8); (1, 0.16); (2, 0.032); (3, 0.0064); (4, 0.00128); (5, 0.00026); (6, 0.00005);
(7, 0.00001)}. Later we evaluate the impact of the initial delay distribution on the simulation
results in more detail, however, for the examination of the running times we do not change
them to get better comparability.

We examine the running times only for the networks N and W_M_SW with their
corresponding timetables T1 and T2, because we are mainly interested in the impact of
certain modifications on the running time. The running times for different versions of the
implementation are shown in Table 2. The first version, here referred to as basic, is just a
straight-forward implementation of the algorithm described in Subsection 3.2. The running
times for that version on the first three inputs are essentially acceptable, however, we should
keep in mind that these are relatively small inputs. And for even just slightly larger inputs,
as for example network W_M_SW with its timetable T2, the simulation already takes more
than four times as long. We realized that in every time step for each infrastructure element
is checked whether some state changes, but often (for vertices in over 61% of the time steps,
for edges even in 89%) nothing changed. Therefore, for the second version on-demand, we
took into consideration whether state changes for infrastructure elements might occur in any
given time step. This shows some improvements, the version on-demand was 19% to 42%
faster for all inputs.

Next we examined whether some parts of the algorithm could be parallelized. Unfor-
tunately, most sub-procedures work on common data. However, the computations of the
capacity probabilities for the vertices and for the edges respectively might be performed in
parallel. We will exploit this in future work.

Finally, we took a look at the number of Occupiers. Despite the possibility to combine
some Occupiers this number is increasing over time. That is due to the fact that when a train
can arrive at its next infrastructure element with a probability p < 1.0 often an additional
Occupier is added to the simulation. Another effect of this is, that some Occupiers’
probabilities become (maybe negligibly) small. In the last version min-prob we therefore
additionally restricted the probabilities to values larger or equal to 0.01. This reduced the
number of Occupiers, as shown in Figure 1 and further reduced the running times, however,
it should also be considered how this impacts the result. When that level of accuracy is
sufficient this is useful to reduce the running times.

4.2 Evaluation

As mentioned before not just the running times but mainly the actual results of the simulation
are of interest. In this section we examine the impact of the initial delay distribution on the
simulation. Therefore we consider geometric distributions with different success probabilities
p that a train departs. The following distributions are used as initial delay distributions:

p = 0.9: 0, 0.9; 1, 0.09; 2, 0.009; 3, 0.0009; 4, 0.00009; 5, 0.00001

R. Haehn, E. Ábrahám, and N. Nießen 16:11

500 520 540

2,000

4,000

8,000

12,000

18,000

N (on-demand)

W M SW (on-demand)

N (min-prob)

W M SW (min-prob)

time

#
O
cc
u
p
ie
r

120 180 240 300 360

2,000

4,000

8,000

12,000

18,000

N (on-demand)

W M SW (on-demand)

N (min-prob)

W M SW (min-prob)

time

#
O
cc
u
p
ie
r

Figure 1 Number of Occupiers for input N and W_M_SW with T1 (left) and T2 (right), red
and orange represent the version on-demand, cyan and blue version min-prob.

500 520 540

100

200

300

400

500

timetable

0.5
0.6

0.7
0.8

0.9

time

ar
ri
ve
d
tr
ai
n
s

820 920 1,020

300

600

900

1,200

1,500

timetable

0.5
0.6

0.7
0.8

0.9

time

ar
ri
ve
d
tr
ai
n
s

Figure 2 Number of trains that arrived at their target for infrastructure N , on the left with
timetable T1, on the right with timetable T3.

p = 0.8: 0, 0.8; 1, 0.16; 2, 0.032; 3, 0.0064; 4, 0.00128; 5, 0.00026; 6, 0.00005; 7, 0.00001
p = 0.7: 0, 0.7; 1, 0.21; 2, 0.063; 3, 0.0189; 4, 0.00567; 5, 0.0017; 6, 0.00051; 7, 0.00015; 8,
0.00005; 9, 0.00002
p = 0.6: 0, 0.6; 1, 0.24; 2, 0.096; 3, 0.0384; 4, 0.01536; 5, 0.00614; 6, 0.00246; 7, 0.00098;
8, 0.00039; 9, 0.00016; 10, 0.00006; 11, 0.00003; 12, 0.00002
p = 0.5: 0, 0.5; 1, 0.25; 2, 0.125; 3, 0.0625; 4, 0.03125; 5, 0.01563; 6, 0.00781; 7, 0.00391;
8, 0.00195; 9, 0.00098; 10, 0.00049; 11, 0.00024; 12, 0.00012; 13, 0.00006; 14, 0.00003; 15,
0.00002; 16, 0.00001

Since the timetables cover some time interval [tmin, tmax] and we examine delay, we extend
the time interval by 10% of its duration, e.g. instead of [480, 540] we examine [480, 546]. First
we take a look at the number of trains that arrive at their target with a probability of 1.0.
For the network N with the timetable T1 and the previously mentioned extended interval,
that number is between 235 and 285 (out of 436) for the different initial distributions and
increases for larger p as expected. The number of trains that arrived at their target as a
function of the time is depicted in Figure 2, for the simulation results we used the expected
arrival time instead of the planned arrival time. The overall difference between the initial
distributions is quite small, the curves are shaped very similarly. It is important to note that
despite extending the considered time interval not all trains arrive at their target. This is
important for our further examinations.

