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Abstract
In this paper, we present an optimally-resilient, unconditionally-secure asynchronous multi-party
computation (AMPC) protocol for n parties, tolerating a computationally unbounded adversary,
capable of corrupting up to t < n

3 parties. Our protocol needs a communication of O(n4) field
elements per multiplication gate. This is to be compared with previous best AMPC protocol (Patra
et al, ICITS 2009) in the same setting, which needs a communication of O(n5) field elements per
multiplication gate. To design our protocol, we present a simple and highly efficient asynchronous
verifiable secret-sharing (AVSS) protocol, which is of independent interest.
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1 Introduction

Secure multi-party computation (MPC) [9, 6, 2] is a fundamental problem in secure distributed
computing. Informally a MPC protocol allows a set of n mutually-distrusting parties to
perform a joint computation on their inputs, while keeping their inputs as private as possible,
even in the presence of an adversary Adv who can corrupt any t out of these n parties. While
the MPC problem has been pre-dominantly studied in the synchronous communication model
where the message delays are upper bounded by a public constant, the progress in the design
of efficient asynchronous MPC (AMPC) protocols is rather slow. In the latter setting, the
communication channels may have arbitrary but finite delays and deliver messages in any
arbitrary order, with the only guarantee that all sent messages are eventually delivered.

In this work, we consider a setting where Adv is computationally unbounded. In this setting,
we have two class of AMPC protocols. Perfectly-secure AMPC protocols give the security
guarantees without any error, while unconditionally-secure AMPC protocols give the security
guarantees with probability at least 1− εAMPC, where εAMPC is any given (non-zero) error
parameter. While there are quite a few works which consider optimally-resilient perfectly-
secure AMPC protocol, not too much attention has been paid to the design of efficient
unconditionally-secure AMPC protocol with the optimal resilience of t < n

3 [3]. In this work,
we make inroads in this direction, by presenting a simple and efficient unconditionally-secure
AMPC protocol.
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44:2 Unconditionally-Secure Asynchronous MPC Revisited

1.1 Our Results and Comparison with the Existing Works
In any unconditionally-secure AMPC protocol (including ours), the function to be computed
is abstracted as a publicly-known ckt over some finite field F, consisting of addition and
multiplication gates over F and the goal is to let the parties jointly and“securely” evaluate
ckt. The field F is typically the Galois field GF(2κ), where κ depends upon εAMPC. The
communication complexity of any AMPC protocol is dominated by the communication needed
to evaluate the multiplication gates in ckt. Consequently, the focus of any generic AMPC
protocol is to improve the communication required for evaluating the multiplication gates in
ckt. The following table summarizes the communication complexity of the existing AMPC
protocols with the optimal resilience of t < n

3 and our protocol.

Reference Communication Complexity (in bits) for a Single Multiplication Gate
[3] O(n11κ4)
[7] O(n5κ)

This paper O(n4κ)

We follow the standard approach of shared circuit-evaluation, where each value during the
evaluation of ckt is Shamir secret-shared [8] among the parties, with threshold t. Informally, a
value s is said to be Shamir-shared with threshold t, if there exists some degree-t polynomial
with s as its constant term and every party Pi holds a distinct evaluation of this polynomial
as its share. In the AMPC protocol, each party Pi verifiably secret-shares its input for
ckt. The verifiability here ensures that if the parties terminate this step, then some value
is indeed Shamir secret-shared among the parties on the behalf of Pi. To verifiably secret-
share its input, each party executes an instance of asynchronous verifiable secret-sharing
(AVSS). Once the inputs of the parties are secret-shared, the parties then evaluate each gate
in ckt, maintaining the following invariant: if the gate inputs are secret-shared, then the
parties try to obtain a secret-sharing of the gate output. Due to the linearity of Shamir
secret-sharing, maintaining the invariant for addition gates do not need any interaction
among the parties. However, for maintaining the invariant for multiplication gates, the
parties need to interact with each other and hence the onus is rightfully shifted to minimize
this cost. For evaluating the multiplication gates, the parties actually deploy the standard
Beaver’s circuit-randomization technique [1]. The technique reduces the cost of evaluating a
multiplication gate to that of publicly reconstructing two secret-shared values, provided the
parties have access to a Shamir-shared random multiplication triple (a, b, c), where c = a · b.
The shared multiplication triples are generated in advance in a bulk in a circuit-independent
pre-processing phase, using the efficient framework proposed in [5]. The framework allows
to efficiently and verifiably generate Shamir-shared random multiplication triples, using
any given AVSS protocol. Once all the gates in ckt are evaluated and the circuit-output is
available in a secret-shared fashion, the parties publicly reconstruct this value. The privacy of
the computation follows from the fact that during the shared circuit-evaluation, for each value
in ckt, Adv learns at most t shares, which are independent of the actual shared value. While
the AMPC protocols of [3, 7] also follow the above blue-print of shared circuit-evaluation,
the difference is in the underlying AVSS protocol.

AVSS is a well-known and important primitive in secure distributed computing. On a
very high level, an AVSS protocol enhances the security of Shamir secret-sharing against
a malicious adversary (Shamir secret-sharing achieves its properties only in the passive
adversarial model, where even the corrupt parties honestly follow protocol instructions). The
existing unconditionally-secure AVSS protocols with t < n/3 [3, 7] need high communication.
This is because there are significant number of obstacles in designing unconditionally-secure
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AVSS with exactly n = 3t+ 1 parties (which is the least value of n with t < n/3). The main
challenge is to ensure that all honest parties obtain their shares of the secret. We call an
AVSS protocol guaranteeing this “completeness” property as complete AVSS. However, in
the asynchronous model, it is impossible to directly get the confirmation of the receipt of the
share from each party, as corrupt parties may never respond. To get rid off this difficulty, [3]
introduces a “weaker” form of AVSS which guarantees that the underlying secret is verifiably
shared only among a set of n− t parties and up to t parties may not have their shares. To
distinguish this type of AVSS from complete AVSS, the latter category of AVSS is termed
an asynchronous complete secret-sharing (ACSS) in [3], while the weaker version of AVSS
is referred as just AVSS1. Given any AVSS protocol, [3] shows how to design an ACSS
protocol using n instances of AVSS. An AVSS protocol with t < n/3 is also presented in [3].
With a communication complexity of Ω(n9κ) bits, the protocol is highly expensive. This
AVSS protocol when used in their ACSS protocol incurs a communication complexity of
Ω(n10κ)bits. Apart from being communication expensive, the AVSS of [3] involves a lot
of asynchronous primitives such as ICP, A-RS, AWSS and Two & Sum AWSS. In [7], a
simplified AVSS protocol with communication complexity O(n3κ) bits is presented, based on
only few primitives, namely ICP and AWSS. This AVSS is then converted into an ACSS in
the same way as [3], making the communication complexity of their ACSS O(n4κ) bits.

In this work, we further improve upon the communication complexity of the ACSS of [7].
We first design a new AVSS protocol with a communication complexity O(n2κ) bits. Then
using the approach of [3], we obtain an ACSS protocol with communication complexity
O(n3κ) bits. Our AVSS protocol is conceptually simpler and is based on just the ICP
primitive and hence easy to understand. Moreover, since we avoid the usage of AWSS in our
AVSS, we get a saving of Θ(n) in the communication complexity, compared to [7] (the AVSS
of [7] invokes n instances of AWSS, which is not required in our AVSS). We refer the readers
to [4] for the complete details of our AVSS scheme and AMPC protocol.
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1 We stress that the weaker form of AVSS is not sufficient for the shared circuit-evaluation. This is
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