Additionally to the number of trains arriving at their targets until a certain time step,
the expected delays at the target are of interest. These are depicted in Figure 3 for the same

ATMOS 2020

16:12 Probabilistic Simulation of a Railway Timetable

10 20 30

50

100

150

200

0.5

0.6

0.7

0.8

0.9

expected delay in minutes

fr
eq
u
en
cy

40 80 120

35

70

105

140

0.5

0.6

0.7

0.8

0.9

expected delay in minutes

fr
eq
u
en

cy

Figure 3 Frequency of expected delays at the targets (in minutes) for infrastructure N , on the
left with timetable T1, on the right with timetable T3.

input scenarios as used above. The majority of trains is expected to be punctual, with either
no expected delay or just one to two minutes. For smaller p expected delays of up to ten,
respectively 20 minutes, are still quite common, and a few trains are even expected to be up
to 30 minutes delayed in the scenario for the extended interval T1. This is quite exceptional
considering this interval only has a duration of just over an hour. Such exceptionally long
expected delays correspond to longer train paths with respect to both duration and number
of vertices. These trains tend to be impacted by a larger amount of other trains and are
therefore more exposed to secondary delay. For the timetable T3 the maximal expected
delay is even worse with over two hours. In reality the affected trains would be rerouted or
cancelled, which our approach does not allow.

So far we mostly evaluated the given timetables, however, as mentioned before, we
explicitly chose to model the railway system based on an infrastructure network, as opposed
to an activity graph for example, in order to also evaluate the individual infrastructure
elements. One possible metric for this is the average change in delays while utilizing a certain
infrastructure element. The change in delays for a given infrastructure element is defined
as the difference of the trains’ delays when departing from and arriving at the element,
weighted by the corresponding probabilities. Due to different numbers of trains utilizing the
infrastructure elements these values are not comparable, yet, and should be scaled using the
total number of trains utilizing the respective element. The fact that not all trains reach
their target in the simulated time interval makes it problematic to compute this metric for
all infrastructure elements. On some there are still trains with certain probabilities that
simply did not depart yet and for which therefore the change of their delay is not known yet.
In order to avoid inconsistent results, we only computed this metric for the infrastructure
elements that were no longer occupied by any train.

We visualized this metric, for the infrastructure elements for which it could be computed,
in Figure 4 for the two input scenarios N_SO and W_M_SW with their respective
timetables T1, since this might be more interesting for larger networks. Since it is possible
for trains to reduce delays by driving 5% faster or by reducing their stopping times there
are actually some infrastructure elements where trains are expected to reduce their delay
on average. For most infrastructure elements the delays are not or just slightly expected to
change on average. However, there are also infrastructure elements that cause an expected
additional delay of 5 minutes and more on average. Such infrastructure elements could be
avoided, at least during their peak times, when scheduling additional trains or be penalized
when computing a more robust timetable. It should be noted that it is not always possible

R. Haehn, E. Ábrahám, and N. Nießen 16:13

−2 10 20

500

1,000

1,500

2,000

0.5

0.6

0.7

0.8

0.9

expected additional delay in minutesn
u
m
b
er

of
in
fr
as
tr
u
ct
u
re

el
em

en
ts

−2 10 20

750

1,500

2,250

3,000

0.5

0.6
0.7

0.8

0.9

expected additional delay in minutesn
u
m
b
er

of
in
fr
as
tr
u
ct
u
re

el
em

en
ts

Figure 4 Frequency of delay changes at infrastructure elements (in minutes), on the left for
network N_SO, on the right for W_M_SW , in both cases for the respective timetable T1.

to decrease the utilization of certain infrastructure elements for example for stations with a
high demand on passenger transportation.

Additionally, the difference between given infrastructure elements planned utilization
and expected utilization could be computed as a function of time, for example to be used
as input for an algorithm computing additional train paths. So this approach offers several
possible ways to assess a networks’ utilization given a fixed timetable.

5 Conclusion

We presented a symbolic approach to simulate railway timetables probabilistically. Our
implementation of this simulation is sufficiently fast to simulate real-world sub-networks
of the German railway infrastructure. However, this approach still offers possibilities for
improvements and extensions. For example the accuracy of the model could be further refined,
e.g. by using train type specific blocking times or more realistic initial delay distributions
[20, 21]. The simulation itself could be extended to also handle general primary delays,
not only those that occur at the start of each train ride. Concerning the implementation
multi-threading could be exploited at least for the capacity computations, we would expect
this to decrease the running times especially for larger vertices (with a high capacity) and
an increasing number of trains that are occupying them. This is reasonable, because the
computation of the capacity probabilities for an infrastructure element with capacity cap
and m trains that are occupying it requires

∑min(cap,m−1)
i=0 m ·

(
m
i

)
multiplications.

Last but not least, we are interested in considering the probabilistic utilization when
computing additional train paths, in order to avoid disturbing the existing timetable, also
under consideration of uncertainties in the delays of other trains.

References
1 LUKS, 2020, (accessed July 1, 2020). URL: https://www.via-con.de/en/development/

luks/.
2 OnTime, 2020, (accessed July 1, 2020). URL: https://www.trafit.ch/en/ontime.
3 OpenTrack Railway Technology, 2020, (accessed July 1, 2020). URL: http://www.opentrack.

ch/opentrack/opentrack_e/opentrack_e.html.
4 RailSys, 2020, (accessed July 1, 2020). URL: https://www.rmcon-int.de/railsys-en/.

ATMOS 2020

https://www.via-con.de/en/development/luks/
https://www.via-con.de/en/development/luks/
https://www.trafit.ch/en/ontime
http://www.opentrack.ch/opentrack/opentrack_e/opentrack_e.html
http://www.opentrack.ch/opentrack/opentrack_e/opentrack_e.html
https://www.rmcon-int.de/railsys-en/

16:14 Probabilistic Simulation of a Railway Timetable

5 Emma Uhrdin Andersson. Assessment of robustness in railway traffic timetables, 2014.
6 Thorsten Büker and Bernhard Seybold. Stochastic modelling of delay propagation in large

networks. Journal of Rail Transport Planning and Management, 2(1):34–50, 2012. doi:
10.1016/j.jrtpm.2012.10.001.

7 Valentina Cacchiani and Paolo Toth. Nominal and robust train timetabling problems. European
Journal of Operational Research, 219(3):727–737, 2012.

8 Andrea D’Ariano. Improving real-time train dispatching: models, algorithms and applications,
2008.

9 Andrea D’Ariano and Marco Pranzo. An advanced real-time train dispatching system for
minimizing the propagation of delays in a dispatching area under severe disturbances. Networks
and Spatial Economics, 9(1):63–84, 2009.

10 Burkhard Franke, Bernhard Seybold, Thorsten Büker, Thomas Graffagnino, and Helga
Labermeier. Ontime – network-wide analysis of timetable stability. In 5th International
Seminar on Railway Operations Modelling and Analysis, May 2013.

11 Sabine Radke (Deutsches Institut für Wirtschaftsforschung). Verkehr in Zahlen 2019/2020 (in
German), 2019.

12 Rob M. P. Goverde and Ingo A. Hansen. Performance indicators for railway timetables. In
2013 IEEE International Conference on Intelligent Rail Transportation Proceedings, pages
301–306, 2013.

13 David Janecek and Frédéric Weymann. Luks - Analysis of lines and junctions. In Proceedings
of the 12th World Conference on Transport Research (WCTR 2010), Lisbon, Portugal, 2010.

14 Christian Liebchen, Michael Schachtebeck, Anita Schöbel, Sebastian Stiller, and André Prigge.
Computing delay resistant railway timetables. Computers & Operations Research, 37(5):857–
868, 2010. Disruption Management. doi:10.1016/j.cor.2009.03.022.

15 Andrew Nash and Daniel Huerlimann. Railroad simulation using OpenTrack. Computers in
Railways IX, pages 45–54, 2004. doi:10.2495/CR040051.

16 Alfons Radtke. Infrastructure modelling. Eurailpress, Hamburg, 2014.
17 Alfons Radtke and Jan-Philipp Bendfeldt. Handling of railway operation problems with

RailSys. In Proceedings of the 5th World Congress on Rail Research (WCRR 2001), Cologne,
Germany, 2001.

18 Richard L. Sauder and William M. Westerman. Computer aided train dispatching: decision
support through optimization. Interfaces, 13(6):24–37, 1983.

19 Walter Schneider, Nils Nießen, and Andreas Oetting. MOSES/WiZug: Strategic modelling
and simulation tool for rail freight transportation. In Proceedings of the European Transport
Conference, Straßbourg, 2003.

20 Jianxin Yuan. Stochastic modelling of train delays and delay propagation in stations, volume
2006. Eburon Uitgeverij BV, 2006.

21 Jianxin Yuan and Giorgio Medeossi. Statistical analysis of train delays and movements.
Eurailpress, Hamburg, 2014.

https://doi.org/10.1016/j.jrtpm.2012.10.001
https://doi.org/10.1016/j.jrtpm.2012.10.001
https://doi.org/10.1016/j.cor.2009.03.022
https://doi.org/10.2495/CR040051

	Introduction
	Railway Systems
	Simulation
	Probabilistic Simulation
	Algorithm

	Experimental Results
	Running Times of the Algorithm
	Evaluation

	Conclusion

